xref: /linux/drivers/net/ethernet/stmicro/stmmac/dwmac-intel.c (revision 76cd8a2ea98a3d779748ec12744aaed0d85fba7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include <linux/platform_data/x86/intel_pmc_ipc.h>
9 #include "dwmac-intel.h"
10 #include "dwmac4.h"
11 #include "stmmac.h"
12 #include "stmmac_ptp.h"
13 
14 struct pmc_serdes_regs {
15 	u8 index;
16 	u32 val;
17 };
18 
19 struct pmc_serdes_reg_info {
20 	const struct pmc_serdes_regs *regs;
21 	u8 num_regs;
22 };
23 
24 struct intel_priv_data {
25 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
26 	unsigned long crossts_adj;
27 	bool is_pse;
28 	const int *tsn_lane_regs;
29 	int max_tsn_lane_regs;
30 	struct pmc_serdes_reg_info pid_1g;
31 	struct pmc_serdes_reg_info pid_2p5g;
32 };
33 
34 /* This struct is used to associate PCI Function of MAC controller on a board,
35  * discovered via DMI, with the address of PHY connected to the MAC. The
36  * negative value of the address means that MAC controller is not connected
37  * with PHY.
38  */
39 struct stmmac_pci_func_data {
40 	unsigned int func;
41 	int phy_addr;
42 };
43 
44 struct stmmac_pci_dmi_data {
45 	const struct stmmac_pci_func_data *func;
46 	size_t nfuncs;
47 };
48 
49 struct stmmac_pci_info {
50 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
51 };
52 
53 static const struct pmc_serdes_regs pid_modphy3_1g_regs[] = {
54 	{ PID_MODPHY3_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_1G },
55 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_1G },
56 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_1G },
57 	{ PID_MODPHY3_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_1G },
58 	{ PID_MODPHY3_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_1G },
59 	{}
60 };
61 
62 static const struct pmc_serdes_regs pid_modphy3_2p5g_regs[] = {
63 	{ PID_MODPHY3_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_2P5G },
64 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_2P5G },
65 	{ PID_MODPHY3_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_2P5G },
66 	{ PID_MODPHY3_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_2P5G },
67 	{ PID_MODPHY3_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_2P5G },
68 	{}
69 };
70 
71 static const struct pmc_serdes_regs pid_modphy1_1g_regs[] = {
72 	{ PID_MODPHY1_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_1G },
73 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_1G },
74 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_1G },
75 	{ PID_MODPHY1_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_1G },
76 	{ PID_MODPHY1_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_1G },
77 	{}
78 };
79 
80 static const struct pmc_serdes_regs pid_modphy1_2p5g_regs[] = {
81 	{ PID_MODPHY1_B_MODPHY_PCR_LCPLL_DWORD0,	B_MODPHY_PCR_LCPLL_DWORD0_2P5G },
82 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD2,	N_MODPHY_PCR_LCPLL_DWORD2_2P5G },
83 	{ PID_MODPHY1_N_MODPHY_PCR_LCPLL_DWORD7,	N_MODPHY_PCR_LCPLL_DWORD7_2P5G },
84 	{ PID_MODPHY1_N_MODPHY_PCR_LPPLL_DWORD10,	N_MODPHY_PCR_LPPLL_DWORD10_2P5G },
85 	{ PID_MODPHY1_N_MODPHY_PCR_CMN_ANA_DWORD30,	N_MODPHY_PCR_CMN_ANA_DWORD30_2P5G },
86 	{}
87 };
88 
89 static const int ehl_tsn_lane_regs[] = {7, 8, 9, 10, 11};
90 static const int adln_tsn_lane_regs[] = {6};
91 
92 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
93 				    const struct dmi_system_id *dmi_list)
94 {
95 	const struct stmmac_pci_func_data *func_data;
96 	const struct stmmac_pci_dmi_data *dmi_data;
97 	const struct dmi_system_id *dmi_id;
98 	int func = PCI_FUNC(pdev->devfn);
99 	size_t n;
100 
101 	dmi_id = dmi_first_match(dmi_list);
102 	if (!dmi_id)
103 		return -ENODEV;
104 
105 	dmi_data = dmi_id->driver_data;
106 	func_data = dmi_data->func;
107 
108 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
109 		if (func_data->func == func)
110 			return func_data->phy_addr;
111 
112 	return -ENODEV;
113 }
114 
115 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
116 			      int phyreg, u32 mask, u32 val)
117 {
118 	unsigned int retries = 10;
119 	int val_rd;
120 
121 	do {
122 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
123 		if ((val_rd & mask) == (val & mask))
124 			return 0;
125 		udelay(POLL_DELAY_US);
126 	} while (--retries);
127 
128 	return -ETIMEDOUT;
129 }
130 
131 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
132 {
133 	struct intel_priv_data *intel_priv = priv_data;
134 	struct stmmac_priv *priv = netdev_priv(ndev);
135 	int serdes_phy_addr = 0;
136 	u32 data = 0;
137 
138 	if (!intel_priv->mdio_adhoc_addr)
139 		return 0;
140 
141 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
142 
143 	/* Set the serdes rate and the PCLK rate */
144 	data = mdiobus_read(priv->mii, serdes_phy_addr,
145 			    SERDES_GCR0);
146 
147 	data &= ~SERDES_RATE_MASK;
148 	data &= ~SERDES_PCLK_MASK;
149 
150 	if (priv->plat->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
151 		data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
152 			SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
153 	else
154 		data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
155 			SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
156 
157 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
158 
159 	/* assert clk_req */
160 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
161 	data |= SERDES_PLL_CLK;
162 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
163 
164 	/* check for clk_ack assertion */
165 	data = serdes_status_poll(priv, serdes_phy_addr,
166 				  SERDES_GSR0,
167 				  SERDES_PLL_CLK,
168 				  SERDES_PLL_CLK);
169 
170 	if (data) {
171 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
172 		return data;
173 	}
174 
175 	/* assert lane reset */
176 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
177 	data |= SERDES_RST;
178 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
179 
180 	/* check for assert lane reset reflection */
181 	data = serdes_status_poll(priv, serdes_phy_addr,
182 				  SERDES_GSR0,
183 				  SERDES_RST,
184 				  SERDES_RST);
185 
186 	if (data) {
187 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
188 		return data;
189 	}
190 
191 	/*  move power state to P0 */
192 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
193 
194 	data &= ~SERDES_PWR_ST_MASK;
195 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
196 
197 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
198 
199 	/* Check for P0 state */
200 	data = serdes_status_poll(priv, serdes_phy_addr,
201 				  SERDES_GSR0,
202 				  SERDES_PWR_ST_MASK,
203 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
204 
205 	if (data) {
206 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
207 		return data;
208 	}
209 
210 	/* PSE only - ungate SGMII PHY Rx Clock */
211 	if (intel_priv->is_pse)
212 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
213 			       0, SERDES_PHY_RX_CLK);
214 
215 	return 0;
216 }
217 
218 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
219 {
220 	struct intel_priv_data *intel_priv = intel_data;
221 	struct stmmac_priv *priv = netdev_priv(ndev);
222 	int serdes_phy_addr = 0;
223 	u32 data = 0;
224 
225 	if (!intel_priv->mdio_adhoc_addr)
226 		return;
227 
228 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
229 
230 	/* PSE only - gate SGMII PHY Rx Clock */
231 	if (intel_priv->is_pse)
232 		mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
233 			       SERDES_PHY_RX_CLK, 0);
234 
235 	/*  move power state to P3 */
236 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
237 
238 	data &= ~SERDES_PWR_ST_MASK;
239 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
240 
241 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
242 
243 	/* Check for P3 state */
244 	data = serdes_status_poll(priv, serdes_phy_addr,
245 				  SERDES_GSR0,
246 				  SERDES_PWR_ST_MASK,
247 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
248 
249 	if (data) {
250 		dev_err(priv->device, "Serdes power state P3 timeout\n");
251 		return;
252 	}
253 
254 	/* de-assert clk_req */
255 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
256 	data &= ~SERDES_PLL_CLK;
257 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
258 
259 	/* check for clk_ack de-assert */
260 	data = serdes_status_poll(priv, serdes_phy_addr,
261 				  SERDES_GSR0,
262 				  SERDES_PLL_CLK,
263 				  (u32)~SERDES_PLL_CLK);
264 
265 	if (data) {
266 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
267 		return;
268 	}
269 
270 	/* de-assert lane reset */
271 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
272 	data &= ~SERDES_RST;
273 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
274 
275 	/* check for de-assert lane reset reflection */
276 	data = serdes_status_poll(priv, serdes_phy_addr,
277 				  SERDES_GSR0,
278 				  SERDES_RST,
279 				  (u32)~SERDES_RST);
280 
281 	if (data) {
282 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
283 		return;
284 	}
285 }
286 
287 static void tgl_get_interfaces(struct stmmac_priv *priv, void *bsp_priv,
288 			       unsigned long *interfaces)
289 {
290 	struct intel_priv_data *intel_priv = bsp_priv;
291 	phy_interface_t interface;
292 	int data;
293 
294 	/* Determine the link speed mode: 2.5Gbps/1Gbps */
295 	data = mdiobus_read(priv->mii, intel_priv->mdio_adhoc_addr, SERDES_GCR);
296 	if (data < 0)
297 		return;
298 
299 	if (FIELD_GET(SERDES_LINK_MODE_MASK, data) == SERDES_LINK_MODE_2G5) {
300 		dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
301 		priv->plat->mdio_bus_data->default_an_inband = false;
302 		interface = PHY_INTERFACE_MODE_2500BASEX;
303 	} else {
304 		interface = PHY_INTERFACE_MODE_SGMII;
305 	}
306 
307 	__set_bit(interface, interfaces);
308 	priv->plat->phy_interface = interface;
309 }
310 
311 /* Program PTP Clock Frequency for different variant of
312  * Intel mGBE that has slightly different GPO mapping
313  */
314 static void intel_mgbe_ptp_clk_freq_config(struct stmmac_priv *priv)
315 {
316 	struct intel_priv_data *intel_priv;
317 	u32 gpio_value;
318 
319 	intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
320 
321 	gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
322 
323 	if (intel_priv->is_pse) {
324 		/* For PSE GbE, use 200MHz */
325 		gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
326 		gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
327 	} else {
328 		/* For PCH GbE, use 200MHz */
329 		gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
330 		gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
331 	}
332 
333 	writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
334 }
335 
336 static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
337 			u64 *art_time)
338 {
339 	u64 ns;
340 
341 	ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
342 	ns <<= GMAC4_ART_TIME_SHIFT;
343 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
344 	ns <<= GMAC4_ART_TIME_SHIFT;
345 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
346 	ns <<= GMAC4_ART_TIME_SHIFT;
347 	ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
348 
349 	*art_time = ns;
350 }
351 
352 static int stmmac_cross_ts_isr(struct stmmac_priv *priv)
353 {
354 	return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE);
355 }
356 
357 static int intel_crosststamp(ktime_t *device,
358 			     struct system_counterval_t *system,
359 			     void *ctx)
360 {
361 	struct intel_priv_data *intel_priv;
362 
363 	struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
364 	void __iomem *ptpaddr = priv->ptpaddr;
365 	void __iomem *ioaddr = priv->hw->pcsr;
366 	unsigned long flags;
367 	u64 art_time = 0;
368 	u64 ptp_time = 0;
369 	u32 num_snapshot;
370 	u32 gpio_value;
371 	u32 acr_value;
372 	int i;
373 
374 	intel_priv = priv->plat->bsp_priv;
375 
376 	/* Both internal crosstimestamping and external triggered event
377 	 * timestamping cannot be run concurrently.
378 	 */
379 	if (priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN)
380 		return -EBUSY;
381 
382 	priv->plat->flags |= STMMAC_FLAG_INT_SNAPSHOT_EN;
383 
384 	mutex_lock(&priv->aux_ts_lock);
385 	/* Enable Internal snapshot trigger */
386 	acr_value = readl(ptpaddr + PTP_ACR);
387 	acr_value &= ~PTP_ACR_MASK;
388 	switch (priv->plat->int_snapshot_num) {
389 	case AUX_SNAPSHOT0:
390 		acr_value |= PTP_ACR_ATSEN0;
391 		break;
392 	case AUX_SNAPSHOT1:
393 		acr_value |= PTP_ACR_ATSEN1;
394 		break;
395 	case AUX_SNAPSHOT2:
396 		acr_value |= PTP_ACR_ATSEN2;
397 		break;
398 	case AUX_SNAPSHOT3:
399 		acr_value |= PTP_ACR_ATSEN3;
400 		break;
401 	default:
402 		mutex_unlock(&priv->aux_ts_lock);
403 		priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
404 		return -EINVAL;
405 	}
406 	writel(acr_value, ptpaddr + PTP_ACR);
407 
408 	/* Clear FIFO */
409 	acr_value = readl(ptpaddr + PTP_ACR);
410 	acr_value |= PTP_ACR_ATSFC;
411 	writel(acr_value, ptpaddr + PTP_ACR);
412 	/* Release the mutex */
413 	mutex_unlock(&priv->aux_ts_lock);
414 
415 	/* Trigger Internal snapshot signal
416 	 * Create a rising edge by just toggle the GPO1 to low
417 	 * and back to high.
418 	 */
419 	gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
420 	gpio_value &= ~GMAC_GPO1;
421 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
422 	gpio_value |= GMAC_GPO1;
423 	writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
424 
425 	/* Time sync done Indication - Interrupt method */
426 	if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait,
427 					      stmmac_cross_ts_isr(priv),
428 					      HZ / 100)) {
429 		priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
430 		return -ETIMEDOUT;
431 	}
432 
433 	*system = (struct system_counterval_t) {
434 		.cycles = 0,
435 		.cs_id = CSID_X86_ART,
436 		.use_nsecs = false,
437 	};
438 
439 	num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
440 			GMAC_TIMESTAMP_ATSNS_MASK) >>
441 			GMAC_TIMESTAMP_ATSNS_SHIFT;
442 
443 	/* Repeat until the timestamps are from the FIFO last segment */
444 	for (i = 0; i < num_snapshot; i++) {
445 		read_lock_irqsave(&priv->ptp_lock, flags);
446 		stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
447 		*device = ns_to_ktime(ptp_time);
448 		read_unlock_irqrestore(&priv->ptp_lock, flags);
449 		get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
450 		system->cycles = art_time;
451 	}
452 
453 	system->cycles *= intel_priv->crossts_adj;
454 
455 	priv->plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
456 
457 	return 0;
458 }
459 
460 static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
461 				       int base)
462 {
463 	if (boot_cpu_has(X86_FEATURE_ART)) {
464 		unsigned int art_freq;
465 
466 		/* On systems that support ART, ART frequency can be obtained
467 		 * from ECX register of CPUID leaf (0x15).
468 		 */
469 		art_freq = cpuid_ecx(ART_CPUID_LEAF);
470 		do_div(art_freq, base);
471 		intel_priv->crossts_adj = art_freq;
472 	}
473 }
474 
475 static int intel_tsn_lane_is_available(struct net_device *ndev,
476 				       struct intel_priv_data *intel_priv)
477 {
478 	struct stmmac_priv *priv = netdev_priv(ndev);
479 	struct pmc_ipc_cmd tmp = {};
480 	struct pmc_ipc_rbuf rbuf = {};
481 	int ret = 0, i, j;
482 	const int max_fia_regs = 5;
483 
484 	tmp.cmd = IPC_SOC_REGISTER_ACCESS;
485 	tmp.sub_cmd = IPC_SOC_SUB_CMD_READ;
486 
487 	for (i = 0; i < max_fia_regs; i++) {
488 		tmp.wbuf[0] = R_PCH_FIA_15_PCR_LOS1_REG_BASE + i;
489 
490 		ret = intel_pmc_ipc(&tmp, &rbuf);
491 		if (ret < 0) {
492 			netdev_info(priv->dev, "Failed to read from PMC.\n");
493 			return ret;
494 		}
495 
496 		for (j = 0; j <= intel_priv->max_tsn_lane_regs; j++)
497 			if ((rbuf.buf[0] >>
498 				(4 * (intel_priv->tsn_lane_regs[j] % 8)) &
499 					B_PCH_FIA_PCR_L0O) == 0xB)
500 				return 0;
501 	}
502 
503 	return -EINVAL;
504 }
505 
506 static int intel_set_reg_access(const struct pmc_serdes_regs *regs, int max_regs)
507 {
508 	int ret = 0, i;
509 
510 	for (i = 0; i < max_regs; i++) {
511 		struct pmc_ipc_cmd tmp = {};
512 		struct pmc_ipc_rbuf rbuf = {};
513 
514 		tmp.cmd = IPC_SOC_REGISTER_ACCESS;
515 		tmp.sub_cmd = IPC_SOC_SUB_CMD_WRITE;
516 		tmp.wbuf[0] = (u32)regs[i].index;
517 		tmp.wbuf[1] = regs[i].val;
518 
519 		ret = intel_pmc_ipc(&tmp, &rbuf);
520 		if (ret < 0)
521 			return ret;
522 	}
523 
524 	return ret;
525 }
526 
527 static int intel_mac_finish(struct net_device *ndev,
528 			    void *intel_data,
529 			    unsigned int mode,
530 			    phy_interface_t interface)
531 {
532 	struct intel_priv_data *intel_priv = intel_data;
533 	struct stmmac_priv *priv = netdev_priv(ndev);
534 	const struct pmc_serdes_regs *regs;
535 	int max_regs = 0;
536 	int ret = 0;
537 
538 	ret = intel_tsn_lane_is_available(ndev, intel_priv);
539 	if (ret < 0) {
540 		netdev_info(priv->dev, "No TSN lane available to set the registers.\n");
541 		return ret;
542 	}
543 
544 	if (interface == PHY_INTERFACE_MODE_2500BASEX) {
545 		regs = intel_priv->pid_2p5g.regs;
546 		max_regs = intel_priv->pid_2p5g.num_regs;
547 	} else {
548 		regs = intel_priv->pid_1g.regs;
549 		max_regs = intel_priv->pid_1g.num_regs;
550 	}
551 
552 	ret = intel_set_reg_access(regs, max_regs);
553 	if (ret < 0)
554 		return ret;
555 
556 	priv->plat->phy_interface = interface;
557 
558 	intel_serdes_powerdown(ndev, intel_priv);
559 	intel_serdes_powerup(ndev, intel_priv);
560 
561 	return ret;
562 }
563 
564 static void common_default_data(struct plat_stmmacenet_data *plat)
565 {
566 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
567 	plat->has_gmac = 1;
568 	plat->force_sf_dma_mode = 1;
569 
570 	plat->mdio_bus_data->needs_reset = true;
571 
572 	/* Set default value for multicast hash bins */
573 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
574 
575 	/* Set default value for unicast filter entries */
576 	plat->unicast_filter_entries = 1;
577 
578 	/* Set the maxmtu to a default of JUMBO_LEN */
579 	plat->maxmtu = JUMBO_LEN;
580 
581 	/* Set default number of RX and TX queues to use */
582 	plat->tx_queues_to_use = 1;
583 	plat->rx_queues_to_use = 1;
584 
585 	/* Disable Priority config by default */
586 	plat->tx_queues_cfg[0].use_prio = false;
587 	plat->rx_queues_cfg[0].use_prio = false;
588 
589 	/* Disable RX queues routing by default */
590 	plat->rx_queues_cfg[0].pkt_route = 0x0;
591 }
592 
593 static struct phylink_pcs *intel_mgbe_select_pcs(struct stmmac_priv *priv,
594 						 phy_interface_t interface)
595 {
596 	/* plat->mdio_bus_data->has_xpcs has been set true, so there
597 	 * should always be an XPCS. The original code would always
598 	 * return this if present.
599 	 */
600 	return xpcs_to_phylink_pcs(priv->hw->xpcs);
601 }
602 
603 static int intel_mgbe_common_data(struct pci_dev *pdev,
604 				  struct plat_stmmacenet_data *plat)
605 {
606 	struct fwnode_handle *fwnode;
607 	char clk_name[20];
608 	int ret;
609 	int i;
610 
611 	plat->pdev = pdev;
612 	plat->phy_addr = -1;
613 	plat->clk_csr = 5;
614 	plat->has_gmac = 0;
615 	plat->has_gmac4 = 1;
616 	plat->force_sf_dma_mode = 0;
617 	plat->flags |= (STMMAC_FLAG_TSO_EN | STMMAC_FLAG_SPH_DISABLE);
618 
619 	/* Multiplying factor to the clk_eee_i clock time
620 	 * period to make it closer to 100 ns. This value
621 	 * should be programmed such that the clk_eee_time_period *
622 	 * (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
623 	 * clk_eee frequency is 19.2Mhz
624 	 * clk_eee_time_period is 52ns
625 	 * 52ns * (1 + 1) = 104ns
626 	 * MULT_FACT_100NS = 1
627 	 */
628 	plat->mult_fact_100ns = 1;
629 
630 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
631 
632 	for (i = 0; i < plat->rx_queues_to_use; i++) {
633 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
634 		plat->rx_queues_cfg[i].chan = i;
635 
636 		/* Disable Priority config by default */
637 		plat->rx_queues_cfg[i].use_prio = false;
638 
639 		/* Disable RX queues routing by default */
640 		plat->rx_queues_cfg[i].pkt_route = 0x0;
641 	}
642 
643 	for (i = 0; i < plat->tx_queues_to_use; i++) {
644 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
645 
646 		/* Disable Priority config by default */
647 		plat->tx_queues_cfg[i].use_prio = false;
648 		/* Default TX Q0 to use TSO and rest TXQ for TBS */
649 		if (i > 0)
650 			plat->tx_queues_cfg[i].tbs_en = 1;
651 	}
652 
653 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
654 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
655 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
656 
657 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
658 	plat->tx_queues_cfg[0].weight = 0x09;
659 	plat->tx_queues_cfg[1].weight = 0x0A;
660 	plat->tx_queues_cfg[2].weight = 0x0B;
661 	plat->tx_queues_cfg[3].weight = 0x0C;
662 	plat->tx_queues_cfg[4].weight = 0x0D;
663 	plat->tx_queues_cfg[5].weight = 0x0E;
664 	plat->tx_queues_cfg[6].weight = 0x0F;
665 	plat->tx_queues_cfg[7].weight = 0x10;
666 
667 	plat->dma_cfg->pbl = 32;
668 	plat->dma_cfg->pblx8 = true;
669 	plat->dma_cfg->fixed_burst = 0;
670 	plat->dma_cfg->mixed_burst = 0;
671 	plat->dma_cfg->aal = 0;
672 	plat->dma_cfg->dche = true;
673 
674 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
675 				 GFP_KERNEL);
676 	if (!plat->axi)
677 		return -ENOMEM;
678 
679 	plat->axi->axi_lpi_en = 0;
680 	plat->axi->axi_xit_frm = 0;
681 	plat->axi->axi_wr_osr_lmt = 1;
682 	plat->axi->axi_rd_osr_lmt = 1;
683 	plat->axi->axi_blen[0] = 4;
684 	plat->axi->axi_blen[1] = 8;
685 	plat->axi->axi_blen[2] = 16;
686 
687 	plat->ptp_max_adj = plat->clk_ptp_rate;
688 
689 	/* Set system clock */
690 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
691 
692 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
693 						   clk_name, NULL, 0,
694 						   plat->clk_ptp_rate);
695 
696 	if (IS_ERR(plat->stmmac_clk)) {
697 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
698 		plat->stmmac_clk = NULL;
699 	}
700 
701 	ret = clk_prepare_enable(plat->stmmac_clk);
702 	if (ret) {
703 		clk_unregister_fixed_rate(plat->stmmac_clk);
704 		return ret;
705 	}
706 
707 	plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
708 
709 	/* Set default value for multicast hash bins */
710 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
711 
712 	/* Set default value for unicast filter entries */
713 	plat->unicast_filter_entries = 1;
714 
715 	/* Set the maxmtu to a default of JUMBO_LEN */
716 	plat->maxmtu = JUMBO_LEN;
717 
718 	plat->flags |= STMMAC_FLAG_VLAN_FAIL_Q_EN;
719 
720 	/* Use the last Rx queue */
721 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
722 
723 	/* For fixed-link setup, we allow phy-mode setting */
724 	fwnode = dev_fwnode(&pdev->dev);
725 	if (fwnode) {
726 		int phy_mode;
727 
728 		/* "phy-mode" setting is optional. If it is set,
729 		 *  we allow either sgmii or 1000base-x for now.
730 		 */
731 		phy_mode = fwnode_get_phy_mode(fwnode);
732 		if (phy_mode >= 0) {
733 			if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
734 			    phy_mode == PHY_INTERFACE_MODE_1000BASEX)
735 				plat->phy_interface = phy_mode;
736 			else
737 				dev_warn(&pdev->dev, "Invalid phy-mode\n");
738 		}
739 	}
740 
741 	/* Intel mgbe SGMII interface uses pcs-xcps */
742 	if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII ||
743 	    plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) {
744 		plat->mdio_bus_data->pcs_mask = BIT(INTEL_MGBE_XPCS_ADDR);
745 		plat->mdio_bus_data->default_an_inband = true;
746 		plat->select_pcs = intel_mgbe_select_pcs;
747 	}
748 
749 	/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
750 	plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
751 	plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
752 
753 	plat->int_snapshot_num = AUX_SNAPSHOT1;
754 
755 	if (boot_cpu_has(X86_FEATURE_ART))
756 		plat->crosststamp = intel_crosststamp;
757 
758 	plat->flags &= ~STMMAC_FLAG_INT_SNAPSHOT_EN;
759 
760 	/* Setup MSI vector offset specific to Intel mGbE controller */
761 	plat->msi_mac_vec = 29;
762 	plat->msi_lpi_vec = 28;
763 	plat->msi_sfty_ce_vec = 27;
764 	plat->msi_sfty_ue_vec = 26;
765 	plat->msi_rx_base_vec = 0;
766 	plat->msi_tx_base_vec = 1;
767 
768 	return 0;
769 }
770 
771 static int ehl_common_data(struct pci_dev *pdev,
772 			   struct plat_stmmacenet_data *plat)
773 {
774 	struct intel_priv_data *intel_priv = plat->bsp_priv;
775 
776 	plat->rx_queues_to_use = 8;
777 	plat->tx_queues_to_use = 8;
778 	plat->flags |= STMMAC_FLAG_USE_PHY_WOL;
779 	plat->flags |= STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY;
780 
781 	plat->safety_feat_cfg->tsoee = 1;
782 	plat->safety_feat_cfg->mrxpee = 1;
783 	plat->safety_feat_cfg->mestee = 1;
784 	plat->safety_feat_cfg->mrxee = 1;
785 	plat->safety_feat_cfg->mtxee = 1;
786 	plat->safety_feat_cfg->epsi = 0;
787 	plat->safety_feat_cfg->edpp = 0;
788 	plat->safety_feat_cfg->prtyen = 0;
789 	plat->safety_feat_cfg->tmouten = 0;
790 
791 	intel_priv->tsn_lane_regs = ehl_tsn_lane_regs;
792 	intel_priv->max_tsn_lane_regs = ARRAY_SIZE(ehl_tsn_lane_regs);
793 
794 	return intel_mgbe_common_data(pdev, plat);
795 }
796 
797 static int ehl_sgmii_data(struct pci_dev *pdev,
798 			  struct plat_stmmacenet_data *plat)
799 {
800 	struct intel_priv_data *intel_priv = plat->bsp_priv;
801 
802 	plat->bus_id = 1;
803 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
804 	plat->serdes_powerup = intel_serdes_powerup;
805 	plat->serdes_powerdown = intel_serdes_powerdown;
806 	plat->mac_finish = intel_mac_finish;
807 	plat->clk_ptp_rate = 204800000;
808 
809 	intel_priv->pid_1g.regs = pid_modphy3_1g_regs;
810 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy3_1g_regs);
811 	intel_priv->pid_2p5g.regs = pid_modphy3_2p5g_regs;
812 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy3_2p5g_regs);
813 
814 	return ehl_common_data(pdev, plat);
815 }
816 
817 static struct stmmac_pci_info ehl_sgmii1g_info = {
818 	.setup = ehl_sgmii_data,
819 };
820 
821 static int ehl_rgmii_data(struct pci_dev *pdev,
822 			  struct plat_stmmacenet_data *plat)
823 {
824 	plat->bus_id = 1;
825 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
826 
827 	plat->clk_ptp_rate = 204800000;
828 
829 	return ehl_common_data(pdev, plat);
830 }
831 
832 static struct stmmac_pci_info ehl_rgmii1g_info = {
833 	.setup = ehl_rgmii_data,
834 };
835 
836 static int ehl_pse0_common_data(struct pci_dev *pdev,
837 				struct plat_stmmacenet_data *plat)
838 {
839 	struct intel_priv_data *intel_priv = plat->bsp_priv;
840 
841 	intel_priv->is_pse = true;
842 	plat->bus_id = 2;
843 	plat->host_dma_width = 32;
844 
845 	plat->clk_ptp_rate = 200000000;
846 
847 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
848 
849 	return ehl_common_data(pdev, plat);
850 }
851 
852 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
853 				 struct plat_stmmacenet_data *plat)
854 {
855 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
856 	return ehl_pse0_common_data(pdev, plat);
857 }
858 
859 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
860 	.setup = ehl_pse0_rgmii1g_data,
861 };
862 
863 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
864 				 struct plat_stmmacenet_data *plat)
865 {
866 	struct intel_priv_data *intel_priv = plat->bsp_priv;
867 
868 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
869 	plat->serdes_powerup = intel_serdes_powerup;
870 	plat->serdes_powerdown = intel_serdes_powerdown;
871 	plat->mac_finish = intel_mac_finish;
872 
873 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
874 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
875 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
876 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
877 
878 	return ehl_pse0_common_data(pdev, plat);
879 }
880 
881 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
882 	.setup = ehl_pse0_sgmii1g_data,
883 };
884 
885 static int ehl_pse1_common_data(struct pci_dev *pdev,
886 				struct plat_stmmacenet_data *plat)
887 {
888 	struct intel_priv_data *intel_priv = plat->bsp_priv;
889 
890 	intel_priv->is_pse = true;
891 	plat->bus_id = 3;
892 	plat->host_dma_width = 32;
893 
894 	plat->clk_ptp_rate = 200000000;
895 
896 	intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
897 
898 	return ehl_common_data(pdev, plat);
899 }
900 
901 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
902 				 struct plat_stmmacenet_data *plat)
903 {
904 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
905 	return ehl_pse1_common_data(pdev, plat);
906 }
907 
908 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
909 	.setup = ehl_pse1_rgmii1g_data,
910 };
911 
912 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
913 				 struct plat_stmmacenet_data *plat)
914 {
915 	struct intel_priv_data *intel_priv = plat->bsp_priv;
916 
917 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
918 	plat->serdes_powerup = intel_serdes_powerup;
919 	plat->serdes_powerdown = intel_serdes_powerdown;
920 	plat->mac_finish = intel_mac_finish;
921 
922 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
923 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
924 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
925 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
926 
927 	return ehl_pse1_common_data(pdev, plat);
928 }
929 
930 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
931 	.setup = ehl_pse1_sgmii1g_data,
932 };
933 
934 static int tgl_common_data(struct pci_dev *pdev,
935 			   struct plat_stmmacenet_data *plat)
936 {
937 	plat->rx_queues_to_use = 6;
938 	plat->tx_queues_to_use = 4;
939 	plat->clk_ptp_rate = 204800000;
940 	plat->get_interfaces = tgl_get_interfaces;
941 
942 	plat->safety_feat_cfg->tsoee = 1;
943 	plat->safety_feat_cfg->mrxpee = 0;
944 	plat->safety_feat_cfg->mestee = 1;
945 	plat->safety_feat_cfg->mrxee = 1;
946 	plat->safety_feat_cfg->mtxee = 1;
947 	plat->safety_feat_cfg->epsi = 0;
948 	plat->safety_feat_cfg->edpp = 0;
949 	plat->safety_feat_cfg->prtyen = 0;
950 	plat->safety_feat_cfg->tmouten = 0;
951 
952 	return intel_mgbe_common_data(pdev, plat);
953 }
954 
955 static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
956 			       struct plat_stmmacenet_data *plat)
957 {
958 	plat->bus_id = 1;
959 	plat->serdes_powerup = intel_serdes_powerup;
960 	plat->serdes_powerdown = intel_serdes_powerdown;
961 	return tgl_common_data(pdev, plat);
962 }
963 
964 static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
965 	.setup = tgl_sgmii_phy0_data,
966 };
967 
968 static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
969 			       struct plat_stmmacenet_data *plat)
970 {
971 	plat->bus_id = 2;
972 	plat->serdes_powerup = intel_serdes_powerup;
973 	plat->serdes_powerdown = intel_serdes_powerdown;
974 	return tgl_common_data(pdev, plat);
975 }
976 
977 static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
978 	.setup = tgl_sgmii_phy1_data,
979 };
980 
981 static int adls_sgmii_phy0_data(struct pci_dev *pdev,
982 				struct plat_stmmacenet_data *plat)
983 {
984 	plat->bus_id = 1;
985 
986 	/* SerDes power up and power down are done in BIOS for ADL */
987 
988 	return tgl_common_data(pdev, plat);
989 }
990 
991 static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
992 	.setup = adls_sgmii_phy0_data,
993 };
994 
995 static int adls_sgmii_phy1_data(struct pci_dev *pdev,
996 				struct plat_stmmacenet_data *plat)
997 {
998 	plat->bus_id = 2;
999 
1000 	/* SerDes power up and power down are done in BIOS for ADL */
1001 
1002 	return tgl_common_data(pdev, plat);
1003 }
1004 
1005 static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
1006 	.setup = adls_sgmii_phy1_data,
1007 };
1008 
1009 static int adln_common_data(struct pci_dev *pdev,
1010 			    struct plat_stmmacenet_data *plat)
1011 {
1012 	struct intel_priv_data *intel_priv = plat->bsp_priv;
1013 
1014 	plat->rx_queues_to_use = 6;
1015 	plat->tx_queues_to_use = 4;
1016 	plat->clk_ptp_rate = 204800000;
1017 
1018 	plat->safety_feat_cfg->tsoee = 1;
1019 	plat->safety_feat_cfg->mrxpee = 0;
1020 	plat->safety_feat_cfg->mestee = 1;
1021 	plat->safety_feat_cfg->mrxee = 1;
1022 	plat->safety_feat_cfg->mtxee = 1;
1023 	plat->safety_feat_cfg->epsi = 0;
1024 	plat->safety_feat_cfg->edpp = 0;
1025 	plat->safety_feat_cfg->prtyen = 0;
1026 	plat->safety_feat_cfg->tmouten = 0;
1027 
1028 	intel_priv->tsn_lane_regs = adln_tsn_lane_regs;
1029 	intel_priv->max_tsn_lane_regs = ARRAY_SIZE(adln_tsn_lane_regs);
1030 
1031 	return intel_mgbe_common_data(pdev, plat);
1032 }
1033 
1034 static int adln_sgmii_phy0_data(struct pci_dev *pdev,
1035 				struct plat_stmmacenet_data *plat)
1036 {
1037 	struct intel_priv_data *intel_priv = plat->bsp_priv;
1038 
1039 	plat->bus_id = 1;
1040 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
1041 	plat->serdes_powerup = intel_serdes_powerup;
1042 	plat->serdes_powerdown = intel_serdes_powerdown;
1043 	plat->mac_finish = intel_mac_finish;
1044 
1045 	intel_priv->pid_1g.regs = pid_modphy1_1g_regs;
1046 	intel_priv->pid_1g.num_regs = ARRAY_SIZE(pid_modphy1_1g_regs);
1047 	intel_priv->pid_2p5g.regs = pid_modphy1_2p5g_regs;
1048 	intel_priv->pid_2p5g.num_regs = ARRAY_SIZE(pid_modphy1_2p5g_regs);
1049 
1050 	return adln_common_data(pdev, plat);
1051 }
1052 
1053 static struct stmmac_pci_info adln_sgmii1g_phy0_info = {
1054 	.setup = adln_sgmii_phy0_data,
1055 };
1056 
1057 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
1058 	{
1059 		.func = 6,
1060 		.phy_addr = 1,
1061 	},
1062 };
1063 
1064 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
1065 	.func = galileo_stmmac_func_data,
1066 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
1067 };
1068 
1069 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
1070 	{
1071 		.func = 6,
1072 		.phy_addr = 1,
1073 	},
1074 	{
1075 		.func = 7,
1076 		.phy_addr = 1,
1077 	},
1078 };
1079 
1080 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
1081 	.func = iot2040_stmmac_func_data,
1082 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
1083 };
1084 
1085 static const struct dmi_system_id quark_pci_dmi[] = {
1086 	{
1087 		.matches = {
1088 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
1089 		},
1090 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1091 	},
1092 	{
1093 		.matches = {
1094 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
1095 		},
1096 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1097 	},
1098 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
1099 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
1100 	 * has only one pci network device while other asset tags are
1101 	 * for IOT2040 which has two.
1102 	 */
1103 	{
1104 		.matches = {
1105 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
1106 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
1107 					"6ES7647-0AA00-0YA2"),
1108 		},
1109 		.driver_data = (void *)&galileo_stmmac_dmi_data,
1110 	},
1111 	{
1112 		.matches = {
1113 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
1114 		},
1115 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
1116 	},
1117 	{}
1118 };
1119 
1120 static int quark_default_data(struct pci_dev *pdev,
1121 			      struct plat_stmmacenet_data *plat)
1122 {
1123 	int ret;
1124 
1125 	/* Set common default data first */
1126 	common_default_data(plat);
1127 
1128 	/* Refuse to load the driver and register net device if MAC controller
1129 	 * does not connect to any PHY interface.
1130 	 */
1131 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
1132 	if (ret < 0) {
1133 		/* Return error to the caller on DMI enabled boards. */
1134 		if (dmi_get_system_info(DMI_BOARD_NAME))
1135 			return ret;
1136 
1137 		/* Galileo boards with old firmware don't support DMI. We always
1138 		 * use 1 here as PHY address, so at least the first found MAC
1139 		 * controller would be probed.
1140 		 */
1141 		ret = 1;
1142 	}
1143 
1144 	plat->bus_id = pci_dev_id(pdev);
1145 	plat->phy_addr = ret;
1146 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
1147 
1148 	plat->dma_cfg->pbl = 16;
1149 	plat->dma_cfg->pblx8 = true;
1150 	plat->dma_cfg->fixed_burst = 1;
1151 	/* AXI (TODO) */
1152 
1153 	return 0;
1154 }
1155 
1156 static const struct stmmac_pci_info quark_info = {
1157 	.setup = quark_default_data,
1158 };
1159 
1160 static int stmmac_config_single_msi(struct pci_dev *pdev,
1161 				    struct plat_stmmacenet_data *plat,
1162 				    struct stmmac_resources *res)
1163 {
1164 	int ret;
1165 
1166 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1167 	if (ret < 0) {
1168 		dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
1169 			 __func__);
1170 		return ret;
1171 	}
1172 
1173 	res->irq = pci_irq_vector(pdev, 0);
1174 	res->wol_irq = res->irq;
1175 	plat->flags &= ~STMMAC_FLAG_MULTI_MSI_EN;
1176 	dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
1177 		 __func__);
1178 
1179 	return 0;
1180 }
1181 
1182 static int stmmac_config_multi_msi(struct pci_dev *pdev,
1183 				   struct plat_stmmacenet_data *plat,
1184 				   struct stmmac_resources *res)
1185 {
1186 	int ret;
1187 	int i;
1188 
1189 	if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
1190 	    plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
1191 		dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
1192 			 __func__);
1193 		return -1;
1194 	}
1195 
1196 	ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
1197 				    PCI_IRQ_MSI | PCI_IRQ_MSIX);
1198 	if (ret < 0) {
1199 		dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
1200 			 __func__);
1201 		return ret;
1202 	}
1203 
1204 	/* For RX MSI */
1205 	for (i = 0; i < plat->rx_queues_to_use; i++) {
1206 		res->rx_irq[i] = pci_irq_vector(pdev,
1207 						plat->msi_rx_base_vec + i * 2);
1208 	}
1209 
1210 	/* For TX MSI */
1211 	for (i = 0; i < plat->tx_queues_to_use; i++) {
1212 		res->tx_irq[i] = pci_irq_vector(pdev,
1213 						plat->msi_tx_base_vec + i * 2);
1214 	}
1215 
1216 	if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
1217 		res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
1218 	if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
1219 		res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
1220 	if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
1221 		res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
1222 	if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
1223 		res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
1224 	if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
1225 		res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
1226 
1227 	plat->flags |= STMMAC_FLAG_MULTI_MSI_EN;
1228 	dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
1229 
1230 	return 0;
1231 }
1232 
1233 static int intel_eth_pci_suspend(struct device *dev, void *bsp_priv)
1234 {
1235 	struct pci_dev *pdev = to_pci_dev(dev);
1236 	int ret;
1237 
1238 	ret = pci_save_state(pdev);
1239 	if (ret)
1240 		return ret;
1241 
1242 	pci_wake_from_d3(pdev, true);
1243 	pci_set_power_state(pdev, PCI_D3hot);
1244 	return 0;
1245 }
1246 
1247 static int intel_eth_pci_resume(struct device *dev, void *bsp_priv)
1248 {
1249 	struct pci_dev *pdev = to_pci_dev(dev);
1250 	int ret;
1251 
1252 	pci_restore_state(pdev);
1253 	pci_set_power_state(pdev, PCI_D0);
1254 
1255 	ret = pcim_enable_device(pdev);
1256 	if (ret)
1257 		return ret;
1258 
1259 	pci_set_master(pdev);
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * intel_eth_pci_probe
1266  *
1267  * @pdev: pci device pointer
1268  * @id: pointer to table of device id/id's.
1269  *
1270  * Description: This probing function gets called for all PCI devices which
1271  * match the ID table and are not "owned" by other driver yet. This function
1272  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
1273  * matches the device. The probe functions returns zero when the driver choose
1274  * to take "ownership" of the device or an error code(-ve no) otherwise.
1275  */
1276 static int intel_eth_pci_probe(struct pci_dev *pdev,
1277 			       const struct pci_device_id *id)
1278 {
1279 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
1280 	struct intel_priv_data *intel_priv;
1281 	struct plat_stmmacenet_data *plat;
1282 	struct stmmac_resources res;
1283 	int ret;
1284 
1285 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
1286 	if (!intel_priv)
1287 		return -ENOMEM;
1288 
1289 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
1290 	if (!plat)
1291 		return -ENOMEM;
1292 
1293 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
1294 					   sizeof(*plat->mdio_bus_data),
1295 					   GFP_KERNEL);
1296 	if (!plat->mdio_bus_data)
1297 		return -ENOMEM;
1298 
1299 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
1300 				     GFP_KERNEL);
1301 	if (!plat->dma_cfg)
1302 		return -ENOMEM;
1303 
1304 	plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
1305 					     sizeof(*plat->safety_feat_cfg),
1306 					     GFP_KERNEL);
1307 	if (!plat->safety_feat_cfg)
1308 		return -ENOMEM;
1309 
1310 	/* Enable pci device */
1311 	ret = pcim_enable_device(pdev);
1312 	if (ret) {
1313 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
1314 			__func__);
1315 		return ret;
1316 	}
1317 
1318 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
1319 	if (ret)
1320 		return ret;
1321 
1322 	pci_set_master(pdev);
1323 
1324 	plat->bsp_priv = intel_priv;
1325 	plat->suspend = intel_eth_pci_suspend;
1326 	plat->resume = intel_eth_pci_resume;
1327 
1328 	intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
1329 	intel_priv->crossts_adj = 1;
1330 
1331 	/* Initialize all MSI vectors to invalid so that it can be set
1332 	 * according to platform data settings below.
1333 	 * Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
1334 	 */
1335 	plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
1336 	plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
1337 	plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
1338 	plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
1339 	plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
1340 	plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
1341 	plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
1342 
1343 	ret = info->setup(pdev, plat);
1344 	if (ret)
1345 		return ret;
1346 
1347 	memset(&res, 0, sizeof(res));
1348 	res.addr = pcim_iomap_table(pdev)[0];
1349 
1350 	ret = stmmac_config_multi_msi(pdev, plat, &res);
1351 	if (ret) {
1352 		ret = stmmac_config_single_msi(pdev, plat, &res);
1353 		if (ret) {
1354 			dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
1355 				__func__);
1356 			goto err_alloc_irq;
1357 		}
1358 	}
1359 
1360 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
1361 	if (ret) {
1362 		goto err_alloc_irq;
1363 	}
1364 
1365 	return 0;
1366 
1367 err_alloc_irq:
1368 	clk_disable_unprepare(plat->stmmac_clk);
1369 	clk_unregister_fixed_rate(plat->stmmac_clk);
1370 	return ret;
1371 }
1372 
1373 /**
1374  * intel_eth_pci_remove
1375  *
1376  * @pdev: pci device pointer
1377  * Description: this function calls the main to free the net resources
1378  * and releases the PCI resources.
1379  */
1380 static void intel_eth_pci_remove(struct pci_dev *pdev)
1381 {
1382 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
1383 	struct stmmac_priv *priv = netdev_priv(ndev);
1384 
1385 	stmmac_dvr_remove(&pdev->dev);
1386 
1387 	clk_disable_unprepare(priv->plat->stmmac_clk);
1388 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
1389 }
1390 
1391 #define PCI_DEVICE_ID_INTEL_QUARK		0x0937
1392 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G		0x4b30
1393 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G		0x4b31
1394 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5	0x4b32
1395 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
1396  * which are named PSE0 and PSE1
1397  */
1398 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G	0x4ba0
1399 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G	0x4ba1
1400 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5	0x4ba2
1401 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G	0x4bb0
1402 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G	0x4bb1
1403 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5	0x4bb2
1404 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0	0x43ac
1405 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1	0x43a2
1406 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G		0xa0ac
1407 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0	0x7aac
1408 #define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1	0x7aad
1409 #define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G	0x54ac
1410 #define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G	0x51ac
1411 
1412 static const struct pci_device_id intel_eth_pci_id_table[] = {
1413 	{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
1414 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
1415 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
1416 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
1417 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
1418 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
1419 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
1420 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
1421 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
1422 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
1423 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
1424 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
1425 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
1426 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
1427 	{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
1428 	{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &adln_sgmii1g_phy0_info) },
1429 	{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &adln_sgmii1g_phy0_info) },
1430 	{}
1431 };
1432 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
1433 
1434 static struct pci_driver intel_eth_pci_driver = {
1435 	.name = "intel-eth-pci",
1436 	.id_table = intel_eth_pci_id_table,
1437 	.probe = intel_eth_pci_probe,
1438 	.remove = intel_eth_pci_remove,
1439 	.driver         = {
1440 		.pm     = &stmmac_simple_pm_ops,
1441 	},
1442 };
1443 
1444 module_pci_driver(intel_eth_pci_driver);
1445 
1446 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
1447 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
1448 MODULE_LICENSE("GPL v2");
1449