xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35 
36 /* Registers */
37 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
38 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
39 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
40 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
41 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
42 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
43 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
44 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
45 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
46 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
47 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
48 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
50 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
51 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
52 #define MVNETA_PORT_RX_RESET                    0x1cc0
53 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
54 #define MVNETA_PHY_ADDR                         0x2000
55 #define      MVNETA_PHY_ADDR_MASK               0x1f
56 #define MVNETA_MBUS_RETRY                       0x2010
57 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
58 #define MVNETA_UNIT_CONTROL                     0x20B0
59 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
60 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
61 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
62 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
63 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
64 #define MVNETA_PORT_CONFIG                      0x2400
65 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
66 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
67 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
68 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
69 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
70 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
71 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
72 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
73 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
74 						 MVNETA_DEF_RXQ_ARP(q)	 | \
75 						 MVNETA_DEF_RXQ_TCP(q)	 | \
76 						 MVNETA_DEF_RXQ_UDP(q)	 | \
77 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
78 						 MVNETA_TX_UNSET_ERR_SUM | \
79 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
80 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
81 #define MVNETA_MAC_ADDR_LOW                      0x2414
82 #define MVNETA_MAC_ADDR_HIGH                     0x2418
83 #define MVNETA_SDMA_CONFIG                       0x241c
84 #define      MVNETA_SDMA_BRST_SIZE_16            4
85 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
86 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
87 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
88 #define      MVNETA_DESC_SWAP                    BIT(6)
89 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
90 #define MVNETA_PORT_STATUS                       0x2444
91 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
92 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
93 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
94 #define MVNETA_SERDES_CFG			 0x24A0
95 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
96 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
97 #define MVNETA_TYPE_PRIO                         0x24bc
98 #define      MVNETA_FORCE_UNI                    BIT(21)
99 #define MVNETA_TXQ_CMD_1                         0x24e4
100 #define MVNETA_TXQ_CMD                           0x2448
101 #define      MVNETA_TXQ_DISABLE_SHIFT            8
102 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
103 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
104 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
105 #define MVNETA_ACC_MODE                          0x2500
106 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
107 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
108 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
109 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
110 
111 /* Exception Interrupt Port/Queue Cause register */
112 
113 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
114 #define MVNETA_INTR_NEW_MASK                     0x25a4
115 
116 /* bits  0..7  = TXQ SENT, one bit per queue.
117  * bits  8..15 = RXQ OCCUP, one bit per queue.
118  * bits 16..23 = RXQ FREE, one bit per queue.
119  * bit  29 = OLD_REG_SUM, see old reg ?
120  * bit  30 = TX_ERR_SUM, one bit for 4 ports
121  * bit  31 = MISC_SUM,   one bit for 4 ports
122  */
123 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
124 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
125 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
126 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
127 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
128 
129 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
130 #define MVNETA_INTR_OLD_MASK                     0x25ac
131 
132 /* Data Path Port/Queue Cause Register */
133 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
134 #define MVNETA_INTR_MISC_MASK                    0x25b4
135 
136 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
137 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
138 #define      MVNETA_CAUSE_PTP                    BIT(4)
139 
140 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
141 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
142 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
143 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
144 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
145 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
146 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
147 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
148 
149 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
150 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
151 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
152 
153 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
154 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
155 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
156 
157 #define MVNETA_INTR_ENABLE                       0x25b8
158 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
159 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
160 
161 #define MVNETA_RXQ_CMD                           0x2680
162 #define      MVNETA_RXQ_DISABLE_SHIFT            8
163 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
164 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
165 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
166 #define MVNETA_GMAC_CTRL_0                       0x2c00
167 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
168 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
169 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
170 #define MVNETA_GMAC_CTRL_2                       0x2c08
171 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
172 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
173 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
174 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
175 #define MVNETA_GMAC_STATUS                       0x2c10
176 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
177 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
178 #define      MVNETA_GMAC_SPEED_100               BIT(2)
179 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
180 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
181 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
182 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
183 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
184 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
185 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
186 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
187 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
188 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
189 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
190 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
191 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
192 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
193 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
194 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
195 #define      MVNETA_MIB_LATE_COLLISION           0x7c
196 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
197 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
198 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
199 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
200 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
201 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
202 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
203 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
204 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
205 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
206 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
207 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
208 #define MVNETA_PORT_TX_RESET                     0x3cf0
209 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
210 #define MVNETA_TX_MTU                            0x3e0c
211 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
212 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
214 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
215 
216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
217 
218 /* Descriptor ring Macros */
219 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
220 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
221 
222 /* Various constants */
223 
224 /* Coalescing */
225 #define MVNETA_TXDONE_COAL_PKTS		1
226 #define MVNETA_RX_COAL_PKTS		32
227 #define MVNETA_RX_COAL_USEC		100
228 
229 /* The two bytes Marvell header. Either contains a special value used
230  * by Marvell switches when a specific hardware mode is enabled (not
231  * supported by this driver) or is filled automatically by zeroes on
232  * the RX side. Those two bytes being at the front of the Ethernet
233  * header, they allow to have the IP header aligned on a 4 bytes
234  * boundary automatically: the hardware skips those two bytes on its
235  * own.
236  */
237 #define MVNETA_MH_SIZE			2
238 
239 #define MVNETA_VLAN_TAG_LEN             4
240 
241 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
242 #define MVNETA_TX_CSUM_MAX_SIZE		9800
243 #define MVNETA_ACC_MODE_EXT		1
244 
245 /* Timeout constants */
246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
249 
250 #define MVNETA_TX_MTU_MAX		0x3ffff
251 
252 /* TSO header size */
253 #define TSO_HEADER_SIZE 128
254 
255 /* Max number of Rx descriptors */
256 #define MVNETA_MAX_RXD 128
257 
258 /* Max number of Tx descriptors */
259 #define MVNETA_MAX_TXD 532
260 
261 /* Max number of allowed TCP segments for software TSO */
262 #define MVNETA_MAX_TSO_SEGS 100
263 
264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
265 
266 /* descriptor aligned size */
267 #define MVNETA_DESC_ALIGNED_SIZE	32
268 
269 #define MVNETA_RX_PKT_SIZE(mtu) \
270 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
271 	      ETH_HLEN + ETH_FCS_LEN,			     \
272 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
273 
274 #define IS_TSO_HEADER(txq, addr) \
275 	((addr >= txq->tso_hdrs_phys) && \
276 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
277 
278 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
279 
280 struct mvneta_pcpu_stats {
281 	struct	u64_stats_sync syncp;
282 	u64	rx_packets;
283 	u64	rx_bytes;
284 	u64	tx_packets;
285 	u64	tx_bytes;
286 };
287 
288 struct mvneta_port {
289 	int pkt_size;
290 	unsigned int frag_size;
291 	void __iomem *base;
292 	struct mvneta_rx_queue *rxqs;
293 	struct mvneta_tx_queue *txqs;
294 	struct net_device *dev;
295 
296 	u32 cause_rx_tx;
297 	struct napi_struct napi;
298 
299 	/* Core clock */
300 	struct clk *clk;
301 	u8 mcast_count[256];
302 	u16 tx_ring_size;
303 	u16 rx_ring_size;
304 	struct mvneta_pcpu_stats *stats;
305 
306 	struct mii_bus *mii_bus;
307 	struct phy_device *phy_dev;
308 	phy_interface_t phy_interface;
309 	struct device_node *phy_node;
310 	unsigned int link;
311 	unsigned int duplex;
312 	unsigned int speed;
313 	int use_inband_status:1;
314 };
315 
316 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
317  * layout of the transmit and reception DMA descriptors, and their
318  * layout is therefore defined by the hardware design
319  */
320 
321 #define MVNETA_TX_L3_OFF_SHIFT	0
322 #define MVNETA_TX_IP_HLEN_SHIFT	8
323 #define MVNETA_TX_L4_UDP	BIT(16)
324 #define MVNETA_TX_L3_IP6	BIT(17)
325 #define MVNETA_TXD_IP_CSUM	BIT(18)
326 #define MVNETA_TXD_Z_PAD	BIT(19)
327 #define MVNETA_TXD_L_DESC	BIT(20)
328 #define MVNETA_TXD_F_DESC	BIT(21)
329 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
330 				 MVNETA_TXD_L_DESC | \
331 				 MVNETA_TXD_F_DESC)
332 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
333 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
334 
335 #define MVNETA_RXD_ERR_CRC		0x0
336 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
337 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
338 #define MVNETA_RXD_ERR_LEN		BIT(18)
339 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
340 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
341 #define MVNETA_RXD_L3_IP4		BIT(25)
342 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
343 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
344 
345 #if defined(__LITTLE_ENDIAN)
346 struct mvneta_tx_desc {
347 	u32  command;		/* Options used by HW for packet transmitting.*/
348 	u16  reserverd1;	/* csum_l4 (for future use)		*/
349 	u16  data_size;		/* Data size of transmitted packet in bytes */
350 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
351 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
352 	u32  reserved3[4];	/* Reserved - (for future use)		*/
353 };
354 
355 struct mvneta_rx_desc {
356 	u32  status;		/* Info about received packet		*/
357 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
358 	u16  data_size;		/* Size of received packet in bytes	*/
359 
360 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
361 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
362 
363 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
364 	u16  reserved3;		/* prefetch_cmd, for future use		*/
365 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
366 
367 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
368 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
369 };
370 #else
371 struct mvneta_tx_desc {
372 	u16  data_size;		/* Data size of transmitted packet in bytes */
373 	u16  reserverd1;	/* csum_l4 (for future use)		*/
374 	u32  command;		/* Options used by HW for packet transmitting.*/
375 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
376 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
377 	u32  reserved3[4];	/* Reserved - (for future use)		*/
378 };
379 
380 struct mvneta_rx_desc {
381 	u16  data_size;		/* Size of received packet in bytes	*/
382 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
383 	u32  status;		/* Info about received packet		*/
384 
385 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
386 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
387 
388 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
389 	u16  reserved3;		/* prefetch_cmd, for future use		*/
390 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
391 
392 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
393 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
394 };
395 #endif
396 
397 struct mvneta_tx_queue {
398 	/* Number of this TX queue, in the range 0-7 */
399 	u8 id;
400 
401 	/* Number of TX DMA descriptors in the descriptor ring */
402 	int size;
403 
404 	/* Number of currently used TX DMA descriptor in the
405 	 * descriptor ring
406 	 */
407 	int count;
408 	int tx_stop_threshold;
409 	int tx_wake_threshold;
410 
411 	/* Array of transmitted skb */
412 	struct sk_buff **tx_skb;
413 
414 	/* Index of last TX DMA descriptor that was inserted */
415 	int txq_put_index;
416 
417 	/* Index of the TX DMA descriptor to be cleaned up */
418 	int txq_get_index;
419 
420 	u32 done_pkts_coal;
421 
422 	/* Virtual address of the TX DMA descriptors array */
423 	struct mvneta_tx_desc *descs;
424 
425 	/* DMA address of the TX DMA descriptors array */
426 	dma_addr_t descs_phys;
427 
428 	/* Index of the last TX DMA descriptor */
429 	int last_desc;
430 
431 	/* Index of the next TX DMA descriptor to process */
432 	int next_desc_to_proc;
433 
434 	/* DMA buffers for TSO headers */
435 	char *tso_hdrs;
436 
437 	/* DMA address of TSO headers */
438 	dma_addr_t tso_hdrs_phys;
439 };
440 
441 struct mvneta_rx_queue {
442 	/* rx queue number, in the range 0-7 */
443 	u8 id;
444 
445 	/* num of rx descriptors in the rx descriptor ring */
446 	int size;
447 
448 	/* counter of times when mvneta_refill() failed */
449 	int missed;
450 
451 	u32 pkts_coal;
452 	u32 time_coal;
453 
454 	/* Virtual address of the RX DMA descriptors array */
455 	struct mvneta_rx_desc *descs;
456 
457 	/* DMA address of the RX DMA descriptors array */
458 	dma_addr_t descs_phys;
459 
460 	/* Index of the last RX DMA descriptor */
461 	int last_desc;
462 
463 	/* Index of the next RX DMA descriptor to process */
464 	int next_desc_to_proc;
465 };
466 
467 /* The hardware supports eight (8) rx queues, but we are only allowing
468  * the first one to be used. Therefore, let's just allocate one queue.
469  */
470 static int rxq_number = 1;
471 static int txq_number = 8;
472 
473 static int rxq_def;
474 
475 static int rx_copybreak __read_mostly = 256;
476 
477 #define MVNETA_DRIVER_NAME "mvneta"
478 #define MVNETA_DRIVER_VERSION "1.0"
479 
480 /* Utility/helper methods */
481 
482 /* Write helper method */
483 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
484 {
485 	writel(data, pp->base + offset);
486 }
487 
488 /* Read helper method */
489 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
490 {
491 	return readl(pp->base + offset);
492 }
493 
494 /* Increment txq get counter */
495 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
496 {
497 	txq->txq_get_index++;
498 	if (txq->txq_get_index == txq->size)
499 		txq->txq_get_index = 0;
500 }
501 
502 /* Increment txq put counter */
503 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
504 {
505 	txq->txq_put_index++;
506 	if (txq->txq_put_index == txq->size)
507 		txq->txq_put_index = 0;
508 }
509 
510 
511 /* Clear all MIB counters */
512 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
513 {
514 	int i;
515 	u32 dummy;
516 
517 	/* Perform dummy reads from MIB counters */
518 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
519 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
520 }
521 
522 /* Get System Network Statistics */
523 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
524 					     struct rtnl_link_stats64 *stats)
525 {
526 	struct mvneta_port *pp = netdev_priv(dev);
527 	unsigned int start;
528 	int cpu;
529 
530 	for_each_possible_cpu(cpu) {
531 		struct mvneta_pcpu_stats *cpu_stats;
532 		u64 rx_packets;
533 		u64 rx_bytes;
534 		u64 tx_packets;
535 		u64 tx_bytes;
536 
537 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
538 		do {
539 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
540 			rx_packets = cpu_stats->rx_packets;
541 			rx_bytes   = cpu_stats->rx_bytes;
542 			tx_packets = cpu_stats->tx_packets;
543 			tx_bytes   = cpu_stats->tx_bytes;
544 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
545 
546 		stats->rx_packets += rx_packets;
547 		stats->rx_bytes   += rx_bytes;
548 		stats->tx_packets += tx_packets;
549 		stats->tx_bytes   += tx_bytes;
550 	}
551 
552 	stats->rx_errors	= dev->stats.rx_errors;
553 	stats->rx_dropped	= dev->stats.rx_dropped;
554 
555 	stats->tx_dropped	= dev->stats.tx_dropped;
556 
557 	return stats;
558 }
559 
560 /* Rx descriptors helper methods */
561 
562 /* Checks whether the RX descriptor having this status is both the first
563  * and the last descriptor for the RX packet. Each RX packet is currently
564  * received through a single RX descriptor, so not having each RX
565  * descriptor with its first and last bits set is an error
566  */
567 static int mvneta_rxq_desc_is_first_last(u32 status)
568 {
569 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
570 		MVNETA_RXD_FIRST_LAST_DESC;
571 }
572 
573 /* Add number of descriptors ready to receive new packets */
574 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
575 					  struct mvneta_rx_queue *rxq,
576 					  int ndescs)
577 {
578 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
579 	 * be added at once
580 	 */
581 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
582 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
583 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
584 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
585 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
586 	}
587 
588 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
589 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
590 }
591 
592 /* Get number of RX descriptors occupied by received packets */
593 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
594 					struct mvneta_rx_queue *rxq)
595 {
596 	u32 val;
597 
598 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
599 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
600 }
601 
602 /* Update num of rx desc called upon return from rx path or
603  * from mvneta_rxq_drop_pkts().
604  */
605 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
606 				       struct mvneta_rx_queue *rxq,
607 				       int rx_done, int rx_filled)
608 {
609 	u32 val;
610 
611 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
612 		val = rx_done |
613 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
614 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
615 		return;
616 	}
617 
618 	/* Only 255 descriptors can be added at once */
619 	while ((rx_done > 0) || (rx_filled > 0)) {
620 		if (rx_done <= 0xff) {
621 			val = rx_done;
622 			rx_done = 0;
623 		} else {
624 			val = 0xff;
625 			rx_done -= 0xff;
626 		}
627 		if (rx_filled <= 0xff) {
628 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
629 			rx_filled = 0;
630 		} else {
631 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
632 			rx_filled -= 0xff;
633 		}
634 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
635 	}
636 }
637 
638 /* Get pointer to next RX descriptor to be processed by SW */
639 static struct mvneta_rx_desc *
640 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
641 {
642 	int rx_desc = rxq->next_desc_to_proc;
643 
644 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
645 	prefetch(rxq->descs + rxq->next_desc_to_proc);
646 	return rxq->descs + rx_desc;
647 }
648 
649 /* Change maximum receive size of the port. */
650 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
651 {
652 	u32 val;
653 
654 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
655 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
656 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
657 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
658 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
659 }
660 
661 
662 /* Set rx queue offset */
663 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
664 				  struct mvneta_rx_queue *rxq,
665 				  int offset)
666 {
667 	u32 val;
668 
669 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
670 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
671 
672 	/* Offset is in */
673 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
674 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
675 }
676 
677 
678 /* Tx descriptors helper methods */
679 
680 /* Update HW with number of TX descriptors to be sent */
681 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
682 				     struct mvneta_tx_queue *txq,
683 				     int pend_desc)
684 {
685 	u32 val;
686 
687 	/* Only 255 descriptors can be added at once ; Assume caller
688 	 * process TX desriptors in quanta less than 256
689 	 */
690 	val = pend_desc;
691 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
692 }
693 
694 /* Get pointer to next TX descriptor to be processed (send) by HW */
695 static struct mvneta_tx_desc *
696 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
697 {
698 	int tx_desc = txq->next_desc_to_proc;
699 
700 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
701 	return txq->descs + tx_desc;
702 }
703 
704 /* Release the last allocated TX descriptor. Useful to handle DMA
705  * mapping failures in the TX path.
706  */
707 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
708 {
709 	if (txq->next_desc_to_proc == 0)
710 		txq->next_desc_to_proc = txq->last_desc - 1;
711 	else
712 		txq->next_desc_to_proc--;
713 }
714 
715 /* Set rxq buf size */
716 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
717 				    struct mvneta_rx_queue *rxq,
718 				    int buf_size)
719 {
720 	u32 val;
721 
722 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
723 
724 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
725 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
726 
727 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
728 }
729 
730 /* Disable buffer management (BM) */
731 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
732 				  struct mvneta_rx_queue *rxq)
733 {
734 	u32 val;
735 
736 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
737 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
738 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
739 }
740 
741 /* Start the Ethernet port RX and TX activity */
742 static void mvneta_port_up(struct mvneta_port *pp)
743 {
744 	int queue;
745 	u32 q_map;
746 
747 	/* Enable all initialized TXs. */
748 	mvneta_mib_counters_clear(pp);
749 	q_map = 0;
750 	for (queue = 0; queue < txq_number; queue++) {
751 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
752 		if (txq->descs != NULL)
753 			q_map |= (1 << queue);
754 	}
755 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
756 
757 	/* Enable all initialized RXQs. */
758 	q_map = 0;
759 	for (queue = 0; queue < rxq_number; queue++) {
760 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
761 		if (rxq->descs != NULL)
762 			q_map |= (1 << queue);
763 	}
764 
765 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
766 }
767 
768 /* Stop the Ethernet port activity */
769 static void mvneta_port_down(struct mvneta_port *pp)
770 {
771 	u32 val;
772 	int count;
773 
774 	/* Stop Rx port activity. Check port Rx activity. */
775 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
776 
777 	/* Issue stop command for active channels only */
778 	if (val != 0)
779 		mvreg_write(pp, MVNETA_RXQ_CMD,
780 			    val << MVNETA_RXQ_DISABLE_SHIFT);
781 
782 	/* Wait for all Rx activity to terminate. */
783 	count = 0;
784 	do {
785 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
786 			netdev_warn(pp->dev,
787 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
788 				    val);
789 			break;
790 		}
791 		mdelay(1);
792 
793 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
794 	} while (val & 0xff);
795 
796 	/* Stop Tx port activity. Check port Tx activity. Issue stop
797 	 * command for active channels only
798 	 */
799 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
800 
801 	if (val != 0)
802 		mvreg_write(pp, MVNETA_TXQ_CMD,
803 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
804 
805 	/* Wait for all Tx activity to terminate. */
806 	count = 0;
807 	do {
808 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
809 			netdev_warn(pp->dev,
810 				    "TIMEOUT for TX stopped status=0x%08x\n",
811 				    val);
812 			break;
813 		}
814 		mdelay(1);
815 
816 		/* Check TX Command reg that all Txqs are stopped */
817 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
818 
819 	} while (val & 0xff);
820 
821 	/* Double check to verify that TX FIFO is empty */
822 	count = 0;
823 	do {
824 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
825 			netdev_warn(pp->dev,
826 				    "TX FIFO empty timeout status=0x08%x\n",
827 				    val);
828 			break;
829 		}
830 		mdelay(1);
831 
832 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
833 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
834 		 (val & MVNETA_TX_IN_PRGRS));
835 
836 	udelay(200);
837 }
838 
839 /* Enable the port by setting the port enable bit of the MAC control register */
840 static void mvneta_port_enable(struct mvneta_port *pp)
841 {
842 	u32 val;
843 
844 	/* Enable port */
845 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
846 	val |= MVNETA_GMAC0_PORT_ENABLE;
847 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
848 }
849 
850 /* Disable the port and wait for about 200 usec before retuning */
851 static void mvneta_port_disable(struct mvneta_port *pp)
852 {
853 	u32 val;
854 
855 	/* Reset the Enable bit in the Serial Control Register */
856 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
857 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
858 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
859 
860 	udelay(200);
861 }
862 
863 /* Multicast tables methods */
864 
865 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
866 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
867 {
868 	int offset;
869 	u32 val;
870 
871 	if (queue == -1) {
872 		val = 0;
873 	} else {
874 		val = 0x1 | (queue << 1);
875 		val |= (val << 24) | (val << 16) | (val << 8);
876 	}
877 
878 	for (offset = 0; offset <= 0xc; offset += 4)
879 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
880 }
881 
882 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
883 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
884 {
885 	int offset;
886 	u32 val;
887 
888 	if (queue == -1) {
889 		val = 0;
890 	} else {
891 		val = 0x1 | (queue << 1);
892 		val |= (val << 24) | (val << 16) | (val << 8);
893 	}
894 
895 	for (offset = 0; offset <= 0xfc; offset += 4)
896 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
897 
898 }
899 
900 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
901 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
902 {
903 	int offset;
904 	u32 val;
905 
906 	if (queue == -1) {
907 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
908 		val = 0;
909 	} else {
910 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
911 		val = 0x1 | (queue << 1);
912 		val |= (val << 24) | (val << 16) | (val << 8);
913 	}
914 
915 	for (offset = 0; offset <= 0xfc; offset += 4)
916 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
917 }
918 
919 /* This method sets defaults to the NETA port:
920  *	Clears interrupt Cause and Mask registers.
921  *	Clears all MAC tables.
922  *	Sets defaults to all registers.
923  *	Resets RX and TX descriptor rings.
924  *	Resets PHY.
925  * This method can be called after mvneta_port_down() to return the port
926  *	settings to defaults.
927  */
928 static void mvneta_defaults_set(struct mvneta_port *pp)
929 {
930 	int cpu;
931 	int queue;
932 	u32 val;
933 
934 	/* Clear all Cause registers */
935 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
936 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
937 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
938 
939 	/* Mask all interrupts */
940 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
941 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
942 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
943 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
944 
945 	/* Enable MBUS Retry bit16 */
946 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
947 
948 	/* Set CPU queue access map - all CPUs have access to all RX
949 	 * queues and to all TX queues
950 	 */
951 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
952 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
953 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
954 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
955 
956 	/* Reset RX and TX DMAs */
957 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
958 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
959 
960 	/* Disable Legacy WRR, Disable EJP, Release from reset */
961 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
962 	for (queue = 0; queue < txq_number; queue++) {
963 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
964 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
965 	}
966 
967 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
968 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
969 
970 	/* Set Port Acceleration Mode */
971 	val = MVNETA_ACC_MODE_EXT;
972 	mvreg_write(pp, MVNETA_ACC_MODE, val);
973 
974 	/* Update val of portCfg register accordingly with all RxQueue types */
975 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
976 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
977 
978 	val = 0;
979 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
980 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
981 
982 	/* Build PORT_SDMA_CONFIG_REG */
983 	val = 0;
984 
985 	/* Default burst size */
986 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
987 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
988 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
989 
990 #if defined(__BIG_ENDIAN)
991 	val |= MVNETA_DESC_SWAP;
992 #endif
993 
994 	/* Assign port SDMA configuration */
995 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
996 
997 	/* Disable PHY polling in hardware, since we're using the
998 	 * kernel phylib to do this.
999 	 */
1000 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1001 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1002 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1003 
1004 	if (pp->use_inband_status) {
1005 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1006 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1007 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1008 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1009 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1010 		       MVNETA_GMAC_AN_SPEED_EN |
1011 		       MVNETA_GMAC_AN_DUPLEX_EN;
1012 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1013 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1014 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1015 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1016 	} else {
1017 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1018 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1019 		       MVNETA_GMAC_AN_SPEED_EN |
1020 		       MVNETA_GMAC_AN_DUPLEX_EN);
1021 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1022 	}
1023 
1024 	mvneta_set_ucast_table(pp, -1);
1025 	mvneta_set_special_mcast_table(pp, -1);
1026 	mvneta_set_other_mcast_table(pp, -1);
1027 
1028 	/* Set port interrupt enable register - default enable all */
1029 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1030 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1031 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1032 }
1033 
1034 /* Set max sizes for tx queues */
1035 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1036 
1037 {
1038 	u32 val, size, mtu;
1039 	int queue;
1040 
1041 	mtu = max_tx_size * 8;
1042 	if (mtu > MVNETA_TX_MTU_MAX)
1043 		mtu = MVNETA_TX_MTU_MAX;
1044 
1045 	/* Set MTU */
1046 	val = mvreg_read(pp, MVNETA_TX_MTU);
1047 	val &= ~MVNETA_TX_MTU_MAX;
1048 	val |= mtu;
1049 	mvreg_write(pp, MVNETA_TX_MTU, val);
1050 
1051 	/* TX token size and all TXQs token size must be larger that MTU */
1052 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1053 
1054 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1055 	if (size < mtu) {
1056 		size = mtu;
1057 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1058 		val |= size;
1059 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1060 	}
1061 	for (queue = 0; queue < txq_number; queue++) {
1062 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1063 
1064 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1065 		if (size < mtu) {
1066 			size = mtu;
1067 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1068 			val |= size;
1069 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1070 		}
1071 	}
1072 }
1073 
1074 /* Set unicast address */
1075 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1076 				  int queue)
1077 {
1078 	unsigned int unicast_reg;
1079 	unsigned int tbl_offset;
1080 	unsigned int reg_offset;
1081 
1082 	/* Locate the Unicast table entry */
1083 	last_nibble = (0xf & last_nibble);
1084 
1085 	/* offset from unicast tbl base */
1086 	tbl_offset = (last_nibble / 4) * 4;
1087 
1088 	/* offset within the above reg  */
1089 	reg_offset = last_nibble % 4;
1090 
1091 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1092 
1093 	if (queue == -1) {
1094 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1095 		unicast_reg &= ~(0xff << (8 * reg_offset));
1096 	} else {
1097 		unicast_reg &= ~(0xff << (8 * reg_offset));
1098 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1099 	}
1100 
1101 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1102 }
1103 
1104 /* Set mac address */
1105 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1106 				int queue)
1107 {
1108 	unsigned int mac_h;
1109 	unsigned int mac_l;
1110 
1111 	if (queue != -1) {
1112 		mac_l = (addr[4] << 8) | (addr[5]);
1113 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1114 			(addr[2] << 8) | (addr[3] << 0);
1115 
1116 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1117 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1118 	}
1119 
1120 	/* Accept frames of this address */
1121 	mvneta_set_ucast_addr(pp, addr[5], queue);
1122 }
1123 
1124 /* Set the number of packets that will be received before RX interrupt
1125  * will be generated by HW.
1126  */
1127 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1128 				    struct mvneta_rx_queue *rxq, u32 value)
1129 {
1130 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1131 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1132 	rxq->pkts_coal = value;
1133 }
1134 
1135 /* Set the time delay in usec before RX interrupt will be generated by
1136  * HW.
1137  */
1138 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1139 				    struct mvneta_rx_queue *rxq, u32 value)
1140 {
1141 	u32 val;
1142 	unsigned long clk_rate;
1143 
1144 	clk_rate = clk_get_rate(pp->clk);
1145 	val = (clk_rate / 1000000) * value;
1146 
1147 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1148 	rxq->time_coal = value;
1149 }
1150 
1151 /* Set threshold for TX_DONE pkts coalescing */
1152 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1153 					 struct mvneta_tx_queue *txq, u32 value)
1154 {
1155 	u32 val;
1156 
1157 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1158 
1159 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1160 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1161 
1162 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1163 
1164 	txq->done_pkts_coal = value;
1165 }
1166 
1167 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1168 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1169 				u32 phys_addr, u32 cookie)
1170 {
1171 	rx_desc->buf_cookie = cookie;
1172 	rx_desc->buf_phys_addr = phys_addr;
1173 }
1174 
1175 /* Decrement sent descriptors counter */
1176 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1177 				     struct mvneta_tx_queue *txq,
1178 				     int sent_desc)
1179 {
1180 	u32 val;
1181 
1182 	/* Only 255 TX descriptors can be updated at once */
1183 	while (sent_desc > 0xff) {
1184 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1185 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1186 		sent_desc = sent_desc - 0xff;
1187 	}
1188 
1189 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1190 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1191 }
1192 
1193 /* Get number of TX descriptors already sent by HW */
1194 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1195 					struct mvneta_tx_queue *txq)
1196 {
1197 	u32 val;
1198 	int sent_desc;
1199 
1200 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1201 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1202 		MVNETA_TXQ_SENT_DESC_SHIFT;
1203 
1204 	return sent_desc;
1205 }
1206 
1207 /* Get number of sent descriptors and decrement counter.
1208  *  The number of sent descriptors is returned.
1209  */
1210 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1211 				     struct mvneta_tx_queue *txq)
1212 {
1213 	int sent_desc;
1214 
1215 	/* Get number of sent descriptors */
1216 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1217 
1218 	/* Decrement sent descriptors counter */
1219 	if (sent_desc)
1220 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1221 
1222 	return sent_desc;
1223 }
1224 
1225 /* Set TXQ descriptors fields relevant for CSUM calculation */
1226 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1227 				int ip_hdr_len, int l4_proto)
1228 {
1229 	u32 command;
1230 
1231 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1232 	 * G_L4_chk, L4_type; required only for checksum
1233 	 * calculation
1234 	 */
1235 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1236 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1237 
1238 	if (l3_proto == htons(ETH_P_IP))
1239 		command |= MVNETA_TXD_IP_CSUM;
1240 	else
1241 		command |= MVNETA_TX_L3_IP6;
1242 
1243 	if (l4_proto == IPPROTO_TCP)
1244 		command |=  MVNETA_TX_L4_CSUM_FULL;
1245 	else if (l4_proto == IPPROTO_UDP)
1246 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1247 	else
1248 		command |= MVNETA_TX_L4_CSUM_NOT;
1249 
1250 	return command;
1251 }
1252 
1253 
1254 /* Display more error info */
1255 static void mvneta_rx_error(struct mvneta_port *pp,
1256 			    struct mvneta_rx_desc *rx_desc)
1257 {
1258 	u32 status = rx_desc->status;
1259 
1260 	if (!mvneta_rxq_desc_is_first_last(status)) {
1261 		netdev_err(pp->dev,
1262 			   "bad rx status %08x (buffer oversize), size=%d\n",
1263 			   status, rx_desc->data_size);
1264 		return;
1265 	}
1266 
1267 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1268 	case MVNETA_RXD_ERR_CRC:
1269 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1270 			   status, rx_desc->data_size);
1271 		break;
1272 	case MVNETA_RXD_ERR_OVERRUN:
1273 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1274 			   status, rx_desc->data_size);
1275 		break;
1276 	case MVNETA_RXD_ERR_LEN:
1277 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1278 			   status, rx_desc->data_size);
1279 		break;
1280 	case MVNETA_RXD_ERR_RESOURCE:
1281 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1282 			   status, rx_desc->data_size);
1283 		break;
1284 	}
1285 }
1286 
1287 /* Handle RX checksum offload based on the descriptor's status */
1288 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1289 			   struct sk_buff *skb)
1290 {
1291 	if ((status & MVNETA_RXD_L3_IP4) &&
1292 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1293 		skb->csum = 0;
1294 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1295 		return;
1296 	}
1297 
1298 	skb->ip_summed = CHECKSUM_NONE;
1299 }
1300 
1301 /* Return tx queue pointer (find last set bit) according to <cause> returned
1302  * form tx_done reg. <cause> must not be null. The return value is always a
1303  * valid queue for matching the first one found in <cause>.
1304  */
1305 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1306 						     u32 cause)
1307 {
1308 	int queue = fls(cause) - 1;
1309 
1310 	return &pp->txqs[queue];
1311 }
1312 
1313 /* Free tx queue skbuffs */
1314 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1315 				 struct mvneta_tx_queue *txq, int num)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < num; i++) {
1320 		struct mvneta_tx_desc *tx_desc = txq->descs +
1321 			txq->txq_get_index;
1322 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1323 
1324 		mvneta_txq_inc_get(txq);
1325 
1326 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1327 			dma_unmap_single(pp->dev->dev.parent,
1328 					 tx_desc->buf_phys_addr,
1329 					 tx_desc->data_size, DMA_TO_DEVICE);
1330 		if (!skb)
1331 			continue;
1332 		dev_kfree_skb_any(skb);
1333 	}
1334 }
1335 
1336 /* Handle end of transmission */
1337 static void mvneta_txq_done(struct mvneta_port *pp,
1338 			   struct mvneta_tx_queue *txq)
1339 {
1340 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1341 	int tx_done;
1342 
1343 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1344 	if (!tx_done)
1345 		return;
1346 
1347 	mvneta_txq_bufs_free(pp, txq, tx_done);
1348 
1349 	txq->count -= tx_done;
1350 
1351 	if (netif_tx_queue_stopped(nq)) {
1352 		if (txq->count <= txq->tx_wake_threshold)
1353 			netif_tx_wake_queue(nq);
1354 	}
1355 }
1356 
1357 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1358 {
1359 	if (likely(pp->frag_size <= PAGE_SIZE))
1360 		return netdev_alloc_frag(pp->frag_size);
1361 	else
1362 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1363 }
1364 
1365 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1366 {
1367 	if (likely(pp->frag_size <= PAGE_SIZE))
1368 		skb_free_frag(data);
1369 	else
1370 		kfree(data);
1371 }
1372 
1373 /* Refill processing */
1374 static int mvneta_rx_refill(struct mvneta_port *pp,
1375 			    struct mvneta_rx_desc *rx_desc)
1376 
1377 {
1378 	dma_addr_t phys_addr;
1379 	void *data;
1380 
1381 	data = mvneta_frag_alloc(pp);
1382 	if (!data)
1383 		return -ENOMEM;
1384 
1385 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1386 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1387 				   DMA_FROM_DEVICE);
1388 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1389 		mvneta_frag_free(pp, data);
1390 		return -ENOMEM;
1391 	}
1392 
1393 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1394 	return 0;
1395 }
1396 
1397 /* Handle tx checksum */
1398 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1399 {
1400 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1401 		int ip_hdr_len = 0;
1402 		__be16 l3_proto = vlan_get_protocol(skb);
1403 		u8 l4_proto;
1404 
1405 		if (l3_proto == htons(ETH_P_IP)) {
1406 			struct iphdr *ip4h = ip_hdr(skb);
1407 
1408 			/* Calculate IPv4 checksum and L4 checksum */
1409 			ip_hdr_len = ip4h->ihl;
1410 			l4_proto = ip4h->protocol;
1411 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1412 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1413 
1414 			/* Read l4_protocol from one of IPv6 extra headers */
1415 			if (skb_network_header_len(skb) > 0)
1416 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1417 			l4_proto = ip6h->nexthdr;
1418 		} else
1419 			return MVNETA_TX_L4_CSUM_NOT;
1420 
1421 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1422 					    l3_proto, ip_hdr_len, l4_proto);
1423 	}
1424 
1425 	return MVNETA_TX_L4_CSUM_NOT;
1426 }
1427 
1428 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1429  * value
1430  */
1431 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1432 						u32 cause)
1433 {
1434 	int queue = fls(cause >> 8) - 1;
1435 
1436 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1437 }
1438 
1439 /* Drop packets received by the RXQ and free buffers */
1440 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1441 				 struct mvneta_rx_queue *rxq)
1442 {
1443 	int rx_done, i;
1444 
1445 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1446 	for (i = 0; i < rxq->size; i++) {
1447 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1448 		void *data = (void *)rx_desc->buf_cookie;
1449 
1450 		mvneta_frag_free(pp, data);
1451 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1452 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1453 	}
1454 
1455 	if (rx_done)
1456 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1457 }
1458 
1459 /* Main rx processing */
1460 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1461 		     struct mvneta_rx_queue *rxq)
1462 {
1463 	struct net_device *dev = pp->dev;
1464 	int rx_done, rx_filled;
1465 	u32 rcvd_pkts = 0;
1466 	u32 rcvd_bytes = 0;
1467 
1468 	/* Get number of received packets */
1469 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1470 
1471 	if (rx_todo > rx_done)
1472 		rx_todo = rx_done;
1473 
1474 	rx_done = 0;
1475 	rx_filled = 0;
1476 
1477 	/* Fairness NAPI loop */
1478 	while (rx_done < rx_todo) {
1479 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1480 		struct sk_buff *skb;
1481 		unsigned char *data;
1482 		u32 rx_status;
1483 		int rx_bytes, err;
1484 
1485 		rx_done++;
1486 		rx_filled++;
1487 		rx_status = rx_desc->status;
1488 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1489 		data = (unsigned char *)rx_desc->buf_cookie;
1490 
1491 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1492 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1493 		err_drop_frame:
1494 			dev->stats.rx_errors++;
1495 			mvneta_rx_error(pp, rx_desc);
1496 			/* leave the descriptor untouched */
1497 			continue;
1498 		}
1499 
1500 		if (rx_bytes <= rx_copybreak) {
1501 			/* better copy a small frame and not unmap the DMA region */
1502 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1503 			if (unlikely(!skb))
1504 				goto err_drop_frame;
1505 
1506 			dma_sync_single_range_for_cpu(dev->dev.parent,
1507 			                              rx_desc->buf_phys_addr,
1508 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1509 			                              rx_bytes,
1510 			                              DMA_FROM_DEVICE);
1511 			memcpy(skb_put(skb, rx_bytes),
1512 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1513 			       rx_bytes);
1514 
1515 			skb->protocol = eth_type_trans(skb, dev);
1516 			mvneta_rx_csum(pp, rx_status, skb);
1517 			napi_gro_receive(&pp->napi, skb);
1518 
1519 			rcvd_pkts++;
1520 			rcvd_bytes += rx_bytes;
1521 
1522 			/* leave the descriptor and buffer untouched */
1523 			continue;
1524 		}
1525 
1526 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1527 		if (!skb)
1528 			goto err_drop_frame;
1529 
1530 		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1531 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1532 
1533 		rcvd_pkts++;
1534 		rcvd_bytes += rx_bytes;
1535 
1536 		/* Linux processing */
1537 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1538 		skb_put(skb, rx_bytes);
1539 
1540 		skb->protocol = eth_type_trans(skb, dev);
1541 
1542 		mvneta_rx_csum(pp, rx_status, skb);
1543 
1544 		napi_gro_receive(&pp->napi, skb);
1545 
1546 		/* Refill processing */
1547 		err = mvneta_rx_refill(pp, rx_desc);
1548 		if (err) {
1549 			netdev_err(dev, "Linux processing - Can't refill\n");
1550 			rxq->missed++;
1551 			rx_filled--;
1552 		}
1553 	}
1554 
1555 	if (rcvd_pkts) {
1556 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1557 
1558 		u64_stats_update_begin(&stats->syncp);
1559 		stats->rx_packets += rcvd_pkts;
1560 		stats->rx_bytes   += rcvd_bytes;
1561 		u64_stats_update_end(&stats->syncp);
1562 	}
1563 
1564 	/* Update rxq management counters */
1565 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1566 
1567 	return rx_done;
1568 }
1569 
1570 static inline void
1571 mvneta_tso_put_hdr(struct sk_buff *skb,
1572 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1573 {
1574 	struct mvneta_tx_desc *tx_desc;
1575 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1576 
1577 	txq->tx_skb[txq->txq_put_index] = NULL;
1578 	tx_desc = mvneta_txq_next_desc_get(txq);
1579 	tx_desc->data_size = hdr_len;
1580 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1581 	tx_desc->command |= MVNETA_TXD_F_DESC;
1582 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1583 				 txq->txq_put_index * TSO_HEADER_SIZE;
1584 	mvneta_txq_inc_put(txq);
1585 }
1586 
1587 static inline int
1588 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1589 		    struct sk_buff *skb, char *data, int size,
1590 		    bool last_tcp, bool is_last)
1591 {
1592 	struct mvneta_tx_desc *tx_desc;
1593 
1594 	tx_desc = mvneta_txq_next_desc_get(txq);
1595 	tx_desc->data_size = size;
1596 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1597 						size, DMA_TO_DEVICE);
1598 	if (unlikely(dma_mapping_error(dev->dev.parent,
1599 		     tx_desc->buf_phys_addr))) {
1600 		mvneta_txq_desc_put(txq);
1601 		return -ENOMEM;
1602 	}
1603 
1604 	tx_desc->command = 0;
1605 	txq->tx_skb[txq->txq_put_index] = NULL;
1606 
1607 	if (last_tcp) {
1608 		/* last descriptor in the TCP packet */
1609 		tx_desc->command = MVNETA_TXD_L_DESC;
1610 
1611 		/* last descriptor in SKB */
1612 		if (is_last)
1613 			txq->tx_skb[txq->txq_put_index] = skb;
1614 	}
1615 	mvneta_txq_inc_put(txq);
1616 	return 0;
1617 }
1618 
1619 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1620 			 struct mvneta_tx_queue *txq)
1621 {
1622 	int total_len, data_left;
1623 	int desc_count = 0;
1624 	struct mvneta_port *pp = netdev_priv(dev);
1625 	struct tso_t tso;
1626 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1627 	int i;
1628 
1629 	/* Count needed descriptors */
1630 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1631 		return 0;
1632 
1633 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1634 		pr_info("*** Is this even  possible???!?!?\n");
1635 		return 0;
1636 	}
1637 
1638 	/* Initialize the TSO handler, and prepare the first payload */
1639 	tso_start(skb, &tso);
1640 
1641 	total_len = skb->len - hdr_len;
1642 	while (total_len > 0) {
1643 		char *hdr;
1644 
1645 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1646 		total_len -= data_left;
1647 		desc_count++;
1648 
1649 		/* prepare packet headers: MAC + IP + TCP */
1650 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1651 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1652 
1653 		mvneta_tso_put_hdr(skb, pp, txq);
1654 
1655 		while (data_left > 0) {
1656 			int size;
1657 			desc_count++;
1658 
1659 			size = min_t(int, tso.size, data_left);
1660 
1661 			if (mvneta_tso_put_data(dev, txq, skb,
1662 						 tso.data, size,
1663 						 size == data_left,
1664 						 total_len == 0))
1665 				goto err_release;
1666 			data_left -= size;
1667 
1668 			tso_build_data(skb, &tso, size);
1669 		}
1670 	}
1671 
1672 	return desc_count;
1673 
1674 err_release:
1675 	/* Release all used data descriptors; header descriptors must not
1676 	 * be DMA-unmapped.
1677 	 */
1678 	for (i = desc_count - 1; i >= 0; i--) {
1679 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1680 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1681 			dma_unmap_single(pp->dev->dev.parent,
1682 					 tx_desc->buf_phys_addr,
1683 					 tx_desc->data_size,
1684 					 DMA_TO_DEVICE);
1685 		mvneta_txq_desc_put(txq);
1686 	}
1687 	return 0;
1688 }
1689 
1690 /* Handle tx fragmentation processing */
1691 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1692 				  struct mvneta_tx_queue *txq)
1693 {
1694 	struct mvneta_tx_desc *tx_desc;
1695 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1696 
1697 	for (i = 0; i < nr_frags; i++) {
1698 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1699 		void *addr = page_address(frag->page.p) + frag->page_offset;
1700 
1701 		tx_desc = mvneta_txq_next_desc_get(txq);
1702 		tx_desc->data_size = frag->size;
1703 
1704 		tx_desc->buf_phys_addr =
1705 			dma_map_single(pp->dev->dev.parent, addr,
1706 				       tx_desc->data_size, DMA_TO_DEVICE);
1707 
1708 		if (dma_mapping_error(pp->dev->dev.parent,
1709 				      tx_desc->buf_phys_addr)) {
1710 			mvneta_txq_desc_put(txq);
1711 			goto error;
1712 		}
1713 
1714 		if (i == nr_frags - 1) {
1715 			/* Last descriptor */
1716 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1717 			txq->tx_skb[txq->txq_put_index] = skb;
1718 		} else {
1719 			/* Descriptor in the middle: Not First, Not Last */
1720 			tx_desc->command = 0;
1721 			txq->tx_skb[txq->txq_put_index] = NULL;
1722 		}
1723 		mvneta_txq_inc_put(txq);
1724 	}
1725 
1726 	return 0;
1727 
1728 error:
1729 	/* Release all descriptors that were used to map fragments of
1730 	 * this packet, as well as the corresponding DMA mappings
1731 	 */
1732 	for (i = i - 1; i >= 0; i--) {
1733 		tx_desc = txq->descs + i;
1734 		dma_unmap_single(pp->dev->dev.parent,
1735 				 tx_desc->buf_phys_addr,
1736 				 tx_desc->data_size,
1737 				 DMA_TO_DEVICE);
1738 		mvneta_txq_desc_put(txq);
1739 	}
1740 
1741 	return -ENOMEM;
1742 }
1743 
1744 /* Main tx processing */
1745 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1746 {
1747 	struct mvneta_port *pp = netdev_priv(dev);
1748 	u16 txq_id = skb_get_queue_mapping(skb);
1749 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1750 	struct mvneta_tx_desc *tx_desc;
1751 	int len = skb->len;
1752 	int frags = 0;
1753 	u32 tx_cmd;
1754 
1755 	if (!netif_running(dev))
1756 		goto out;
1757 
1758 	if (skb_is_gso(skb)) {
1759 		frags = mvneta_tx_tso(skb, dev, txq);
1760 		goto out;
1761 	}
1762 
1763 	frags = skb_shinfo(skb)->nr_frags + 1;
1764 
1765 	/* Get a descriptor for the first part of the packet */
1766 	tx_desc = mvneta_txq_next_desc_get(txq);
1767 
1768 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1769 
1770 	tx_desc->data_size = skb_headlen(skb);
1771 
1772 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1773 						tx_desc->data_size,
1774 						DMA_TO_DEVICE);
1775 	if (unlikely(dma_mapping_error(dev->dev.parent,
1776 				       tx_desc->buf_phys_addr))) {
1777 		mvneta_txq_desc_put(txq);
1778 		frags = 0;
1779 		goto out;
1780 	}
1781 
1782 	if (frags == 1) {
1783 		/* First and Last descriptor */
1784 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1785 		tx_desc->command = tx_cmd;
1786 		txq->tx_skb[txq->txq_put_index] = skb;
1787 		mvneta_txq_inc_put(txq);
1788 	} else {
1789 		/* First but not Last */
1790 		tx_cmd |= MVNETA_TXD_F_DESC;
1791 		txq->tx_skb[txq->txq_put_index] = NULL;
1792 		mvneta_txq_inc_put(txq);
1793 		tx_desc->command = tx_cmd;
1794 		/* Continue with other skb fragments */
1795 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1796 			dma_unmap_single(dev->dev.parent,
1797 					 tx_desc->buf_phys_addr,
1798 					 tx_desc->data_size,
1799 					 DMA_TO_DEVICE);
1800 			mvneta_txq_desc_put(txq);
1801 			frags = 0;
1802 			goto out;
1803 		}
1804 	}
1805 
1806 out:
1807 	if (frags > 0) {
1808 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1809 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1810 
1811 		txq->count += frags;
1812 		mvneta_txq_pend_desc_add(pp, txq, frags);
1813 
1814 		if (txq->count >= txq->tx_stop_threshold)
1815 			netif_tx_stop_queue(nq);
1816 
1817 		u64_stats_update_begin(&stats->syncp);
1818 		stats->tx_packets++;
1819 		stats->tx_bytes  += len;
1820 		u64_stats_update_end(&stats->syncp);
1821 	} else {
1822 		dev->stats.tx_dropped++;
1823 		dev_kfree_skb_any(skb);
1824 	}
1825 
1826 	return NETDEV_TX_OK;
1827 }
1828 
1829 
1830 /* Free tx resources, when resetting a port */
1831 static void mvneta_txq_done_force(struct mvneta_port *pp,
1832 				  struct mvneta_tx_queue *txq)
1833 
1834 {
1835 	int tx_done = txq->count;
1836 
1837 	mvneta_txq_bufs_free(pp, txq, tx_done);
1838 
1839 	/* reset txq */
1840 	txq->count = 0;
1841 	txq->txq_put_index = 0;
1842 	txq->txq_get_index = 0;
1843 }
1844 
1845 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1846  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1847  */
1848 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1849 {
1850 	struct mvneta_tx_queue *txq;
1851 	struct netdev_queue *nq;
1852 
1853 	while (cause_tx_done) {
1854 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1855 
1856 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1857 		__netif_tx_lock(nq, smp_processor_id());
1858 
1859 		if (txq->count)
1860 			mvneta_txq_done(pp, txq);
1861 
1862 		__netif_tx_unlock(nq);
1863 		cause_tx_done &= ~((1 << txq->id));
1864 	}
1865 }
1866 
1867 /* Compute crc8 of the specified address, using a unique algorithm ,
1868  * according to hw spec, different than generic crc8 algorithm
1869  */
1870 static int mvneta_addr_crc(unsigned char *addr)
1871 {
1872 	int crc = 0;
1873 	int i;
1874 
1875 	for (i = 0; i < ETH_ALEN; i++) {
1876 		int j;
1877 
1878 		crc = (crc ^ addr[i]) << 8;
1879 		for (j = 7; j >= 0; j--) {
1880 			if (crc & (0x100 << j))
1881 				crc ^= 0x107 << j;
1882 		}
1883 	}
1884 
1885 	return crc;
1886 }
1887 
1888 /* This method controls the net device special MAC multicast support.
1889  * The Special Multicast Table for MAC addresses supports MAC of the form
1890  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1891  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1892  * Table entries in the DA-Filter table. This method set the Special
1893  * Multicast Table appropriate entry.
1894  */
1895 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1896 					  unsigned char last_byte,
1897 					  int queue)
1898 {
1899 	unsigned int smc_table_reg;
1900 	unsigned int tbl_offset;
1901 	unsigned int reg_offset;
1902 
1903 	/* Register offset from SMC table base    */
1904 	tbl_offset = (last_byte / 4);
1905 	/* Entry offset within the above reg */
1906 	reg_offset = last_byte % 4;
1907 
1908 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1909 					+ tbl_offset * 4));
1910 
1911 	if (queue == -1)
1912 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1913 	else {
1914 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1915 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1916 	}
1917 
1918 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1919 		    smc_table_reg);
1920 }
1921 
1922 /* This method controls the network device Other MAC multicast support.
1923  * The Other Multicast Table is used for multicast of another type.
1924  * A CRC-8 is used as an index to the Other Multicast Table entries
1925  * in the DA-Filter table.
1926  * The method gets the CRC-8 value from the calling routine and
1927  * sets the Other Multicast Table appropriate entry according to the
1928  * specified CRC-8 .
1929  */
1930 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1931 					unsigned char crc8,
1932 					int queue)
1933 {
1934 	unsigned int omc_table_reg;
1935 	unsigned int tbl_offset;
1936 	unsigned int reg_offset;
1937 
1938 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1939 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1940 
1941 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1942 
1943 	if (queue == -1) {
1944 		/* Clear accepts frame bit at specified Other DA table entry */
1945 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1946 	} else {
1947 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1948 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1949 	}
1950 
1951 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1952 }
1953 
1954 /* The network device supports multicast using two tables:
1955  *    1) Special Multicast Table for MAC addresses of the form
1956  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1957  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1958  *       Table entries in the DA-Filter table.
1959  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1960  *       is used as an index to the Other Multicast Table entries in the
1961  *       DA-Filter table.
1962  */
1963 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1964 				 int queue)
1965 {
1966 	unsigned char crc_result = 0;
1967 
1968 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1969 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1970 		return 0;
1971 	}
1972 
1973 	crc_result = mvneta_addr_crc(p_addr);
1974 	if (queue == -1) {
1975 		if (pp->mcast_count[crc_result] == 0) {
1976 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1977 				    crc_result);
1978 			return -EINVAL;
1979 		}
1980 
1981 		pp->mcast_count[crc_result]--;
1982 		if (pp->mcast_count[crc_result] != 0) {
1983 			netdev_info(pp->dev,
1984 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1985 				    pp->mcast_count[crc_result], crc_result);
1986 			return -EINVAL;
1987 		}
1988 	} else
1989 		pp->mcast_count[crc_result]++;
1990 
1991 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1992 
1993 	return 0;
1994 }
1995 
1996 /* Configure Fitering mode of Ethernet port */
1997 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1998 					  int is_promisc)
1999 {
2000 	u32 port_cfg_reg, val;
2001 
2002 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2003 
2004 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2005 
2006 	/* Set / Clear UPM bit in port configuration register */
2007 	if (is_promisc) {
2008 		/* Accept all Unicast addresses */
2009 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2010 		val |= MVNETA_FORCE_UNI;
2011 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2012 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2013 	} else {
2014 		/* Reject all Unicast addresses */
2015 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2016 		val &= ~MVNETA_FORCE_UNI;
2017 	}
2018 
2019 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2020 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2021 }
2022 
2023 /* register unicast and multicast addresses */
2024 static void mvneta_set_rx_mode(struct net_device *dev)
2025 {
2026 	struct mvneta_port *pp = netdev_priv(dev);
2027 	struct netdev_hw_addr *ha;
2028 
2029 	if (dev->flags & IFF_PROMISC) {
2030 		/* Accept all: Multicast + Unicast */
2031 		mvneta_rx_unicast_promisc_set(pp, 1);
2032 		mvneta_set_ucast_table(pp, rxq_def);
2033 		mvneta_set_special_mcast_table(pp, rxq_def);
2034 		mvneta_set_other_mcast_table(pp, rxq_def);
2035 	} else {
2036 		/* Accept single Unicast */
2037 		mvneta_rx_unicast_promisc_set(pp, 0);
2038 		mvneta_set_ucast_table(pp, -1);
2039 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2040 
2041 		if (dev->flags & IFF_ALLMULTI) {
2042 			/* Accept all multicast */
2043 			mvneta_set_special_mcast_table(pp, rxq_def);
2044 			mvneta_set_other_mcast_table(pp, rxq_def);
2045 		} else {
2046 			/* Accept only initialized multicast */
2047 			mvneta_set_special_mcast_table(pp, -1);
2048 			mvneta_set_other_mcast_table(pp, -1);
2049 
2050 			if (!netdev_mc_empty(dev)) {
2051 				netdev_for_each_mc_addr(ha, dev) {
2052 					mvneta_mcast_addr_set(pp, ha->addr,
2053 							      rxq_def);
2054 				}
2055 			}
2056 		}
2057 	}
2058 }
2059 
2060 /* Interrupt handling - the callback for request_irq() */
2061 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2062 {
2063 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2064 
2065 	/* Mask all interrupts */
2066 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2067 
2068 	napi_schedule(&pp->napi);
2069 
2070 	return IRQ_HANDLED;
2071 }
2072 
2073 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2074 				    struct phy_device *phy)
2075 {
2076 	struct fixed_phy_status status;
2077 	struct fixed_phy_status changed = {};
2078 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2079 
2080 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2081 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2082 		status.speed = SPEED_1000;
2083 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2084 		status.speed = SPEED_100;
2085 	else
2086 		status.speed = SPEED_10;
2087 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2088 	changed.link = 1;
2089 	changed.speed = 1;
2090 	changed.duplex = 1;
2091 	fixed_phy_update_state(phy, &status, &changed);
2092 	return 0;
2093 }
2094 
2095 /* NAPI handler
2096  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2097  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2098  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2099  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2100  * Each CPU has its own causeRxTx register
2101  */
2102 static int mvneta_poll(struct napi_struct *napi, int budget)
2103 {
2104 	int rx_done = 0;
2105 	u32 cause_rx_tx;
2106 	unsigned long flags;
2107 	struct mvneta_port *pp = netdev_priv(napi->dev);
2108 
2109 	if (!netif_running(pp->dev)) {
2110 		napi_complete(napi);
2111 		return rx_done;
2112 	}
2113 
2114 	/* Read cause register */
2115 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2116 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2117 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2118 
2119 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2120 		if (pp->use_inband_status && (cause_misc &
2121 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2122 				 MVNETA_CAUSE_LINK_CHANGE |
2123 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2124 			mvneta_fixed_link_update(pp, pp->phy_dev);
2125 		}
2126 	}
2127 
2128 	/* Release Tx descriptors */
2129 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2130 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2131 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2132 	}
2133 
2134 	/* For the case where the last mvneta_poll did not process all
2135 	 * RX packets
2136 	 */
2137 	cause_rx_tx |= pp->cause_rx_tx;
2138 	if (rxq_number > 1) {
2139 		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2140 			int count;
2141 			struct mvneta_rx_queue *rxq;
2142 			/* get rx queue number from cause_rx_tx */
2143 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
2144 			if (!rxq)
2145 				break;
2146 
2147 			/* process the packet in that rx queue */
2148 			count = mvneta_rx(pp, budget, rxq);
2149 			rx_done += count;
2150 			budget -= count;
2151 			if (budget > 0) {
2152 				/* set off the rx bit of the
2153 				 * corresponding bit in the cause rx
2154 				 * tx register, so that next iteration
2155 				 * will find the next rx queue where
2156 				 * packets are received on
2157 				 */
2158 				cause_rx_tx &= ~((1 << rxq->id) << 8);
2159 			}
2160 		}
2161 	} else {
2162 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2163 		budget -= rx_done;
2164 	}
2165 
2166 	if (budget > 0) {
2167 		cause_rx_tx = 0;
2168 		napi_complete(napi);
2169 		local_irq_save(flags);
2170 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2171 			    MVNETA_RX_INTR_MASK(rxq_number) |
2172 			    MVNETA_TX_INTR_MASK(txq_number) |
2173 			    MVNETA_MISCINTR_INTR_MASK);
2174 		local_irq_restore(flags);
2175 	}
2176 
2177 	pp->cause_rx_tx = cause_rx_tx;
2178 	return rx_done;
2179 }
2180 
2181 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2182 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2183 			   int num)
2184 {
2185 	int i;
2186 
2187 	for (i = 0; i < num; i++) {
2188 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2189 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2190 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2191 				__func__, rxq->id, i, num);
2192 			break;
2193 		}
2194 	}
2195 
2196 	/* Add this number of RX descriptors as non occupied (ready to
2197 	 * get packets)
2198 	 */
2199 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2200 
2201 	return i;
2202 }
2203 
2204 /* Free all packets pending transmit from all TXQs and reset TX port */
2205 static void mvneta_tx_reset(struct mvneta_port *pp)
2206 {
2207 	int queue;
2208 
2209 	/* free the skb's in the tx ring */
2210 	for (queue = 0; queue < txq_number; queue++)
2211 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2212 
2213 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2214 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2215 }
2216 
2217 static void mvneta_rx_reset(struct mvneta_port *pp)
2218 {
2219 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2220 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2221 }
2222 
2223 /* Rx/Tx queue initialization/cleanup methods */
2224 
2225 /* Create a specified RX queue */
2226 static int mvneta_rxq_init(struct mvneta_port *pp,
2227 			   struct mvneta_rx_queue *rxq)
2228 
2229 {
2230 	rxq->size = pp->rx_ring_size;
2231 
2232 	/* Allocate memory for RX descriptors */
2233 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2234 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2235 					&rxq->descs_phys, GFP_KERNEL);
2236 	if (rxq->descs == NULL)
2237 		return -ENOMEM;
2238 
2239 	BUG_ON(rxq->descs !=
2240 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2241 
2242 	rxq->last_desc = rxq->size - 1;
2243 
2244 	/* Set Rx descriptors queue starting address */
2245 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2246 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2247 
2248 	/* Set Offset */
2249 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2250 
2251 	/* Set coalescing pkts and time */
2252 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2253 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2254 
2255 	/* Fill RXQ with buffers from RX pool */
2256 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2257 	mvneta_rxq_bm_disable(pp, rxq);
2258 	mvneta_rxq_fill(pp, rxq, rxq->size);
2259 
2260 	return 0;
2261 }
2262 
2263 /* Cleanup Rx queue */
2264 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2265 			      struct mvneta_rx_queue *rxq)
2266 {
2267 	mvneta_rxq_drop_pkts(pp, rxq);
2268 
2269 	if (rxq->descs)
2270 		dma_free_coherent(pp->dev->dev.parent,
2271 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2272 				  rxq->descs,
2273 				  rxq->descs_phys);
2274 
2275 	rxq->descs             = NULL;
2276 	rxq->last_desc         = 0;
2277 	rxq->next_desc_to_proc = 0;
2278 	rxq->descs_phys        = 0;
2279 }
2280 
2281 /* Create and initialize a tx queue */
2282 static int mvneta_txq_init(struct mvneta_port *pp,
2283 			   struct mvneta_tx_queue *txq)
2284 {
2285 	txq->size = pp->tx_ring_size;
2286 
2287 	/* A queue must always have room for at least one skb.
2288 	 * Therefore, stop the queue when the free entries reaches
2289 	 * the maximum number of descriptors per skb.
2290 	 */
2291 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2292 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2293 
2294 
2295 	/* Allocate memory for TX descriptors */
2296 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2297 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2298 					&txq->descs_phys, GFP_KERNEL);
2299 	if (txq->descs == NULL)
2300 		return -ENOMEM;
2301 
2302 	/* Make sure descriptor address is cache line size aligned  */
2303 	BUG_ON(txq->descs !=
2304 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2305 
2306 	txq->last_desc = txq->size - 1;
2307 
2308 	/* Set maximum bandwidth for enabled TXQs */
2309 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2310 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2311 
2312 	/* Set Tx descriptors queue starting address */
2313 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2314 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2315 
2316 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2317 	if (txq->tx_skb == NULL) {
2318 		dma_free_coherent(pp->dev->dev.parent,
2319 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2320 				  txq->descs, txq->descs_phys);
2321 		return -ENOMEM;
2322 	}
2323 
2324 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2325 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2326 					   txq->size * TSO_HEADER_SIZE,
2327 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2328 	if (txq->tso_hdrs == NULL) {
2329 		kfree(txq->tx_skb);
2330 		dma_free_coherent(pp->dev->dev.parent,
2331 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2332 				  txq->descs, txq->descs_phys);
2333 		return -ENOMEM;
2334 	}
2335 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2336 
2337 	return 0;
2338 }
2339 
2340 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2341 static void mvneta_txq_deinit(struct mvneta_port *pp,
2342 			      struct mvneta_tx_queue *txq)
2343 {
2344 	kfree(txq->tx_skb);
2345 
2346 	if (txq->tso_hdrs)
2347 		dma_free_coherent(pp->dev->dev.parent,
2348 				  txq->size * TSO_HEADER_SIZE,
2349 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2350 	if (txq->descs)
2351 		dma_free_coherent(pp->dev->dev.parent,
2352 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2353 				  txq->descs, txq->descs_phys);
2354 
2355 	txq->descs             = NULL;
2356 	txq->last_desc         = 0;
2357 	txq->next_desc_to_proc = 0;
2358 	txq->descs_phys        = 0;
2359 
2360 	/* Set minimum bandwidth for disabled TXQs */
2361 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2362 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2363 
2364 	/* Set Tx descriptors queue starting address and size */
2365 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2366 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2367 }
2368 
2369 /* Cleanup all Tx queues */
2370 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2371 {
2372 	int queue;
2373 
2374 	for (queue = 0; queue < txq_number; queue++)
2375 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2376 }
2377 
2378 /* Cleanup all Rx queues */
2379 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2380 {
2381 	int queue;
2382 
2383 	for (queue = 0; queue < rxq_number; queue++)
2384 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2385 }
2386 
2387 
2388 /* Init all Rx queues */
2389 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2390 {
2391 	int queue;
2392 
2393 	for (queue = 0; queue < rxq_number; queue++) {
2394 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2395 		if (err) {
2396 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2397 				   __func__, queue);
2398 			mvneta_cleanup_rxqs(pp);
2399 			return err;
2400 		}
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 /* Init all tx queues */
2407 static int mvneta_setup_txqs(struct mvneta_port *pp)
2408 {
2409 	int queue;
2410 
2411 	for (queue = 0; queue < txq_number; queue++) {
2412 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2413 		if (err) {
2414 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2415 				   __func__, queue);
2416 			mvneta_cleanup_txqs(pp);
2417 			return err;
2418 		}
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 static void mvneta_start_dev(struct mvneta_port *pp)
2425 {
2426 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2427 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2428 
2429 	/* start the Rx/Tx activity */
2430 	mvneta_port_enable(pp);
2431 
2432 	/* Enable polling on the port */
2433 	napi_enable(&pp->napi);
2434 
2435 	/* Unmask interrupts */
2436 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2437 		    MVNETA_RX_INTR_MASK(rxq_number) |
2438 		    MVNETA_TX_INTR_MASK(txq_number) |
2439 		    MVNETA_MISCINTR_INTR_MASK);
2440 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2441 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2442 		    MVNETA_CAUSE_LINK_CHANGE |
2443 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2444 
2445 	phy_start(pp->phy_dev);
2446 	netif_tx_start_all_queues(pp->dev);
2447 }
2448 
2449 static void mvneta_stop_dev(struct mvneta_port *pp)
2450 {
2451 	phy_stop(pp->phy_dev);
2452 
2453 	napi_disable(&pp->napi);
2454 
2455 	netif_carrier_off(pp->dev);
2456 
2457 	mvneta_port_down(pp);
2458 	netif_tx_stop_all_queues(pp->dev);
2459 
2460 	/* Stop the port activity */
2461 	mvneta_port_disable(pp);
2462 
2463 	/* Clear all ethernet port interrupts */
2464 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2465 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2466 
2467 	/* Mask all ethernet port interrupts */
2468 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2469 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2470 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2471 
2472 	mvneta_tx_reset(pp);
2473 	mvneta_rx_reset(pp);
2474 }
2475 
2476 /* Return positive if MTU is valid */
2477 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2478 {
2479 	if (mtu < 68) {
2480 		netdev_err(dev, "cannot change mtu to less than 68\n");
2481 		return -EINVAL;
2482 	}
2483 
2484 	/* 9676 == 9700 - 20 and rounding to 8 */
2485 	if (mtu > 9676) {
2486 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2487 		mtu = 9676;
2488 	}
2489 
2490 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2491 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2492 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2493 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2494 	}
2495 
2496 	return mtu;
2497 }
2498 
2499 /* Change the device mtu */
2500 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2501 {
2502 	struct mvneta_port *pp = netdev_priv(dev);
2503 	int ret;
2504 
2505 	mtu = mvneta_check_mtu_valid(dev, mtu);
2506 	if (mtu < 0)
2507 		return -EINVAL;
2508 
2509 	dev->mtu = mtu;
2510 
2511 	if (!netif_running(dev))
2512 		return 0;
2513 
2514 	/* The interface is running, so we have to force a
2515 	 * reallocation of the queues
2516 	 */
2517 	mvneta_stop_dev(pp);
2518 
2519 	mvneta_cleanup_txqs(pp);
2520 	mvneta_cleanup_rxqs(pp);
2521 
2522 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2523 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2524 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2525 
2526 	ret = mvneta_setup_rxqs(pp);
2527 	if (ret) {
2528 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2529 		return ret;
2530 	}
2531 
2532 	ret = mvneta_setup_txqs(pp);
2533 	if (ret) {
2534 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2535 		return ret;
2536 	}
2537 
2538 	mvneta_start_dev(pp);
2539 	mvneta_port_up(pp);
2540 
2541 	return 0;
2542 }
2543 
2544 /* Get mac address */
2545 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2546 {
2547 	u32 mac_addr_l, mac_addr_h;
2548 
2549 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2550 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2551 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2552 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2553 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2554 	addr[3] = mac_addr_h & 0xFF;
2555 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2556 	addr[5] = mac_addr_l & 0xFF;
2557 }
2558 
2559 /* Handle setting mac address */
2560 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2561 {
2562 	struct mvneta_port *pp = netdev_priv(dev);
2563 	struct sockaddr *sockaddr = addr;
2564 	int ret;
2565 
2566 	ret = eth_prepare_mac_addr_change(dev, addr);
2567 	if (ret < 0)
2568 		return ret;
2569 	/* Remove previous address table entry */
2570 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2571 
2572 	/* Set new addr in hw */
2573 	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2574 
2575 	eth_commit_mac_addr_change(dev, addr);
2576 	return 0;
2577 }
2578 
2579 static void mvneta_adjust_link(struct net_device *ndev)
2580 {
2581 	struct mvneta_port *pp = netdev_priv(ndev);
2582 	struct phy_device *phydev = pp->phy_dev;
2583 	int status_change = 0;
2584 
2585 	if (phydev->link) {
2586 		if ((pp->speed != phydev->speed) ||
2587 		    (pp->duplex != phydev->duplex)) {
2588 			u32 val;
2589 
2590 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2591 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2592 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2593 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2594 
2595 			if (phydev->duplex)
2596 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2597 
2598 			if (phydev->speed == SPEED_1000)
2599 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2600 			else if (phydev->speed == SPEED_100)
2601 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2602 
2603 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2604 
2605 			pp->duplex = phydev->duplex;
2606 			pp->speed  = phydev->speed;
2607 		}
2608 	}
2609 
2610 	if (phydev->link != pp->link) {
2611 		if (!phydev->link) {
2612 			pp->duplex = -1;
2613 			pp->speed = 0;
2614 		}
2615 
2616 		pp->link = phydev->link;
2617 		status_change = 1;
2618 	}
2619 
2620 	if (status_change) {
2621 		if (phydev->link) {
2622 			if (!pp->use_inband_status) {
2623 				u32 val = mvreg_read(pp,
2624 						  MVNETA_GMAC_AUTONEG_CONFIG);
2625 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2626 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2627 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2628 					    val);
2629 			}
2630 			mvneta_port_up(pp);
2631 		} else {
2632 			if (!pp->use_inband_status) {
2633 				u32 val = mvreg_read(pp,
2634 						  MVNETA_GMAC_AUTONEG_CONFIG);
2635 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2636 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2637 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2638 					    val);
2639 			}
2640 			mvneta_port_down(pp);
2641 		}
2642 		phy_print_status(phydev);
2643 	}
2644 }
2645 
2646 static int mvneta_mdio_probe(struct mvneta_port *pp)
2647 {
2648 	struct phy_device *phy_dev;
2649 
2650 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2651 				 pp->phy_interface);
2652 	if (!phy_dev) {
2653 		netdev_err(pp->dev, "could not find the PHY\n");
2654 		return -ENODEV;
2655 	}
2656 
2657 	phy_dev->supported &= PHY_GBIT_FEATURES;
2658 	phy_dev->advertising = phy_dev->supported;
2659 
2660 	pp->phy_dev = phy_dev;
2661 	pp->link    = 0;
2662 	pp->duplex  = 0;
2663 	pp->speed   = 0;
2664 
2665 	return 0;
2666 }
2667 
2668 static void mvneta_mdio_remove(struct mvneta_port *pp)
2669 {
2670 	phy_disconnect(pp->phy_dev);
2671 	pp->phy_dev = NULL;
2672 }
2673 
2674 static int mvneta_open(struct net_device *dev)
2675 {
2676 	struct mvneta_port *pp = netdev_priv(dev);
2677 	int ret;
2678 
2679 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2680 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2681 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2682 
2683 	ret = mvneta_setup_rxqs(pp);
2684 	if (ret)
2685 		return ret;
2686 
2687 	ret = mvneta_setup_txqs(pp);
2688 	if (ret)
2689 		goto err_cleanup_rxqs;
2690 
2691 	/* Connect to port interrupt line */
2692 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2693 			  MVNETA_DRIVER_NAME, pp);
2694 	if (ret) {
2695 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2696 		goto err_cleanup_txqs;
2697 	}
2698 
2699 	/* In default link is down */
2700 	netif_carrier_off(pp->dev);
2701 
2702 	ret = mvneta_mdio_probe(pp);
2703 	if (ret < 0) {
2704 		netdev_err(dev, "cannot probe MDIO bus\n");
2705 		goto err_free_irq;
2706 	}
2707 
2708 	mvneta_start_dev(pp);
2709 
2710 	return 0;
2711 
2712 err_free_irq:
2713 	free_irq(pp->dev->irq, pp);
2714 err_cleanup_txqs:
2715 	mvneta_cleanup_txqs(pp);
2716 err_cleanup_rxqs:
2717 	mvneta_cleanup_rxqs(pp);
2718 	return ret;
2719 }
2720 
2721 /* Stop the port, free port interrupt line */
2722 static int mvneta_stop(struct net_device *dev)
2723 {
2724 	struct mvneta_port *pp = netdev_priv(dev);
2725 
2726 	mvneta_stop_dev(pp);
2727 	mvneta_mdio_remove(pp);
2728 	free_irq(dev->irq, pp);
2729 	mvneta_cleanup_rxqs(pp);
2730 	mvneta_cleanup_txqs(pp);
2731 
2732 	return 0;
2733 }
2734 
2735 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2736 {
2737 	struct mvneta_port *pp = netdev_priv(dev);
2738 
2739 	if (!pp->phy_dev)
2740 		return -ENOTSUPP;
2741 
2742 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2743 }
2744 
2745 /* Ethtool methods */
2746 
2747 /* Get settings (phy address, speed) for ethtools */
2748 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2749 {
2750 	struct mvneta_port *pp = netdev_priv(dev);
2751 
2752 	if (!pp->phy_dev)
2753 		return -ENODEV;
2754 
2755 	return phy_ethtool_gset(pp->phy_dev, cmd);
2756 }
2757 
2758 /* Set settings (phy address, speed) for ethtools */
2759 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2760 {
2761 	struct mvneta_port *pp = netdev_priv(dev);
2762 
2763 	if (!pp->phy_dev)
2764 		return -ENODEV;
2765 
2766 	return phy_ethtool_sset(pp->phy_dev, cmd);
2767 }
2768 
2769 /* Set interrupt coalescing for ethtools */
2770 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2771 				       struct ethtool_coalesce *c)
2772 {
2773 	struct mvneta_port *pp = netdev_priv(dev);
2774 	int queue;
2775 
2776 	for (queue = 0; queue < rxq_number; queue++) {
2777 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2778 		rxq->time_coal = c->rx_coalesce_usecs;
2779 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2780 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2781 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2782 	}
2783 
2784 	for (queue = 0; queue < txq_number; queue++) {
2785 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2786 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2787 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 /* get coalescing for ethtools */
2794 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2795 				       struct ethtool_coalesce *c)
2796 {
2797 	struct mvneta_port *pp = netdev_priv(dev);
2798 
2799 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2800 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2801 
2802 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2803 	return 0;
2804 }
2805 
2806 
2807 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2808 				    struct ethtool_drvinfo *drvinfo)
2809 {
2810 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2811 		sizeof(drvinfo->driver));
2812 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2813 		sizeof(drvinfo->version));
2814 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2815 		sizeof(drvinfo->bus_info));
2816 }
2817 
2818 
2819 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2820 					 struct ethtool_ringparam *ring)
2821 {
2822 	struct mvneta_port *pp = netdev_priv(netdev);
2823 
2824 	ring->rx_max_pending = MVNETA_MAX_RXD;
2825 	ring->tx_max_pending = MVNETA_MAX_TXD;
2826 	ring->rx_pending = pp->rx_ring_size;
2827 	ring->tx_pending = pp->tx_ring_size;
2828 }
2829 
2830 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2831 					struct ethtool_ringparam *ring)
2832 {
2833 	struct mvneta_port *pp = netdev_priv(dev);
2834 
2835 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2836 		return -EINVAL;
2837 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2838 		ring->rx_pending : MVNETA_MAX_RXD;
2839 
2840 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2841 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2842 	if (pp->tx_ring_size != ring->tx_pending)
2843 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2844 			    pp->tx_ring_size, ring->tx_pending);
2845 
2846 	if (netif_running(dev)) {
2847 		mvneta_stop(dev);
2848 		if (mvneta_open(dev)) {
2849 			netdev_err(dev,
2850 				   "error on opening device after ring param change\n");
2851 			return -ENOMEM;
2852 		}
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 static const struct net_device_ops mvneta_netdev_ops = {
2859 	.ndo_open            = mvneta_open,
2860 	.ndo_stop            = mvneta_stop,
2861 	.ndo_start_xmit      = mvneta_tx,
2862 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2863 	.ndo_set_mac_address = mvneta_set_mac_addr,
2864 	.ndo_change_mtu      = mvneta_change_mtu,
2865 	.ndo_get_stats64     = mvneta_get_stats64,
2866 	.ndo_do_ioctl        = mvneta_ioctl,
2867 };
2868 
2869 const struct ethtool_ops mvneta_eth_tool_ops = {
2870 	.get_link       = ethtool_op_get_link,
2871 	.get_settings   = mvneta_ethtool_get_settings,
2872 	.set_settings   = mvneta_ethtool_set_settings,
2873 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2874 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2875 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2876 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2877 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2878 };
2879 
2880 /* Initialize hw */
2881 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2882 {
2883 	int queue;
2884 
2885 	/* Disable port */
2886 	mvneta_port_disable(pp);
2887 
2888 	/* Set port default values */
2889 	mvneta_defaults_set(pp);
2890 
2891 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2892 				GFP_KERNEL);
2893 	if (!pp->txqs)
2894 		return -ENOMEM;
2895 
2896 	/* Initialize TX descriptor rings */
2897 	for (queue = 0; queue < txq_number; queue++) {
2898 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2899 		txq->id = queue;
2900 		txq->size = pp->tx_ring_size;
2901 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2902 	}
2903 
2904 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2905 				GFP_KERNEL);
2906 	if (!pp->rxqs)
2907 		return -ENOMEM;
2908 
2909 	/* Create Rx descriptor rings */
2910 	for (queue = 0; queue < rxq_number; queue++) {
2911 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2912 		rxq->id = queue;
2913 		rxq->size = pp->rx_ring_size;
2914 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2915 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 /* platform glue : initialize decoding windows */
2922 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2923 				     const struct mbus_dram_target_info *dram)
2924 {
2925 	u32 win_enable;
2926 	u32 win_protect;
2927 	int i;
2928 
2929 	for (i = 0; i < 6; i++) {
2930 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2931 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2932 
2933 		if (i < 4)
2934 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2935 	}
2936 
2937 	win_enable = 0x3f;
2938 	win_protect = 0;
2939 
2940 	for (i = 0; i < dram->num_cs; i++) {
2941 		const struct mbus_dram_window *cs = dram->cs + i;
2942 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2943 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2944 
2945 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2946 			    (cs->size - 1) & 0xffff0000);
2947 
2948 		win_enable &= ~(1 << i);
2949 		win_protect |= 3 << (2 * i);
2950 	}
2951 
2952 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2953 }
2954 
2955 /* Power up the port */
2956 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2957 {
2958 	u32 ctrl;
2959 
2960 	/* MAC Cause register should be cleared */
2961 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2962 
2963 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2964 
2965 	/* Even though it might look weird, when we're configured in
2966 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2967 	 */
2968 	switch(phy_mode) {
2969 	case PHY_INTERFACE_MODE_QSGMII:
2970 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2971 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2972 		break;
2973 	case PHY_INTERFACE_MODE_SGMII:
2974 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2975 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2976 		break;
2977 	case PHY_INTERFACE_MODE_RGMII:
2978 	case PHY_INTERFACE_MODE_RGMII_ID:
2979 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
2980 		break;
2981 	default:
2982 		return -EINVAL;
2983 	}
2984 
2985 	if (pp->use_inband_status)
2986 		ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
2987 
2988 	/* Cancel Port Reset */
2989 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2990 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2991 
2992 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2993 		MVNETA_GMAC2_PORT_RESET) != 0)
2994 		continue;
2995 
2996 	return 0;
2997 }
2998 
2999 /* Device initialization routine */
3000 static int mvneta_probe(struct platform_device *pdev)
3001 {
3002 	const struct mbus_dram_target_info *dram_target_info;
3003 	struct resource *res;
3004 	struct device_node *dn = pdev->dev.of_node;
3005 	struct device_node *phy_node;
3006 	struct mvneta_port *pp;
3007 	struct net_device *dev;
3008 	const char *dt_mac_addr;
3009 	char hw_mac_addr[ETH_ALEN];
3010 	const char *mac_from;
3011 	int phy_mode;
3012 	int fixed_phy = 0;
3013 	int err;
3014 
3015 	/* Our multiqueue support is not complete, so for now, only
3016 	 * allow the usage of the first RX queue
3017 	 */
3018 	if (rxq_def != 0) {
3019 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
3020 		return -EINVAL;
3021 	}
3022 
3023 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3024 	if (!dev)
3025 		return -ENOMEM;
3026 
3027 	dev->irq = irq_of_parse_and_map(dn, 0);
3028 	if (dev->irq == 0) {
3029 		err = -EINVAL;
3030 		goto err_free_netdev;
3031 	}
3032 
3033 	phy_node = of_parse_phandle(dn, "phy", 0);
3034 	if (!phy_node) {
3035 		if (!of_phy_is_fixed_link(dn)) {
3036 			dev_err(&pdev->dev, "no PHY specified\n");
3037 			err = -ENODEV;
3038 			goto err_free_irq;
3039 		}
3040 
3041 		err = of_phy_register_fixed_link(dn);
3042 		if (err < 0) {
3043 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3044 			goto err_free_irq;
3045 		}
3046 		fixed_phy = 1;
3047 
3048 		/* In the case of a fixed PHY, the DT node associated
3049 		 * to the PHY is the Ethernet MAC DT node.
3050 		 */
3051 		phy_node = of_node_get(dn);
3052 	}
3053 
3054 	phy_mode = of_get_phy_mode(dn);
3055 	if (phy_mode < 0) {
3056 		dev_err(&pdev->dev, "incorrect phy-mode\n");
3057 		err = -EINVAL;
3058 		goto err_put_phy_node;
3059 	}
3060 
3061 	dev->tx_queue_len = MVNETA_MAX_TXD;
3062 	dev->watchdog_timeo = 5 * HZ;
3063 	dev->netdev_ops = &mvneta_netdev_ops;
3064 
3065 	dev->ethtool_ops = &mvneta_eth_tool_ops;
3066 
3067 	pp = netdev_priv(dev);
3068 	pp->phy_node = phy_node;
3069 	pp->phy_interface = phy_mode;
3070 	pp->use_inband_status = (phy_mode == PHY_INTERFACE_MODE_SGMII) &&
3071 				fixed_phy;
3072 
3073 	pp->clk = devm_clk_get(&pdev->dev, NULL);
3074 	if (IS_ERR(pp->clk)) {
3075 		err = PTR_ERR(pp->clk);
3076 		goto err_put_phy_node;
3077 	}
3078 
3079 	clk_prepare_enable(pp->clk);
3080 
3081 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3082 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3083 	if (IS_ERR(pp->base)) {
3084 		err = PTR_ERR(pp->base);
3085 		goto err_clk;
3086 	}
3087 
3088 	/* Alloc per-cpu stats */
3089 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3090 	if (!pp->stats) {
3091 		err = -ENOMEM;
3092 		goto err_clk;
3093 	}
3094 
3095 	dt_mac_addr = of_get_mac_address(dn);
3096 	if (dt_mac_addr) {
3097 		mac_from = "device tree";
3098 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3099 	} else {
3100 		mvneta_get_mac_addr(pp, hw_mac_addr);
3101 		if (is_valid_ether_addr(hw_mac_addr)) {
3102 			mac_from = "hardware";
3103 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3104 		} else {
3105 			mac_from = "random";
3106 			eth_hw_addr_random(dev);
3107 		}
3108 	}
3109 
3110 	pp->tx_ring_size = MVNETA_MAX_TXD;
3111 	pp->rx_ring_size = MVNETA_MAX_RXD;
3112 
3113 	pp->dev = dev;
3114 	SET_NETDEV_DEV(dev, &pdev->dev);
3115 
3116 	err = mvneta_init(&pdev->dev, pp);
3117 	if (err < 0)
3118 		goto err_free_stats;
3119 
3120 	err = mvneta_port_power_up(pp, phy_mode);
3121 	if (err < 0) {
3122 		dev_err(&pdev->dev, "can't power up port\n");
3123 		goto err_free_stats;
3124 	}
3125 
3126 	dram_target_info = mv_mbus_dram_info();
3127 	if (dram_target_info)
3128 		mvneta_conf_mbus_windows(pp, dram_target_info);
3129 
3130 	netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3131 
3132 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3133 	dev->hw_features |= dev->features;
3134 	dev->vlan_features |= dev->features;
3135 	dev->priv_flags |= IFF_UNICAST_FLT;
3136 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3137 
3138 	err = register_netdev(dev);
3139 	if (err < 0) {
3140 		dev_err(&pdev->dev, "failed to register\n");
3141 		goto err_free_stats;
3142 	}
3143 
3144 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3145 		    dev->dev_addr);
3146 
3147 	platform_set_drvdata(pdev, pp->dev);
3148 
3149 	if (pp->use_inband_status) {
3150 		struct phy_device *phy = of_phy_find_device(dn);
3151 
3152 		mvneta_fixed_link_update(pp, phy);
3153 	}
3154 
3155 	return 0;
3156 
3157 err_free_stats:
3158 	free_percpu(pp->stats);
3159 err_clk:
3160 	clk_disable_unprepare(pp->clk);
3161 err_put_phy_node:
3162 	of_node_put(phy_node);
3163 err_free_irq:
3164 	irq_dispose_mapping(dev->irq);
3165 err_free_netdev:
3166 	free_netdev(dev);
3167 	return err;
3168 }
3169 
3170 /* Device removal routine */
3171 static int mvneta_remove(struct platform_device *pdev)
3172 {
3173 	struct net_device  *dev = platform_get_drvdata(pdev);
3174 	struct mvneta_port *pp = netdev_priv(dev);
3175 
3176 	unregister_netdev(dev);
3177 	clk_disable_unprepare(pp->clk);
3178 	free_percpu(pp->stats);
3179 	irq_dispose_mapping(dev->irq);
3180 	of_node_put(pp->phy_node);
3181 	free_netdev(dev);
3182 
3183 	return 0;
3184 }
3185 
3186 static const struct of_device_id mvneta_match[] = {
3187 	{ .compatible = "marvell,armada-370-neta" },
3188 	{ }
3189 };
3190 MODULE_DEVICE_TABLE(of, mvneta_match);
3191 
3192 static struct platform_driver mvneta_driver = {
3193 	.probe = mvneta_probe,
3194 	.remove = mvneta_remove,
3195 	.driver = {
3196 		.name = MVNETA_DRIVER_NAME,
3197 		.of_match_table = mvneta_match,
3198 	},
3199 };
3200 
3201 module_platform_driver(mvneta_driver);
3202 
3203 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3204 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3205 MODULE_LICENSE("GPL");
3206 
3207 module_param(rxq_number, int, S_IRUGO);
3208 module_param(txq_number, int, S_IRUGO);
3209 
3210 module_param(rxq_def, int, S_IRUGO);
3211 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3212