xref: /linux/drivers/net/vrf.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
39 
40 #define RT_FL_TOS(oldflp4) \
41 	((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
42 
43 #define DRV_NAME	"vrf"
44 #define DRV_VERSION	"1.0"
45 
46 #define vrf_master_get_rcu(dev) \
47 	((struct net_device *)rcu_dereference(dev->rx_handler_data))
48 
49 struct net_vrf {
50 	struct rtable           *rth;
51 	struct rt6_info		*rt6;
52 	u32                     tb_id;
53 };
54 
55 struct pcpu_dstats {
56 	u64			tx_pkts;
57 	u64			tx_bytes;
58 	u64			tx_drps;
59 	u64			rx_pkts;
60 	u64			rx_bytes;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static struct dst_entry *vrf_ip_check(struct dst_entry *dst, u32 cookie)
65 {
66 	return dst;
67 }
68 
69 static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
70 {
71 	return ip_local_out(net, sk, skb);
72 }
73 
74 static unsigned int vrf_v4_mtu(const struct dst_entry *dst)
75 {
76 	/* TO-DO: return max ethernet size? */
77 	return dst->dev->mtu;
78 }
79 
80 static void vrf_dst_destroy(struct dst_entry *dst)
81 {
82 	/* our dst lives forever - or until the device is closed */
83 }
84 
85 static unsigned int vrf_default_advmss(const struct dst_entry *dst)
86 {
87 	return 65535 - 40;
88 }
89 
90 static struct dst_ops vrf_dst_ops = {
91 	.family		= AF_INET,
92 	.local_out	= vrf_ip_local_out,
93 	.check		= vrf_ip_check,
94 	.mtu		= vrf_v4_mtu,
95 	.destroy	= vrf_dst_destroy,
96 	.default_advmss	= vrf_default_advmss,
97 };
98 
99 /* neighbor handling is done with actual device; do not want
100  * to flip skb->dev for those ndisc packets. This really fails
101  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
102  * a start.
103  */
104 #if IS_ENABLED(CONFIG_IPV6)
105 static bool check_ipv6_frame(const struct sk_buff *skb)
106 {
107 	const struct ipv6hdr *ipv6h;
108 	struct ipv6hdr _ipv6h;
109 	bool rc = true;
110 
111 	ipv6h = skb_header_pointer(skb, 0, sizeof(_ipv6h), &_ipv6h);
112 	if (!ipv6h)
113 		goto out;
114 
115 	if (ipv6h->nexthdr == NEXTHDR_ICMP) {
116 		const struct icmp6hdr *icmph;
117 		struct icmp6hdr _icmph;
118 
119 		icmph = skb_header_pointer(skb, sizeof(_ipv6h),
120 					   sizeof(_icmph), &_icmph);
121 		if (!icmph)
122 			goto out;
123 
124 		switch (icmph->icmp6_type) {
125 		case NDISC_ROUTER_SOLICITATION:
126 		case NDISC_ROUTER_ADVERTISEMENT:
127 		case NDISC_NEIGHBOUR_SOLICITATION:
128 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
129 		case NDISC_REDIRECT:
130 			rc = false;
131 			break;
132 		}
133 	}
134 
135 out:
136 	return rc;
137 }
138 #else
139 static bool check_ipv6_frame(const struct sk_buff *skb)
140 {
141 	return false;
142 }
143 #endif
144 
145 static bool is_ip_rx_frame(struct sk_buff *skb)
146 {
147 	switch (skb->protocol) {
148 	case htons(ETH_P_IP):
149 		return true;
150 	case htons(ETH_P_IPV6):
151 		return check_ipv6_frame(skb);
152 	}
153 	return false;
154 }
155 
156 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
157 {
158 	vrf_dev->stats.tx_errors++;
159 	kfree_skb(skb);
160 }
161 
162 /* note: already called with rcu_read_lock */
163 static rx_handler_result_t vrf_handle_frame(struct sk_buff **pskb)
164 {
165 	struct sk_buff *skb = *pskb;
166 
167 	if (is_ip_rx_frame(skb)) {
168 		struct net_device *dev = vrf_master_get_rcu(skb->dev);
169 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
170 
171 		u64_stats_update_begin(&dstats->syncp);
172 		dstats->rx_pkts++;
173 		dstats->rx_bytes += skb->len;
174 		u64_stats_update_end(&dstats->syncp);
175 
176 		skb->dev = dev;
177 
178 		return RX_HANDLER_ANOTHER;
179 	}
180 	return RX_HANDLER_PASS;
181 }
182 
183 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
184 						 struct rtnl_link_stats64 *stats)
185 {
186 	int i;
187 
188 	for_each_possible_cpu(i) {
189 		const struct pcpu_dstats *dstats;
190 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
191 		unsigned int start;
192 
193 		dstats = per_cpu_ptr(dev->dstats, i);
194 		do {
195 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
196 			tbytes = dstats->tx_bytes;
197 			tpkts = dstats->tx_pkts;
198 			tdrops = dstats->tx_drps;
199 			rbytes = dstats->rx_bytes;
200 			rpkts = dstats->rx_pkts;
201 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
202 		stats->tx_bytes += tbytes;
203 		stats->tx_packets += tpkts;
204 		stats->tx_dropped += tdrops;
205 		stats->rx_bytes += rbytes;
206 		stats->rx_packets += rpkts;
207 	}
208 	return stats;
209 }
210 
211 #if IS_ENABLED(CONFIG_IPV6)
212 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
213 					   struct net_device *dev)
214 {
215 	const struct ipv6hdr *iph = ipv6_hdr(skb);
216 	struct net *net = dev_net(skb->dev);
217 	struct flowi6 fl6 = {
218 		/* needed to match OIF rule */
219 		.flowi6_oif = dev->ifindex,
220 		.flowi6_iif = LOOPBACK_IFINDEX,
221 		.daddr = iph->daddr,
222 		.saddr = iph->saddr,
223 		.flowlabel = ip6_flowinfo(iph),
224 		.flowi6_mark = skb->mark,
225 		.flowi6_proto = iph->nexthdr,
226 		.flowi6_flags = FLOWI_FLAG_L3MDEV_SRC | FLOWI_FLAG_SKIP_NH_OIF,
227 	};
228 	int ret = NET_XMIT_DROP;
229 	struct dst_entry *dst;
230 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
231 
232 	dst = ip6_route_output(net, NULL, &fl6);
233 	if (dst == dst_null)
234 		goto err;
235 
236 	skb_dst_drop(skb);
237 	skb_dst_set(skb, dst);
238 
239 	ret = ip6_local_out(net, skb->sk, skb);
240 	if (unlikely(net_xmit_eval(ret)))
241 		dev->stats.tx_errors++;
242 	else
243 		ret = NET_XMIT_SUCCESS;
244 
245 	return ret;
246 err:
247 	vrf_tx_error(dev, skb);
248 	return NET_XMIT_DROP;
249 }
250 #else
251 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
252 					   struct net_device *dev)
253 {
254 	vrf_tx_error(dev, skb);
255 	return NET_XMIT_DROP;
256 }
257 #endif
258 
259 static int vrf_send_v4_prep(struct sk_buff *skb, struct flowi4 *fl4,
260 			    struct net_device *vrf_dev)
261 {
262 	struct rtable *rt;
263 	int err = 1;
264 
265 	rt = ip_route_output_flow(dev_net(vrf_dev), fl4, NULL);
266 	if (IS_ERR(rt))
267 		goto out;
268 
269 	/* TO-DO: what about broadcast ? */
270 	if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
271 		ip_rt_put(rt);
272 		goto out;
273 	}
274 
275 	skb_dst_drop(skb);
276 	skb_dst_set(skb, &rt->dst);
277 	err = 0;
278 out:
279 	return err;
280 }
281 
282 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
283 					   struct net_device *vrf_dev)
284 {
285 	struct iphdr *ip4h = ip_hdr(skb);
286 	int ret = NET_XMIT_DROP;
287 	struct flowi4 fl4 = {
288 		/* needed to match OIF rule */
289 		.flowi4_oif = vrf_dev->ifindex,
290 		.flowi4_iif = LOOPBACK_IFINDEX,
291 		.flowi4_tos = RT_TOS(ip4h->tos),
292 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_L3MDEV_SRC |
293 				FLOWI_FLAG_SKIP_NH_OIF,
294 		.daddr = ip4h->daddr,
295 	};
296 
297 	if (vrf_send_v4_prep(skb, &fl4, vrf_dev))
298 		goto err;
299 
300 	if (!ip4h->saddr) {
301 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
302 					       RT_SCOPE_LINK);
303 	}
304 
305 	ret = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
306 	if (unlikely(net_xmit_eval(ret)))
307 		vrf_dev->stats.tx_errors++;
308 	else
309 		ret = NET_XMIT_SUCCESS;
310 
311 out:
312 	return ret;
313 err:
314 	vrf_tx_error(vrf_dev, skb);
315 	goto out;
316 }
317 
318 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
319 {
320 	/* strip the ethernet header added for pass through VRF device */
321 	__skb_pull(skb, skb_network_offset(skb));
322 
323 	switch (skb->protocol) {
324 	case htons(ETH_P_IP):
325 		return vrf_process_v4_outbound(skb, dev);
326 	case htons(ETH_P_IPV6):
327 		return vrf_process_v6_outbound(skb, dev);
328 	default:
329 		vrf_tx_error(dev, skb);
330 		return NET_XMIT_DROP;
331 	}
332 }
333 
334 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
335 {
336 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
337 
338 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
339 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
340 
341 		u64_stats_update_begin(&dstats->syncp);
342 		dstats->tx_pkts++;
343 		dstats->tx_bytes += skb->len;
344 		u64_stats_update_end(&dstats->syncp);
345 	} else {
346 		this_cpu_inc(dev->dstats->tx_drps);
347 	}
348 
349 	return ret;
350 }
351 
352 #if IS_ENABLED(CONFIG_IPV6)
353 static struct dst_entry *vrf_ip6_check(struct dst_entry *dst, u32 cookie)
354 {
355 	return dst;
356 }
357 
358 static struct dst_ops vrf_dst_ops6 = {
359 	.family		= AF_INET6,
360 	.local_out	= ip6_local_out,
361 	.check		= vrf_ip6_check,
362 	.mtu		= vrf_v4_mtu,
363 	.destroy	= vrf_dst_destroy,
364 	.default_advmss	= vrf_default_advmss,
365 };
366 
367 static int init_dst_ops6_kmem_cachep(void)
368 {
369 	vrf_dst_ops6.kmem_cachep = kmem_cache_create("vrf_ip6_dst_cache",
370 						     sizeof(struct rt6_info),
371 						     0,
372 						     SLAB_HWCACHE_ALIGN,
373 						     NULL);
374 
375 	if (!vrf_dst_ops6.kmem_cachep)
376 		return -ENOMEM;
377 
378 	return 0;
379 }
380 
381 static void free_dst_ops6_kmem_cachep(void)
382 {
383 	kmem_cache_destroy(vrf_dst_ops6.kmem_cachep);
384 }
385 
386 static int vrf_input6(struct sk_buff *skb)
387 {
388 	skb->dev->stats.rx_errors++;
389 	kfree_skb(skb);
390 	return 0;
391 }
392 
393 /* modelled after ip6_finish_output2 */
394 static int vrf_finish_output6(struct net *net, struct sock *sk,
395 			      struct sk_buff *skb)
396 {
397 	struct dst_entry *dst = skb_dst(skb);
398 	struct net_device *dev = dst->dev;
399 	struct neighbour *neigh;
400 	struct in6_addr *nexthop;
401 	int ret;
402 
403 	skb->protocol = htons(ETH_P_IPV6);
404 	skb->dev = dev;
405 
406 	rcu_read_lock_bh();
407 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
408 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
409 	if (unlikely(!neigh))
410 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
411 	if (!IS_ERR(neigh)) {
412 		ret = dst_neigh_output(dst, neigh, skb);
413 		rcu_read_unlock_bh();
414 		return ret;
415 	}
416 	rcu_read_unlock_bh();
417 
418 	IP6_INC_STATS(dev_net(dst->dev),
419 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
420 	kfree_skb(skb);
421 	return -EINVAL;
422 }
423 
424 /* modelled after ip6_output */
425 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
426 {
427 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
428 			    net, sk, skb, NULL, skb_dst(skb)->dev,
429 			    vrf_finish_output6,
430 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
431 }
432 
433 static void vrf_rt6_destroy(struct net_vrf *vrf)
434 {
435 	dst_destroy(&vrf->rt6->dst);
436 	free_percpu(vrf->rt6->rt6i_pcpu);
437 	vrf->rt6 = NULL;
438 }
439 
440 static int vrf_rt6_create(struct net_device *dev)
441 {
442 	struct net_vrf *vrf = netdev_priv(dev);
443 	struct dst_entry *dst;
444 	struct rt6_info *rt6;
445 	int cpu;
446 	int rc = -ENOMEM;
447 
448 	rt6 = dst_alloc(&vrf_dst_ops6, dev, 0,
449 			DST_OBSOLETE_NONE,
450 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
451 	if (!rt6)
452 		goto out;
453 
454 	dst = &rt6->dst;
455 
456 	rt6->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, GFP_KERNEL);
457 	if (!rt6->rt6i_pcpu) {
458 		dst_destroy(dst);
459 		goto out;
460 	}
461 	for_each_possible_cpu(cpu) {
462 		struct rt6_info **p = per_cpu_ptr(rt6->rt6i_pcpu, cpu);
463 		*p =  NULL;
464 	}
465 
466 	memset(dst + 1, 0, sizeof(*rt6) - sizeof(*dst));
467 
468 	INIT_LIST_HEAD(&rt6->rt6i_siblings);
469 	INIT_LIST_HEAD(&rt6->rt6i_uncached);
470 
471 	rt6->dst.input	= vrf_input6;
472 	rt6->dst.output	= vrf_output6;
473 
474 	rt6->rt6i_table = fib6_get_table(dev_net(dev), vrf->tb_id);
475 
476 	atomic_set(&rt6->dst.__refcnt, 2);
477 
478 	vrf->rt6 = rt6;
479 	rc = 0;
480 out:
481 	return rc;
482 }
483 #else
484 static int init_dst_ops6_kmem_cachep(void)
485 {
486 	return 0;
487 }
488 
489 static void free_dst_ops6_kmem_cachep(void)
490 {
491 }
492 
493 static void vrf_rt6_destroy(struct net_vrf *vrf)
494 {
495 }
496 
497 static int vrf_rt6_create(struct net_device *dev)
498 {
499 	return 0;
500 }
501 #endif
502 
503 /* modelled after ip_finish_output2 */
504 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
505 {
506 	struct dst_entry *dst = skb_dst(skb);
507 	struct rtable *rt = (struct rtable *)dst;
508 	struct net_device *dev = dst->dev;
509 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
510 	struct neighbour *neigh;
511 	u32 nexthop;
512 	int ret = -EINVAL;
513 
514 	/* Be paranoid, rather than too clever. */
515 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
516 		struct sk_buff *skb2;
517 
518 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
519 		if (!skb2) {
520 			ret = -ENOMEM;
521 			goto err;
522 		}
523 		if (skb->sk)
524 			skb_set_owner_w(skb2, skb->sk);
525 
526 		consume_skb(skb);
527 		skb = skb2;
528 	}
529 
530 	rcu_read_lock_bh();
531 
532 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
533 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
534 	if (unlikely(!neigh))
535 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
536 	if (!IS_ERR(neigh))
537 		ret = dst_neigh_output(dst, neigh, skb);
538 
539 	rcu_read_unlock_bh();
540 err:
541 	if (unlikely(ret < 0))
542 		vrf_tx_error(skb->dev, skb);
543 	return ret;
544 }
545 
546 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
547 {
548 	struct net_device *dev = skb_dst(skb)->dev;
549 
550 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
551 
552 	skb->dev = dev;
553 	skb->protocol = htons(ETH_P_IP);
554 
555 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
556 			    net, sk, skb, NULL, dev,
557 			    vrf_finish_output,
558 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
559 }
560 
561 static void vrf_rtable_destroy(struct net_vrf *vrf)
562 {
563 	struct dst_entry *dst = (struct dst_entry *)vrf->rth;
564 
565 	dst_destroy(dst);
566 	vrf->rth = NULL;
567 }
568 
569 static struct rtable *vrf_rtable_create(struct net_device *dev)
570 {
571 	struct net_vrf *vrf = netdev_priv(dev);
572 	struct rtable *rth;
573 
574 	rth = dst_alloc(&vrf_dst_ops, dev, 2,
575 			DST_OBSOLETE_NONE,
576 			(DST_HOST | DST_NOPOLICY | DST_NOXFRM));
577 	if (rth) {
578 		rth->dst.output	= vrf_output;
579 		rth->rt_genid	= rt_genid_ipv4(dev_net(dev));
580 		rth->rt_flags	= 0;
581 		rth->rt_type	= RTN_UNICAST;
582 		rth->rt_is_input = 0;
583 		rth->rt_iif	= 0;
584 		rth->rt_pmtu	= 0;
585 		rth->rt_gateway	= 0;
586 		rth->rt_uses_gateway = 0;
587 		rth->rt_table_id = vrf->tb_id;
588 		INIT_LIST_HEAD(&rth->rt_uncached);
589 		rth->rt_uncached_list = NULL;
590 	}
591 
592 	return rth;
593 }
594 
595 /**************************** device handling ********************/
596 
597 /* cycle interface to flush neighbor cache and move routes across tables */
598 static void cycle_netdev(struct net_device *dev)
599 {
600 	unsigned int flags = dev->flags;
601 	int ret;
602 
603 	if (!netif_running(dev))
604 		return;
605 
606 	ret = dev_change_flags(dev, flags & ~IFF_UP);
607 	if (ret >= 0)
608 		ret = dev_change_flags(dev, flags);
609 
610 	if (ret < 0) {
611 		netdev_err(dev,
612 			   "Failed to cycle device %s; route tables might be wrong!\n",
613 			   dev->name);
614 	}
615 }
616 
617 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
618 {
619 	int ret;
620 
621 	/* register the packet handler for slave ports */
622 	ret = netdev_rx_handler_register(port_dev, vrf_handle_frame, dev);
623 	if (ret) {
624 		netdev_err(port_dev,
625 			   "Device %s failed to register rx_handler\n",
626 			   port_dev->name);
627 		goto out_fail;
628 	}
629 
630 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
631 	if (ret < 0)
632 		goto out_unregister;
633 
634 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
635 	cycle_netdev(port_dev);
636 
637 	return 0;
638 
639 out_unregister:
640 	netdev_rx_handler_unregister(port_dev);
641 out_fail:
642 	return ret;
643 }
644 
645 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
646 {
647 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
648 		return -EINVAL;
649 
650 	return do_vrf_add_slave(dev, port_dev);
651 }
652 
653 /* inverse of do_vrf_add_slave */
654 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
655 {
656 	netdev_upper_dev_unlink(port_dev, dev);
657 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
658 
659 	netdev_rx_handler_unregister(port_dev);
660 
661 	cycle_netdev(port_dev);
662 
663 	return 0;
664 }
665 
666 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
667 {
668 	return do_vrf_del_slave(dev, port_dev);
669 }
670 
671 static void vrf_dev_uninit(struct net_device *dev)
672 {
673 	struct net_vrf *vrf = netdev_priv(dev);
674 	struct net_device *port_dev;
675 	struct list_head *iter;
676 
677 	vrf_rtable_destroy(vrf);
678 	vrf_rt6_destroy(vrf);
679 
680 	netdev_for_each_lower_dev(dev, port_dev, iter)
681 		vrf_del_slave(dev, port_dev);
682 
683 	free_percpu(dev->dstats);
684 	dev->dstats = NULL;
685 }
686 
687 static int vrf_dev_init(struct net_device *dev)
688 {
689 	struct net_vrf *vrf = netdev_priv(dev);
690 
691 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
692 	if (!dev->dstats)
693 		goto out_nomem;
694 
695 	/* create the default dst which points back to us */
696 	vrf->rth = vrf_rtable_create(dev);
697 	if (!vrf->rth)
698 		goto out_stats;
699 
700 	if (vrf_rt6_create(dev) != 0)
701 		goto out_rth;
702 
703 	dev->flags = IFF_MASTER | IFF_NOARP;
704 
705 	return 0;
706 
707 out_rth:
708 	vrf_rtable_destroy(vrf);
709 out_stats:
710 	free_percpu(dev->dstats);
711 	dev->dstats = NULL;
712 out_nomem:
713 	return -ENOMEM;
714 }
715 
716 static const struct net_device_ops vrf_netdev_ops = {
717 	.ndo_init		= vrf_dev_init,
718 	.ndo_uninit		= vrf_dev_uninit,
719 	.ndo_start_xmit		= vrf_xmit,
720 	.ndo_get_stats64	= vrf_get_stats64,
721 	.ndo_add_slave		= vrf_add_slave,
722 	.ndo_del_slave		= vrf_del_slave,
723 };
724 
725 static u32 vrf_fib_table(const struct net_device *dev)
726 {
727 	struct net_vrf *vrf = netdev_priv(dev);
728 
729 	return vrf->tb_id;
730 }
731 
732 static struct rtable *vrf_get_rtable(const struct net_device *dev,
733 				     const struct flowi4 *fl4)
734 {
735 	struct rtable *rth = NULL;
736 
737 	if (!(fl4->flowi4_flags & FLOWI_FLAG_L3MDEV_SRC)) {
738 		struct net_vrf *vrf = netdev_priv(dev);
739 
740 		rth = vrf->rth;
741 		atomic_inc(&rth->dst.__refcnt);
742 	}
743 
744 	return rth;
745 }
746 
747 /* called under rcu_read_lock */
748 static int vrf_get_saddr(struct net_device *dev, struct flowi4 *fl4)
749 {
750 	struct fib_result res = { .tclassid = 0 };
751 	struct net *net = dev_net(dev);
752 	u32 orig_tos = fl4->flowi4_tos;
753 	u8 flags = fl4->flowi4_flags;
754 	u8 scope = fl4->flowi4_scope;
755 	u8 tos = RT_FL_TOS(fl4);
756 	int rc;
757 
758 	if (unlikely(!fl4->daddr))
759 		return 0;
760 
761 	fl4->flowi4_flags |= FLOWI_FLAG_SKIP_NH_OIF;
762 	fl4->flowi4_iif = LOOPBACK_IFINDEX;
763 	fl4->flowi4_tos = tos & IPTOS_RT_MASK;
764 	fl4->flowi4_scope = ((tos & RTO_ONLINK) ?
765 			     RT_SCOPE_LINK : RT_SCOPE_UNIVERSE);
766 
767 	rc = fib_lookup(net, fl4, &res, 0);
768 	if (!rc) {
769 		if (res.type == RTN_LOCAL)
770 			fl4->saddr = res.fi->fib_prefsrc ? : fl4->daddr;
771 		else
772 			fib_select_path(net, &res, fl4, -1);
773 	}
774 
775 	fl4->flowi4_flags = flags;
776 	fl4->flowi4_tos = orig_tos;
777 	fl4->flowi4_scope = scope;
778 
779 	return rc;
780 }
781 
782 #if IS_ENABLED(CONFIG_IPV6)
783 static struct dst_entry *vrf_get_rt6_dst(const struct net_device *dev,
784 					 const struct flowi6 *fl6)
785 {
786 	struct rt6_info *rt = NULL;
787 
788 	if (!(fl6->flowi6_flags & FLOWI_FLAG_L3MDEV_SRC)) {
789 		struct net_vrf *vrf = netdev_priv(dev);
790 
791 		rt = vrf->rt6;
792 		atomic_inc(&rt->dst.__refcnt);
793 	}
794 
795 	return (struct dst_entry *)rt;
796 }
797 #endif
798 
799 static const struct l3mdev_ops vrf_l3mdev_ops = {
800 	.l3mdev_fib_table	= vrf_fib_table,
801 	.l3mdev_get_rtable	= vrf_get_rtable,
802 	.l3mdev_get_saddr	= vrf_get_saddr,
803 #if IS_ENABLED(CONFIG_IPV6)
804 	.l3mdev_get_rt6_dst	= vrf_get_rt6_dst,
805 #endif
806 };
807 
808 static void vrf_get_drvinfo(struct net_device *dev,
809 			    struct ethtool_drvinfo *info)
810 {
811 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
812 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
813 }
814 
815 static const struct ethtool_ops vrf_ethtool_ops = {
816 	.get_drvinfo	= vrf_get_drvinfo,
817 };
818 
819 static void vrf_setup(struct net_device *dev)
820 {
821 	ether_setup(dev);
822 
823 	/* Initialize the device structure. */
824 	dev->netdev_ops = &vrf_netdev_ops;
825 	dev->l3mdev_ops = &vrf_l3mdev_ops;
826 	dev->ethtool_ops = &vrf_ethtool_ops;
827 	dev->destructor = free_netdev;
828 
829 	/* Fill in device structure with ethernet-generic values. */
830 	eth_hw_addr_random(dev);
831 
832 	/* don't acquire vrf device's netif_tx_lock when transmitting */
833 	dev->features |= NETIF_F_LLTX;
834 
835 	/* don't allow vrf devices to change network namespaces. */
836 	dev->features |= NETIF_F_NETNS_LOCAL;
837 }
838 
839 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
840 {
841 	if (tb[IFLA_ADDRESS]) {
842 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
843 			return -EINVAL;
844 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
845 			return -EADDRNOTAVAIL;
846 	}
847 	return 0;
848 }
849 
850 static void vrf_dellink(struct net_device *dev, struct list_head *head)
851 {
852 	unregister_netdevice_queue(dev, head);
853 }
854 
855 static int vrf_newlink(struct net *src_net, struct net_device *dev,
856 		       struct nlattr *tb[], struct nlattr *data[])
857 {
858 	struct net_vrf *vrf = netdev_priv(dev);
859 
860 	if (!data || !data[IFLA_VRF_TABLE])
861 		return -EINVAL;
862 
863 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
864 
865 	dev->priv_flags |= IFF_L3MDEV_MASTER;
866 
867 	return register_netdevice(dev);
868 }
869 
870 static size_t vrf_nl_getsize(const struct net_device *dev)
871 {
872 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
873 }
874 
875 static int vrf_fillinfo(struct sk_buff *skb,
876 			const struct net_device *dev)
877 {
878 	struct net_vrf *vrf = netdev_priv(dev);
879 
880 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
881 }
882 
883 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
884 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
885 };
886 
887 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
888 	.kind		= DRV_NAME,
889 	.priv_size	= sizeof(struct net_vrf),
890 
891 	.get_size	= vrf_nl_getsize,
892 	.policy		= vrf_nl_policy,
893 	.validate	= vrf_validate,
894 	.fill_info	= vrf_fillinfo,
895 
896 	.newlink	= vrf_newlink,
897 	.dellink	= vrf_dellink,
898 	.setup		= vrf_setup,
899 	.maxtype	= IFLA_VRF_MAX,
900 };
901 
902 static int vrf_device_event(struct notifier_block *unused,
903 			    unsigned long event, void *ptr)
904 {
905 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
906 
907 	/* only care about unregister events to drop slave references */
908 	if (event == NETDEV_UNREGISTER) {
909 		struct net_device *vrf_dev;
910 
911 		if (!netif_is_l3_slave(dev))
912 			goto out;
913 
914 		vrf_dev = netdev_master_upper_dev_get(dev);
915 		vrf_del_slave(vrf_dev, dev);
916 	}
917 out:
918 	return NOTIFY_DONE;
919 }
920 
921 static struct notifier_block vrf_notifier_block __read_mostly = {
922 	.notifier_call = vrf_device_event,
923 };
924 
925 static int __init vrf_init_module(void)
926 {
927 	int rc;
928 
929 	vrf_dst_ops.kmem_cachep =
930 		kmem_cache_create("vrf_ip_dst_cache",
931 				  sizeof(struct rtable), 0,
932 				  SLAB_HWCACHE_ALIGN,
933 				  NULL);
934 
935 	if (!vrf_dst_ops.kmem_cachep)
936 		return -ENOMEM;
937 
938 	rc = init_dst_ops6_kmem_cachep();
939 	if (rc != 0)
940 		goto error2;
941 
942 	register_netdevice_notifier(&vrf_notifier_block);
943 
944 	rc = rtnl_link_register(&vrf_link_ops);
945 	if (rc < 0)
946 		goto error;
947 
948 	return 0;
949 
950 error:
951 	unregister_netdevice_notifier(&vrf_notifier_block);
952 	free_dst_ops6_kmem_cachep();
953 error2:
954 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
955 	return rc;
956 }
957 
958 static void __exit vrf_cleanup_module(void)
959 {
960 	rtnl_link_unregister(&vrf_link_ops);
961 	unregister_netdevice_notifier(&vrf_notifier_block);
962 	kmem_cache_destroy(vrf_dst_ops.kmem_cachep);
963 	free_dst_ops6_kmem_cachep();
964 }
965 
966 module_init(vrf_init_module);
967 module_exit(vrf_cleanup_module);
968 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
969 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
970 MODULE_LICENSE("GPL");
971 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
972 MODULE_VERSION(DRV_VERSION);
973