xref: /linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28 
29 #define SERVICE_TIMER_HZ (1 * HZ)
30 
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33 
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37 
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41 
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 			 int size, dma_addr_t dma, int frag_end,
44 			 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 	struct iphdr *iphdr;
49 	struct ipv6hdr *ipv6hdr;
50 	struct sk_buff *skb;
51 	__be16 protocol;
52 	u8 bn_pid = 0;
53 	u8 rrcfv = 0;
54 	u8 ip_offset = 0;
55 	u8 tvsvsn = 0;
56 	u16 mss = 0;
57 	u8 l4_len = 0;
58 	u16 paylen = 0;
59 
60 	desc_cb->priv = priv;
61 	desc_cb->length = size;
62 	desc_cb->dma = dma;
63 	desc_cb->type = type;
64 
65 	desc->addr = cpu_to_le64(dma);
66 	desc->tx.send_size = cpu_to_le16((u16)size);
67 
68 	/* config bd buffer end */
69 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71 
72 	/* fill port_id in the tx bd for sending management pkts */
73 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75 
76 	if (type == DESC_TYPE_SKB) {
77 		skb = (struct sk_buff *)priv;
78 
79 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
80 			skb_reset_mac_len(skb);
81 			protocol = skb->protocol;
82 			ip_offset = ETH_HLEN;
83 
84 			if (protocol == htons(ETH_P_8021Q)) {
85 				ip_offset += VLAN_HLEN;
86 				protocol = vlan_get_protocol(skb);
87 				skb->protocol = protocol;
88 			}
89 
90 			if (skb->protocol == htons(ETH_P_IP)) {
91 				iphdr = ip_hdr(skb);
92 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94 
95 				/* check for tcp/udp header */
96 				if (iphdr->protocol == IPPROTO_TCP &&
97 				    skb_is_gso(skb)) {
98 					hnae_set_bit(tvsvsn,
99 						     HNSV2_TXD_TSE_B, 1);
100 					l4_len = tcp_hdrlen(skb);
101 					mss = skb_shinfo(skb)->gso_size;
102 					paylen = skb->len - SKB_TMP_LEN(skb);
103 				}
104 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
105 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106 				ipv6hdr = ipv6_hdr(skb);
107 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108 
109 				/* check for tcp/udp header */
110 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112 					hnae_set_bit(tvsvsn,
113 						     HNSV2_TXD_TSE_B, 1);
114 					l4_len = tcp_hdrlen(skb);
115 					mss = skb_shinfo(skb)->gso_size;
116 					paylen = skb->len - SKB_TMP_LEN(skb);
117 				}
118 			}
119 			desc->tx.ip_offset = ip_offset;
120 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121 			desc->tx.mss = cpu_to_le16(mss);
122 			desc->tx.l4_len = l4_len;
123 			desc->tx.paylen = cpu_to_le16(paylen);
124 		}
125 	}
126 
127 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128 
129 	desc->tx.bn_pid = bn_pid;
130 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
131 
132 	ring_ptr_move_fw(ring, next_to_use);
133 }
134 
135 static const struct acpi_device_id hns_enet_acpi_match[] = {
136 	{ "HISI00C1", 0 },
137 	{ "HISI00C2", 0 },
138 	{ },
139 };
140 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
141 
142 static void fill_desc(struct hnae_ring *ring, void *priv,
143 		      int size, dma_addr_t dma, int frag_end,
144 		      int buf_num, enum hns_desc_type type, int mtu)
145 {
146 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
147 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
148 	struct sk_buff *skb;
149 	__be16 protocol;
150 	u32 ip_offset;
151 	u32 asid_bufnum_pid = 0;
152 	u32 flag_ipoffset = 0;
153 
154 	desc_cb->priv = priv;
155 	desc_cb->length = size;
156 	desc_cb->dma = dma;
157 	desc_cb->type = type;
158 
159 	desc->addr = cpu_to_le64(dma);
160 	desc->tx.send_size = cpu_to_le16((u16)size);
161 
162 	/*config bd buffer end */
163 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
164 
165 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
166 
167 	if (type == DESC_TYPE_SKB) {
168 		skb = (struct sk_buff *)priv;
169 
170 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
171 			protocol = skb->protocol;
172 			ip_offset = ETH_HLEN;
173 
174 			/*if it is a SW VLAN check the next protocol*/
175 			if (protocol == htons(ETH_P_8021Q)) {
176 				ip_offset += VLAN_HLEN;
177 				protocol = vlan_get_protocol(skb);
178 				skb->protocol = protocol;
179 			}
180 
181 			if (skb->protocol == htons(ETH_P_IP)) {
182 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
183 				/* check for tcp/udp header */
184 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
185 
186 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
187 				/* ipv6 has not l3 cs, check for L4 header */
188 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
189 			}
190 
191 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
192 		}
193 	}
194 
195 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
196 
197 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
198 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
199 
200 	ring_ptr_move_fw(ring, next_to_use);
201 }
202 
203 static void unfill_desc(struct hnae_ring *ring)
204 {
205 	ring_ptr_move_bw(ring, next_to_use);
206 }
207 
208 static int hns_nic_maybe_stop_tx(
209 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
210 {
211 	struct sk_buff *skb = *out_skb;
212 	struct sk_buff *new_skb = NULL;
213 	int buf_num;
214 
215 	/* no. of segments (plus a header) */
216 	buf_num = skb_shinfo(skb)->nr_frags + 1;
217 
218 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
219 		if (ring_space(ring) < 1)
220 			return -EBUSY;
221 
222 		new_skb = skb_copy(skb, GFP_ATOMIC);
223 		if (!new_skb)
224 			return -ENOMEM;
225 
226 		dev_kfree_skb_any(skb);
227 		*out_skb = new_skb;
228 		buf_num = 1;
229 	} else if (buf_num > ring_space(ring)) {
230 		return -EBUSY;
231 	}
232 
233 	*bnum = buf_num;
234 	return 0;
235 }
236 
237 static int hns_nic_maybe_stop_tso(
238 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
239 {
240 	int i;
241 	int size;
242 	int buf_num;
243 	int frag_num;
244 	struct sk_buff *skb = *out_skb;
245 	struct sk_buff *new_skb = NULL;
246 	struct skb_frag_struct *frag;
247 
248 	size = skb_headlen(skb);
249 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250 
251 	frag_num = skb_shinfo(skb)->nr_frags;
252 	for (i = 0; i < frag_num; i++) {
253 		frag = &skb_shinfo(skb)->frags[i];
254 		size = skb_frag_size(frag);
255 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256 	}
257 
258 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
259 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
260 		if (ring_space(ring) < buf_num)
261 			return -EBUSY;
262 		/* manual split the send packet */
263 		new_skb = skb_copy(skb, GFP_ATOMIC);
264 		if (!new_skb)
265 			return -ENOMEM;
266 		dev_kfree_skb_any(skb);
267 		*out_skb = new_skb;
268 
269 	} else if (ring_space(ring) < buf_num) {
270 		return -EBUSY;
271 	}
272 
273 	*bnum = buf_num;
274 	return 0;
275 }
276 
277 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
278 			  int size, dma_addr_t dma, int frag_end,
279 			  int buf_num, enum hns_desc_type type, int mtu)
280 {
281 	int frag_buf_num;
282 	int sizeoflast;
283 	int k;
284 
285 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
286 	sizeoflast = size % BD_MAX_SEND_SIZE;
287 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
288 
289 	/* when the frag size is bigger than hardware, split this frag */
290 	for (k = 0; k < frag_buf_num; k++)
291 		fill_v2_desc(ring, priv,
292 			     (k == frag_buf_num - 1) ?
293 					sizeoflast : BD_MAX_SEND_SIZE,
294 			     dma + BD_MAX_SEND_SIZE * k,
295 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
296 			     buf_num,
297 			     (type == DESC_TYPE_SKB && !k) ?
298 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
299 			     mtu);
300 }
301 
302 int hns_nic_net_xmit_hw(struct net_device *ndev,
303 			struct sk_buff *skb,
304 			struct hns_nic_ring_data *ring_data)
305 {
306 	struct hns_nic_priv *priv = netdev_priv(ndev);
307 	struct device *dev = priv->dev;
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct netdev_queue *dev_queue;
310 	struct skb_frag_struct *frag;
311 	int buf_num;
312 	int seg_num;
313 	dma_addr_t dma;
314 	int size, next_to_use;
315 	int i;
316 
317 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
318 	case -EBUSY:
319 		ring->stats.tx_busy++;
320 		goto out_net_tx_busy;
321 	case -ENOMEM:
322 		ring->stats.sw_err_cnt++;
323 		netdev_err(ndev, "no memory to xmit!\n");
324 		goto out_err_tx_ok;
325 	default:
326 		break;
327 	}
328 
329 	/* no. of segments (plus a header) */
330 	seg_num = skb_shinfo(skb)->nr_frags + 1;
331 	next_to_use = ring->next_to_use;
332 
333 	/* fill the first part */
334 	size = skb_headlen(skb);
335 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
336 	if (dma_mapping_error(dev, dma)) {
337 		netdev_err(ndev, "TX head DMA map failed\n");
338 		ring->stats.sw_err_cnt++;
339 		goto out_err_tx_ok;
340 	}
341 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
342 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
343 
344 	/* fill the fragments */
345 	for (i = 1; i < seg_num; i++) {
346 		frag = &skb_shinfo(skb)->frags[i - 1];
347 		size = skb_frag_size(frag);
348 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
349 		if (dma_mapping_error(dev, dma)) {
350 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
351 			ring->stats.sw_err_cnt++;
352 			goto out_map_frag_fail;
353 		}
354 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
355 				    seg_num - 1 == i ? 1 : 0, buf_num,
356 				    DESC_TYPE_PAGE, ndev->mtu);
357 	}
358 
359 	/*complete translate all packets*/
360 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
361 	netdev_tx_sent_queue(dev_queue, skb->len);
362 
363 	wmb(); /* commit all data before submit */
364 	assert(skb->queue_mapping < priv->ae_handle->q_num);
365 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
366 	ring->stats.tx_pkts++;
367 	ring->stats.tx_bytes += skb->len;
368 
369 	return NETDEV_TX_OK;
370 
371 out_map_frag_fail:
372 
373 	while (ring->next_to_use != next_to_use) {
374 		unfill_desc(ring);
375 		if (ring->next_to_use != next_to_use)
376 			dma_unmap_page(dev,
377 				       ring->desc_cb[ring->next_to_use].dma,
378 				       ring->desc_cb[ring->next_to_use].length,
379 				       DMA_TO_DEVICE);
380 		else
381 			dma_unmap_single(dev,
382 					 ring->desc_cb[next_to_use].dma,
383 					 ring->desc_cb[next_to_use].length,
384 					 DMA_TO_DEVICE);
385 	}
386 
387 out_err_tx_ok:
388 
389 	dev_kfree_skb_any(skb);
390 	return NETDEV_TX_OK;
391 
392 out_net_tx_busy:
393 
394 	netif_stop_subqueue(ndev, skb->queue_mapping);
395 
396 	/* Herbert's original patch had:
397 	 *  smp_mb__after_netif_stop_queue();
398 	 * but since that doesn't exist yet, just open code it.
399 	 */
400 	smp_mb();
401 	return NETDEV_TX_BUSY;
402 }
403 
404 /**
405  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
406  * @data: pointer to the start of the headers
407  * @max: total length of section to find headers in
408  *
409  * This function is meant to determine the length of headers that will
410  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
411  * motivation of doing this is to only perform one pull for IPv4 TCP
412  * packets so that we can do basic things like calculating the gso_size
413  * based on the average data per packet.
414  **/
415 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
416 					unsigned int max_size)
417 {
418 	unsigned char *network;
419 	u8 hlen;
420 
421 	/* this should never happen, but better safe than sorry */
422 	if (max_size < ETH_HLEN)
423 		return max_size;
424 
425 	/* initialize network frame pointer */
426 	network = data;
427 
428 	/* set first protocol and move network header forward */
429 	network += ETH_HLEN;
430 
431 	/* handle any vlan tag if present */
432 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
433 		== HNS_RX_FLAG_VLAN_PRESENT) {
434 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
435 			return max_size;
436 
437 		network += VLAN_HLEN;
438 	}
439 
440 	/* handle L3 protocols */
441 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
442 		== HNS_RX_FLAG_L3ID_IPV4) {
443 		if ((typeof(max_size))(network - data) >
444 		    (max_size - sizeof(struct iphdr)))
445 			return max_size;
446 
447 		/* access ihl as a u8 to avoid unaligned access on ia64 */
448 		hlen = (network[0] & 0x0F) << 2;
449 
450 		/* verify hlen meets minimum size requirements */
451 		if (hlen < sizeof(struct iphdr))
452 			return network - data;
453 
454 		/* record next protocol if header is present */
455 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
456 		== HNS_RX_FLAG_L3ID_IPV6) {
457 		if ((typeof(max_size))(network - data) >
458 		    (max_size - sizeof(struct ipv6hdr)))
459 			return max_size;
460 
461 		/* record next protocol */
462 		hlen = sizeof(struct ipv6hdr);
463 	} else {
464 		return network - data;
465 	}
466 
467 	/* relocate pointer to start of L4 header */
468 	network += hlen;
469 
470 	/* finally sort out TCP/UDP */
471 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
472 		== HNS_RX_FLAG_L4ID_TCP) {
473 		if ((typeof(max_size))(network - data) >
474 		    (max_size - sizeof(struct tcphdr)))
475 			return max_size;
476 
477 		/* access doff as a u8 to avoid unaligned access on ia64 */
478 		hlen = (network[12] & 0xF0) >> 2;
479 
480 		/* verify hlen meets minimum size requirements */
481 		if (hlen < sizeof(struct tcphdr))
482 			return network - data;
483 
484 		network += hlen;
485 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
486 		== HNS_RX_FLAG_L4ID_UDP) {
487 		if ((typeof(max_size))(network - data) >
488 		    (max_size - sizeof(struct udphdr)))
489 			return max_size;
490 
491 		network += sizeof(struct udphdr);
492 	}
493 
494 	/* If everything has gone correctly network should be the
495 	 * data section of the packet and will be the end of the header.
496 	 * If not then it probably represents the end of the last recognized
497 	 * header.
498 	 */
499 	if ((typeof(max_size))(network - data) < max_size)
500 		return network - data;
501 	else
502 		return max_size;
503 }
504 
505 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
506 			       struct hnae_ring *ring, int pull_len,
507 			       struct hnae_desc_cb *desc_cb)
508 {
509 	struct hnae_desc *desc;
510 	int truesize, size;
511 	int last_offset;
512 	bool twobufs;
513 
514 	twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
515 
516 	desc = &ring->desc[ring->next_to_clean];
517 	size = le16_to_cpu(desc->rx.size);
518 
519 	if (twobufs) {
520 		truesize = hnae_buf_size(ring);
521 	} else {
522 		truesize = ALIGN(size, L1_CACHE_BYTES);
523 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
524 	}
525 
526 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
527 			size - pull_len, truesize - pull_len);
528 
529 	 /* avoid re-using remote pages,flag default unreuse */
530 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
531 		return;
532 
533 	if (twobufs) {
534 		/* if we are only owner of page we can reuse it */
535 		if (likely(page_count(desc_cb->priv) == 1)) {
536 			/* flip page offset to other buffer */
537 			desc_cb->page_offset ^= truesize;
538 
539 			desc_cb->reuse_flag = 1;
540 			/* bump ref count on page before it is given*/
541 			get_page(desc_cb->priv);
542 		}
543 		return;
544 	}
545 
546 	/* move offset up to the next cache line */
547 	desc_cb->page_offset += truesize;
548 
549 	if (desc_cb->page_offset <= last_offset) {
550 		desc_cb->reuse_flag = 1;
551 		/* bump ref count on page before it is given*/
552 		get_page(desc_cb->priv);
553 	}
554 }
555 
556 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
557 {
558 	*out_bnum = hnae_get_field(bnum_flag,
559 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
560 }
561 
562 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564 	*out_bnum = hnae_get_field(bnum_flag,
565 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
566 }
567 
568 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
569 			       struct sk_buff **out_skb, int *out_bnum)
570 {
571 	struct hnae_ring *ring = ring_data->ring;
572 	struct net_device *ndev = ring_data->napi.dev;
573 	struct hns_nic_priv *priv = netdev_priv(ndev);
574 	struct sk_buff *skb;
575 	struct hnae_desc *desc;
576 	struct hnae_desc_cb *desc_cb;
577 	struct ethhdr *eh;
578 	unsigned char *va;
579 	int bnum, length, i;
580 	int pull_len;
581 	u32 bnum_flag;
582 
583 	desc = &ring->desc[ring->next_to_clean];
584 	desc_cb = &ring->desc_cb[ring->next_to_clean];
585 
586 	prefetch(desc);
587 
588 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
589 
590 	/* prefetch first cache line of first page */
591 	prefetch(va);
592 #if L1_CACHE_BYTES < 128
593 	prefetch(va + L1_CACHE_BYTES);
594 #endif
595 
596 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
597 					HNS_RX_HEAD_SIZE);
598 	if (unlikely(!skb)) {
599 		netdev_err(ndev, "alloc rx skb fail\n");
600 		ring->stats.sw_err_cnt++;
601 		return -ENOMEM;
602 	}
603 	skb_reset_mac_header(skb);
604 
605 	prefetchw(skb->data);
606 	length = le16_to_cpu(desc->rx.pkt_len);
607 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
608 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
609 	*out_bnum = bnum;
610 
611 	if (length <= HNS_RX_HEAD_SIZE) {
612 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
613 
614 		/* we can reuse buffer as-is, just make sure it is local */
615 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
616 			desc_cb->reuse_flag = 1;
617 		else /* this page cannot be reused so discard it */
618 			put_page(desc_cb->priv);
619 
620 		ring_ptr_move_fw(ring, next_to_clean);
621 
622 		if (unlikely(bnum != 1)) { /* check err*/
623 			*out_bnum = 1;
624 			goto out_bnum_err;
625 		}
626 	} else {
627 		ring->stats.seg_pkt_cnt++;
628 
629 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
630 		memcpy(__skb_put(skb, pull_len), va,
631 		       ALIGN(pull_len, sizeof(long)));
632 
633 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
634 		ring_ptr_move_fw(ring, next_to_clean);
635 
636 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
637 			*out_bnum = 1;
638 			goto out_bnum_err;
639 		}
640 		for (i = 1; i < bnum; i++) {
641 			desc = &ring->desc[ring->next_to_clean];
642 			desc_cb = &ring->desc_cb[ring->next_to_clean];
643 
644 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
645 			ring_ptr_move_fw(ring, next_to_clean);
646 		}
647 	}
648 
649 	/* check except process, free skb and jump the desc */
650 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
651 out_bnum_err:
652 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
653 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
654 			   bnum, ring->max_desc_num_per_pkt,
655 			   length, (int)MAX_SKB_FRAGS,
656 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
657 		ring->stats.err_bd_num++;
658 		dev_kfree_skb_any(skb);
659 		return -EDOM;
660 	}
661 
662 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
663 
664 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
665 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
666 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
667 		ring->stats.non_vld_descs++;
668 		dev_kfree_skb_any(skb);
669 		return -EINVAL;
670 	}
671 
672 	if (unlikely((!desc->rx.pkt_len) ||
673 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
674 		ring->stats.err_pkt_len++;
675 		dev_kfree_skb_any(skb);
676 		return -EFAULT;
677 	}
678 
679 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
680 		ring->stats.l2_err++;
681 		dev_kfree_skb_any(skb);
682 		return -EFAULT;
683 	}
684 
685 	/* filter out multicast pkt with the same src mac as this port */
686 	eh = eth_hdr(skb);
687 	if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
688 		     ether_addr_equal(ndev->dev_addr, eh->h_source))) {
689 		dev_kfree_skb_any(skb);
690 		return -EFAULT;
691 	}
692 
693 	ring->stats.rx_pkts++;
694 	ring->stats.rx_bytes += skb->len;
695 
696 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
697 		     hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
698 		ring->stats.l3l4_csum_err++;
699 		return 0;
700 	}
701 
702 	skb->ip_summed = CHECKSUM_UNNECESSARY;
703 
704 	return 0;
705 }
706 
707 static void
708 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
709 {
710 	int i, ret;
711 	struct hnae_desc_cb res_cbs;
712 	struct hnae_desc_cb *desc_cb;
713 	struct hnae_ring *ring = ring_data->ring;
714 	struct net_device *ndev = ring_data->napi.dev;
715 
716 	for (i = 0; i < cleand_count; i++) {
717 		desc_cb = &ring->desc_cb[ring->next_to_use];
718 		if (desc_cb->reuse_flag) {
719 			ring->stats.reuse_pg_cnt++;
720 			hnae_reuse_buffer(ring, ring->next_to_use);
721 		} else {
722 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
723 			if (ret) {
724 				ring->stats.sw_err_cnt++;
725 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
726 				break;
727 			}
728 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
729 		}
730 
731 		ring_ptr_move_fw(ring, next_to_use);
732 	}
733 
734 	wmb(); /* make all data has been write before submit */
735 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
736 }
737 
738 /* return error number for error or number of desc left to take
739  */
740 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
741 			      struct sk_buff *skb)
742 {
743 	struct net_device *ndev = ring_data->napi.dev;
744 
745 	skb->protocol = eth_type_trans(skb, ndev);
746 	(void)napi_gro_receive(&ring_data->napi, skb);
747 	ndev->last_rx = jiffies;
748 }
749 
750 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
751 			       int budget, void *v)
752 {
753 	struct hnae_ring *ring = ring_data->ring;
754 	struct sk_buff *skb;
755 	int num, bnum, ex_num;
756 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
757 	int recv_pkts, recv_bds, clean_count, err;
758 
759 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
760 	rmb(); /* make sure num taken effect before the other data is touched */
761 
762 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
763 recv:
764 	while (recv_pkts < budget && recv_bds < num) {
765 		/* reuse or realloc buffers */
766 		if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
767 			hns_nic_alloc_rx_buffers(ring_data, clean_count);
768 			clean_count = 0;
769 		}
770 
771 		/* poll one pkt */
772 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
773 		if (unlikely(!skb)) /* this fault cannot be repaired */
774 			goto out;
775 
776 		recv_bds += bnum;
777 		clean_count += bnum;
778 		if (unlikely(err)) {  /* do jump the err */
779 			recv_pkts++;
780 			continue;
781 		}
782 
783 		/* do update ip stack process*/
784 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
785 							ring_data, skb);
786 		recv_pkts++;
787 	}
788 
789 	/* make all data has been write before submit */
790 	if (recv_pkts < budget) {
791 		ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
792 
793 		if (ex_num > clean_count) {
794 			num += ex_num - clean_count;
795 			rmb(); /*complete read rx ring bd number*/
796 			goto recv;
797 		}
798 	}
799 
800 out:
801 	/* make all data has been write before submit */
802 	if (clean_count > 0)
803 		hns_nic_alloc_rx_buffers(ring_data, clean_count);
804 
805 	return recv_pkts;
806 }
807 
808 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
809 {
810 	struct hnae_ring *ring = ring_data->ring;
811 	int num = 0;
812 
813 	/* for hardware bug fixed */
814 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
815 
816 	if (num > 0) {
817 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
818 			ring_data->ring, 1);
819 
820 		napi_schedule(&ring_data->napi);
821 	}
822 }
823 
824 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
825 					    int *bytes, int *pkts)
826 {
827 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
828 
829 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
830 	(*bytes) += desc_cb->length;
831 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
832 	hnae_free_buffer_detach(ring, ring->next_to_clean);
833 
834 	ring_ptr_move_fw(ring, next_to_clean);
835 }
836 
837 static int is_valid_clean_head(struct hnae_ring *ring, int h)
838 {
839 	int u = ring->next_to_use;
840 	int c = ring->next_to_clean;
841 
842 	if (unlikely(h > ring->desc_num))
843 		return 0;
844 
845 	assert(u > 0 && u < ring->desc_num);
846 	assert(c > 0 && c < ring->desc_num);
847 	assert(u != c && h != c); /* must be checked before call this func */
848 
849 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
850 }
851 
852 /* netif_tx_lock will turn down the performance, set only when necessary */
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
855 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
856 #else
857 #define NETIF_TX_LOCK(ndev)
858 #define NETIF_TX_UNLOCK(ndev)
859 #endif
860 /* reclaim all desc in one budget
861  * return error or number of desc left
862  */
863 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
864 			       int budget, void *v)
865 {
866 	struct hnae_ring *ring = ring_data->ring;
867 	struct net_device *ndev = ring_data->napi.dev;
868 	struct netdev_queue *dev_queue;
869 	struct hns_nic_priv *priv = netdev_priv(ndev);
870 	int head;
871 	int bytes, pkts;
872 
873 	NETIF_TX_LOCK(ndev);
874 
875 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
876 	rmb(); /* make sure head is ready before touch any data */
877 
878 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
879 		NETIF_TX_UNLOCK(ndev);
880 		return 0; /* no data to poll */
881 	}
882 
883 	if (!is_valid_clean_head(ring, head)) {
884 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
885 			   ring->next_to_use, ring->next_to_clean);
886 		ring->stats.io_err_cnt++;
887 		NETIF_TX_UNLOCK(ndev);
888 		return -EIO;
889 	}
890 
891 	bytes = 0;
892 	pkts = 0;
893 	while (head != ring->next_to_clean) {
894 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
895 		/* issue prefetch for next Tx descriptor */
896 		prefetch(&ring->desc_cb[ring->next_to_clean]);
897 	}
898 
899 	NETIF_TX_UNLOCK(ndev);
900 
901 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
902 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
903 
904 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
905 		netif_carrier_on(ndev);
906 
907 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
908 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
909 		/* Make sure that anybody stopping the queue after this
910 		 * sees the new next_to_clean.
911 		 */
912 		smp_mb();
913 		if (netif_tx_queue_stopped(dev_queue) &&
914 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
915 			netif_tx_wake_queue(dev_queue);
916 			ring->stats.restart_queue++;
917 		}
918 	}
919 	return 0;
920 }
921 
922 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
923 {
924 	struct hnae_ring *ring = ring_data->ring;
925 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
926 
927 	if (head != ring->next_to_clean) {
928 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
929 			ring_data->ring, 1);
930 
931 		napi_schedule(&ring_data->napi);
932 	}
933 }
934 
935 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
936 {
937 	struct hnae_ring *ring = ring_data->ring;
938 	struct net_device *ndev = ring_data->napi.dev;
939 	struct netdev_queue *dev_queue;
940 	int head;
941 	int bytes, pkts;
942 
943 	NETIF_TX_LOCK(ndev);
944 
945 	head = ring->next_to_use; /* ntu :soft setted ring position*/
946 	bytes = 0;
947 	pkts = 0;
948 	while (head != ring->next_to_clean)
949 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
950 
951 	NETIF_TX_UNLOCK(ndev);
952 
953 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
954 	netdev_tx_reset_queue(dev_queue);
955 }
956 
957 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
958 {
959 	struct hns_nic_ring_data *ring_data =
960 		container_of(napi, struct hns_nic_ring_data, napi);
961 	int clean_complete = ring_data->poll_one(
962 				ring_data, budget, ring_data->ex_process);
963 
964 	if (clean_complete >= 0 && clean_complete < budget) {
965 		napi_complete(napi);
966 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
967 			ring_data->ring, 0);
968 		if (ring_data->fini_process)
969 			ring_data->fini_process(ring_data);
970 		return 0;
971 	}
972 
973 	return clean_complete;
974 }
975 
976 static irqreturn_t hns_irq_handle(int irq, void *dev)
977 {
978 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
979 
980 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
981 		ring_data->ring, 1);
982 	napi_schedule(&ring_data->napi);
983 
984 	return IRQ_HANDLED;
985 }
986 
987 /**
988  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
989  *@ndev: net device
990  */
991 static void hns_nic_adjust_link(struct net_device *ndev)
992 {
993 	struct hns_nic_priv *priv = netdev_priv(ndev);
994 	struct hnae_handle *h = priv->ae_handle;
995 	int state = 1;
996 
997 	if (ndev->phydev) {
998 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
999 					 ndev->phydev->duplex);
1000 		state = ndev->phydev->link;
1001 	}
1002 	state = state && h->dev->ops->get_status(h);
1003 
1004 	if (state != priv->link) {
1005 		if (state) {
1006 			netif_carrier_on(ndev);
1007 			netif_tx_wake_all_queues(ndev);
1008 			netdev_info(ndev, "link up\n");
1009 		} else {
1010 			netif_carrier_off(ndev);
1011 			netdev_info(ndev, "link down\n");
1012 		}
1013 		priv->link = state;
1014 	}
1015 }
1016 
1017 /**
1018  *hns_nic_init_phy - init phy
1019  *@ndev: net device
1020  *@h: ae handle
1021  * Return 0 on success, negative on failure
1022  */
1023 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1024 {
1025 	struct phy_device *phy_dev = h->phy_dev;
1026 	int ret;
1027 
1028 	if (!h->phy_dev)
1029 		return 0;
1030 
1031 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1032 		phy_dev->dev_flags = 0;
1033 
1034 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1035 					 h->phy_if);
1036 	} else {
1037 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1038 	}
1039 	if (unlikely(ret))
1040 		return -ENODEV;
1041 
1042 	phy_dev->supported &= h->if_support;
1043 	phy_dev->advertising = phy_dev->supported;
1044 
1045 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1046 		phy_dev->autoneg = false;
1047 
1048 	return 0;
1049 }
1050 
1051 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1052 {
1053 	struct hns_nic_priv *priv = netdev_priv(netdev);
1054 	struct hnae_handle *h = priv->ae_handle;
1055 
1056 	napi_enable(&priv->ring_data[idx].napi);
1057 
1058 	enable_irq(priv->ring_data[idx].ring->irq);
1059 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1060 
1061 	return 0;
1062 }
1063 
1064 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1065 {
1066 	struct hns_nic_priv *priv = netdev_priv(ndev);
1067 	struct hnae_handle *h = priv->ae_handle;
1068 	struct sockaddr *mac_addr = p;
1069 	int ret;
1070 
1071 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1072 		return -EADDRNOTAVAIL;
1073 
1074 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1075 	if (ret) {
1076 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1077 		return ret;
1078 	}
1079 
1080 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1081 
1082 	return 0;
1083 }
1084 
1085 void hns_nic_update_stats(struct net_device *netdev)
1086 {
1087 	struct hns_nic_priv *priv = netdev_priv(netdev);
1088 	struct hnae_handle *h = priv->ae_handle;
1089 
1090 	h->dev->ops->update_stats(h, &netdev->stats);
1091 }
1092 
1093 /* set mac addr if it is configed. or leave it to the AE driver */
1094 static void hns_init_mac_addr(struct net_device *ndev)
1095 {
1096 	struct hns_nic_priv *priv = netdev_priv(ndev);
1097 
1098 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1099 		eth_hw_addr_random(ndev);
1100 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1101 			 ndev->dev_addr);
1102 	}
1103 }
1104 
1105 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1106 {
1107 	struct hns_nic_priv *priv = netdev_priv(netdev);
1108 	struct hnae_handle *h = priv->ae_handle;
1109 
1110 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1111 	disable_irq(priv->ring_data[idx].ring->irq);
1112 
1113 	napi_disable(&priv->ring_data[idx].napi);
1114 }
1115 
1116 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1117 {
1118 	struct hnae_handle *h = priv->ae_handle;
1119 	struct hns_nic_ring_data *rd;
1120 	int i;
1121 	int cpu;
1122 	cpumask_t mask;
1123 
1124 	/*diffrent irq banlance for 16core and 32core*/
1125 	if (h->q_num == num_possible_cpus()) {
1126 		for (i = 0; i < h->q_num * 2; i++) {
1127 			rd = &priv->ring_data[i];
1128 			if (cpu_online(rd->queue_index)) {
1129 				cpumask_clear(&mask);
1130 				cpu = rd->queue_index;
1131 				cpumask_set_cpu(cpu, &mask);
1132 				(void)irq_set_affinity_hint(rd->ring->irq,
1133 							    &mask);
1134 			}
1135 		}
1136 	} else {
1137 		for (i = 0; i < h->q_num; i++) {
1138 			rd = &priv->ring_data[i];
1139 			if (cpu_online(rd->queue_index * 2)) {
1140 				cpumask_clear(&mask);
1141 				cpu = rd->queue_index * 2;
1142 				cpumask_set_cpu(cpu, &mask);
1143 				(void)irq_set_affinity_hint(rd->ring->irq,
1144 							    &mask);
1145 			}
1146 		}
1147 
1148 		for (i = h->q_num; i < h->q_num * 2; i++) {
1149 			rd = &priv->ring_data[i];
1150 			if (cpu_online(rd->queue_index * 2 + 1)) {
1151 				cpumask_clear(&mask);
1152 				cpu = rd->queue_index * 2 + 1;
1153 				cpumask_set_cpu(cpu, &mask);
1154 				(void)irq_set_affinity_hint(rd->ring->irq,
1155 							    &mask);
1156 			}
1157 		}
1158 	}
1159 }
1160 
1161 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1162 {
1163 	struct hnae_handle *h = priv->ae_handle;
1164 	struct hns_nic_ring_data *rd;
1165 	int i;
1166 	int ret;
1167 
1168 	for (i = 0; i < h->q_num * 2; i++) {
1169 		rd = &priv->ring_data[i];
1170 
1171 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1172 			break;
1173 
1174 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1175 			 "%s-%s%d", priv->netdev->name,
1176 			 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1177 
1178 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1179 
1180 		ret = request_irq(rd->ring->irq,
1181 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1182 		if (ret) {
1183 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1184 				   rd->ring->irq);
1185 			return ret;
1186 		}
1187 		disable_irq(rd->ring->irq);
1188 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1189 	}
1190 
1191 	/*set cpu affinity*/
1192 	hns_set_irq_affinity(priv);
1193 
1194 	return 0;
1195 }
1196 
1197 static int hns_nic_net_up(struct net_device *ndev)
1198 {
1199 	struct hns_nic_priv *priv = netdev_priv(ndev);
1200 	struct hnae_handle *h = priv->ae_handle;
1201 	int i, j;
1202 	int ret;
1203 
1204 	ret = hns_nic_init_irq(priv);
1205 	if (ret != 0) {
1206 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1207 		return ret;
1208 	}
1209 
1210 	for (i = 0; i < h->q_num * 2; i++) {
1211 		ret = hns_nic_ring_open(ndev, i);
1212 		if (ret)
1213 			goto out_has_some_queues;
1214 	}
1215 
1216 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1217 	if (ret)
1218 		goto out_set_mac_addr_err;
1219 
1220 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1221 	if (ret)
1222 		goto out_start_err;
1223 
1224 	if (ndev->phydev)
1225 		phy_start(ndev->phydev);
1226 
1227 	clear_bit(NIC_STATE_DOWN, &priv->state);
1228 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1229 
1230 	return 0;
1231 
1232 out_start_err:
1233 	netif_stop_queue(ndev);
1234 out_set_mac_addr_err:
1235 out_has_some_queues:
1236 	for (j = i - 1; j >= 0; j--)
1237 		hns_nic_ring_close(ndev, j);
1238 
1239 	set_bit(NIC_STATE_DOWN, &priv->state);
1240 
1241 	return ret;
1242 }
1243 
1244 static void hns_nic_net_down(struct net_device *ndev)
1245 {
1246 	int i;
1247 	struct hnae_ae_ops *ops;
1248 	struct hns_nic_priv *priv = netdev_priv(ndev);
1249 
1250 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1251 		return;
1252 
1253 	(void)del_timer_sync(&priv->service_timer);
1254 	netif_tx_stop_all_queues(ndev);
1255 	netif_carrier_off(ndev);
1256 	netif_tx_disable(ndev);
1257 	priv->link = 0;
1258 
1259 	if (ndev->phydev)
1260 		phy_stop(ndev->phydev);
1261 
1262 	ops = priv->ae_handle->dev->ops;
1263 
1264 	if (ops->stop)
1265 		ops->stop(priv->ae_handle);
1266 
1267 	netif_tx_stop_all_queues(ndev);
1268 
1269 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1270 		hns_nic_ring_close(ndev, i);
1271 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1272 
1273 		/* clean tx buffers*/
1274 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1275 	}
1276 }
1277 
1278 void hns_nic_net_reset(struct net_device *ndev)
1279 {
1280 	struct hns_nic_priv *priv = netdev_priv(ndev);
1281 	struct hnae_handle *handle = priv->ae_handle;
1282 
1283 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1284 		usleep_range(1000, 2000);
1285 
1286 	(void)hnae_reinit_handle(handle);
1287 
1288 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1289 }
1290 
1291 void hns_nic_net_reinit(struct net_device *netdev)
1292 {
1293 	struct hns_nic_priv *priv = netdev_priv(netdev);
1294 
1295 	netif_trans_update(priv->netdev);
1296 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1297 		usleep_range(1000, 2000);
1298 
1299 	hns_nic_net_down(netdev);
1300 	hns_nic_net_reset(netdev);
1301 	(void)hns_nic_net_up(netdev);
1302 	clear_bit(NIC_STATE_REINITING, &priv->state);
1303 }
1304 
1305 static int hns_nic_net_open(struct net_device *ndev)
1306 {
1307 	struct hns_nic_priv *priv = netdev_priv(ndev);
1308 	struct hnae_handle *h = priv->ae_handle;
1309 	int ret;
1310 
1311 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1312 		return -EBUSY;
1313 
1314 	priv->link = 0;
1315 	netif_carrier_off(ndev);
1316 
1317 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1318 	if (ret < 0) {
1319 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1320 			   ret);
1321 		return ret;
1322 	}
1323 
1324 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1325 	if (ret < 0) {
1326 		netdev_err(ndev,
1327 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1328 		return ret;
1329 	}
1330 
1331 	ret = hns_nic_net_up(ndev);
1332 	if (ret) {
1333 		netdev_err(ndev,
1334 			   "hns net up fail, ret=%d!\n", ret);
1335 		return ret;
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int hns_nic_net_stop(struct net_device *ndev)
1342 {
1343 	hns_nic_net_down(ndev);
1344 
1345 	return 0;
1346 }
1347 
1348 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1349 static void hns_nic_net_timeout(struct net_device *ndev)
1350 {
1351 	struct hns_nic_priv *priv = netdev_priv(ndev);
1352 
1353 	hns_tx_timeout_reset(priv);
1354 }
1355 
1356 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1357 			    int cmd)
1358 {
1359 	struct phy_device *phy_dev = netdev->phydev;
1360 
1361 	if (!netif_running(netdev))
1362 		return -EINVAL;
1363 
1364 	if (!phy_dev)
1365 		return -ENOTSUPP;
1366 
1367 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1368 }
1369 
1370 /* use only for netconsole to poll with the device without interrupt */
1371 #ifdef CONFIG_NET_POLL_CONTROLLER
1372 void hns_nic_poll_controller(struct net_device *ndev)
1373 {
1374 	struct hns_nic_priv *priv = netdev_priv(ndev);
1375 	unsigned long flags;
1376 	int i;
1377 
1378 	local_irq_save(flags);
1379 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1380 		napi_schedule(&priv->ring_data[i].napi);
1381 	local_irq_restore(flags);
1382 }
1383 #endif
1384 
1385 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1386 				    struct net_device *ndev)
1387 {
1388 	struct hns_nic_priv *priv = netdev_priv(ndev);
1389 	int ret;
1390 
1391 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1392 	ret = hns_nic_net_xmit_hw(ndev, skb,
1393 				  &tx_ring_data(priv, skb->queue_mapping));
1394 	if (ret == NETDEV_TX_OK) {
1395 		netif_trans_update(ndev);
1396 		ndev->stats.tx_bytes += skb->len;
1397 		ndev->stats.tx_packets++;
1398 	}
1399 	return (netdev_tx_t)ret;
1400 }
1401 
1402 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1403 {
1404 	struct hns_nic_priv *priv = netdev_priv(ndev);
1405 	struct hnae_handle *h = priv->ae_handle;
1406 	int ret;
1407 
1408 	/* MTU < 68 is an error and causes problems on some kernels */
1409 	if (new_mtu < 68)
1410 		return -EINVAL;
1411 
1412 	if (!h->dev->ops->set_mtu)
1413 		return -ENOTSUPP;
1414 
1415 	if (netif_running(ndev)) {
1416 		(void)hns_nic_net_stop(ndev);
1417 		msleep(100);
1418 
1419 		ret = h->dev->ops->set_mtu(h, new_mtu);
1420 		if (ret)
1421 			netdev_err(ndev, "set mtu fail, return value %d\n",
1422 				   ret);
1423 
1424 		if (hns_nic_net_open(ndev))
1425 			netdev_err(ndev, "hns net open fail\n");
1426 	} else {
1427 		ret = h->dev->ops->set_mtu(h, new_mtu);
1428 	}
1429 
1430 	if (!ret)
1431 		ndev->mtu = new_mtu;
1432 
1433 	return ret;
1434 }
1435 
1436 static int hns_nic_set_features(struct net_device *netdev,
1437 				netdev_features_t features)
1438 {
1439 	struct hns_nic_priv *priv = netdev_priv(netdev);
1440 
1441 	switch (priv->enet_ver) {
1442 	case AE_VERSION_1:
1443 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1444 			netdev_info(netdev, "enet v1 do not support tso!\n");
1445 		break;
1446 	default:
1447 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1448 			priv->ops.fill_desc = fill_tso_desc;
1449 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1450 			/* The chip only support 7*4096 */
1451 			netif_set_gso_max_size(netdev, 7 * 4096);
1452 		} else {
1453 			priv->ops.fill_desc = fill_v2_desc;
1454 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1455 		}
1456 		break;
1457 	}
1458 	netdev->features = features;
1459 	return 0;
1460 }
1461 
1462 static netdev_features_t hns_nic_fix_features(
1463 		struct net_device *netdev, netdev_features_t features)
1464 {
1465 	struct hns_nic_priv *priv = netdev_priv(netdev);
1466 
1467 	switch (priv->enet_ver) {
1468 	case AE_VERSION_1:
1469 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1470 				NETIF_F_HW_VLAN_CTAG_FILTER);
1471 		break;
1472 	default:
1473 		break;
1474 	}
1475 	return features;
1476 }
1477 
1478 /**
1479  * nic_set_multicast_list - set mutl mac address
1480  * @netdev: net device
1481  * @p: mac address
1482  *
1483  * return void
1484  */
1485 void hns_set_multicast_list(struct net_device *ndev)
1486 {
1487 	struct hns_nic_priv *priv = netdev_priv(ndev);
1488 	struct hnae_handle *h = priv->ae_handle;
1489 	struct netdev_hw_addr *ha = NULL;
1490 
1491 	if (!h)	{
1492 		netdev_err(ndev, "hnae handle is null\n");
1493 		return;
1494 	}
1495 
1496 	if (h->dev->ops->set_mc_addr) {
1497 		netdev_for_each_mc_addr(ha, ndev)
1498 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1499 				netdev_err(ndev, "set multicast fail\n");
1500 	}
1501 }
1502 
1503 void hns_nic_set_rx_mode(struct net_device *ndev)
1504 {
1505 	struct hns_nic_priv *priv = netdev_priv(ndev);
1506 	struct hnae_handle *h = priv->ae_handle;
1507 
1508 	if (h->dev->ops->set_promisc_mode) {
1509 		if (ndev->flags & IFF_PROMISC)
1510 			h->dev->ops->set_promisc_mode(h, 1);
1511 		else
1512 			h->dev->ops->set_promisc_mode(h, 0);
1513 	}
1514 
1515 	hns_set_multicast_list(ndev);
1516 }
1517 
1518 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1519 					      struct rtnl_link_stats64 *stats)
1520 {
1521 	int idx = 0;
1522 	u64 tx_bytes = 0;
1523 	u64 rx_bytes = 0;
1524 	u64 tx_pkts = 0;
1525 	u64 rx_pkts = 0;
1526 	struct hns_nic_priv *priv = netdev_priv(ndev);
1527 	struct hnae_handle *h = priv->ae_handle;
1528 
1529 	for (idx = 0; idx < h->q_num; idx++) {
1530 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1531 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1532 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1533 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1534 	}
1535 
1536 	stats->tx_bytes = tx_bytes;
1537 	stats->tx_packets = tx_pkts;
1538 	stats->rx_bytes = rx_bytes;
1539 	stats->rx_packets = rx_pkts;
1540 
1541 	stats->rx_errors = ndev->stats.rx_errors;
1542 	stats->multicast = ndev->stats.multicast;
1543 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1544 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1545 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1546 
1547 	stats->tx_errors = ndev->stats.tx_errors;
1548 	stats->rx_dropped = ndev->stats.rx_dropped;
1549 	stats->tx_dropped = ndev->stats.tx_dropped;
1550 	stats->collisions = ndev->stats.collisions;
1551 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1552 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1553 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1554 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1555 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1556 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1557 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1558 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1559 	stats->rx_compressed = ndev->stats.rx_compressed;
1560 	stats->tx_compressed = ndev->stats.tx_compressed;
1561 
1562 	return stats;
1563 }
1564 
1565 static const struct net_device_ops hns_nic_netdev_ops = {
1566 	.ndo_open = hns_nic_net_open,
1567 	.ndo_stop = hns_nic_net_stop,
1568 	.ndo_start_xmit = hns_nic_net_xmit,
1569 	.ndo_tx_timeout = hns_nic_net_timeout,
1570 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1571 	.ndo_change_mtu = hns_nic_change_mtu,
1572 	.ndo_do_ioctl = hns_nic_do_ioctl,
1573 	.ndo_set_features = hns_nic_set_features,
1574 	.ndo_fix_features = hns_nic_fix_features,
1575 	.ndo_get_stats64 = hns_nic_get_stats64,
1576 #ifdef CONFIG_NET_POLL_CONTROLLER
1577 	.ndo_poll_controller = hns_nic_poll_controller,
1578 #endif
1579 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1580 };
1581 
1582 static void hns_nic_update_link_status(struct net_device *netdev)
1583 {
1584 	struct hns_nic_priv *priv = netdev_priv(netdev);
1585 
1586 	struct hnae_handle *h = priv->ae_handle;
1587 
1588 	if (h->phy_dev) {
1589 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1590 			return;
1591 
1592 		(void)genphy_read_status(h->phy_dev);
1593 	}
1594 	hns_nic_adjust_link(netdev);
1595 }
1596 
1597 /* for dumping key regs*/
1598 static void hns_nic_dump(struct hns_nic_priv *priv)
1599 {
1600 	struct hnae_handle *h = priv->ae_handle;
1601 	struct hnae_ae_ops *ops = h->dev->ops;
1602 	u32 *data, reg_num, i;
1603 
1604 	if (ops->get_regs_len && ops->get_regs) {
1605 		reg_num = ops->get_regs_len(priv->ae_handle);
1606 		reg_num = (reg_num + 3ul) & ~3ul;
1607 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1608 		if (data) {
1609 			ops->get_regs(priv->ae_handle, data);
1610 			for (i = 0; i < reg_num; i += 4)
1611 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1612 					i, data[i], data[i + 1],
1613 					data[i + 2], data[i + 3]);
1614 			kfree(data);
1615 		}
1616 	}
1617 
1618 	for (i = 0; i < h->q_num; i++) {
1619 		pr_info("tx_queue%d_next_to_clean:%d\n",
1620 			i, h->qs[i]->tx_ring.next_to_clean);
1621 		pr_info("tx_queue%d_next_to_use:%d\n",
1622 			i, h->qs[i]->tx_ring.next_to_use);
1623 		pr_info("rx_queue%d_next_to_clean:%d\n",
1624 			i, h->qs[i]->rx_ring.next_to_clean);
1625 		pr_info("rx_queue%d_next_to_use:%d\n",
1626 			i, h->qs[i]->rx_ring.next_to_use);
1627 	}
1628 }
1629 
1630 /* for resetting subtask */
1631 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1632 {
1633 	enum hnae_port_type type = priv->ae_handle->port_type;
1634 
1635 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1636 		return;
1637 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1638 
1639 	/* If we're already down, removing or resetting, just bail */
1640 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1641 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1642 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1643 		return;
1644 
1645 	hns_nic_dump(priv);
1646 	netdev_info(priv->netdev, "try to reset %s port!\n",
1647 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1648 
1649 	rtnl_lock();
1650 	/* put off any impending NetWatchDogTimeout */
1651 	netif_trans_update(priv->netdev);
1652 
1653 	if (type == HNAE_PORT_DEBUG) {
1654 		hns_nic_net_reinit(priv->netdev);
1655 	} else {
1656 		netif_carrier_off(priv->netdev);
1657 		netif_tx_disable(priv->netdev);
1658 	}
1659 	rtnl_unlock();
1660 }
1661 
1662 /* for doing service complete*/
1663 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1664 {
1665 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1666 
1667 	smp_mb__before_atomic();
1668 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1669 }
1670 
1671 static void hns_nic_service_task(struct work_struct *work)
1672 {
1673 	struct hns_nic_priv *priv
1674 		= container_of(work, struct hns_nic_priv, service_task);
1675 	struct hnae_handle *h = priv->ae_handle;
1676 
1677 	hns_nic_update_link_status(priv->netdev);
1678 	h->dev->ops->update_led_status(h);
1679 	hns_nic_update_stats(priv->netdev);
1680 
1681 	hns_nic_reset_subtask(priv);
1682 	hns_nic_service_event_complete(priv);
1683 }
1684 
1685 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1686 {
1687 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1688 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1689 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1690 		(void)schedule_work(&priv->service_task);
1691 }
1692 
1693 static void hns_nic_service_timer(unsigned long data)
1694 {
1695 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1696 
1697 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1698 
1699 	hns_nic_task_schedule(priv);
1700 }
1701 
1702 /**
1703  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1704  * @priv: driver private struct
1705  **/
1706 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1707 {
1708 	/* Do the reset outside of interrupt context */
1709 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1710 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1711 		netdev_warn(priv->netdev,
1712 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
1713 			    priv->tx_timeout_count, priv->state);
1714 		priv->tx_timeout_count++;
1715 		hns_nic_task_schedule(priv);
1716 	}
1717 }
1718 
1719 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1720 {
1721 	struct hnae_handle *h = priv->ae_handle;
1722 	struct hns_nic_ring_data *rd;
1723 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1724 	int i;
1725 
1726 	if (h->q_num > NIC_MAX_Q_PER_VF) {
1727 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1728 		return -EINVAL;
1729 	}
1730 
1731 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1732 				  GFP_KERNEL);
1733 	if (!priv->ring_data)
1734 		return -ENOMEM;
1735 
1736 	for (i = 0; i < h->q_num; i++) {
1737 		rd = &priv->ring_data[i];
1738 		rd->queue_index = i;
1739 		rd->ring = &h->qs[i]->tx_ring;
1740 		rd->poll_one = hns_nic_tx_poll_one;
1741 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : NULL;
1742 
1743 		netif_napi_add(priv->netdev, &rd->napi,
1744 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1745 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1746 	}
1747 	for (i = h->q_num; i < h->q_num * 2; i++) {
1748 		rd = &priv->ring_data[i];
1749 		rd->queue_index = i - h->q_num;
1750 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
1751 		rd->poll_one = hns_nic_rx_poll_one;
1752 		rd->ex_process = hns_nic_rx_up_pro;
1753 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : NULL;
1754 
1755 		netif_napi_add(priv->netdev, &rd->napi,
1756 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1757 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1764 {
1765 	struct hnae_handle *h = priv->ae_handle;
1766 	int i;
1767 
1768 	for (i = 0; i < h->q_num * 2; i++) {
1769 		netif_napi_del(&priv->ring_data[i].napi);
1770 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1771 			(void)irq_set_affinity_hint(
1772 				priv->ring_data[i].ring->irq,
1773 				NULL);
1774 			free_irq(priv->ring_data[i].ring->irq,
1775 				 &priv->ring_data[i]);
1776 		}
1777 
1778 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1779 	}
1780 	kfree(priv->ring_data);
1781 }
1782 
1783 static void hns_nic_set_priv_ops(struct net_device *netdev)
1784 {
1785 	struct hns_nic_priv *priv = netdev_priv(netdev);
1786 	struct hnae_handle *h = priv->ae_handle;
1787 
1788 	if (AE_IS_VER1(priv->enet_ver)) {
1789 		priv->ops.fill_desc = fill_desc;
1790 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1791 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1792 	} else {
1793 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1794 		if ((netdev->features & NETIF_F_TSO) ||
1795 		    (netdev->features & NETIF_F_TSO6)) {
1796 			priv->ops.fill_desc = fill_tso_desc;
1797 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798 			/* This chip only support 7*4096 */
1799 			netif_set_gso_max_size(netdev, 7 * 4096);
1800 		} else {
1801 			priv->ops.fill_desc = fill_v2_desc;
1802 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1803 		}
1804 		/* enable tso when init
1805 		 * control tso on/off through TSE bit in bd
1806 		 */
1807 		h->dev->ops->set_tso_stats(h, 1);
1808 	}
1809 }
1810 
1811 static int hns_nic_try_get_ae(struct net_device *ndev)
1812 {
1813 	struct hns_nic_priv *priv = netdev_priv(ndev);
1814 	struct hnae_handle *h;
1815 	int ret;
1816 
1817 	h = hnae_get_handle(&priv->netdev->dev,
1818 			    priv->fwnode, priv->port_id, NULL);
1819 	if (IS_ERR_OR_NULL(h)) {
1820 		ret = -ENODEV;
1821 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
1822 		goto out;
1823 	}
1824 	priv->ae_handle = h;
1825 
1826 	ret = hns_nic_init_phy(ndev, h);
1827 	if (ret) {
1828 		dev_err(priv->dev, "probe phy device fail!\n");
1829 		goto out_init_phy;
1830 	}
1831 
1832 	ret = hns_nic_init_ring_data(priv);
1833 	if (ret) {
1834 		ret = -ENOMEM;
1835 		goto out_init_ring_data;
1836 	}
1837 
1838 	hns_nic_set_priv_ops(ndev);
1839 
1840 	ret = register_netdev(ndev);
1841 	if (ret) {
1842 		dev_err(priv->dev, "probe register netdev fail!\n");
1843 		goto out_reg_ndev_fail;
1844 	}
1845 	return 0;
1846 
1847 out_reg_ndev_fail:
1848 	hns_nic_uninit_ring_data(priv);
1849 	priv->ring_data = NULL;
1850 out_init_phy:
1851 out_init_ring_data:
1852 	hnae_put_handle(priv->ae_handle);
1853 	priv->ae_handle = NULL;
1854 out:
1855 	return ret;
1856 }
1857 
1858 static int hns_nic_notifier_action(struct notifier_block *nb,
1859 				   unsigned long action, void *data)
1860 {
1861 	struct hns_nic_priv *priv =
1862 		container_of(nb, struct hns_nic_priv, notifier_block);
1863 
1864 	assert(action == HNAE_AE_REGISTER);
1865 
1866 	if (!hns_nic_try_get_ae(priv->netdev)) {
1867 		hnae_unregister_notifier(&priv->notifier_block);
1868 		priv->notifier_block.notifier_call = NULL;
1869 	}
1870 	return 0;
1871 }
1872 
1873 static int hns_nic_dev_probe(struct platform_device *pdev)
1874 {
1875 	struct device *dev = &pdev->dev;
1876 	struct net_device *ndev;
1877 	struct hns_nic_priv *priv;
1878 	u32 port_id;
1879 	int ret;
1880 
1881 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1882 	if (!ndev)
1883 		return -ENOMEM;
1884 
1885 	platform_set_drvdata(pdev, ndev);
1886 
1887 	priv = netdev_priv(ndev);
1888 	priv->dev = dev;
1889 	priv->netdev = ndev;
1890 
1891 	if (dev_of_node(dev)) {
1892 		struct device_node *ae_node;
1893 
1894 		if (of_device_is_compatible(dev->of_node,
1895 					    "hisilicon,hns-nic-v1"))
1896 			priv->enet_ver = AE_VERSION_1;
1897 		else
1898 			priv->enet_ver = AE_VERSION_2;
1899 
1900 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
1901 		if (IS_ERR_OR_NULL(ae_node)) {
1902 			ret = PTR_ERR(ae_node);
1903 			dev_err(dev, "not find ae-handle\n");
1904 			goto out_read_prop_fail;
1905 		}
1906 		priv->fwnode = &ae_node->fwnode;
1907 	} else if (is_acpi_node(dev->fwnode)) {
1908 		struct acpi_reference_args args;
1909 
1910 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
1911 			priv->enet_ver = AE_VERSION_1;
1912 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
1913 			priv->enet_ver = AE_VERSION_2;
1914 		else
1915 			return -ENXIO;
1916 
1917 		/* try to find port-idx-in-ae first */
1918 		ret = acpi_node_get_property_reference(dev->fwnode,
1919 						       "ae-handle", 0, &args);
1920 		if (ret) {
1921 			dev_err(dev, "not find ae-handle\n");
1922 			goto out_read_prop_fail;
1923 		}
1924 		priv->fwnode = acpi_fwnode_handle(args.adev);
1925 	} else {
1926 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
1927 		return -ENXIO;
1928 	}
1929 
1930 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
1931 	if (ret) {
1932 		/* only for old code compatible */
1933 		ret = device_property_read_u32(dev, "port-id", &port_id);
1934 		if (ret)
1935 			goto out_read_prop_fail;
1936 		/* for old dts, we need to caculate the port offset */
1937 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1938 			: port_id - HNS_SRV_OFFSET;
1939 	}
1940 	priv->port_id = port_id;
1941 
1942 	hns_init_mac_addr(ndev);
1943 
1944 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1945 	ndev->priv_flags |= IFF_UNICAST_FLT;
1946 	ndev->netdev_ops = &hns_nic_netdev_ops;
1947 	hns_ethtool_set_ops(ndev);
1948 
1949 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1950 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1951 		NETIF_F_GRO;
1952 	ndev->vlan_features |=
1953 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1954 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1955 
1956 	switch (priv->enet_ver) {
1957 	case AE_VERSION_2:
1958 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1959 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1960 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1961 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1962 		break;
1963 	default:
1964 		break;
1965 	}
1966 
1967 	SET_NETDEV_DEV(ndev, dev);
1968 
1969 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1970 		dev_dbg(dev, "set mask to 64bit\n");
1971 	else
1972 		dev_err(dev, "set mask to 64bit fail!\n");
1973 
1974 	/* carrier off reporting is important to ethtool even BEFORE open */
1975 	netif_carrier_off(ndev);
1976 
1977 	setup_timer(&priv->service_timer, hns_nic_service_timer,
1978 		    (unsigned long)priv);
1979 	INIT_WORK(&priv->service_task, hns_nic_service_task);
1980 
1981 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1982 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1983 	set_bit(NIC_STATE_DOWN, &priv->state);
1984 
1985 	if (hns_nic_try_get_ae(priv->netdev)) {
1986 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
1987 		ret = hnae_register_notifier(&priv->notifier_block);
1988 		if (ret) {
1989 			dev_err(dev, "register notifier fail!\n");
1990 			goto out_notify_fail;
1991 		}
1992 		dev_dbg(dev, "has not handle, register notifier!\n");
1993 	}
1994 
1995 	return 0;
1996 
1997 out_notify_fail:
1998 	(void)cancel_work_sync(&priv->service_task);
1999 out_read_prop_fail:
2000 	free_netdev(ndev);
2001 	return ret;
2002 }
2003 
2004 static int hns_nic_dev_remove(struct platform_device *pdev)
2005 {
2006 	struct net_device *ndev = platform_get_drvdata(pdev);
2007 	struct hns_nic_priv *priv = netdev_priv(ndev);
2008 
2009 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2010 		unregister_netdev(ndev);
2011 
2012 	if (priv->ring_data)
2013 		hns_nic_uninit_ring_data(priv);
2014 	priv->ring_data = NULL;
2015 
2016 	if (ndev->phydev)
2017 		phy_disconnect(ndev->phydev);
2018 
2019 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2020 		hnae_put_handle(priv->ae_handle);
2021 	priv->ae_handle = NULL;
2022 	if (priv->notifier_block.notifier_call)
2023 		hnae_unregister_notifier(&priv->notifier_block);
2024 	priv->notifier_block.notifier_call = NULL;
2025 
2026 	set_bit(NIC_STATE_REMOVING, &priv->state);
2027 	(void)cancel_work_sync(&priv->service_task);
2028 
2029 	free_netdev(ndev);
2030 	return 0;
2031 }
2032 
2033 static const struct of_device_id hns_enet_of_match[] = {
2034 	{.compatible = "hisilicon,hns-nic-v1",},
2035 	{.compatible = "hisilicon,hns-nic-v2",},
2036 	{},
2037 };
2038 
2039 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2040 
2041 static struct platform_driver hns_nic_dev_driver = {
2042 	.driver = {
2043 		.name = "hns-nic",
2044 		.of_match_table = hns_enet_of_match,
2045 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2046 	},
2047 	.probe = hns_nic_dev_probe,
2048 	.remove = hns_nic_dev_remove,
2049 };
2050 
2051 module_platform_driver(hns_nic_dev_driver);
2052 
2053 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2054 MODULE_AUTHOR("Hisilicon, Inc.");
2055 MODULE_LICENSE("GPL");
2056 MODULE_ALIAS("platform:hns-nic");
2057