xref: /linux/drivers/net/vrf.c (revision 372e2db7210df7c45ead46429aeb1443ba148060)
1 /*
2  * vrf.c: device driver to encapsulate a VRF space
3  *
4  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7  *
8  * Based on dummy, team and ipvlan drivers
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ip.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
28 
29 #include <linux/inetdevice.h>
30 #include <net/arp.h>
31 #include <net/ip.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/route.h>
36 #include <net/addrconf.h>
37 #include <net/l3mdev.h>
38 #include <net/fib_rules.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.0"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 static bool add_fib_rules = true;
45 
46 struct net_vrf {
47 	struct rtable __rcu	*rth;
48 	struct rtable __rcu	*rth_local;
49 	struct rt6_info	__rcu	*rt6;
50 	struct rt6_info	__rcu	*rt6_local;
51 	u32                     tb_id;
52 };
53 
54 struct pcpu_dstats {
55 	u64			tx_pkts;
56 	u64			tx_bytes;
57 	u64			tx_drps;
58 	u64			rx_pkts;
59 	u64			rx_bytes;
60 	u64			rx_drps;
61 	struct u64_stats_sync	syncp;
62 };
63 
64 static void vrf_rx_stats(struct net_device *dev, int len)
65 {
66 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
67 
68 	u64_stats_update_begin(&dstats->syncp);
69 	dstats->rx_pkts++;
70 	dstats->rx_bytes += len;
71 	u64_stats_update_end(&dstats->syncp);
72 }
73 
74 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
75 {
76 	vrf_dev->stats.tx_errors++;
77 	kfree_skb(skb);
78 }
79 
80 static struct rtnl_link_stats64 *vrf_get_stats64(struct net_device *dev,
81 						 struct rtnl_link_stats64 *stats)
82 {
83 	int i;
84 
85 	for_each_possible_cpu(i) {
86 		const struct pcpu_dstats *dstats;
87 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
88 		unsigned int start;
89 
90 		dstats = per_cpu_ptr(dev->dstats, i);
91 		do {
92 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
93 			tbytes = dstats->tx_bytes;
94 			tpkts = dstats->tx_pkts;
95 			tdrops = dstats->tx_drps;
96 			rbytes = dstats->rx_bytes;
97 			rpkts = dstats->rx_pkts;
98 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
99 		stats->tx_bytes += tbytes;
100 		stats->tx_packets += tpkts;
101 		stats->tx_dropped += tdrops;
102 		stats->rx_bytes += rbytes;
103 		stats->rx_packets += rpkts;
104 	}
105 	return stats;
106 }
107 
108 /* Local traffic destined to local address. Reinsert the packet to rx
109  * path, similar to loopback handling.
110  */
111 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
112 			  struct dst_entry *dst)
113 {
114 	int len = skb->len;
115 
116 	skb_orphan(skb);
117 
118 	skb_dst_set(skb, dst);
119 	skb_dst_force(skb);
120 
121 	/* set pkt_type to avoid skb hitting packet taps twice -
122 	 * once on Tx and again in Rx processing
123 	 */
124 	skb->pkt_type = PACKET_LOOPBACK;
125 
126 	skb->protocol = eth_type_trans(skb, dev);
127 
128 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
129 		vrf_rx_stats(dev, len);
130 	else
131 		this_cpu_inc(dev->dstats->rx_drps);
132 
133 	return NETDEV_TX_OK;
134 }
135 
136 #if IS_ENABLED(CONFIG_IPV6)
137 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
138 			     struct sk_buff *skb)
139 {
140 	int err;
141 
142 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
143 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
144 
145 	if (likely(err == 1))
146 		err = dst_output(net, sk, skb);
147 
148 	return err;
149 }
150 
151 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
152 					   struct net_device *dev)
153 {
154 	const struct ipv6hdr *iph = ipv6_hdr(skb);
155 	struct net *net = dev_net(skb->dev);
156 	struct flowi6 fl6 = {
157 		/* needed to match OIF rule */
158 		.flowi6_oif = dev->ifindex,
159 		.flowi6_iif = LOOPBACK_IFINDEX,
160 		.daddr = iph->daddr,
161 		.saddr = iph->saddr,
162 		.flowlabel = ip6_flowinfo(iph),
163 		.flowi6_mark = skb->mark,
164 		.flowi6_proto = iph->nexthdr,
165 		.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF,
166 	};
167 	int ret = NET_XMIT_DROP;
168 	struct dst_entry *dst;
169 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
170 
171 	dst = ip6_route_output(net, NULL, &fl6);
172 	if (dst == dst_null)
173 		goto err;
174 
175 	skb_dst_drop(skb);
176 
177 	/* if dst.dev is loopback or the VRF device again this is locally
178 	 * originated traffic destined to a local address. Short circuit
179 	 * to Rx path using our local dst
180 	 */
181 	if (dst->dev == net->loopback_dev || dst->dev == dev) {
182 		struct net_vrf *vrf = netdev_priv(dev);
183 		struct rt6_info *rt6_local;
184 
185 		/* release looked up dst and use cached local dst */
186 		dst_release(dst);
187 
188 		rcu_read_lock();
189 
190 		rt6_local = rcu_dereference(vrf->rt6_local);
191 		if (unlikely(!rt6_local)) {
192 			rcu_read_unlock();
193 			goto err;
194 		}
195 
196 		/* Ordering issue: cached local dst is created on newlink
197 		 * before the IPv6 initialization. Using the local dst
198 		 * requires rt6i_idev to be set so make sure it is.
199 		 */
200 		if (unlikely(!rt6_local->rt6i_idev)) {
201 			rt6_local->rt6i_idev = in6_dev_get(dev);
202 			if (!rt6_local->rt6i_idev) {
203 				rcu_read_unlock();
204 				goto err;
205 			}
206 		}
207 
208 		dst = &rt6_local->dst;
209 		dst_hold(dst);
210 
211 		rcu_read_unlock();
212 
213 		return vrf_local_xmit(skb, dev, &rt6_local->dst);
214 	}
215 
216 	skb_dst_set(skb, dst);
217 
218 	/* strip the ethernet header added for pass through VRF device */
219 	__skb_pull(skb, skb_network_offset(skb));
220 
221 	ret = vrf_ip6_local_out(net, skb->sk, skb);
222 	if (unlikely(net_xmit_eval(ret)))
223 		dev->stats.tx_errors++;
224 	else
225 		ret = NET_XMIT_SUCCESS;
226 
227 	return ret;
228 err:
229 	vrf_tx_error(dev, skb);
230 	return NET_XMIT_DROP;
231 }
232 #else
233 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
234 					   struct net_device *dev)
235 {
236 	vrf_tx_error(dev, skb);
237 	return NET_XMIT_DROP;
238 }
239 #endif
240 
241 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
242 static int vrf_ip_local_out(struct net *net, struct sock *sk,
243 			    struct sk_buff *skb)
244 {
245 	int err;
246 
247 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
248 		      skb, NULL, skb_dst(skb)->dev, dst_output);
249 	if (likely(err == 1))
250 		err = dst_output(net, sk, skb);
251 
252 	return err;
253 }
254 
255 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
256 					   struct net_device *vrf_dev)
257 {
258 	struct iphdr *ip4h = ip_hdr(skb);
259 	int ret = NET_XMIT_DROP;
260 	struct flowi4 fl4 = {
261 		/* needed to match OIF rule */
262 		.flowi4_oif = vrf_dev->ifindex,
263 		.flowi4_iif = LOOPBACK_IFINDEX,
264 		.flowi4_tos = RT_TOS(ip4h->tos),
265 		.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF,
266 		.daddr = ip4h->daddr,
267 	};
268 	struct net *net = dev_net(vrf_dev);
269 	struct rtable *rt;
270 
271 	rt = ip_route_output_flow(net, &fl4, NULL);
272 	if (IS_ERR(rt))
273 		goto err;
274 
275 	skb_dst_drop(skb);
276 
277 	/* if dst.dev is loopback or the VRF device again this is locally
278 	 * originated traffic destined to a local address. Short circuit
279 	 * to Rx path using our local dst
280 	 */
281 	if (rt->dst.dev == net->loopback_dev || rt->dst.dev == vrf_dev) {
282 		struct net_vrf *vrf = netdev_priv(vrf_dev);
283 		struct rtable *rth_local;
284 		struct dst_entry *dst = NULL;
285 
286 		ip_rt_put(rt);
287 
288 		rcu_read_lock();
289 
290 		rth_local = rcu_dereference(vrf->rth_local);
291 		if (likely(rth_local)) {
292 			dst = &rth_local->dst;
293 			dst_hold(dst);
294 		}
295 
296 		rcu_read_unlock();
297 
298 		if (unlikely(!dst))
299 			goto err;
300 
301 		return vrf_local_xmit(skb, vrf_dev, dst);
302 	}
303 
304 	skb_dst_set(skb, &rt->dst);
305 
306 	/* strip the ethernet header added for pass through VRF device */
307 	__skb_pull(skb, skb_network_offset(skb));
308 
309 	if (!ip4h->saddr) {
310 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
311 					       RT_SCOPE_LINK);
312 	}
313 
314 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
315 	if (unlikely(net_xmit_eval(ret)))
316 		vrf_dev->stats.tx_errors++;
317 	else
318 		ret = NET_XMIT_SUCCESS;
319 
320 out:
321 	return ret;
322 err:
323 	vrf_tx_error(vrf_dev, skb);
324 	goto out;
325 }
326 
327 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
328 {
329 	switch (skb->protocol) {
330 	case htons(ETH_P_IP):
331 		return vrf_process_v4_outbound(skb, dev);
332 	case htons(ETH_P_IPV6):
333 		return vrf_process_v6_outbound(skb, dev);
334 	default:
335 		vrf_tx_error(dev, skb);
336 		return NET_XMIT_DROP;
337 	}
338 }
339 
340 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
341 {
342 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
343 
344 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
345 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
346 
347 		u64_stats_update_begin(&dstats->syncp);
348 		dstats->tx_pkts++;
349 		dstats->tx_bytes += skb->len;
350 		u64_stats_update_end(&dstats->syncp);
351 	} else {
352 		this_cpu_inc(dev->dstats->tx_drps);
353 	}
354 
355 	return ret;
356 }
357 
358 #if IS_ENABLED(CONFIG_IPV6)
359 /* modelled after ip6_finish_output2 */
360 static int vrf_finish_output6(struct net *net, struct sock *sk,
361 			      struct sk_buff *skb)
362 {
363 	struct dst_entry *dst = skb_dst(skb);
364 	struct net_device *dev = dst->dev;
365 	struct neighbour *neigh;
366 	struct in6_addr *nexthop;
367 	int ret;
368 
369 	skb->protocol = htons(ETH_P_IPV6);
370 	skb->dev = dev;
371 
372 	rcu_read_lock_bh();
373 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
374 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
375 	if (unlikely(!neigh))
376 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
377 	if (!IS_ERR(neigh)) {
378 		ret = dst_neigh_output(dst, neigh, skb);
379 		rcu_read_unlock_bh();
380 		return ret;
381 	}
382 	rcu_read_unlock_bh();
383 
384 	IP6_INC_STATS(dev_net(dst->dev),
385 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
386 	kfree_skb(skb);
387 	return -EINVAL;
388 }
389 
390 /* modelled after ip6_output */
391 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
392 {
393 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
394 			    net, sk, skb, NULL, skb_dst(skb)->dev,
395 			    vrf_finish_output6,
396 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
397 }
398 
399 /* set dst on skb to send packet to us via dev_xmit path. Allows
400  * packet to go through device based features such as qdisc, netfilter
401  * hooks and packet sockets with skb->dev set to vrf device.
402  */
403 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
404 				   struct sock *sk,
405 				   struct sk_buff *skb)
406 {
407 	struct net_vrf *vrf = netdev_priv(vrf_dev);
408 	struct dst_entry *dst = NULL;
409 	struct rt6_info *rt6;
410 
411 	/* don't divert link scope packets */
412 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
413 		return skb;
414 
415 	rcu_read_lock();
416 
417 	rt6 = rcu_dereference(vrf->rt6);
418 	if (likely(rt6)) {
419 		dst = &rt6->dst;
420 		dst_hold(dst);
421 	}
422 
423 	rcu_read_unlock();
424 
425 	if (unlikely(!dst)) {
426 		vrf_tx_error(vrf_dev, skb);
427 		return NULL;
428 	}
429 
430 	skb_dst_drop(skb);
431 	skb_dst_set(skb, dst);
432 
433 	return skb;
434 }
435 
436 /* holding rtnl */
437 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
438 {
439 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
440 	struct rt6_info *rt6_local = rtnl_dereference(vrf->rt6_local);
441 	struct net *net = dev_net(dev);
442 	struct dst_entry *dst;
443 
444 	RCU_INIT_POINTER(vrf->rt6, NULL);
445 	RCU_INIT_POINTER(vrf->rt6_local, NULL);
446 	synchronize_rcu();
447 
448 	/* move dev in dst's to loopback so this VRF device can be deleted
449 	 * - based on dst_ifdown
450 	 */
451 	if (rt6) {
452 		dst = &rt6->dst;
453 		dev_put(dst->dev);
454 		dst->dev = net->loopback_dev;
455 		dev_hold(dst->dev);
456 		dst_release(dst);
457 	}
458 
459 	if (rt6_local) {
460 		if (rt6_local->rt6i_idev)
461 			in6_dev_put(rt6_local->rt6i_idev);
462 
463 		dst = &rt6_local->dst;
464 		dev_put(dst->dev);
465 		dst->dev = net->loopback_dev;
466 		dev_hold(dst->dev);
467 		dst_release(dst);
468 	}
469 }
470 
471 static int vrf_rt6_create(struct net_device *dev)
472 {
473 	int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM | DST_NOCACHE;
474 	struct net_vrf *vrf = netdev_priv(dev);
475 	struct net *net = dev_net(dev);
476 	struct fib6_table *rt6i_table;
477 	struct rt6_info *rt6, *rt6_local;
478 	int rc = -ENOMEM;
479 
480 	/* IPv6 can be CONFIG enabled and then disabled runtime */
481 	if (!ipv6_mod_enabled())
482 		return 0;
483 
484 	rt6i_table = fib6_new_table(net, vrf->tb_id);
485 	if (!rt6i_table)
486 		goto out;
487 
488 	/* create a dst for routing packets out a VRF device */
489 	rt6 = ip6_dst_alloc(net, dev, flags);
490 	if (!rt6)
491 		goto out;
492 
493 	dst_hold(&rt6->dst);
494 
495 	rt6->rt6i_table = rt6i_table;
496 	rt6->dst.output	= vrf_output6;
497 
498 	/* create a dst for local routing - packets sent locally
499 	 * to local address via the VRF device as a loopback
500 	 */
501 	rt6_local = ip6_dst_alloc(net, dev, flags);
502 	if (!rt6_local) {
503 		dst_release(&rt6->dst);
504 		goto out;
505 	}
506 
507 	dst_hold(&rt6_local->dst);
508 
509 	rt6_local->rt6i_idev  = in6_dev_get(dev);
510 	rt6_local->rt6i_flags = RTF_UP | RTF_NONEXTHOP | RTF_LOCAL;
511 	rt6_local->rt6i_table = rt6i_table;
512 	rt6_local->dst.input  = ip6_input;
513 
514 	rcu_assign_pointer(vrf->rt6, rt6);
515 	rcu_assign_pointer(vrf->rt6_local, rt6_local);
516 
517 	rc = 0;
518 out:
519 	return rc;
520 }
521 #else
522 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
523 				   struct sock *sk,
524 				   struct sk_buff *skb)
525 {
526 	return skb;
527 }
528 
529 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
530 {
531 }
532 
533 static int vrf_rt6_create(struct net_device *dev)
534 {
535 	return 0;
536 }
537 #endif
538 
539 /* modelled after ip_finish_output2 */
540 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
541 {
542 	struct dst_entry *dst = skb_dst(skb);
543 	struct rtable *rt = (struct rtable *)dst;
544 	struct net_device *dev = dst->dev;
545 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
546 	struct neighbour *neigh;
547 	u32 nexthop;
548 	int ret = -EINVAL;
549 
550 	/* Be paranoid, rather than too clever. */
551 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
552 		struct sk_buff *skb2;
553 
554 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
555 		if (!skb2) {
556 			ret = -ENOMEM;
557 			goto err;
558 		}
559 		if (skb->sk)
560 			skb_set_owner_w(skb2, skb->sk);
561 
562 		consume_skb(skb);
563 		skb = skb2;
564 	}
565 
566 	rcu_read_lock_bh();
567 
568 	nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
569 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
570 	if (unlikely(!neigh))
571 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
572 	if (!IS_ERR(neigh))
573 		ret = dst_neigh_output(dst, neigh, skb);
574 
575 	rcu_read_unlock_bh();
576 err:
577 	if (unlikely(ret < 0))
578 		vrf_tx_error(skb->dev, skb);
579 	return ret;
580 }
581 
582 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
583 {
584 	struct net_device *dev = skb_dst(skb)->dev;
585 
586 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
587 
588 	skb->dev = dev;
589 	skb->protocol = htons(ETH_P_IP);
590 
591 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
592 			    net, sk, skb, NULL, dev,
593 			    vrf_finish_output,
594 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
595 }
596 
597 /* set dst on skb to send packet to us via dev_xmit path. Allows
598  * packet to go through device based features such as qdisc, netfilter
599  * hooks and packet sockets with skb->dev set to vrf device.
600  */
601 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
602 				  struct sock *sk,
603 				  struct sk_buff *skb)
604 {
605 	struct net_vrf *vrf = netdev_priv(vrf_dev);
606 	struct dst_entry *dst = NULL;
607 	struct rtable *rth;
608 
609 	/* don't divert multicast */
610 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
611 		return skb;
612 
613 	rcu_read_lock();
614 
615 	rth = rcu_dereference(vrf->rth);
616 	if (likely(rth)) {
617 		dst = &rth->dst;
618 		dst_hold(dst);
619 	}
620 
621 	rcu_read_unlock();
622 
623 	if (unlikely(!dst)) {
624 		vrf_tx_error(vrf_dev, skb);
625 		return NULL;
626 	}
627 
628 	skb_dst_drop(skb);
629 	skb_dst_set(skb, dst);
630 
631 	return skb;
632 }
633 
634 /* called with rcu lock held */
635 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
636 				  struct sock *sk,
637 				  struct sk_buff *skb,
638 				  u16 proto)
639 {
640 	switch (proto) {
641 	case AF_INET:
642 		return vrf_ip_out(vrf_dev, sk, skb);
643 	case AF_INET6:
644 		return vrf_ip6_out(vrf_dev, sk, skb);
645 	}
646 
647 	return skb;
648 }
649 
650 /* holding rtnl */
651 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
652 {
653 	struct rtable *rth = rtnl_dereference(vrf->rth);
654 	struct rtable *rth_local = rtnl_dereference(vrf->rth_local);
655 	struct net *net = dev_net(dev);
656 	struct dst_entry *dst;
657 
658 	RCU_INIT_POINTER(vrf->rth, NULL);
659 	RCU_INIT_POINTER(vrf->rth_local, NULL);
660 	synchronize_rcu();
661 
662 	/* move dev in dst's to loopback so this VRF device can be deleted
663 	 * - based on dst_ifdown
664 	 */
665 	if (rth) {
666 		dst = &rth->dst;
667 		dev_put(dst->dev);
668 		dst->dev = net->loopback_dev;
669 		dev_hold(dst->dev);
670 		dst_release(dst);
671 	}
672 
673 	if (rth_local) {
674 		dst = &rth_local->dst;
675 		dev_put(dst->dev);
676 		dst->dev = net->loopback_dev;
677 		dev_hold(dst->dev);
678 		dst_release(dst);
679 	}
680 }
681 
682 static int vrf_rtable_create(struct net_device *dev)
683 {
684 	struct net_vrf *vrf = netdev_priv(dev);
685 	struct rtable *rth, *rth_local;
686 
687 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
688 		return -ENOMEM;
689 
690 	/* create a dst for routing packets out through a VRF device */
691 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
692 	if (!rth)
693 		return -ENOMEM;
694 
695 	/* create a dst for local ingress routing - packets sent locally
696 	 * to local address via the VRF device as a loopback
697 	 */
698 	rth_local = rt_dst_alloc(dev, RTCF_LOCAL, RTN_LOCAL, 1, 1, 0);
699 	if (!rth_local) {
700 		dst_release(&rth->dst);
701 		return -ENOMEM;
702 	}
703 
704 	rth->dst.output	= vrf_output;
705 	rth->rt_table_id = vrf->tb_id;
706 
707 	rth_local->rt_table_id = vrf->tb_id;
708 
709 	rcu_assign_pointer(vrf->rth, rth);
710 	rcu_assign_pointer(vrf->rth_local, rth_local);
711 
712 	return 0;
713 }
714 
715 /**************************** device handling ********************/
716 
717 /* cycle interface to flush neighbor cache and move routes across tables */
718 static void cycle_netdev(struct net_device *dev)
719 {
720 	unsigned int flags = dev->flags;
721 	int ret;
722 
723 	if (!netif_running(dev))
724 		return;
725 
726 	ret = dev_change_flags(dev, flags & ~IFF_UP);
727 	if (ret >= 0)
728 		ret = dev_change_flags(dev, flags);
729 
730 	if (ret < 0) {
731 		netdev_err(dev,
732 			   "Failed to cycle device %s; route tables might be wrong!\n",
733 			   dev->name);
734 	}
735 }
736 
737 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
738 {
739 	int ret;
740 
741 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL);
742 	if (ret < 0)
743 		return ret;
744 
745 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
746 	cycle_netdev(port_dev);
747 
748 	return 0;
749 }
750 
751 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev)
752 {
753 	if (netif_is_l3_master(port_dev) || netif_is_l3_slave(port_dev))
754 		return -EINVAL;
755 
756 	return do_vrf_add_slave(dev, port_dev);
757 }
758 
759 /* inverse of do_vrf_add_slave */
760 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
761 {
762 	netdev_upper_dev_unlink(port_dev, dev);
763 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
764 
765 	cycle_netdev(port_dev);
766 
767 	return 0;
768 }
769 
770 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
771 {
772 	return do_vrf_del_slave(dev, port_dev);
773 }
774 
775 static void vrf_dev_uninit(struct net_device *dev)
776 {
777 	struct net_vrf *vrf = netdev_priv(dev);
778 	struct net_device *port_dev;
779 	struct list_head *iter;
780 
781 	vrf_rtable_release(dev, vrf);
782 	vrf_rt6_release(dev, vrf);
783 
784 	netdev_for_each_lower_dev(dev, port_dev, iter)
785 		vrf_del_slave(dev, port_dev);
786 
787 	free_percpu(dev->dstats);
788 	dev->dstats = NULL;
789 }
790 
791 static int vrf_dev_init(struct net_device *dev)
792 {
793 	struct net_vrf *vrf = netdev_priv(dev);
794 
795 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
796 	if (!dev->dstats)
797 		goto out_nomem;
798 
799 	/* create the default dst which points back to us */
800 	if (vrf_rtable_create(dev) != 0)
801 		goto out_stats;
802 
803 	if (vrf_rt6_create(dev) != 0)
804 		goto out_rth;
805 
806 	dev->flags = IFF_MASTER | IFF_NOARP;
807 
808 	/* MTU is irrelevant for VRF device; set to 64k similar to lo */
809 	dev->mtu = 64 * 1024;
810 
811 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
812 	dev->operstate = IF_OPER_UP;
813 	netdev_lockdep_set_classes(dev);
814 	return 0;
815 
816 out_rth:
817 	vrf_rtable_release(dev, vrf);
818 out_stats:
819 	free_percpu(dev->dstats);
820 	dev->dstats = NULL;
821 out_nomem:
822 	return -ENOMEM;
823 }
824 
825 static const struct net_device_ops vrf_netdev_ops = {
826 	.ndo_init		= vrf_dev_init,
827 	.ndo_uninit		= vrf_dev_uninit,
828 	.ndo_start_xmit		= vrf_xmit,
829 	.ndo_get_stats64	= vrf_get_stats64,
830 	.ndo_add_slave		= vrf_add_slave,
831 	.ndo_del_slave		= vrf_del_slave,
832 };
833 
834 static u32 vrf_fib_table(const struct net_device *dev)
835 {
836 	struct net_vrf *vrf = netdev_priv(dev);
837 
838 	return vrf->tb_id;
839 }
840 
841 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
842 {
843 	return 0;
844 }
845 
846 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
847 				      struct sk_buff *skb,
848 				      struct net_device *dev)
849 {
850 	struct net *net = dev_net(dev);
851 
852 	nf_reset(skb);
853 
854 	if (NF_HOOK(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) < 0)
855 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
856 
857 	return skb;
858 }
859 
860 #if IS_ENABLED(CONFIG_IPV6)
861 /* neighbor handling is done with actual device; do not want
862  * to flip skb->dev for those ndisc packets. This really fails
863  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
864  * a start.
865  */
866 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
867 {
868 	const struct ipv6hdr *iph = ipv6_hdr(skb);
869 	bool rc = false;
870 
871 	if (iph->nexthdr == NEXTHDR_ICMP) {
872 		const struct icmp6hdr *icmph;
873 		struct icmp6hdr _icmph;
874 
875 		icmph = skb_header_pointer(skb, sizeof(*iph),
876 					   sizeof(_icmph), &_icmph);
877 		if (!icmph)
878 			goto out;
879 
880 		switch (icmph->icmp6_type) {
881 		case NDISC_ROUTER_SOLICITATION:
882 		case NDISC_ROUTER_ADVERTISEMENT:
883 		case NDISC_NEIGHBOUR_SOLICITATION:
884 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
885 		case NDISC_REDIRECT:
886 			rc = true;
887 			break;
888 		}
889 	}
890 
891 out:
892 	return rc;
893 }
894 
895 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
896 					     const struct net_device *dev,
897 					     struct flowi6 *fl6,
898 					     int ifindex,
899 					     int flags)
900 {
901 	struct net_vrf *vrf = netdev_priv(dev);
902 	struct fib6_table *table = NULL;
903 	struct rt6_info *rt6;
904 
905 	rcu_read_lock();
906 
907 	/* fib6_table does not have a refcnt and can not be freed */
908 	rt6 = rcu_dereference(vrf->rt6);
909 	if (likely(rt6))
910 		table = rt6->rt6i_table;
911 
912 	rcu_read_unlock();
913 
914 	if (!table)
915 		return NULL;
916 
917 	return ip6_pol_route(net, table, ifindex, fl6, flags);
918 }
919 
920 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
921 			      int ifindex)
922 {
923 	const struct ipv6hdr *iph = ipv6_hdr(skb);
924 	struct flowi6 fl6 = {
925 		.daddr          = iph->daddr,
926 		.saddr          = iph->saddr,
927 		.flowlabel      = ip6_flowinfo(iph),
928 		.flowi6_mark    = skb->mark,
929 		.flowi6_proto   = iph->nexthdr,
930 		.flowi6_iif     = ifindex,
931 	};
932 	struct net *net = dev_net(vrf_dev);
933 	struct rt6_info *rt6;
934 
935 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex,
936 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
937 	if (unlikely(!rt6))
938 		return;
939 
940 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
941 		return;
942 
943 	skb_dst_set(skb, &rt6->dst);
944 }
945 
946 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
947 				   struct sk_buff *skb)
948 {
949 	int orig_iif = skb->skb_iif;
950 	bool need_strict;
951 
952 	/* loopback traffic; do not push through packet taps again.
953 	 * Reset pkt_type for upper layers to process skb
954 	 */
955 	if (skb->pkt_type == PACKET_LOOPBACK) {
956 		skb->dev = vrf_dev;
957 		skb->skb_iif = vrf_dev->ifindex;
958 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
959 		skb->pkt_type = PACKET_HOST;
960 		goto out;
961 	}
962 
963 	/* if packet is NDISC or addressed to multicast or link-local
964 	 * then keep the ingress interface
965 	 */
966 	need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
967 	if (!ipv6_ndisc_frame(skb) && !need_strict) {
968 		skb->dev = vrf_dev;
969 		skb->skb_iif = vrf_dev->ifindex;
970 
971 		skb_push(skb, skb->mac_len);
972 		dev_queue_xmit_nit(skb, vrf_dev);
973 		skb_pull(skb, skb->mac_len);
974 
975 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
976 	}
977 
978 	if (need_strict)
979 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
980 
981 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
982 out:
983 	return skb;
984 }
985 
986 #else
987 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
988 				   struct sk_buff *skb)
989 {
990 	return skb;
991 }
992 #endif
993 
994 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
995 				  struct sk_buff *skb)
996 {
997 	skb->dev = vrf_dev;
998 	skb->skb_iif = vrf_dev->ifindex;
999 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1000 
1001 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1002 		goto out;
1003 
1004 	/* loopback traffic; do not push through packet taps again.
1005 	 * Reset pkt_type for upper layers to process skb
1006 	 */
1007 	if (skb->pkt_type == PACKET_LOOPBACK) {
1008 		skb->pkt_type = PACKET_HOST;
1009 		goto out;
1010 	}
1011 
1012 	skb_push(skb, skb->mac_len);
1013 	dev_queue_xmit_nit(skb, vrf_dev);
1014 	skb_pull(skb, skb->mac_len);
1015 
1016 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1017 out:
1018 	return skb;
1019 }
1020 
1021 /* called with rcu lock held */
1022 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1023 				  struct sk_buff *skb,
1024 				  u16 proto)
1025 {
1026 	switch (proto) {
1027 	case AF_INET:
1028 		return vrf_ip_rcv(vrf_dev, skb);
1029 	case AF_INET6:
1030 		return vrf_ip6_rcv(vrf_dev, skb);
1031 	}
1032 
1033 	return skb;
1034 }
1035 
1036 #if IS_ENABLED(CONFIG_IPV6)
1037 /* send to link-local or multicast address via interface enslaved to
1038  * VRF device. Force lookup to VRF table without changing flow struct
1039  */
1040 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1041 					      struct flowi6 *fl6)
1042 {
1043 	struct net *net = dev_net(dev);
1044 	int flags = RT6_LOOKUP_F_IFACE;
1045 	struct dst_entry *dst = NULL;
1046 	struct rt6_info *rt;
1047 
1048 	/* VRF device does not have a link-local address and
1049 	 * sending packets to link-local or mcast addresses over
1050 	 * a VRF device does not make sense
1051 	 */
1052 	if (fl6->flowi6_oif == dev->ifindex) {
1053 		dst = &net->ipv6.ip6_null_entry->dst;
1054 		dst_hold(dst);
1055 		return dst;
1056 	}
1057 
1058 	if (!ipv6_addr_any(&fl6->saddr))
1059 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1060 
1061 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, flags);
1062 	if (rt)
1063 		dst = &rt->dst;
1064 
1065 	return dst;
1066 }
1067 #endif
1068 
1069 static const struct l3mdev_ops vrf_l3mdev_ops = {
1070 	.l3mdev_fib_table	= vrf_fib_table,
1071 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1072 	.l3mdev_l3_out		= vrf_l3_out,
1073 #if IS_ENABLED(CONFIG_IPV6)
1074 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1075 #endif
1076 };
1077 
1078 static void vrf_get_drvinfo(struct net_device *dev,
1079 			    struct ethtool_drvinfo *info)
1080 {
1081 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1082 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1083 }
1084 
1085 static const struct ethtool_ops vrf_ethtool_ops = {
1086 	.get_drvinfo	= vrf_get_drvinfo,
1087 };
1088 
1089 static inline size_t vrf_fib_rule_nl_size(void)
1090 {
1091 	size_t sz;
1092 
1093 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1094 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1095 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1096 
1097 	return sz;
1098 }
1099 
1100 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1101 {
1102 	struct fib_rule_hdr *frh;
1103 	struct nlmsghdr *nlh;
1104 	struct sk_buff *skb;
1105 	int err;
1106 
1107 	if (family == AF_INET6 && !ipv6_mod_enabled())
1108 		return 0;
1109 
1110 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1111 	if (!skb)
1112 		return -ENOMEM;
1113 
1114 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1115 	if (!nlh)
1116 		goto nla_put_failure;
1117 
1118 	/* rule only needs to appear once */
1119 	nlh->nlmsg_flags &= NLM_F_EXCL;
1120 
1121 	frh = nlmsg_data(nlh);
1122 	memset(frh, 0, sizeof(*frh));
1123 	frh->family = family;
1124 	frh->action = FR_ACT_TO_TBL;
1125 
1126 	if (nla_put_u32(skb, FRA_L3MDEV, 1))
1127 		goto nla_put_failure;
1128 
1129 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1130 		goto nla_put_failure;
1131 
1132 	nlmsg_end(skb, nlh);
1133 
1134 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1135 	skb->sk = dev_net(dev)->rtnl;
1136 	if (add_it) {
1137 		err = fib_nl_newrule(skb, nlh);
1138 		if (err == -EEXIST)
1139 			err = 0;
1140 	} else {
1141 		err = fib_nl_delrule(skb, nlh);
1142 		if (err == -ENOENT)
1143 			err = 0;
1144 	}
1145 	nlmsg_free(skb);
1146 
1147 	return err;
1148 
1149 nla_put_failure:
1150 	nlmsg_free(skb);
1151 
1152 	return -EMSGSIZE;
1153 }
1154 
1155 static int vrf_add_fib_rules(const struct net_device *dev)
1156 {
1157 	int err;
1158 
1159 	err = vrf_fib_rule(dev, AF_INET,  true);
1160 	if (err < 0)
1161 		goto out_err;
1162 
1163 	err = vrf_fib_rule(dev, AF_INET6, true);
1164 	if (err < 0)
1165 		goto ipv6_err;
1166 
1167 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1168 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1169 	if (err < 0)
1170 		goto ipmr_err;
1171 #endif
1172 
1173 	return 0;
1174 
1175 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1176 ipmr_err:
1177 	vrf_fib_rule(dev, AF_INET6,  false);
1178 #endif
1179 
1180 ipv6_err:
1181 	vrf_fib_rule(dev, AF_INET,  false);
1182 
1183 out_err:
1184 	netdev_err(dev, "Failed to add FIB rules.\n");
1185 	return err;
1186 }
1187 
1188 static void vrf_setup(struct net_device *dev)
1189 {
1190 	ether_setup(dev);
1191 
1192 	/* Initialize the device structure. */
1193 	dev->netdev_ops = &vrf_netdev_ops;
1194 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1195 	dev->ethtool_ops = &vrf_ethtool_ops;
1196 	dev->destructor = free_netdev;
1197 
1198 	/* Fill in device structure with ethernet-generic values. */
1199 	eth_hw_addr_random(dev);
1200 
1201 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1202 	dev->features |= NETIF_F_LLTX;
1203 
1204 	/* don't allow vrf devices to change network namespaces. */
1205 	dev->features |= NETIF_F_NETNS_LOCAL;
1206 
1207 	/* does not make sense for a VLAN to be added to a vrf device */
1208 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1209 
1210 	/* enable offload features */
1211 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1212 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM;
1213 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1214 
1215 	dev->hw_features = dev->features;
1216 	dev->hw_enc_features = dev->features;
1217 
1218 	/* default to no qdisc; user can add if desired */
1219 	dev->priv_flags |= IFF_NO_QUEUE;
1220 }
1221 
1222 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[])
1223 {
1224 	if (tb[IFLA_ADDRESS]) {
1225 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
1226 			return -EINVAL;
1227 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
1228 			return -EADDRNOTAVAIL;
1229 	}
1230 	return 0;
1231 }
1232 
1233 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1234 {
1235 	unregister_netdevice_queue(dev, head);
1236 }
1237 
1238 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1239 		       struct nlattr *tb[], struct nlattr *data[])
1240 {
1241 	struct net_vrf *vrf = netdev_priv(dev);
1242 	int err;
1243 
1244 	if (!data || !data[IFLA_VRF_TABLE])
1245 		return -EINVAL;
1246 
1247 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1248 
1249 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1250 
1251 	err = register_netdevice(dev);
1252 	if (err)
1253 		goto out;
1254 
1255 	if (add_fib_rules) {
1256 		err = vrf_add_fib_rules(dev);
1257 		if (err) {
1258 			unregister_netdevice(dev);
1259 			goto out;
1260 		}
1261 		add_fib_rules = false;
1262 	}
1263 
1264 out:
1265 	return err;
1266 }
1267 
1268 static size_t vrf_nl_getsize(const struct net_device *dev)
1269 {
1270 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1271 }
1272 
1273 static int vrf_fillinfo(struct sk_buff *skb,
1274 			const struct net_device *dev)
1275 {
1276 	struct net_vrf *vrf = netdev_priv(dev);
1277 
1278 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1279 }
1280 
1281 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1282 				 const struct net_device *slave_dev)
1283 {
1284 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1285 }
1286 
1287 static int vrf_fill_slave_info(struct sk_buff *skb,
1288 			       const struct net_device *vrf_dev,
1289 			       const struct net_device *slave_dev)
1290 {
1291 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1292 
1293 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1294 		return -EMSGSIZE;
1295 
1296 	return 0;
1297 }
1298 
1299 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1300 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1301 };
1302 
1303 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1304 	.kind		= DRV_NAME,
1305 	.priv_size	= sizeof(struct net_vrf),
1306 
1307 	.get_size	= vrf_nl_getsize,
1308 	.policy		= vrf_nl_policy,
1309 	.validate	= vrf_validate,
1310 	.fill_info	= vrf_fillinfo,
1311 
1312 	.get_slave_size  = vrf_get_slave_size,
1313 	.fill_slave_info = vrf_fill_slave_info,
1314 
1315 	.newlink	= vrf_newlink,
1316 	.dellink	= vrf_dellink,
1317 	.setup		= vrf_setup,
1318 	.maxtype	= IFLA_VRF_MAX,
1319 };
1320 
1321 static int vrf_device_event(struct notifier_block *unused,
1322 			    unsigned long event, void *ptr)
1323 {
1324 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1325 
1326 	/* only care about unregister events to drop slave references */
1327 	if (event == NETDEV_UNREGISTER) {
1328 		struct net_device *vrf_dev;
1329 
1330 		if (!netif_is_l3_slave(dev))
1331 			goto out;
1332 
1333 		vrf_dev = netdev_master_upper_dev_get(dev);
1334 		vrf_del_slave(vrf_dev, dev);
1335 	}
1336 out:
1337 	return NOTIFY_DONE;
1338 }
1339 
1340 static struct notifier_block vrf_notifier_block __read_mostly = {
1341 	.notifier_call = vrf_device_event,
1342 };
1343 
1344 static int __init vrf_init_module(void)
1345 {
1346 	int rc;
1347 
1348 	register_netdevice_notifier(&vrf_notifier_block);
1349 
1350 	rc = rtnl_link_register(&vrf_link_ops);
1351 	if (rc < 0)
1352 		goto error;
1353 
1354 	return 0;
1355 
1356 error:
1357 	unregister_netdevice_notifier(&vrf_notifier_block);
1358 	return rc;
1359 }
1360 
1361 module_init(vrf_init_module);
1362 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1363 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1364 MODULE_LICENSE("GPL");
1365 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1366 MODULE_VERSION(DRV_VERSION);
1367