1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/if_vlan.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/io.h> 27 #include <net/tso.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/of_address.h> 33 #include <linux/phy.h> 34 #include <linux/clk.h> 35 36 /* Registers */ 37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 52 #define MVNETA_PORT_RX_RESET 0x1cc0 53 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 54 #define MVNETA_PHY_ADDR 0x2000 55 #define MVNETA_PHY_ADDR_MASK 0x1f 56 #define MVNETA_MBUS_RETRY 0x2010 57 #define MVNETA_UNIT_INTR_CAUSE 0x2080 58 #define MVNETA_UNIT_CONTROL 0x20B0 59 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 63 #define MVNETA_BASE_ADDR_ENABLE 0x2290 64 #define MVNETA_PORT_CONFIG 0x2400 65 #define MVNETA_UNI_PROMISC_MODE BIT(0) 66 #define MVNETA_DEF_RXQ(q) ((q) << 1) 67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 74 MVNETA_DEF_RXQ_ARP(q) | \ 75 MVNETA_DEF_RXQ_TCP(q) | \ 76 MVNETA_DEF_RXQ_UDP(q) | \ 77 MVNETA_DEF_RXQ_BPDU(q) | \ 78 MVNETA_TX_UNSET_ERR_SUM | \ 79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 81 #define MVNETA_MAC_ADDR_LOW 0x2414 82 #define MVNETA_MAC_ADDR_HIGH 0x2418 83 #define MVNETA_SDMA_CONFIG 0x241c 84 #define MVNETA_SDMA_BRST_SIZE_16 4 85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 86 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 87 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 88 #define MVNETA_DESC_SWAP BIT(6) 89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 90 #define MVNETA_PORT_STATUS 0x2444 91 #define MVNETA_TX_IN_PRGRS BIT(1) 92 #define MVNETA_TX_FIFO_EMPTY BIT(8) 93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 94 #define MVNETA_SERDES_CFG 0x24A0 95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 97 #define MVNETA_TYPE_PRIO 0x24bc 98 #define MVNETA_FORCE_UNI BIT(21) 99 #define MVNETA_TXQ_CMD_1 0x24e4 100 #define MVNETA_TXQ_CMD 0x2448 101 #define MVNETA_TXQ_DISABLE_SHIFT 8 102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 103 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 104 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 105 #define MVNETA_ACC_MODE 0x2500 106 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 107 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 108 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 109 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 110 111 /* Exception Interrupt Port/Queue Cause register */ 112 113 #define MVNETA_INTR_NEW_CAUSE 0x25a0 114 #define MVNETA_INTR_NEW_MASK 0x25a4 115 116 /* bits 0..7 = TXQ SENT, one bit per queue. 117 * bits 8..15 = RXQ OCCUP, one bit per queue. 118 * bits 16..23 = RXQ FREE, one bit per queue. 119 * bit 29 = OLD_REG_SUM, see old reg ? 120 * bit 30 = TX_ERR_SUM, one bit for 4 ports 121 * bit 31 = MISC_SUM, one bit for 4 ports 122 */ 123 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 124 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 125 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 126 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 127 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 128 129 #define MVNETA_INTR_OLD_CAUSE 0x25a8 130 #define MVNETA_INTR_OLD_MASK 0x25ac 131 132 /* Data Path Port/Queue Cause Register */ 133 #define MVNETA_INTR_MISC_CAUSE 0x25b0 134 #define MVNETA_INTR_MISC_MASK 0x25b4 135 136 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 137 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 138 #define MVNETA_CAUSE_PTP BIT(4) 139 140 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 141 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 142 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 143 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 144 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 145 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 146 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 147 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 148 149 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 150 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 151 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 152 153 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 154 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 155 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 156 157 #define MVNETA_INTR_ENABLE 0x25b8 158 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 159 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 160 161 #define MVNETA_RXQ_CMD 0x2680 162 #define MVNETA_RXQ_DISABLE_SHIFT 8 163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 166 #define MVNETA_GMAC_CTRL_0 0x2c00 167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 170 #define MVNETA_GMAC_CTRL_2 0x2c08 171 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 172 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 173 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 174 #define MVNETA_GMAC2_PORT_RESET BIT(6) 175 #define MVNETA_GMAC_STATUS 0x2c10 176 #define MVNETA_GMAC_LINK_UP BIT(0) 177 #define MVNETA_GMAC_SPEED_1000 BIT(1) 178 #define MVNETA_GMAC_SPEED_100 BIT(2) 179 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 180 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 181 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 182 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 183 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 184 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 185 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 186 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 187 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 191 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 192 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 193 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 194 #define MVNETA_MIB_COUNTERS_BASE 0x3080 195 #define MVNETA_MIB_LATE_COLLISION 0x7c 196 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 197 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 198 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 199 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 200 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 201 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 202 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 203 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 204 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 205 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 206 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 207 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 208 #define MVNETA_PORT_TX_RESET 0x3cf0 209 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 210 #define MVNETA_TX_MTU 0x3e0c 211 #define MVNETA_TX_TOKEN_SIZE 0x3e14 212 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 214 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 215 216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 217 218 /* Descriptor ring Macros */ 219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 220 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 221 222 /* Various constants */ 223 224 /* Coalescing */ 225 #define MVNETA_TXDONE_COAL_PKTS 1 226 #define MVNETA_RX_COAL_PKTS 32 227 #define MVNETA_RX_COAL_USEC 100 228 229 /* The two bytes Marvell header. Either contains a special value used 230 * by Marvell switches when a specific hardware mode is enabled (not 231 * supported by this driver) or is filled automatically by zeroes on 232 * the RX side. Those two bytes being at the front of the Ethernet 233 * header, they allow to have the IP header aligned on a 4 bytes 234 * boundary automatically: the hardware skips those two bytes on its 235 * own. 236 */ 237 #define MVNETA_MH_SIZE 2 238 239 #define MVNETA_VLAN_TAG_LEN 4 240 241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 242 #define MVNETA_TX_CSUM_MAX_SIZE 9800 243 #define MVNETA_ACC_MODE_EXT 1 244 245 /* Timeout constants */ 246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 249 250 #define MVNETA_TX_MTU_MAX 0x3ffff 251 252 /* TSO header size */ 253 #define TSO_HEADER_SIZE 128 254 255 /* Max number of Rx descriptors */ 256 #define MVNETA_MAX_RXD 128 257 258 /* Max number of Tx descriptors */ 259 #define MVNETA_MAX_TXD 532 260 261 /* Max number of allowed TCP segments for software TSO */ 262 #define MVNETA_MAX_TSO_SEGS 100 263 264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 265 266 /* descriptor aligned size */ 267 #define MVNETA_DESC_ALIGNED_SIZE 32 268 269 #define MVNETA_RX_PKT_SIZE(mtu) \ 270 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 271 ETH_HLEN + ETH_FCS_LEN, \ 272 MVNETA_CPU_D_CACHE_LINE_SIZE) 273 274 #define IS_TSO_HEADER(txq, addr) \ 275 ((addr >= txq->tso_hdrs_phys) && \ 276 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 277 278 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 279 280 struct mvneta_pcpu_stats { 281 struct u64_stats_sync syncp; 282 u64 rx_packets; 283 u64 rx_bytes; 284 u64 tx_packets; 285 u64 tx_bytes; 286 }; 287 288 struct mvneta_port { 289 int pkt_size; 290 unsigned int frag_size; 291 void __iomem *base; 292 struct mvneta_rx_queue *rxqs; 293 struct mvneta_tx_queue *txqs; 294 struct net_device *dev; 295 296 u32 cause_rx_tx; 297 struct napi_struct napi; 298 299 /* Core clock */ 300 struct clk *clk; 301 u8 mcast_count[256]; 302 u16 tx_ring_size; 303 u16 rx_ring_size; 304 struct mvneta_pcpu_stats *stats; 305 306 struct mii_bus *mii_bus; 307 struct phy_device *phy_dev; 308 phy_interface_t phy_interface; 309 struct device_node *phy_node; 310 unsigned int link; 311 unsigned int duplex; 312 unsigned int speed; 313 int use_inband_status:1; 314 }; 315 316 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 317 * layout of the transmit and reception DMA descriptors, and their 318 * layout is therefore defined by the hardware design 319 */ 320 321 #define MVNETA_TX_L3_OFF_SHIFT 0 322 #define MVNETA_TX_IP_HLEN_SHIFT 8 323 #define MVNETA_TX_L4_UDP BIT(16) 324 #define MVNETA_TX_L3_IP6 BIT(17) 325 #define MVNETA_TXD_IP_CSUM BIT(18) 326 #define MVNETA_TXD_Z_PAD BIT(19) 327 #define MVNETA_TXD_L_DESC BIT(20) 328 #define MVNETA_TXD_F_DESC BIT(21) 329 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 330 MVNETA_TXD_L_DESC | \ 331 MVNETA_TXD_F_DESC) 332 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 333 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 334 335 #define MVNETA_RXD_ERR_CRC 0x0 336 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 337 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 338 #define MVNETA_RXD_ERR_LEN BIT(18) 339 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 340 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 341 #define MVNETA_RXD_L3_IP4 BIT(25) 342 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 343 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 344 345 #if defined(__LITTLE_ENDIAN) 346 struct mvneta_tx_desc { 347 u32 command; /* Options used by HW for packet transmitting.*/ 348 u16 reserverd1; /* csum_l4 (for future use) */ 349 u16 data_size; /* Data size of transmitted packet in bytes */ 350 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 351 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 352 u32 reserved3[4]; /* Reserved - (for future use) */ 353 }; 354 355 struct mvneta_rx_desc { 356 u32 status; /* Info about received packet */ 357 u16 reserved1; /* pnc_info - (for future use, PnC) */ 358 u16 data_size; /* Size of received packet in bytes */ 359 360 u32 buf_phys_addr; /* Physical address of the buffer */ 361 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 362 363 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 364 u16 reserved3; /* prefetch_cmd, for future use */ 365 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 366 367 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 368 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 369 }; 370 #else 371 struct mvneta_tx_desc { 372 u16 data_size; /* Data size of transmitted packet in bytes */ 373 u16 reserverd1; /* csum_l4 (for future use) */ 374 u32 command; /* Options used by HW for packet transmitting.*/ 375 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 376 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 377 u32 reserved3[4]; /* Reserved - (for future use) */ 378 }; 379 380 struct mvneta_rx_desc { 381 u16 data_size; /* Size of received packet in bytes */ 382 u16 reserved1; /* pnc_info - (for future use, PnC) */ 383 u32 status; /* Info about received packet */ 384 385 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 386 u32 buf_phys_addr; /* Physical address of the buffer */ 387 388 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 389 u16 reserved3; /* prefetch_cmd, for future use */ 390 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 391 392 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 393 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 394 }; 395 #endif 396 397 struct mvneta_tx_queue { 398 /* Number of this TX queue, in the range 0-7 */ 399 u8 id; 400 401 /* Number of TX DMA descriptors in the descriptor ring */ 402 int size; 403 404 /* Number of currently used TX DMA descriptor in the 405 * descriptor ring 406 */ 407 int count; 408 int tx_stop_threshold; 409 int tx_wake_threshold; 410 411 /* Array of transmitted skb */ 412 struct sk_buff **tx_skb; 413 414 /* Index of last TX DMA descriptor that was inserted */ 415 int txq_put_index; 416 417 /* Index of the TX DMA descriptor to be cleaned up */ 418 int txq_get_index; 419 420 u32 done_pkts_coal; 421 422 /* Virtual address of the TX DMA descriptors array */ 423 struct mvneta_tx_desc *descs; 424 425 /* DMA address of the TX DMA descriptors array */ 426 dma_addr_t descs_phys; 427 428 /* Index of the last TX DMA descriptor */ 429 int last_desc; 430 431 /* Index of the next TX DMA descriptor to process */ 432 int next_desc_to_proc; 433 434 /* DMA buffers for TSO headers */ 435 char *tso_hdrs; 436 437 /* DMA address of TSO headers */ 438 dma_addr_t tso_hdrs_phys; 439 }; 440 441 struct mvneta_rx_queue { 442 /* rx queue number, in the range 0-7 */ 443 u8 id; 444 445 /* num of rx descriptors in the rx descriptor ring */ 446 int size; 447 448 /* counter of times when mvneta_refill() failed */ 449 int missed; 450 451 u32 pkts_coal; 452 u32 time_coal; 453 454 /* Virtual address of the RX DMA descriptors array */ 455 struct mvneta_rx_desc *descs; 456 457 /* DMA address of the RX DMA descriptors array */ 458 dma_addr_t descs_phys; 459 460 /* Index of the last RX DMA descriptor */ 461 int last_desc; 462 463 /* Index of the next RX DMA descriptor to process */ 464 int next_desc_to_proc; 465 }; 466 467 /* The hardware supports eight (8) rx queues, but we are only allowing 468 * the first one to be used. Therefore, let's just allocate one queue. 469 */ 470 static int rxq_number = 1; 471 static int txq_number = 8; 472 473 static int rxq_def; 474 475 static int rx_copybreak __read_mostly = 256; 476 477 #define MVNETA_DRIVER_NAME "mvneta" 478 #define MVNETA_DRIVER_VERSION "1.0" 479 480 /* Utility/helper methods */ 481 482 /* Write helper method */ 483 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 484 { 485 writel(data, pp->base + offset); 486 } 487 488 /* Read helper method */ 489 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 490 { 491 return readl(pp->base + offset); 492 } 493 494 /* Increment txq get counter */ 495 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 496 { 497 txq->txq_get_index++; 498 if (txq->txq_get_index == txq->size) 499 txq->txq_get_index = 0; 500 } 501 502 /* Increment txq put counter */ 503 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 504 { 505 txq->txq_put_index++; 506 if (txq->txq_put_index == txq->size) 507 txq->txq_put_index = 0; 508 } 509 510 511 /* Clear all MIB counters */ 512 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 513 { 514 int i; 515 u32 dummy; 516 517 /* Perform dummy reads from MIB counters */ 518 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 519 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 520 } 521 522 /* Get System Network Statistics */ 523 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 524 struct rtnl_link_stats64 *stats) 525 { 526 struct mvneta_port *pp = netdev_priv(dev); 527 unsigned int start; 528 int cpu; 529 530 for_each_possible_cpu(cpu) { 531 struct mvneta_pcpu_stats *cpu_stats; 532 u64 rx_packets; 533 u64 rx_bytes; 534 u64 tx_packets; 535 u64 tx_bytes; 536 537 cpu_stats = per_cpu_ptr(pp->stats, cpu); 538 do { 539 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 540 rx_packets = cpu_stats->rx_packets; 541 rx_bytes = cpu_stats->rx_bytes; 542 tx_packets = cpu_stats->tx_packets; 543 tx_bytes = cpu_stats->tx_bytes; 544 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 545 546 stats->rx_packets += rx_packets; 547 stats->rx_bytes += rx_bytes; 548 stats->tx_packets += tx_packets; 549 stats->tx_bytes += tx_bytes; 550 } 551 552 stats->rx_errors = dev->stats.rx_errors; 553 stats->rx_dropped = dev->stats.rx_dropped; 554 555 stats->tx_dropped = dev->stats.tx_dropped; 556 557 return stats; 558 } 559 560 /* Rx descriptors helper methods */ 561 562 /* Checks whether the RX descriptor having this status is both the first 563 * and the last descriptor for the RX packet. Each RX packet is currently 564 * received through a single RX descriptor, so not having each RX 565 * descriptor with its first and last bits set is an error 566 */ 567 static int mvneta_rxq_desc_is_first_last(u32 status) 568 { 569 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 570 MVNETA_RXD_FIRST_LAST_DESC; 571 } 572 573 /* Add number of descriptors ready to receive new packets */ 574 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 575 struct mvneta_rx_queue *rxq, 576 int ndescs) 577 { 578 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 579 * be added at once 580 */ 581 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 582 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 583 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 584 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 585 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 586 } 587 588 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 589 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 590 } 591 592 /* Get number of RX descriptors occupied by received packets */ 593 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 594 struct mvneta_rx_queue *rxq) 595 { 596 u32 val; 597 598 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 599 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 600 } 601 602 /* Update num of rx desc called upon return from rx path or 603 * from mvneta_rxq_drop_pkts(). 604 */ 605 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 606 struct mvneta_rx_queue *rxq, 607 int rx_done, int rx_filled) 608 { 609 u32 val; 610 611 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 612 val = rx_done | 613 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 614 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 615 return; 616 } 617 618 /* Only 255 descriptors can be added at once */ 619 while ((rx_done > 0) || (rx_filled > 0)) { 620 if (rx_done <= 0xff) { 621 val = rx_done; 622 rx_done = 0; 623 } else { 624 val = 0xff; 625 rx_done -= 0xff; 626 } 627 if (rx_filled <= 0xff) { 628 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 629 rx_filled = 0; 630 } else { 631 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 632 rx_filled -= 0xff; 633 } 634 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 635 } 636 } 637 638 /* Get pointer to next RX descriptor to be processed by SW */ 639 static struct mvneta_rx_desc * 640 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 641 { 642 int rx_desc = rxq->next_desc_to_proc; 643 644 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 645 prefetch(rxq->descs + rxq->next_desc_to_proc); 646 return rxq->descs + rx_desc; 647 } 648 649 /* Change maximum receive size of the port. */ 650 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 651 { 652 u32 val; 653 654 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 655 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 656 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 657 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 658 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 659 } 660 661 662 /* Set rx queue offset */ 663 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 664 struct mvneta_rx_queue *rxq, 665 int offset) 666 { 667 u32 val; 668 669 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 670 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 671 672 /* Offset is in */ 673 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 674 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 675 } 676 677 678 /* Tx descriptors helper methods */ 679 680 /* Update HW with number of TX descriptors to be sent */ 681 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 682 struct mvneta_tx_queue *txq, 683 int pend_desc) 684 { 685 u32 val; 686 687 /* Only 255 descriptors can be added at once ; Assume caller 688 * process TX desriptors in quanta less than 256 689 */ 690 val = pend_desc; 691 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 692 } 693 694 /* Get pointer to next TX descriptor to be processed (send) by HW */ 695 static struct mvneta_tx_desc * 696 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 697 { 698 int tx_desc = txq->next_desc_to_proc; 699 700 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 701 return txq->descs + tx_desc; 702 } 703 704 /* Release the last allocated TX descriptor. Useful to handle DMA 705 * mapping failures in the TX path. 706 */ 707 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 708 { 709 if (txq->next_desc_to_proc == 0) 710 txq->next_desc_to_proc = txq->last_desc - 1; 711 else 712 txq->next_desc_to_proc--; 713 } 714 715 /* Set rxq buf size */ 716 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 717 struct mvneta_rx_queue *rxq, 718 int buf_size) 719 { 720 u32 val; 721 722 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 723 724 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 725 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 726 727 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 728 } 729 730 /* Disable buffer management (BM) */ 731 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 732 struct mvneta_rx_queue *rxq) 733 { 734 u32 val; 735 736 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 737 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 738 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 739 } 740 741 /* Start the Ethernet port RX and TX activity */ 742 static void mvneta_port_up(struct mvneta_port *pp) 743 { 744 int queue; 745 u32 q_map; 746 747 /* Enable all initialized TXs. */ 748 mvneta_mib_counters_clear(pp); 749 q_map = 0; 750 for (queue = 0; queue < txq_number; queue++) { 751 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 752 if (txq->descs != NULL) 753 q_map |= (1 << queue); 754 } 755 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 756 757 /* Enable all initialized RXQs. */ 758 q_map = 0; 759 for (queue = 0; queue < rxq_number; queue++) { 760 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 761 if (rxq->descs != NULL) 762 q_map |= (1 << queue); 763 } 764 765 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 766 } 767 768 /* Stop the Ethernet port activity */ 769 static void mvneta_port_down(struct mvneta_port *pp) 770 { 771 u32 val; 772 int count; 773 774 /* Stop Rx port activity. Check port Rx activity. */ 775 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 776 777 /* Issue stop command for active channels only */ 778 if (val != 0) 779 mvreg_write(pp, MVNETA_RXQ_CMD, 780 val << MVNETA_RXQ_DISABLE_SHIFT); 781 782 /* Wait for all Rx activity to terminate. */ 783 count = 0; 784 do { 785 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 786 netdev_warn(pp->dev, 787 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 788 val); 789 break; 790 } 791 mdelay(1); 792 793 val = mvreg_read(pp, MVNETA_RXQ_CMD); 794 } while (val & 0xff); 795 796 /* Stop Tx port activity. Check port Tx activity. Issue stop 797 * command for active channels only 798 */ 799 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 800 801 if (val != 0) 802 mvreg_write(pp, MVNETA_TXQ_CMD, 803 (val << MVNETA_TXQ_DISABLE_SHIFT)); 804 805 /* Wait for all Tx activity to terminate. */ 806 count = 0; 807 do { 808 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 809 netdev_warn(pp->dev, 810 "TIMEOUT for TX stopped status=0x%08x\n", 811 val); 812 break; 813 } 814 mdelay(1); 815 816 /* Check TX Command reg that all Txqs are stopped */ 817 val = mvreg_read(pp, MVNETA_TXQ_CMD); 818 819 } while (val & 0xff); 820 821 /* Double check to verify that TX FIFO is empty */ 822 count = 0; 823 do { 824 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 825 netdev_warn(pp->dev, 826 "TX FIFO empty timeout status=0x08%x\n", 827 val); 828 break; 829 } 830 mdelay(1); 831 832 val = mvreg_read(pp, MVNETA_PORT_STATUS); 833 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 834 (val & MVNETA_TX_IN_PRGRS)); 835 836 udelay(200); 837 } 838 839 /* Enable the port by setting the port enable bit of the MAC control register */ 840 static void mvneta_port_enable(struct mvneta_port *pp) 841 { 842 u32 val; 843 844 /* Enable port */ 845 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 846 val |= MVNETA_GMAC0_PORT_ENABLE; 847 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 848 } 849 850 /* Disable the port and wait for about 200 usec before retuning */ 851 static void mvneta_port_disable(struct mvneta_port *pp) 852 { 853 u32 val; 854 855 /* Reset the Enable bit in the Serial Control Register */ 856 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 857 val &= ~MVNETA_GMAC0_PORT_ENABLE; 858 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 859 860 udelay(200); 861 } 862 863 /* Multicast tables methods */ 864 865 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 866 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 867 { 868 int offset; 869 u32 val; 870 871 if (queue == -1) { 872 val = 0; 873 } else { 874 val = 0x1 | (queue << 1); 875 val |= (val << 24) | (val << 16) | (val << 8); 876 } 877 878 for (offset = 0; offset <= 0xc; offset += 4) 879 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 880 } 881 882 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 883 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 884 { 885 int offset; 886 u32 val; 887 888 if (queue == -1) { 889 val = 0; 890 } else { 891 val = 0x1 | (queue << 1); 892 val |= (val << 24) | (val << 16) | (val << 8); 893 } 894 895 for (offset = 0; offset <= 0xfc; offset += 4) 896 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 897 898 } 899 900 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 901 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 902 { 903 int offset; 904 u32 val; 905 906 if (queue == -1) { 907 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 908 val = 0; 909 } else { 910 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 911 val = 0x1 | (queue << 1); 912 val |= (val << 24) | (val << 16) | (val << 8); 913 } 914 915 for (offset = 0; offset <= 0xfc; offset += 4) 916 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 917 } 918 919 /* This method sets defaults to the NETA port: 920 * Clears interrupt Cause and Mask registers. 921 * Clears all MAC tables. 922 * Sets defaults to all registers. 923 * Resets RX and TX descriptor rings. 924 * Resets PHY. 925 * This method can be called after mvneta_port_down() to return the port 926 * settings to defaults. 927 */ 928 static void mvneta_defaults_set(struct mvneta_port *pp) 929 { 930 int cpu; 931 int queue; 932 u32 val; 933 934 /* Clear all Cause registers */ 935 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 936 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 937 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 938 939 /* Mask all interrupts */ 940 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 941 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 942 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 943 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 944 945 /* Enable MBUS Retry bit16 */ 946 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 947 948 /* Set CPU queue access map - all CPUs have access to all RX 949 * queues and to all TX queues 950 */ 951 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 952 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 953 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 954 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 955 956 /* Reset RX and TX DMAs */ 957 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 958 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 959 960 /* Disable Legacy WRR, Disable EJP, Release from reset */ 961 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 962 for (queue = 0; queue < txq_number; queue++) { 963 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 964 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 965 } 966 967 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 968 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 969 970 /* Set Port Acceleration Mode */ 971 val = MVNETA_ACC_MODE_EXT; 972 mvreg_write(pp, MVNETA_ACC_MODE, val); 973 974 /* Update val of portCfg register accordingly with all RxQueue types */ 975 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 976 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 977 978 val = 0; 979 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 980 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 981 982 /* Build PORT_SDMA_CONFIG_REG */ 983 val = 0; 984 985 /* Default burst size */ 986 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 987 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 988 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 989 990 #if defined(__BIG_ENDIAN) 991 val |= MVNETA_DESC_SWAP; 992 #endif 993 994 /* Assign port SDMA configuration */ 995 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 996 997 /* Disable PHY polling in hardware, since we're using the 998 * kernel phylib to do this. 999 */ 1000 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1001 val &= ~MVNETA_PHY_POLLING_ENABLE; 1002 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1003 1004 if (pp->use_inband_status) { 1005 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1006 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1007 MVNETA_GMAC_FORCE_LINK_DOWN | 1008 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1009 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1010 MVNETA_GMAC_AN_SPEED_EN | 1011 MVNETA_GMAC_AN_DUPLEX_EN; 1012 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1013 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1014 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1015 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1016 } else { 1017 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1018 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1019 MVNETA_GMAC_AN_SPEED_EN | 1020 MVNETA_GMAC_AN_DUPLEX_EN); 1021 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1022 } 1023 1024 mvneta_set_ucast_table(pp, -1); 1025 mvneta_set_special_mcast_table(pp, -1); 1026 mvneta_set_other_mcast_table(pp, -1); 1027 1028 /* Set port interrupt enable register - default enable all */ 1029 mvreg_write(pp, MVNETA_INTR_ENABLE, 1030 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1031 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1032 } 1033 1034 /* Set max sizes for tx queues */ 1035 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1036 1037 { 1038 u32 val, size, mtu; 1039 int queue; 1040 1041 mtu = max_tx_size * 8; 1042 if (mtu > MVNETA_TX_MTU_MAX) 1043 mtu = MVNETA_TX_MTU_MAX; 1044 1045 /* Set MTU */ 1046 val = mvreg_read(pp, MVNETA_TX_MTU); 1047 val &= ~MVNETA_TX_MTU_MAX; 1048 val |= mtu; 1049 mvreg_write(pp, MVNETA_TX_MTU, val); 1050 1051 /* TX token size and all TXQs token size must be larger that MTU */ 1052 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1053 1054 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1055 if (size < mtu) { 1056 size = mtu; 1057 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1058 val |= size; 1059 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1060 } 1061 for (queue = 0; queue < txq_number; queue++) { 1062 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1063 1064 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1065 if (size < mtu) { 1066 size = mtu; 1067 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1068 val |= size; 1069 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1070 } 1071 } 1072 } 1073 1074 /* Set unicast address */ 1075 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1076 int queue) 1077 { 1078 unsigned int unicast_reg; 1079 unsigned int tbl_offset; 1080 unsigned int reg_offset; 1081 1082 /* Locate the Unicast table entry */ 1083 last_nibble = (0xf & last_nibble); 1084 1085 /* offset from unicast tbl base */ 1086 tbl_offset = (last_nibble / 4) * 4; 1087 1088 /* offset within the above reg */ 1089 reg_offset = last_nibble % 4; 1090 1091 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1092 1093 if (queue == -1) { 1094 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1095 unicast_reg &= ~(0xff << (8 * reg_offset)); 1096 } else { 1097 unicast_reg &= ~(0xff << (8 * reg_offset)); 1098 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1099 } 1100 1101 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1102 } 1103 1104 /* Set mac address */ 1105 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1106 int queue) 1107 { 1108 unsigned int mac_h; 1109 unsigned int mac_l; 1110 1111 if (queue != -1) { 1112 mac_l = (addr[4] << 8) | (addr[5]); 1113 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1114 (addr[2] << 8) | (addr[3] << 0); 1115 1116 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1117 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1118 } 1119 1120 /* Accept frames of this address */ 1121 mvneta_set_ucast_addr(pp, addr[5], queue); 1122 } 1123 1124 /* Set the number of packets that will be received before RX interrupt 1125 * will be generated by HW. 1126 */ 1127 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1128 struct mvneta_rx_queue *rxq, u32 value) 1129 { 1130 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1131 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1132 rxq->pkts_coal = value; 1133 } 1134 1135 /* Set the time delay in usec before RX interrupt will be generated by 1136 * HW. 1137 */ 1138 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1139 struct mvneta_rx_queue *rxq, u32 value) 1140 { 1141 u32 val; 1142 unsigned long clk_rate; 1143 1144 clk_rate = clk_get_rate(pp->clk); 1145 val = (clk_rate / 1000000) * value; 1146 1147 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1148 rxq->time_coal = value; 1149 } 1150 1151 /* Set threshold for TX_DONE pkts coalescing */ 1152 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1153 struct mvneta_tx_queue *txq, u32 value) 1154 { 1155 u32 val; 1156 1157 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1158 1159 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1160 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1161 1162 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1163 1164 txq->done_pkts_coal = value; 1165 } 1166 1167 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1168 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1169 u32 phys_addr, u32 cookie) 1170 { 1171 rx_desc->buf_cookie = cookie; 1172 rx_desc->buf_phys_addr = phys_addr; 1173 } 1174 1175 /* Decrement sent descriptors counter */ 1176 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1177 struct mvneta_tx_queue *txq, 1178 int sent_desc) 1179 { 1180 u32 val; 1181 1182 /* Only 255 TX descriptors can be updated at once */ 1183 while (sent_desc > 0xff) { 1184 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1185 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1186 sent_desc = sent_desc - 0xff; 1187 } 1188 1189 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1190 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1191 } 1192 1193 /* Get number of TX descriptors already sent by HW */ 1194 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1195 struct mvneta_tx_queue *txq) 1196 { 1197 u32 val; 1198 int sent_desc; 1199 1200 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1201 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1202 MVNETA_TXQ_SENT_DESC_SHIFT; 1203 1204 return sent_desc; 1205 } 1206 1207 /* Get number of sent descriptors and decrement counter. 1208 * The number of sent descriptors is returned. 1209 */ 1210 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1211 struct mvneta_tx_queue *txq) 1212 { 1213 int sent_desc; 1214 1215 /* Get number of sent descriptors */ 1216 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1217 1218 /* Decrement sent descriptors counter */ 1219 if (sent_desc) 1220 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1221 1222 return sent_desc; 1223 } 1224 1225 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1226 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1227 int ip_hdr_len, int l4_proto) 1228 { 1229 u32 command; 1230 1231 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1232 * G_L4_chk, L4_type; required only for checksum 1233 * calculation 1234 */ 1235 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1236 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1237 1238 if (l3_proto == htons(ETH_P_IP)) 1239 command |= MVNETA_TXD_IP_CSUM; 1240 else 1241 command |= MVNETA_TX_L3_IP6; 1242 1243 if (l4_proto == IPPROTO_TCP) 1244 command |= MVNETA_TX_L4_CSUM_FULL; 1245 else if (l4_proto == IPPROTO_UDP) 1246 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1247 else 1248 command |= MVNETA_TX_L4_CSUM_NOT; 1249 1250 return command; 1251 } 1252 1253 1254 /* Display more error info */ 1255 static void mvneta_rx_error(struct mvneta_port *pp, 1256 struct mvneta_rx_desc *rx_desc) 1257 { 1258 u32 status = rx_desc->status; 1259 1260 if (!mvneta_rxq_desc_is_first_last(status)) { 1261 netdev_err(pp->dev, 1262 "bad rx status %08x (buffer oversize), size=%d\n", 1263 status, rx_desc->data_size); 1264 return; 1265 } 1266 1267 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1268 case MVNETA_RXD_ERR_CRC: 1269 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1270 status, rx_desc->data_size); 1271 break; 1272 case MVNETA_RXD_ERR_OVERRUN: 1273 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1274 status, rx_desc->data_size); 1275 break; 1276 case MVNETA_RXD_ERR_LEN: 1277 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1278 status, rx_desc->data_size); 1279 break; 1280 case MVNETA_RXD_ERR_RESOURCE: 1281 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1282 status, rx_desc->data_size); 1283 break; 1284 } 1285 } 1286 1287 /* Handle RX checksum offload based on the descriptor's status */ 1288 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1289 struct sk_buff *skb) 1290 { 1291 if ((status & MVNETA_RXD_L3_IP4) && 1292 (status & MVNETA_RXD_L4_CSUM_OK)) { 1293 skb->csum = 0; 1294 skb->ip_summed = CHECKSUM_UNNECESSARY; 1295 return; 1296 } 1297 1298 skb->ip_summed = CHECKSUM_NONE; 1299 } 1300 1301 /* Return tx queue pointer (find last set bit) according to <cause> returned 1302 * form tx_done reg. <cause> must not be null. The return value is always a 1303 * valid queue for matching the first one found in <cause>. 1304 */ 1305 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1306 u32 cause) 1307 { 1308 int queue = fls(cause) - 1; 1309 1310 return &pp->txqs[queue]; 1311 } 1312 1313 /* Free tx queue skbuffs */ 1314 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1315 struct mvneta_tx_queue *txq, int num) 1316 { 1317 int i; 1318 1319 for (i = 0; i < num; i++) { 1320 struct mvneta_tx_desc *tx_desc = txq->descs + 1321 txq->txq_get_index; 1322 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1323 1324 mvneta_txq_inc_get(txq); 1325 1326 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1327 dma_unmap_single(pp->dev->dev.parent, 1328 tx_desc->buf_phys_addr, 1329 tx_desc->data_size, DMA_TO_DEVICE); 1330 if (!skb) 1331 continue; 1332 dev_kfree_skb_any(skb); 1333 } 1334 } 1335 1336 /* Handle end of transmission */ 1337 static void mvneta_txq_done(struct mvneta_port *pp, 1338 struct mvneta_tx_queue *txq) 1339 { 1340 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1341 int tx_done; 1342 1343 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1344 if (!tx_done) 1345 return; 1346 1347 mvneta_txq_bufs_free(pp, txq, tx_done); 1348 1349 txq->count -= tx_done; 1350 1351 if (netif_tx_queue_stopped(nq)) { 1352 if (txq->count <= txq->tx_wake_threshold) 1353 netif_tx_wake_queue(nq); 1354 } 1355 } 1356 1357 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1358 { 1359 if (likely(pp->frag_size <= PAGE_SIZE)) 1360 return netdev_alloc_frag(pp->frag_size); 1361 else 1362 return kmalloc(pp->frag_size, GFP_ATOMIC); 1363 } 1364 1365 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1366 { 1367 if (likely(pp->frag_size <= PAGE_SIZE)) 1368 skb_free_frag(data); 1369 else 1370 kfree(data); 1371 } 1372 1373 /* Refill processing */ 1374 static int mvneta_rx_refill(struct mvneta_port *pp, 1375 struct mvneta_rx_desc *rx_desc) 1376 1377 { 1378 dma_addr_t phys_addr; 1379 void *data; 1380 1381 data = mvneta_frag_alloc(pp); 1382 if (!data) 1383 return -ENOMEM; 1384 1385 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1386 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1387 DMA_FROM_DEVICE); 1388 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1389 mvneta_frag_free(pp, data); 1390 return -ENOMEM; 1391 } 1392 1393 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1394 return 0; 1395 } 1396 1397 /* Handle tx checksum */ 1398 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1399 { 1400 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1401 int ip_hdr_len = 0; 1402 __be16 l3_proto = vlan_get_protocol(skb); 1403 u8 l4_proto; 1404 1405 if (l3_proto == htons(ETH_P_IP)) { 1406 struct iphdr *ip4h = ip_hdr(skb); 1407 1408 /* Calculate IPv4 checksum and L4 checksum */ 1409 ip_hdr_len = ip4h->ihl; 1410 l4_proto = ip4h->protocol; 1411 } else if (l3_proto == htons(ETH_P_IPV6)) { 1412 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1413 1414 /* Read l4_protocol from one of IPv6 extra headers */ 1415 if (skb_network_header_len(skb) > 0) 1416 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1417 l4_proto = ip6h->nexthdr; 1418 } else 1419 return MVNETA_TX_L4_CSUM_NOT; 1420 1421 return mvneta_txq_desc_csum(skb_network_offset(skb), 1422 l3_proto, ip_hdr_len, l4_proto); 1423 } 1424 1425 return MVNETA_TX_L4_CSUM_NOT; 1426 } 1427 1428 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1429 * value 1430 */ 1431 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1432 u32 cause) 1433 { 1434 int queue = fls(cause >> 8) - 1; 1435 1436 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1437 } 1438 1439 /* Drop packets received by the RXQ and free buffers */ 1440 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1441 struct mvneta_rx_queue *rxq) 1442 { 1443 int rx_done, i; 1444 1445 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1446 for (i = 0; i < rxq->size; i++) { 1447 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1448 void *data = (void *)rx_desc->buf_cookie; 1449 1450 mvneta_frag_free(pp, data); 1451 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1452 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1453 } 1454 1455 if (rx_done) 1456 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1457 } 1458 1459 /* Main rx processing */ 1460 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1461 struct mvneta_rx_queue *rxq) 1462 { 1463 struct net_device *dev = pp->dev; 1464 int rx_done, rx_filled; 1465 u32 rcvd_pkts = 0; 1466 u32 rcvd_bytes = 0; 1467 1468 /* Get number of received packets */ 1469 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1470 1471 if (rx_todo > rx_done) 1472 rx_todo = rx_done; 1473 1474 rx_done = 0; 1475 rx_filled = 0; 1476 1477 /* Fairness NAPI loop */ 1478 while (rx_done < rx_todo) { 1479 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1480 struct sk_buff *skb; 1481 unsigned char *data; 1482 u32 rx_status; 1483 int rx_bytes, err; 1484 1485 rx_done++; 1486 rx_filled++; 1487 rx_status = rx_desc->status; 1488 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1489 data = (unsigned char *)rx_desc->buf_cookie; 1490 1491 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1492 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1493 err_drop_frame: 1494 dev->stats.rx_errors++; 1495 mvneta_rx_error(pp, rx_desc); 1496 /* leave the descriptor untouched */ 1497 continue; 1498 } 1499 1500 if (rx_bytes <= rx_copybreak) { 1501 /* better copy a small frame and not unmap the DMA region */ 1502 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1503 if (unlikely(!skb)) 1504 goto err_drop_frame; 1505 1506 dma_sync_single_range_for_cpu(dev->dev.parent, 1507 rx_desc->buf_phys_addr, 1508 MVNETA_MH_SIZE + NET_SKB_PAD, 1509 rx_bytes, 1510 DMA_FROM_DEVICE); 1511 memcpy(skb_put(skb, rx_bytes), 1512 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1513 rx_bytes); 1514 1515 skb->protocol = eth_type_trans(skb, dev); 1516 mvneta_rx_csum(pp, rx_status, skb); 1517 napi_gro_receive(&pp->napi, skb); 1518 1519 rcvd_pkts++; 1520 rcvd_bytes += rx_bytes; 1521 1522 /* leave the descriptor and buffer untouched */ 1523 continue; 1524 } 1525 1526 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1527 if (!skb) 1528 goto err_drop_frame; 1529 1530 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr, 1531 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1532 1533 rcvd_pkts++; 1534 rcvd_bytes += rx_bytes; 1535 1536 /* Linux processing */ 1537 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1538 skb_put(skb, rx_bytes); 1539 1540 skb->protocol = eth_type_trans(skb, dev); 1541 1542 mvneta_rx_csum(pp, rx_status, skb); 1543 1544 napi_gro_receive(&pp->napi, skb); 1545 1546 /* Refill processing */ 1547 err = mvneta_rx_refill(pp, rx_desc); 1548 if (err) { 1549 netdev_err(dev, "Linux processing - Can't refill\n"); 1550 rxq->missed++; 1551 rx_filled--; 1552 } 1553 } 1554 1555 if (rcvd_pkts) { 1556 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1557 1558 u64_stats_update_begin(&stats->syncp); 1559 stats->rx_packets += rcvd_pkts; 1560 stats->rx_bytes += rcvd_bytes; 1561 u64_stats_update_end(&stats->syncp); 1562 } 1563 1564 /* Update rxq management counters */ 1565 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1566 1567 return rx_done; 1568 } 1569 1570 static inline void 1571 mvneta_tso_put_hdr(struct sk_buff *skb, 1572 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1573 { 1574 struct mvneta_tx_desc *tx_desc; 1575 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1576 1577 txq->tx_skb[txq->txq_put_index] = NULL; 1578 tx_desc = mvneta_txq_next_desc_get(txq); 1579 tx_desc->data_size = hdr_len; 1580 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1581 tx_desc->command |= MVNETA_TXD_F_DESC; 1582 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1583 txq->txq_put_index * TSO_HEADER_SIZE; 1584 mvneta_txq_inc_put(txq); 1585 } 1586 1587 static inline int 1588 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1589 struct sk_buff *skb, char *data, int size, 1590 bool last_tcp, bool is_last) 1591 { 1592 struct mvneta_tx_desc *tx_desc; 1593 1594 tx_desc = mvneta_txq_next_desc_get(txq); 1595 tx_desc->data_size = size; 1596 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1597 size, DMA_TO_DEVICE); 1598 if (unlikely(dma_mapping_error(dev->dev.parent, 1599 tx_desc->buf_phys_addr))) { 1600 mvneta_txq_desc_put(txq); 1601 return -ENOMEM; 1602 } 1603 1604 tx_desc->command = 0; 1605 txq->tx_skb[txq->txq_put_index] = NULL; 1606 1607 if (last_tcp) { 1608 /* last descriptor in the TCP packet */ 1609 tx_desc->command = MVNETA_TXD_L_DESC; 1610 1611 /* last descriptor in SKB */ 1612 if (is_last) 1613 txq->tx_skb[txq->txq_put_index] = skb; 1614 } 1615 mvneta_txq_inc_put(txq); 1616 return 0; 1617 } 1618 1619 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1620 struct mvneta_tx_queue *txq) 1621 { 1622 int total_len, data_left; 1623 int desc_count = 0; 1624 struct mvneta_port *pp = netdev_priv(dev); 1625 struct tso_t tso; 1626 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1627 int i; 1628 1629 /* Count needed descriptors */ 1630 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1631 return 0; 1632 1633 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1634 pr_info("*** Is this even possible???!?!?\n"); 1635 return 0; 1636 } 1637 1638 /* Initialize the TSO handler, and prepare the first payload */ 1639 tso_start(skb, &tso); 1640 1641 total_len = skb->len - hdr_len; 1642 while (total_len > 0) { 1643 char *hdr; 1644 1645 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1646 total_len -= data_left; 1647 desc_count++; 1648 1649 /* prepare packet headers: MAC + IP + TCP */ 1650 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1651 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1652 1653 mvneta_tso_put_hdr(skb, pp, txq); 1654 1655 while (data_left > 0) { 1656 int size; 1657 desc_count++; 1658 1659 size = min_t(int, tso.size, data_left); 1660 1661 if (mvneta_tso_put_data(dev, txq, skb, 1662 tso.data, size, 1663 size == data_left, 1664 total_len == 0)) 1665 goto err_release; 1666 data_left -= size; 1667 1668 tso_build_data(skb, &tso, size); 1669 } 1670 } 1671 1672 return desc_count; 1673 1674 err_release: 1675 /* Release all used data descriptors; header descriptors must not 1676 * be DMA-unmapped. 1677 */ 1678 for (i = desc_count - 1; i >= 0; i--) { 1679 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1680 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1681 dma_unmap_single(pp->dev->dev.parent, 1682 tx_desc->buf_phys_addr, 1683 tx_desc->data_size, 1684 DMA_TO_DEVICE); 1685 mvneta_txq_desc_put(txq); 1686 } 1687 return 0; 1688 } 1689 1690 /* Handle tx fragmentation processing */ 1691 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1692 struct mvneta_tx_queue *txq) 1693 { 1694 struct mvneta_tx_desc *tx_desc; 1695 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1696 1697 for (i = 0; i < nr_frags; i++) { 1698 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1699 void *addr = page_address(frag->page.p) + frag->page_offset; 1700 1701 tx_desc = mvneta_txq_next_desc_get(txq); 1702 tx_desc->data_size = frag->size; 1703 1704 tx_desc->buf_phys_addr = 1705 dma_map_single(pp->dev->dev.parent, addr, 1706 tx_desc->data_size, DMA_TO_DEVICE); 1707 1708 if (dma_mapping_error(pp->dev->dev.parent, 1709 tx_desc->buf_phys_addr)) { 1710 mvneta_txq_desc_put(txq); 1711 goto error; 1712 } 1713 1714 if (i == nr_frags - 1) { 1715 /* Last descriptor */ 1716 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1717 txq->tx_skb[txq->txq_put_index] = skb; 1718 } else { 1719 /* Descriptor in the middle: Not First, Not Last */ 1720 tx_desc->command = 0; 1721 txq->tx_skb[txq->txq_put_index] = NULL; 1722 } 1723 mvneta_txq_inc_put(txq); 1724 } 1725 1726 return 0; 1727 1728 error: 1729 /* Release all descriptors that were used to map fragments of 1730 * this packet, as well as the corresponding DMA mappings 1731 */ 1732 for (i = i - 1; i >= 0; i--) { 1733 tx_desc = txq->descs + i; 1734 dma_unmap_single(pp->dev->dev.parent, 1735 tx_desc->buf_phys_addr, 1736 tx_desc->data_size, 1737 DMA_TO_DEVICE); 1738 mvneta_txq_desc_put(txq); 1739 } 1740 1741 return -ENOMEM; 1742 } 1743 1744 /* Main tx processing */ 1745 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1746 { 1747 struct mvneta_port *pp = netdev_priv(dev); 1748 u16 txq_id = skb_get_queue_mapping(skb); 1749 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1750 struct mvneta_tx_desc *tx_desc; 1751 int len = skb->len; 1752 int frags = 0; 1753 u32 tx_cmd; 1754 1755 if (!netif_running(dev)) 1756 goto out; 1757 1758 if (skb_is_gso(skb)) { 1759 frags = mvneta_tx_tso(skb, dev, txq); 1760 goto out; 1761 } 1762 1763 frags = skb_shinfo(skb)->nr_frags + 1; 1764 1765 /* Get a descriptor for the first part of the packet */ 1766 tx_desc = mvneta_txq_next_desc_get(txq); 1767 1768 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1769 1770 tx_desc->data_size = skb_headlen(skb); 1771 1772 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1773 tx_desc->data_size, 1774 DMA_TO_DEVICE); 1775 if (unlikely(dma_mapping_error(dev->dev.parent, 1776 tx_desc->buf_phys_addr))) { 1777 mvneta_txq_desc_put(txq); 1778 frags = 0; 1779 goto out; 1780 } 1781 1782 if (frags == 1) { 1783 /* First and Last descriptor */ 1784 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1785 tx_desc->command = tx_cmd; 1786 txq->tx_skb[txq->txq_put_index] = skb; 1787 mvneta_txq_inc_put(txq); 1788 } else { 1789 /* First but not Last */ 1790 tx_cmd |= MVNETA_TXD_F_DESC; 1791 txq->tx_skb[txq->txq_put_index] = NULL; 1792 mvneta_txq_inc_put(txq); 1793 tx_desc->command = tx_cmd; 1794 /* Continue with other skb fragments */ 1795 if (mvneta_tx_frag_process(pp, skb, txq)) { 1796 dma_unmap_single(dev->dev.parent, 1797 tx_desc->buf_phys_addr, 1798 tx_desc->data_size, 1799 DMA_TO_DEVICE); 1800 mvneta_txq_desc_put(txq); 1801 frags = 0; 1802 goto out; 1803 } 1804 } 1805 1806 out: 1807 if (frags > 0) { 1808 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1809 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1810 1811 txq->count += frags; 1812 mvneta_txq_pend_desc_add(pp, txq, frags); 1813 1814 if (txq->count >= txq->tx_stop_threshold) 1815 netif_tx_stop_queue(nq); 1816 1817 u64_stats_update_begin(&stats->syncp); 1818 stats->tx_packets++; 1819 stats->tx_bytes += len; 1820 u64_stats_update_end(&stats->syncp); 1821 } else { 1822 dev->stats.tx_dropped++; 1823 dev_kfree_skb_any(skb); 1824 } 1825 1826 return NETDEV_TX_OK; 1827 } 1828 1829 1830 /* Free tx resources, when resetting a port */ 1831 static void mvneta_txq_done_force(struct mvneta_port *pp, 1832 struct mvneta_tx_queue *txq) 1833 1834 { 1835 int tx_done = txq->count; 1836 1837 mvneta_txq_bufs_free(pp, txq, tx_done); 1838 1839 /* reset txq */ 1840 txq->count = 0; 1841 txq->txq_put_index = 0; 1842 txq->txq_get_index = 0; 1843 } 1844 1845 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1846 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1847 */ 1848 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1849 { 1850 struct mvneta_tx_queue *txq; 1851 struct netdev_queue *nq; 1852 1853 while (cause_tx_done) { 1854 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1855 1856 nq = netdev_get_tx_queue(pp->dev, txq->id); 1857 __netif_tx_lock(nq, smp_processor_id()); 1858 1859 if (txq->count) 1860 mvneta_txq_done(pp, txq); 1861 1862 __netif_tx_unlock(nq); 1863 cause_tx_done &= ~((1 << txq->id)); 1864 } 1865 } 1866 1867 /* Compute crc8 of the specified address, using a unique algorithm , 1868 * according to hw spec, different than generic crc8 algorithm 1869 */ 1870 static int mvneta_addr_crc(unsigned char *addr) 1871 { 1872 int crc = 0; 1873 int i; 1874 1875 for (i = 0; i < ETH_ALEN; i++) { 1876 int j; 1877 1878 crc = (crc ^ addr[i]) << 8; 1879 for (j = 7; j >= 0; j--) { 1880 if (crc & (0x100 << j)) 1881 crc ^= 0x107 << j; 1882 } 1883 } 1884 1885 return crc; 1886 } 1887 1888 /* This method controls the net device special MAC multicast support. 1889 * The Special Multicast Table for MAC addresses supports MAC of the form 1890 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1891 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1892 * Table entries in the DA-Filter table. This method set the Special 1893 * Multicast Table appropriate entry. 1894 */ 1895 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1896 unsigned char last_byte, 1897 int queue) 1898 { 1899 unsigned int smc_table_reg; 1900 unsigned int tbl_offset; 1901 unsigned int reg_offset; 1902 1903 /* Register offset from SMC table base */ 1904 tbl_offset = (last_byte / 4); 1905 /* Entry offset within the above reg */ 1906 reg_offset = last_byte % 4; 1907 1908 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1909 + tbl_offset * 4)); 1910 1911 if (queue == -1) 1912 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1913 else { 1914 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1915 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1916 } 1917 1918 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1919 smc_table_reg); 1920 } 1921 1922 /* This method controls the network device Other MAC multicast support. 1923 * The Other Multicast Table is used for multicast of another type. 1924 * A CRC-8 is used as an index to the Other Multicast Table entries 1925 * in the DA-Filter table. 1926 * The method gets the CRC-8 value from the calling routine and 1927 * sets the Other Multicast Table appropriate entry according to the 1928 * specified CRC-8 . 1929 */ 1930 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1931 unsigned char crc8, 1932 int queue) 1933 { 1934 unsigned int omc_table_reg; 1935 unsigned int tbl_offset; 1936 unsigned int reg_offset; 1937 1938 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1939 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1940 1941 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1942 1943 if (queue == -1) { 1944 /* Clear accepts frame bit at specified Other DA table entry */ 1945 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1946 } else { 1947 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1948 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1949 } 1950 1951 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1952 } 1953 1954 /* The network device supports multicast using two tables: 1955 * 1) Special Multicast Table for MAC addresses of the form 1956 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1957 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1958 * Table entries in the DA-Filter table. 1959 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1960 * is used as an index to the Other Multicast Table entries in the 1961 * DA-Filter table. 1962 */ 1963 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1964 int queue) 1965 { 1966 unsigned char crc_result = 0; 1967 1968 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1969 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1970 return 0; 1971 } 1972 1973 crc_result = mvneta_addr_crc(p_addr); 1974 if (queue == -1) { 1975 if (pp->mcast_count[crc_result] == 0) { 1976 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1977 crc_result); 1978 return -EINVAL; 1979 } 1980 1981 pp->mcast_count[crc_result]--; 1982 if (pp->mcast_count[crc_result] != 0) { 1983 netdev_info(pp->dev, 1984 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1985 pp->mcast_count[crc_result], crc_result); 1986 return -EINVAL; 1987 } 1988 } else 1989 pp->mcast_count[crc_result]++; 1990 1991 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1992 1993 return 0; 1994 } 1995 1996 /* Configure Fitering mode of Ethernet port */ 1997 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1998 int is_promisc) 1999 { 2000 u32 port_cfg_reg, val; 2001 2002 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2003 2004 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2005 2006 /* Set / Clear UPM bit in port configuration register */ 2007 if (is_promisc) { 2008 /* Accept all Unicast addresses */ 2009 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2010 val |= MVNETA_FORCE_UNI; 2011 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2012 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2013 } else { 2014 /* Reject all Unicast addresses */ 2015 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2016 val &= ~MVNETA_FORCE_UNI; 2017 } 2018 2019 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2020 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2021 } 2022 2023 /* register unicast and multicast addresses */ 2024 static void mvneta_set_rx_mode(struct net_device *dev) 2025 { 2026 struct mvneta_port *pp = netdev_priv(dev); 2027 struct netdev_hw_addr *ha; 2028 2029 if (dev->flags & IFF_PROMISC) { 2030 /* Accept all: Multicast + Unicast */ 2031 mvneta_rx_unicast_promisc_set(pp, 1); 2032 mvneta_set_ucast_table(pp, rxq_def); 2033 mvneta_set_special_mcast_table(pp, rxq_def); 2034 mvneta_set_other_mcast_table(pp, rxq_def); 2035 } else { 2036 /* Accept single Unicast */ 2037 mvneta_rx_unicast_promisc_set(pp, 0); 2038 mvneta_set_ucast_table(pp, -1); 2039 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2040 2041 if (dev->flags & IFF_ALLMULTI) { 2042 /* Accept all multicast */ 2043 mvneta_set_special_mcast_table(pp, rxq_def); 2044 mvneta_set_other_mcast_table(pp, rxq_def); 2045 } else { 2046 /* Accept only initialized multicast */ 2047 mvneta_set_special_mcast_table(pp, -1); 2048 mvneta_set_other_mcast_table(pp, -1); 2049 2050 if (!netdev_mc_empty(dev)) { 2051 netdev_for_each_mc_addr(ha, dev) { 2052 mvneta_mcast_addr_set(pp, ha->addr, 2053 rxq_def); 2054 } 2055 } 2056 } 2057 } 2058 } 2059 2060 /* Interrupt handling - the callback for request_irq() */ 2061 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2062 { 2063 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2064 2065 /* Mask all interrupts */ 2066 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2067 2068 napi_schedule(&pp->napi); 2069 2070 return IRQ_HANDLED; 2071 } 2072 2073 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2074 struct phy_device *phy) 2075 { 2076 struct fixed_phy_status status; 2077 struct fixed_phy_status changed = {}; 2078 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2079 2080 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2081 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2082 status.speed = SPEED_1000; 2083 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2084 status.speed = SPEED_100; 2085 else 2086 status.speed = SPEED_10; 2087 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2088 changed.link = 1; 2089 changed.speed = 1; 2090 changed.duplex = 1; 2091 fixed_phy_update_state(phy, &status, &changed); 2092 return 0; 2093 } 2094 2095 /* NAPI handler 2096 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2097 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2098 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2099 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2100 * Each CPU has its own causeRxTx register 2101 */ 2102 static int mvneta_poll(struct napi_struct *napi, int budget) 2103 { 2104 int rx_done = 0; 2105 u32 cause_rx_tx; 2106 unsigned long flags; 2107 struct mvneta_port *pp = netdev_priv(napi->dev); 2108 2109 if (!netif_running(pp->dev)) { 2110 napi_complete(napi); 2111 return rx_done; 2112 } 2113 2114 /* Read cause register */ 2115 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2116 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2117 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2118 2119 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2120 if (pp->use_inband_status && (cause_misc & 2121 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2122 MVNETA_CAUSE_LINK_CHANGE | 2123 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2124 mvneta_fixed_link_update(pp, pp->phy_dev); 2125 } 2126 } 2127 2128 /* Release Tx descriptors */ 2129 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2130 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2131 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2132 } 2133 2134 /* For the case where the last mvneta_poll did not process all 2135 * RX packets 2136 */ 2137 cause_rx_tx |= pp->cause_rx_tx; 2138 if (rxq_number > 1) { 2139 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) { 2140 int count; 2141 struct mvneta_rx_queue *rxq; 2142 /* get rx queue number from cause_rx_tx */ 2143 rxq = mvneta_rx_policy(pp, cause_rx_tx); 2144 if (!rxq) 2145 break; 2146 2147 /* process the packet in that rx queue */ 2148 count = mvneta_rx(pp, budget, rxq); 2149 rx_done += count; 2150 budget -= count; 2151 if (budget > 0) { 2152 /* set off the rx bit of the 2153 * corresponding bit in the cause rx 2154 * tx register, so that next iteration 2155 * will find the next rx queue where 2156 * packets are received on 2157 */ 2158 cause_rx_tx &= ~((1 << rxq->id) << 8); 2159 } 2160 } 2161 } else { 2162 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2163 budget -= rx_done; 2164 } 2165 2166 if (budget > 0) { 2167 cause_rx_tx = 0; 2168 napi_complete(napi); 2169 local_irq_save(flags); 2170 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2171 MVNETA_RX_INTR_MASK(rxq_number) | 2172 MVNETA_TX_INTR_MASK(txq_number) | 2173 MVNETA_MISCINTR_INTR_MASK); 2174 local_irq_restore(flags); 2175 } 2176 2177 pp->cause_rx_tx = cause_rx_tx; 2178 return rx_done; 2179 } 2180 2181 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2182 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2183 int num) 2184 { 2185 int i; 2186 2187 for (i = 0; i < num; i++) { 2188 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2189 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2190 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2191 __func__, rxq->id, i, num); 2192 break; 2193 } 2194 } 2195 2196 /* Add this number of RX descriptors as non occupied (ready to 2197 * get packets) 2198 */ 2199 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2200 2201 return i; 2202 } 2203 2204 /* Free all packets pending transmit from all TXQs and reset TX port */ 2205 static void mvneta_tx_reset(struct mvneta_port *pp) 2206 { 2207 int queue; 2208 2209 /* free the skb's in the tx ring */ 2210 for (queue = 0; queue < txq_number; queue++) 2211 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2212 2213 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2214 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2215 } 2216 2217 static void mvneta_rx_reset(struct mvneta_port *pp) 2218 { 2219 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2220 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2221 } 2222 2223 /* Rx/Tx queue initialization/cleanup methods */ 2224 2225 /* Create a specified RX queue */ 2226 static int mvneta_rxq_init(struct mvneta_port *pp, 2227 struct mvneta_rx_queue *rxq) 2228 2229 { 2230 rxq->size = pp->rx_ring_size; 2231 2232 /* Allocate memory for RX descriptors */ 2233 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2234 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2235 &rxq->descs_phys, GFP_KERNEL); 2236 if (rxq->descs == NULL) 2237 return -ENOMEM; 2238 2239 BUG_ON(rxq->descs != 2240 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2241 2242 rxq->last_desc = rxq->size - 1; 2243 2244 /* Set Rx descriptors queue starting address */ 2245 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2246 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2247 2248 /* Set Offset */ 2249 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2250 2251 /* Set coalescing pkts and time */ 2252 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2253 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2254 2255 /* Fill RXQ with buffers from RX pool */ 2256 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2257 mvneta_rxq_bm_disable(pp, rxq); 2258 mvneta_rxq_fill(pp, rxq, rxq->size); 2259 2260 return 0; 2261 } 2262 2263 /* Cleanup Rx queue */ 2264 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2265 struct mvneta_rx_queue *rxq) 2266 { 2267 mvneta_rxq_drop_pkts(pp, rxq); 2268 2269 if (rxq->descs) 2270 dma_free_coherent(pp->dev->dev.parent, 2271 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2272 rxq->descs, 2273 rxq->descs_phys); 2274 2275 rxq->descs = NULL; 2276 rxq->last_desc = 0; 2277 rxq->next_desc_to_proc = 0; 2278 rxq->descs_phys = 0; 2279 } 2280 2281 /* Create and initialize a tx queue */ 2282 static int mvneta_txq_init(struct mvneta_port *pp, 2283 struct mvneta_tx_queue *txq) 2284 { 2285 txq->size = pp->tx_ring_size; 2286 2287 /* A queue must always have room for at least one skb. 2288 * Therefore, stop the queue when the free entries reaches 2289 * the maximum number of descriptors per skb. 2290 */ 2291 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2292 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2293 2294 2295 /* Allocate memory for TX descriptors */ 2296 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2297 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2298 &txq->descs_phys, GFP_KERNEL); 2299 if (txq->descs == NULL) 2300 return -ENOMEM; 2301 2302 /* Make sure descriptor address is cache line size aligned */ 2303 BUG_ON(txq->descs != 2304 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2305 2306 txq->last_desc = txq->size - 1; 2307 2308 /* Set maximum bandwidth for enabled TXQs */ 2309 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2310 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2311 2312 /* Set Tx descriptors queue starting address */ 2313 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2314 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2315 2316 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2317 if (txq->tx_skb == NULL) { 2318 dma_free_coherent(pp->dev->dev.parent, 2319 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2320 txq->descs, txq->descs_phys); 2321 return -ENOMEM; 2322 } 2323 2324 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2325 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2326 txq->size * TSO_HEADER_SIZE, 2327 &txq->tso_hdrs_phys, GFP_KERNEL); 2328 if (txq->tso_hdrs == NULL) { 2329 kfree(txq->tx_skb); 2330 dma_free_coherent(pp->dev->dev.parent, 2331 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2332 txq->descs, txq->descs_phys); 2333 return -ENOMEM; 2334 } 2335 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2336 2337 return 0; 2338 } 2339 2340 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2341 static void mvneta_txq_deinit(struct mvneta_port *pp, 2342 struct mvneta_tx_queue *txq) 2343 { 2344 kfree(txq->tx_skb); 2345 2346 if (txq->tso_hdrs) 2347 dma_free_coherent(pp->dev->dev.parent, 2348 txq->size * TSO_HEADER_SIZE, 2349 txq->tso_hdrs, txq->tso_hdrs_phys); 2350 if (txq->descs) 2351 dma_free_coherent(pp->dev->dev.parent, 2352 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2353 txq->descs, txq->descs_phys); 2354 2355 txq->descs = NULL; 2356 txq->last_desc = 0; 2357 txq->next_desc_to_proc = 0; 2358 txq->descs_phys = 0; 2359 2360 /* Set minimum bandwidth for disabled TXQs */ 2361 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2362 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2363 2364 /* Set Tx descriptors queue starting address and size */ 2365 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2366 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2367 } 2368 2369 /* Cleanup all Tx queues */ 2370 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2371 { 2372 int queue; 2373 2374 for (queue = 0; queue < txq_number; queue++) 2375 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2376 } 2377 2378 /* Cleanup all Rx queues */ 2379 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2380 { 2381 int queue; 2382 2383 for (queue = 0; queue < rxq_number; queue++) 2384 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2385 } 2386 2387 2388 /* Init all Rx queues */ 2389 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2390 { 2391 int queue; 2392 2393 for (queue = 0; queue < rxq_number; queue++) { 2394 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2395 if (err) { 2396 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2397 __func__, queue); 2398 mvneta_cleanup_rxqs(pp); 2399 return err; 2400 } 2401 } 2402 2403 return 0; 2404 } 2405 2406 /* Init all tx queues */ 2407 static int mvneta_setup_txqs(struct mvneta_port *pp) 2408 { 2409 int queue; 2410 2411 for (queue = 0; queue < txq_number; queue++) { 2412 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2413 if (err) { 2414 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2415 __func__, queue); 2416 mvneta_cleanup_txqs(pp); 2417 return err; 2418 } 2419 } 2420 2421 return 0; 2422 } 2423 2424 static void mvneta_start_dev(struct mvneta_port *pp) 2425 { 2426 mvneta_max_rx_size_set(pp, pp->pkt_size); 2427 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2428 2429 /* start the Rx/Tx activity */ 2430 mvneta_port_enable(pp); 2431 2432 /* Enable polling on the port */ 2433 napi_enable(&pp->napi); 2434 2435 /* Unmask interrupts */ 2436 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2437 MVNETA_RX_INTR_MASK(rxq_number) | 2438 MVNETA_TX_INTR_MASK(txq_number) | 2439 MVNETA_MISCINTR_INTR_MASK); 2440 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2441 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2442 MVNETA_CAUSE_LINK_CHANGE | 2443 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2444 2445 phy_start(pp->phy_dev); 2446 netif_tx_start_all_queues(pp->dev); 2447 } 2448 2449 static void mvneta_stop_dev(struct mvneta_port *pp) 2450 { 2451 phy_stop(pp->phy_dev); 2452 2453 napi_disable(&pp->napi); 2454 2455 netif_carrier_off(pp->dev); 2456 2457 mvneta_port_down(pp); 2458 netif_tx_stop_all_queues(pp->dev); 2459 2460 /* Stop the port activity */ 2461 mvneta_port_disable(pp); 2462 2463 /* Clear all ethernet port interrupts */ 2464 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2465 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2466 2467 /* Mask all ethernet port interrupts */ 2468 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2469 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2470 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2471 2472 mvneta_tx_reset(pp); 2473 mvneta_rx_reset(pp); 2474 } 2475 2476 /* Return positive if MTU is valid */ 2477 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2478 { 2479 if (mtu < 68) { 2480 netdev_err(dev, "cannot change mtu to less than 68\n"); 2481 return -EINVAL; 2482 } 2483 2484 /* 9676 == 9700 - 20 and rounding to 8 */ 2485 if (mtu > 9676) { 2486 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2487 mtu = 9676; 2488 } 2489 2490 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2491 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2492 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2493 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2494 } 2495 2496 return mtu; 2497 } 2498 2499 /* Change the device mtu */ 2500 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2501 { 2502 struct mvneta_port *pp = netdev_priv(dev); 2503 int ret; 2504 2505 mtu = mvneta_check_mtu_valid(dev, mtu); 2506 if (mtu < 0) 2507 return -EINVAL; 2508 2509 dev->mtu = mtu; 2510 2511 if (!netif_running(dev)) 2512 return 0; 2513 2514 /* The interface is running, so we have to force a 2515 * reallocation of the queues 2516 */ 2517 mvneta_stop_dev(pp); 2518 2519 mvneta_cleanup_txqs(pp); 2520 mvneta_cleanup_rxqs(pp); 2521 2522 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2523 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2524 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2525 2526 ret = mvneta_setup_rxqs(pp); 2527 if (ret) { 2528 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2529 return ret; 2530 } 2531 2532 ret = mvneta_setup_txqs(pp); 2533 if (ret) { 2534 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2535 return ret; 2536 } 2537 2538 mvneta_start_dev(pp); 2539 mvneta_port_up(pp); 2540 2541 return 0; 2542 } 2543 2544 /* Get mac address */ 2545 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2546 { 2547 u32 mac_addr_l, mac_addr_h; 2548 2549 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2550 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2551 addr[0] = (mac_addr_h >> 24) & 0xFF; 2552 addr[1] = (mac_addr_h >> 16) & 0xFF; 2553 addr[2] = (mac_addr_h >> 8) & 0xFF; 2554 addr[3] = mac_addr_h & 0xFF; 2555 addr[4] = (mac_addr_l >> 8) & 0xFF; 2556 addr[5] = mac_addr_l & 0xFF; 2557 } 2558 2559 /* Handle setting mac address */ 2560 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2561 { 2562 struct mvneta_port *pp = netdev_priv(dev); 2563 struct sockaddr *sockaddr = addr; 2564 int ret; 2565 2566 ret = eth_prepare_mac_addr_change(dev, addr); 2567 if (ret < 0) 2568 return ret; 2569 /* Remove previous address table entry */ 2570 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2571 2572 /* Set new addr in hw */ 2573 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2574 2575 eth_commit_mac_addr_change(dev, addr); 2576 return 0; 2577 } 2578 2579 static void mvneta_adjust_link(struct net_device *ndev) 2580 { 2581 struct mvneta_port *pp = netdev_priv(ndev); 2582 struct phy_device *phydev = pp->phy_dev; 2583 int status_change = 0; 2584 2585 if (phydev->link) { 2586 if ((pp->speed != phydev->speed) || 2587 (pp->duplex != phydev->duplex)) { 2588 u32 val; 2589 2590 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2591 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2592 MVNETA_GMAC_CONFIG_GMII_SPEED | 2593 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2594 2595 if (phydev->duplex) 2596 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2597 2598 if (phydev->speed == SPEED_1000) 2599 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2600 else if (phydev->speed == SPEED_100) 2601 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2602 2603 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2604 2605 pp->duplex = phydev->duplex; 2606 pp->speed = phydev->speed; 2607 } 2608 } 2609 2610 if (phydev->link != pp->link) { 2611 if (!phydev->link) { 2612 pp->duplex = -1; 2613 pp->speed = 0; 2614 } 2615 2616 pp->link = phydev->link; 2617 status_change = 1; 2618 } 2619 2620 if (status_change) { 2621 if (phydev->link) { 2622 if (!pp->use_inband_status) { 2623 u32 val = mvreg_read(pp, 2624 MVNETA_GMAC_AUTONEG_CONFIG); 2625 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2626 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2627 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2628 val); 2629 } 2630 mvneta_port_up(pp); 2631 } else { 2632 if (!pp->use_inband_status) { 2633 u32 val = mvreg_read(pp, 2634 MVNETA_GMAC_AUTONEG_CONFIG); 2635 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2636 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2637 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2638 val); 2639 } 2640 mvneta_port_down(pp); 2641 } 2642 phy_print_status(phydev); 2643 } 2644 } 2645 2646 static int mvneta_mdio_probe(struct mvneta_port *pp) 2647 { 2648 struct phy_device *phy_dev; 2649 2650 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2651 pp->phy_interface); 2652 if (!phy_dev) { 2653 netdev_err(pp->dev, "could not find the PHY\n"); 2654 return -ENODEV; 2655 } 2656 2657 phy_dev->supported &= PHY_GBIT_FEATURES; 2658 phy_dev->advertising = phy_dev->supported; 2659 2660 pp->phy_dev = phy_dev; 2661 pp->link = 0; 2662 pp->duplex = 0; 2663 pp->speed = 0; 2664 2665 return 0; 2666 } 2667 2668 static void mvneta_mdio_remove(struct mvneta_port *pp) 2669 { 2670 phy_disconnect(pp->phy_dev); 2671 pp->phy_dev = NULL; 2672 } 2673 2674 static int mvneta_open(struct net_device *dev) 2675 { 2676 struct mvneta_port *pp = netdev_priv(dev); 2677 int ret; 2678 2679 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2680 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2681 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2682 2683 ret = mvneta_setup_rxqs(pp); 2684 if (ret) 2685 return ret; 2686 2687 ret = mvneta_setup_txqs(pp); 2688 if (ret) 2689 goto err_cleanup_rxqs; 2690 2691 /* Connect to port interrupt line */ 2692 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2693 MVNETA_DRIVER_NAME, pp); 2694 if (ret) { 2695 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2696 goto err_cleanup_txqs; 2697 } 2698 2699 /* In default link is down */ 2700 netif_carrier_off(pp->dev); 2701 2702 ret = mvneta_mdio_probe(pp); 2703 if (ret < 0) { 2704 netdev_err(dev, "cannot probe MDIO bus\n"); 2705 goto err_free_irq; 2706 } 2707 2708 mvneta_start_dev(pp); 2709 2710 return 0; 2711 2712 err_free_irq: 2713 free_irq(pp->dev->irq, pp); 2714 err_cleanup_txqs: 2715 mvneta_cleanup_txqs(pp); 2716 err_cleanup_rxqs: 2717 mvneta_cleanup_rxqs(pp); 2718 return ret; 2719 } 2720 2721 /* Stop the port, free port interrupt line */ 2722 static int mvneta_stop(struct net_device *dev) 2723 { 2724 struct mvneta_port *pp = netdev_priv(dev); 2725 2726 mvneta_stop_dev(pp); 2727 mvneta_mdio_remove(pp); 2728 free_irq(dev->irq, pp); 2729 mvneta_cleanup_rxqs(pp); 2730 mvneta_cleanup_txqs(pp); 2731 2732 return 0; 2733 } 2734 2735 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2736 { 2737 struct mvneta_port *pp = netdev_priv(dev); 2738 2739 if (!pp->phy_dev) 2740 return -ENOTSUPP; 2741 2742 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2743 } 2744 2745 /* Ethtool methods */ 2746 2747 /* Get settings (phy address, speed) for ethtools */ 2748 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2749 { 2750 struct mvneta_port *pp = netdev_priv(dev); 2751 2752 if (!pp->phy_dev) 2753 return -ENODEV; 2754 2755 return phy_ethtool_gset(pp->phy_dev, cmd); 2756 } 2757 2758 /* Set settings (phy address, speed) for ethtools */ 2759 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2760 { 2761 struct mvneta_port *pp = netdev_priv(dev); 2762 2763 if (!pp->phy_dev) 2764 return -ENODEV; 2765 2766 return phy_ethtool_sset(pp->phy_dev, cmd); 2767 } 2768 2769 /* Set interrupt coalescing for ethtools */ 2770 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2771 struct ethtool_coalesce *c) 2772 { 2773 struct mvneta_port *pp = netdev_priv(dev); 2774 int queue; 2775 2776 for (queue = 0; queue < rxq_number; queue++) { 2777 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2778 rxq->time_coal = c->rx_coalesce_usecs; 2779 rxq->pkts_coal = c->rx_max_coalesced_frames; 2780 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2781 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2782 } 2783 2784 for (queue = 0; queue < txq_number; queue++) { 2785 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2786 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2787 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2788 } 2789 2790 return 0; 2791 } 2792 2793 /* get coalescing for ethtools */ 2794 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2795 struct ethtool_coalesce *c) 2796 { 2797 struct mvneta_port *pp = netdev_priv(dev); 2798 2799 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2800 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2801 2802 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2803 return 0; 2804 } 2805 2806 2807 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2808 struct ethtool_drvinfo *drvinfo) 2809 { 2810 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2811 sizeof(drvinfo->driver)); 2812 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2813 sizeof(drvinfo->version)); 2814 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2815 sizeof(drvinfo->bus_info)); 2816 } 2817 2818 2819 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2820 struct ethtool_ringparam *ring) 2821 { 2822 struct mvneta_port *pp = netdev_priv(netdev); 2823 2824 ring->rx_max_pending = MVNETA_MAX_RXD; 2825 ring->tx_max_pending = MVNETA_MAX_TXD; 2826 ring->rx_pending = pp->rx_ring_size; 2827 ring->tx_pending = pp->tx_ring_size; 2828 } 2829 2830 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2831 struct ethtool_ringparam *ring) 2832 { 2833 struct mvneta_port *pp = netdev_priv(dev); 2834 2835 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2836 return -EINVAL; 2837 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2838 ring->rx_pending : MVNETA_MAX_RXD; 2839 2840 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 2841 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 2842 if (pp->tx_ring_size != ring->tx_pending) 2843 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 2844 pp->tx_ring_size, ring->tx_pending); 2845 2846 if (netif_running(dev)) { 2847 mvneta_stop(dev); 2848 if (mvneta_open(dev)) { 2849 netdev_err(dev, 2850 "error on opening device after ring param change\n"); 2851 return -ENOMEM; 2852 } 2853 } 2854 2855 return 0; 2856 } 2857 2858 static const struct net_device_ops mvneta_netdev_ops = { 2859 .ndo_open = mvneta_open, 2860 .ndo_stop = mvneta_stop, 2861 .ndo_start_xmit = mvneta_tx, 2862 .ndo_set_rx_mode = mvneta_set_rx_mode, 2863 .ndo_set_mac_address = mvneta_set_mac_addr, 2864 .ndo_change_mtu = mvneta_change_mtu, 2865 .ndo_get_stats64 = mvneta_get_stats64, 2866 .ndo_do_ioctl = mvneta_ioctl, 2867 }; 2868 2869 const struct ethtool_ops mvneta_eth_tool_ops = { 2870 .get_link = ethtool_op_get_link, 2871 .get_settings = mvneta_ethtool_get_settings, 2872 .set_settings = mvneta_ethtool_set_settings, 2873 .set_coalesce = mvneta_ethtool_set_coalesce, 2874 .get_coalesce = mvneta_ethtool_get_coalesce, 2875 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2876 .get_ringparam = mvneta_ethtool_get_ringparam, 2877 .set_ringparam = mvneta_ethtool_set_ringparam, 2878 }; 2879 2880 /* Initialize hw */ 2881 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 2882 { 2883 int queue; 2884 2885 /* Disable port */ 2886 mvneta_port_disable(pp); 2887 2888 /* Set port default values */ 2889 mvneta_defaults_set(pp); 2890 2891 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 2892 GFP_KERNEL); 2893 if (!pp->txqs) 2894 return -ENOMEM; 2895 2896 /* Initialize TX descriptor rings */ 2897 for (queue = 0; queue < txq_number; queue++) { 2898 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2899 txq->id = queue; 2900 txq->size = pp->tx_ring_size; 2901 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2902 } 2903 2904 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 2905 GFP_KERNEL); 2906 if (!pp->rxqs) 2907 return -ENOMEM; 2908 2909 /* Create Rx descriptor rings */ 2910 for (queue = 0; queue < rxq_number; queue++) { 2911 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2912 rxq->id = queue; 2913 rxq->size = pp->rx_ring_size; 2914 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2915 rxq->time_coal = MVNETA_RX_COAL_USEC; 2916 } 2917 2918 return 0; 2919 } 2920 2921 /* platform glue : initialize decoding windows */ 2922 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2923 const struct mbus_dram_target_info *dram) 2924 { 2925 u32 win_enable; 2926 u32 win_protect; 2927 int i; 2928 2929 for (i = 0; i < 6; i++) { 2930 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2931 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2932 2933 if (i < 4) 2934 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2935 } 2936 2937 win_enable = 0x3f; 2938 win_protect = 0; 2939 2940 for (i = 0; i < dram->num_cs; i++) { 2941 const struct mbus_dram_window *cs = dram->cs + i; 2942 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2943 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2944 2945 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2946 (cs->size - 1) & 0xffff0000); 2947 2948 win_enable &= ~(1 << i); 2949 win_protect |= 3 << (2 * i); 2950 } 2951 2952 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2953 } 2954 2955 /* Power up the port */ 2956 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2957 { 2958 u32 ctrl; 2959 2960 /* MAC Cause register should be cleared */ 2961 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2962 2963 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2964 2965 /* Even though it might look weird, when we're configured in 2966 * SGMII or QSGMII mode, the RGMII bit needs to be set. 2967 */ 2968 switch(phy_mode) { 2969 case PHY_INTERFACE_MODE_QSGMII: 2970 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 2971 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2972 break; 2973 case PHY_INTERFACE_MODE_SGMII: 2974 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 2975 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2976 break; 2977 case PHY_INTERFACE_MODE_RGMII: 2978 case PHY_INTERFACE_MODE_RGMII_ID: 2979 ctrl |= MVNETA_GMAC2_PORT_RGMII; 2980 break; 2981 default: 2982 return -EINVAL; 2983 } 2984 2985 if (pp->use_inband_status) 2986 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE; 2987 2988 /* Cancel Port Reset */ 2989 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 2990 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 2991 2992 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2993 MVNETA_GMAC2_PORT_RESET) != 0) 2994 continue; 2995 2996 return 0; 2997 } 2998 2999 /* Device initialization routine */ 3000 static int mvneta_probe(struct platform_device *pdev) 3001 { 3002 const struct mbus_dram_target_info *dram_target_info; 3003 struct resource *res; 3004 struct device_node *dn = pdev->dev.of_node; 3005 struct device_node *phy_node; 3006 struct mvneta_port *pp; 3007 struct net_device *dev; 3008 const char *dt_mac_addr; 3009 char hw_mac_addr[ETH_ALEN]; 3010 const char *mac_from; 3011 int phy_mode; 3012 int fixed_phy = 0; 3013 int err; 3014 3015 /* Our multiqueue support is not complete, so for now, only 3016 * allow the usage of the first RX queue 3017 */ 3018 if (rxq_def != 0) { 3019 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 3020 return -EINVAL; 3021 } 3022 3023 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3024 if (!dev) 3025 return -ENOMEM; 3026 3027 dev->irq = irq_of_parse_and_map(dn, 0); 3028 if (dev->irq == 0) { 3029 err = -EINVAL; 3030 goto err_free_netdev; 3031 } 3032 3033 phy_node = of_parse_phandle(dn, "phy", 0); 3034 if (!phy_node) { 3035 if (!of_phy_is_fixed_link(dn)) { 3036 dev_err(&pdev->dev, "no PHY specified\n"); 3037 err = -ENODEV; 3038 goto err_free_irq; 3039 } 3040 3041 err = of_phy_register_fixed_link(dn); 3042 if (err < 0) { 3043 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3044 goto err_free_irq; 3045 } 3046 fixed_phy = 1; 3047 3048 /* In the case of a fixed PHY, the DT node associated 3049 * to the PHY is the Ethernet MAC DT node. 3050 */ 3051 phy_node = of_node_get(dn); 3052 } 3053 3054 phy_mode = of_get_phy_mode(dn); 3055 if (phy_mode < 0) { 3056 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3057 err = -EINVAL; 3058 goto err_put_phy_node; 3059 } 3060 3061 dev->tx_queue_len = MVNETA_MAX_TXD; 3062 dev->watchdog_timeo = 5 * HZ; 3063 dev->netdev_ops = &mvneta_netdev_ops; 3064 3065 dev->ethtool_ops = &mvneta_eth_tool_ops; 3066 3067 pp = netdev_priv(dev); 3068 pp->phy_node = phy_node; 3069 pp->phy_interface = phy_mode; 3070 pp->use_inband_status = (phy_mode == PHY_INTERFACE_MODE_SGMII) && 3071 fixed_phy; 3072 3073 pp->clk = devm_clk_get(&pdev->dev, NULL); 3074 if (IS_ERR(pp->clk)) { 3075 err = PTR_ERR(pp->clk); 3076 goto err_put_phy_node; 3077 } 3078 3079 clk_prepare_enable(pp->clk); 3080 3081 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3082 pp->base = devm_ioremap_resource(&pdev->dev, res); 3083 if (IS_ERR(pp->base)) { 3084 err = PTR_ERR(pp->base); 3085 goto err_clk; 3086 } 3087 3088 /* Alloc per-cpu stats */ 3089 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3090 if (!pp->stats) { 3091 err = -ENOMEM; 3092 goto err_clk; 3093 } 3094 3095 dt_mac_addr = of_get_mac_address(dn); 3096 if (dt_mac_addr) { 3097 mac_from = "device tree"; 3098 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3099 } else { 3100 mvneta_get_mac_addr(pp, hw_mac_addr); 3101 if (is_valid_ether_addr(hw_mac_addr)) { 3102 mac_from = "hardware"; 3103 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3104 } else { 3105 mac_from = "random"; 3106 eth_hw_addr_random(dev); 3107 } 3108 } 3109 3110 pp->tx_ring_size = MVNETA_MAX_TXD; 3111 pp->rx_ring_size = MVNETA_MAX_RXD; 3112 3113 pp->dev = dev; 3114 SET_NETDEV_DEV(dev, &pdev->dev); 3115 3116 err = mvneta_init(&pdev->dev, pp); 3117 if (err < 0) 3118 goto err_free_stats; 3119 3120 err = mvneta_port_power_up(pp, phy_mode); 3121 if (err < 0) { 3122 dev_err(&pdev->dev, "can't power up port\n"); 3123 goto err_free_stats; 3124 } 3125 3126 dram_target_info = mv_mbus_dram_info(); 3127 if (dram_target_info) 3128 mvneta_conf_mbus_windows(pp, dram_target_info); 3129 3130 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3131 3132 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3133 dev->hw_features |= dev->features; 3134 dev->vlan_features |= dev->features; 3135 dev->priv_flags |= IFF_UNICAST_FLT; 3136 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3137 3138 err = register_netdev(dev); 3139 if (err < 0) { 3140 dev_err(&pdev->dev, "failed to register\n"); 3141 goto err_free_stats; 3142 } 3143 3144 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3145 dev->dev_addr); 3146 3147 platform_set_drvdata(pdev, pp->dev); 3148 3149 if (pp->use_inband_status) { 3150 struct phy_device *phy = of_phy_find_device(dn); 3151 3152 mvneta_fixed_link_update(pp, phy); 3153 } 3154 3155 return 0; 3156 3157 err_free_stats: 3158 free_percpu(pp->stats); 3159 err_clk: 3160 clk_disable_unprepare(pp->clk); 3161 err_put_phy_node: 3162 of_node_put(phy_node); 3163 err_free_irq: 3164 irq_dispose_mapping(dev->irq); 3165 err_free_netdev: 3166 free_netdev(dev); 3167 return err; 3168 } 3169 3170 /* Device removal routine */ 3171 static int mvneta_remove(struct platform_device *pdev) 3172 { 3173 struct net_device *dev = platform_get_drvdata(pdev); 3174 struct mvneta_port *pp = netdev_priv(dev); 3175 3176 unregister_netdev(dev); 3177 clk_disable_unprepare(pp->clk); 3178 free_percpu(pp->stats); 3179 irq_dispose_mapping(dev->irq); 3180 of_node_put(pp->phy_node); 3181 free_netdev(dev); 3182 3183 return 0; 3184 } 3185 3186 static const struct of_device_id mvneta_match[] = { 3187 { .compatible = "marvell,armada-370-neta" }, 3188 { } 3189 }; 3190 MODULE_DEVICE_TABLE(of, mvneta_match); 3191 3192 static struct platform_driver mvneta_driver = { 3193 .probe = mvneta_probe, 3194 .remove = mvneta_remove, 3195 .driver = { 3196 .name = MVNETA_DRIVER_NAME, 3197 .of_match_table = mvneta_match, 3198 }, 3199 }; 3200 3201 module_platform_driver(mvneta_driver); 3202 3203 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3204 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3205 MODULE_LICENSE("GPL"); 3206 3207 module_param(rxq_number, int, S_IRUGO); 3208 module_param(txq_number, int, S_IRUGO); 3209 3210 module_param(rxq_def, int, S_IRUGO); 3211 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3212