1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4 #include "iavf.h" 5 #include "iavf_prototype.h" 6 /* All iavf tracepoints are defined by the include below, which must 7 * be included exactly once across the whole kernel with 8 * CREATE_TRACE_POINTS defined 9 */ 10 #define CREATE_TRACE_POINTS 11 #include "iavf_trace.h" 12 13 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter); 14 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter); 15 static int iavf_close(struct net_device *netdev); 16 static void iavf_init_get_resources(struct iavf_adapter *adapter); 17 static int iavf_check_reset_complete(struct iavf_hw *hw); 18 19 char iavf_driver_name[] = "iavf"; 20 static const char iavf_driver_string[] = 21 "Intel(R) Ethernet Adaptive Virtual Function Network Driver"; 22 23 static const char iavf_copyright[] = 24 "Copyright (c) 2013 - 2018 Intel Corporation."; 25 26 /* iavf_pci_tbl - PCI Device ID Table 27 * 28 * Wildcard entries (PCI_ANY_ID) should come last 29 * Last entry must be all 0s 30 * 31 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 32 * Class, Class Mask, private data (not used) } 33 */ 34 static const struct pci_device_id iavf_pci_tbl[] = { 35 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0}, 36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0}, 37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0}, 38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0}, 39 /* required last entry */ 40 {0, } 41 }; 42 43 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl); 44 45 MODULE_ALIAS("i40evf"); 46 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 47 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver"); 48 MODULE_LICENSE("GPL v2"); 49 50 static const struct net_device_ops iavf_netdev_ops; 51 52 int iavf_status_to_errno(enum iavf_status status) 53 { 54 switch (status) { 55 case IAVF_SUCCESS: 56 return 0; 57 case IAVF_ERR_PARAM: 58 case IAVF_ERR_MAC_TYPE: 59 case IAVF_ERR_INVALID_MAC_ADDR: 60 case IAVF_ERR_INVALID_LINK_SETTINGS: 61 case IAVF_ERR_INVALID_PD_ID: 62 case IAVF_ERR_INVALID_QP_ID: 63 case IAVF_ERR_INVALID_CQ_ID: 64 case IAVF_ERR_INVALID_CEQ_ID: 65 case IAVF_ERR_INVALID_AEQ_ID: 66 case IAVF_ERR_INVALID_SIZE: 67 case IAVF_ERR_INVALID_ARP_INDEX: 68 case IAVF_ERR_INVALID_FPM_FUNC_ID: 69 case IAVF_ERR_QP_INVALID_MSG_SIZE: 70 case IAVF_ERR_INVALID_FRAG_COUNT: 71 case IAVF_ERR_INVALID_ALIGNMENT: 72 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: 73 case IAVF_ERR_INVALID_IMM_DATA_SIZE: 74 case IAVF_ERR_INVALID_VF_ID: 75 case IAVF_ERR_INVALID_HMCFN_ID: 76 case IAVF_ERR_INVALID_PBLE_INDEX: 77 case IAVF_ERR_INVALID_SD_INDEX: 78 case IAVF_ERR_INVALID_PAGE_DESC_INDEX: 79 case IAVF_ERR_INVALID_SD_TYPE: 80 case IAVF_ERR_INVALID_HMC_OBJ_INDEX: 81 case IAVF_ERR_INVALID_HMC_OBJ_COUNT: 82 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: 83 return -EINVAL; 84 case IAVF_ERR_NVM: 85 case IAVF_ERR_NVM_CHECKSUM: 86 case IAVF_ERR_PHY: 87 case IAVF_ERR_CONFIG: 88 case IAVF_ERR_UNKNOWN_PHY: 89 case IAVF_ERR_LINK_SETUP: 90 case IAVF_ERR_ADAPTER_STOPPED: 91 case IAVF_ERR_PRIMARY_REQUESTS_PENDING: 92 case IAVF_ERR_AUTONEG_NOT_COMPLETE: 93 case IAVF_ERR_RESET_FAILED: 94 case IAVF_ERR_BAD_PTR: 95 case IAVF_ERR_SWFW_SYNC: 96 case IAVF_ERR_QP_TOOMANY_WRS_POSTED: 97 case IAVF_ERR_QUEUE_EMPTY: 98 case IAVF_ERR_FLUSHED_QUEUE: 99 case IAVF_ERR_OPCODE_MISMATCH: 100 case IAVF_ERR_CQP_COMPL_ERROR: 101 case IAVF_ERR_BACKING_PAGE_ERROR: 102 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: 103 case IAVF_ERR_MEMCPY_FAILED: 104 case IAVF_ERR_SRQ_ENABLED: 105 case IAVF_ERR_ADMIN_QUEUE_ERROR: 106 case IAVF_ERR_ADMIN_QUEUE_FULL: 107 case IAVF_ERR_BAD_RDMA_CQE: 108 case IAVF_ERR_NVM_BLANK_MODE: 109 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: 110 case IAVF_ERR_DIAG_TEST_FAILED: 111 case IAVF_ERR_FIRMWARE_API_VERSION: 112 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: 113 return -EIO; 114 case IAVF_ERR_DEVICE_NOT_SUPPORTED: 115 return -ENODEV; 116 case IAVF_ERR_NO_AVAILABLE_VSI: 117 case IAVF_ERR_RING_FULL: 118 return -ENOSPC; 119 case IAVF_ERR_NO_MEMORY: 120 return -ENOMEM; 121 case IAVF_ERR_TIMEOUT: 122 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: 123 return -ETIMEDOUT; 124 case IAVF_ERR_NOT_IMPLEMENTED: 125 case IAVF_NOT_SUPPORTED: 126 return -EOPNOTSUPP; 127 case IAVF_ERR_ADMIN_QUEUE_NO_WORK: 128 return -EALREADY; 129 case IAVF_ERR_NOT_READY: 130 return -EBUSY; 131 case IAVF_ERR_BUF_TOO_SHORT: 132 return -EMSGSIZE; 133 } 134 135 return -EIO; 136 } 137 138 int virtchnl_status_to_errno(enum virtchnl_status_code v_status) 139 { 140 switch (v_status) { 141 case VIRTCHNL_STATUS_SUCCESS: 142 return 0; 143 case VIRTCHNL_STATUS_ERR_PARAM: 144 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID: 145 return -EINVAL; 146 case VIRTCHNL_STATUS_ERR_NO_MEMORY: 147 return -ENOMEM; 148 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH: 149 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR: 150 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR: 151 return -EIO; 152 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED: 153 return -EOPNOTSUPP; 154 } 155 156 return -EIO; 157 } 158 159 /** 160 * iavf_pdev_to_adapter - go from pci_dev to adapter 161 * @pdev: pci_dev pointer 162 */ 163 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev) 164 { 165 return netdev_priv(pci_get_drvdata(pdev)); 166 } 167 168 /** 169 * iavf_is_reset_in_progress - Check if a reset is in progress 170 * @adapter: board private structure 171 */ 172 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter) 173 { 174 if (adapter->state == __IAVF_RESETTING || 175 adapter->flags & (IAVF_FLAG_RESET_PENDING | 176 IAVF_FLAG_RESET_NEEDED)) 177 return true; 178 179 return false; 180 } 181 182 /** 183 * iavf_wait_for_reset - Wait for reset to finish. 184 * @adapter: board private structure 185 * 186 * Returns 0 if reset finished successfully, negative on timeout or interrupt. 187 */ 188 int iavf_wait_for_reset(struct iavf_adapter *adapter) 189 { 190 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue, 191 !iavf_is_reset_in_progress(adapter), 192 msecs_to_jiffies(5000)); 193 194 /* If ret < 0 then it means wait was interrupted. 195 * If ret == 0 then it means we got a timeout while waiting 196 * for reset to finish. 197 * If ret > 0 it means reset has finished. 198 */ 199 if (ret > 0) 200 return 0; 201 else if (ret < 0) 202 return -EINTR; 203 else 204 return -EBUSY; 205 } 206 207 /** 208 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code 209 * @hw: pointer to the HW structure 210 * @mem: ptr to mem struct to fill out 211 * @size: size of memory requested 212 * @alignment: what to align the allocation to 213 **/ 214 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw, 215 struct iavf_dma_mem *mem, 216 u64 size, u32 alignment) 217 { 218 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 219 220 if (!mem) 221 return IAVF_ERR_PARAM; 222 223 mem->size = ALIGN(size, alignment); 224 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size, 225 (dma_addr_t *)&mem->pa, GFP_KERNEL); 226 if (mem->va) 227 return 0; 228 else 229 return IAVF_ERR_NO_MEMORY; 230 } 231 232 /** 233 * iavf_free_dma_mem - wrapper for DMA memory freeing 234 * @hw: pointer to the HW structure 235 * @mem: ptr to mem struct to free 236 **/ 237 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem) 238 { 239 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back; 240 241 if (!mem || !mem->va) 242 return IAVF_ERR_PARAM; 243 dma_free_coherent(&adapter->pdev->dev, mem->size, 244 mem->va, (dma_addr_t)mem->pa); 245 return 0; 246 } 247 248 /** 249 * iavf_allocate_virt_mem - virt memory alloc wrapper 250 * @hw: pointer to the HW structure 251 * @mem: ptr to mem struct to fill out 252 * @size: size of memory requested 253 **/ 254 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw, 255 struct iavf_virt_mem *mem, u32 size) 256 { 257 if (!mem) 258 return IAVF_ERR_PARAM; 259 260 mem->size = size; 261 mem->va = kzalloc(size, GFP_KERNEL); 262 263 if (mem->va) 264 return 0; 265 else 266 return IAVF_ERR_NO_MEMORY; 267 } 268 269 /** 270 * iavf_free_virt_mem - virt memory free wrapper 271 * @hw: pointer to the HW structure 272 * @mem: ptr to mem struct to free 273 **/ 274 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem) 275 { 276 kfree(mem->va); 277 } 278 279 /** 280 * iavf_schedule_reset - Set the flags and schedule a reset event 281 * @adapter: board private structure 282 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED 283 **/ 284 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags) 285 { 286 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) && 287 !(adapter->flags & 288 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) { 289 adapter->flags |= flags; 290 queue_work(adapter->wq, &adapter->reset_task); 291 } 292 } 293 294 /** 295 * iavf_schedule_aq_request - Set the flags and schedule aq request 296 * @adapter: board private structure 297 * @flags: requested aq flags 298 **/ 299 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags) 300 { 301 adapter->aq_required |= flags; 302 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 303 } 304 305 /** 306 * iavf_tx_timeout - Respond to a Tx Hang 307 * @netdev: network interface device structure 308 * @txqueue: queue number that is timing out 309 **/ 310 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 311 { 312 struct iavf_adapter *adapter = netdev_priv(netdev); 313 314 adapter->tx_timeout_count++; 315 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 316 } 317 318 /** 319 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC 320 * @adapter: board private structure 321 **/ 322 static void iavf_misc_irq_disable(struct iavf_adapter *adapter) 323 { 324 struct iavf_hw *hw = &adapter->hw; 325 326 if (!adapter->msix_entries) 327 return; 328 329 wr32(hw, IAVF_VFINT_DYN_CTL01, 0); 330 331 iavf_flush(hw); 332 333 synchronize_irq(adapter->msix_entries[0].vector); 334 } 335 336 /** 337 * iavf_misc_irq_enable - Enable default interrupt generation settings 338 * @adapter: board private structure 339 **/ 340 static void iavf_misc_irq_enable(struct iavf_adapter *adapter) 341 { 342 struct iavf_hw *hw = &adapter->hw; 343 344 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK | 345 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK); 346 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK); 347 348 iavf_flush(hw); 349 } 350 351 /** 352 * iavf_irq_disable - Mask off interrupt generation on the NIC 353 * @adapter: board private structure 354 **/ 355 static void iavf_irq_disable(struct iavf_adapter *adapter) 356 { 357 int i; 358 struct iavf_hw *hw = &adapter->hw; 359 360 if (!adapter->msix_entries) 361 return; 362 363 for (i = 1; i < adapter->num_msix_vectors; i++) { 364 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0); 365 synchronize_irq(adapter->msix_entries[i].vector); 366 } 367 iavf_flush(hw); 368 } 369 370 /** 371 * iavf_irq_enable_queues - Enable interrupt for all queues 372 * @adapter: board private structure 373 **/ 374 static void iavf_irq_enable_queues(struct iavf_adapter *adapter) 375 { 376 struct iavf_hw *hw = &adapter->hw; 377 int i; 378 379 for (i = 1; i < adapter->num_msix_vectors; i++) { 380 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 381 IAVF_VFINT_DYN_CTLN1_INTENA_MASK | 382 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK); 383 } 384 } 385 386 /** 387 * iavf_irq_enable - Enable default interrupt generation settings 388 * @adapter: board private structure 389 * @flush: boolean value whether to run rd32() 390 **/ 391 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush) 392 { 393 struct iavf_hw *hw = &adapter->hw; 394 395 iavf_misc_irq_enable(adapter); 396 iavf_irq_enable_queues(adapter); 397 398 if (flush) 399 iavf_flush(hw); 400 } 401 402 /** 403 * iavf_msix_aq - Interrupt handler for vector 0 404 * @irq: interrupt number 405 * @data: pointer to netdev 406 **/ 407 static irqreturn_t iavf_msix_aq(int irq, void *data) 408 { 409 struct net_device *netdev = data; 410 struct iavf_adapter *adapter = netdev_priv(netdev); 411 struct iavf_hw *hw = &adapter->hw; 412 413 /* handle non-queue interrupts, these reads clear the registers */ 414 rd32(hw, IAVF_VFINT_ICR01); 415 rd32(hw, IAVF_VFINT_ICR0_ENA1); 416 417 if (adapter->state != __IAVF_REMOVE) 418 /* schedule work on the private workqueue */ 419 queue_work(adapter->wq, &adapter->adminq_task); 420 421 return IRQ_HANDLED; 422 } 423 424 /** 425 * iavf_msix_clean_rings - MSIX mode Interrupt Handler 426 * @irq: interrupt number 427 * @data: pointer to a q_vector 428 **/ 429 static irqreturn_t iavf_msix_clean_rings(int irq, void *data) 430 { 431 struct iavf_q_vector *q_vector = data; 432 433 if (!q_vector->tx.ring && !q_vector->rx.ring) 434 return IRQ_HANDLED; 435 436 napi_schedule_irqoff(&q_vector->napi); 437 438 return IRQ_HANDLED; 439 } 440 441 /** 442 * iavf_map_vector_to_rxq - associate irqs with rx queues 443 * @adapter: board private structure 444 * @v_idx: interrupt number 445 * @r_idx: queue number 446 **/ 447 static void 448 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx) 449 { 450 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 451 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx]; 452 struct iavf_hw *hw = &adapter->hw; 453 454 rx_ring->q_vector = q_vector; 455 rx_ring->next = q_vector->rx.ring; 456 rx_ring->vsi = &adapter->vsi; 457 q_vector->rx.ring = rx_ring; 458 q_vector->rx.count++; 459 q_vector->rx.next_update = jiffies + 1; 460 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting); 461 q_vector->ring_mask |= BIT(r_idx); 462 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx), 463 q_vector->rx.current_itr >> 1); 464 q_vector->rx.current_itr = q_vector->rx.target_itr; 465 } 466 467 /** 468 * iavf_map_vector_to_txq - associate irqs with tx queues 469 * @adapter: board private structure 470 * @v_idx: interrupt number 471 * @t_idx: queue number 472 **/ 473 static void 474 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx) 475 { 476 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx]; 477 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx]; 478 struct iavf_hw *hw = &adapter->hw; 479 480 tx_ring->q_vector = q_vector; 481 tx_ring->next = q_vector->tx.ring; 482 tx_ring->vsi = &adapter->vsi; 483 q_vector->tx.ring = tx_ring; 484 q_vector->tx.count++; 485 q_vector->tx.next_update = jiffies + 1; 486 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting); 487 q_vector->num_ringpairs++; 488 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx), 489 q_vector->tx.target_itr >> 1); 490 q_vector->tx.current_itr = q_vector->tx.target_itr; 491 } 492 493 /** 494 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors 495 * @adapter: board private structure to initialize 496 * 497 * This function maps descriptor rings to the queue-specific vectors 498 * we were allotted through the MSI-X enabling code. Ideally, we'd have 499 * one vector per ring/queue, but on a constrained vector budget, we 500 * group the rings as "efficiently" as possible. You would add new 501 * mapping configurations in here. 502 **/ 503 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter) 504 { 505 int rings_remaining = adapter->num_active_queues; 506 int ridx = 0, vidx = 0; 507 int q_vectors; 508 509 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 510 511 for (; ridx < rings_remaining; ridx++) { 512 iavf_map_vector_to_rxq(adapter, vidx, ridx); 513 iavf_map_vector_to_txq(adapter, vidx, ridx); 514 515 /* In the case where we have more queues than vectors, continue 516 * round-robin on vectors until all queues are mapped. 517 */ 518 if (++vidx >= q_vectors) 519 vidx = 0; 520 } 521 522 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 523 } 524 525 /** 526 * iavf_irq_affinity_notify - Callback for affinity changes 527 * @notify: context as to what irq was changed 528 * @mask: the new affinity mask 529 * 530 * This is a callback function used by the irq_set_affinity_notifier function 531 * so that we may register to receive changes to the irq affinity masks. 532 **/ 533 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify, 534 const cpumask_t *mask) 535 { 536 struct iavf_q_vector *q_vector = 537 container_of(notify, struct iavf_q_vector, affinity_notify); 538 539 cpumask_copy(&q_vector->affinity_mask, mask); 540 } 541 542 /** 543 * iavf_irq_affinity_release - Callback for affinity notifier release 544 * @ref: internal core kernel usage 545 * 546 * This is a callback function used by the irq_set_affinity_notifier function 547 * to inform the current notification subscriber that they will no longer 548 * receive notifications. 549 **/ 550 static void iavf_irq_affinity_release(struct kref *ref) {} 551 552 /** 553 * iavf_request_traffic_irqs - Initialize MSI-X interrupts 554 * @adapter: board private structure 555 * @basename: device basename 556 * 557 * Allocates MSI-X vectors for tx and rx handling, and requests 558 * interrupts from the kernel. 559 **/ 560 static int 561 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename) 562 { 563 unsigned int vector, q_vectors; 564 unsigned int rx_int_idx = 0, tx_int_idx = 0; 565 int irq_num, err; 566 int cpu; 567 568 iavf_irq_disable(adapter); 569 /* Decrement for Other and TCP Timer vectors */ 570 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 571 572 for (vector = 0; vector < q_vectors; vector++) { 573 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector]; 574 575 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 576 577 if (q_vector->tx.ring && q_vector->rx.ring) { 578 snprintf(q_vector->name, sizeof(q_vector->name), 579 "iavf-%s-TxRx-%u", basename, rx_int_idx++); 580 tx_int_idx++; 581 } else if (q_vector->rx.ring) { 582 snprintf(q_vector->name, sizeof(q_vector->name), 583 "iavf-%s-rx-%u", basename, rx_int_idx++); 584 } else if (q_vector->tx.ring) { 585 snprintf(q_vector->name, sizeof(q_vector->name), 586 "iavf-%s-tx-%u", basename, tx_int_idx++); 587 } else { 588 /* skip this unused q_vector */ 589 continue; 590 } 591 err = request_irq(irq_num, 592 iavf_msix_clean_rings, 593 0, 594 q_vector->name, 595 q_vector); 596 if (err) { 597 dev_info(&adapter->pdev->dev, 598 "Request_irq failed, error: %d\n", err); 599 goto free_queue_irqs; 600 } 601 /* register for affinity change notifications */ 602 q_vector->affinity_notify.notify = iavf_irq_affinity_notify; 603 q_vector->affinity_notify.release = 604 iavf_irq_affinity_release; 605 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 606 /* Spread the IRQ affinity hints across online CPUs. Note that 607 * get_cpu_mask returns a mask with a permanent lifetime so 608 * it's safe to use as a hint for irq_update_affinity_hint. 609 */ 610 cpu = cpumask_local_spread(q_vector->v_idx, -1); 611 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu)); 612 } 613 614 return 0; 615 616 free_queue_irqs: 617 while (vector) { 618 vector--; 619 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 620 irq_set_affinity_notifier(irq_num, NULL); 621 irq_update_affinity_hint(irq_num, NULL); 622 free_irq(irq_num, &adapter->q_vectors[vector]); 623 } 624 return err; 625 } 626 627 /** 628 * iavf_request_misc_irq - Initialize MSI-X interrupts 629 * @adapter: board private structure 630 * 631 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This 632 * vector is only for the admin queue, and stays active even when the netdev 633 * is closed. 634 **/ 635 static int iavf_request_misc_irq(struct iavf_adapter *adapter) 636 { 637 struct net_device *netdev = adapter->netdev; 638 int err; 639 640 snprintf(adapter->misc_vector_name, 641 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx", 642 dev_name(&adapter->pdev->dev)); 643 err = request_irq(adapter->msix_entries[0].vector, 644 &iavf_msix_aq, 0, 645 adapter->misc_vector_name, netdev); 646 if (err) { 647 dev_err(&adapter->pdev->dev, 648 "request_irq for %s failed: %d\n", 649 adapter->misc_vector_name, err); 650 free_irq(adapter->msix_entries[0].vector, netdev); 651 } 652 return err; 653 } 654 655 /** 656 * iavf_free_traffic_irqs - Free MSI-X interrupts 657 * @adapter: board private structure 658 * 659 * Frees all MSI-X vectors other than 0. 660 **/ 661 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter) 662 { 663 int vector, irq_num, q_vectors; 664 665 if (!adapter->msix_entries) 666 return; 667 668 q_vectors = adapter->num_msix_vectors - NONQ_VECS; 669 670 for (vector = 0; vector < q_vectors; vector++) { 671 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector; 672 irq_set_affinity_notifier(irq_num, NULL); 673 irq_update_affinity_hint(irq_num, NULL); 674 free_irq(irq_num, &adapter->q_vectors[vector]); 675 } 676 } 677 678 /** 679 * iavf_free_misc_irq - Free MSI-X miscellaneous vector 680 * @adapter: board private structure 681 * 682 * Frees MSI-X vector 0. 683 **/ 684 static void iavf_free_misc_irq(struct iavf_adapter *adapter) 685 { 686 struct net_device *netdev = adapter->netdev; 687 688 if (!adapter->msix_entries) 689 return; 690 691 free_irq(adapter->msix_entries[0].vector, netdev); 692 } 693 694 /** 695 * iavf_configure_tx - Configure Transmit Unit after Reset 696 * @adapter: board private structure 697 * 698 * Configure the Tx unit of the MAC after a reset. 699 **/ 700 static void iavf_configure_tx(struct iavf_adapter *adapter) 701 { 702 struct iavf_hw *hw = &adapter->hw; 703 int i; 704 705 for (i = 0; i < adapter->num_active_queues; i++) 706 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i); 707 } 708 709 /** 710 * iavf_configure_rx - Configure Receive Unit after Reset 711 * @adapter: board private structure 712 * 713 * Configure the Rx unit of the MAC after a reset. 714 **/ 715 static void iavf_configure_rx(struct iavf_adapter *adapter) 716 { 717 unsigned int rx_buf_len = IAVF_RXBUFFER_2048; 718 struct iavf_hw *hw = &adapter->hw; 719 int i; 720 721 /* Legacy Rx will always default to a 2048 buffer size. */ 722 #if (PAGE_SIZE < 8192) 723 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) { 724 struct net_device *netdev = adapter->netdev; 725 726 /* For jumbo frames on systems with 4K pages we have to use 727 * an order 1 page, so we might as well increase the size 728 * of our Rx buffer to make better use of the available space 729 */ 730 rx_buf_len = IAVF_RXBUFFER_3072; 731 732 /* We use a 1536 buffer size for configurations with 733 * standard Ethernet mtu. On x86 this gives us enough room 734 * for shared info and 192 bytes of padding. 735 */ 736 if (!IAVF_2K_TOO_SMALL_WITH_PADDING && 737 (netdev->mtu <= ETH_DATA_LEN)) 738 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN; 739 } 740 #endif 741 742 for (i = 0; i < adapter->num_active_queues; i++) { 743 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i); 744 adapter->rx_rings[i].rx_buf_len = rx_buf_len; 745 746 if (adapter->flags & IAVF_FLAG_LEGACY_RX) 747 clear_ring_build_skb_enabled(&adapter->rx_rings[i]); 748 else 749 set_ring_build_skb_enabled(&adapter->rx_rings[i]); 750 } 751 } 752 753 /** 754 * iavf_find_vlan - Search filter list for specific vlan filter 755 * @adapter: board private structure 756 * @vlan: vlan tag 757 * 758 * Returns ptr to the filter object or NULL. Must be called while holding the 759 * mac_vlan_list_lock. 760 **/ 761 static struct 762 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, 763 struct iavf_vlan vlan) 764 { 765 struct iavf_vlan_filter *f; 766 767 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 768 if (f->vlan.vid == vlan.vid && 769 f->vlan.tpid == vlan.tpid) 770 return f; 771 } 772 773 return NULL; 774 } 775 776 /** 777 * iavf_add_vlan - Add a vlan filter to the list 778 * @adapter: board private structure 779 * @vlan: VLAN tag 780 * 781 * Returns ptr to the filter object or NULL when no memory available. 782 **/ 783 static struct 784 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, 785 struct iavf_vlan vlan) 786 { 787 struct iavf_vlan_filter *f = NULL; 788 789 spin_lock_bh(&adapter->mac_vlan_list_lock); 790 791 f = iavf_find_vlan(adapter, vlan); 792 if (!f) { 793 f = kzalloc(sizeof(*f), GFP_ATOMIC); 794 if (!f) 795 goto clearout; 796 797 f->vlan = vlan; 798 799 list_add_tail(&f->list, &adapter->vlan_filter_list); 800 f->state = IAVF_VLAN_ADD; 801 adapter->num_vlan_filters++; 802 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER); 803 } 804 805 clearout: 806 spin_unlock_bh(&adapter->mac_vlan_list_lock); 807 return f; 808 } 809 810 /** 811 * iavf_del_vlan - Remove a vlan filter from the list 812 * @adapter: board private structure 813 * @vlan: VLAN tag 814 **/ 815 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan) 816 { 817 struct iavf_vlan_filter *f; 818 819 spin_lock_bh(&adapter->mac_vlan_list_lock); 820 821 f = iavf_find_vlan(adapter, vlan); 822 if (f) { 823 f->state = IAVF_VLAN_REMOVE; 824 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER); 825 } 826 827 spin_unlock_bh(&adapter->mac_vlan_list_lock); 828 } 829 830 /** 831 * iavf_restore_filters 832 * @adapter: board private structure 833 * 834 * Restore existing non MAC filters when VF netdev comes back up 835 **/ 836 static void iavf_restore_filters(struct iavf_adapter *adapter) 837 { 838 struct iavf_vlan_filter *f; 839 840 /* re-add all VLAN filters */ 841 spin_lock_bh(&adapter->mac_vlan_list_lock); 842 843 list_for_each_entry(f, &adapter->vlan_filter_list, list) { 844 if (f->state == IAVF_VLAN_INACTIVE) 845 f->state = IAVF_VLAN_ADD; 846 } 847 848 spin_unlock_bh(&adapter->mac_vlan_list_lock); 849 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER; 850 } 851 852 /** 853 * iavf_get_num_vlans_added - get number of VLANs added 854 * @adapter: board private structure 855 */ 856 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter) 857 { 858 return adapter->num_vlan_filters; 859 } 860 861 /** 862 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF 863 * @adapter: board private structure 864 * 865 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN, 866 * do not impose a limit as that maintains current behavior and for 867 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF. 868 **/ 869 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter) 870 { 871 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has 872 * never been a limit on the VF driver side 873 */ 874 if (VLAN_ALLOWED(adapter)) 875 return VLAN_N_VID; 876 else if (VLAN_V2_ALLOWED(adapter)) 877 return adapter->vlan_v2_caps.filtering.max_filters; 878 879 return 0; 880 } 881 882 /** 883 * iavf_max_vlans_added - check if maximum VLANs allowed already exist 884 * @adapter: board private structure 885 **/ 886 static bool iavf_max_vlans_added(struct iavf_adapter *adapter) 887 { 888 if (iavf_get_num_vlans_added(adapter) < 889 iavf_get_max_vlans_allowed(adapter)) 890 return false; 891 892 return true; 893 } 894 895 /** 896 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device 897 * @netdev: network device struct 898 * @proto: unused protocol data 899 * @vid: VLAN tag 900 **/ 901 static int iavf_vlan_rx_add_vid(struct net_device *netdev, 902 __always_unused __be16 proto, u16 vid) 903 { 904 struct iavf_adapter *adapter = netdev_priv(netdev); 905 906 /* Do not track VLAN 0 filter, always added by the PF on VF init */ 907 if (!vid) 908 return 0; 909 910 if (!VLAN_FILTERING_ALLOWED(adapter)) 911 return -EIO; 912 913 if (iavf_max_vlans_added(adapter)) { 914 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n", 915 iavf_get_max_vlans_allowed(adapter)); 916 return -EIO; 917 } 918 919 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)))) 920 return -ENOMEM; 921 922 return 0; 923 } 924 925 /** 926 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device 927 * @netdev: network device struct 928 * @proto: unused protocol data 929 * @vid: VLAN tag 930 **/ 931 static int iavf_vlan_rx_kill_vid(struct net_device *netdev, 932 __always_unused __be16 proto, u16 vid) 933 { 934 struct iavf_adapter *adapter = netdev_priv(netdev); 935 936 /* We do not track VLAN 0 filter */ 937 if (!vid) 938 return 0; 939 940 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))); 941 return 0; 942 } 943 944 /** 945 * iavf_find_filter - Search filter list for specific mac filter 946 * @adapter: board private structure 947 * @macaddr: the MAC address 948 * 949 * Returns ptr to the filter object or NULL. Must be called while holding the 950 * mac_vlan_list_lock. 951 **/ 952 static struct 953 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter, 954 const u8 *macaddr) 955 { 956 struct iavf_mac_filter *f; 957 958 if (!macaddr) 959 return NULL; 960 961 list_for_each_entry(f, &adapter->mac_filter_list, list) { 962 if (ether_addr_equal(macaddr, f->macaddr)) 963 return f; 964 } 965 return NULL; 966 } 967 968 /** 969 * iavf_add_filter - Add a mac filter to the filter list 970 * @adapter: board private structure 971 * @macaddr: the MAC address 972 * 973 * Returns ptr to the filter object or NULL when no memory available. 974 **/ 975 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter, 976 const u8 *macaddr) 977 { 978 struct iavf_mac_filter *f; 979 980 if (!macaddr) 981 return NULL; 982 983 f = iavf_find_filter(adapter, macaddr); 984 if (!f) { 985 f = kzalloc(sizeof(*f), GFP_ATOMIC); 986 if (!f) 987 return f; 988 989 ether_addr_copy(f->macaddr, macaddr); 990 991 list_add_tail(&f->list, &adapter->mac_filter_list); 992 f->add = true; 993 f->add_handled = false; 994 f->is_new_mac = true; 995 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr); 996 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 997 } else { 998 f->remove = false; 999 } 1000 1001 return f; 1002 } 1003 1004 /** 1005 * iavf_replace_primary_mac - Replace current primary address 1006 * @adapter: board private structure 1007 * @new_mac: new MAC address to be applied 1008 * 1009 * Replace current dev_addr and send request to PF for removal of previous 1010 * primary MAC address filter and addition of new primary MAC filter. 1011 * Return 0 for success, -ENOMEM for failure. 1012 * 1013 * Do not call this with mac_vlan_list_lock! 1014 **/ 1015 static int iavf_replace_primary_mac(struct iavf_adapter *adapter, 1016 const u8 *new_mac) 1017 { 1018 struct iavf_hw *hw = &adapter->hw; 1019 struct iavf_mac_filter *new_f; 1020 struct iavf_mac_filter *old_f; 1021 1022 spin_lock_bh(&adapter->mac_vlan_list_lock); 1023 1024 new_f = iavf_add_filter(adapter, new_mac); 1025 if (!new_f) { 1026 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1027 return -ENOMEM; 1028 } 1029 1030 old_f = iavf_find_filter(adapter, hw->mac.addr); 1031 if (old_f) { 1032 old_f->is_primary = false; 1033 old_f->remove = true; 1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1035 } 1036 /* Always send the request to add if changing primary MAC, 1037 * even if filter is already present on the list 1038 */ 1039 new_f->is_primary = true; 1040 new_f->add = true; 1041 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 1042 ether_addr_copy(hw->mac.addr, new_mac); 1043 1044 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1045 1046 /* schedule the watchdog task to immediately process the request */ 1047 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1048 return 0; 1049 } 1050 1051 /** 1052 * iavf_is_mac_set_handled - wait for a response to set MAC from PF 1053 * @netdev: network interface device structure 1054 * @macaddr: MAC address to set 1055 * 1056 * Returns true on success, false on failure 1057 */ 1058 static bool iavf_is_mac_set_handled(struct net_device *netdev, 1059 const u8 *macaddr) 1060 { 1061 struct iavf_adapter *adapter = netdev_priv(netdev); 1062 struct iavf_mac_filter *f; 1063 bool ret = false; 1064 1065 spin_lock_bh(&adapter->mac_vlan_list_lock); 1066 1067 f = iavf_find_filter(adapter, macaddr); 1068 1069 if (!f || (!f->add && f->add_handled)) 1070 ret = true; 1071 1072 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1073 1074 return ret; 1075 } 1076 1077 /** 1078 * iavf_set_mac - NDO callback to set port MAC address 1079 * @netdev: network interface device structure 1080 * @p: pointer to an address structure 1081 * 1082 * Returns 0 on success, negative on failure 1083 */ 1084 static int iavf_set_mac(struct net_device *netdev, void *p) 1085 { 1086 struct iavf_adapter *adapter = netdev_priv(netdev); 1087 struct sockaddr *addr = p; 1088 int ret; 1089 1090 if (!is_valid_ether_addr(addr->sa_data)) 1091 return -EADDRNOTAVAIL; 1092 1093 ret = iavf_replace_primary_mac(adapter, addr->sa_data); 1094 1095 if (ret) 1096 return ret; 1097 1098 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue, 1099 iavf_is_mac_set_handled(netdev, addr->sa_data), 1100 msecs_to_jiffies(2500)); 1101 1102 /* If ret < 0 then it means wait was interrupted. 1103 * If ret == 0 then it means we got a timeout. 1104 * else it means we got response for set MAC from PF, 1105 * check if netdev MAC was updated to requested MAC, 1106 * if yes then set MAC succeeded otherwise it failed return -EACCES 1107 */ 1108 if (ret < 0) 1109 return ret; 1110 1111 if (!ret) 1112 return -EAGAIN; 1113 1114 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data)) 1115 return -EACCES; 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address 1122 * @netdev: the netdevice 1123 * @addr: address to add 1124 * 1125 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call 1126 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1127 */ 1128 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr) 1129 { 1130 struct iavf_adapter *adapter = netdev_priv(netdev); 1131 1132 if (iavf_add_filter(adapter, addr)) 1133 return 0; 1134 else 1135 return -ENOMEM; 1136 } 1137 1138 /** 1139 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address 1140 * @netdev: the netdevice 1141 * @addr: address to add 1142 * 1143 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call 1144 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock. 1145 */ 1146 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr) 1147 { 1148 struct iavf_adapter *adapter = netdev_priv(netdev); 1149 struct iavf_mac_filter *f; 1150 1151 /* Under some circumstances, we might receive a request to delete 1152 * our own device address from our uc list. Because we store the 1153 * device address in the VSI's MAC/VLAN filter list, we need to ignore 1154 * such requests and not delete our device address from this list. 1155 */ 1156 if (ether_addr_equal(addr, netdev->dev_addr)) 1157 return 0; 1158 1159 f = iavf_find_filter(adapter, addr); 1160 if (f) { 1161 f->remove = true; 1162 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed 1169 * @adapter: device specific adapter 1170 */ 1171 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter) 1172 { 1173 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) & 1174 (IFF_PROMISC | IFF_ALLMULTI); 1175 } 1176 1177 /** 1178 * iavf_set_rx_mode - NDO callback to set the netdev filters 1179 * @netdev: network interface device structure 1180 **/ 1181 static void iavf_set_rx_mode(struct net_device *netdev) 1182 { 1183 struct iavf_adapter *adapter = netdev_priv(netdev); 1184 1185 spin_lock_bh(&adapter->mac_vlan_list_lock); 1186 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1187 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync); 1188 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1189 1190 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock); 1191 if (iavf_promiscuous_mode_changed(adapter)) 1192 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE; 1193 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock); 1194 } 1195 1196 /** 1197 * iavf_napi_enable_all - enable NAPI on all queue vectors 1198 * @adapter: board private structure 1199 **/ 1200 static void iavf_napi_enable_all(struct iavf_adapter *adapter) 1201 { 1202 int q_idx; 1203 struct iavf_q_vector *q_vector; 1204 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1205 1206 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1207 struct napi_struct *napi; 1208 1209 q_vector = &adapter->q_vectors[q_idx]; 1210 napi = &q_vector->napi; 1211 napi_enable(napi); 1212 } 1213 } 1214 1215 /** 1216 * iavf_napi_disable_all - disable NAPI on all queue vectors 1217 * @adapter: board private structure 1218 **/ 1219 static void iavf_napi_disable_all(struct iavf_adapter *adapter) 1220 { 1221 int q_idx; 1222 struct iavf_q_vector *q_vector; 1223 int q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1224 1225 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1226 q_vector = &adapter->q_vectors[q_idx]; 1227 napi_disable(&q_vector->napi); 1228 } 1229 } 1230 1231 /** 1232 * iavf_configure - set up transmit and receive data structures 1233 * @adapter: board private structure 1234 **/ 1235 static void iavf_configure(struct iavf_adapter *adapter) 1236 { 1237 struct net_device *netdev = adapter->netdev; 1238 int i; 1239 1240 iavf_set_rx_mode(netdev); 1241 1242 iavf_configure_tx(adapter); 1243 iavf_configure_rx(adapter); 1244 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES; 1245 1246 for (i = 0; i < adapter->num_active_queues; i++) { 1247 struct iavf_ring *ring = &adapter->rx_rings[i]; 1248 1249 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring)); 1250 } 1251 } 1252 1253 /** 1254 * iavf_up_complete - Finish the last steps of bringing up a connection 1255 * @adapter: board private structure 1256 * 1257 * Expects to be called while holding crit_lock. 1258 **/ 1259 static void iavf_up_complete(struct iavf_adapter *adapter) 1260 { 1261 iavf_change_state(adapter, __IAVF_RUNNING); 1262 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1263 1264 iavf_napi_enable_all(adapter); 1265 1266 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES; 1267 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1268 } 1269 1270 /** 1271 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF 1272 * yet and mark other to be removed. 1273 * @adapter: board private structure 1274 **/ 1275 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter) 1276 { 1277 struct iavf_vlan_filter *vlf, *vlftmp; 1278 struct iavf_mac_filter *f, *ftmp; 1279 1280 spin_lock_bh(&adapter->mac_vlan_list_lock); 1281 /* clear the sync flag on all filters */ 1282 __dev_uc_unsync(adapter->netdev, NULL); 1283 __dev_mc_unsync(adapter->netdev, NULL); 1284 1285 /* remove all MAC filters */ 1286 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, 1287 list) { 1288 if (f->add) { 1289 list_del(&f->list); 1290 kfree(f); 1291 } else { 1292 f->remove = true; 1293 } 1294 } 1295 1296 /* disable all VLAN filters */ 1297 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 1298 list) 1299 vlf->state = IAVF_VLAN_DISABLE; 1300 1301 spin_unlock_bh(&adapter->mac_vlan_list_lock); 1302 } 1303 1304 /** 1305 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and 1306 * mark other to be removed. 1307 * @adapter: board private structure 1308 **/ 1309 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter) 1310 { 1311 struct iavf_cloud_filter *cf, *cftmp; 1312 1313 /* remove all cloud filters */ 1314 spin_lock_bh(&adapter->cloud_filter_list_lock); 1315 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 1316 list) { 1317 if (cf->add) { 1318 list_del(&cf->list); 1319 kfree(cf); 1320 adapter->num_cloud_filters--; 1321 } else { 1322 cf->del = true; 1323 } 1324 } 1325 spin_unlock_bh(&adapter->cloud_filter_list_lock); 1326 } 1327 1328 /** 1329 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark 1330 * other to be removed. 1331 * @adapter: board private structure 1332 **/ 1333 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter) 1334 { 1335 struct iavf_fdir_fltr *fdir; 1336 1337 /* remove all Flow Director filters */ 1338 spin_lock_bh(&adapter->fdir_fltr_lock); 1339 list_for_each_entry(fdir, &adapter->fdir_list_head, list) { 1340 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) { 1341 /* Cancel a request, keep filter as inactive */ 1342 fdir->state = IAVF_FDIR_FLTR_INACTIVE; 1343 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 1344 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 1345 /* Disable filters which are active or have a pending 1346 * request to PF to be added 1347 */ 1348 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST; 1349 } 1350 } 1351 spin_unlock_bh(&adapter->fdir_fltr_lock); 1352 } 1353 1354 /** 1355 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark 1356 * other to be removed. 1357 * @adapter: board private structure 1358 **/ 1359 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter) 1360 { 1361 struct iavf_adv_rss *rss, *rsstmp; 1362 1363 /* remove all advance RSS configuration */ 1364 spin_lock_bh(&adapter->adv_rss_lock); 1365 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 1366 list) { 1367 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) { 1368 list_del(&rss->list); 1369 kfree(rss); 1370 } else { 1371 rss->state = IAVF_ADV_RSS_DEL_REQUEST; 1372 } 1373 } 1374 spin_unlock_bh(&adapter->adv_rss_lock); 1375 } 1376 1377 /** 1378 * iavf_down - Shutdown the connection processing 1379 * @adapter: board private structure 1380 * 1381 * Expects to be called while holding crit_lock. 1382 **/ 1383 void iavf_down(struct iavf_adapter *adapter) 1384 { 1385 struct net_device *netdev = adapter->netdev; 1386 1387 if (adapter->state <= __IAVF_DOWN_PENDING) 1388 return; 1389 1390 netif_carrier_off(netdev); 1391 netif_tx_disable(netdev); 1392 adapter->link_up = false; 1393 iavf_napi_disable_all(adapter); 1394 iavf_irq_disable(adapter); 1395 1396 iavf_clear_mac_vlan_filters(adapter); 1397 iavf_clear_cloud_filters(adapter); 1398 iavf_clear_fdir_filters(adapter); 1399 iavf_clear_adv_rss_conf(adapter); 1400 1401 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 1402 return; 1403 1404 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 1405 /* cancel any current operation */ 1406 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 1407 /* Schedule operations to close down the HW. Don't wait 1408 * here for this to complete. The watchdog is still running 1409 * and it will take care of this. 1410 */ 1411 if (!list_empty(&adapter->mac_filter_list)) 1412 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER; 1413 if (!list_empty(&adapter->vlan_filter_list)) 1414 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER; 1415 if (!list_empty(&adapter->cloud_filter_list)) 1416 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 1417 if (!list_empty(&adapter->fdir_list_head)) 1418 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 1419 if (!list_empty(&adapter->adv_rss_list_head)) 1420 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG; 1421 } 1422 1423 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES; 1424 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 1425 } 1426 1427 /** 1428 * iavf_acquire_msix_vectors - Setup the MSIX capability 1429 * @adapter: board private structure 1430 * @vectors: number of vectors to request 1431 * 1432 * Work with the OS to set up the MSIX vectors needed. 1433 * 1434 * Returns 0 on success, negative on failure 1435 **/ 1436 static int 1437 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors) 1438 { 1439 int err, vector_threshold; 1440 1441 /* We'll want at least 3 (vector_threshold): 1442 * 0) Other (Admin Queue and link, mostly) 1443 * 1) TxQ[0] Cleanup 1444 * 2) RxQ[0] Cleanup 1445 */ 1446 vector_threshold = MIN_MSIX_COUNT; 1447 1448 /* The more we get, the more we will assign to Tx/Rx Cleanup 1449 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 1450 * Right now, we simply care about how many we'll get; we'll 1451 * set them up later while requesting irq's. 1452 */ 1453 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 1454 vector_threshold, vectors); 1455 if (err < 0) { 1456 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n"); 1457 kfree(adapter->msix_entries); 1458 adapter->msix_entries = NULL; 1459 return err; 1460 } 1461 1462 /* Adjust for only the vectors we'll use, which is minimum 1463 * of max_msix_q_vectors + NONQ_VECS, or the number of 1464 * vectors we were allocated. 1465 */ 1466 adapter->num_msix_vectors = err; 1467 return 0; 1468 } 1469 1470 /** 1471 * iavf_free_queues - Free memory for all rings 1472 * @adapter: board private structure to initialize 1473 * 1474 * Free all of the memory associated with queue pairs. 1475 **/ 1476 static void iavf_free_queues(struct iavf_adapter *adapter) 1477 { 1478 if (!adapter->vsi_res) 1479 return; 1480 adapter->num_active_queues = 0; 1481 kfree(adapter->tx_rings); 1482 adapter->tx_rings = NULL; 1483 kfree(adapter->rx_rings); 1484 adapter->rx_rings = NULL; 1485 } 1486 1487 /** 1488 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload 1489 * @adapter: board private structure 1490 * 1491 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or 1492 * stripped in certain descriptor fields. Instead of checking the offload 1493 * capability bits in the hot path, cache the location the ring specific 1494 * flags. 1495 */ 1496 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter) 1497 { 1498 int i; 1499 1500 for (i = 0; i < adapter->num_active_queues; i++) { 1501 struct iavf_ring *tx_ring = &adapter->tx_rings[i]; 1502 struct iavf_ring *rx_ring = &adapter->rx_rings[i]; 1503 1504 /* prevent multiple L2TAG bits being set after VFR */ 1505 tx_ring->flags &= 1506 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1507 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2); 1508 rx_ring->flags &= 1509 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 | 1510 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2); 1511 1512 if (VLAN_ALLOWED(adapter)) { 1513 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1514 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1515 } else if (VLAN_V2_ALLOWED(adapter)) { 1516 struct virtchnl_vlan_supported_caps *stripping_support; 1517 struct virtchnl_vlan_supported_caps *insertion_support; 1518 1519 stripping_support = 1520 &adapter->vlan_v2_caps.offloads.stripping_support; 1521 insertion_support = 1522 &adapter->vlan_v2_caps.offloads.insertion_support; 1523 1524 if (stripping_support->outer) { 1525 if (stripping_support->outer & 1526 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1527 rx_ring->flags |= 1528 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1529 else if (stripping_support->outer & 1530 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1531 rx_ring->flags |= 1532 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1533 } else if (stripping_support->inner) { 1534 if (stripping_support->inner & 1535 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1536 rx_ring->flags |= 1537 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1538 else if (stripping_support->inner & 1539 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2) 1540 rx_ring->flags |= 1541 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2; 1542 } 1543 1544 if (insertion_support->outer) { 1545 if (insertion_support->outer & 1546 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1547 tx_ring->flags |= 1548 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1549 else if (insertion_support->outer & 1550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1551 tx_ring->flags |= 1552 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1553 } else if (insertion_support->inner) { 1554 if (insertion_support->inner & 1555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1) 1556 tx_ring->flags |= 1557 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1; 1558 else if (insertion_support->inner & 1559 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2) 1560 tx_ring->flags |= 1561 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2; 1562 } 1563 } 1564 } 1565 } 1566 1567 /** 1568 * iavf_alloc_queues - Allocate memory for all rings 1569 * @adapter: board private structure to initialize 1570 * 1571 * We allocate one ring per queue at run-time since we don't know the 1572 * number of queues at compile-time. The polling_netdev array is 1573 * intended for Multiqueue, but should work fine with a single queue. 1574 **/ 1575 static int iavf_alloc_queues(struct iavf_adapter *adapter) 1576 { 1577 int i, num_active_queues; 1578 1579 /* If we're in reset reallocating queues we don't actually know yet for 1580 * certain the PF gave us the number of queues we asked for but we'll 1581 * assume it did. Once basic reset is finished we'll confirm once we 1582 * start negotiating config with PF. 1583 */ 1584 if (adapter->num_req_queues) 1585 num_active_queues = adapter->num_req_queues; 1586 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1587 adapter->num_tc) 1588 num_active_queues = adapter->ch_config.total_qps; 1589 else 1590 num_active_queues = min_t(int, 1591 adapter->vsi_res->num_queue_pairs, 1592 (int)(num_online_cpus())); 1593 1594 1595 adapter->tx_rings = kcalloc(num_active_queues, 1596 sizeof(struct iavf_ring), GFP_KERNEL); 1597 if (!adapter->tx_rings) 1598 goto err_out; 1599 adapter->rx_rings = kcalloc(num_active_queues, 1600 sizeof(struct iavf_ring), GFP_KERNEL); 1601 if (!adapter->rx_rings) 1602 goto err_out; 1603 1604 for (i = 0; i < num_active_queues; i++) { 1605 struct iavf_ring *tx_ring; 1606 struct iavf_ring *rx_ring; 1607 1608 tx_ring = &adapter->tx_rings[i]; 1609 1610 tx_ring->queue_index = i; 1611 tx_ring->netdev = adapter->netdev; 1612 tx_ring->dev = &adapter->pdev->dev; 1613 tx_ring->count = adapter->tx_desc_count; 1614 tx_ring->itr_setting = IAVF_ITR_TX_DEF; 1615 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE) 1616 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR; 1617 1618 rx_ring = &adapter->rx_rings[i]; 1619 rx_ring->queue_index = i; 1620 rx_ring->netdev = adapter->netdev; 1621 rx_ring->dev = &adapter->pdev->dev; 1622 rx_ring->count = adapter->rx_desc_count; 1623 rx_ring->itr_setting = IAVF_ITR_RX_DEF; 1624 } 1625 1626 adapter->num_active_queues = num_active_queues; 1627 1628 iavf_set_queue_vlan_tag_loc(adapter); 1629 1630 return 0; 1631 1632 err_out: 1633 iavf_free_queues(adapter); 1634 return -ENOMEM; 1635 } 1636 1637 /** 1638 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported 1639 * @adapter: board private structure to initialize 1640 * 1641 * Attempt to configure the interrupts using the best available 1642 * capabilities of the hardware and the kernel. 1643 **/ 1644 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter) 1645 { 1646 int vector, v_budget; 1647 int pairs = 0; 1648 int err = 0; 1649 1650 if (!adapter->vsi_res) { 1651 err = -EIO; 1652 goto out; 1653 } 1654 pairs = adapter->num_active_queues; 1655 1656 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do 1657 * us much good if we have more vectors than CPUs. However, we already 1658 * limit the total number of queues by the number of CPUs so we do not 1659 * need any further limiting here. 1660 */ 1661 v_budget = min_t(int, pairs + NONQ_VECS, 1662 (int)adapter->vf_res->max_vectors); 1663 1664 adapter->msix_entries = kcalloc(v_budget, 1665 sizeof(struct msix_entry), GFP_KERNEL); 1666 if (!adapter->msix_entries) { 1667 err = -ENOMEM; 1668 goto out; 1669 } 1670 1671 for (vector = 0; vector < v_budget; vector++) 1672 adapter->msix_entries[vector].entry = vector; 1673 1674 err = iavf_acquire_msix_vectors(adapter, v_budget); 1675 if (!err) 1676 iavf_schedule_finish_config(adapter); 1677 1678 out: 1679 return err; 1680 } 1681 1682 /** 1683 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands 1684 * @adapter: board private structure 1685 * 1686 * Return 0 on success, negative on failure 1687 **/ 1688 static int iavf_config_rss_aq(struct iavf_adapter *adapter) 1689 { 1690 struct iavf_aqc_get_set_rss_key_data *rss_key = 1691 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key; 1692 struct iavf_hw *hw = &adapter->hw; 1693 enum iavf_status status; 1694 1695 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) { 1696 /* bail because we already have a command pending */ 1697 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n", 1698 adapter->current_op); 1699 return -EBUSY; 1700 } 1701 1702 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key); 1703 if (status) { 1704 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n", 1705 iavf_stat_str(hw, status), 1706 iavf_aq_str(hw, hw->aq.asq_last_status)); 1707 return iavf_status_to_errno(status); 1708 1709 } 1710 1711 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false, 1712 adapter->rss_lut, adapter->rss_lut_size); 1713 if (status) { 1714 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n", 1715 iavf_stat_str(hw, status), 1716 iavf_aq_str(hw, hw->aq.asq_last_status)); 1717 return iavf_status_to_errno(status); 1718 } 1719 1720 return 0; 1721 1722 } 1723 1724 /** 1725 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers 1726 * @adapter: board private structure 1727 * 1728 * Returns 0 on success, negative on failure 1729 **/ 1730 static int iavf_config_rss_reg(struct iavf_adapter *adapter) 1731 { 1732 struct iavf_hw *hw = &adapter->hw; 1733 u32 *dw; 1734 u16 i; 1735 1736 dw = (u32 *)adapter->rss_key; 1737 for (i = 0; i <= adapter->rss_key_size / 4; i++) 1738 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]); 1739 1740 dw = (u32 *)adapter->rss_lut; 1741 for (i = 0; i <= adapter->rss_lut_size / 4; i++) 1742 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]); 1743 1744 iavf_flush(hw); 1745 1746 return 0; 1747 } 1748 1749 /** 1750 * iavf_config_rss - Configure RSS keys and lut 1751 * @adapter: board private structure 1752 * 1753 * Returns 0 on success, negative on failure 1754 **/ 1755 int iavf_config_rss(struct iavf_adapter *adapter) 1756 { 1757 1758 if (RSS_PF(adapter)) { 1759 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT | 1760 IAVF_FLAG_AQ_SET_RSS_KEY; 1761 return 0; 1762 } else if (RSS_AQ(adapter)) { 1763 return iavf_config_rss_aq(adapter); 1764 } else { 1765 return iavf_config_rss_reg(adapter); 1766 } 1767 } 1768 1769 /** 1770 * iavf_fill_rss_lut - Fill the lut with default values 1771 * @adapter: board private structure 1772 **/ 1773 static void iavf_fill_rss_lut(struct iavf_adapter *adapter) 1774 { 1775 u16 i; 1776 1777 for (i = 0; i < adapter->rss_lut_size; i++) 1778 adapter->rss_lut[i] = i % adapter->num_active_queues; 1779 } 1780 1781 /** 1782 * iavf_init_rss - Prepare for RSS 1783 * @adapter: board private structure 1784 * 1785 * Return 0 on success, negative on failure 1786 **/ 1787 static int iavf_init_rss(struct iavf_adapter *adapter) 1788 { 1789 struct iavf_hw *hw = &adapter->hw; 1790 1791 if (!RSS_PF(adapter)) { 1792 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */ 1793 if (adapter->vf_res->vf_cap_flags & 1794 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 1795 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED; 1796 else 1797 adapter->hena = IAVF_DEFAULT_RSS_HENA; 1798 1799 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena); 1800 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32)); 1801 } 1802 1803 iavf_fill_rss_lut(adapter); 1804 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size); 1805 1806 return iavf_config_rss(adapter); 1807 } 1808 1809 /** 1810 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors 1811 * @adapter: board private structure to initialize 1812 * 1813 * We allocate one q_vector per queue interrupt. If allocation fails we 1814 * return -ENOMEM. 1815 **/ 1816 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter) 1817 { 1818 int q_idx = 0, num_q_vectors; 1819 struct iavf_q_vector *q_vector; 1820 1821 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1822 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector), 1823 GFP_KERNEL); 1824 if (!adapter->q_vectors) 1825 return -ENOMEM; 1826 1827 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1828 q_vector = &adapter->q_vectors[q_idx]; 1829 q_vector->adapter = adapter; 1830 q_vector->vsi = &adapter->vsi; 1831 q_vector->v_idx = q_idx; 1832 q_vector->reg_idx = q_idx; 1833 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask); 1834 netif_napi_add(adapter->netdev, &q_vector->napi, 1835 iavf_napi_poll); 1836 } 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * iavf_free_q_vectors - Free memory allocated for interrupt vectors 1843 * @adapter: board private structure to initialize 1844 * 1845 * This function frees the memory allocated to the q_vectors. In addition if 1846 * NAPI is enabled it will delete any references to the NAPI struct prior 1847 * to freeing the q_vector. 1848 **/ 1849 static void iavf_free_q_vectors(struct iavf_adapter *adapter) 1850 { 1851 int q_idx, num_q_vectors; 1852 1853 if (!adapter->q_vectors) 1854 return; 1855 1856 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS; 1857 1858 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 1859 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx]; 1860 1861 netif_napi_del(&q_vector->napi); 1862 } 1863 kfree(adapter->q_vectors); 1864 adapter->q_vectors = NULL; 1865 } 1866 1867 /** 1868 * iavf_reset_interrupt_capability - Reset MSIX setup 1869 * @adapter: board private structure 1870 * 1871 **/ 1872 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter) 1873 { 1874 if (!adapter->msix_entries) 1875 return; 1876 1877 pci_disable_msix(adapter->pdev); 1878 kfree(adapter->msix_entries); 1879 adapter->msix_entries = NULL; 1880 } 1881 1882 /** 1883 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init 1884 * @adapter: board private structure to initialize 1885 * 1886 **/ 1887 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter) 1888 { 1889 int err; 1890 1891 err = iavf_alloc_queues(adapter); 1892 if (err) { 1893 dev_err(&adapter->pdev->dev, 1894 "Unable to allocate memory for queues\n"); 1895 goto err_alloc_queues; 1896 } 1897 1898 err = iavf_set_interrupt_capability(adapter); 1899 if (err) { 1900 dev_err(&adapter->pdev->dev, 1901 "Unable to setup interrupt capabilities\n"); 1902 goto err_set_interrupt; 1903 } 1904 1905 err = iavf_alloc_q_vectors(adapter); 1906 if (err) { 1907 dev_err(&adapter->pdev->dev, 1908 "Unable to allocate memory for queue vectors\n"); 1909 goto err_alloc_q_vectors; 1910 } 1911 1912 /* If we've made it so far while ADq flag being ON, then we haven't 1913 * bailed out anywhere in middle. And ADq isn't just enabled but actual 1914 * resources have been allocated in the reset path. 1915 * Now we can truly claim that ADq is enabled. 1916 */ 1917 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 1918 adapter->num_tc) 1919 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created", 1920 adapter->num_tc); 1921 1922 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u", 1923 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled", 1924 adapter->num_active_queues); 1925 1926 return 0; 1927 err_alloc_q_vectors: 1928 iavf_reset_interrupt_capability(adapter); 1929 err_set_interrupt: 1930 iavf_free_queues(adapter); 1931 err_alloc_queues: 1932 return err; 1933 } 1934 1935 /** 1936 * iavf_free_interrupt_scheme - Undo what iavf_init_interrupt_scheme does 1937 * @adapter: board private structure 1938 **/ 1939 static void iavf_free_interrupt_scheme(struct iavf_adapter *adapter) 1940 { 1941 iavf_free_q_vectors(adapter); 1942 iavf_reset_interrupt_capability(adapter); 1943 iavf_free_queues(adapter); 1944 } 1945 1946 /** 1947 * iavf_free_rss - Free memory used by RSS structs 1948 * @adapter: board private structure 1949 **/ 1950 static void iavf_free_rss(struct iavf_adapter *adapter) 1951 { 1952 kfree(adapter->rss_key); 1953 adapter->rss_key = NULL; 1954 1955 kfree(adapter->rss_lut); 1956 adapter->rss_lut = NULL; 1957 } 1958 1959 /** 1960 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors 1961 * @adapter: board private structure 1962 * @running: true if adapter->state == __IAVF_RUNNING 1963 * 1964 * Returns 0 on success, negative on failure 1965 **/ 1966 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running) 1967 { 1968 struct net_device *netdev = adapter->netdev; 1969 int err; 1970 1971 if (running) 1972 iavf_free_traffic_irqs(adapter); 1973 iavf_free_misc_irq(adapter); 1974 iavf_free_interrupt_scheme(adapter); 1975 1976 err = iavf_init_interrupt_scheme(adapter); 1977 if (err) 1978 goto err; 1979 1980 netif_tx_stop_all_queues(netdev); 1981 1982 err = iavf_request_misc_irq(adapter); 1983 if (err) 1984 goto err; 1985 1986 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 1987 1988 iavf_map_rings_to_vectors(adapter); 1989 err: 1990 return err; 1991 } 1992 1993 /** 1994 * iavf_finish_config - do all netdev work that needs RTNL 1995 * @work: our work_struct 1996 * 1997 * Do work that needs both RTNL and crit_lock. 1998 **/ 1999 static void iavf_finish_config(struct work_struct *work) 2000 { 2001 struct iavf_adapter *adapter; 2002 int pairs, err; 2003 2004 adapter = container_of(work, struct iavf_adapter, finish_config); 2005 2006 /* Always take RTNL first to prevent circular lock dependency */ 2007 rtnl_lock(); 2008 mutex_lock(&adapter->crit_lock); 2009 2010 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) && 2011 adapter->netdev->reg_state == NETREG_REGISTERED && 2012 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) { 2013 netdev_update_features(adapter->netdev); 2014 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES; 2015 } 2016 2017 switch (adapter->state) { 2018 case __IAVF_DOWN: 2019 if (adapter->netdev->reg_state != NETREG_REGISTERED) { 2020 err = register_netdevice(adapter->netdev); 2021 if (err) { 2022 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n", 2023 err); 2024 2025 /* go back and try again.*/ 2026 iavf_free_rss(adapter); 2027 iavf_free_misc_irq(adapter); 2028 iavf_reset_interrupt_capability(adapter); 2029 iavf_change_state(adapter, 2030 __IAVF_INIT_CONFIG_ADAPTER); 2031 goto out; 2032 } 2033 } 2034 2035 /* Set the real number of queues when reset occurs while 2036 * state == __IAVF_DOWN 2037 */ 2038 fallthrough; 2039 case __IAVF_RUNNING: 2040 pairs = adapter->num_active_queues; 2041 netif_set_real_num_rx_queues(adapter->netdev, pairs); 2042 netif_set_real_num_tx_queues(adapter->netdev, pairs); 2043 break; 2044 2045 default: 2046 break; 2047 } 2048 2049 out: 2050 mutex_unlock(&adapter->crit_lock); 2051 rtnl_unlock(); 2052 } 2053 2054 /** 2055 * iavf_schedule_finish_config - Set the flags and schedule a reset event 2056 * @adapter: board private structure 2057 **/ 2058 void iavf_schedule_finish_config(struct iavf_adapter *adapter) 2059 { 2060 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 2061 queue_work(adapter->wq, &adapter->finish_config); 2062 } 2063 2064 /** 2065 * iavf_process_aq_command - process aq_required flags 2066 * and sends aq command 2067 * @adapter: pointer to iavf adapter structure 2068 * 2069 * Returns 0 on success 2070 * Returns error code if no command was sent 2071 * or error code if the command failed. 2072 **/ 2073 static int iavf_process_aq_command(struct iavf_adapter *adapter) 2074 { 2075 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) 2076 return iavf_send_vf_config_msg(adapter); 2077 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS) 2078 return iavf_send_vf_offload_vlan_v2_msg(adapter); 2079 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) { 2080 iavf_disable_queues(adapter); 2081 return 0; 2082 } 2083 2084 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) { 2085 iavf_map_queues(adapter); 2086 return 0; 2087 } 2088 2089 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) { 2090 iavf_add_ether_addrs(adapter); 2091 return 0; 2092 } 2093 2094 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) { 2095 iavf_add_vlans(adapter); 2096 return 0; 2097 } 2098 2099 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) { 2100 iavf_del_ether_addrs(adapter); 2101 return 0; 2102 } 2103 2104 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) { 2105 iavf_del_vlans(adapter); 2106 return 0; 2107 } 2108 2109 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) { 2110 iavf_enable_vlan_stripping(adapter); 2111 return 0; 2112 } 2113 2114 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) { 2115 iavf_disable_vlan_stripping(adapter); 2116 return 0; 2117 } 2118 2119 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) { 2120 iavf_configure_queues(adapter); 2121 return 0; 2122 } 2123 2124 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) { 2125 iavf_enable_queues(adapter); 2126 return 0; 2127 } 2128 2129 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) { 2130 /* This message goes straight to the firmware, not the 2131 * PF, so we don't have to set current_op as we will 2132 * not get a response through the ARQ. 2133 */ 2134 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS; 2135 return 0; 2136 } 2137 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) { 2138 iavf_get_hena(adapter); 2139 return 0; 2140 } 2141 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) { 2142 iavf_set_hena(adapter); 2143 return 0; 2144 } 2145 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) { 2146 iavf_set_rss_key(adapter); 2147 return 0; 2148 } 2149 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) { 2150 iavf_set_rss_lut(adapter); 2151 return 0; 2152 } 2153 2154 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) { 2155 iavf_set_promiscuous(adapter); 2156 return 0; 2157 } 2158 2159 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) { 2160 iavf_enable_channels(adapter); 2161 return 0; 2162 } 2163 2164 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) { 2165 iavf_disable_channels(adapter); 2166 return 0; 2167 } 2168 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2169 iavf_add_cloud_filter(adapter); 2170 return 0; 2171 } 2172 2173 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2174 iavf_del_cloud_filter(adapter); 2175 return 0; 2176 } 2177 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) { 2178 iavf_del_cloud_filter(adapter); 2179 return 0; 2180 } 2181 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) { 2182 iavf_add_cloud_filter(adapter); 2183 return 0; 2184 } 2185 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) { 2186 iavf_add_fdir_filter(adapter); 2187 return IAVF_SUCCESS; 2188 } 2189 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) { 2190 iavf_del_fdir_filter(adapter); 2191 return IAVF_SUCCESS; 2192 } 2193 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) { 2194 iavf_add_adv_rss_cfg(adapter); 2195 return 0; 2196 } 2197 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) { 2198 iavf_del_adv_rss_cfg(adapter); 2199 return 0; 2200 } 2201 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) { 2202 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2203 return 0; 2204 } 2205 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) { 2206 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2207 return 0; 2208 } 2209 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) { 2210 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q); 2211 return 0; 2212 } 2213 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) { 2214 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD); 2215 return 0; 2216 } 2217 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) { 2218 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2219 return 0; 2220 } 2221 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) { 2222 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2223 return 0; 2224 } 2225 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) { 2226 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q); 2227 return 0; 2228 } 2229 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) { 2230 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD); 2231 return 0; 2232 } 2233 2234 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) { 2235 iavf_request_stats(adapter); 2236 return 0; 2237 } 2238 2239 return -EAGAIN; 2240 } 2241 2242 /** 2243 * iavf_set_vlan_offload_features - set VLAN offload configuration 2244 * @adapter: board private structure 2245 * @prev_features: previous features used for comparison 2246 * @features: updated features used for configuration 2247 * 2248 * Set the aq_required bit(s) based on the requested features passed in to 2249 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule 2250 * the watchdog if any changes are requested to expedite the request via 2251 * virtchnl. 2252 **/ 2253 static void 2254 iavf_set_vlan_offload_features(struct iavf_adapter *adapter, 2255 netdev_features_t prev_features, 2256 netdev_features_t features) 2257 { 2258 bool enable_stripping = true, enable_insertion = true; 2259 u16 vlan_ethertype = 0; 2260 u64 aq_required = 0; 2261 2262 /* keep cases separate because one ethertype for offloads can be 2263 * disabled at the same time as another is disabled, so check for an 2264 * enabled ethertype first, then check for disabled. Default to 2265 * ETH_P_8021Q so an ethertype is specified if disabling insertion and 2266 * stripping. 2267 */ 2268 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2269 vlan_ethertype = ETH_P_8021AD; 2270 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2271 vlan_ethertype = ETH_P_8021Q; 2272 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 2273 vlan_ethertype = ETH_P_8021AD; 2274 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 2275 vlan_ethertype = ETH_P_8021Q; 2276 else 2277 vlan_ethertype = ETH_P_8021Q; 2278 2279 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 2280 enable_stripping = false; 2281 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 2282 enable_insertion = false; 2283 2284 if (VLAN_ALLOWED(adapter)) { 2285 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN 2286 * stripping via virtchnl. VLAN insertion can be toggled on the 2287 * netdev, but it doesn't require a virtchnl message 2288 */ 2289 if (enable_stripping) 2290 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING; 2291 else 2292 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING; 2293 2294 } else if (VLAN_V2_ALLOWED(adapter)) { 2295 switch (vlan_ethertype) { 2296 case ETH_P_8021Q: 2297 if (enable_stripping) 2298 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING; 2299 else 2300 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING; 2301 2302 if (enable_insertion) 2303 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION; 2304 else 2305 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION; 2306 break; 2307 case ETH_P_8021AD: 2308 if (enable_stripping) 2309 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING; 2310 else 2311 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING; 2312 2313 if (enable_insertion) 2314 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION; 2315 else 2316 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION; 2317 break; 2318 } 2319 } 2320 2321 if (aq_required) { 2322 adapter->aq_required |= aq_required; 2323 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 2324 } 2325 } 2326 2327 /** 2328 * iavf_startup - first step of driver startup 2329 * @adapter: board private structure 2330 * 2331 * Function process __IAVF_STARTUP driver state. 2332 * When success the state is changed to __IAVF_INIT_VERSION_CHECK 2333 * when fails the state is changed to __IAVF_INIT_FAILED 2334 **/ 2335 static void iavf_startup(struct iavf_adapter *adapter) 2336 { 2337 struct pci_dev *pdev = adapter->pdev; 2338 struct iavf_hw *hw = &adapter->hw; 2339 enum iavf_status status; 2340 int ret; 2341 2342 WARN_ON(adapter->state != __IAVF_STARTUP); 2343 2344 /* driver loaded, probe complete */ 2345 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2346 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2347 2348 ret = iavf_check_reset_complete(hw); 2349 if (ret) { 2350 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n", 2351 ret); 2352 goto err; 2353 } 2354 hw->aq.num_arq_entries = IAVF_AQ_LEN; 2355 hw->aq.num_asq_entries = IAVF_AQ_LEN; 2356 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2357 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE; 2358 2359 status = iavf_init_adminq(hw); 2360 if (status) { 2361 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", 2362 status); 2363 goto err; 2364 } 2365 ret = iavf_send_api_ver(adapter); 2366 if (ret) { 2367 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret); 2368 iavf_shutdown_adminq(hw); 2369 goto err; 2370 } 2371 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK); 2372 return; 2373 err: 2374 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2375 } 2376 2377 /** 2378 * iavf_init_version_check - second step of driver startup 2379 * @adapter: board private structure 2380 * 2381 * Function process __IAVF_INIT_VERSION_CHECK driver state. 2382 * When success the state is changed to __IAVF_INIT_GET_RESOURCES 2383 * when fails the state is changed to __IAVF_INIT_FAILED 2384 **/ 2385 static void iavf_init_version_check(struct iavf_adapter *adapter) 2386 { 2387 struct pci_dev *pdev = adapter->pdev; 2388 struct iavf_hw *hw = &adapter->hw; 2389 int err = -EAGAIN; 2390 2391 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK); 2392 2393 if (!iavf_asq_done(hw)) { 2394 dev_err(&pdev->dev, "Admin queue command never completed\n"); 2395 iavf_shutdown_adminq(hw); 2396 iavf_change_state(adapter, __IAVF_STARTUP); 2397 goto err; 2398 } 2399 2400 /* aq msg sent, awaiting reply */ 2401 err = iavf_verify_api_ver(adapter); 2402 if (err) { 2403 if (err == -EALREADY) 2404 err = iavf_send_api_ver(adapter); 2405 else 2406 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n", 2407 adapter->pf_version.major, 2408 adapter->pf_version.minor, 2409 VIRTCHNL_VERSION_MAJOR, 2410 VIRTCHNL_VERSION_MINOR); 2411 goto err; 2412 } 2413 err = iavf_send_vf_config_msg(adapter); 2414 if (err) { 2415 dev_err(&pdev->dev, "Unable to send config request (%d)\n", 2416 err); 2417 goto err; 2418 } 2419 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES); 2420 return; 2421 err: 2422 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2423 } 2424 2425 /** 2426 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES 2427 * @adapter: board private structure 2428 */ 2429 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter) 2430 { 2431 int i, num_req_queues = adapter->num_req_queues; 2432 struct iavf_vsi *vsi = &adapter->vsi; 2433 2434 for (i = 0; i < adapter->vf_res->num_vsis; i++) { 2435 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV) 2436 adapter->vsi_res = &adapter->vf_res->vsi_res[i]; 2437 } 2438 if (!adapter->vsi_res) { 2439 dev_err(&adapter->pdev->dev, "No LAN VSI found\n"); 2440 return -ENODEV; 2441 } 2442 2443 if (num_req_queues && 2444 num_req_queues > adapter->vsi_res->num_queue_pairs) { 2445 /* Problem. The PF gave us fewer queues than what we had 2446 * negotiated in our request. Need a reset to see if we can't 2447 * get back to a working state. 2448 */ 2449 dev_err(&adapter->pdev->dev, 2450 "Requested %d queues, but PF only gave us %d.\n", 2451 num_req_queues, 2452 adapter->vsi_res->num_queue_pairs); 2453 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED; 2454 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs; 2455 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 2456 2457 return -EAGAIN; 2458 } 2459 adapter->num_req_queues = 0; 2460 adapter->vsi.id = adapter->vsi_res->vsi_id; 2461 2462 adapter->vsi.back = adapter; 2463 adapter->vsi.base_vector = 1; 2464 vsi->netdev = adapter->netdev; 2465 vsi->qs_handle = adapter->vsi_res->qset_handle; 2466 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 2467 adapter->rss_key_size = adapter->vf_res->rss_key_size; 2468 adapter->rss_lut_size = adapter->vf_res->rss_lut_size; 2469 } else { 2470 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE; 2471 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE; 2472 } 2473 2474 return 0; 2475 } 2476 2477 /** 2478 * iavf_init_get_resources - third step of driver startup 2479 * @adapter: board private structure 2480 * 2481 * Function process __IAVF_INIT_GET_RESOURCES driver state and 2482 * finishes driver initialization procedure. 2483 * When success the state is changed to __IAVF_DOWN 2484 * when fails the state is changed to __IAVF_INIT_FAILED 2485 **/ 2486 static void iavf_init_get_resources(struct iavf_adapter *adapter) 2487 { 2488 struct pci_dev *pdev = adapter->pdev; 2489 struct iavf_hw *hw = &adapter->hw; 2490 int err; 2491 2492 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES); 2493 /* aq msg sent, awaiting reply */ 2494 if (!adapter->vf_res) { 2495 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE, 2496 GFP_KERNEL); 2497 if (!adapter->vf_res) { 2498 err = -ENOMEM; 2499 goto err; 2500 } 2501 } 2502 err = iavf_get_vf_config(adapter); 2503 if (err == -EALREADY) { 2504 err = iavf_send_vf_config_msg(adapter); 2505 goto err; 2506 } else if (err == -EINVAL) { 2507 /* We only get -EINVAL if the device is in a very bad 2508 * state or if we've been disabled for previous bad 2509 * behavior. Either way, we're done now. 2510 */ 2511 iavf_shutdown_adminq(hw); 2512 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n"); 2513 return; 2514 } 2515 if (err) { 2516 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err); 2517 goto err_alloc; 2518 } 2519 2520 err = iavf_parse_vf_resource_msg(adapter); 2521 if (err) { 2522 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n", 2523 err); 2524 goto err_alloc; 2525 } 2526 /* Some features require additional messages to negotiate extended 2527 * capabilities. These are processed in sequence by the 2528 * __IAVF_INIT_EXTENDED_CAPS driver state. 2529 */ 2530 adapter->extended_caps = IAVF_EXTENDED_CAPS; 2531 2532 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS); 2533 return; 2534 2535 err_alloc: 2536 kfree(adapter->vf_res); 2537 adapter->vf_res = NULL; 2538 err: 2539 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2540 } 2541 2542 /** 2543 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2544 * @adapter: board private structure 2545 * 2546 * Function processes send of the extended VLAN V2 capability message to the 2547 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent, 2548 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2549 */ 2550 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2551 { 2552 int ret; 2553 2554 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2)); 2555 2556 ret = iavf_send_vf_offload_vlan_v2_msg(adapter); 2557 if (ret && ret == -EOPNOTSUPP) { 2558 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case, 2559 * we did not send the capability exchange message and do not 2560 * expect a response. 2561 */ 2562 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2563 } 2564 2565 /* We sent the message, so move on to the next step */ 2566 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2567 } 2568 2569 /** 2570 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps 2571 * @adapter: board private structure 2572 * 2573 * Function processes receipt of the extended VLAN V2 capability message from 2574 * the PF. 2575 **/ 2576 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter) 2577 { 2578 int ret; 2579 2580 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2)); 2581 2582 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps)); 2583 2584 ret = iavf_get_vf_vlan_v2_caps(adapter); 2585 if (ret) 2586 goto err; 2587 2588 /* We've processed receipt of the VLAN V2 caps message */ 2589 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2; 2590 return; 2591 err: 2592 /* We didn't receive a reply. Make sure we try sending again when 2593 * __IAVF_INIT_FAILED attempts to recover. 2594 */ 2595 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2; 2596 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2597 } 2598 2599 /** 2600 * iavf_init_process_extended_caps - Part of driver startup 2601 * @adapter: board private structure 2602 * 2603 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state 2604 * handles negotiating capabilities for features which require an additional 2605 * message. 2606 * 2607 * Once all extended capabilities exchanges are finished, the driver will 2608 * transition into __IAVF_INIT_CONFIG_ADAPTER. 2609 */ 2610 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter) 2611 { 2612 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS); 2613 2614 /* Process capability exchange for VLAN V2 */ 2615 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) { 2616 iavf_init_send_offload_vlan_v2_caps(adapter); 2617 return; 2618 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) { 2619 iavf_init_recv_offload_vlan_v2_caps(adapter); 2620 return; 2621 } 2622 2623 /* When we reach here, no further extended capabilities exchanges are 2624 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER 2625 */ 2626 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER); 2627 } 2628 2629 /** 2630 * iavf_init_config_adapter - last part of driver startup 2631 * @adapter: board private structure 2632 * 2633 * After all the supported capabilities are negotiated, then the 2634 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization. 2635 */ 2636 static void iavf_init_config_adapter(struct iavf_adapter *adapter) 2637 { 2638 struct net_device *netdev = adapter->netdev; 2639 struct pci_dev *pdev = adapter->pdev; 2640 int err; 2641 2642 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER); 2643 2644 if (iavf_process_config(adapter)) 2645 goto err; 2646 2647 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2648 2649 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED; 2650 2651 netdev->netdev_ops = &iavf_netdev_ops; 2652 iavf_set_ethtool_ops(netdev); 2653 netdev->watchdog_timeo = 5 * HZ; 2654 2655 /* MTU range: 68 - 9710 */ 2656 netdev->min_mtu = ETH_MIN_MTU; 2657 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD; 2658 2659 if (!is_valid_ether_addr(adapter->hw.mac.addr)) { 2660 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n", 2661 adapter->hw.mac.addr); 2662 eth_hw_addr_random(netdev); 2663 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr); 2664 } else { 2665 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2666 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2667 } 2668 2669 adapter->tx_desc_count = IAVF_DEFAULT_TXD; 2670 adapter->rx_desc_count = IAVF_DEFAULT_RXD; 2671 err = iavf_init_interrupt_scheme(adapter); 2672 if (err) 2673 goto err_sw_init; 2674 iavf_map_rings_to_vectors(adapter); 2675 if (adapter->vf_res->vf_cap_flags & 2676 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 2677 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE; 2678 2679 err = iavf_request_misc_irq(adapter); 2680 if (err) 2681 goto err_sw_init; 2682 2683 netif_carrier_off(netdev); 2684 adapter->link_up = false; 2685 netif_tx_stop_all_queues(netdev); 2686 2687 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr); 2688 if (netdev->features & NETIF_F_GRO) 2689 dev_info(&pdev->dev, "GRO is enabled\n"); 2690 2691 iavf_change_state(adapter, __IAVF_DOWN); 2692 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2693 2694 iavf_misc_irq_enable(adapter); 2695 wake_up(&adapter->down_waitqueue); 2696 2697 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL); 2698 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL); 2699 if (!adapter->rss_key || !adapter->rss_lut) { 2700 err = -ENOMEM; 2701 goto err_mem; 2702 } 2703 if (RSS_AQ(adapter)) 2704 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 2705 else 2706 iavf_init_rss(adapter); 2707 2708 if (VLAN_V2_ALLOWED(adapter)) 2709 /* request initial VLAN offload settings */ 2710 iavf_set_vlan_offload_features(adapter, 0, netdev->features); 2711 2712 iavf_schedule_finish_config(adapter); 2713 return; 2714 2715 err_mem: 2716 iavf_free_rss(adapter); 2717 iavf_free_misc_irq(adapter); 2718 err_sw_init: 2719 iavf_reset_interrupt_capability(adapter); 2720 err: 2721 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2722 } 2723 2724 /** 2725 * iavf_watchdog_task - Periodic call-back task 2726 * @work: pointer to work_struct 2727 **/ 2728 static void iavf_watchdog_task(struct work_struct *work) 2729 { 2730 struct iavf_adapter *adapter = container_of(work, 2731 struct iavf_adapter, 2732 watchdog_task.work); 2733 struct iavf_hw *hw = &adapter->hw; 2734 u32 reg_val; 2735 2736 if (!mutex_trylock(&adapter->crit_lock)) { 2737 if (adapter->state == __IAVF_REMOVE) 2738 return; 2739 2740 goto restart_watchdog; 2741 } 2742 2743 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 2744 iavf_change_state(adapter, __IAVF_COMM_FAILED); 2745 2746 switch (adapter->state) { 2747 case __IAVF_STARTUP: 2748 iavf_startup(adapter); 2749 mutex_unlock(&adapter->crit_lock); 2750 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2751 msecs_to_jiffies(30)); 2752 return; 2753 case __IAVF_INIT_VERSION_CHECK: 2754 iavf_init_version_check(adapter); 2755 mutex_unlock(&adapter->crit_lock); 2756 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2757 msecs_to_jiffies(30)); 2758 return; 2759 case __IAVF_INIT_GET_RESOURCES: 2760 iavf_init_get_resources(adapter); 2761 mutex_unlock(&adapter->crit_lock); 2762 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2763 msecs_to_jiffies(1)); 2764 return; 2765 case __IAVF_INIT_EXTENDED_CAPS: 2766 iavf_init_process_extended_caps(adapter); 2767 mutex_unlock(&adapter->crit_lock); 2768 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2769 msecs_to_jiffies(1)); 2770 return; 2771 case __IAVF_INIT_CONFIG_ADAPTER: 2772 iavf_init_config_adapter(adapter); 2773 mutex_unlock(&adapter->crit_lock); 2774 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2775 msecs_to_jiffies(1)); 2776 return; 2777 case __IAVF_INIT_FAILED: 2778 if (test_bit(__IAVF_IN_REMOVE_TASK, 2779 &adapter->crit_section)) { 2780 /* Do not update the state and do not reschedule 2781 * watchdog task, iavf_remove should handle this state 2782 * as it can loop forever 2783 */ 2784 mutex_unlock(&adapter->crit_lock); 2785 return; 2786 } 2787 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) { 2788 dev_err(&adapter->pdev->dev, 2789 "Failed to communicate with PF; waiting before retry\n"); 2790 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2791 iavf_shutdown_adminq(hw); 2792 mutex_unlock(&adapter->crit_lock); 2793 queue_delayed_work(adapter->wq, 2794 &adapter->watchdog_task, (5 * HZ)); 2795 return; 2796 } 2797 /* Try again from failed step*/ 2798 iavf_change_state(adapter, adapter->last_state); 2799 mutex_unlock(&adapter->crit_lock); 2800 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ); 2801 return; 2802 case __IAVF_COMM_FAILED: 2803 if (test_bit(__IAVF_IN_REMOVE_TASK, 2804 &adapter->crit_section)) { 2805 /* Set state to __IAVF_INIT_FAILED and perform remove 2806 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task 2807 * doesn't bring the state back to __IAVF_COMM_FAILED. 2808 */ 2809 iavf_change_state(adapter, __IAVF_INIT_FAILED); 2810 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2811 mutex_unlock(&adapter->crit_lock); 2812 return; 2813 } 2814 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 2815 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 2816 if (reg_val == VIRTCHNL_VFR_VFACTIVE || 2817 reg_val == VIRTCHNL_VFR_COMPLETED) { 2818 /* A chance for redemption! */ 2819 dev_err(&adapter->pdev->dev, 2820 "Hardware came out of reset. Attempting reinit.\n"); 2821 /* When init task contacts the PF and 2822 * gets everything set up again, it'll restart the 2823 * watchdog for us. Down, boy. Sit. Stay. Woof. 2824 */ 2825 iavf_change_state(adapter, __IAVF_STARTUP); 2826 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED; 2827 } 2828 adapter->aq_required = 0; 2829 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2830 mutex_unlock(&adapter->crit_lock); 2831 queue_delayed_work(adapter->wq, 2832 &adapter->watchdog_task, 2833 msecs_to_jiffies(10)); 2834 return; 2835 case __IAVF_RESETTING: 2836 mutex_unlock(&adapter->crit_lock); 2837 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2838 HZ * 2); 2839 return; 2840 case __IAVF_DOWN: 2841 case __IAVF_DOWN_PENDING: 2842 case __IAVF_TESTING: 2843 case __IAVF_RUNNING: 2844 if (adapter->current_op) { 2845 if (!iavf_asq_done(hw)) { 2846 dev_dbg(&adapter->pdev->dev, 2847 "Admin queue timeout\n"); 2848 iavf_send_api_ver(adapter); 2849 } 2850 } else { 2851 int ret = iavf_process_aq_command(adapter); 2852 2853 /* An error will be returned if no commands were 2854 * processed; use this opportunity to update stats 2855 * if the error isn't -ENOTSUPP 2856 */ 2857 if (ret && ret != -EOPNOTSUPP && 2858 adapter->state == __IAVF_RUNNING) 2859 iavf_request_stats(adapter); 2860 } 2861 if (adapter->state == __IAVF_RUNNING) 2862 iavf_detect_recover_hung(&adapter->vsi); 2863 break; 2864 case __IAVF_REMOVE: 2865 default: 2866 mutex_unlock(&adapter->crit_lock); 2867 return; 2868 } 2869 2870 /* check for hw reset */ 2871 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK; 2872 if (!reg_val) { 2873 adapter->aq_required = 0; 2874 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 2875 dev_err(&adapter->pdev->dev, "Hardware reset detected\n"); 2876 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING); 2877 mutex_unlock(&adapter->crit_lock); 2878 queue_delayed_work(adapter->wq, 2879 &adapter->watchdog_task, HZ * 2); 2880 return; 2881 } 2882 2883 mutex_unlock(&adapter->crit_lock); 2884 restart_watchdog: 2885 if (adapter->state >= __IAVF_DOWN) 2886 queue_work(adapter->wq, &adapter->adminq_task); 2887 if (adapter->aq_required) 2888 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2889 msecs_to_jiffies(20)); 2890 else 2891 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 2892 HZ * 2); 2893 } 2894 2895 /** 2896 * iavf_disable_vf - disable VF 2897 * @adapter: board private structure 2898 * 2899 * Set communication failed flag and free all resources. 2900 * NOTE: This function is expected to be called with crit_lock being held. 2901 **/ 2902 static void iavf_disable_vf(struct iavf_adapter *adapter) 2903 { 2904 struct iavf_mac_filter *f, *ftmp; 2905 struct iavf_vlan_filter *fv, *fvtmp; 2906 struct iavf_cloud_filter *cf, *cftmp; 2907 2908 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED; 2909 2910 /* We don't use netif_running() because it may be true prior to 2911 * ndo_open() returning, so we can't assume it means all our open 2912 * tasks have finished, since we're not holding the rtnl_lock here. 2913 */ 2914 if (adapter->state == __IAVF_RUNNING) { 2915 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 2916 netif_carrier_off(adapter->netdev); 2917 netif_tx_disable(adapter->netdev); 2918 adapter->link_up = false; 2919 iavf_napi_disable_all(adapter); 2920 iavf_irq_disable(adapter); 2921 iavf_free_traffic_irqs(adapter); 2922 iavf_free_all_tx_resources(adapter); 2923 iavf_free_all_rx_resources(adapter); 2924 } 2925 2926 spin_lock_bh(&adapter->mac_vlan_list_lock); 2927 2928 /* Delete all of the filters */ 2929 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 2930 list_del(&f->list); 2931 kfree(f); 2932 } 2933 2934 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) { 2935 list_del(&fv->list); 2936 kfree(fv); 2937 } 2938 adapter->num_vlan_filters = 0; 2939 2940 spin_unlock_bh(&adapter->mac_vlan_list_lock); 2941 2942 spin_lock_bh(&adapter->cloud_filter_list_lock); 2943 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 2944 list_del(&cf->list); 2945 kfree(cf); 2946 adapter->num_cloud_filters--; 2947 } 2948 spin_unlock_bh(&adapter->cloud_filter_list_lock); 2949 2950 iavf_free_misc_irq(adapter); 2951 iavf_free_interrupt_scheme(adapter); 2952 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE); 2953 iavf_shutdown_adminq(&adapter->hw); 2954 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 2955 iavf_change_state(adapter, __IAVF_DOWN); 2956 wake_up(&adapter->down_waitqueue); 2957 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n"); 2958 } 2959 2960 /** 2961 * iavf_reset_task - Call-back task to handle hardware reset 2962 * @work: pointer to work_struct 2963 * 2964 * During reset we need to shut down and reinitialize the admin queue 2965 * before we can use it to communicate with the PF again. We also clear 2966 * and reinit the rings because that context is lost as well. 2967 **/ 2968 static void iavf_reset_task(struct work_struct *work) 2969 { 2970 struct iavf_adapter *adapter = container_of(work, 2971 struct iavf_adapter, 2972 reset_task); 2973 struct virtchnl_vf_resource *vfres = adapter->vf_res; 2974 struct net_device *netdev = adapter->netdev; 2975 struct iavf_hw *hw = &adapter->hw; 2976 struct iavf_mac_filter *f, *ftmp; 2977 struct iavf_cloud_filter *cf; 2978 enum iavf_status status; 2979 u32 reg_val; 2980 int i = 0, err; 2981 bool running; 2982 2983 /* When device is being removed it doesn't make sense to run the reset 2984 * task, just return in such a case. 2985 */ 2986 if (!mutex_trylock(&adapter->crit_lock)) { 2987 if (adapter->state != __IAVF_REMOVE) 2988 queue_work(adapter->wq, &adapter->reset_task); 2989 2990 return; 2991 } 2992 2993 iavf_misc_irq_disable(adapter); 2994 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) { 2995 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED; 2996 /* Restart the AQ here. If we have been reset but didn't 2997 * detect it, or if the PF had to reinit, our AQ will be hosed. 2998 */ 2999 iavf_shutdown_adminq(hw); 3000 iavf_init_adminq(hw); 3001 iavf_request_reset(adapter); 3002 } 3003 adapter->flags |= IAVF_FLAG_RESET_PENDING; 3004 3005 /* poll until we see the reset actually happen */ 3006 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) { 3007 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & 3008 IAVF_VF_ARQLEN1_ARQENABLE_MASK; 3009 if (!reg_val) 3010 break; 3011 usleep_range(5000, 10000); 3012 } 3013 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) { 3014 dev_info(&adapter->pdev->dev, "Never saw reset\n"); 3015 goto continue_reset; /* act like the reset happened */ 3016 } 3017 3018 /* wait until the reset is complete and the PF is responding to us */ 3019 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 3020 /* sleep first to make sure a minimum wait time is met */ 3021 msleep(IAVF_RESET_WAIT_MS); 3022 3023 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) & 3024 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 3025 if (reg_val == VIRTCHNL_VFR_VFACTIVE) 3026 break; 3027 } 3028 3029 pci_set_master(adapter->pdev); 3030 pci_restore_msi_state(adapter->pdev); 3031 3032 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) { 3033 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n", 3034 reg_val); 3035 iavf_disable_vf(adapter); 3036 mutex_unlock(&adapter->crit_lock); 3037 return; /* Do not attempt to reinit. It's dead, Jim. */ 3038 } 3039 3040 continue_reset: 3041 /* We don't use netif_running() because it may be true prior to 3042 * ndo_open() returning, so we can't assume it means all our open 3043 * tasks have finished, since we're not holding the rtnl_lock here. 3044 */ 3045 running = adapter->state == __IAVF_RUNNING; 3046 3047 if (running) { 3048 netif_carrier_off(netdev); 3049 netif_tx_stop_all_queues(netdev); 3050 adapter->link_up = false; 3051 iavf_napi_disable_all(adapter); 3052 } 3053 iavf_irq_disable(adapter); 3054 3055 iavf_change_state(adapter, __IAVF_RESETTING); 3056 adapter->flags &= ~IAVF_FLAG_RESET_PENDING; 3057 3058 /* free the Tx/Rx rings and descriptors, might be better to just 3059 * re-use them sometime in the future 3060 */ 3061 iavf_free_all_rx_resources(adapter); 3062 iavf_free_all_tx_resources(adapter); 3063 3064 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED; 3065 /* kill and reinit the admin queue */ 3066 iavf_shutdown_adminq(hw); 3067 adapter->current_op = VIRTCHNL_OP_UNKNOWN; 3068 status = iavf_init_adminq(hw); 3069 if (status) { 3070 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n", 3071 status); 3072 goto reset_err; 3073 } 3074 adapter->aq_required = 0; 3075 3076 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3077 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3078 err = iavf_reinit_interrupt_scheme(adapter, running); 3079 if (err) 3080 goto reset_err; 3081 } 3082 3083 if (RSS_AQ(adapter)) { 3084 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS; 3085 } else { 3086 err = iavf_init_rss(adapter); 3087 if (err) 3088 goto reset_err; 3089 } 3090 3091 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG; 3092 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been 3093 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here, 3094 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until 3095 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have 3096 * been successfully sent and negotiated 3097 */ 3098 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS; 3099 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS; 3100 3101 spin_lock_bh(&adapter->mac_vlan_list_lock); 3102 3103 /* Delete filter for the current MAC address, it could have 3104 * been changed by the PF via administratively set MAC. 3105 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES. 3106 */ 3107 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 3108 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) { 3109 list_del(&f->list); 3110 kfree(f); 3111 } 3112 } 3113 /* re-add all MAC filters */ 3114 list_for_each_entry(f, &adapter->mac_filter_list, list) { 3115 f->add = true; 3116 } 3117 spin_unlock_bh(&adapter->mac_vlan_list_lock); 3118 3119 /* check if TCs are running and re-add all cloud filters */ 3120 spin_lock_bh(&adapter->cloud_filter_list_lock); 3121 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) && 3122 adapter->num_tc) { 3123 list_for_each_entry(cf, &adapter->cloud_filter_list, list) { 3124 cf->add = true; 3125 } 3126 } 3127 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3128 3129 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER; 3130 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3131 iavf_misc_irq_enable(adapter); 3132 3133 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2); 3134 3135 /* We were running when the reset started, so we need to restore some 3136 * state here. 3137 */ 3138 if (running) { 3139 /* allocate transmit descriptors */ 3140 err = iavf_setup_all_tx_resources(adapter); 3141 if (err) 3142 goto reset_err; 3143 3144 /* allocate receive descriptors */ 3145 err = iavf_setup_all_rx_resources(adapter); 3146 if (err) 3147 goto reset_err; 3148 3149 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) || 3150 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) { 3151 err = iavf_request_traffic_irqs(adapter, netdev->name); 3152 if (err) 3153 goto reset_err; 3154 3155 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED; 3156 } 3157 3158 iavf_configure(adapter); 3159 3160 /* iavf_up_complete() will switch device back 3161 * to __IAVF_RUNNING 3162 */ 3163 iavf_up_complete(adapter); 3164 3165 iavf_irq_enable(adapter, true); 3166 } else { 3167 iavf_change_state(adapter, __IAVF_DOWN); 3168 wake_up(&adapter->down_waitqueue); 3169 } 3170 3171 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 3172 3173 wake_up(&adapter->reset_waitqueue); 3174 mutex_unlock(&adapter->crit_lock); 3175 3176 return; 3177 reset_err: 3178 if (running) { 3179 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 3180 iavf_free_traffic_irqs(adapter); 3181 } 3182 iavf_disable_vf(adapter); 3183 3184 mutex_unlock(&adapter->crit_lock); 3185 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n"); 3186 } 3187 3188 /** 3189 * iavf_adminq_task - worker thread to clean the admin queue 3190 * @work: pointer to work_struct containing our data 3191 **/ 3192 static void iavf_adminq_task(struct work_struct *work) 3193 { 3194 struct iavf_adapter *adapter = 3195 container_of(work, struct iavf_adapter, adminq_task); 3196 struct iavf_hw *hw = &adapter->hw; 3197 struct iavf_arq_event_info event; 3198 enum virtchnl_ops v_op; 3199 enum iavf_status ret, v_ret; 3200 u32 val, oldval; 3201 u16 pending; 3202 3203 if (!mutex_trylock(&adapter->crit_lock)) { 3204 if (adapter->state == __IAVF_REMOVE) 3205 return; 3206 3207 queue_work(adapter->wq, &adapter->adminq_task); 3208 goto out; 3209 } 3210 3211 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) 3212 goto unlock; 3213 3214 event.buf_len = IAVF_MAX_AQ_BUF_SIZE; 3215 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 3216 if (!event.msg_buf) 3217 goto unlock; 3218 3219 do { 3220 ret = iavf_clean_arq_element(hw, &event, &pending); 3221 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high); 3222 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low); 3223 3224 if (ret || !v_op) 3225 break; /* No event to process or error cleaning ARQ */ 3226 3227 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf, 3228 event.msg_len); 3229 if (pending != 0) 3230 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE); 3231 } while (pending); 3232 3233 if (iavf_is_reset_in_progress(adapter)) 3234 goto freedom; 3235 3236 /* check for error indications */ 3237 val = rd32(hw, hw->aq.arq.len); 3238 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */ 3239 goto freedom; 3240 oldval = val; 3241 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) { 3242 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n"); 3243 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK; 3244 } 3245 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) { 3246 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n"); 3247 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK; 3248 } 3249 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) { 3250 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n"); 3251 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK; 3252 } 3253 if (oldval != val) 3254 wr32(hw, hw->aq.arq.len, val); 3255 3256 val = rd32(hw, hw->aq.asq.len); 3257 oldval = val; 3258 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) { 3259 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n"); 3260 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK; 3261 } 3262 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) { 3263 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n"); 3264 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK; 3265 } 3266 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) { 3267 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n"); 3268 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK; 3269 } 3270 if (oldval != val) 3271 wr32(hw, hw->aq.asq.len, val); 3272 3273 freedom: 3274 kfree(event.msg_buf); 3275 unlock: 3276 mutex_unlock(&adapter->crit_lock); 3277 out: 3278 /* re-enable Admin queue interrupt cause */ 3279 iavf_misc_irq_enable(adapter); 3280 } 3281 3282 /** 3283 * iavf_free_all_tx_resources - Free Tx Resources for All Queues 3284 * @adapter: board private structure 3285 * 3286 * Free all transmit software resources 3287 **/ 3288 void iavf_free_all_tx_resources(struct iavf_adapter *adapter) 3289 { 3290 int i; 3291 3292 if (!adapter->tx_rings) 3293 return; 3294 3295 for (i = 0; i < adapter->num_active_queues; i++) 3296 if (adapter->tx_rings[i].desc) 3297 iavf_free_tx_resources(&adapter->tx_rings[i]); 3298 } 3299 3300 /** 3301 * iavf_setup_all_tx_resources - allocate all queues Tx resources 3302 * @adapter: board private structure 3303 * 3304 * If this function returns with an error, then it's possible one or 3305 * more of the rings is populated (while the rest are not). It is the 3306 * callers duty to clean those orphaned rings. 3307 * 3308 * Return 0 on success, negative on failure 3309 **/ 3310 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter) 3311 { 3312 int i, err = 0; 3313 3314 for (i = 0; i < adapter->num_active_queues; i++) { 3315 adapter->tx_rings[i].count = adapter->tx_desc_count; 3316 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]); 3317 if (!err) 3318 continue; 3319 dev_err(&adapter->pdev->dev, 3320 "Allocation for Tx Queue %u failed\n", i); 3321 break; 3322 } 3323 3324 return err; 3325 } 3326 3327 /** 3328 * iavf_setup_all_rx_resources - allocate all queues Rx resources 3329 * @adapter: board private structure 3330 * 3331 * If this function returns with an error, then it's possible one or 3332 * more of the rings is populated (while the rest are not). It is the 3333 * callers duty to clean those orphaned rings. 3334 * 3335 * Return 0 on success, negative on failure 3336 **/ 3337 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter) 3338 { 3339 int i, err = 0; 3340 3341 for (i = 0; i < adapter->num_active_queues; i++) { 3342 adapter->rx_rings[i].count = adapter->rx_desc_count; 3343 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]); 3344 if (!err) 3345 continue; 3346 dev_err(&adapter->pdev->dev, 3347 "Allocation for Rx Queue %u failed\n", i); 3348 break; 3349 } 3350 return err; 3351 } 3352 3353 /** 3354 * iavf_free_all_rx_resources - Free Rx Resources for All Queues 3355 * @adapter: board private structure 3356 * 3357 * Free all receive software resources 3358 **/ 3359 void iavf_free_all_rx_resources(struct iavf_adapter *adapter) 3360 { 3361 int i; 3362 3363 if (!adapter->rx_rings) 3364 return; 3365 3366 for (i = 0; i < adapter->num_active_queues; i++) 3367 if (adapter->rx_rings[i].desc) 3368 iavf_free_rx_resources(&adapter->rx_rings[i]); 3369 } 3370 3371 /** 3372 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth 3373 * @adapter: board private structure 3374 * @max_tx_rate: max Tx bw for a tc 3375 **/ 3376 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter, 3377 u64 max_tx_rate) 3378 { 3379 int speed = 0, ret = 0; 3380 3381 if (ADV_LINK_SUPPORT(adapter)) { 3382 if (adapter->link_speed_mbps < U32_MAX) { 3383 speed = adapter->link_speed_mbps; 3384 goto validate_bw; 3385 } else { 3386 dev_err(&adapter->pdev->dev, "Unknown link speed\n"); 3387 return -EINVAL; 3388 } 3389 } 3390 3391 switch (adapter->link_speed) { 3392 case VIRTCHNL_LINK_SPEED_40GB: 3393 speed = SPEED_40000; 3394 break; 3395 case VIRTCHNL_LINK_SPEED_25GB: 3396 speed = SPEED_25000; 3397 break; 3398 case VIRTCHNL_LINK_SPEED_20GB: 3399 speed = SPEED_20000; 3400 break; 3401 case VIRTCHNL_LINK_SPEED_10GB: 3402 speed = SPEED_10000; 3403 break; 3404 case VIRTCHNL_LINK_SPEED_5GB: 3405 speed = SPEED_5000; 3406 break; 3407 case VIRTCHNL_LINK_SPEED_2_5GB: 3408 speed = SPEED_2500; 3409 break; 3410 case VIRTCHNL_LINK_SPEED_1GB: 3411 speed = SPEED_1000; 3412 break; 3413 case VIRTCHNL_LINK_SPEED_100MB: 3414 speed = SPEED_100; 3415 break; 3416 default: 3417 break; 3418 } 3419 3420 validate_bw: 3421 if (max_tx_rate > speed) { 3422 dev_err(&adapter->pdev->dev, 3423 "Invalid tx rate specified\n"); 3424 ret = -EINVAL; 3425 } 3426 3427 return ret; 3428 } 3429 3430 /** 3431 * iavf_validate_ch_config - validate queue mapping info 3432 * @adapter: board private structure 3433 * @mqprio_qopt: queue parameters 3434 * 3435 * This function validates if the config provided by the user to 3436 * configure queue channels is valid or not. Returns 0 on a valid 3437 * config. 3438 **/ 3439 static int iavf_validate_ch_config(struct iavf_adapter *adapter, 3440 struct tc_mqprio_qopt_offload *mqprio_qopt) 3441 { 3442 u64 total_max_rate = 0; 3443 u32 tx_rate_rem = 0; 3444 int i, num_qps = 0; 3445 u64 tx_rate = 0; 3446 int ret = 0; 3447 3448 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS || 3449 mqprio_qopt->qopt.num_tc < 1) 3450 return -EINVAL; 3451 3452 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) { 3453 if (!mqprio_qopt->qopt.count[i] || 3454 mqprio_qopt->qopt.offset[i] != num_qps) 3455 return -EINVAL; 3456 if (mqprio_qopt->min_rate[i]) { 3457 dev_err(&adapter->pdev->dev, 3458 "Invalid min tx rate (greater than 0) specified for TC%d\n", 3459 i); 3460 return -EINVAL; 3461 } 3462 3463 /* convert to Mbps */ 3464 tx_rate = div_u64(mqprio_qopt->max_rate[i], 3465 IAVF_MBPS_DIVISOR); 3466 3467 if (mqprio_qopt->max_rate[i] && 3468 tx_rate < IAVF_MBPS_QUANTA) { 3469 dev_err(&adapter->pdev->dev, 3470 "Invalid max tx rate for TC%d, minimum %dMbps\n", 3471 i, IAVF_MBPS_QUANTA); 3472 return -EINVAL; 3473 } 3474 3475 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem); 3476 3477 if (tx_rate_rem != 0) { 3478 dev_err(&adapter->pdev->dev, 3479 "Invalid max tx rate for TC%d, not divisible by %d\n", 3480 i, IAVF_MBPS_QUANTA); 3481 return -EINVAL; 3482 } 3483 3484 total_max_rate += tx_rate; 3485 num_qps += mqprio_qopt->qopt.count[i]; 3486 } 3487 if (num_qps > adapter->num_active_queues) { 3488 dev_err(&adapter->pdev->dev, 3489 "Cannot support requested number of queues\n"); 3490 return -EINVAL; 3491 } 3492 3493 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate); 3494 return ret; 3495 } 3496 3497 /** 3498 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes 3499 * @adapter: board private structure 3500 **/ 3501 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter) 3502 { 3503 struct iavf_cloud_filter *cf, *cftmp; 3504 3505 spin_lock_bh(&adapter->cloud_filter_list_lock); 3506 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, 3507 list) { 3508 list_del(&cf->list); 3509 kfree(cf); 3510 adapter->num_cloud_filters--; 3511 } 3512 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3513 } 3514 3515 /** 3516 * __iavf_setup_tc - configure multiple traffic classes 3517 * @netdev: network interface device structure 3518 * @type_data: tc offload data 3519 * 3520 * This function processes the config information provided by the 3521 * user to configure traffic classes/queue channels and packages the 3522 * information to request the PF to setup traffic classes. 3523 * 3524 * Returns 0 on success. 3525 **/ 3526 static int __iavf_setup_tc(struct net_device *netdev, void *type_data) 3527 { 3528 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 3529 struct iavf_adapter *adapter = netdev_priv(netdev); 3530 struct virtchnl_vf_resource *vfres = adapter->vf_res; 3531 u8 num_tc = 0, total_qps = 0; 3532 int ret = 0, netdev_tc = 0; 3533 u64 max_tx_rate; 3534 u16 mode; 3535 int i; 3536 3537 num_tc = mqprio_qopt->qopt.num_tc; 3538 mode = mqprio_qopt->mode; 3539 3540 /* delete queue_channel */ 3541 if (!mqprio_qopt->qopt.hw) { 3542 if (adapter->ch_config.state == __IAVF_TC_RUNNING) { 3543 /* reset the tc configuration */ 3544 netdev_reset_tc(netdev); 3545 adapter->num_tc = 0; 3546 netif_tx_stop_all_queues(netdev); 3547 netif_tx_disable(netdev); 3548 iavf_del_all_cloud_filters(adapter); 3549 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS; 3550 total_qps = adapter->orig_num_active_queues; 3551 goto exit; 3552 } else { 3553 return -EINVAL; 3554 } 3555 } 3556 3557 /* add queue channel */ 3558 if (mode == TC_MQPRIO_MODE_CHANNEL) { 3559 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) { 3560 dev_err(&adapter->pdev->dev, "ADq not supported\n"); 3561 return -EOPNOTSUPP; 3562 } 3563 if (adapter->ch_config.state != __IAVF_TC_INVALID) { 3564 dev_err(&adapter->pdev->dev, "TC configuration already exists\n"); 3565 return -EINVAL; 3566 } 3567 3568 ret = iavf_validate_ch_config(adapter, mqprio_qopt); 3569 if (ret) 3570 return ret; 3571 /* Return if same TC config is requested */ 3572 if (adapter->num_tc == num_tc) 3573 return 0; 3574 adapter->num_tc = num_tc; 3575 3576 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3577 if (i < num_tc) { 3578 adapter->ch_config.ch_info[i].count = 3579 mqprio_qopt->qopt.count[i]; 3580 adapter->ch_config.ch_info[i].offset = 3581 mqprio_qopt->qopt.offset[i]; 3582 total_qps += mqprio_qopt->qopt.count[i]; 3583 max_tx_rate = mqprio_qopt->max_rate[i]; 3584 /* convert to Mbps */ 3585 max_tx_rate = div_u64(max_tx_rate, 3586 IAVF_MBPS_DIVISOR); 3587 adapter->ch_config.ch_info[i].max_tx_rate = 3588 max_tx_rate; 3589 } else { 3590 adapter->ch_config.ch_info[i].count = 1; 3591 adapter->ch_config.ch_info[i].offset = 0; 3592 } 3593 } 3594 3595 /* Take snapshot of original config such as "num_active_queues" 3596 * It is used later when delete ADQ flow is exercised, so that 3597 * once delete ADQ flow completes, VF shall go back to its 3598 * original queue configuration 3599 */ 3600 3601 adapter->orig_num_active_queues = adapter->num_active_queues; 3602 3603 /* Store queue info based on TC so that VF gets configured 3604 * with correct number of queues when VF completes ADQ config 3605 * flow 3606 */ 3607 adapter->ch_config.total_qps = total_qps; 3608 3609 netif_tx_stop_all_queues(netdev); 3610 netif_tx_disable(netdev); 3611 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS; 3612 netdev_reset_tc(netdev); 3613 /* Report the tc mapping up the stack */ 3614 netdev_set_num_tc(adapter->netdev, num_tc); 3615 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) { 3616 u16 qcount = mqprio_qopt->qopt.count[i]; 3617 u16 qoffset = mqprio_qopt->qopt.offset[i]; 3618 3619 if (i < num_tc) 3620 netdev_set_tc_queue(netdev, netdev_tc++, qcount, 3621 qoffset); 3622 } 3623 } 3624 exit: 3625 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 3626 return 0; 3627 3628 netif_set_real_num_rx_queues(netdev, total_qps); 3629 netif_set_real_num_tx_queues(netdev, total_qps); 3630 3631 return ret; 3632 } 3633 3634 /** 3635 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel 3636 * @adapter: board private structure 3637 * @f: pointer to struct flow_cls_offload 3638 * @filter: pointer to cloud filter structure 3639 */ 3640 static int iavf_parse_cls_flower(struct iavf_adapter *adapter, 3641 struct flow_cls_offload *f, 3642 struct iavf_cloud_filter *filter) 3643 { 3644 struct flow_rule *rule = flow_cls_offload_flow_rule(f); 3645 struct flow_dissector *dissector = rule->match.dissector; 3646 u16 n_proto_mask = 0; 3647 u16 n_proto_key = 0; 3648 u8 field_flags = 0; 3649 u16 addr_type = 0; 3650 u16 n_proto = 0; 3651 int i = 0; 3652 struct virtchnl_filter *vf = &filter->f; 3653 3654 if (dissector->used_keys & 3655 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 3656 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 3657 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 3658 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 3659 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 3660 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 3661 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | 3662 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) { 3663 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n", 3664 dissector->used_keys); 3665 return -EOPNOTSUPP; 3666 } 3667 3668 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 3669 struct flow_match_enc_keyid match; 3670 3671 flow_rule_match_enc_keyid(rule, &match); 3672 if (match.mask->keyid != 0) 3673 field_flags |= IAVF_CLOUD_FIELD_TEN_ID; 3674 } 3675 3676 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) { 3677 struct flow_match_basic match; 3678 3679 flow_rule_match_basic(rule, &match); 3680 n_proto_key = ntohs(match.key->n_proto); 3681 n_proto_mask = ntohs(match.mask->n_proto); 3682 3683 if (n_proto_key == ETH_P_ALL) { 3684 n_proto_key = 0; 3685 n_proto_mask = 0; 3686 } 3687 n_proto = n_proto_key & n_proto_mask; 3688 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6) 3689 return -EINVAL; 3690 if (n_proto == ETH_P_IPV6) { 3691 /* specify flow type as TCP IPv6 */ 3692 vf->flow_type = VIRTCHNL_TCP_V6_FLOW; 3693 } 3694 3695 if (match.key->ip_proto != IPPROTO_TCP) { 3696 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n"); 3697 return -EINVAL; 3698 } 3699 } 3700 3701 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 3702 struct flow_match_eth_addrs match; 3703 3704 flow_rule_match_eth_addrs(rule, &match); 3705 3706 /* use is_broadcast and is_zero to check for all 0xf or 0 */ 3707 if (!is_zero_ether_addr(match.mask->dst)) { 3708 if (is_broadcast_ether_addr(match.mask->dst)) { 3709 field_flags |= IAVF_CLOUD_FIELD_OMAC; 3710 } else { 3711 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n", 3712 match.mask->dst); 3713 return -EINVAL; 3714 } 3715 } 3716 3717 if (!is_zero_ether_addr(match.mask->src)) { 3718 if (is_broadcast_ether_addr(match.mask->src)) { 3719 field_flags |= IAVF_CLOUD_FIELD_IMAC; 3720 } else { 3721 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n", 3722 match.mask->src); 3723 return -EINVAL; 3724 } 3725 } 3726 3727 if (!is_zero_ether_addr(match.key->dst)) 3728 if (is_valid_ether_addr(match.key->dst) || 3729 is_multicast_ether_addr(match.key->dst)) { 3730 /* set the mask if a valid dst_mac address */ 3731 for (i = 0; i < ETH_ALEN; i++) 3732 vf->mask.tcp_spec.dst_mac[i] |= 0xff; 3733 ether_addr_copy(vf->data.tcp_spec.dst_mac, 3734 match.key->dst); 3735 } 3736 3737 if (!is_zero_ether_addr(match.key->src)) 3738 if (is_valid_ether_addr(match.key->src) || 3739 is_multicast_ether_addr(match.key->src)) { 3740 /* set the mask if a valid dst_mac address */ 3741 for (i = 0; i < ETH_ALEN; i++) 3742 vf->mask.tcp_spec.src_mac[i] |= 0xff; 3743 ether_addr_copy(vf->data.tcp_spec.src_mac, 3744 match.key->src); 3745 } 3746 } 3747 3748 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { 3749 struct flow_match_vlan match; 3750 3751 flow_rule_match_vlan(rule, &match); 3752 if (match.mask->vlan_id) { 3753 if (match.mask->vlan_id == VLAN_VID_MASK) { 3754 field_flags |= IAVF_CLOUD_FIELD_IVLAN; 3755 } else { 3756 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n", 3757 match.mask->vlan_id); 3758 return -EINVAL; 3759 } 3760 } 3761 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff); 3762 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id); 3763 } 3764 3765 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { 3766 struct flow_match_control match; 3767 3768 flow_rule_match_control(rule, &match); 3769 addr_type = match.key->addr_type; 3770 } 3771 3772 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 3773 struct flow_match_ipv4_addrs match; 3774 3775 flow_rule_match_ipv4_addrs(rule, &match); 3776 if (match.mask->dst) { 3777 if (match.mask->dst == cpu_to_be32(0xffffffff)) { 3778 field_flags |= IAVF_CLOUD_FIELD_IIP; 3779 } else { 3780 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n", 3781 be32_to_cpu(match.mask->dst)); 3782 return -EINVAL; 3783 } 3784 } 3785 3786 if (match.mask->src) { 3787 if (match.mask->src == cpu_to_be32(0xffffffff)) { 3788 field_flags |= IAVF_CLOUD_FIELD_IIP; 3789 } else { 3790 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n", 3791 be32_to_cpu(match.mask->src)); 3792 return -EINVAL; 3793 } 3794 } 3795 3796 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) { 3797 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n"); 3798 return -EINVAL; 3799 } 3800 if (match.key->dst) { 3801 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff); 3802 vf->data.tcp_spec.dst_ip[0] = match.key->dst; 3803 } 3804 if (match.key->src) { 3805 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff); 3806 vf->data.tcp_spec.src_ip[0] = match.key->src; 3807 } 3808 } 3809 3810 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 3811 struct flow_match_ipv6_addrs match; 3812 3813 flow_rule_match_ipv6_addrs(rule, &match); 3814 3815 /* validate mask, make sure it is not IPV6_ADDR_ANY */ 3816 if (ipv6_addr_any(&match.mask->dst)) { 3817 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n", 3818 IPV6_ADDR_ANY); 3819 return -EINVAL; 3820 } 3821 3822 /* src and dest IPv6 address should not be LOOPBACK 3823 * (0:0:0:0:0:0:0:1) which can be represented as ::1 3824 */ 3825 if (ipv6_addr_loopback(&match.key->dst) || 3826 ipv6_addr_loopback(&match.key->src)) { 3827 dev_err(&adapter->pdev->dev, 3828 "ipv6 addr should not be loopback\n"); 3829 return -EINVAL; 3830 } 3831 if (!ipv6_addr_any(&match.mask->dst) || 3832 !ipv6_addr_any(&match.mask->src)) 3833 field_flags |= IAVF_CLOUD_FIELD_IIP; 3834 3835 for (i = 0; i < 4; i++) 3836 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff); 3837 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32, 3838 sizeof(vf->data.tcp_spec.dst_ip)); 3839 for (i = 0; i < 4; i++) 3840 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff); 3841 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32, 3842 sizeof(vf->data.tcp_spec.src_ip)); 3843 } 3844 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) { 3845 struct flow_match_ports match; 3846 3847 flow_rule_match_ports(rule, &match); 3848 if (match.mask->src) { 3849 if (match.mask->src == cpu_to_be16(0xffff)) { 3850 field_flags |= IAVF_CLOUD_FIELD_IIP; 3851 } else { 3852 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n", 3853 be16_to_cpu(match.mask->src)); 3854 return -EINVAL; 3855 } 3856 } 3857 3858 if (match.mask->dst) { 3859 if (match.mask->dst == cpu_to_be16(0xffff)) { 3860 field_flags |= IAVF_CLOUD_FIELD_IIP; 3861 } else { 3862 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n", 3863 be16_to_cpu(match.mask->dst)); 3864 return -EINVAL; 3865 } 3866 } 3867 if (match.key->dst) { 3868 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff); 3869 vf->data.tcp_spec.dst_port = match.key->dst; 3870 } 3871 3872 if (match.key->src) { 3873 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff); 3874 vf->data.tcp_spec.src_port = match.key->src; 3875 } 3876 } 3877 vf->field_flags = field_flags; 3878 3879 return 0; 3880 } 3881 3882 /** 3883 * iavf_handle_tclass - Forward to a traffic class on the device 3884 * @adapter: board private structure 3885 * @tc: traffic class index on the device 3886 * @filter: pointer to cloud filter structure 3887 */ 3888 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc, 3889 struct iavf_cloud_filter *filter) 3890 { 3891 if (tc == 0) 3892 return 0; 3893 if (tc < adapter->num_tc) { 3894 if (!filter->f.data.tcp_spec.dst_port) { 3895 dev_err(&adapter->pdev->dev, 3896 "Specify destination port to redirect to traffic class other than TC0\n"); 3897 return -EINVAL; 3898 } 3899 } 3900 /* redirect to a traffic class on the same device */ 3901 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT; 3902 filter->f.action_meta = tc; 3903 return 0; 3904 } 3905 3906 /** 3907 * iavf_find_cf - Find the cloud filter in the list 3908 * @adapter: Board private structure 3909 * @cookie: filter specific cookie 3910 * 3911 * Returns ptr to the filter object or NULL. Must be called while holding the 3912 * cloud_filter_list_lock. 3913 */ 3914 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter, 3915 unsigned long *cookie) 3916 { 3917 struct iavf_cloud_filter *filter = NULL; 3918 3919 if (!cookie) 3920 return NULL; 3921 3922 list_for_each_entry(filter, &adapter->cloud_filter_list, list) { 3923 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie))) 3924 return filter; 3925 } 3926 return NULL; 3927 } 3928 3929 /** 3930 * iavf_configure_clsflower - Add tc flower filters 3931 * @adapter: board private structure 3932 * @cls_flower: Pointer to struct flow_cls_offload 3933 */ 3934 static int iavf_configure_clsflower(struct iavf_adapter *adapter, 3935 struct flow_cls_offload *cls_flower) 3936 { 3937 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid); 3938 struct iavf_cloud_filter *filter = NULL; 3939 int err = -EINVAL, count = 50; 3940 3941 if (tc < 0) { 3942 dev_err(&adapter->pdev->dev, "Invalid traffic class\n"); 3943 return -EINVAL; 3944 } 3945 3946 filter = kzalloc(sizeof(*filter), GFP_KERNEL); 3947 if (!filter) 3948 return -ENOMEM; 3949 3950 while (!mutex_trylock(&adapter->crit_lock)) { 3951 if (--count == 0) { 3952 kfree(filter); 3953 return err; 3954 } 3955 udelay(1); 3956 } 3957 3958 filter->cookie = cls_flower->cookie; 3959 3960 /* bail out here if filter already exists */ 3961 spin_lock_bh(&adapter->cloud_filter_list_lock); 3962 if (iavf_find_cf(adapter, &cls_flower->cookie)) { 3963 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n"); 3964 err = -EEXIST; 3965 goto spin_unlock; 3966 } 3967 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3968 3969 /* set the mask to all zeroes to begin with */ 3970 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec)); 3971 /* start out with flow type and eth type IPv4 to begin with */ 3972 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW; 3973 err = iavf_parse_cls_flower(adapter, cls_flower, filter); 3974 if (err) 3975 goto err; 3976 3977 err = iavf_handle_tclass(adapter, tc, filter); 3978 if (err) 3979 goto err; 3980 3981 /* add filter to the list */ 3982 spin_lock_bh(&adapter->cloud_filter_list_lock); 3983 list_add_tail(&filter->list, &adapter->cloud_filter_list); 3984 adapter->num_cloud_filters++; 3985 filter->add = true; 3986 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER; 3987 spin_unlock: 3988 spin_unlock_bh(&adapter->cloud_filter_list_lock); 3989 err: 3990 if (err) 3991 kfree(filter); 3992 3993 mutex_unlock(&adapter->crit_lock); 3994 return err; 3995 } 3996 3997 /** 3998 * iavf_delete_clsflower - Remove tc flower filters 3999 * @adapter: board private structure 4000 * @cls_flower: Pointer to struct flow_cls_offload 4001 */ 4002 static int iavf_delete_clsflower(struct iavf_adapter *adapter, 4003 struct flow_cls_offload *cls_flower) 4004 { 4005 struct iavf_cloud_filter *filter = NULL; 4006 int err = 0; 4007 4008 spin_lock_bh(&adapter->cloud_filter_list_lock); 4009 filter = iavf_find_cf(adapter, &cls_flower->cookie); 4010 if (filter) { 4011 filter->del = true; 4012 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER; 4013 } else { 4014 err = -EINVAL; 4015 } 4016 spin_unlock_bh(&adapter->cloud_filter_list_lock); 4017 4018 return err; 4019 } 4020 4021 /** 4022 * iavf_setup_tc_cls_flower - flower classifier offloads 4023 * @adapter: board private structure 4024 * @cls_flower: pointer to flow_cls_offload struct with flow info 4025 */ 4026 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter, 4027 struct flow_cls_offload *cls_flower) 4028 { 4029 switch (cls_flower->command) { 4030 case FLOW_CLS_REPLACE: 4031 return iavf_configure_clsflower(adapter, cls_flower); 4032 case FLOW_CLS_DESTROY: 4033 return iavf_delete_clsflower(adapter, cls_flower); 4034 case FLOW_CLS_STATS: 4035 return -EOPNOTSUPP; 4036 default: 4037 return -EOPNOTSUPP; 4038 } 4039 } 4040 4041 /** 4042 * iavf_setup_tc_block_cb - block callback for tc 4043 * @type: type of offload 4044 * @type_data: offload data 4045 * @cb_priv: 4046 * 4047 * This function is the block callback for traffic classes 4048 **/ 4049 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4050 void *cb_priv) 4051 { 4052 struct iavf_adapter *adapter = cb_priv; 4053 4054 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data)) 4055 return -EOPNOTSUPP; 4056 4057 switch (type) { 4058 case TC_SETUP_CLSFLOWER: 4059 return iavf_setup_tc_cls_flower(cb_priv, type_data); 4060 default: 4061 return -EOPNOTSUPP; 4062 } 4063 } 4064 4065 static LIST_HEAD(iavf_block_cb_list); 4066 4067 /** 4068 * iavf_setup_tc - configure multiple traffic classes 4069 * @netdev: network interface device structure 4070 * @type: type of offload 4071 * @type_data: tc offload data 4072 * 4073 * This function is the callback to ndo_setup_tc in the 4074 * netdev_ops. 4075 * 4076 * Returns 0 on success 4077 **/ 4078 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type, 4079 void *type_data) 4080 { 4081 struct iavf_adapter *adapter = netdev_priv(netdev); 4082 4083 switch (type) { 4084 case TC_SETUP_QDISC_MQPRIO: 4085 return __iavf_setup_tc(netdev, type_data); 4086 case TC_SETUP_BLOCK: 4087 return flow_block_cb_setup_simple(type_data, 4088 &iavf_block_cb_list, 4089 iavf_setup_tc_block_cb, 4090 adapter, adapter, true); 4091 default: 4092 return -EOPNOTSUPP; 4093 } 4094 } 4095 4096 /** 4097 * iavf_restore_fdir_filters 4098 * @adapter: board private structure 4099 * 4100 * Restore existing FDIR filters when VF netdev comes back up. 4101 **/ 4102 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter) 4103 { 4104 struct iavf_fdir_fltr *f; 4105 4106 spin_lock_bh(&adapter->fdir_fltr_lock); 4107 list_for_each_entry(f, &adapter->fdir_list_head, list) { 4108 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) { 4109 /* Cancel a request, keep filter as active */ 4110 f->state = IAVF_FDIR_FLTR_ACTIVE; 4111 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING || 4112 f->state == IAVF_FDIR_FLTR_INACTIVE) { 4113 /* Add filters which are inactive or have a pending 4114 * request to PF to be deleted 4115 */ 4116 f->state = IAVF_FDIR_FLTR_ADD_REQUEST; 4117 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER; 4118 } 4119 } 4120 spin_unlock_bh(&adapter->fdir_fltr_lock); 4121 } 4122 4123 /** 4124 * iavf_open - Called when a network interface is made active 4125 * @netdev: network interface device structure 4126 * 4127 * Returns 0 on success, negative value on failure 4128 * 4129 * The open entry point is called when a network interface is made 4130 * active by the system (IFF_UP). At this point all resources needed 4131 * for transmit and receive operations are allocated, the interrupt 4132 * handler is registered with the OS, the watchdog is started, 4133 * and the stack is notified that the interface is ready. 4134 **/ 4135 static int iavf_open(struct net_device *netdev) 4136 { 4137 struct iavf_adapter *adapter = netdev_priv(netdev); 4138 int err; 4139 4140 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) { 4141 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n"); 4142 return -EIO; 4143 } 4144 4145 while (!mutex_trylock(&adapter->crit_lock)) { 4146 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock 4147 * is already taken and iavf_open is called from an upper 4148 * device's notifier reacting on NETDEV_REGISTER event. 4149 * We have to leave here to avoid dead lock. 4150 */ 4151 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER) 4152 return -EBUSY; 4153 4154 usleep_range(500, 1000); 4155 } 4156 4157 if (adapter->state != __IAVF_DOWN) { 4158 err = -EBUSY; 4159 goto err_unlock; 4160 } 4161 4162 if (adapter->state == __IAVF_RUNNING && 4163 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) { 4164 dev_dbg(&adapter->pdev->dev, "VF is already open.\n"); 4165 err = 0; 4166 goto err_unlock; 4167 } 4168 4169 /* allocate transmit descriptors */ 4170 err = iavf_setup_all_tx_resources(adapter); 4171 if (err) 4172 goto err_setup_tx; 4173 4174 /* allocate receive descriptors */ 4175 err = iavf_setup_all_rx_resources(adapter); 4176 if (err) 4177 goto err_setup_rx; 4178 4179 /* clear any pending interrupts, may auto mask */ 4180 err = iavf_request_traffic_irqs(adapter, netdev->name); 4181 if (err) 4182 goto err_req_irq; 4183 4184 spin_lock_bh(&adapter->mac_vlan_list_lock); 4185 4186 iavf_add_filter(adapter, adapter->hw.mac.addr); 4187 4188 spin_unlock_bh(&adapter->mac_vlan_list_lock); 4189 4190 /* Restore filters that were removed with IFF_DOWN */ 4191 iavf_restore_filters(adapter); 4192 iavf_restore_fdir_filters(adapter); 4193 4194 iavf_configure(adapter); 4195 4196 iavf_up_complete(adapter); 4197 4198 iavf_irq_enable(adapter, true); 4199 4200 mutex_unlock(&adapter->crit_lock); 4201 4202 return 0; 4203 4204 err_req_irq: 4205 iavf_down(adapter); 4206 iavf_free_traffic_irqs(adapter); 4207 err_setup_rx: 4208 iavf_free_all_rx_resources(adapter); 4209 err_setup_tx: 4210 iavf_free_all_tx_resources(adapter); 4211 err_unlock: 4212 mutex_unlock(&adapter->crit_lock); 4213 4214 return err; 4215 } 4216 4217 /** 4218 * iavf_close - Disables a network interface 4219 * @netdev: network interface device structure 4220 * 4221 * Returns 0, this is not allowed to fail 4222 * 4223 * The close entry point is called when an interface is de-activated 4224 * by the OS. The hardware is still under the drivers control, but 4225 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue) 4226 * are freed, along with all transmit and receive resources. 4227 **/ 4228 static int iavf_close(struct net_device *netdev) 4229 { 4230 struct iavf_adapter *adapter = netdev_priv(netdev); 4231 u64 aq_to_restore; 4232 int status; 4233 4234 mutex_lock(&adapter->crit_lock); 4235 4236 if (adapter->state <= __IAVF_DOWN_PENDING) { 4237 mutex_unlock(&adapter->crit_lock); 4238 return 0; 4239 } 4240 4241 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state); 4242 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before 4243 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl 4244 * deadlock with adminq_task() until iavf_close timeouts. We must send 4245 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make 4246 * disable queues possible for vf. Give only necessary flags to 4247 * iavf_down and save other to set them right before iavf_close() 4248 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and 4249 * iavf will be in DOWN state. 4250 */ 4251 aq_to_restore = adapter->aq_required; 4252 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG; 4253 4254 /* Remove flags which we do not want to send after close or we want to 4255 * send before disable queues. 4256 */ 4257 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG | 4258 IAVF_FLAG_AQ_ENABLE_QUEUES | 4259 IAVF_FLAG_AQ_CONFIGURE_QUEUES | 4260 IAVF_FLAG_AQ_ADD_VLAN_FILTER | 4261 IAVF_FLAG_AQ_ADD_MAC_FILTER | 4262 IAVF_FLAG_AQ_ADD_CLOUD_FILTER | 4263 IAVF_FLAG_AQ_ADD_FDIR_FILTER | 4264 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG); 4265 4266 iavf_down(adapter); 4267 iavf_change_state(adapter, __IAVF_DOWN_PENDING); 4268 iavf_free_traffic_irqs(adapter); 4269 4270 mutex_unlock(&adapter->crit_lock); 4271 4272 /* We explicitly don't free resources here because the hardware is 4273 * still active and can DMA into memory. Resources are cleared in 4274 * iavf_virtchnl_completion() after we get confirmation from the PF 4275 * driver that the rings have been stopped. 4276 * 4277 * Also, we wait for state to transition to __IAVF_DOWN before 4278 * returning. State change occurs in iavf_virtchnl_completion() after 4279 * VF resources are released (which occurs after PF driver processes and 4280 * responds to admin queue commands). 4281 */ 4282 4283 status = wait_event_timeout(adapter->down_waitqueue, 4284 adapter->state == __IAVF_DOWN, 4285 msecs_to_jiffies(500)); 4286 if (!status) 4287 netdev_warn(netdev, "Device resources not yet released\n"); 4288 4289 mutex_lock(&adapter->crit_lock); 4290 adapter->aq_required |= aq_to_restore; 4291 mutex_unlock(&adapter->crit_lock); 4292 return 0; 4293 } 4294 4295 /** 4296 * iavf_change_mtu - Change the Maximum Transfer Unit 4297 * @netdev: network interface device structure 4298 * @new_mtu: new value for maximum frame size 4299 * 4300 * Returns 0 on success, negative on failure 4301 **/ 4302 static int iavf_change_mtu(struct net_device *netdev, int new_mtu) 4303 { 4304 struct iavf_adapter *adapter = netdev_priv(netdev); 4305 int ret = 0; 4306 4307 netdev_dbg(netdev, "changing MTU from %d to %d\n", 4308 netdev->mtu, new_mtu); 4309 netdev->mtu = new_mtu; 4310 4311 if (netif_running(netdev)) { 4312 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4313 ret = iavf_wait_for_reset(adapter); 4314 if (ret < 0) 4315 netdev_warn(netdev, "MTU change interrupted waiting for reset"); 4316 else if (ret) 4317 netdev_warn(netdev, "MTU change timed out waiting for reset"); 4318 } 4319 4320 return ret; 4321 } 4322 4323 /** 4324 * iavf_disable_fdir - disable Flow Director and clear existing filters 4325 * @adapter: board private structure 4326 **/ 4327 static void iavf_disable_fdir(struct iavf_adapter *adapter) 4328 { 4329 struct iavf_fdir_fltr *fdir, *fdirtmp; 4330 bool del_filters = false; 4331 4332 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED; 4333 4334 /* remove all Flow Director filters */ 4335 spin_lock_bh(&adapter->fdir_fltr_lock); 4336 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, 4337 list) { 4338 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST || 4339 fdir->state == IAVF_FDIR_FLTR_INACTIVE) { 4340 /* Delete filters not registered in PF */ 4341 list_del(&fdir->list); 4342 kfree(fdir); 4343 adapter->fdir_active_fltr--; 4344 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING || 4345 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST || 4346 fdir->state == IAVF_FDIR_FLTR_ACTIVE) { 4347 /* Filters registered in PF, schedule their deletion */ 4348 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST; 4349 del_filters = true; 4350 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) { 4351 /* Request to delete filter already sent to PF, change 4352 * state to DEL_PENDING to delete filter after PF's 4353 * response, not set as INACTIVE 4354 */ 4355 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING; 4356 } 4357 } 4358 spin_unlock_bh(&adapter->fdir_fltr_lock); 4359 4360 if (del_filters) { 4361 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER; 4362 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0); 4363 } 4364 } 4365 4366 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 4367 NETIF_F_HW_VLAN_CTAG_TX | \ 4368 NETIF_F_HW_VLAN_STAG_RX | \ 4369 NETIF_F_HW_VLAN_STAG_TX) 4370 4371 /** 4372 * iavf_set_features - set the netdev feature flags 4373 * @netdev: ptr to the netdev being adjusted 4374 * @features: the feature set that the stack is suggesting 4375 * Note: expects to be called while under rtnl_lock() 4376 **/ 4377 static int iavf_set_features(struct net_device *netdev, 4378 netdev_features_t features) 4379 { 4380 struct iavf_adapter *adapter = netdev_priv(netdev); 4381 4382 /* trigger update on any VLAN feature change */ 4383 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^ 4384 (features & NETIF_VLAN_OFFLOAD_FEATURES)) 4385 iavf_set_vlan_offload_features(adapter, netdev->features, 4386 features); 4387 if (CRC_OFFLOAD_ALLOWED(adapter) && 4388 ((netdev->features & NETIF_F_RXFCS) ^ (features & NETIF_F_RXFCS))) 4389 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED); 4390 4391 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) { 4392 if (features & NETIF_F_NTUPLE) 4393 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4394 else 4395 iavf_disable_fdir(adapter); 4396 } 4397 4398 return 0; 4399 } 4400 4401 /** 4402 * iavf_features_check - Validate encapsulated packet conforms to limits 4403 * @skb: skb buff 4404 * @dev: This physical port's netdev 4405 * @features: Offload features that the stack believes apply 4406 **/ 4407 static netdev_features_t iavf_features_check(struct sk_buff *skb, 4408 struct net_device *dev, 4409 netdev_features_t features) 4410 { 4411 size_t len; 4412 4413 /* No point in doing any of this if neither checksum nor GSO are 4414 * being requested for this frame. We can rule out both by just 4415 * checking for CHECKSUM_PARTIAL 4416 */ 4417 if (skb->ip_summed != CHECKSUM_PARTIAL) 4418 return features; 4419 4420 /* We cannot support GSO if the MSS is going to be less than 4421 * 64 bytes. If it is then we need to drop support for GSO. 4422 */ 4423 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 4424 features &= ~NETIF_F_GSO_MASK; 4425 4426 /* MACLEN can support at most 63 words */ 4427 len = skb_network_header(skb) - skb->data; 4428 if (len & ~(63 * 2)) 4429 goto out_err; 4430 4431 /* IPLEN and EIPLEN can support at most 127 dwords */ 4432 len = skb_transport_header(skb) - skb_network_header(skb); 4433 if (len & ~(127 * 4)) 4434 goto out_err; 4435 4436 if (skb->encapsulation) { 4437 /* L4TUNLEN can support 127 words */ 4438 len = skb_inner_network_header(skb) - skb_transport_header(skb); 4439 if (len & ~(127 * 2)) 4440 goto out_err; 4441 4442 /* IPLEN can support at most 127 dwords */ 4443 len = skb_inner_transport_header(skb) - 4444 skb_inner_network_header(skb); 4445 if (len & ~(127 * 4)) 4446 goto out_err; 4447 } 4448 4449 /* No need to validate L4LEN as TCP is the only protocol with a 4450 * flexible value and we support all possible values supported 4451 * by TCP, which is at most 15 dwords 4452 */ 4453 4454 return features; 4455 out_err: 4456 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 4457 } 4458 4459 /** 4460 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off 4461 * @adapter: board private structure 4462 * 4463 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4464 * were negotiated determine the VLAN features that can be toggled on and off. 4465 **/ 4466 static netdev_features_t 4467 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter) 4468 { 4469 netdev_features_t hw_features = 0; 4470 4471 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4472 return hw_features; 4473 4474 /* Enable VLAN features if supported */ 4475 if (VLAN_ALLOWED(adapter)) { 4476 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX | 4477 NETIF_F_HW_VLAN_CTAG_RX); 4478 } else if (VLAN_V2_ALLOWED(adapter)) { 4479 struct virtchnl_vlan_caps *vlan_v2_caps = 4480 &adapter->vlan_v2_caps; 4481 struct virtchnl_vlan_supported_caps *stripping_support = 4482 &vlan_v2_caps->offloads.stripping_support; 4483 struct virtchnl_vlan_supported_caps *insertion_support = 4484 &vlan_v2_caps->offloads.insertion_support; 4485 4486 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4487 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4488 if (stripping_support->outer & 4489 VIRTCHNL_VLAN_ETHERTYPE_8100) 4490 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4491 if (stripping_support->outer & 4492 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4493 hw_features |= NETIF_F_HW_VLAN_STAG_RX; 4494 } else if (stripping_support->inner != 4495 VIRTCHNL_VLAN_UNSUPPORTED && 4496 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4497 if (stripping_support->inner & 4498 VIRTCHNL_VLAN_ETHERTYPE_8100) 4499 hw_features |= NETIF_F_HW_VLAN_CTAG_RX; 4500 } 4501 4502 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED && 4503 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) { 4504 if (insertion_support->outer & 4505 VIRTCHNL_VLAN_ETHERTYPE_8100) 4506 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4507 if (insertion_support->outer & 4508 VIRTCHNL_VLAN_ETHERTYPE_88A8) 4509 hw_features |= NETIF_F_HW_VLAN_STAG_TX; 4510 } else if (insertion_support->inner && 4511 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) { 4512 if (insertion_support->inner & 4513 VIRTCHNL_VLAN_ETHERTYPE_8100) 4514 hw_features |= NETIF_F_HW_VLAN_CTAG_TX; 4515 } 4516 } 4517 4518 if (CRC_OFFLOAD_ALLOWED(adapter)) 4519 hw_features |= NETIF_F_RXFCS; 4520 4521 return hw_features; 4522 } 4523 4524 /** 4525 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures 4526 * @adapter: board private structure 4527 * 4528 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2 4529 * were negotiated determine the VLAN features that are enabled by default. 4530 **/ 4531 static netdev_features_t 4532 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter) 4533 { 4534 netdev_features_t features = 0; 4535 4536 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags) 4537 return features; 4538 4539 if (VLAN_ALLOWED(adapter)) { 4540 features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4541 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; 4542 } else if (VLAN_V2_ALLOWED(adapter)) { 4543 struct virtchnl_vlan_caps *vlan_v2_caps = 4544 &adapter->vlan_v2_caps; 4545 struct virtchnl_vlan_supported_caps *filtering_support = 4546 &vlan_v2_caps->filtering.filtering_support; 4547 struct virtchnl_vlan_supported_caps *stripping_support = 4548 &vlan_v2_caps->offloads.stripping_support; 4549 struct virtchnl_vlan_supported_caps *insertion_support = 4550 &vlan_v2_caps->offloads.insertion_support; 4551 u32 ethertype_init; 4552 4553 /* give priority to outer stripping and don't support both outer 4554 * and inner stripping 4555 */ 4556 ethertype_init = vlan_v2_caps->offloads.ethertype_init; 4557 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4558 if (stripping_support->outer & 4559 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4560 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4561 features |= NETIF_F_HW_VLAN_CTAG_RX; 4562 else if (stripping_support->outer & 4563 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4564 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4565 features |= NETIF_F_HW_VLAN_STAG_RX; 4566 } else if (stripping_support->inner != 4567 VIRTCHNL_VLAN_UNSUPPORTED) { 4568 if (stripping_support->inner & 4569 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4570 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4571 features |= NETIF_F_HW_VLAN_CTAG_RX; 4572 } 4573 4574 /* give priority to outer insertion and don't support both outer 4575 * and inner insertion 4576 */ 4577 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4578 if (insertion_support->outer & 4579 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4580 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4581 features |= NETIF_F_HW_VLAN_CTAG_TX; 4582 else if (insertion_support->outer & 4583 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4584 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4585 features |= NETIF_F_HW_VLAN_STAG_TX; 4586 } else if (insertion_support->inner != 4587 VIRTCHNL_VLAN_UNSUPPORTED) { 4588 if (insertion_support->inner & 4589 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4590 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4591 features |= NETIF_F_HW_VLAN_CTAG_TX; 4592 } 4593 4594 /* give priority to outer filtering and don't bother if both 4595 * outer and inner filtering are enabled 4596 */ 4597 ethertype_init = vlan_v2_caps->filtering.ethertype_init; 4598 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) { 4599 if (filtering_support->outer & 4600 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4601 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4602 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4603 if (filtering_support->outer & 4604 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4605 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4606 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4607 } else if (filtering_support->inner != 4608 VIRTCHNL_VLAN_UNSUPPORTED) { 4609 if (filtering_support->inner & 4610 VIRTCHNL_VLAN_ETHERTYPE_8100 && 4611 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100) 4612 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4613 if (filtering_support->inner & 4614 VIRTCHNL_VLAN_ETHERTYPE_88A8 && 4615 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8) 4616 features |= NETIF_F_HW_VLAN_STAG_FILTER; 4617 } 4618 } 4619 4620 return features; 4621 } 4622 4623 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \ 4624 (!(((requested) & (feature_bit)) && \ 4625 !((allowed) & (feature_bit)))) 4626 4627 /** 4628 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support 4629 * @adapter: board private structure 4630 * @requested_features: stack requested NETDEV features 4631 **/ 4632 static netdev_features_t 4633 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter, 4634 netdev_features_t requested_features) 4635 { 4636 netdev_features_t allowed_features; 4637 4638 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) | 4639 iavf_get_netdev_vlan_features(adapter); 4640 4641 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4642 allowed_features, 4643 NETIF_F_HW_VLAN_CTAG_TX)) 4644 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX; 4645 4646 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4647 allowed_features, 4648 NETIF_F_HW_VLAN_CTAG_RX)) 4649 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX; 4650 4651 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4652 allowed_features, 4653 NETIF_F_HW_VLAN_STAG_TX)) 4654 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX; 4655 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4656 allowed_features, 4657 NETIF_F_HW_VLAN_STAG_RX)) 4658 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX; 4659 4660 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4661 allowed_features, 4662 NETIF_F_HW_VLAN_CTAG_FILTER)) 4663 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 4664 4665 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features, 4666 allowed_features, 4667 NETIF_F_HW_VLAN_STAG_FILTER)) 4668 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER; 4669 4670 if ((requested_features & 4671 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 4672 (requested_features & 4673 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) && 4674 adapter->vlan_v2_caps.offloads.ethertype_match == 4675 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) { 4676 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 4677 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX | 4678 NETIF_F_HW_VLAN_STAG_TX); 4679 } 4680 4681 return requested_features; 4682 } 4683 4684 /** 4685 * iavf_fix_strip_features - fix NETDEV CRC and VLAN strip features 4686 * @adapter: board private structure 4687 * @requested_features: stack requested NETDEV features 4688 * 4689 * Returns fixed-up features bits 4690 **/ 4691 static netdev_features_t 4692 iavf_fix_strip_features(struct iavf_adapter *adapter, 4693 netdev_features_t requested_features) 4694 { 4695 struct net_device *netdev = adapter->netdev; 4696 bool crc_offload_req, is_vlan_strip; 4697 netdev_features_t vlan_strip; 4698 int num_non_zero_vlan; 4699 4700 crc_offload_req = CRC_OFFLOAD_ALLOWED(adapter) && 4701 (requested_features & NETIF_F_RXFCS); 4702 num_non_zero_vlan = iavf_get_num_vlans_added(adapter); 4703 vlan_strip = (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX); 4704 is_vlan_strip = requested_features & vlan_strip; 4705 4706 if (!crc_offload_req) 4707 return requested_features; 4708 4709 if (!num_non_zero_vlan && (netdev->features & vlan_strip) && 4710 !(netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4711 requested_features &= ~vlan_strip; 4712 netdev_info(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 4713 return requested_features; 4714 } 4715 4716 if ((netdev->features & NETIF_F_RXFCS) && is_vlan_strip) { 4717 requested_features &= ~vlan_strip; 4718 if (!(netdev->features & vlan_strip)) 4719 netdev_info(netdev, "To enable VLAN stripping, first need to enable FCS/CRC stripping"); 4720 4721 return requested_features; 4722 } 4723 4724 if (num_non_zero_vlan && is_vlan_strip && 4725 !(netdev->features & NETIF_F_RXFCS)) { 4726 requested_features &= ~NETIF_F_RXFCS; 4727 netdev_info(netdev, "To disable FCS/CRC stripping, first need to disable VLAN stripping"); 4728 } 4729 4730 return requested_features; 4731 } 4732 4733 /** 4734 * iavf_fix_features - fix up the netdev feature bits 4735 * @netdev: our net device 4736 * @features: desired feature bits 4737 * 4738 * Returns fixed-up features bits 4739 **/ 4740 static netdev_features_t iavf_fix_features(struct net_device *netdev, 4741 netdev_features_t features) 4742 { 4743 struct iavf_adapter *adapter = netdev_priv(netdev); 4744 4745 features = iavf_fix_netdev_vlan_features(adapter, features); 4746 4747 if (!FDIR_FLTR_SUPPORT(adapter)) 4748 features &= ~NETIF_F_NTUPLE; 4749 4750 return iavf_fix_strip_features(adapter, features); 4751 } 4752 4753 static const struct net_device_ops iavf_netdev_ops = { 4754 .ndo_open = iavf_open, 4755 .ndo_stop = iavf_close, 4756 .ndo_start_xmit = iavf_xmit_frame, 4757 .ndo_set_rx_mode = iavf_set_rx_mode, 4758 .ndo_validate_addr = eth_validate_addr, 4759 .ndo_set_mac_address = iavf_set_mac, 4760 .ndo_change_mtu = iavf_change_mtu, 4761 .ndo_tx_timeout = iavf_tx_timeout, 4762 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid, 4763 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid, 4764 .ndo_features_check = iavf_features_check, 4765 .ndo_fix_features = iavf_fix_features, 4766 .ndo_set_features = iavf_set_features, 4767 .ndo_setup_tc = iavf_setup_tc, 4768 }; 4769 4770 /** 4771 * iavf_check_reset_complete - check that VF reset is complete 4772 * @hw: pointer to hw struct 4773 * 4774 * Returns 0 if device is ready to use, or -EBUSY if it's in reset. 4775 **/ 4776 static int iavf_check_reset_complete(struct iavf_hw *hw) 4777 { 4778 u32 rstat; 4779 int i; 4780 4781 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) { 4782 rstat = rd32(hw, IAVF_VFGEN_RSTAT) & 4783 IAVF_VFGEN_RSTAT_VFR_STATE_MASK; 4784 if ((rstat == VIRTCHNL_VFR_VFACTIVE) || 4785 (rstat == VIRTCHNL_VFR_COMPLETED)) 4786 return 0; 4787 msleep(IAVF_RESET_WAIT_MS); 4788 } 4789 return -EBUSY; 4790 } 4791 4792 /** 4793 * iavf_process_config - Process the config information we got from the PF 4794 * @adapter: board private structure 4795 * 4796 * Verify that we have a valid config struct, and set up our netdev features 4797 * and our VSI struct. 4798 **/ 4799 int iavf_process_config(struct iavf_adapter *adapter) 4800 { 4801 struct virtchnl_vf_resource *vfres = adapter->vf_res; 4802 netdev_features_t hw_vlan_features, vlan_features; 4803 struct net_device *netdev = adapter->netdev; 4804 netdev_features_t hw_enc_features; 4805 netdev_features_t hw_features; 4806 4807 hw_enc_features = NETIF_F_SG | 4808 NETIF_F_IP_CSUM | 4809 NETIF_F_IPV6_CSUM | 4810 NETIF_F_HIGHDMA | 4811 NETIF_F_SOFT_FEATURES | 4812 NETIF_F_TSO | 4813 NETIF_F_TSO_ECN | 4814 NETIF_F_TSO6 | 4815 NETIF_F_SCTP_CRC | 4816 NETIF_F_RXHASH | 4817 NETIF_F_RXCSUM | 4818 0; 4819 4820 /* advertise to stack only if offloads for encapsulated packets is 4821 * supported 4822 */ 4823 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) { 4824 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL | 4825 NETIF_F_GSO_GRE | 4826 NETIF_F_GSO_GRE_CSUM | 4827 NETIF_F_GSO_IPXIP4 | 4828 NETIF_F_GSO_IPXIP6 | 4829 NETIF_F_GSO_UDP_TUNNEL_CSUM | 4830 NETIF_F_GSO_PARTIAL | 4831 0; 4832 4833 if (!(vfres->vf_cap_flags & 4834 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) 4835 netdev->gso_partial_features |= 4836 NETIF_F_GSO_UDP_TUNNEL_CSUM; 4837 4838 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 4839 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 4840 netdev->hw_enc_features |= hw_enc_features; 4841 } 4842 /* record features VLANs can make use of */ 4843 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID; 4844 4845 /* Write features and hw_features separately to avoid polluting 4846 * with, or dropping, features that are set when we registered. 4847 */ 4848 hw_features = hw_enc_features; 4849 4850 /* get HW VLAN features that can be toggled */ 4851 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter); 4852 4853 /* Enable cloud filter if ADQ is supported */ 4854 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) 4855 hw_features |= NETIF_F_HW_TC; 4856 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO) 4857 hw_features |= NETIF_F_GSO_UDP_L4; 4858 4859 netdev->hw_features |= hw_features | hw_vlan_features; 4860 vlan_features = iavf_get_netdev_vlan_features(adapter); 4861 4862 netdev->features |= hw_features | vlan_features; 4863 4864 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) 4865 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4866 4867 if (FDIR_FLTR_SUPPORT(adapter)) { 4868 netdev->hw_features |= NETIF_F_NTUPLE; 4869 netdev->features |= NETIF_F_NTUPLE; 4870 adapter->flags |= IAVF_FLAG_FDIR_ENABLED; 4871 } 4872 4873 netdev->priv_flags |= IFF_UNICAST_FLT; 4874 4875 /* Do not turn on offloads when they are requested to be turned off. 4876 * TSO needs minimum 576 bytes to work correctly. 4877 */ 4878 if (netdev->wanted_features) { 4879 if (!(netdev->wanted_features & NETIF_F_TSO) || 4880 netdev->mtu < 576) 4881 netdev->features &= ~NETIF_F_TSO; 4882 if (!(netdev->wanted_features & NETIF_F_TSO6) || 4883 netdev->mtu < 576) 4884 netdev->features &= ~NETIF_F_TSO6; 4885 if (!(netdev->wanted_features & NETIF_F_TSO_ECN)) 4886 netdev->features &= ~NETIF_F_TSO_ECN; 4887 if (!(netdev->wanted_features & NETIF_F_GRO)) 4888 netdev->features &= ~NETIF_F_GRO; 4889 if (!(netdev->wanted_features & NETIF_F_GSO)) 4890 netdev->features &= ~NETIF_F_GSO; 4891 } 4892 4893 return 0; 4894 } 4895 4896 /** 4897 * iavf_probe - Device Initialization Routine 4898 * @pdev: PCI device information struct 4899 * @ent: entry in iavf_pci_tbl 4900 * 4901 * Returns 0 on success, negative on failure 4902 * 4903 * iavf_probe initializes an adapter identified by a pci_dev structure. 4904 * The OS initialization, configuring of the adapter private structure, 4905 * and a hardware reset occur. 4906 **/ 4907 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4908 { 4909 struct net_device *netdev; 4910 struct iavf_adapter *adapter = NULL; 4911 struct iavf_hw *hw = NULL; 4912 int err; 4913 4914 err = pci_enable_device(pdev); 4915 if (err) 4916 return err; 4917 4918 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4919 if (err) { 4920 dev_err(&pdev->dev, 4921 "DMA configuration failed: 0x%x\n", err); 4922 goto err_dma; 4923 } 4924 4925 err = pci_request_regions(pdev, iavf_driver_name); 4926 if (err) { 4927 dev_err(&pdev->dev, 4928 "pci_request_regions failed 0x%x\n", err); 4929 goto err_pci_reg; 4930 } 4931 4932 pci_set_master(pdev); 4933 4934 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter), 4935 IAVF_MAX_REQ_QUEUES); 4936 if (!netdev) { 4937 err = -ENOMEM; 4938 goto err_alloc_etherdev; 4939 } 4940 4941 SET_NETDEV_DEV(netdev, &pdev->dev); 4942 4943 pci_set_drvdata(pdev, netdev); 4944 adapter = netdev_priv(netdev); 4945 4946 adapter->netdev = netdev; 4947 adapter->pdev = pdev; 4948 4949 hw = &adapter->hw; 4950 hw->back = adapter; 4951 4952 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, 4953 iavf_driver_name); 4954 if (!adapter->wq) { 4955 err = -ENOMEM; 4956 goto err_alloc_wq; 4957 } 4958 4959 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1; 4960 iavf_change_state(adapter, __IAVF_STARTUP); 4961 4962 /* Call save state here because it relies on the adapter struct. */ 4963 pci_save_state(pdev); 4964 4965 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4966 pci_resource_len(pdev, 0)); 4967 if (!hw->hw_addr) { 4968 err = -EIO; 4969 goto err_ioremap; 4970 } 4971 hw->vendor_id = pdev->vendor; 4972 hw->device_id = pdev->device; 4973 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4974 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4975 hw->subsystem_device_id = pdev->subsystem_device; 4976 hw->bus.device = PCI_SLOT(pdev->devfn); 4977 hw->bus.func = PCI_FUNC(pdev->devfn); 4978 hw->bus.bus_id = pdev->bus->number; 4979 4980 /* set up the locks for the AQ, do this only once in probe 4981 * and destroy them only once in remove 4982 */ 4983 mutex_init(&adapter->crit_lock); 4984 mutex_init(&hw->aq.asq_mutex); 4985 mutex_init(&hw->aq.arq_mutex); 4986 4987 spin_lock_init(&adapter->mac_vlan_list_lock); 4988 spin_lock_init(&adapter->cloud_filter_list_lock); 4989 spin_lock_init(&adapter->fdir_fltr_lock); 4990 spin_lock_init(&adapter->adv_rss_lock); 4991 spin_lock_init(&adapter->current_netdev_promisc_flags_lock); 4992 4993 INIT_LIST_HEAD(&adapter->mac_filter_list); 4994 INIT_LIST_HEAD(&adapter->vlan_filter_list); 4995 INIT_LIST_HEAD(&adapter->cloud_filter_list); 4996 INIT_LIST_HEAD(&adapter->fdir_list_head); 4997 INIT_LIST_HEAD(&adapter->adv_rss_list_head); 4998 4999 INIT_WORK(&adapter->reset_task, iavf_reset_task); 5000 INIT_WORK(&adapter->adminq_task, iavf_adminq_task); 5001 INIT_WORK(&adapter->finish_config, iavf_finish_config); 5002 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task); 5003 5004 /* Setup the wait queue for indicating transition to down status */ 5005 init_waitqueue_head(&adapter->down_waitqueue); 5006 5007 /* Setup the wait queue for indicating transition to running state */ 5008 init_waitqueue_head(&adapter->reset_waitqueue); 5009 5010 /* Setup the wait queue for indicating virtchannel events */ 5011 init_waitqueue_head(&adapter->vc_waitqueue); 5012 5013 queue_delayed_work(adapter->wq, &adapter->watchdog_task, 5014 msecs_to_jiffies(5 * (pdev->devfn & 0x07))); 5015 /* Initialization goes on in the work. Do not add more of it below. */ 5016 return 0; 5017 5018 err_ioremap: 5019 destroy_workqueue(adapter->wq); 5020 err_alloc_wq: 5021 free_netdev(netdev); 5022 err_alloc_etherdev: 5023 pci_release_regions(pdev); 5024 err_pci_reg: 5025 err_dma: 5026 pci_disable_device(pdev); 5027 return err; 5028 } 5029 5030 /** 5031 * iavf_suspend - Power management suspend routine 5032 * @dev_d: device info pointer 5033 * 5034 * Called when the system (VM) is entering sleep/suspend. 5035 **/ 5036 static int __maybe_unused iavf_suspend(struct device *dev_d) 5037 { 5038 struct net_device *netdev = dev_get_drvdata(dev_d); 5039 struct iavf_adapter *adapter = netdev_priv(netdev); 5040 5041 netif_device_detach(netdev); 5042 5043 mutex_lock(&adapter->crit_lock); 5044 5045 if (netif_running(netdev)) { 5046 rtnl_lock(); 5047 iavf_down(adapter); 5048 rtnl_unlock(); 5049 } 5050 iavf_free_misc_irq(adapter); 5051 iavf_reset_interrupt_capability(adapter); 5052 5053 mutex_unlock(&adapter->crit_lock); 5054 5055 return 0; 5056 } 5057 5058 /** 5059 * iavf_resume - Power management resume routine 5060 * @dev_d: device info pointer 5061 * 5062 * Called when the system (VM) is resumed from sleep/suspend. 5063 **/ 5064 static int __maybe_unused iavf_resume(struct device *dev_d) 5065 { 5066 struct pci_dev *pdev = to_pci_dev(dev_d); 5067 struct iavf_adapter *adapter; 5068 u32 err; 5069 5070 adapter = iavf_pdev_to_adapter(pdev); 5071 5072 pci_set_master(pdev); 5073 5074 rtnl_lock(); 5075 err = iavf_set_interrupt_capability(adapter); 5076 if (err) { 5077 rtnl_unlock(); 5078 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n"); 5079 return err; 5080 } 5081 err = iavf_request_misc_irq(adapter); 5082 rtnl_unlock(); 5083 if (err) { 5084 dev_err(&pdev->dev, "Cannot get interrupt vector.\n"); 5085 return err; 5086 } 5087 5088 queue_work(adapter->wq, &adapter->reset_task); 5089 5090 netif_device_attach(adapter->netdev); 5091 5092 return err; 5093 } 5094 5095 /** 5096 * iavf_remove - Device Removal Routine 5097 * @pdev: PCI device information struct 5098 * 5099 * iavf_remove is called by the PCI subsystem to alert the driver 5100 * that it should release a PCI device. The could be caused by a 5101 * Hot-Plug event, or because the driver is going to be removed from 5102 * memory. 5103 **/ 5104 static void iavf_remove(struct pci_dev *pdev) 5105 { 5106 struct iavf_fdir_fltr *fdir, *fdirtmp; 5107 struct iavf_vlan_filter *vlf, *vlftmp; 5108 struct iavf_cloud_filter *cf, *cftmp; 5109 struct iavf_adv_rss *rss, *rsstmp; 5110 struct iavf_mac_filter *f, *ftmp; 5111 struct iavf_adapter *adapter; 5112 struct net_device *netdev; 5113 struct iavf_hw *hw; 5114 5115 /* Don't proceed with remove if netdev is already freed */ 5116 netdev = pci_get_drvdata(pdev); 5117 if (!netdev) 5118 return; 5119 5120 adapter = iavf_pdev_to_adapter(pdev); 5121 hw = &adapter->hw; 5122 5123 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) 5124 return; 5125 5126 /* Wait until port initialization is complete. 5127 * There are flows where register/unregister netdev may race. 5128 */ 5129 while (1) { 5130 mutex_lock(&adapter->crit_lock); 5131 if (adapter->state == __IAVF_RUNNING || 5132 adapter->state == __IAVF_DOWN || 5133 adapter->state == __IAVF_INIT_FAILED) { 5134 mutex_unlock(&adapter->crit_lock); 5135 break; 5136 } 5137 /* Simply return if we already went through iavf_shutdown */ 5138 if (adapter->state == __IAVF_REMOVE) { 5139 mutex_unlock(&adapter->crit_lock); 5140 return; 5141 } 5142 5143 mutex_unlock(&adapter->crit_lock); 5144 usleep_range(500, 1000); 5145 } 5146 cancel_delayed_work_sync(&adapter->watchdog_task); 5147 cancel_work_sync(&adapter->finish_config); 5148 5149 if (netdev->reg_state == NETREG_REGISTERED) 5150 unregister_netdev(netdev); 5151 5152 mutex_lock(&adapter->crit_lock); 5153 dev_info(&adapter->pdev->dev, "Removing device\n"); 5154 iavf_change_state(adapter, __IAVF_REMOVE); 5155 5156 iavf_request_reset(adapter); 5157 msleep(50); 5158 /* If the FW isn't responding, kick it once, but only once. */ 5159 if (!iavf_asq_done(hw)) { 5160 iavf_request_reset(adapter); 5161 msleep(50); 5162 } 5163 5164 iavf_misc_irq_disable(adapter); 5165 /* Shut down all the garbage mashers on the detention level */ 5166 cancel_work_sync(&adapter->reset_task); 5167 cancel_delayed_work_sync(&adapter->watchdog_task); 5168 cancel_work_sync(&adapter->adminq_task); 5169 5170 adapter->aq_required = 0; 5171 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED; 5172 5173 iavf_free_all_tx_resources(adapter); 5174 iavf_free_all_rx_resources(adapter); 5175 iavf_free_misc_irq(adapter); 5176 iavf_free_interrupt_scheme(adapter); 5177 5178 iavf_free_rss(adapter); 5179 5180 if (hw->aq.asq.count) 5181 iavf_shutdown_adminq(hw); 5182 5183 /* destroy the locks only once, here */ 5184 mutex_destroy(&hw->aq.arq_mutex); 5185 mutex_destroy(&hw->aq.asq_mutex); 5186 mutex_unlock(&adapter->crit_lock); 5187 mutex_destroy(&adapter->crit_lock); 5188 5189 iounmap(hw->hw_addr); 5190 pci_release_regions(pdev); 5191 kfree(adapter->vf_res); 5192 spin_lock_bh(&adapter->mac_vlan_list_lock); 5193 /* If we got removed before an up/down sequence, we've got a filter 5194 * hanging out there that we need to get rid of. 5195 */ 5196 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) { 5197 list_del(&f->list); 5198 kfree(f); 5199 } 5200 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list, 5201 list) { 5202 list_del(&vlf->list); 5203 kfree(vlf); 5204 } 5205 5206 spin_unlock_bh(&adapter->mac_vlan_list_lock); 5207 5208 spin_lock_bh(&adapter->cloud_filter_list_lock); 5209 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) { 5210 list_del(&cf->list); 5211 kfree(cf); 5212 } 5213 spin_unlock_bh(&adapter->cloud_filter_list_lock); 5214 5215 spin_lock_bh(&adapter->fdir_fltr_lock); 5216 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) { 5217 list_del(&fdir->list); 5218 kfree(fdir); 5219 } 5220 spin_unlock_bh(&adapter->fdir_fltr_lock); 5221 5222 spin_lock_bh(&adapter->adv_rss_lock); 5223 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head, 5224 list) { 5225 list_del(&rss->list); 5226 kfree(rss); 5227 } 5228 spin_unlock_bh(&adapter->adv_rss_lock); 5229 5230 destroy_workqueue(adapter->wq); 5231 5232 pci_set_drvdata(pdev, NULL); 5233 5234 free_netdev(netdev); 5235 5236 pci_disable_device(pdev); 5237 } 5238 5239 /** 5240 * iavf_shutdown - Shutdown the device in preparation for a reboot 5241 * @pdev: pci device structure 5242 **/ 5243 static void iavf_shutdown(struct pci_dev *pdev) 5244 { 5245 iavf_remove(pdev); 5246 5247 if (system_state == SYSTEM_POWER_OFF) 5248 pci_set_power_state(pdev, PCI_D3hot); 5249 } 5250 5251 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume); 5252 5253 static struct pci_driver iavf_driver = { 5254 .name = iavf_driver_name, 5255 .id_table = iavf_pci_tbl, 5256 .probe = iavf_probe, 5257 .remove = iavf_remove, 5258 .driver.pm = &iavf_pm_ops, 5259 .shutdown = iavf_shutdown, 5260 }; 5261 5262 /** 5263 * iavf_init_module - Driver Registration Routine 5264 * 5265 * iavf_init_module is the first routine called when the driver is 5266 * loaded. All it does is register with the PCI subsystem. 5267 **/ 5268 static int __init iavf_init_module(void) 5269 { 5270 pr_info("iavf: %s\n", iavf_driver_string); 5271 5272 pr_info("%s\n", iavf_copyright); 5273 5274 return pci_register_driver(&iavf_driver); 5275 } 5276 5277 module_init(iavf_init_module); 5278 5279 /** 5280 * iavf_exit_module - Driver Exit Cleanup Routine 5281 * 5282 * iavf_exit_module is called just before the driver is removed 5283 * from memory. 5284 **/ 5285 static void __exit iavf_exit_module(void) 5286 { 5287 pci_unregister_driver(&iavf_driver); 5288 } 5289 5290 module_exit(iavf_exit_module); 5291 5292 /* iavf_main.c */ 5293