xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if ((hw->mac.type == e1000_pch_lpt) ||
241 	    (hw->mac.type == e1000_pch_spt)) {
242 		/* Unforce SMBus mode in PHY */
243 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
244 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
245 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
246 
247 		/* Unforce SMBus mode in MAC */
248 		mac_reg = er32(CTRL_EXT);
249 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
250 		ew32(CTRL_EXT, mac_reg);
251 	}
252 
253 	return true;
254 }
255 
256 /**
257  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
258  *  @hw: pointer to the HW structure
259  *
260  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
261  *  used to reset the PHY to a quiescent state when necessary.
262  **/
263 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
264 {
265 	u32 mac_reg;
266 
267 	/* Set Phy Config Counter to 50msec */
268 	mac_reg = er32(FEXTNVM3);
269 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
270 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
271 	ew32(FEXTNVM3, mac_reg);
272 
273 	/* Toggle LANPHYPC Value bit */
274 	mac_reg = er32(CTRL);
275 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
276 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
277 	ew32(CTRL, mac_reg);
278 	e1e_flush();
279 	usleep_range(10, 20);
280 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
281 	ew32(CTRL, mac_reg);
282 	e1e_flush();
283 
284 	if (hw->mac.type < e1000_pch_lpt) {
285 		msleep(50);
286 	} else {
287 		u16 count = 20;
288 
289 		do {
290 			usleep_range(5000, 10000);
291 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
292 
293 		msleep(30);
294 	}
295 }
296 
297 /**
298  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
299  *  @hw: pointer to the HW structure
300  *
301  *  Workarounds/flow necessary for PHY initialization during driver load
302  *  and resume paths.
303  **/
304 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
305 {
306 	struct e1000_adapter *adapter = hw->adapter;
307 	u32 mac_reg, fwsm = er32(FWSM);
308 	s32 ret_val;
309 
310 	/* Gate automatic PHY configuration by hardware on managed and
311 	 * non-managed 82579 and newer adapters.
312 	 */
313 	e1000_gate_hw_phy_config_ich8lan(hw, true);
314 
315 	/* It is not possible to be certain of the current state of ULP
316 	 * so forcibly disable it.
317 	 */
318 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
319 	e1000_disable_ulp_lpt_lp(hw, true);
320 
321 	ret_val = hw->phy.ops.acquire(hw);
322 	if (ret_val) {
323 		e_dbg("Failed to initialize PHY flow\n");
324 		goto out;
325 	}
326 
327 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
328 	 * inaccessible and resetting the PHY is not blocked, toggle the
329 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
330 	 */
331 	switch (hw->mac.type) {
332 	case e1000_pch_lpt:
333 	case e1000_pch_spt:
334 		if (e1000_phy_is_accessible_pchlan(hw))
335 			break;
336 
337 		/* Before toggling LANPHYPC, see if PHY is accessible by
338 		 * forcing MAC to SMBus mode first.
339 		 */
340 		mac_reg = er32(CTRL_EXT);
341 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
342 		ew32(CTRL_EXT, mac_reg);
343 
344 		/* Wait 50 milliseconds for MAC to finish any retries
345 		 * that it might be trying to perform from previous
346 		 * attempts to acknowledge any phy read requests.
347 		 */
348 		msleep(50);
349 
350 		/* fall-through */
351 	case e1000_pch2lan:
352 		if (e1000_phy_is_accessible_pchlan(hw))
353 			break;
354 
355 		/* fall-through */
356 	case e1000_pchlan:
357 		if ((hw->mac.type == e1000_pchlan) &&
358 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
359 			break;
360 
361 		if (hw->phy.ops.check_reset_block(hw)) {
362 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
363 			ret_val = -E1000_ERR_PHY;
364 			break;
365 		}
366 
367 		/* Toggle LANPHYPC Value bit */
368 		e1000_toggle_lanphypc_pch_lpt(hw);
369 		if (hw->mac.type >= e1000_pch_lpt) {
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
374 			 * so ensure that the MAC is also out of SMBus mode
375 			 */
376 			mac_reg = er32(CTRL_EXT);
377 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
378 			ew32(CTRL_EXT, mac_reg);
379 
380 			if (e1000_phy_is_accessible_pchlan(hw))
381 				break;
382 
383 			ret_val = -E1000_ERR_PHY;
384 		}
385 		break;
386 	default:
387 		break;
388 	}
389 
390 	hw->phy.ops.release(hw);
391 	if (!ret_val) {
392 
393 		/* Check to see if able to reset PHY.  Print error if not */
394 		if (hw->phy.ops.check_reset_block(hw)) {
395 			e_err("Reset blocked by ME\n");
396 			goto out;
397 		}
398 
399 		/* Reset the PHY before any access to it.  Doing so, ensures
400 		 * that the PHY is in a known good state before we read/write
401 		 * PHY registers.  The generic reset is sufficient here,
402 		 * because we haven't determined the PHY type yet.
403 		 */
404 		ret_val = e1000e_phy_hw_reset_generic(hw);
405 		if (ret_val)
406 			goto out;
407 
408 		/* On a successful reset, possibly need to wait for the PHY
409 		 * to quiesce to an accessible state before returning control
410 		 * to the calling function.  If the PHY does not quiesce, then
411 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
412 		 *  the PHY is in.
413 		 */
414 		ret_val = hw->phy.ops.check_reset_block(hw);
415 		if (ret_val)
416 			e_err("ME blocked access to PHY after reset\n");
417 	}
418 
419 out:
420 	/* Ungate automatic PHY configuration on non-managed 82579 */
421 	if ((hw->mac.type == e1000_pch2lan) &&
422 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
423 		usleep_range(10000, 20000);
424 		e1000_gate_hw_phy_config_ich8lan(hw, false);
425 	}
426 
427 	return ret_val;
428 }
429 
430 /**
431  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
432  *  @hw: pointer to the HW structure
433  *
434  *  Initialize family-specific PHY parameters and function pointers.
435  **/
436 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
437 {
438 	struct e1000_phy_info *phy = &hw->phy;
439 	s32 ret_val;
440 
441 	phy->addr = 1;
442 	phy->reset_delay_us = 100;
443 
444 	phy->ops.set_page = e1000_set_page_igp;
445 	phy->ops.read_reg = e1000_read_phy_reg_hv;
446 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
447 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
448 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
449 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
450 	phy->ops.write_reg = e1000_write_phy_reg_hv;
451 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
452 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
453 	phy->ops.power_up = e1000_power_up_phy_copper;
454 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
455 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
456 
457 	phy->id = e1000_phy_unknown;
458 
459 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
460 	if (ret_val)
461 		return ret_val;
462 
463 	if (phy->id == e1000_phy_unknown)
464 		switch (hw->mac.type) {
465 		default:
466 			ret_val = e1000e_get_phy_id(hw);
467 			if (ret_val)
468 				return ret_val;
469 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
470 				break;
471 			/* fall-through */
472 		case e1000_pch2lan:
473 		case e1000_pch_lpt:
474 		case e1000_pch_spt:
475 			/* In case the PHY needs to be in mdio slow mode,
476 			 * set slow mode and try to get the PHY id again.
477 			 */
478 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 			if (ret_val)
480 				return ret_val;
481 			ret_val = e1000e_get_phy_id(hw);
482 			if (ret_val)
483 				return ret_val;
484 			break;
485 		}
486 	phy->type = e1000e_get_phy_type_from_id(phy->id);
487 
488 	switch (phy->type) {
489 	case e1000_phy_82577:
490 	case e1000_phy_82579:
491 	case e1000_phy_i217:
492 		phy->ops.check_polarity = e1000_check_polarity_82577;
493 		phy->ops.force_speed_duplex =
494 		    e1000_phy_force_speed_duplex_82577;
495 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 		phy->ops.get_info = e1000_get_phy_info_82577;
497 		phy->ops.commit = e1000e_phy_sw_reset;
498 		break;
499 	case e1000_phy_82578:
500 		phy->ops.check_polarity = e1000_check_polarity_m88;
501 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 		phy->ops.get_info = e1000e_get_phy_info_m88;
504 		break;
505 	default:
506 		ret_val = -E1000_ERR_PHY;
507 		break;
508 	}
509 
510 	return ret_val;
511 }
512 
513 /**
514  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515  *  @hw: pointer to the HW structure
516  *
517  *  Initialize family-specific PHY parameters and function pointers.
518  **/
519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521 	struct e1000_phy_info *phy = &hw->phy;
522 	s32 ret_val;
523 	u16 i = 0;
524 
525 	phy->addr = 1;
526 	phy->reset_delay_us = 100;
527 
528 	phy->ops.power_up = e1000_power_up_phy_copper;
529 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530 
531 	/* We may need to do this twice - once for IGP and if that fails,
532 	 * we'll set BM func pointers and try again
533 	 */
534 	ret_val = e1000e_determine_phy_address(hw);
535 	if (ret_val) {
536 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 		ret_val = e1000e_determine_phy_address(hw);
539 		if (ret_val) {
540 			e_dbg("Cannot determine PHY addr. Erroring out\n");
541 			return ret_val;
542 		}
543 	}
544 
545 	phy->id = 0;
546 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 	       (i++ < 100)) {
548 		usleep_range(1000, 2000);
549 		ret_val = e1000e_get_phy_id(hw);
550 		if (ret_val)
551 			return ret_val;
552 	}
553 
554 	/* Verify phy id */
555 	switch (phy->id) {
556 	case IGP03E1000_E_PHY_ID:
557 		phy->type = e1000_phy_igp_3;
558 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 		phy->ops.get_info = e1000e_get_phy_info_igp;
562 		phy->ops.check_polarity = e1000_check_polarity_igp;
563 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 		break;
565 	case IFE_E_PHY_ID:
566 	case IFE_PLUS_E_PHY_ID:
567 	case IFE_C_E_PHY_ID:
568 		phy->type = e1000_phy_ife;
569 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 		phy->ops.get_info = e1000_get_phy_info_ife;
571 		phy->ops.check_polarity = e1000_check_polarity_ife;
572 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 		break;
574 	case BME1000_E_PHY_ID:
575 		phy->type = e1000_phy_bm;
576 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 		phy->ops.commit = e1000e_phy_sw_reset;
580 		phy->ops.get_info = e1000e_get_phy_info_m88;
581 		phy->ops.check_polarity = e1000_check_polarity_m88;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 		break;
584 	default:
585 		return -E1000_ERR_PHY;
586 	}
587 
588 	return 0;
589 }
590 
591 /**
592  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593  *  @hw: pointer to the HW structure
594  *
595  *  Initialize family-specific NVM parameters and function
596  *  pointers.
597  **/
598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600 	struct e1000_nvm_info *nvm = &hw->nvm;
601 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 	u32 gfpreg, sector_base_addr, sector_end_addr;
603 	u16 i;
604 	u32 nvm_size;
605 
606 	nvm->type = e1000_nvm_flash_sw;
607 
608 	if (hw->mac.type == e1000_pch_spt) {
609 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 		 * STRAP register. This is because in SPT the GbE Flash region
611 		 * is no longer accessed through the flash registers. Instead,
612 		 * the mechanism has changed, and the Flash region access
613 		 * registers are now implemented in GbE memory space.
614 		 */
615 		nvm->flash_base_addr = 0;
616 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 		    * NVM_SIZE_MULTIPLIER;
618 		nvm->flash_bank_size = nvm_size / 2;
619 		/* Adjust to word count */
620 		nvm->flash_bank_size /= sizeof(u16);
621 		/* Set the base address for flash register access */
622 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 	} else {
624 		/* Can't read flash registers if register set isn't mapped. */
625 		if (!hw->flash_address) {
626 			e_dbg("ERROR: Flash registers not mapped\n");
627 			return -E1000_ERR_CONFIG;
628 		}
629 
630 		gfpreg = er32flash(ICH_FLASH_GFPREG);
631 
632 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 		 * Add 1 to sector_end_addr since this sector is included in
634 		 * the overall size.
635 		 */
636 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 		/* flash_base_addr is byte-aligned */
640 		nvm->flash_base_addr = sector_base_addr
641 		    << FLASH_SECTOR_ADDR_SHIFT;
642 
643 		/* find total size of the NVM, then cut in half since the total
644 		 * size represents two separate NVM banks.
645 		 */
646 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 					<< FLASH_SECTOR_ADDR_SHIFT);
648 		nvm->flash_bank_size /= 2;
649 		/* Adjust to word count */
650 		nvm->flash_bank_size /= sizeof(u16);
651 	}
652 
653 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654 
655 	/* Clear shadow ram */
656 	for (i = 0; i < nvm->word_size; i++) {
657 		dev_spec->shadow_ram[i].modified = false;
658 		dev_spec->shadow_ram[i].value = 0xFFFF;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666  *  @hw: pointer to the HW structure
667  *
668  *  Initialize family-specific MAC parameters and function
669  *  pointers.
670  **/
671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673 	struct e1000_mac_info *mac = &hw->mac;
674 
675 	/* Set media type function pointer */
676 	hw->phy.media_type = e1000_media_type_copper;
677 
678 	/* Set mta register count */
679 	mac->mta_reg_count = 32;
680 	/* Set rar entry count */
681 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 	if (mac->type == e1000_ich8lan)
683 		mac->rar_entry_count--;
684 	/* FWSM register */
685 	mac->has_fwsm = true;
686 	/* ARC subsystem not supported */
687 	mac->arc_subsystem_valid = false;
688 	/* Adaptive IFS supported */
689 	mac->adaptive_ifs = true;
690 
691 	/* LED and other operations */
692 	switch (mac->type) {
693 	case e1000_ich8lan:
694 	case e1000_ich9lan:
695 	case e1000_ich10lan:
696 		/* check management mode */
697 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 		/* ID LED init */
699 		mac->ops.id_led_init = e1000e_id_led_init_generic;
700 		/* blink LED */
701 		mac->ops.blink_led = e1000e_blink_led_generic;
702 		/* setup LED */
703 		mac->ops.setup_led = e1000e_setup_led_generic;
704 		/* cleanup LED */
705 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 		/* turn on/off LED */
707 		mac->ops.led_on = e1000_led_on_ich8lan;
708 		mac->ops.led_off = e1000_led_off_ich8lan;
709 		break;
710 	case e1000_pch2lan:
711 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 		mac->ops.rar_set = e1000_rar_set_pch2lan;
713 		/* fall-through */
714 	case e1000_pch_lpt:
715 	case e1000_pch_spt:
716 	case e1000_pchlan:
717 		/* check management mode */
718 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
719 		/* ID LED init */
720 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000_setup_led_pchlan;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_pchlan;
727 		mac->ops.led_off = e1000_led_off_pchlan;
728 		break;
729 	default:
730 		break;
731 	}
732 
733 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
734 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
735 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
736 		mac->ops.setup_physical_interface =
737 		    e1000_setup_copper_link_pch_lpt;
738 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
739 	}
740 
741 	/* Enable PCS Lock-loss workaround for ICH8 */
742 	if (mac->type == e1000_ich8lan)
743 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
744 
745 	return 0;
746 }
747 
748 /**
749  *  __e1000_access_emi_reg_locked - Read/write EMI register
750  *  @hw: pointer to the HW structure
751  *  @addr: EMI address to program
752  *  @data: pointer to value to read/write from/to the EMI address
753  *  @read: boolean flag to indicate read or write
754  *
755  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
756  **/
757 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
758 					 u16 *data, bool read)
759 {
760 	s32 ret_val;
761 
762 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
763 	if (ret_val)
764 		return ret_val;
765 
766 	if (read)
767 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
768 	else
769 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
770 
771 	return ret_val;
772 }
773 
774 /**
775  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
776  *  @hw: pointer to the HW structure
777  *  @addr: EMI address to program
778  *  @data: value to be read from the EMI address
779  *
780  *  Assumes the SW/FW/HW Semaphore is already acquired.
781  **/
782 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
783 {
784 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
785 }
786 
787 /**
788  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
789  *  @hw: pointer to the HW structure
790  *  @addr: EMI address to program
791  *  @data: value to be written to the EMI address
792  *
793  *  Assumes the SW/FW/HW Semaphore is already acquired.
794  **/
795 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
796 {
797 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
798 }
799 
800 /**
801  *  e1000_set_eee_pchlan - Enable/disable EEE support
802  *  @hw: pointer to the HW structure
803  *
804  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
805  *  the link and the EEE capabilities of the link partner.  The LPI Control
806  *  register bits will remain set only if/when link is up.
807  *
808  *  EEE LPI must not be asserted earlier than one second after link is up.
809  *  On 82579, EEE LPI should not be enabled until such time otherwise there
810  *  can be link issues with some switches.  Other devices can have EEE LPI
811  *  enabled immediately upon link up since they have a timer in hardware which
812  *  prevents LPI from being asserted too early.
813  **/
814 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
815 {
816 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
817 	s32 ret_val;
818 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
819 
820 	switch (hw->phy.type) {
821 	case e1000_phy_82579:
822 		lpa = I82579_EEE_LP_ABILITY;
823 		pcs_status = I82579_EEE_PCS_STATUS;
824 		adv_addr = I82579_EEE_ADVERTISEMENT;
825 		break;
826 	case e1000_phy_i217:
827 		lpa = I217_EEE_LP_ABILITY;
828 		pcs_status = I217_EEE_PCS_STATUS;
829 		adv_addr = I217_EEE_ADVERTISEMENT;
830 		break;
831 	default:
832 		return 0;
833 	}
834 
835 	ret_val = hw->phy.ops.acquire(hw);
836 	if (ret_val)
837 		return ret_val;
838 
839 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
840 	if (ret_val)
841 		goto release;
842 
843 	/* Clear bits that enable EEE in various speeds */
844 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
845 
846 	/* Enable EEE if not disabled by user */
847 	if (!dev_spec->eee_disable) {
848 		/* Save off link partner's EEE ability */
849 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
850 						    &dev_spec->eee_lp_ability);
851 		if (ret_val)
852 			goto release;
853 
854 		/* Read EEE advertisement */
855 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Enable EEE only for speeds in which the link partner is
860 		 * EEE capable and for which we advertise EEE.
861 		 */
862 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
863 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
864 
865 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
866 			e1e_rphy_locked(hw, MII_LPA, &data);
867 			if (data & LPA_100FULL)
868 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
869 			else
870 				/* EEE is not supported in 100Half, so ignore
871 				 * partner's EEE in 100 ability if full-duplex
872 				 * is not advertised.
873 				 */
874 				dev_spec->eee_lp_ability &=
875 				    ~I82579_EEE_100_SUPPORTED;
876 		}
877 	}
878 
879 	if (hw->phy.type == e1000_phy_82579) {
880 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
881 						    &data);
882 		if (ret_val)
883 			goto release;
884 
885 		data &= ~I82579_LPI_100_PLL_SHUT;
886 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887 						     data);
888 	}
889 
890 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
891 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
892 	if (ret_val)
893 		goto release;
894 
895 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
896 release:
897 	hw->phy.ops.release(hw);
898 
899 	return ret_val;
900 }
901 
902 /**
903  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
904  *  @hw:   pointer to the HW structure
905  *  @link: link up bool flag
906  *
907  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
908  *  preventing further DMA write requests.  Workaround the issue by disabling
909  *  the de-assertion of the clock request when in 1Gpbs mode.
910  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
911  *  speeds in order to avoid Tx hangs.
912  **/
913 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
914 {
915 	u32 fextnvm6 = er32(FEXTNVM6);
916 	u32 status = er32(STATUS);
917 	s32 ret_val = 0;
918 	u16 reg;
919 
920 	if (link && (status & E1000_STATUS_SPEED_1000)) {
921 		ret_val = hw->phy.ops.acquire(hw);
922 		if (ret_val)
923 			return ret_val;
924 
925 		ret_val =
926 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
927 						&reg);
928 		if (ret_val)
929 			goto release;
930 
931 		ret_val =
932 		    e1000e_write_kmrn_reg_locked(hw,
933 						 E1000_KMRNCTRLSTA_K1_CONFIG,
934 						 reg &
935 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
936 		if (ret_val)
937 			goto release;
938 
939 		usleep_range(10, 20);
940 
941 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
942 
943 		ret_val =
944 		    e1000e_write_kmrn_reg_locked(hw,
945 						 E1000_KMRNCTRLSTA_K1_CONFIG,
946 						 reg);
947 release:
948 		hw->phy.ops.release(hw);
949 	} else {
950 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
951 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
952 
953 		if ((hw->phy.revision > 5) || !link ||
954 		    ((status & E1000_STATUS_SPEED_100) &&
955 		     (status & E1000_STATUS_FD)))
956 			goto update_fextnvm6;
957 
958 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
959 		if (ret_val)
960 			return ret_val;
961 
962 		/* Clear link status transmit timeout */
963 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
964 
965 		if (status & E1000_STATUS_SPEED_100) {
966 			/* Set inband Tx timeout to 5x10us for 100Half */
967 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
968 
969 			/* Do not extend the K1 entry latency for 100Half */
970 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
971 		} else {
972 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
973 			reg |= 50 <<
974 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975 
976 			/* Extend the K1 entry latency for 10 Mbps */
977 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 		}
979 
980 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
981 		if (ret_val)
982 			return ret_val;
983 
984 update_fextnvm6:
985 		ew32(FEXTNVM6, fextnvm6);
986 	}
987 
988 	return ret_val;
989 }
990 
991 /**
992  *  e1000_platform_pm_pch_lpt - Set platform power management values
993  *  @hw: pointer to the HW structure
994  *  @link: bool indicating link status
995  *
996  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
997  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
998  *  when link is up (which must not exceed the maximum latency supported
999  *  by the platform), otherwise specify there is no LTR requirement.
1000  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1001  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1002  *  Capability register set, on this device LTR is set by writing the
1003  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1004  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1005  *  message to the PMC.
1006  **/
1007 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1008 {
1009 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1010 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1011 	u16 lat_enc = 0;	/* latency encoded */
1012 
1013 	if (link) {
1014 		u16 speed, duplex, scale = 0;
1015 		u16 max_snoop, max_nosnoop;
1016 		u16 max_ltr_enc;	/* max LTR latency encoded */
1017 		u64 value;
1018 		u32 rxa;
1019 
1020 		if (!hw->adapter->max_frame_size) {
1021 			e_dbg("max_frame_size not set.\n");
1022 			return -E1000_ERR_CONFIG;
1023 		}
1024 
1025 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1026 		if (!speed) {
1027 			e_dbg("Speed not set.\n");
1028 			return -E1000_ERR_CONFIG;
1029 		}
1030 
1031 		/* Rx Packet Buffer Allocation size (KB) */
1032 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1033 
1034 		/* Determine the maximum latency tolerated by the device.
1035 		 *
1036 		 * Per the PCIe spec, the tolerated latencies are encoded as
1037 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1038 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1039 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1040 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1041 		 */
1042 		rxa *= 512;
1043 		value = (rxa > hw->adapter->max_frame_size) ?
1044 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1045 			0;
1046 
1047 		while (value > PCI_LTR_VALUE_MASK) {
1048 			scale++;
1049 			value = DIV_ROUND_UP(value, (1 << 5));
1050 		}
1051 		if (scale > E1000_LTRV_SCALE_MAX) {
1052 			e_dbg("Invalid LTR latency scale %d\n", scale);
1053 			return -E1000_ERR_CONFIG;
1054 		}
1055 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1056 
1057 		/* Determine the maximum latency tolerated by the platform */
1058 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1059 				     &max_snoop);
1060 		pci_read_config_word(hw->adapter->pdev,
1061 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1062 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1063 
1064 		if (lat_enc > max_ltr_enc)
1065 			lat_enc = max_ltr_enc;
1066 	}
1067 
1068 	/* Set Snoop and No-Snoop latencies the same */
1069 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1070 	ew32(LTRV, reg);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1077  *  @hw: pointer to the HW structure
1078  *  @to_sx: boolean indicating a system power state transition to Sx
1079  *
1080  *  When link is down, configure ULP mode to significantly reduce the power
1081  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1082  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1083  *  system, configure the ULP mode by software.
1084  */
1085 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1086 {
1087 	u32 mac_reg;
1088 	s32 ret_val = 0;
1089 	u16 phy_reg;
1090 
1091 	if ((hw->mac.type < e1000_pch_lpt) ||
1092 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1093 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1094 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1095 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1096 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1097 		return 0;
1098 
1099 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1100 		/* Request ME configure ULP mode in the PHY */
1101 		mac_reg = er32(H2ME);
1102 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1103 		ew32(H2ME, mac_reg);
1104 
1105 		goto out;
1106 	}
1107 
1108 	if (!to_sx) {
1109 		int i = 0;
1110 
1111 		/* Poll up to 5 seconds for Cable Disconnected indication */
1112 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1113 			/* Bail if link is re-acquired */
1114 			if (er32(STATUS) & E1000_STATUS_LU)
1115 				return -E1000_ERR_PHY;
1116 
1117 			if (i++ == 100)
1118 				break;
1119 
1120 			msleep(50);
1121 		}
1122 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1123 		      (er32(FEXT) &
1124 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1125 	}
1126 
1127 	ret_val = hw->phy.ops.acquire(hw);
1128 	if (ret_val)
1129 		goto out;
1130 
1131 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132 	 * LPLU and disable Gig speed when entering ULP
1133 	 */
1134 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136 						       &phy_reg);
1137 		if (ret_val)
1138 			goto release;
1139 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1140 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1141 							phy_reg);
1142 		if (ret_val)
1143 			goto release;
1144 	}
1145 
1146 	/* Force SMBus mode in PHY */
1147 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1148 	if (ret_val)
1149 		goto release;
1150 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1151 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1152 
1153 	/* Force SMBus mode in MAC */
1154 	mac_reg = er32(CTRL_EXT);
1155 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1156 	ew32(CTRL_EXT, mac_reg);
1157 
1158 	/* Set Inband ULP Exit, Reset to SMBus mode and
1159 	 * Disable SMBus Release on PERST# in PHY
1160 	 */
1161 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1162 	if (ret_val)
1163 		goto release;
1164 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1165 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1166 	if (to_sx) {
1167 		if (er32(WUFC) & E1000_WUFC_LNKC)
1168 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1169 
1170 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1171 	} else {
1172 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1173 	}
1174 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1175 
1176 	/* Set Disable SMBus Release on PERST# in MAC */
1177 	mac_reg = er32(FEXTNVM7);
1178 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1179 	ew32(FEXTNVM7, mac_reg);
1180 
1181 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1182 	phy_reg |= I218_ULP_CONFIG1_START;
1183 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1184 release:
1185 	hw->phy.ops.release(hw);
1186 out:
1187 	if (ret_val)
1188 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1189 	else
1190 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1191 
1192 	return ret_val;
1193 }
1194 
1195 /**
1196  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1197  *  @hw: pointer to the HW structure
1198  *  @force: boolean indicating whether or not to force disabling ULP
1199  *
1200  *  Un-configure ULP mode when link is up, the system is transitioned from
1201  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1202  *  system, poll for an indication from ME that ULP has been un-configured.
1203  *  If not on an ME enabled system, un-configure the ULP mode by software.
1204  *
1205  *  During nominal operation, this function is called when link is acquired
1206  *  to disable ULP mode (force=false); otherwise, for example when unloading
1207  *  the driver or during Sx->S0 transitions, this is called with force=true
1208  *  to forcibly disable ULP.
1209  */
1210 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1211 {
1212 	s32 ret_val = 0;
1213 	u32 mac_reg;
1214 	u16 phy_reg;
1215 	int i = 0;
1216 
1217 	if ((hw->mac.type < e1000_pch_lpt) ||
1218 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1219 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1220 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1221 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1222 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1223 		return 0;
1224 
1225 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1226 		if (force) {
1227 			/* Request ME un-configure ULP mode in the PHY */
1228 			mac_reg = er32(H2ME);
1229 			mac_reg &= ~E1000_H2ME_ULP;
1230 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1231 			ew32(H2ME, mac_reg);
1232 		}
1233 
1234 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1235 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1236 			if (i++ == 10) {
1237 				ret_val = -E1000_ERR_PHY;
1238 				goto out;
1239 			}
1240 
1241 			usleep_range(10000, 20000);
1242 		}
1243 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1244 
1245 		if (force) {
1246 			mac_reg = er32(H2ME);
1247 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1248 			ew32(H2ME, mac_reg);
1249 		} else {
1250 			/* Clear H2ME.ULP after ME ULP configuration */
1251 			mac_reg = er32(H2ME);
1252 			mac_reg &= ~E1000_H2ME_ULP;
1253 			ew32(H2ME, mac_reg);
1254 		}
1255 
1256 		goto out;
1257 	}
1258 
1259 	ret_val = hw->phy.ops.acquire(hw);
1260 	if (ret_val)
1261 		goto out;
1262 
1263 	if (force)
1264 		/* Toggle LANPHYPC Value bit */
1265 		e1000_toggle_lanphypc_pch_lpt(hw);
1266 
1267 	/* Unforce SMBus mode in PHY */
1268 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269 	if (ret_val) {
1270 		/* The MAC might be in PCIe mode, so temporarily force to
1271 		 * SMBus mode in order to access the PHY.
1272 		 */
1273 		mac_reg = er32(CTRL_EXT);
1274 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1275 		ew32(CTRL_EXT, mac_reg);
1276 
1277 		msleep(50);
1278 
1279 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1280 						       &phy_reg);
1281 		if (ret_val)
1282 			goto release;
1283 	}
1284 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1285 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1286 
1287 	/* Unforce SMBus mode in MAC */
1288 	mac_reg = er32(CTRL_EXT);
1289 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1290 	ew32(CTRL_EXT, mac_reg);
1291 
1292 	/* When ULP mode was previously entered, K1 was disabled by the
1293 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1294 	 */
1295 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1296 	if (ret_val)
1297 		goto release;
1298 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1299 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1300 
1301 	/* Clear ULP enabled configuration */
1302 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1303 	if (ret_val)
1304 		goto release;
1305 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1306 		     I218_ULP_CONFIG1_STICKY_ULP |
1307 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1308 		     I218_ULP_CONFIG1_WOL_HOST |
1309 		     I218_ULP_CONFIG1_INBAND_EXIT |
1310 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1311 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1312 
1313 	/* Commit ULP changes by starting auto ULP configuration */
1314 	phy_reg |= I218_ULP_CONFIG1_START;
1315 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1316 
1317 	/* Clear Disable SMBus Release on PERST# in MAC */
1318 	mac_reg = er32(FEXTNVM7);
1319 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1320 	ew32(FEXTNVM7, mac_reg);
1321 
1322 release:
1323 	hw->phy.ops.release(hw);
1324 	if (force) {
1325 		e1000_phy_hw_reset(hw);
1326 		msleep(50);
1327 	}
1328 out:
1329 	if (ret_val)
1330 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1331 	else
1332 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1333 
1334 	return ret_val;
1335 }
1336 
1337 /**
1338  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1339  *  @hw: pointer to the HW structure
1340  *
1341  *  Checks to see of the link status of the hardware has changed.  If a
1342  *  change in link status has been detected, then we read the PHY registers
1343  *  to get the current speed/duplex if link exists.
1344  **/
1345 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1346 {
1347 	struct e1000_mac_info *mac = &hw->mac;
1348 	s32 ret_val, tipg_reg = 0;
1349 	u16 emi_addr, emi_val = 0;
1350 	bool link;
1351 	u16 phy_reg;
1352 
1353 	/* We only want to go out to the PHY registers to see if Auto-Neg
1354 	 * has completed and/or if our link status has changed.  The
1355 	 * get_link_status flag is set upon receiving a Link Status
1356 	 * Change or Rx Sequence Error interrupt.
1357 	 */
1358 	if (!mac->get_link_status)
1359 		return 0;
1360 
1361 	/* First we want to see if the MII Status Register reports
1362 	 * link.  If so, then we want to get the current speed/duplex
1363 	 * of the PHY.
1364 	 */
1365 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1366 	if (ret_val)
1367 		return ret_val;
1368 
1369 	if (hw->mac.type == e1000_pchlan) {
1370 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1371 		if (ret_val)
1372 			return ret_val;
1373 	}
1374 
1375 	/* When connected at 10Mbps half-duplex, some parts are excessively
1376 	 * aggressive resulting in many collisions. To avoid this, increase
1377 	 * the IPG and reduce Rx latency in the PHY.
1378 	 */
1379 	if (((hw->mac.type == e1000_pch2lan) ||
1380 	     (hw->mac.type == e1000_pch_lpt) ||
1381 	     (hw->mac.type == e1000_pch_spt)) && link) {
1382 		u32 reg;
1383 
1384 		reg = er32(STATUS);
1385 		tipg_reg = er32(TIPG);
1386 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1387 
1388 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1389 			tipg_reg |= 0xFF;
1390 			/* Reduce Rx latency in analog PHY */
1391 			emi_val = 0;
1392 		} else {
1393 
1394 			/* Roll back the default values */
1395 			tipg_reg |= 0x08;
1396 			emi_val = 1;
1397 		}
1398 
1399 		ew32(TIPG, tipg_reg);
1400 
1401 		ret_val = hw->phy.ops.acquire(hw);
1402 		if (ret_val)
1403 			return ret_val;
1404 
1405 		if (hw->mac.type == e1000_pch2lan)
1406 			emi_addr = I82579_RX_CONFIG;
1407 		else
1408 			emi_addr = I217_RX_CONFIG;
1409 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1410 
1411 		hw->phy.ops.release(hw);
1412 
1413 		if (ret_val)
1414 			return ret_val;
1415 	}
1416 
1417 	/* Work-around I218 hang issue */
1418 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1419 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1420 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1421 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3) ||
1422 	    (hw->mac.type == e1000_pch_spt)) {
1423 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1424 		if (ret_val)
1425 			return ret_val;
1426 	}
1427 	if ((hw->mac.type == e1000_pch_lpt) ||
1428 	    (hw->mac.type == e1000_pch_spt)) {
1429 		/* Set platform power management values for
1430 		 * Latency Tolerance Reporting (LTR)
1431 		 */
1432 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1433 		if (ret_val)
1434 			return ret_val;
1435 	}
1436 
1437 	/* Clear link partner's EEE ability */
1438 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1439 
1440 	/* FEXTNVM6 K1-off workaround */
1441 	if (hw->mac.type == e1000_pch_spt) {
1442 		u32 pcieanacfg = er32(PCIEANACFG);
1443 		u32 fextnvm6 = er32(FEXTNVM6);
1444 
1445 		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1446 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1447 		else
1448 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1449 
1450 		ew32(FEXTNVM6, fextnvm6);
1451 	}
1452 
1453 	if (!link)
1454 		return 0;	/* No link detected */
1455 
1456 	mac->get_link_status = false;
1457 
1458 	switch (hw->mac.type) {
1459 	case e1000_pch2lan:
1460 		ret_val = e1000_k1_workaround_lv(hw);
1461 		if (ret_val)
1462 			return ret_val;
1463 		/* fall-thru */
1464 	case e1000_pchlan:
1465 		if (hw->phy.type == e1000_phy_82578) {
1466 			ret_val = e1000_link_stall_workaround_hv(hw);
1467 			if (ret_val)
1468 				return ret_val;
1469 		}
1470 
1471 		/* Workaround for PCHx parts in half-duplex:
1472 		 * Set the number of preambles removed from the packet
1473 		 * when it is passed from the PHY to the MAC to prevent
1474 		 * the MAC from misinterpreting the packet type.
1475 		 */
1476 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1477 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1478 
1479 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1480 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1481 
1482 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1483 		break;
1484 	default:
1485 		break;
1486 	}
1487 
1488 	/* Check if there was DownShift, must be checked
1489 	 * immediately after link-up
1490 	 */
1491 	e1000e_check_downshift(hw);
1492 
1493 	/* Enable/Disable EEE after link up */
1494 	if (hw->phy.type > e1000_phy_82579) {
1495 		ret_val = e1000_set_eee_pchlan(hw);
1496 		if (ret_val)
1497 			return ret_val;
1498 	}
1499 
1500 	/* If we are forcing speed/duplex, then we simply return since
1501 	 * we have already determined whether we have link or not.
1502 	 */
1503 	if (!mac->autoneg)
1504 		return -E1000_ERR_CONFIG;
1505 
1506 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1507 	 * of MAC speed/duplex configuration.  So we only need to
1508 	 * configure Collision Distance in the MAC.
1509 	 */
1510 	mac->ops.config_collision_dist(hw);
1511 
1512 	/* Configure Flow Control now that Auto-Neg has completed.
1513 	 * First, we need to restore the desired flow control
1514 	 * settings because we may have had to re-autoneg with a
1515 	 * different link partner.
1516 	 */
1517 	ret_val = e1000e_config_fc_after_link_up(hw);
1518 	if (ret_val)
1519 		e_dbg("Error configuring flow control\n");
1520 
1521 	return ret_val;
1522 }
1523 
1524 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1525 {
1526 	struct e1000_hw *hw = &adapter->hw;
1527 	s32 rc;
1528 
1529 	rc = e1000_init_mac_params_ich8lan(hw);
1530 	if (rc)
1531 		return rc;
1532 
1533 	rc = e1000_init_nvm_params_ich8lan(hw);
1534 	if (rc)
1535 		return rc;
1536 
1537 	switch (hw->mac.type) {
1538 	case e1000_ich8lan:
1539 	case e1000_ich9lan:
1540 	case e1000_ich10lan:
1541 		rc = e1000_init_phy_params_ich8lan(hw);
1542 		break;
1543 	case e1000_pchlan:
1544 	case e1000_pch2lan:
1545 	case e1000_pch_lpt:
1546 	case e1000_pch_spt:
1547 		rc = e1000_init_phy_params_pchlan(hw);
1548 		break;
1549 	default:
1550 		break;
1551 	}
1552 	if (rc)
1553 		return rc;
1554 
1555 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1556 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1557 	 */
1558 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1559 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1560 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1561 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1562 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1563 
1564 		hw->mac.ops.blink_led = NULL;
1565 	}
1566 
1567 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1568 	    (adapter->hw.phy.type != e1000_phy_ife))
1569 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1570 
1571 	/* Enable workaround for 82579 w/ ME enabled */
1572 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1573 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1574 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1575 
1576 	return 0;
1577 }
1578 
1579 static DEFINE_MUTEX(nvm_mutex);
1580 
1581 /**
1582  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1583  *  @hw: pointer to the HW structure
1584  *
1585  *  Acquires the mutex for performing NVM operations.
1586  **/
1587 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1588 {
1589 	mutex_lock(&nvm_mutex);
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  *  e1000_release_nvm_ich8lan - Release NVM mutex
1596  *  @hw: pointer to the HW structure
1597  *
1598  *  Releases the mutex used while performing NVM operations.
1599  **/
1600 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1601 {
1602 	mutex_unlock(&nvm_mutex);
1603 }
1604 
1605 /**
1606  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1607  *  @hw: pointer to the HW structure
1608  *
1609  *  Acquires the software control flag for performing PHY and select
1610  *  MAC CSR accesses.
1611  **/
1612 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1613 {
1614 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1615 	s32 ret_val = 0;
1616 
1617 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1618 			     &hw->adapter->state)) {
1619 		e_dbg("contention for Phy access\n");
1620 		return -E1000_ERR_PHY;
1621 	}
1622 
1623 	while (timeout) {
1624 		extcnf_ctrl = er32(EXTCNF_CTRL);
1625 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1626 			break;
1627 
1628 		mdelay(1);
1629 		timeout--;
1630 	}
1631 
1632 	if (!timeout) {
1633 		e_dbg("SW has already locked the resource.\n");
1634 		ret_val = -E1000_ERR_CONFIG;
1635 		goto out;
1636 	}
1637 
1638 	timeout = SW_FLAG_TIMEOUT;
1639 
1640 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1641 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1642 
1643 	while (timeout) {
1644 		extcnf_ctrl = er32(EXTCNF_CTRL);
1645 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1646 			break;
1647 
1648 		mdelay(1);
1649 		timeout--;
1650 	}
1651 
1652 	if (!timeout) {
1653 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1654 		      er32(FWSM), extcnf_ctrl);
1655 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1656 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1657 		ret_val = -E1000_ERR_CONFIG;
1658 		goto out;
1659 	}
1660 
1661 out:
1662 	if (ret_val)
1663 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1664 
1665 	return ret_val;
1666 }
1667 
1668 /**
1669  *  e1000_release_swflag_ich8lan - Release software control flag
1670  *  @hw: pointer to the HW structure
1671  *
1672  *  Releases the software control flag for performing PHY and select
1673  *  MAC CSR accesses.
1674  **/
1675 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1676 {
1677 	u32 extcnf_ctrl;
1678 
1679 	extcnf_ctrl = er32(EXTCNF_CTRL);
1680 
1681 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1682 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1683 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1684 	} else {
1685 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1686 	}
1687 
1688 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1689 }
1690 
1691 /**
1692  *  e1000_check_mng_mode_ich8lan - Checks management mode
1693  *  @hw: pointer to the HW structure
1694  *
1695  *  This checks if the adapter has any manageability enabled.
1696  *  This is a function pointer entry point only called by read/write
1697  *  routines for the PHY and NVM parts.
1698  **/
1699 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1700 {
1701 	u32 fwsm;
1702 
1703 	fwsm = er32(FWSM);
1704 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1705 		((fwsm & E1000_FWSM_MODE_MASK) ==
1706 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1707 }
1708 
1709 /**
1710  *  e1000_check_mng_mode_pchlan - Checks management mode
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  This checks if the adapter has iAMT enabled.
1714  *  This is a function pointer entry point only called by read/write
1715  *  routines for the PHY and NVM parts.
1716  **/
1717 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1718 {
1719 	u32 fwsm;
1720 
1721 	fwsm = er32(FWSM);
1722 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1723 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1724 }
1725 
1726 /**
1727  *  e1000_rar_set_pch2lan - Set receive address register
1728  *  @hw: pointer to the HW structure
1729  *  @addr: pointer to the receive address
1730  *  @index: receive address array register
1731  *
1732  *  Sets the receive address array register at index to the address passed
1733  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1734  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1735  *  Use SHRA[0-3] in place of those reserved for ME.
1736  **/
1737 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1738 {
1739 	u32 rar_low, rar_high;
1740 
1741 	/* HW expects these in little endian so we reverse the byte order
1742 	 * from network order (big endian) to little endian
1743 	 */
1744 	rar_low = ((u32)addr[0] |
1745 		   ((u32)addr[1] << 8) |
1746 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1747 
1748 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1749 
1750 	/* If MAC address zero, no need to set the AV bit */
1751 	if (rar_low || rar_high)
1752 		rar_high |= E1000_RAH_AV;
1753 
1754 	if (index == 0) {
1755 		ew32(RAL(index), rar_low);
1756 		e1e_flush();
1757 		ew32(RAH(index), rar_high);
1758 		e1e_flush();
1759 		return 0;
1760 	}
1761 
1762 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1763 	 * next address into the SHRA register array.
1764 	 */
1765 	if (index < (u32)(hw->mac.rar_entry_count)) {
1766 		s32 ret_val;
1767 
1768 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1769 		if (ret_val)
1770 			goto out;
1771 
1772 		ew32(SHRAL(index - 1), rar_low);
1773 		e1e_flush();
1774 		ew32(SHRAH(index - 1), rar_high);
1775 		e1e_flush();
1776 
1777 		e1000_release_swflag_ich8lan(hw);
1778 
1779 		/* verify the register updates */
1780 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1781 		    (er32(SHRAH(index - 1)) == rar_high))
1782 			return 0;
1783 
1784 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1785 		      (index - 1), er32(FWSM));
1786 	}
1787 
1788 out:
1789 	e_dbg("Failed to write receive address at index %d\n", index);
1790 	return -E1000_ERR_CONFIG;
1791 }
1792 
1793 /**
1794  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  Get the number of available receive registers that the Host can
1798  *  program. SHRA[0-10] are the shared receive address registers
1799  *  that are shared between the Host and manageability engine (ME).
1800  *  ME can reserve any number of addresses and the host needs to be
1801  *  able to tell how many available registers it has access to.
1802  **/
1803 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1804 {
1805 	u32 wlock_mac;
1806 	u32 num_entries;
1807 
1808 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1809 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1810 
1811 	switch (wlock_mac) {
1812 	case 0:
1813 		/* All SHRA[0..10] and RAR[0] available */
1814 		num_entries = hw->mac.rar_entry_count;
1815 		break;
1816 	case 1:
1817 		/* Only RAR[0] available */
1818 		num_entries = 1;
1819 		break;
1820 	default:
1821 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1822 		num_entries = wlock_mac + 1;
1823 		break;
1824 	}
1825 
1826 	return num_entries;
1827 }
1828 
1829 /**
1830  *  e1000_rar_set_pch_lpt - Set receive address registers
1831  *  @hw: pointer to the HW structure
1832  *  @addr: pointer to the receive address
1833  *  @index: receive address array register
1834  *
1835  *  Sets the receive address register array at index to the address passed
1836  *  in by addr. For LPT, RAR[0] is the base address register that is to
1837  *  contain the MAC address. SHRA[0-10] are the shared receive address
1838  *  registers that are shared between the Host and manageability engine (ME).
1839  **/
1840 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1841 {
1842 	u32 rar_low, rar_high;
1843 	u32 wlock_mac;
1844 
1845 	/* HW expects these in little endian so we reverse the byte order
1846 	 * from network order (big endian) to little endian
1847 	 */
1848 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1849 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850 
1851 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852 
1853 	/* If MAC address zero, no need to set the AV bit */
1854 	if (rar_low || rar_high)
1855 		rar_high |= E1000_RAH_AV;
1856 
1857 	if (index == 0) {
1858 		ew32(RAL(index), rar_low);
1859 		e1e_flush();
1860 		ew32(RAH(index), rar_high);
1861 		e1e_flush();
1862 		return 0;
1863 	}
1864 
1865 	/* The manageability engine (ME) can lock certain SHRAR registers that
1866 	 * it is using - those registers are unavailable for use.
1867 	 */
1868 	if (index < hw->mac.rar_entry_count) {
1869 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1870 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1871 
1872 		/* Check if all SHRAR registers are locked */
1873 		if (wlock_mac == 1)
1874 			goto out;
1875 
1876 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1877 			s32 ret_val;
1878 
1879 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1880 
1881 			if (ret_val)
1882 				goto out;
1883 
1884 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1885 			e1e_flush();
1886 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1887 			e1e_flush();
1888 
1889 			e1000_release_swflag_ich8lan(hw);
1890 
1891 			/* verify the register updates */
1892 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1893 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1894 				return 0;
1895 		}
1896 	}
1897 
1898 out:
1899 	e_dbg("Failed to write receive address at index %d\n", index);
1900 	return -E1000_ERR_CONFIG;
1901 }
1902 
1903 /**
1904  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1905  *  @hw: pointer to the HW structure
1906  *
1907  *  Checks if firmware is blocking the reset of the PHY.
1908  *  This is a function pointer entry point only called by
1909  *  reset routines.
1910  **/
1911 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1912 {
1913 	bool blocked = false;
1914 	int i = 0;
1915 
1916 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1917 	       (i++ < 10))
1918 		usleep_range(10000, 20000);
1919 	return blocked ? E1000_BLK_PHY_RESET : 0;
1920 }
1921 
1922 /**
1923  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1924  *  @hw: pointer to the HW structure
1925  *
1926  *  Assumes semaphore already acquired.
1927  *
1928  **/
1929 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1930 {
1931 	u16 phy_data;
1932 	u32 strap = er32(STRAP);
1933 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1934 	    E1000_STRAP_SMT_FREQ_SHIFT;
1935 	s32 ret_val;
1936 
1937 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1938 
1939 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1940 	if (ret_val)
1941 		return ret_val;
1942 
1943 	phy_data &= ~HV_SMB_ADDR_MASK;
1944 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1945 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1946 
1947 	if (hw->phy.type == e1000_phy_i217) {
1948 		/* Restore SMBus frequency */
1949 		if (freq--) {
1950 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1951 			phy_data |= (freq & (1 << 0)) <<
1952 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1953 			phy_data |= (freq & (1 << 1)) <<
1954 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1955 		} else {
1956 			e_dbg("Unsupported SMB frequency in PHY\n");
1957 		}
1958 	}
1959 
1960 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1961 }
1962 
1963 /**
1964  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1965  *  @hw:   pointer to the HW structure
1966  *
1967  *  SW should configure the LCD from the NVM extended configuration region
1968  *  as a workaround for certain parts.
1969  **/
1970 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1971 {
1972 	struct e1000_phy_info *phy = &hw->phy;
1973 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1974 	s32 ret_val = 0;
1975 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1976 
1977 	/* Initialize the PHY from the NVM on ICH platforms.  This
1978 	 * is needed due to an issue where the NVM configuration is
1979 	 * not properly autoloaded after power transitions.
1980 	 * Therefore, after each PHY reset, we will load the
1981 	 * configuration data out of the NVM manually.
1982 	 */
1983 	switch (hw->mac.type) {
1984 	case e1000_ich8lan:
1985 		if (phy->type != e1000_phy_igp_3)
1986 			return ret_val;
1987 
1988 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1989 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1990 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1991 			break;
1992 		}
1993 		/* Fall-thru */
1994 	case e1000_pchlan:
1995 	case e1000_pch2lan:
1996 	case e1000_pch_lpt:
1997 	case e1000_pch_spt:
1998 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1999 		break;
2000 	default:
2001 		return ret_val;
2002 	}
2003 
2004 	ret_val = hw->phy.ops.acquire(hw);
2005 	if (ret_val)
2006 		return ret_val;
2007 
2008 	data = er32(FEXTNVM);
2009 	if (!(data & sw_cfg_mask))
2010 		goto release;
2011 
2012 	/* Make sure HW does not configure LCD from PHY
2013 	 * extended configuration before SW configuration
2014 	 */
2015 	data = er32(EXTCNF_CTRL);
2016 	if ((hw->mac.type < e1000_pch2lan) &&
2017 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2018 		goto release;
2019 
2020 	cnf_size = er32(EXTCNF_SIZE);
2021 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2022 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2023 	if (!cnf_size)
2024 		goto release;
2025 
2026 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2027 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2028 
2029 	if (((hw->mac.type == e1000_pchlan) &&
2030 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2031 	    (hw->mac.type > e1000_pchlan)) {
2032 		/* HW configures the SMBus address and LEDs when the
2033 		 * OEM and LCD Write Enable bits are set in the NVM.
2034 		 * When both NVM bits are cleared, SW will configure
2035 		 * them instead.
2036 		 */
2037 		ret_val = e1000_write_smbus_addr(hw);
2038 		if (ret_val)
2039 			goto release;
2040 
2041 		data = er32(LEDCTL);
2042 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2043 							(u16)data);
2044 		if (ret_val)
2045 			goto release;
2046 	}
2047 
2048 	/* Configure LCD from extended configuration region. */
2049 
2050 	/* cnf_base_addr is in DWORD */
2051 	word_addr = (u16)(cnf_base_addr << 1);
2052 
2053 	for (i = 0; i < cnf_size; i++) {
2054 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2055 		if (ret_val)
2056 			goto release;
2057 
2058 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2059 					 1, &reg_addr);
2060 		if (ret_val)
2061 			goto release;
2062 
2063 		/* Save off the PHY page for future writes. */
2064 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2065 			phy_page = reg_data;
2066 			continue;
2067 		}
2068 
2069 		reg_addr &= PHY_REG_MASK;
2070 		reg_addr |= phy_page;
2071 
2072 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2073 		if (ret_val)
2074 			goto release;
2075 	}
2076 
2077 release:
2078 	hw->phy.ops.release(hw);
2079 	return ret_val;
2080 }
2081 
2082 /**
2083  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2084  *  @hw:   pointer to the HW structure
2085  *  @link: link up bool flag
2086  *
2087  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2088  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2089  *  If link is down, the function will restore the default K1 setting located
2090  *  in the NVM.
2091  **/
2092 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2093 {
2094 	s32 ret_val = 0;
2095 	u16 status_reg = 0;
2096 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2097 
2098 	if (hw->mac.type != e1000_pchlan)
2099 		return 0;
2100 
2101 	/* Wrap the whole flow with the sw flag */
2102 	ret_val = hw->phy.ops.acquire(hw);
2103 	if (ret_val)
2104 		return ret_val;
2105 
2106 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2107 	if (link) {
2108 		if (hw->phy.type == e1000_phy_82578) {
2109 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2110 						  &status_reg);
2111 			if (ret_val)
2112 				goto release;
2113 
2114 			status_reg &= (BM_CS_STATUS_LINK_UP |
2115 				       BM_CS_STATUS_RESOLVED |
2116 				       BM_CS_STATUS_SPEED_MASK);
2117 
2118 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2119 					   BM_CS_STATUS_RESOLVED |
2120 					   BM_CS_STATUS_SPEED_1000))
2121 				k1_enable = false;
2122 		}
2123 
2124 		if (hw->phy.type == e1000_phy_82577) {
2125 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2126 			if (ret_val)
2127 				goto release;
2128 
2129 			status_reg &= (HV_M_STATUS_LINK_UP |
2130 				       HV_M_STATUS_AUTONEG_COMPLETE |
2131 				       HV_M_STATUS_SPEED_MASK);
2132 
2133 			if (status_reg == (HV_M_STATUS_LINK_UP |
2134 					   HV_M_STATUS_AUTONEG_COMPLETE |
2135 					   HV_M_STATUS_SPEED_1000))
2136 				k1_enable = false;
2137 		}
2138 
2139 		/* Link stall fix for link up */
2140 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2141 		if (ret_val)
2142 			goto release;
2143 
2144 	} else {
2145 		/* Link stall fix for link down */
2146 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2147 		if (ret_val)
2148 			goto release;
2149 	}
2150 
2151 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2152 
2153 release:
2154 	hw->phy.ops.release(hw);
2155 
2156 	return ret_val;
2157 }
2158 
2159 /**
2160  *  e1000_configure_k1_ich8lan - Configure K1 power state
2161  *  @hw: pointer to the HW structure
2162  *  @enable: K1 state to configure
2163  *
2164  *  Configure the K1 power state based on the provided parameter.
2165  *  Assumes semaphore already acquired.
2166  *
2167  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2168  **/
2169 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2170 {
2171 	s32 ret_val;
2172 	u32 ctrl_reg = 0;
2173 	u32 ctrl_ext = 0;
2174 	u32 reg = 0;
2175 	u16 kmrn_reg = 0;
2176 
2177 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2178 					      &kmrn_reg);
2179 	if (ret_val)
2180 		return ret_val;
2181 
2182 	if (k1_enable)
2183 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2184 	else
2185 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2186 
2187 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2188 					       kmrn_reg);
2189 	if (ret_val)
2190 		return ret_val;
2191 
2192 	usleep_range(20, 40);
2193 	ctrl_ext = er32(CTRL_EXT);
2194 	ctrl_reg = er32(CTRL);
2195 
2196 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2197 	reg |= E1000_CTRL_FRCSPD;
2198 	ew32(CTRL, reg);
2199 
2200 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2201 	e1e_flush();
2202 	usleep_range(20, 40);
2203 	ew32(CTRL, ctrl_reg);
2204 	ew32(CTRL_EXT, ctrl_ext);
2205 	e1e_flush();
2206 	usleep_range(20, 40);
2207 
2208 	return 0;
2209 }
2210 
2211 /**
2212  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2213  *  @hw:       pointer to the HW structure
2214  *  @d0_state: boolean if entering d0 or d3 device state
2215  *
2216  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2217  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2218  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2219  **/
2220 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2221 {
2222 	s32 ret_val = 0;
2223 	u32 mac_reg;
2224 	u16 oem_reg;
2225 
2226 	if (hw->mac.type < e1000_pchlan)
2227 		return ret_val;
2228 
2229 	ret_val = hw->phy.ops.acquire(hw);
2230 	if (ret_val)
2231 		return ret_val;
2232 
2233 	if (hw->mac.type == e1000_pchlan) {
2234 		mac_reg = er32(EXTCNF_CTRL);
2235 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2236 			goto release;
2237 	}
2238 
2239 	mac_reg = er32(FEXTNVM);
2240 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2241 		goto release;
2242 
2243 	mac_reg = er32(PHY_CTRL);
2244 
2245 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2246 	if (ret_val)
2247 		goto release;
2248 
2249 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2250 
2251 	if (d0_state) {
2252 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2253 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2254 
2255 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2256 			oem_reg |= HV_OEM_BITS_LPLU;
2257 	} else {
2258 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2259 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2260 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2261 
2262 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2263 			       E1000_PHY_CTRL_NOND0A_LPLU))
2264 			oem_reg |= HV_OEM_BITS_LPLU;
2265 	}
2266 
2267 	/* Set Restart auto-neg to activate the bits */
2268 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2269 	    !hw->phy.ops.check_reset_block(hw))
2270 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2271 
2272 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2273 
2274 release:
2275 	hw->phy.ops.release(hw);
2276 
2277 	return ret_val;
2278 }
2279 
2280 /**
2281  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2282  *  @hw:   pointer to the HW structure
2283  **/
2284 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2285 {
2286 	s32 ret_val;
2287 	u16 data;
2288 
2289 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2290 	if (ret_val)
2291 		return ret_val;
2292 
2293 	data |= HV_KMRN_MDIO_SLOW;
2294 
2295 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2296 
2297 	return ret_val;
2298 }
2299 
2300 /**
2301  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2302  *  done after every PHY reset.
2303  **/
2304 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2305 {
2306 	s32 ret_val = 0;
2307 	u16 phy_data;
2308 
2309 	if (hw->mac.type != e1000_pchlan)
2310 		return 0;
2311 
2312 	/* Set MDIO slow mode before any other MDIO access */
2313 	if (hw->phy.type == e1000_phy_82577) {
2314 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2315 		if (ret_val)
2316 			return ret_val;
2317 	}
2318 
2319 	if (((hw->phy.type == e1000_phy_82577) &&
2320 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2321 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2322 		/* Disable generation of early preamble */
2323 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2324 		if (ret_val)
2325 			return ret_val;
2326 
2327 		/* Preamble tuning for SSC */
2328 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2329 		if (ret_val)
2330 			return ret_val;
2331 	}
2332 
2333 	if (hw->phy.type == e1000_phy_82578) {
2334 		/* Return registers to default by doing a soft reset then
2335 		 * writing 0x3140 to the control register.
2336 		 */
2337 		if (hw->phy.revision < 2) {
2338 			e1000e_phy_sw_reset(hw);
2339 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2340 		}
2341 	}
2342 
2343 	/* Select page 0 */
2344 	ret_val = hw->phy.ops.acquire(hw);
2345 	if (ret_val)
2346 		return ret_val;
2347 
2348 	hw->phy.addr = 1;
2349 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2350 	hw->phy.ops.release(hw);
2351 	if (ret_val)
2352 		return ret_val;
2353 
2354 	/* Configure the K1 Si workaround during phy reset assuming there is
2355 	 * link so that it disables K1 if link is in 1Gbps.
2356 	 */
2357 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2358 	if (ret_val)
2359 		return ret_val;
2360 
2361 	/* Workaround for link disconnects on a busy hub in half duplex */
2362 	ret_val = hw->phy.ops.acquire(hw);
2363 	if (ret_val)
2364 		return ret_val;
2365 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2366 	if (ret_val)
2367 		goto release;
2368 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2369 	if (ret_val)
2370 		goto release;
2371 
2372 	/* set MSE higher to enable link to stay up when noise is high */
2373 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2374 release:
2375 	hw->phy.ops.release(hw);
2376 
2377 	return ret_val;
2378 }
2379 
2380 /**
2381  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2382  *  @hw:   pointer to the HW structure
2383  **/
2384 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2385 {
2386 	u32 mac_reg;
2387 	u16 i, phy_reg = 0;
2388 	s32 ret_val;
2389 
2390 	ret_val = hw->phy.ops.acquire(hw);
2391 	if (ret_val)
2392 		return;
2393 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2394 	if (ret_val)
2395 		goto release;
2396 
2397 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2398 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2399 		mac_reg = er32(RAL(i));
2400 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2401 					   (u16)(mac_reg & 0xFFFF));
2402 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2403 					   (u16)((mac_reg >> 16) & 0xFFFF));
2404 
2405 		mac_reg = er32(RAH(i));
2406 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2407 					   (u16)(mac_reg & 0xFFFF));
2408 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2409 					   (u16)((mac_reg & E1000_RAH_AV)
2410 						 >> 16));
2411 	}
2412 
2413 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2414 
2415 release:
2416 	hw->phy.ops.release(hw);
2417 }
2418 
2419 /**
2420  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2421  *  with 82579 PHY
2422  *  @hw: pointer to the HW structure
2423  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2424  **/
2425 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2426 {
2427 	s32 ret_val = 0;
2428 	u16 phy_reg, data;
2429 	u32 mac_reg;
2430 	u16 i;
2431 
2432 	if (hw->mac.type < e1000_pch2lan)
2433 		return 0;
2434 
2435 	/* disable Rx path while enabling/disabling workaround */
2436 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2437 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2438 	if (ret_val)
2439 		return ret_val;
2440 
2441 	if (enable) {
2442 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2443 		 * SHRAL/H) and initial CRC values to the MAC
2444 		 */
2445 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2446 			u8 mac_addr[ETH_ALEN] = { 0 };
2447 			u32 addr_high, addr_low;
2448 
2449 			addr_high = er32(RAH(i));
2450 			if (!(addr_high & E1000_RAH_AV))
2451 				continue;
2452 			addr_low = er32(RAL(i));
2453 			mac_addr[0] = (addr_low & 0xFF);
2454 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2455 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2456 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2457 			mac_addr[4] = (addr_high & 0xFF);
2458 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2459 
2460 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2461 		}
2462 
2463 		/* Write Rx addresses to the PHY */
2464 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2465 
2466 		/* Enable jumbo frame workaround in the MAC */
2467 		mac_reg = er32(FFLT_DBG);
2468 		mac_reg &= ~(1 << 14);
2469 		mac_reg |= (7 << 15);
2470 		ew32(FFLT_DBG, mac_reg);
2471 
2472 		mac_reg = er32(RCTL);
2473 		mac_reg |= E1000_RCTL_SECRC;
2474 		ew32(RCTL, mac_reg);
2475 
2476 		ret_val = e1000e_read_kmrn_reg(hw,
2477 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2478 					       &data);
2479 		if (ret_val)
2480 			return ret_val;
2481 		ret_val = e1000e_write_kmrn_reg(hw,
2482 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2483 						data | (1 << 0));
2484 		if (ret_val)
2485 			return ret_val;
2486 		ret_val = e1000e_read_kmrn_reg(hw,
2487 					       E1000_KMRNCTRLSTA_HD_CTRL,
2488 					       &data);
2489 		if (ret_val)
2490 			return ret_val;
2491 		data &= ~(0xF << 8);
2492 		data |= (0xB << 8);
2493 		ret_val = e1000e_write_kmrn_reg(hw,
2494 						E1000_KMRNCTRLSTA_HD_CTRL,
2495 						data);
2496 		if (ret_val)
2497 			return ret_val;
2498 
2499 		/* Enable jumbo frame workaround in the PHY */
2500 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2501 		data &= ~(0x7F << 5);
2502 		data |= (0x37 << 5);
2503 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2504 		if (ret_val)
2505 			return ret_val;
2506 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2507 		data &= ~(1 << 13);
2508 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2509 		if (ret_val)
2510 			return ret_val;
2511 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2512 		data &= ~(0x3FF << 2);
2513 		data |= (E1000_TX_PTR_GAP << 2);
2514 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2515 		if (ret_val)
2516 			return ret_val;
2517 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2518 		if (ret_val)
2519 			return ret_val;
2520 		e1e_rphy(hw, HV_PM_CTRL, &data);
2521 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2522 		if (ret_val)
2523 			return ret_val;
2524 	} else {
2525 		/* Write MAC register values back to h/w defaults */
2526 		mac_reg = er32(FFLT_DBG);
2527 		mac_reg &= ~(0xF << 14);
2528 		ew32(FFLT_DBG, mac_reg);
2529 
2530 		mac_reg = er32(RCTL);
2531 		mac_reg &= ~E1000_RCTL_SECRC;
2532 		ew32(RCTL, mac_reg);
2533 
2534 		ret_val = e1000e_read_kmrn_reg(hw,
2535 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2536 					       &data);
2537 		if (ret_val)
2538 			return ret_val;
2539 		ret_val = e1000e_write_kmrn_reg(hw,
2540 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2541 						data & ~(1 << 0));
2542 		if (ret_val)
2543 			return ret_val;
2544 		ret_val = e1000e_read_kmrn_reg(hw,
2545 					       E1000_KMRNCTRLSTA_HD_CTRL,
2546 					       &data);
2547 		if (ret_val)
2548 			return ret_val;
2549 		data &= ~(0xF << 8);
2550 		data |= (0xB << 8);
2551 		ret_val = e1000e_write_kmrn_reg(hw,
2552 						E1000_KMRNCTRLSTA_HD_CTRL,
2553 						data);
2554 		if (ret_val)
2555 			return ret_val;
2556 
2557 		/* Write PHY register values back to h/w defaults */
2558 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2559 		data &= ~(0x7F << 5);
2560 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2561 		if (ret_val)
2562 			return ret_val;
2563 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2564 		data |= (1 << 13);
2565 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2566 		if (ret_val)
2567 			return ret_val;
2568 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2569 		data &= ~(0x3FF << 2);
2570 		data |= (0x8 << 2);
2571 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2572 		if (ret_val)
2573 			return ret_val;
2574 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2575 		if (ret_val)
2576 			return ret_val;
2577 		e1e_rphy(hw, HV_PM_CTRL, &data);
2578 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2579 		if (ret_val)
2580 			return ret_val;
2581 	}
2582 
2583 	/* re-enable Rx path after enabling/disabling workaround */
2584 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2585 }
2586 
2587 /**
2588  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2589  *  done after every PHY reset.
2590  **/
2591 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2592 {
2593 	s32 ret_val = 0;
2594 
2595 	if (hw->mac.type != e1000_pch2lan)
2596 		return 0;
2597 
2598 	/* Set MDIO slow mode before any other MDIO access */
2599 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2600 	if (ret_val)
2601 		return ret_val;
2602 
2603 	ret_val = hw->phy.ops.acquire(hw);
2604 	if (ret_val)
2605 		return ret_val;
2606 	/* set MSE higher to enable link to stay up when noise is high */
2607 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2608 	if (ret_val)
2609 		goto release;
2610 	/* drop link after 5 times MSE threshold was reached */
2611 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2612 release:
2613 	hw->phy.ops.release(hw);
2614 
2615 	return ret_val;
2616 }
2617 
2618 /**
2619  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2620  *  @hw:   pointer to the HW structure
2621  *
2622  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2623  *  Disable K1 in 1000Mbps and 100Mbps
2624  **/
2625 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2626 {
2627 	s32 ret_val = 0;
2628 	u16 status_reg = 0;
2629 
2630 	if (hw->mac.type != e1000_pch2lan)
2631 		return 0;
2632 
2633 	/* Set K1 beacon duration based on 10Mbs speed */
2634 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2635 	if (ret_val)
2636 		return ret_val;
2637 
2638 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2639 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2640 		if (status_reg &
2641 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2642 			u16 pm_phy_reg;
2643 
2644 			/* LV 1G/100 Packet drop issue wa  */
2645 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2646 			if (ret_val)
2647 				return ret_val;
2648 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2649 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2650 			if (ret_val)
2651 				return ret_val;
2652 		} else {
2653 			u32 mac_reg;
2654 
2655 			mac_reg = er32(FEXTNVM4);
2656 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2657 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2658 			ew32(FEXTNVM4, mac_reg);
2659 		}
2660 	}
2661 
2662 	return ret_val;
2663 }
2664 
2665 /**
2666  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2667  *  @hw:   pointer to the HW structure
2668  *  @gate: boolean set to true to gate, false to ungate
2669  *
2670  *  Gate/ungate the automatic PHY configuration via hardware; perform
2671  *  the configuration via software instead.
2672  **/
2673 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2674 {
2675 	u32 extcnf_ctrl;
2676 
2677 	if (hw->mac.type < e1000_pch2lan)
2678 		return;
2679 
2680 	extcnf_ctrl = er32(EXTCNF_CTRL);
2681 
2682 	if (gate)
2683 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2684 	else
2685 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2686 
2687 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2688 }
2689 
2690 /**
2691  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2692  *  @hw: pointer to the HW structure
2693  *
2694  *  Check the appropriate indication the MAC has finished configuring the
2695  *  PHY after a software reset.
2696  **/
2697 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2698 {
2699 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2700 
2701 	/* Wait for basic configuration completes before proceeding */
2702 	do {
2703 		data = er32(STATUS);
2704 		data &= E1000_STATUS_LAN_INIT_DONE;
2705 		usleep_range(100, 200);
2706 	} while ((!data) && --loop);
2707 
2708 	/* If basic configuration is incomplete before the above loop
2709 	 * count reaches 0, loading the configuration from NVM will
2710 	 * leave the PHY in a bad state possibly resulting in no link.
2711 	 */
2712 	if (loop == 0)
2713 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2714 
2715 	/* Clear the Init Done bit for the next init event */
2716 	data = er32(STATUS);
2717 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2718 	ew32(STATUS, data);
2719 }
2720 
2721 /**
2722  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2723  *  @hw: pointer to the HW structure
2724  **/
2725 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2726 {
2727 	s32 ret_val = 0;
2728 	u16 reg;
2729 
2730 	if (hw->phy.ops.check_reset_block(hw))
2731 		return 0;
2732 
2733 	/* Allow time for h/w to get to quiescent state after reset */
2734 	usleep_range(10000, 20000);
2735 
2736 	/* Perform any necessary post-reset workarounds */
2737 	switch (hw->mac.type) {
2738 	case e1000_pchlan:
2739 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2740 		if (ret_val)
2741 			return ret_val;
2742 		break;
2743 	case e1000_pch2lan:
2744 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2745 		if (ret_val)
2746 			return ret_val;
2747 		break;
2748 	default:
2749 		break;
2750 	}
2751 
2752 	/* Clear the host wakeup bit after lcd reset */
2753 	if (hw->mac.type >= e1000_pchlan) {
2754 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2755 		reg &= ~BM_WUC_HOST_WU_BIT;
2756 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2757 	}
2758 
2759 	/* Configure the LCD with the extended configuration region in NVM */
2760 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2761 	if (ret_val)
2762 		return ret_val;
2763 
2764 	/* Configure the LCD with the OEM bits in NVM */
2765 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2766 
2767 	if (hw->mac.type == e1000_pch2lan) {
2768 		/* Ungate automatic PHY configuration on non-managed 82579 */
2769 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2770 			usleep_range(10000, 20000);
2771 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2772 		}
2773 
2774 		/* Set EEE LPI Update Timer to 200usec */
2775 		ret_val = hw->phy.ops.acquire(hw);
2776 		if (ret_val)
2777 			return ret_val;
2778 		ret_val = e1000_write_emi_reg_locked(hw,
2779 						     I82579_LPI_UPDATE_TIMER,
2780 						     0x1387);
2781 		hw->phy.ops.release(hw);
2782 	}
2783 
2784 	return ret_val;
2785 }
2786 
2787 /**
2788  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2789  *  @hw: pointer to the HW structure
2790  *
2791  *  Resets the PHY
2792  *  This is a function pointer entry point called by drivers
2793  *  or other shared routines.
2794  **/
2795 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2796 {
2797 	s32 ret_val = 0;
2798 
2799 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2800 	if ((hw->mac.type == e1000_pch2lan) &&
2801 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2802 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2803 
2804 	ret_val = e1000e_phy_hw_reset_generic(hw);
2805 	if (ret_val)
2806 		return ret_val;
2807 
2808 	return e1000_post_phy_reset_ich8lan(hw);
2809 }
2810 
2811 /**
2812  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2813  *  @hw: pointer to the HW structure
2814  *  @active: true to enable LPLU, false to disable
2815  *
2816  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2817  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2818  *  the phy speed. This function will manually set the LPLU bit and restart
2819  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2820  *  since it configures the same bit.
2821  **/
2822 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2823 {
2824 	s32 ret_val;
2825 	u16 oem_reg;
2826 
2827 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2828 	if (ret_val)
2829 		return ret_val;
2830 
2831 	if (active)
2832 		oem_reg |= HV_OEM_BITS_LPLU;
2833 	else
2834 		oem_reg &= ~HV_OEM_BITS_LPLU;
2835 
2836 	if (!hw->phy.ops.check_reset_block(hw))
2837 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2838 
2839 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2840 }
2841 
2842 /**
2843  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2844  *  @hw: pointer to the HW structure
2845  *  @active: true to enable LPLU, false to disable
2846  *
2847  *  Sets the LPLU D0 state according to the active flag.  When
2848  *  activating LPLU this function also disables smart speed
2849  *  and vice versa.  LPLU will not be activated unless the
2850  *  device autonegotiation advertisement meets standards of
2851  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2852  *  This is a function pointer entry point only called by
2853  *  PHY setup routines.
2854  **/
2855 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2856 {
2857 	struct e1000_phy_info *phy = &hw->phy;
2858 	u32 phy_ctrl;
2859 	s32 ret_val = 0;
2860 	u16 data;
2861 
2862 	if (phy->type == e1000_phy_ife)
2863 		return 0;
2864 
2865 	phy_ctrl = er32(PHY_CTRL);
2866 
2867 	if (active) {
2868 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2869 		ew32(PHY_CTRL, phy_ctrl);
2870 
2871 		if (phy->type != e1000_phy_igp_3)
2872 			return 0;
2873 
2874 		/* Call gig speed drop workaround on LPLU before accessing
2875 		 * any PHY registers
2876 		 */
2877 		if (hw->mac.type == e1000_ich8lan)
2878 			e1000e_gig_downshift_workaround_ich8lan(hw);
2879 
2880 		/* When LPLU is enabled, we should disable SmartSpeed */
2881 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2882 		if (ret_val)
2883 			return ret_val;
2884 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2885 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2886 		if (ret_val)
2887 			return ret_val;
2888 	} else {
2889 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2890 		ew32(PHY_CTRL, phy_ctrl);
2891 
2892 		if (phy->type != e1000_phy_igp_3)
2893 			return 0;
2894 
2895 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2896 		 * during Dx states where the power conservation is most
2897 		 * important.  During driver activity we should enable
2898 		 * SmartSpeed, so performance is maintained.
2899 		 */
2900 		if (phy->smart_speed == e1000_smart_speed_on) {
2901 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2902 					   &data);
2903 			if (ret_val)
2904 				return ret_val;
2905 
2906 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2907 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2908 					   data);
2909 			if (ret_val)
2910 				return ret_val;
2911 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2912 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2913 					   &data);
2914 			if (ret_val)
2915 				return ret_val;
2916 
2917 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2918 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2919 					   data);
2920 			if (ret_val)
2921 				return ret_val;
2922 		}
2923 	}
2924 
2925 	return 0;
2926 }
2927 
2928 /**
2929  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2930  *  @hw: pointer to the HW structure
2931  *  @active: true to enable LPLU, false to disable
2932  *
2933  *  Sets the LPLU D3 state according to the active flag.  When
2934  *  activating LPLU this function also disables smart speed
2935  *  and vice versa.  LPLU will not be activated unless the
2936  *  device autonegotiation advertisement meets standards of
2937  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2938  *  This is a function pointer entry point only called by
2939  *  PHY setup routines.
2940  **/
2941 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2942 {
2943 	struct e1000_phy_info *phy = &hw->phy;
2944 	u32 phy_ctrl;
2945 	s32 ret_val = 0;
2946 	u16 data;
2947 
2948 	phy_ctrl = er32(PHY_CTRL);
2949 
2950 	if (!active) {
2951 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2952 		ew32(PHY_CTRL, phy_ctrl);
2953 
2954 		if (phy->type != e1000_phy_igp_3)
2955 			return 0;
2956 
2957 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2958 		 * during Dx states where the power conservation is most
2959 		 * important.  During driver activity we should enable
2960 		 * SmartSpeed, so performance is maintained.
2961 		 */
2962 		if (phy->smart_speed == e1000_smart_speed_on) {
2963 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2964 					   &data);
2965 			if (ret_val)
2966 				return ret_val;
2967 
2968 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2969 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2970 					   data);
2971 			if (ret_val)
2972 				return ret_val;
2973 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2974 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2975 					   &data);
2976 			if (ret_val)
2977 				return ret_val;
2978 
2979 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2980 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2981 					   data);
2982 			if (ret_val)
2983 				return ret_val;
2984 		}
2985 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2986 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2987 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2988 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2989 		ew32(PHY_CTRL, phy_ctrl);
2990 
2991 		if (phy->type != e1000_phy_igp_3)
2992 			return 0;
2993 
2994 		/* Call gig speed drop workaround on LPLU before accessing
2995 		 * any PHY registers
2996 		 */
2997 		if (hw->mac.type == e1000_ich8lan)
2998 			e1000e_gig_downshift_workaround_ich8lan(hw);
2999 
3000 		/* When LPLU is enabled, we should disable SmartSpeed */
3001 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3002 		if (ret_val)
3003 			return ret_val;
3004 
3005 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3006 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3007 	}
3008 
3009 	return ret_val;
3010 }
3011 
3012 /**
3013  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3014  *  @hw: pointer to the HW structure
3015  *  @bank:  pointer to the variable that returns the active bank
3016  *
3017  *  Reads signature byte from the NVM using the flash access registers.
3018  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3019  **/
3020 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3021 {
3022 	u32 eecd;
3023 	struct e1000_nvm_info *nvm = &hw->nvm;
3024 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3025 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3026 	u8 sig_byte = 0;
3027 	s32 ret_val;
3028 
3029 	switch (hw->mac.type) {
3030 		/* In SPT, read from the CTRL_EXT reg instead of
3031 		 * accessing the sector valid bits from the nvm
3032 		 */
3033 	case e1000_pch_spt:
3034 		*bank = er32(CTRL_EXT)
3035 		    & E1000_CTRL_EXT_NVMVS;
3036 		if ((*bank == 0) || (*bank == 1)) {
3037 			e_dbg("ERROR: No valid NVM bank present\n");
3038 			return -E1000_ERR_NVM;
3039 		} else {
3040 			*bank = *bank - 2;
3041 			return 0;
3042 		}
3043 		break;
3044 	case e1000_ich8lan:
3045 	case e1000_ich9lan:
3046 		eecd = er32(EECD);
3047 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3048 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3049 			if (eecd & E1000_EECD_SEC1VAL)
3050 				*bank = 1;
3051 			else
3052 				*bank = 0;
3053 
3054 			return 0;
3055 		}
3056 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3057 		/* fall-thru */
3058 	default:
3059 		/* set bank to 0 in case flash read fails */
3060 		*bank = 0;
3061 
3062 		/* Check bank 0 */
3063 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3064 							&sig_byte);
3065 		if (ret_val)
3066 			return ret_val;
3067 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3068 		    E1000_ICH_NVM_SIG_VALUE) {
3069 			*bank = 0;
3070 			return 0;
3071 		}
3072 
3073 		/* Check bank 1 */
3074 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3075 							bank1_offset,
3076 							&sig_byte);
3077 		if (ret_val)
3078 			return ret_val;
3079 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3080 		    E1000_ICH_NVM_SIG_VALUE) {
3081 			*bank = 1;
3082 			return 0;
3083 		}
3084 
3085 		e_dbg("ERROR: No valid NVM bank present\n");
3086 		return -E1000_ERR_NVM;
3087 	}
3088 }
3089 
3090 /**
3091  *  e1000_read_nvm_spt - NVM access for SPT
3092  *  @hw: pointer to the HW structure
3093  *  @offset: The offset (in bytes) of the word(s) to read.
3094  *  @words: Size of data to read in words.
3095  *  @data: pointer to the word(s) to read at offset.
3096  *
3097  *  Reads a word(s) from the NVM
3098  **/
3099 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3100 			      u16 *data)
3101 {
3102 	struct e1000_nvm_info *nvm = &hw->nvm;
3103 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3104 	u32 act_offset;
3105 	s32 ret_val = 0;
3106 	u32 bank = 0;
3107 	u32 dword = 0;
3108 	u16 offset_to_read;
3109 	u16 i;
3110 
3111 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3112 	    (words == 0)) {
3113 		e_dbg("nvm parameter(s) out of bounds\n");
3114 		ret_val = -E1000_ERR_NVM;
3115 		goto out;
3116 	}
3117 
3118 	nvm->ops.acquire(hw);
3119 
3120 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3121 	if (ret_val) {
3122 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3123 		bank = 0;
3124 	}
3125 
3126 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3127 	act_offset += offset;
3128 
3129 	ret_val = 0;
3130 
3131 	for (i = 0; i < words; i += 2) {
3132 		if (words - i == 1) {
3133 			if (dev_spec->shadow_ram[offset + i].modified) {
3134 				data[i] =
3135 				    dev_spec->shadow_ram[offset + i].value;
3136 			} else {
3137 				offset_to_read = act_offset + i -
3138 				    ((act_offset + i) % 2);
3139 				ret_val =
3140 				  e1000_read_flash_dword_ich8lan(hw,
3141 								 offset_to_read,
3142 								 &dword);
3143 				if (ret_val)
3144 					break;
3145 				if ((act_offset + i) % 2 == 0)
3146 					data[i] = (u16)(dword & 0xFFFF);
3147 				else
3148 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3149 			}
3150 		} else {
3151 			offset_to_read = act_offset + i;
3152 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3153 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3154 				ret_val =
3155 				  e1000_read_flash_dword_ich8lan(hw,
3156 								 offset_to_read,
3157 								 &dword);
3158 				if (ret_val)
3159 					break;
3160 			}
3161 			if (dev_spec->shadow_ram[offset + i].modified)
3162 				data[i] =
3163 				    dev_spec->shadow_ram[offset + i].value;
3164 			else
3165 				data[i] = (u16)(dword & 0xFFFF);
3166 			if (dev_spec->shadow_ram[offset + i].modified)
3167 				data[i + 1] =
3168 				    dev_spec->shadow_ram[offset + i + 1].value;
3169 			else
3170 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3171 		}
3172 	}
3173 
3174 	nvm->ops.release(hw);
3175 
3176 out:
3177 	if (ret_val)
3178 		e_dbg("NVM read error: %d\n", ret_val);
3179 
3180 	return ret_val;
3181 }
3182 
3183 /**
3184  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3185  *  @hw: pointer to the HW structure
3186  *  @offset: The offset (in bytes) of the word(s) to read.
3187  *  @words: Size of data to read in words
3188  *  @data: Pointer to the word(s) to read at offset.
3189  *
3190  *  Reads a word(s) from the NVM using the flash access registers.
3191  **/
3192 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3193 				  u16 *data)
3194 {
3195 	struct e1000_nvm_info *nvm = &hw->nvm;
3196 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3197 	u32 act_offset;
3198 	s32 ret_val = 0;
3199 	u32 bank = 0;
3200 	u16 i, word;
3201 
3202 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3203 	    (words == 0)) {
3204 		e_dbg("nvm parameter(s) out of bounds\n");
3205 		ret_val = -E1000_ERR_NVM;
3206 		goto out;
3207 	}
3208 
3209 	nvm->ops.acquire(hw);
3210 
3211 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3212 	if (ret_val) {
3213 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3214 		bank = 0;
3215 	}
3216 
3217 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3218 	act_offset += offset;
3219 
3220 	ret_val = 0;
3221 	for (i = 0; i < words; i++) {
3222 		if (dev_spec->shadow_ram[offset + i].modified) {
3223 			data[i] = dev_spec->shadow_ram[offset + i].value;
3224 		} else {
3225 			ret_val = e1000_read_flash_word_ich8lan(hw,
3226 								act_offset + i,
3227 								&word);
3228 			if (ret_val)
3229 				break;
3230 			data[i] = word;
3231 		}
3232 	}
3233 
3234 	nvm->ops.release(hw);
3235 
3236 out:
3237 	if (ret_val)
3238 		e_dbg("NVM read error: %d\n", ret_val);
3239 
3240 	return ret_val;
3241 }
3242 
3243 /**
3244  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3245  *  @hw: pointer to the HW structure
3246  *
3247  *  This function does initial flash setup so that a new read/write/erase cycle
3248  *  can be started.
3249  **/
3250 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3251 {
3252 	union ich8_hws_flash_status hsfsts;
3253 	s32 ret_val = -E1000_ERR_NVM;
3254 
3255 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3256 
3257 	/* Check if the flash descriptor is valid */
3258 	if (!hsfsts.hsf_status.fldesvalid) {
3259 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3260 		return -E1000_ERR_NVM;
3261 	}
3262 
3263 	/* Clear FCERR and DAEL in hw status by writing 1 */
3264 	hsfsts.hsf_status.flcerr = 1;
3265 	hsfsts.hsf_status.dael = 1;
3266 	if (hw->mac.type == e1000_pch_spt)
3267 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3268 	else
3269 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3270 
3271 	/* Either we should have a hardware SPI cycle in progress
3272 	 * bit to check against, in order to start a new cycle or
3273 	 * FDONE bit should be changed in the hardware so that it
3274 	 * is 1 after hardware reset, which can then be used as an
3275 	 * indication whether a cycle is in progress or has been
3276 	 * completed.
3277 	 */
3278 
3279 	if (!hsfsts.hsf_status.flcinprog) {
3280 		/* There is no cycle running at present,
3281 		 * so we can start a cycle.
3282 		 * Begin by setting Flash Cycle Done.
3283 		 */
3284 		hsfsts.hsf_status.flcdone = 1;
3285 		if (hw->mac.type == e1000_pch_spt)
3286 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3287 		else
3288 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3289 		ret_val = 0;
3290 	} else {
3291 		s32 i;
3292 
3293 		/* Otherwise poll for sometime so the current
3294 		 * cycle has a chance to end before giving up.
3295 		 */
3296 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3297 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3298 			if (!hsfsts.hsf_status.flcinprog) {
3299 				ret_val = 0;
3300 				break;
3301 			}
3302 			udelay(1);
3303 		}
3304 		if (!ret_val) {
3305 			/* Successful in waiting for previous cycle to timeout,
3306 			 * now set the Flash Cycle Done.
3307 			 */
3308 			hsfsts.hsf_status.flcdone = 1;
3309 			if (hw->mac.type == e1000_pch_spt)
3310 				ew32flash(ICH_FLASH_HSFSTS,
3311 					  hsfsts.regval & 0xFFFF);
3312 			else
3313 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3314 		} else {
3315 			e_dbg("Flash controller busy, cannot get access\n");
3316 		}
3317 	}
3318 
3319 	return ret_val;
3320 }
3321 
3322 /**
3323  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3324  *  @hw: pointer to the HW structure
3325  *  @timeout: maximum time to wait for completion
3326  *
3327  *  This function starts a flash cycle and waits for its completion.
3328  **/
3329 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3330 {
3331 	union ich8_hws_flash_ctrl hsflctl;
3332 	union ich8_hws_flash_status hsfsts;
3333 	u32 i = 0;
3334 
3335 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3336 	if (hw->mac.type == e1000_pch_spt)
3337 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3338 	else
3339 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3340 	hsflctl.hsf_ctrl.flcgo = 1;
3341 
3342 	if (hw->mac.type == e1000_pch_spt)
3343 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3344 	else
3345 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3346 
3347 	/* wait till FDONE bit is set to 1 */
3348 	do {
3349 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3350 		if (hsfsts.hsf_status.flcdone)
3351 			break;
3352 		udelay(1);
3353 	} while (i++ < timeout);
3354 
3355 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3356 		return 0;
3357 
3358 	return -E1000_ERR_NVM;
3359 }
3360 
3361 /**
3362  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3363  *  @hw: pointer to the HW structure
3364  *  @offset: offset to data location
3365  *  @data: pointer to the location for storing the data
3366  *
3367  *  Reads the flash dword at offset into data.  Offset is converted
3368  *  to bytes before read.
3369  **/
3370 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3371 					  u32 *data)
3372 {
3373 	/* Must convert word offset into bytes. */
3374 	offset <<= 1;
3375 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3376 }
3377 
3378 /**
3379  *  e1000_read_flash_word_ich8lan - Read word from flash
3380  *  @hw: pointer to the HW structure
3381  *  @offset: offset to data location
3382  *  @data: pointer to the location for storing the data
3383  *
3384  *  Reads the flash word at offset into data.  Offset is converted
3385  *  to bytes before read.
3386  **/
3387 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3388 					 u16 *data)
3389 {
3390 	/* Must convert offset into bytes. */
3391 	offset <<= 1;
3392 
3393 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3394 }
3395 
3396 /**
3397  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3398  *  @hw: pointer to the HW structure
3399  *  @offset: The offset of the byte to read.
3400  *  @data: Pointer to a byte to store the value read.
3401  *
3402  *  Reads a single byte from the NVM using the flash access registers.
3403  **/
3404 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3405 					 u8 *data)
3406 {
3407 	s32 ret_val;
3408 	u16 word = 0;
3409 
3410 	/* In SPT, only 32 bits access is supported,
3411 	 * so this function should not be called.
3412 	 */
3413 	if (hw->mac.type == e1000_pch_spt)
3414 		return -E1000_ERR_NVM;
3415 	else
3416 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3417 
3418 	if (ret_val)
3419 		return ret_val;
3420 
3421 	*data = (u8)word;
3422 
3423 	return 0;
3424 }
3425 
3426 /**
3427  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3428  *  @hw: pointer to the HW structure
3429  *  @offset: The offset (in bytes) of the byte or word to read.
3430  *  @size: Size of data to read, 1=byte 2=word
3431  *  @data: Pointer to the word to store the value read.
3432  *
3433  *  Reads a byte or word from the NVM using the flash access registers.
3434  **/
3435 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3436 					 u8 size, u16 *data)
3437 {
3438 	union ich8_hws_flash_status hsfsts;
3439 	union ich8_hws_flash_ctrl hsflctl;
3440 	u32 flash_linear_addr;
3441 	u32 flash_data = 0;
3442 	s32 ret_val = -E1000_ERR_NVM;
3443 	u8 count = 0;
3444 
3445 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3446 		return -E1000_ERR_NVM;
3447 
3448 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3449 			     hw->nvm.flash_base_addr);
3450 
3451 	do {
3452 		udelay(1);
3453 		/* Steps */
3454 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3455 		if (ret_val)
3456 			break;
3457 
3458 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3460 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3461 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3462 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463 
3464 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3465 
3466 		ret_val =
3467 		    e1000_flash_cycle_ich8lan(hw,
3468 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3469 
3470 		/* Check if FCERR is set to 1, if set to 1, clear it
3471 		 * and try the whole sequence a few more times, else
3472 		 * read in (shift in) the Flash Data0, the order is
3473 		 * least significant byte first msb to lsb
3474 		 */
3475 		if (!ret_val) {
3476 			flash_data = er32flash(ICH_FLASH_FDATA0);
3477 			if (size == 1)
3478 				*data = (u8)(flash_data & 0x000000FF);
3479 			else if (size == 2)
3480 				*data = (u16)(flash_data & 0x0000FFFF);
3481 			break;
3482 		} else {
3483 			/* If we've gotten here, then things are probably
3484 			 * completely hosed, but if the error condition is
3485 			 * detected, it won't hurt to give it another try...
3486 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3487 			 */
3488 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3489 			if (hsfsts.hsf_status.flcerr) {
3490 				/* Repeat for some time before giving up. */
3491 				continue;
3492 			} else if (!hsfsts.hsf_status.flcdone) {
3493 				e_dbg("Timeout error - flash cycle did not complete.\n");
3494 				break;
3495 			}
3496 		}
3497 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3498 
3499 	return ret_val;
3500 }
3501 
3502 /**
3503  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3504  *  @hw: pointer to the HW structure
3505  *  @offset: The offset (in bytes) of the dword to read.
3506  *  @data: Pointer to the dword to store the value read.
3507  *
3508  *  Reads a byte or word from the NVM using the flash access registers.
3509  **/
3510 
3511 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3512 					   u32 *data)
3513 {
3514 	union ich8_hws_flash_status hsfsts;
3515 	union ich8_hws_flash_ctrl hsflctl;
3516 	u32 flash_linear_addr;
3517 	s32 ret_val = -E1000_ERR_NVM;
3518 	u8 count = 0;
3519 
3520 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3521 	    hw->mac.type != e1000_pch_spt)
3522 		return -E1000_ERR_NVM;
3523 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3524 			     hw->nvm.flash_base_addr);
3525 
3526 	do {
3527 		udelay(1);
3528 		/* Steps */
3529 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3530 		if (ret_val)
3531 			break;
3532 		/* In SPT, This register is in Lan memory space, not flash.
3533 		 * Therefore, only 32 bit access is supported
3534 		 */
3535 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3536 
3537 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3538 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3539 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3540 		/* In SPT, This register is in Lan memory space, not flash.
3541 		 * Therefore, only 32 bit access is supported
3542 		 */
3543 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3544 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3545 
3546 		ret_val =
3547 		   e1000_flash_cycle_ich8lan(hw,
3548 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3549 
3550 		/* Check if FCERR is set to 1, if set to 1, clear it
3551 		 * and try the whole sequence a few more times, else
3552 		 * read in (shift in) the Flash Data0, the order is
3553 		 * least significant byte first msb to lsb
3554 		 */
3555 		if (!ret_val) {
3556 			*data = er32flash(ICH_FLASH_FDATA0);
3557 			break;
3558 		} else {
3559 			/* If we've gotten here, then things are probably
3560 			 * completely hosed, but if the error condition is
3561 			 * detected, it won't hurt to give it another try...
3562 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3563 			 */
3564 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3565 			if (hsfsts.hsf_status.flcerr) {
3566 				/* Repeat for some time before giving up. */
3567 				continue;
3568 			} else if (!hsfsts.hsf_status.flcdone) {
3569 				e_dbg("Timeout error - flash cycle did not complete.\n");
3570 				break;
3571 			}
3572 		}
3573 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3574 
3575 	return ret_val;
3576 }
3577 
3578 /**
3579  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3580  *  @hw: pointer to the HW structure
3581  *  @offset: The offset (in bytes) of the word(s) to write.
3582  *  @words: Size of data to write in words
3583  *  @data: Pointer to the word(s) to write at offset.
3584  *
3585  *  Writes a byte or word to the NVM using the flash access registers.
3586  **/
3587 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3588 				   u16 *data)
3589 {
3590 	struct e1000_nvm_info *nvm = &hw->nvm;
3591 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3592 	u16 i;
3593 
3594 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3595 	    (words == 0)) {
3596 		e_dbg("nvm parameter(s) out of bounds\n");
3597 		return -E1000_ERR_NVM;
3598 	}
3599 
3600 	nvm->ops.acquire(hw);
3601 
3602 	for (i = 0; i < words; i++) {
3603 		dev_spec->shadow_ram[offset + i].modified = true;
3604 		dev_spec->shadow_ram[offset + i].value = data[i];
3605 	}
3606 
3607 	nvm->ops.release(hw);
3608 
3609 	return 0;
3610 }
3611 
3612 /**
3613  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3614  *  @hw: pointer to the HW structure
3615  *
3616  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3617  *  which writes the checksum to the shadow ram.  The changes in the shadow
3618  *  ram are then committed to the EEPROM by processing each bank at a time
3619  *  checking for the modified bit and writing only the pending changes.
3620  *  After a successful commit, the shadow ram is cleared and is ready for
3621  *  future writes.
3622  **/
3623 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3624 {
3625 	struct e1000_nvm_info *nvm = &hw->nvm;
3626 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3627 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3628 	s32 ret_val;
3629 	u32 dword = 0;
3630 
3631 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3632 	if (ret_val)
3633 		goto out;
3634 
3635 	if (nvm->type != e1000_nvm_flash_sw)
3636 		goto out;
3637 
3638 	nvm->ops.acquire(hw);
3639 
3640 	/* We're writing to the opposite bank so if we're on bank 1,
3641 	 * write to bank 0 etc.  We also need to erase the segment that
3642 	 * is going to be written
3643 	 */
3644 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3645 	if (ret_val) {
3646 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3647 		bank = 0;
3648 	}
3649 
3650 	if (bank == 0) {
3651 		new_bank_offset = nvm->flash_bank_size;
3652 		old_bank_offset = 0;
3653 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3654 		if (ret_val)
3655 			goto release;
3656 	} else {
3657 		old_bank_offset = nvm->flash_bank_size;
3658 		new_bank_offset = 0;
3659 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3660 		if (ret_val)
3661 			goto release;
3662 	}
3663 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3664 		/* Determine whether to write the value stored
3665 		 * in the other NVM bank or a modified value stored
3666 		 * in the shadow RAM
3667 		 */
3668 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3669 							 i + old_bank_offset,
3670 							 &dword);
3671 
3672 		if (dev_spec->shadow_ram[i].modified) {
3673 			dword &= 0xffff0000;
3674 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3675 		}
3676 		if (dev_spec->shadow_ram[i + 1].modified) {
3677 			dword &= 0x0000ffff;
3678 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3679 				  << 16);
3680 		}
3681 		if (ret_val)
3682 			break;
3683 
3684 		/* If the word is 0x13, then make sure the signature bits
3685 		 * (15:14) are 11b until the commit has completed.
3686 		 * This will allow us to write 10b which indicates the
3687 		 * signature is valid.  We want to do this after the write
3688 		 * has completed so that we don't mark the segment valid
3689 		 * while the write is still in progress
3690 		 */
3691 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3692 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3693 
3694 		/* Convert offset to bytes. */
3695 		act_offset = (i + new_bank_offset) << 1;
3696 
3697 		usleep_range(100, 200);
3698 
3699 		/* Write the data to the new bank. Offset in words */
3700 		act_offset = i + new_bank_offset;
3701 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3702 								dword);
3703 		if (ret_val)
3704 			break;
3705 	}
3706 
3707 	/* Don't bother writing the segment valid bits if sector
3708 	 * programming failed.
3709 	 */
3710 	if (ret_val) {
3711 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3712 		e_dbg("Flash commit failed.\n");
3713 		goto release;
3714 	}
3715 
3716 	/* Finally validate the new segment by setting bit 15:14
3717 	 * to 10b in word 0x13 , this can be done without an
3718 	 * erase as well since these bits are 11 to start with
3719 	 * and we need to change bit 14 to 0b
3720 	 */
3721 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3722 
3723 	/*offset in words but we read dword */
3724 	--act_offset;
3725 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3726 
3727 	if (ret_val)
3728 		goto release;
3729 
3730 	dword &= 0xBFFFFFFF;
3731 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3732 
3733 	if (ret_val)
3734 		goto release;
3735 
3736 	/* And invalidate the previously valid segment by setting
3737 	 * its signature word (0x13) high_byte to 0b. This can be
3738 	 * done without an erase because flash erase sets all bits
3739 	 * to 1's. We can write 1's to 0's without an erase
3740 	 */
3741 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3742 
3743 	/* offset in words but we read dword */
3744 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3745 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3746 
3747 	if (ret_val)
3748 		goto release;
3749 
3750 	dword &= 0x00FFFFFF;
3751 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3752 
3753 	if (ret_val)
3754 		goto release;
3755 
3756 	/* Great!  Everything worked, we can now clear the cached entries. */
3757 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3758 		dev_spec->shadow_ram[i].modified = false;
3759 		dev_spec->shadow_ram[i].value = 0xFFFF;
3760 	}
3761 
3762 release:
3763 	nvm->ops.release(hw);
3764 
3765 	/* Reload the EEPROM, or else modifications will not appear
3766 	 * until after the next adapter reset.
3767 	 */
3768 	if (!ret_val) {
3769 		nvm->ops.reload(hw);
3770 		usleep_range(10000, 20000);
3771 	}
3772 
3773 out:
3774 	if (ret_val)
3775 		e_dbg("NVM update error: %d\n", ret_val);
3776 
3777 	return ret_val;
3778 }
3779 
3780 /**
3781  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3782  *  @hw: pointer to the HW structure
3783  *
3784  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3785  *  which writes the checksum to the shadow ram.  The changes in the shadow
3786  *  ram are then committed to the EEPROM by processing each bank at a time
3787  *  checking for the modified bit and writing only the pending changes.
3788  *  After a successful commit, the shadow ram is cleared and is ready for
3789  *  future writes.
3790  **/
3791 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3792 {
3793 	struct e1000_nvm_info *nvm = &hw->nvm;
3794 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3795 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3796 	s32 ret_val;
3797 	u16 data = 0;
3798 
3799 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3800 	if (ret_val)
3801 		goto out;
3802 
3803 	if (nvm->type != e1000_nvm_flash_sw)
3804 		goto out;
3805 
3806 	nvm->ops.acquire(hw);
3807 
3808 	/* We're writing to the opposite bank so if we're on bank 1,
3809 	 * write to bank 0 etc.  We also need to erase the segment that
3810 	 * is going to be written
3811 	 */
3812 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3813 	if (ret_val) {
3814 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3815 		bank = 0;
3816 	}
3817 
3818 	if (bank == 0) {
3819 		new_bank_offset = nvm->flash_bank_size;
3820 		old_bank_offset = 0;
3821 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3822 		if (ret_val)
3823 			goto release;
3824 	} else {
3825 		old_bank_offset = nvm->flash_bank_size;
3826 		new_bank_offset = 0;
3827 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3828 		if (ret_val)
3829 			goto release;
3830 	}
3831 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3832 		if (dev_spec->shadow_ram[i].modified) {
3833 			data = dev_spec->shadow_ram[i].value;
3834 		} else {
3835 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3836 								old_bank_offset,
3837 								&data);
3838 			if (ret_val)
3839 				break;
3840 		}
3841 
3842 		/* If the word is 0x13, then make sure the signature bits
3843 		 * (15:14) are 11b until the commit has completed.
3844 		 * This will allow us to write 10b which indicates the
3845 		 * signature is valid.  We want to do this after the write
3846 		 * has completed so that we don't mark the segment valid
3847 		 * while the write is still in progress
3848 		 */
3849 		if (i == E1000_ICH_NVM_SIG_WORD)
3850 			data |= E1000_ICH_NVM_SIG_MASK;
3851 
3852 		/* Convert offset to bytes. */
3853 		act_offset = (i + new_bank_offset) << 1;
3854 
3855 		usleep_range(100, 200);
3856 		/* Write the bytes to the new bank. */
3857 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3858 							       act_offset,
3859 							       (u8)data);
3860 		if (ret_val)
3861 			break;
3862 
3863 		usleep_range(100, 200);
3864 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3865 							       act_offset + 1,
3866 							       (u8)(data >> 8));
3867 		if (ret_val)
3868 			break;
3869 	}
3870 
3871 	/* Don't bother writing the segment valid bits if sector
3872 	 * programming failed.
3873 	 */
3874 	if (ret_val) {
3875 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3876 		e_dbg("Flash commit failed.\n");
3877 		goto release;
3878 	}
3879 
3880 	/* Finally validate the new segment by setting bit 15:14
3881 	 * to 10b in word 0x13 , this can be done without an
3882 	 * erase as well since these bits are 11 to start with
3883 	 * and we need to change bit 14 to 0b
3884 	 */
3885 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3886 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3887 	if (ret_val)
3888 		goto release;
3889 
3890 	data &= 0xBFFF;
3891 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3892 						       act_offset * 2 + 1,
3893 						       (u8)(data >> 8));
3894 	if (ret_val)
3895 		goto release;
3896 
3897 	/* And invalidate the previously valid segment by setting
3898 	 * its signature word (0x13) high_byte to 0b. This can be
3899 	 * done without an erase because flash erase sets all bits
3900 	 * to 1's. We can write 1's to 0's without an erase
3901 	 */
3902 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3903 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3904 	if (ret_val)
3905 		goto release;
3906 
3907 	/* Great!  Everything worked, we can now clear the cached entries. */
3908 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3909 		dev_spec->shadow_ram[i].modified = false;
3910 		dev_spec->shadow_ram[i].value = 0xFFFF;
3911 	}
3912 
3913 release:
3914 	nvm->ops.release(hw);
3915 
3916 	/* Reload the EEPROM, or else modifications will not appear
3917 	 * until after the next adapter reset.
3918 	 */
3919 	if (!ret_val) {
3920 		nvm->ops.reload(hw);
3921 		usleep_range(10000, 20000);
3922 	}
3923 
3924 out:
3925 	if (ret_val)
3926 		e_dbg("NVM update error: %d\n", ret_val);
3927 
3928 	return ret_val;
3929 }
3930 
3931 /**
3932  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3933  *  @hw: pointer to the HW structure
3934  *
3935  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3936  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3937  *  calculated, in which case we need to calculate the checksum and set bit 6.
3938  **/
3939 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3940 {
3941 	s32 ret_val;
3942 	u16 data;
3943 	u16 word;
3944 	u16 valid_csum_mask;
3945 
3946 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3947 	 * the checksum needs to be fixed.  This bit is an indication that
3948 	 * the NVM was prepared by OEM software and did not calculate
3949 	 * the checksum...a likely scenario.
3950 	 */
3951 	switch (hw->mac.type) {
3952 	case e1000_pch_lpt:
3953 	case e1000_pch_spt:
3954 		word = NVM_COMPAT;
3955 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3956 		break;
3957 	default:
3958 		word = NVM_FUTURE_INIT_WORD1;
3959 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3960 		break;
3961 	}
3962 
3963 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3964 	if (ret_val)
3965 		return ret_val;
3966 
3967 	if (!(data & valid_csum_mask)) {
3968 		data |= valid_csum_mask;
3969 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3970 		if (ret_val)
3971 			return ret_val;
3972 		ret_val = e1000e_update_nvm_checksum(hw);
3973 		if (ret_val)
3974 			return ret_val;
3975 	}
3976 
3977 	return e1000e_validate_nvm_checksum_generic(hw);
3978 }
3979 
3980 /**
3981  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3982  *  @hw: pointer to the HW structure
3983  *
3984  *  To prevent malicious write/erase of the NVM, set it to be read-only
3985  *  so that the hardware ignores all write/erase cycles of the NVM via
3986  *  the flash control registers.  The shadow-ram copy of the NVM will
3987  *  still be updated, however any updates to this copy will not stick
3988  *  across driver reloads.
3989  **/
3990 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3991 {
3992 	struct e1000_nvm_info *nvm = &hw->nvm;
3993 	union ich8_flash_protected_range pr0;
3994 	union ich8_hws_flash_status hsfsts;
3995 	u32 gfpreg;
3996 
3997 	nvm->ops.acquire(hw);
3998 
3999 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4000 
4001 	/* Write-protect GbE Sector of NVM */
4002 	pr0.regval = er32flash(ICH_FLASH_PR0);
4003 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4004 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4005 	pr0.range.wpe = true;
4006 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4007 
4008 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4009 	 * PR0 to prevent the write-protection from being lifted.
4010 	 * Once FLOCKDN is set, the registers protected by it cannot
4011 	 * be written until FLOCKDN is cleared by a hardware reset.
4012 	 */
4013 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4014 	hsfsts.hsf_status.flockdn = true;
4015 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4016 
4017 	nvm->ops.release(hw);
4018 }
4019 
4020 /**
4021  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4022  *  @hw: pointer to the HW structure
4023  *  @offset: The offset (in bytes) of the byte/word to read.
4024  *  @size: Size of data to read, 1=byte 2=word
4025  *  @data: The byte(s) to write to the NVM.
4026  *
4027  *  Writes one/two bytes to the NVM using the flash access registers.
4028  **/
4029 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4030 					  u8 size, u16 data)
4031 {
4032 	union ich8_hws_flash_status hsfsts;
4033 	union ich8_hws_flash_ctrl hsflctl;
4034 	u32 flash_linear_addr;
4035 	u32 flash_data = 0;
4036 	s32 ret_val;
4037 	u8 count = 0;
4038 
4039 	if (hw->mac.type == e1000_pch_spt) {
4040 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4041 			return -E1000_ERR_NVM;
4042 	} else {
4043 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4044 			return -E1000_ERR_NVM;
4045 	}
4046 
4047 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4048 			     hw->nvm.flash_base_addr);
4049 
4050 	do {
4051 		udelay(1);
4052 		/* Steps */
4053 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4054 		if (ret_val)
4055 			break;
4056 		/* In SPT, This register is in Lan memory space, not
4057 		 * flash.  Therefore, only 32 bit access is supported
4058 		 */
4059 		if (hw->mac.type == e1000_pch_spt)
4060 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4061 		else
4062 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4063 
4064 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4065 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4066 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4067 		/* In SPT, This register is in Lan memory space,
4068 		 * not flash.  Therefore, only 32 bit access is
4069 		 * supported
4070 		 */
4071 		if (hw->mac.type == e1000_pch_spt)
4072 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4073 		else
4074 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4075 
4076 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4077 
4078 		if (size == 1)
4079 			flash_data = (u32)data & 0x00FF;
4080 		else
4081 			flash_data = (u32)data;
4082 
4083 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4084 
4085 		/* check if FCERR is set to 1 , if set to 1, clear it
4086 		 * and try the whole sequence a few more times else done
4087 		 */
4088 		ret_val =
4089 		    e1000_flash_cycle_ich8lan(hw,
4090 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4091 		if (!ret_val)
4092 			break;
4093 
4094 		/* If we're here, then things are most likely
4095 		 * completely hosed, but if the error condition
4096 		 * is detected, it won't hurt to give it another
4097 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4098 		 */
4099 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4100 		if (hsfsts.hsf_status.flcerr)
4101 			/* Repeat for some time before giving up. */
4102 			continue;
4103 		if (!hsfsts.hsf_status.flcdone) {
4104 			e_dbg("Timeout error - flash cycle did not complete.\n");
4105 			break;
4106 		}
4107 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4108 
4109 	return ret_val;
4110 }
4111 
4112 /**
4113 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4114 *  @hw: pointer to the HW structure
4115 *  @offset: The offset (in bytes) of the dwords to read.
4116 *  @data: The 4 bytes to write to the NVM.
4117 *
4118 *  Writes one/two/four bytes to the NVM using the flash access registers.
4119 **/
4120 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4121 					    u32 data)
4122 {
4123 	union ich8_hws_flash_status hsfsts;
4124 	union ich8_hws_flash_ctrl hsflctl;
4125 	u32 flash_linear_addr;
4126 	s32 ret_val;
4127 	u8 count = 0;
4128 
4129 	if (hw->mac.type == e1000_pch_spt) {
4130 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4131 			return -E1000_ERR_NVM;
4132 	}
4133 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4134 			     hw->nvm.flash_base_addr);
4135 	do {
4136 		udelay(1);
4137 		/* Steps */
4138 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4139 		if (ret_val)
4140 			break;
4141 
4142 		/* In SPT, This register is in Lan memory space, not
4143 		 * flash.  Therefore, only 32 bit access is supported
4144 		 */
4145 		if (hw->mac.type == e1000_pch_spt)
4146 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4147 			    >> 16;
4148 		else
4149 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4150 
4151 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4152 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4153 
4154 		/* In SPT, This register is in Lan memory space,
4155 		 * not flash.  Therefore, only 32 bit access is
4156 		 * supported
4157 		 */
4158 		if (hw->mac.type == e1000_pch_spt)
4159 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4160 		else
4161 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4162 
4163 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4164 
4165 		ew32flash(ICH_FLASH_FDATA0, data);
4166 
4167 		/* check if FCERR is set to 1 , if set to 1, clear it
4168 		 * and try the whole sequence a few more times else done
4169 		 */
4170 		ret_val =
4171 		   e1000_flash_cycle_ich8lan(hw,
4172 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4173 
4174 		if (!ret_val)
4175 			break;
4176 
4177 		/* If we're here, then things are most likely
4178 		 * completely hosed, but if the error condition
4179 		 * is detected, it won't hurt to give it another
4180 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4181 		 */
4182 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4183 
4184 		if (hsfsts.hsf_status.flcerr)
4185 			/* Repeat for some time before giving up. */
4186 			continue;
4187 		if (!hsfsts.hsf_status.flcdone) {
4188 			e_dbg("Timeout error - flash cycle did not complete.\n");
4189 			break;
4190 		}
4191 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4192 
4193 	return ret_val;
4194 }
4195 
4196 /**
4197  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4198  *  @hw: pointer to the HW structure
4199  *  @offset: The index of the byte to read.
4200  *  @data: The byte to write to the NVM.
4201  *
4202  *  Writes a single byte to the NVM using the flash access registers.
4203  **/
4204 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4205 					  u8 data)
4206 {
4207 	u16 word = (u16)data;
4208 
4209 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4210 }
4211 
4212 /**
4213 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4214 *  @hw: pointer to the HW structure
4215 *  @offset: The offset of the word to write.
4216 *  @dword: The dword to write to the NVM.
4217 *
4218 *  Writes a single dword to the NVM using the flash access registers.
4219 *  Goes through a retry algorithm before giving up.
4220 **/
4221 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4222 						 u32 offset, u32 dword)
4223 {
4224 	s32 ret_val;
4225 	u16 program_retries;
4226 
4227 	/* Must convert word offset into bytes. */
4228 	offset <<= 1;
4229 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4230 
4231 	if (!ret_val)
4232 		return ret_val;
4233 	for (program_retries = 0; program_retries < 100; program_retries++) {
4234 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4235 		usleep_range(100, 200);
4236 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4237 		if (!ret_val)
4238 			break;
4239 	}
4240 	if (program_retries == 100)
4241 		return -E1000_ERR_NVM;
4242 
4243 	return 0;
4244 }
4245 
4246 /**
4247  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4248  *  @hw: pointer to the HW structure
4249  *  @offset: The offset of the byte to write.
4250  *  @byte: The byte to write to the NVM.
4251  *
4252  *  Writes a single byte to the NVM using the flash access registers.
4253  *  Goes through a retry algorithm before giving up.
4254  **/
4255 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4256 						u32 offset, u8 byte)
4257 {
4258 	s32 ret_val;
4259 	u16 program_retries;
4260 
4261 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4262 	if (!ret_val)
4263 		return ret_val;
4264 
4265 	for (program_retries = 0; program_retries < 100; program_retries++) {
4266 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4267 		usleep_range(100, 200);
4268 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4269 		if (!ret_val)
4270 			break;
4271 	}
4272 	if (program_retries == 100)
4273 		return -E1000_ERR_NVM;
4274 
4275 	return 0;
4276 }
4277 
4278 /**
4279  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4280  *  @hw: pointer to the HW structure
4281  *  @bank: 0 for first bank, 1 for second bank, etc.
4282  *
4283  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4284  *  bank N is 4096 * N + flash_reg_addr.
4285  **/
4286 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4287 {
4288 	struct e1000_nvm_info *nvm = &hw->nvm;
4289 	union ich8_hws_flash_status hsfsts;
4290 	union ich8_hws_flash_ctrl hsflctl;
4291 	u32 flash_linear_addr;
4292 	/* bank size is in 16bit words - adjust to bytes */
4293 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4294 	s32 ret_val;
4295 	s32 count = 0;
4296 	s32 j, iteration, sector_size;
4297 
4298 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4299 
4300 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4301 	 * register
4302 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4303 	 *     consecutive sectors.  The start index for the nth Hw sector
4304 	 *     can be calculated as = bank * 4096 + n * 256
4305 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4306 	 *     The start index for the nth Hw sector can be calculated
4307 	 *     as = bank * 4096
4308 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4309 	 *     (ich9 only, otherwise error condition)
4310 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4311 	 */
4312 	switch (hsfsts.hsf_status.berasesz) {
4313 	case 0:
4314 		/* Hw sector size 256 */
4315 		sector_size = ICH_FLASH_SEG_SIZE_256;
4316 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4317 		break;
4318 	case 1:
4319 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4320 		iteration = 1;
4321 		break;
4322 	case 2:
4323 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4324 		iteration = 1;
4325 		break;
4326 	case 3:
4327 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4328 		iteration = 1;
4329 		break;
4330 	default:
4331 		return -E1000_ERR_NVM;
4332 	}
4333 
4334 	/* Start with the base address, then add the sector offset. */
4335 	flash_linear_addr = hw->nvm.flash_base_addr;
4336 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4337 
4338 	for (j = 0; j < iteration; j++) {
4339 		do {
4340 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4341 
4342 			/* Steps */
4343 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4344 			if (ret_val)
4345 				return ret_val;
4346 
4347 			/* Write a value 11 (block Erase) in Flash
4348 			 * Cycle field in hw flash control
4349 			 */
4350 			if (hw->mac.type == e1000_pch_spt)
4351 				hsflctl.regval =
4352 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4353 			else
4354 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4355 
4356 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4357 			if (hw->mac.type == e1000_pch_spt)
4358 				ew32flash(ICH_FLASH_HSFSTS,
4359 					  hsflctl.regval << 16);
4360 			else
4361 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4362 
4363 			/* Write the last 24 bits of an index within the
4364 			 * block into Flash Linear address field in Flash
4365 			 * Address.
4366 			 */
4367 			flash_linear_addr += (j * sector_size);
4368 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4369 
4370 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4371 			if (!ret_val)
4372 				break;
4373 
4374 			/* Check if FCERR is set to 1.  If 1,
4375 			 * clear it and try the whole sequence
4376 			 * a few more times else Done
4377 			 */
4378 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4379 			if (hsfsts.hsf_status.flcerr)
4380 				/* repeat for some time before giving up */
4381 				continue;
4382 			else if (!hsfsts.hsf_status.flcdone)
4383 				return ret_val;
4384 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4385 	}
4386 
4387 	return 0;
4388 }
4389 
4390 /**
4391  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4392  *  @hw: pointer to the HW structure
4393  *  @data: Pointer to the LED settings
4394  *
4395  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4396  *  settings is all 0's or F's, set the LED default to a valid LED default
4397  *  setting.
4398  **/
4399 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4400 {
4401 	s32 ret_val;
4402 
4403 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4404 	if (ret_val) {
4405 		e_dbg("NVM Read Error\n");
4406 		return ret_val;
4407 	}
4408 
4409 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4410 		*data = ID_LED_DEFAULT_ICH8LAN;
4411 
4412 	return 0;
4413 }
4414 
4415 /**
4416  *  e1000_id_led_init_pchlan - store LED configurations
4417  *  @hw: pointer to the HW structure
4418  *
4419  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4420  *  the PHY LED configuration register.
4421  *
4422  *  PCH also does not have an "always on" or "always off" mode which
4423  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4424  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4425  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4426  *  link based on logic in e1000_led_[on|off]_pchlan().
4427  **/
4428 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4429 {
4430 	struct e1000_mac_info *mac = &hw->mac;
4431 	s32 ret_val;
4432 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4433 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4434 	u16 data, i, temp, shift;
4435 
4436 	/* Get default ID LED modes */
4437 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4438 	if (ret_val)
4439 		return ret_val;
4440 
4441 	mac->ledctl_default = er32(LEDCTL);
4442 	mac->ledctl_mode1 = mac->ledctl_default;
4443 	mac->ledctl_mode2 = mac->ledctl_default;
4444 
4445 	for (i = 0; i < 4; i++) {
4446 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4447 		shift = (i * 5);
4448 		switch (temp) {
4449 		case ID_LED_ON1_DEF2:
4450 		case ID_LED_ON1_ON2:
4451 		case ID_LED_ON1_OFF2:
4452 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4453 			mac->ledctl_mode1 |= (ledctl_on << shift);
4454 			break;
4455 		case ID_LED_OFF1_DEF2:
4456 		case ID_LED_OFF1_ON2:
4457 		case ID_LED_OFF1_OFF2:
4458 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4459 			mac->ledctl_mode1 |= (ledctl_off << shift);
4460 			break;
4461 		default:
4462 			/* Do nothing */
4463 			break;
4464 		}
4465 		switch (temp) {
4466 		case ID_LED_DEF1_ON2:
4467 		case ID_LED_ON1_ON2:
4468 		case ID_LED_OFF1_ON2:
4469 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4470 			mac->ledctl_mode2 |= (ledctl_on << shift);
4471 			break;
4472 		case ID_LED_DEF1_OFF2:
4473 		case ID_LED_ON1_OFF2:
4474 		case ID_LED_OFF1_OFF2:
4475 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4476 			mac->ledctl_mode2 |= (ledctl_off << shift);
4477 			break;
4478 		default:
4479 			/* Do nothing */
4480 			break;
4481 		}
4482 	}
4483 
4484 	return 0;
4485 }
4486 
4487 /**
4488  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4489  *  @hw: pointer to the HW structure
4490  *
4491  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4492  *  register, so the the bus width is hard coded.
4493  **/
4494 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4495 {
4496 	struct e1000_bus_info *bus = &hw->bus;
4497 	s32 ret_val;
4498 
4499 	ret_val = e1000e_get_bus_info_pcie(hw);
4500 
4501 	/* ICH devices are "PCI Express"-ish.  They have
4502 	 * a configuration space, but do not contain
4503 	 * PCI Express Capability registers, so bus width
4504 	 * must be hardcoded.
4505 	 */
4506 	if (bus->width == e1000_bus_width_unknown)
4507 		bus->width = e1000_bus_width_pcie_x1;
4508 
4509 	return ret_val;
4510 }
4511 
4512 /**
4513  *  e1000_reset_hw_ich8lan - Reset the hardware
4514  *  @hw: pointer to the HW structure
4515  *
4516  *  Does a full reset of the hardware which includes a reset of the PHY and
4517  *  MAC.
4518  **/
4519 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4520 {
4521 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4522 	u16 kum_cfg;
4523 	u32 ctrl, reg;
4524 	s32 ret_val;
4525 
4526 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4527 	 * on the last TLP read/write transaction when MAC is reset.
4528 	 */
4529 	ret_val = e1000e_disable_pcie_master(hw);
4530 	if (ret_val)
4531 		e_dbg("PCI-E Master disable polling has failed.\n");
4532 
4533 	e_dbg("Masking off all interrupts\n");
4534 	ew32(IMC, 0xffffffff);
4535 
4536 	/* Disable the Transmit and Receive units.  Then delay to allow
4537 	 * any pending transactions to complete before we hit the MAC
4538 	 * with the global reset.
4539 	 */
4540 	ew32(RCTL, 0);
4541 	ew32(TCTL, E1000_TCTL_PSP);
4542 	e1e_flush();
4543 
4544 	usleep_range(10000, 20000);
4545 
4546 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4547 	if (hw->mac.type == e1000_ich8lan) {
4548 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4549 		ew32(PBA, E1000_PBA_8K);
4550 		/* Set Packet Buffer Size to 16k. */
4551 		ew32(PBS, E1000_PBS_16K);
4552 	}
4553 
4554 	if (hw->mac.type == e1000_pchlan) {
4555 		/* Save the NVM K1 bit setting */
4556 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4557 		if (ret_val)
4558 			return ret_val;
4559 
4560 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4561 			dev_spec->nvm_k1_enabled = true;
4562 		else
4563 			dev_spec->nvm_k1_enabled = false;
4564 	}
4565 
4566 	ctrl = er32(CTRL);
4567 
4568 	if (!hw->phy.ops.check_reset_block(hw)) {
4569 		/* Full-chip reset requires MAC and PHY reset at the same
4570 		 * time to make sure the interface between MAC and the
4571 		 * external PHY is reset.
4572 		 */
4573 		ctrl |= E1000_CTRL_PHY_RST;
4574 
4575 		/* Gate automatic PHY configuration by hardware on
4576 		 * non-managed 82579
4577 		 */
4578 		if ((hw->mac.type == e1000_pch2lan) &&
4579 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4580 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4581 	}
4582 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4583 	e_dbg("Issuing a global reset to ich8lan\n");
4584 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4585 	/* cannot issue a flush here because it hangs the hardware */
4586 	msleep(20);
4587 
4588 	/* Set Phy Config Counter to 50msec */
4589 	if (hw->mac.type == e1000_pch2lan) {
4590 		reg = er32(FEXTNVM3);
4591 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4592 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4593 		ew32(FEXTNVM3, reg);
4594 	}
4595 
4596 	if (!ret_val)
4597 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4598 
4599 	if (ctrl & E1000_CTRL_PHY_RST) {
4600 		ret_val = hw->phy.ops.get_cfg_done(hw);
4601 		if (ret_val)
4602 			return ret_val;
4603 
4604 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4605 		if (ret_val)
4606 			return ret_val;
4607 	}
4608 
4609 	/* For PCH, this write will make sure that any noise
4610 	 * will be detected as a CRC error and be dropped rather than show up
4611 	 * as a bad packet to the DMA engine.
4612 	 */
4613 	if (hw->mac.type == e1000_pchlan)
4614 		ew32(CRC_OFFSET, 0x65656565);
4615 
4616 	ew32(IMC, 0xffffffff);
4617 	er32(ICR);
4618 
4619 	reg = er32(KABGTXD);
4620 	reg |= E1000_KABGTXD_BGSQLBIAS;
4621 	ew32(KABGTXD, reg);
4622 
4623 	return 0;
4624 }
4625 
4626 /**
4627  *  e1000_init_hw_ich8lan - Initialize the hardware
4628  *  @hw: pointer to the HW structure
4629  *
4630  *  Prepares the hardware for transmit and receive by doing the following:
4631  *   - initialize hardware bits
4632  *   - initialize LED identification
4633  *   - setup receive address registers
4634  *   - setup flow control
4635  *   - setup transmit descriptors
4636  *   - clear statistics
4637  **/
4638 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4639 {
4640 	struct e1000_mac_info *mac = &hw->mac;
4641 	u32 ctrl_ext, txdctl, snoop;
4642 	s32 ret_val;
4643 	u16 i;
4644 
4645 	e1000_initialize_hw_bits_ich8lan(hw);
4646 
4647 	/* Initialize identification LED */
4648 	ret_val = mac->ops.id_led_init(hw);
4649 	/* An error is not fatal and we should not stop init due to this */
4650 	if (ret_val)
4651 		e_dbg("Error initializing identification LED\n");
4652 
4653 	/* Setup the receive address. */
4654 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4655 
4656 	/* Zero out the Multicast HASH table */
4657 	e_dbg("Zeroing the MTA\n");
4658 	for (i = 0; i < mac->mta_reg_count; i++)
4659 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4660 
4661 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4662 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4663 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4664 	 */
4665 	if (hw->phy.type == e1000_phy_82578) {
4666 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4667 		i &= ~BM_WUC_HOST_WU_BIT;
4668 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4669 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4670 		if (ret_val)
4671 			return ret_val;
4672 	}
4673 
4674 	/* Setup link and flow control */
4675 	ret_val = mac->ops.setup_link(hw);
4676 
4677 	/* Set the transmit descriptor write-back policy for both queues */
4678 	txdctl = er32(TXDCTL(0));
4679 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4680 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4681 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4682 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4683 	ew32(TXDCTL(0), txdctl);
4684 	txdctl = er32(TXDCTL(1));
4685 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4686 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4687 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4688 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4689 	ew32(TXDCTL(1), txdctl);
4690 
4691 	/* ICH8 has opposite polarity of no_snoop bits.
4692 	 * By default, we should use snoop behavior.
4693 	 */
4694 	if (mac->type == e1000_ich8lan)
4695 		snoop = PCIE_ICH8_SNOOP_ALL;
4696 	else
4697 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4698 	e1000e_set_pcie_no_snoop(hw, snoop);
4699 
4700 	ctrl_ext = er32(CTRL_EXT);
4701 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4702 	ew32(CTRL_EXT, ctrl_ext);
4703 
4704 	/* Clear all of the statistics registers (clear on read).  It is
4705 	 * important that we do this after we have tried to establish link
4706 	 * because the symbol error count will increment wildly if there
4707 	 * is no link.
4708 	 */
4709 	e1000_clear_hw_cntrs_ich8lan(hw);
4710 
4711 	return ret_val;
4712 }
4713 
4714 /**
4715  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4716  *  @hw: pointer to the HW structure
4717  *
4718  *  Sets/Clears required hardware bits necessary for correctly setting up the
4719  *  hardware for transmit and receive.
4720  **/
4721 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4722 {
4723 	u32 reg;
4724 
4725 	/* Extended Device Control */
4726 	reg = er32(CTRL_EXT);
4727 	reg |= (1 << 22);
4728 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4729 	if (hw->mac.type >= e1000_pchlan)
4730 		reg |= E1000_CTRL_EXT_PHYPDEN;
4731 	ew32(CTRL_EXT, reg);
4732 
4733 	/* Transmit Descriptor Control 0 */
4734 	reg = er32(TXDCTL(0));
4735 	reg |= (1 << 22);
4736 	ew32(TXDCTL(0), reg);
4737 
4738 	/* Transmit Descriptor Control 1 */
4739 	reg = er32(TXDCTL(1));
4740 	reg |= (1 << 22);
4741 	ew32(TXDCTL(1), reg);
4742 
4743 	/* Transmit Arbitration Control 0 */
4744 	reg = er32(TARC(0));
4745 	if (hw->mac.type == e1000_ich8lan)
4746 		reg |= (1 << 28) | (1 << 29);
4747 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4748 	ew32(TARC(0), reg);
4749 
4750 	/* Transmit Arbitration Control 1 */
4751 	reg = er32(TARC(1));
4752 	if (er32(TCTL) & E1000_TCTL_MULR)
4753 		reg &= ~(1 << 28);
4754 	else
4755 		reg |= (1 << 28);
4756 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4757 	ew32(TARC(1), reg);
4758 
4759 	/* Device Status */
4760 	if (hw->mac.type == e1000_ich8lan) {
4761 		reg = er32(STATUS);
4762 		reg &= ~(1 << 31);
4763 		ew32(STATUS, reg);
4764 	}
4765 
4766 	/* work-around descriptor data corruption issue during nfs v2 udp
4767 	 * traffic, just disable the nfs filtering capability
4768 	 */
4769 	reg = er32(RFCTL);
4770 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4771 
4772 	/* Disable IPv6 extension header parsing because some malformed
4773 	 * IPv6 headers can hang the Rx.
4774 	 */
4775 	if (hw->mac.type == e1000_ich8lan)
4776 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4777 	ew32(RFCTL, reg);
4778 
4779 	/* Enable ECC on Lynxpoint */
4780 	if ((hw->mac.type == e1000_pch_lpt) ||
4781 	    (hw->mac.type == e1000_pch_spt)) {
4782 		reg = er32(PBECCSTS);
4783 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4784 		ew32(PBECCSTS, reg);
4785 
4786 		reg = er32(CTRL);
4787 		reg |= E1000_CTRL_MEHE;
4788 		ew32(CTRL, reg);
4789 	}
4790 }
4791 
4792 /**
4793  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4794  *  @hw: pointer to the HW structure
4795  *
4796  *  Determines which flow control settings to use, then configures flow
4797  *  control.  Calls the appropriate media-specific link configuration
4798  *  function.  Assuming the adapter has a valid link partner, a valid link
4799  *  should be established.  Assumes the hardware has previously been reset
4800  *  and the transmitter and receiver are not enabled.
4801  **/
4802 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4803 {
4804 	s32 ret_val;
4805 
4806 	if (hw->phy.ops.check_reset_block(hw))
4807 		return 0;
4808 
4809 	/* ICH parts do not have a word in the NVM to determine
4810 	 * the default flow control setting, so we explicitly
4811 	 * set it to full.
4812 	 */
4813 	if (hw->fc.requested_mode == e1000_fc_default) {
4814 		/* Workaround h/w hang when Tx flow control enabled */
4815 		if (hw->mac.type == e1000_pchlan)
4816 			hw->fc.requested_mode = e1000_fc_rx_pause;
4817 		else
4818 			hw->fc.requested_mode = e1000_fc_full;
4819 	}
4820 
4821 	/* Save off the requested flow control mode for use later.  Depending
4822 	 * on the link partner's capabilities, we may or may not use this mode.
4823 	 */
4824 	hw->fc.current_mode = hw->fc.requested_mode;
4825 
4826 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4827 
4828 	/* Continue to configure the copper link. */
4829 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4830 	if (ret_val)
4831 		return ret_val;
4832 
4833 	ew32(FCTTV, hw->fc.pause_time);
4834 	if ((hw->phy.type == e1000_phy_82578) ||
4835 	    (hw->phy.type == e1000_phy_82579) ||
4836 	    (hw->phy.type == e1000_phy_i217) ||
4837 	    (hw->phy.type == e1000_phy_82577)) {
4838 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4839 
4840 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4841 				   hw->fc.pause_time);
4842 		if (ret_val)
4843 			return ret_val;
4844 	}
4845 
4846 	return e1000e_set_fc_watermarks(hw);
4847 }
4848 
4849 /**
4850  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4851  *  @hw: pointer to the HW structure
4852  *
4853  *  Configures the kumeran interface to the PHY to wait the appropriate time
4854  *  when polling the PHY, then call the generic setup_copper_link to finish
4855  *  configuring the copper link.
4856  **/
4857 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4858 {
4859 	u32 ctrl;
4860 	s32 ret_val;
4861 	u16 reg_data;
4862 
4863 	ctrl = er32(CTRL);
4864 	ctrl |= E1000_CTRL_SLU;
4865 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4866 	ew32(CTRL, ctrl);
4867 
4868 	/* Set the mac to wait the maximum time between each iteration
4869 	 * and increase the max iterations when polling the phy;
4870 	 * this fixes erroneous timeouts at 10Mbps.
4871 	 */
4872 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4873 	if (ret_val)
4874 		return ret_val;
4875 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4876 				       &reg_data);
4877 	if (ret_val)
4878 		return ret_val;
4879 	reg_data |= 0x3F;
4880 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4881 					reg_data);
4882 	if (ret_val)
4883 		return ret_val;
4884 
4885 	switch (hw->phy.type) {
4886 	case e1000_phy_igp_3:
4887 		ret_val = e1000e_copper_link_setup_igp(hw);
4888 		if (ret_val)
4889 			return ret_val;
4890 		break;
4891 	case e1000_phy_bm:
4892 	case e1000_phy_82578:
4893 		ret_val = e1000e_copper_link_setup_m88(hw);
4894 		if (ret_val)
4895 			return ret_val;
4896 		break;
4897 	case e1000_phy_82577:
4898 	case e1000_phy_82579:
4899 		ret_val = e1000_copper_link_setup_82577(hw);
4900 		if (ret_val)
4901 			return ret_val;
4902 		break;
4903 	case e1000_phy_ife:
4904 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4905 		if (ret_val)
4906 			return ret_val;
4907 
4908 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4909 
4910 		switch (hw->phy.mdix) {
4911 		case 1:
4912 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4913 			break;
4914 		case 2:
4915 			reg_data |= IFE_PMC_FORCE_MDIX;
4916 			break;
4917 		case 0:
4918 		default:
4919 			reg_data |= IFE_PMC_AUTO_MDIX;
4920 			break;
4921 		}
4922 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4923 		if (ret_val)
4924 			return ret_val;
4925 		break;
4926 	default:
4927 		break;
4928 	}
4929 
4930 	return e1000e_setup_copper_link(hw);
4931 }
4932 
4933 /**
4934  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4935  *  @hw: pointer to the HW structure
4936  *
4937  *  Calls the PHY specific link setup function and then calls the
4938  *  generic setup_copper_link to finish configuring the link for
4939  *  Lynxpoint PCH devices
4940  **/
4941 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4942 {
4943 	u32 ctrl;
4944 	s32 ret_val;
4945 
4946 	ctrl = er32(CTRL);
4947 	ctrl |= E1000_CTRL_SLU;
4948 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4949 	ew32(CTRL, ctrl);
4950 
4951 	ret_val = e1000_copper_link_setup_82577(hw);
4952 	if (ret_val)
4953 		return ret_val;
4954 
4955 	return e1000e_setup_copper_link(hw);
4956 }
4957 
4958 /**
4959  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4960  *  @hw: pointer to the HW structure
4961  *  @speed: pointer to store current link speed
4962  *  @duplex: pointer to store the current link duplex
4963  *
4964  *  Calls the generic get_speed_and_duplex to retrieve the current link
4965  *  information and then calls the Kumeran lock loss workaround for links at
4966  *  gigabit speeds.
4967  **/
4968 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4969 					  u16 *duplex)
4970 {
4971 	s32 ret_val;
4972 
4973 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4974 	if (ret_val)
4975 		return ret_val;
4976 
4977 	if ((hw->mac.type == e1000_ich8lan) &&
4978 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4979 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4980 	}
4981 
4982 	return ret_val;
4983 }
4984 
4985 /**
4986  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4987  *  @hw: pointer to the HW structure
4988  *
4989  *  Work-around for 82566 Kumeran PCS lock loss:
4990  *  On link status change (i.e. PCI reset, speed change) and link is up and
4991  *  speed is gigabit-
4992  *    0) if workaround is optionally disabled do nothing
4993  *    1) wait 1ms for Kumeran link to come up
4994  *    2) check Kumeran Diagnostic register PCS lock loss bit
4995  *    3) if not set the link is locked (all is good), otherwise...
4996  *    4) reset the PHY
4997  *    5) repeat up to 10 times
4998  *  Note: this is only called for IGP3 copper when speed is 1gb.
4999  **/
5000 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5001 {
5002 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5003 	u32 phy_ctrl;
5004 	s32 ret_val;
5005 	u16 i, data;
5006 	bool link;
5007 
5008 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5009 		return 0;
5010 
5011 	/* Make sure link is up before proceeding.  If not just return.
5012 	 * Attempting this while link is negotiating fouled up link
5013 	 * stability
5014 	 */
5015 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5016 	if (!link)
5017 		return 0;
5018 
5019 	for (i = 0; i < 10; i++) {
5020 		/* read once to clear */
5021 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5022 		if (ret_val)
5023 			return ret_val;
5024 		/* and again to get new status */
5025 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5026 		if (ret_val)
5027 			return ret_val;
5028 
5029 		/* check for PCS lock */
5030 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5031 			return 0;
5032 
5033 		/* Issue PHY reset */
5034 		e1000_phy_hw_reset(hw);
5035 		mdelay(5);
5036 	}
5037 	/* Disable GigE link negotiation */
5038 	phy_ctrl = er32(PHY_CTRL);
5039 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5040 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5041 	ew32(PHY_CTRL, phy_ctrl);
5042 
5043 	/* Call gig speed drop workaround on Gig disable before accessing
5044 	 * any PHY registers
5045 	 */
5046 	e1000e_gig_downshift_workaround_ich8lan(hw);
5047 
5048 	/* unable to acquire PCS lock */
5049 	return -E1000_ERR_PHY;
5050 }
5051 
5052 /**
5053  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5054  *  @hw: pointer to the HW structure
5055  *  @state: boolean value used to set the current Kumeran workaround state
5056  *
5057  *  If ICH8, set the current Kumeran workaround state (enabled - true
5058  *  /disabled - false).
5059  **/
5060 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5061 						  bool state)
5062 {
5063 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5064 
5065 	if (hw->mac.type != e1000_ich8lan) {
5066 		e_dbg("Workaround applies to ICH8 only.\n");
5067 		return;
5068 	}
5069 
5070 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5071 }
5072 
5073 /**
5074  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5075  *  @hw: pointer to the HW structure
5076  *
5077  *  Workaround for 82566 power-down on D3 entry:
5078  *    1) disable gigabit link
5079  *    2) write VR power-down enable
5080  *    3) read it back
5081  *  Continue if successful, else issue LCD reset and repeat
5082  **/
5083 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5084 {
5085 	u32 reg;
5086 	u16 data;
5087 	u8 retry = 0;
5088 
5089 	if (hw->phy.type != e1000_phy_igp_3)
5090 		return;
5091 
5092 	/* Try the workaround twice (if needed) */
5093 	do {
5094 		/* Disable link */
5095 		reg = er32(PHY_CTRL);
5096 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5097 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5098 		ew32(PHY_CTRL, reg);
5099 
5100 		/* Call gig speed drop workaround on Gig disable before
5101 		 * accessing any PHY registers
5102 		 */
5103 		if (hw->mac.type == e1000_ich8lan)
5104 			e1000e_gig_downshift_workaround_ich8lan(hw);
5105 
5106 		/* Write VR power-down enable */
5107 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5108 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5109 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5110 
5111 		/* Read it back and test */
5112 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5113 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5114 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5115 			break;
5116 
5117 		/* Issue PHY reset and repeat at most one more time */
5118 		reg = er32(CTRL);
5119 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5120 		retry++;
5121 	} while (retry);
5122 }
5123 
5124 /**
5125  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5126  *  @hw: pointer to the HW structure
5127  *
5128  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5129  *  LPLU, Gig disable, MDIC PHY reset):
5130  *    1) Set Kumeran Near-end loopback
5131  *    2) Clear Kumeran Near-end loopback
5132  *  Should only be called for ICH8[m] devices with any 1G Phy.
5133  **/
5134 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5135 {
5136 	s32 ret_val;
5137 	u16 reg_data;
5138 
5139 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5140 		return;
5141 
5142 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5143 				       &reg_data);
5144 	if (ret_val)
5145 		return;
5146 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5147 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5148 					reg_data);
5149 	if (ret_val)
5150 		return;
5151 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5152 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5153 }
5154 
5155 /**
5156  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5157  *  @hw: pointer to the HW structure
5158  *
5159  *  During S0 to Sx transition, it is possible the link remains at gig
5160  *  instead of negotiating to a lower speed.  Before going to Sx, set
5161  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5162  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5163  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5164  *  needs to be written.
5165  *  Parts that support (and are linked to a partner which support) EEE in
5166  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5167  *  than 10Mbps w/o EEE.
5168  **/
5169 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5170 {
5171 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5172 	u32 phy_ctrl;
5173 	s32 ret_val;
5174 
5175 	phy_ctrl = er32(PHY_CTRL);
5176 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5177 
5178 	if (hw->phy.type == e1000_phy_i217) {
5179 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5180 
5181 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5182 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5183 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5184 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5185 		    (hw->mac.type == e1000_pch_spt)) {
5186 			u32 fextnvm6 = er32(FEXTNVM6);
5187 
5188 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5189 		}
5190 
5191 		ret_val = hw->phy.ops.acquire(hw);
5192 		if (ret_val)
5193 			goto out;
5194 
5195 		if (!dev_spec->eee_disable) {
5196 			u16 eee_advert;
5197 
5198 			ret_val =
5199 			    e1000_read_emi_reg_locked(hw,
5200 						      I217_EEE_ADVERTISEMENT,
5201 						      &eee_advert);
5202 			if (ret_val)
5203 				goto release;
5204 
5205 			/* Disable LPLU if both link partners support 100BaseT
5206 			 * EEE and 100Full is advertised on both ends of the
5207 			 * link, and enable Auto Enable LPI since there will
5208 			 * be no driver to enable LPI while in Sx.
5209 			 */
5210 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5211 			    (dev_spec->eee_lp_ability &
5212 			     I82579_EEE_100_SUPPORTED) &&
5213 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5214 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5215 					      E1000_PHY_CTRL_NOND0A_LPLU);
5216 
5217 				/* Set Auto Enable LPI after link up */
5218 				e1e_rphy_locked(hw,
5219 						I217_LPI_GPIO_CTRL, &phy_reg);
5220 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5221 				e1e_wphy_locked(hw,
5222 						I217_LPI_GPIO_CTRL, phy_reg);
5223 			}
5224 		}
5225 
5226 		/* For i217 Intel Rapid Start Technology support,
5227 		 * when the system is going into Sx and no manageability engine
5228 		 * is present, the driver must configure proxy to reset only on
5229 		 * power good.  LPI (Low Power Idle) state must also reset only
5230 		 * on power good, as well as the MTA (Multicast table array).
5231 		 * The SMBus release must also be disabled on LCD reset.
5232 		 */
5233 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5234 			/* Enable proxy to reset only on power good. */
5235 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5236 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5237 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5238 
5239 			/* Set bit enable LPI (EEE) to reset only on
5240 			 * power good.
5241 			 */
5242 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5243 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5244 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5245 
5246 			/* Disable the SMB release on LCD reset. */
5247 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5248 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5249 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5250 		}
5251 
5252 		/* Enable MTA to reset for Intel Rapid Start Technology
5253 		 * Support
5254 		 */
5255 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5256 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5257 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5258 
5259 release:
5260 		hw->phy.ops.release(hw);
5261 	}
5262 out:
5263 	ew32(PHY_CTRL, phy_ctrl);
5264 
5265 	if (hw->mac.type == e1000_ich8lan)
5266 		e1000e_gig_downshift_workaround_ich8lan(hw);
5267 
5268 	if (hw->mac.type >= e1000_pchlan) {
5269 		e1000_oem_bits_config_ich8lan(hw, false);
5270 
5271 		/* Reset PHY to activate OEM bits on 82577/8 */
5272 		if (hw->mac.type == e1000_pchlan)
5273 			e1000e_phy_hw_reset_generic(hw);
5274 
5275 		ret_val = hw->phy.ops.acquire(hw);
5276 		if (ret_val)
5277 			return;
5278 		e1000_write_smbus_addr(hw);
5279 		hw->phy.ops.release(hw);
5280 	}
5281 }
5282 
5283 /**
5284  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  During Sx to S0 transitions on non-managed devices or managed devices
5288  *  on which PHY resets are not blocked, if the PHY registers cannot be
5289  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5290  *  the PHY.
5291  *  On i217, setup Intel Rapid Start Technology.
5292  **/
5293 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5294 {
5295 	s32 ret_val;
5296 
5297 	if (hw->mac.type < e1000_pch2lan)
5298 		return;
5299 
5300 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5301 	if (ret_val) {
5302 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5303 		return;
5304 	}
5305 
5306 	/* For i217 Intel Rapid Start Technology support when the system
5307 	 * is transitioning from Sx and no manageability engine is present
5308 	 * configure SMBus to restore on reset, disable proxy, and enable
5309 	 * the reset on MTA (Multicast table array).
5310 	 */
5311 	if (hw->phy.type == e1000_phy_i217) {
5312 		u16 phy_reg;
5313 
5314 		ret_val = hw->phy.ops.acquire(hw);
5315 		if (ret_val) {
5316 			e_dbg("Failed to setup iRST\n");
5317 			return;
5318 		}
5319 
5320 		/* Clear Auto Enable LPI after link up */
5321 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5322 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5323 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5324 
5325 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5326 			/* Restore clear on SMB if no manageability engine
5327 			 * is present
5328 			 */
5329 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5330 			if (ret_val)
5331 				goto release;
5332 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5333 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5334 
5335 			/* Disable Proxy */
5336 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5337 		}
5338 		/* Enable reset on MTA */
5339 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5340 		if (ret_val)
5341 			goto release;
5342 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5343 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5344 release:
5345 		if (ret_val)
5346 			e_dbg("Error %d in resume workarounds\n", ret_val);
5347 		hw->phy.ops.release(hw);
5348 	}
5349 }
5350 
5351 /**
5352  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5353  *  @hw: pointer to the HW structure
5354  *
5355  *  Return the LED back to the default configuration.
5356  **/
5357 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5358 {
5359 	if (hw->phy.type == e1000_phy_ife)
5360 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5361 
5362 	ew32(LEDCTL, hw->mac.ledctl_default);
5363 	return 0;
5364 }
5365 
5366 /**
5367  *  e1000_led_on_ich8lan - Turn LEDs on
5368  *  @hw: pointer to the HW structure
5369  *
5370  *  Turn on the LEDs.
5371  **/
5372 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5373 {
5374 	if (hw->phy.type == e1000_phy_ife)
5375 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5376 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5377 
5378 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5379 	return 0;
5380 }
5381 
5382 /**
5383  *  e1000_led_off_ich8lan - Turn LEDs off
5384  *  @hw: pointer to the HW structure
5385  *
5386  *  Turn off the LEDs.
5387  **/
5388 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5389 {
5390 	if (hw->phy.type == e1000_phy_ife)
5391 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5392 				(IFE_PSCL_PROBE_MODE |
5393 				 IFE_PSCL_PROBE_LEDS_OFF));
5394 
5395 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5396 	return 0;
5397 }
5398 
5399 /**
5400  *  e1000_setup_led_pchlan - Configures SW controllable LED
5401  *  @hw: pointer to the HW structure
5402  *
5403  *  This prepares the SW controllable LED for use.
5404  **/
5405 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5406 {
5407 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5408 }
5409 
5410 /**
5411  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5412  *  @hw: pointer to the HW structure
5413  *
5414  *  Return the LED back to the default configuration.
5415  **/
5416 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5417 {
5418 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5419 }
5420 
5421 /**
5422  *  e1000_led_on_pchlan - Turn LEDs on
5423  *  @hw: pointer to the HW structure
5424  *
5425  *  Turn on the LEDs.
5426  **/
5427 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5428 {
5429 	u16 data = (u16)hw->mac.ledctl_mode2;
5430 	u32 i, led;
5431 
5432 	/* If no link, then turn LED on by setting the invert bit
5433 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5434 	 */
5435 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5436 		for (i = 0; i < 3; i++) {
5437 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5438 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5439 			    E1000_LEDCTL_MODE_LINK_UP)
5440 				continue;
5441 			if (led & E1000_PHY_LED0_IVRT)
5442 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5443 			else
5444 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5445 		}
5446 	}
5447 
5448 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5449 }
5450 
5451 /**
5452  *  e1000_led_off_pchlan - Turn LEDs off
5453  *  @hw: pointer to the HW structure
5454  *
5455  *  Turn off the LEDs.
5456  **/
5457 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5458 {
5459 	u16 data = (u16)hw->mac.ledctl_mode1;
5460 	u32 i, led;
5461 
5462 	/* If no link, then turn LED off by clearing the invert bit
5463 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5464 	 */
5465 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5466 		for (i = 0; i < 3; i++) {
5467 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5468 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5469 			    E1000_LEDCTL_MODE_LINK_UP)
5470 				continue;
5471 			if (led & E1000_PHY_LED0_IVRT)
5472 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5473 			else
5474 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5475 		}
5476 	}
5477 
5478 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5479 }
5480 
5481 /**
5482  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5483  *  @hw: pointer to the HW structure
5484  *
5485  *  Read appropriate register for the config done bit for completion status
5486  *  and configure the PHY through s/w for EEPROM-less parts.
5487  *
5488  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5489  *  config done bit, so only an error is logged and continues.  If we were
5490  *  to return with error, EEPROM-less silicon would not be able to be reset
5491  *  or change link.
5492  **/
5493 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5494 {
5495 	s32 ret_val = 0;
5496 	u32 bank = 0;
5497 	u32 status;
5498 
5499 	e1000e_get_cfg_done_generic(hw);
5500 
5501 	/* Wait for indication from h/w that it has completed basic config */
5502 	if (hw->mac.type >= e1000_ich10lan) {
5503 		e1000_lan_init_done_ich8lan(hw);
5504 	} else {
5505 		ret_val = e1000e_get_auto_rd_done(hw);
5506 		if (ret_val) {
5507 			/* When auto config read does not complete, do not
5508 			 * return with an error. This can happen in situations
5509 			 * where there is no eeprom and prevents getting link.
5510 			 */
5511 			e_dbg("Auto Read Done did not complete\n");
5512 			ret_val = 0;
5513 		}
5514 	}
5515 
5516 	/* Clear PHY Reset Asserted bit */
5517 	status = er32(STATUS);
5518 	if (status & E1000_STATUS_PHYRA)
5519 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5520 	else
5521 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5522 
5523 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5524 	if (hw->mac.type <= e1000_ich9lan) {
5525 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5526 		    (hw->phy.type == e1000_phy_igp_3)) {
5527 			e1000e_phy_init_script_igp3(hw);
5528 		}
5529 	} else {
5530 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5531 			/* Maybe we should do a basic PHY config */
5532 			e_dbg("EEPROM not present\n");
5533 			ret_val = -E1000_ERR_CONFIG;
5534 		}
5535 	}
5536 
5537 	return ret_val;
5538 }
5539 
5540 /**
5541  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5542  * @hw: pointer to the HW structure
5543  *
5544  * In the case of a PHY power down to save power, or to turn off link during a
5545  * driver unload, or wake on lan is not enabled, remove the link.
5546  **/
5547 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5548 {
5549 	/* If the management interface is not enabled, then power down */
5550 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5551 	      hw->phy.ops.check_reset_block(hw)))
5552 		e1000_power_down_phy_copper(hw);
5553 }
5554 
5555 /**
5556  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5557  *  @hw: pointer to the HW structure
5558  *
5559  *  Clears hardware counters specific to the silicon family and calls
5560  *  clear_hw_cntrs_generic to clear all general purpose counters.
5561  **/
5562 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5563 {
5564 	u16 phy_data;
5565 	s32 ret_val;
5566 
5567 	e1000e_clear_hw_cntrs_base(hw);
5568 
5569 	er32(ALGNERRC);
5570 	er32(RXERRC);
5571 	er32(TNCRS);
5572 	er32(CEXTERR);
5573 	er32(TSCTC);
5574 	er32(TSCTFC);
5575 
5576 	er32(MGTPRC);
5577 	er32(MGTPDC);
5578 	er32(MGTPTC);
5579 
5580 	er32(IAC);
5581 	er32(ICRXOC);
5582 
5583 	/* Clear PHY statistics registers */
5584 	if ((hw->phy.type == e1000_phy_82578) ||
5585 	    (hw->phy.type == e1000_phy_82579) ||
5586 	    (hw->phy.type == e1000_phy_i217) ||
5587 	    (hw->phy.type == e1000_phy_82577)) {
5588 		ret_val = hw->phy.ops.acquire(hw);
5589 		if (ret_val)
5590 			return;
5591 		ret_val = hw->phy.ops.set_page(hw,
5592 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5593 		if (ret_val)
5594 			goto release;
5595 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5596 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5597 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5598 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5599 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5600 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5601 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5602 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5603 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5604 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5605 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5606 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5607 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5608 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5609 release:
5610 		hw->phy.ops.release(hw);
5611 	}
5612 }
5613 
5614 static const struct e1000_mac_operations ich8_mac_ops = {
5615 	/* check_mng_mode dependent on mac type */
5616 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5617 	/* cleanup_led dependent on mac type */
5618 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5619 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5620 	.set_lan_id		= e1000_set_lan_id_single_port,
5621 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5622 	/* led_on dependent on mac type */
5623 	/* led_off dependent on mac type */
5624 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5625 	.reset_hw		= e1000_reset_hw_ich8lan,
5626 	.init_hw		= e1000_init_hw_ich8lan,
5627 	.setup_link		= e1000_setup_link_ich8lan,
5628 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5629 	/* id_led_init dependent on mac type */
5630 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5631 	.rar_set		= e1000e_rar_set_generic,
5632 	.rar_get_count		= e1000e_rar_get_count_generic,
5633 };
5634 
5635 static const struct e1000_phy_operations ich8_phy_ops = {
5636 	.acquire		= e1000_acquire_swflag_ich8lan,
5637 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5638 	.commit			= NULL,
5639 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5640 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5641 	.read_reg		= e1000e_read_phy_reg_igp,
5642 	.release		= e1000_release_swflag_ich8lan,
5643 	.reset			= e1000_phy_hw_reset_ich8lan,
5644 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5645 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5646 	.write_reg		= e1000e_write_phy_reg_igp,
5647 };
5648 
5649 static const struct e1000_nvm_operations ich8_nvm_ops = {
5650 	.acquire		= e1000_acquire_nvm_ich8lan,
5651 	.read			= e1000_read_nvm_ich8lan,
5652 	.release		= e1000_release_nvm_ich8lan,
5653 	.reload			= e1000e_reload_nvm_generic,
5654 	.update			= e1000_update_nvm_checksum_ich8lan,
5655 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5656 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5657 	.write			= e1000_write_nvm_ich8lan,
5658 };
5659 
5660 static const struct e1000_nvm_operations spt_nvm_ops = {
5661 	.acquire		= e1000_acquire_nvm_ich8lan,
5662 	.release		= e1000_release_nvm_ich8lan,
5663 	.read			= e1000_read_nvm_spt,
5664 	.update			= e1000_update_nvm_checksum_spt,
5665 	.reload			= e1000e_reload_nvm_generic,
5666 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5667 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5668 	.write			= e1000_write_nvm_ich8lan,
5669 };
5670 
5671 const struct e1000_info e1000_ich8_info = {
5672 	.mac			= e1000_ich8lan,
5673 	.flags			= FLAG_HAS_WOL
5674 				  | FLAG_IS_ICH
5675 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5676 				  | FLAG_HAS_AMT
5677 				  | FLAG_HAS_FLASH
5678 				  | FLAG_APME_IN_WUC,
5679 	.pba			= 8,
5680 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5681 	.get_variants		= e1000_get_variants_ich8lan,
5682 	.mac_ops		= &ich8_mac_ops,
5683 	.phy_ops		= &ich8_phy_ops,
5684 	.nvm_ops		= &ich8_nvm_ops,
5685 };
5686 
5687 const struct e1000_info e1000_ich9_info = {
5688 	.mac			= e1000_ich9lan,
5689 	.flags			= FLAG_HAS_JUMBO_FRAMES
5690 				  | FLAG_IS_ICH
5691 				  | FLAG_HAS_WOL
5692 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5693 				  | FLAG_HAS_AMT
5694 				  | FLAG_HAS_FLASH
5695 				  | FLAG_APME_IN_WUC,
5696 	.pba			= 18,
5697 	.max_hw_frame_size	= DEFAULT_JUMBO,
5698 	.get_variants		= e1000_get_variants_ich8lan,
5699 	.mac_ops		= &ich8_mac_ops,
5700 	.phy_ops		= &ich8_phy_ops,
5701 	.nvm_ops		= &ich8_nvm_ops,
5702 };
5703 
5704 const struct e1000_info e1000_ich10_info = {
5705 	.mac			= e1000_ich10lan,
5706 	.flags			= FLAG_HAS_JUMBO_FRAMES
5707 				  | FLAG_IS_ICH
5708 				  | FLAG_HAS_WOL
5709 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5710 				  | FLAG_HAS_AMT
5711 				  | FLAG_HAS_FLASH
5712 				  | FLAG_APME_IN_WUC,
5713 	.pba			= 18,
5714 	.max_hw_frame_size	= DEFAULT_JUMBO,
5715 	.get_variants		= e1000_get_variants_ich8lan,
5716 	.mac_ops		= &ich8_mac_ops,
5717 	.phy_ops		= &ich8_phy_ops,
5718 	.nvm_ops		= &ich8_nvm_ops,
5719 };
5720 
5721 const struct e1000_info e1000_pch_info = {
5722 	.mac			= e1000_pchlan,
5723 	.flags			= FLAG_IS_ICH
5724 				  | FLAG_HAS_WOL
5725 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5726 				  | FLAG_HAS_AMT
5727 				  | FLAG_HAS_FLASH
5728 				  | FLAG_HAS_JUMBO_FRAMES
5729 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5730 				  | FLAG_APME_IN_WUC,
5731 	.flags2			= FLAG2_HAS_PHY_STATS,
5732 	.pba			= 26,
5733 	.max_hw_frame_size	= 4096,
5734 	.get_variants		= e1000_get_variants_ich8lan,
5735 	.mac_ops		= &ich8_mac_ops,
5736 	.phy_ops		= &ich8_phy_ops,
5737 	.nvm_ops		= &ich8_nvm_ops,
5738 };
5739 
5740 const struct e1000_info e1000_pch2_info = {
5741 	.mac			= e1000_pch2lan,
5742 	.flags			= FLAG_IS_ICH
5743 				  | FLAG_HAS_WOL
5744 				  | FLAG_HAS_HW_TIMESTAMP
5745 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5746 				  | FLAG_HAS_AMT
5747 				  | FLAG_HAS_FLASH
5748 				  | FLAG_HAS_JUMBO_FRAMES
5749 				  | FLAG_APME_IN_WUC,
5750 	.flags2			= FLAG2_HAS_PHY_STATS
5751 				  | FLAG2_HAS_EEE,
5752 	.pba			= 26,
5753 	.max_hw_frame_size	= 9022,
5754 	.get_variants		= e1000_get_variants_ich8lan,
5755 	.mac_ops		= &ich8_mac_ops,
5756 	.phy_ops		= &ich8_phy_ops,
5757 	.nvm_ops		= &ich8_nvm_ops,
5758 };
5759 
5760 const struct e1000_info e1000_pch_lpt_info = {
5761 	.mac			= e1000_pch_lpt,
5762 	.flags			= FLAG_IS_ICH
5763 				  | FLAG_HAS_WOL
5764 				  | FLAG_HAS_HW_TIMESTAMP
5765 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5766 				  | FLAG_HAS_AMT
5767 				  | FLAG_HAS_FLASH
5768 				  | FLAG_HAS_JUMBO_FRAMES
5769 				  | FLAG_APME_IN_WUC,
5770 	.flags2			= FLAG2_HAS_PHY_STATS
5771 				  | FLAG2_HAS_EEE,
5772 	.pba			= 26,
5773 	.max_hw_frame_size	= 9022,
5774 	.get_variants		= e1000_get_variants_ich8lan,
5775 	.mac_ops		= &ich8_mac_ops,
5776 	.phy_ops		= &ich8_phy_ops,
5777 	.nvm_ops		= &ich8_nvm_ops,
5778 };
5779 
5780 const struct e1000_info e1000_pch_spt_info = {
5781 	.mac			= e1000_pch_spt,
5782 	.flags			= FLAG_IS_ICH
5783 				  | FLAG_HAS_WOL
5784 				  | FLAG_HAS_HW_TIMESTAMP
5785 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5786 				  | FLAG_HAS_AMT
5787 				  | FLAG_HAS_FLASH
5788 				  | FLAG_HAS_JUMBO_FRAMES
5789 				  | FLAG_APME_IN_WUC,
5790 	.flags2			= FLAG2_HAS_PHY_STATS
5791 				  | FLAG2_HAS_EEE,
5792 	.pba			= 26,
5793 	.max_hw_frame_size	= 9022,
5794 	.get_variants		= e1000_get_variants_ich8lan,
5795 	.mac_ops		= &ich8_mac_ops,
5796 	.phy_ops		= &ich8_phy_ops,
5797 	.nvm_ops		= &spt_nvm_ops,
5798 };
5799