xref: /linux/drivers/net/ethernet/freescale/fec_main.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61 
62 #include <asm/cacheflush.h>
63 
64 #include "fec.h"
65 
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68 
69 #define DRIVER_NAME	"fec"
70 
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 static struct platform_device_id fec_devtype[] = {
82 	{
83 		/* keep it for coldfire */
84 		.name = DRIVER_NAME,
85 		.driver_data = 0,
86 	}, {
87 		.name = "imx25-fec",
88 		.driver_data = FEC_QUIRK_USE_GASKET,
89 	}, {
90 		.name = "imx27-fec",
91 		.driver_data = 0,
92 	}, {
93 		.name = "imx28-fec",
94 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95 	}, {
96 		.name = "imx6q-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100 	}, {
101 		.name = "mvf600-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC,
103 	}, {
104 		.name = "imx6sx-fec",
105 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109 	}, {
110 		/* sentinel */
111 	}
112 };
113 MODULE_DEVICE_TABLE(platform, fec_devtype);
114 
115 enum imx_fec_type {
116 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
117 	IMX27_FEC,	/* runs on i.mx27/35/51 */
118 	IMX28_FEC,
119 	IMX6Q_FEC,
120 	MVF600_FEC,
121 	IMX6SX_FEC,
122 };
123 
124 static const struct of_device_id fec_dt_ids[] = {
125 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131 	{ /* sentinel */ }
132 };
133 MODULE_DEVICE_TABLE(of, fec_dt_ids);
134 
135 static unsigned char macaddr[ETH_ALEN];
136 module_param_array(macaddr, byte, NULL, 0);
137 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138 
139 #if defined(CONFIG_M5272)
140 /*
141  * Some hardware gets it MAC address out of local flash memory.
142  * if this is non-zero then assume it is the address to get MAC from.
143  */
144 #if defined(CONFIG_NETtel)
145 #define	FEC_FLASHMAC	0xf0006006
146 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147 #define	FEC_FLASHMAC	0xf0006000
148 #elif defined(CONFIG_CANCam)
149 #define	FEC_FLASHMAC	0xf0020000
150 #elif defined (CONFIG_M5272C3)
151 #define	FEC_FLASHMAC	(0xffe04000 + 4)
152 #elif defined(CONFIG_MOD5272)
153 #define FEC_FLASHMAC	0xffc0406b
154 #else
155 #define	FEC_FLASHMAC	0
156 #endif
157 #endif /* CONFIG_M5272 */
158 
159 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160  */
161 #define PKT_MAXBUF_SIZE		1522
162 #define PKT_MINBUF_SIZE		64
163 #define PKT_MAXBLR_SIZE		1536
164 
165 /* FEC receive acceleration */
166 #define FEC_RACC_IPDIS		(1 << 1)
167 #define FEC_RACC_PRODIS		(1 << 2)
168 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169 
170 /*
171  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172  * size bits. Other FEC hardware does not, so we need to take that into
173  * account when setting it.
174  */
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
178 #else
179 #define	OPT_FRAME_SIZE	0
180 #endif
181 
182 /* FEC MII MMFR bits definition */
183 #define FEC_MMFR_ST		(1 << 30)
184 #define FEC_MMFR_OP_READ	(2 << 28)
185 #define FEC_MMFR_OP_WRITE	(1 << 28)
186 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
187 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
188 #define FEC_MMFR_TA		(2 << 16)
189 #define FEC_MMFR_DATA(v)	(v & 0xffff)
190 
191 #define FEC_MII_TIMEOUT		30000 /* us */
192 
193 /* Transmitter timeout */
194 #define TX_TIMEOUT (2 * HZ)
195 
196 #define FEC_PAUSE_FLAG_AUTONEG	0x1
197 #define FEC_PAUSE_FLAG_ENABLE	0x2
198 
199 #define COPYBREAK_DEFAULT	256
200 
201 #define TSO_HEADER_SIZE		128
202 /* Max number of allowed TCP segments for software TSO */
203 #define FEC_MAX_TSO_SEGS	100
204 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205 
206 #define IS_TSO_HEADER(txq, addr) \
207 	((addr >= txq->tso_hdrs_dma) && \
208 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209 
210 static int mii_cnt;
211 
212 static inline
213 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214 				      struct fec_enet_private *fep,
215 				      int queue_id)
216 {
217 	struct bufdesc *new_bd = bdp + 1;
218 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221 	struct bufdesc_ex *ex_base;
222 	struct bufdesc *base;
223 	int ring_size;
224 
225 	if (bdp >= txq->tx_bd_base) {
226 		base = txq->tx_bd_base;
227 		ring_size = txq->tx_ring_size;
228 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229 	} else {
230 		base = rxq->rx_bd_base;
231 		ring_size = rxq->rx_ring_size;
232 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233 	}
234 
235 	if (fep->bufdesc_ex)
236 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237 			ex_base : ex_new_bd);
238 	else
239 		return (new_bd >= (base + ring_size)) ?
240 			base : new_bd;
241 }
242 
243 static inline
244 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245 				      struct fec_enet_private *fep,
246 				      int queue_id)
247 {
248 	struct bufdesc *new_bd = bdp - 1;
249 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252 	struct bufdesc_ex *ex_base;
253 	struct bufdesc *base;
254 	int ring_size;
255 
256 	if (bdp >= txq->tx_bd_base) {
257 		base = txq->tx_bd_base;
258 		ring_size = txq->tx_ring_size;
259 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260 	} else {
261 		base = rxq->rx_bd_base;
262 		ring_size = rxq->rx_ring_size;
263 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264 	}
265 
266 	if (fep->bufdesc_ex)
267 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
268 			(ex_new_bd + ring_size) : ex_new_bd);
269 	else
270 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271 }
272 
273 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274 				struct fec_enet_private *fep)
275 {
276 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277 }
278 
279 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280 					struct fec_enet_priv_tx_q *txq)
281 {
282 	int entries;
283 
284 	entries = ((const char *)txq->dirty_tx -
285 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286 
287 	return entries > 0 ? entries : entries + txq->tx_ring_size;
288 }
289 
290 static void swap_buffer(void *bufaddr, int len)
291 {
292 	int i;
293 	unsigned int *buf = bufaddr;
294 
295 	for (i = 0; i < len; i += 4, buf++)
296 		swab32s(buf);
297 }
298 
299 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
300 {
301 	int i;
302 	unsigned int *src = src_buf;
303 	unsigned int *dst = dst_buf;
304 
305 	for (i = 0; i < len; i += 4, src++, dst++)
306 		*dst = swab32p(src);
307 }
308 
309 static void fec_dump(struct net_device *ndev)
310 {
311 	struct fec_enet_private *fep = netdev_priv(ndev);
312 	struct bufdesc *bdp;
313 	struct fec_enet_priv_tx_q *txq;
314 	int index = 0;
315 
316 	netdev_info(ndev, "TX ring dump\n");
317 	pr_info("Nr     SC     addr       len  SKB\n");
318 
319 	txq = fep->tx_queue[0];
320 	bdp = txq->tx_bd_base;
321 
322 	do {
323 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
324 			index,
325 			bdp == txq->cur_tx ? 'S' : ' ',
326 			bdp == txq->dirty_tx ? 'H' : ' ',
327 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
328 			txq->tx_skbuff[index]);
329 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
330 		index++;
331 	} while (bdp != txq->tx_bd_base);
332 }
333 
334 static inline bool is_ipv4_pkt(struct sk_buff *skb)
335 {
336 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
337 }
338 
339 static int
340 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
341 {
342 	/* Only run for packets requiring a checksum. */
343 	if (skb->ip_summed != CHECKSUM_PARTIAL)
344 		return 0;
345 
346 	if (unlikely(skb_cow_head(skb, 0)))
347 		return -1;
348 
349 	if (is_ipv4_pkt(skb))
350 		ip_hdr(skb)->check = 0;
351 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
352 
353 	return 0;
354 }
355 
356 static int
357 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
358 			     struct sk_buff *skb,
359 			     struct net_device *ndev)
360 {
361 	struct fec_enet_private *fep = netdev_priv(ndev);
362 	struct bufdesc *bdp = txq->cur_tx;
363 	struct bufdesc_ex *ebdp;
364 	int nr_frags = skb_shinfo(skb)->nr_frags;
365 	unsigned short queue = skb_get_queue_mapping(skb);
366 	int frag, frag_len;
367 	unsigned short status;
368 	unsigned int estatus = 0;
369 	skb_frag_t *this_frag;
370 	unsigned int index;
371 	void *bufaddr;
372 	dma_addr_t addr;
373 	int i;
374 
375 	for (frag = 0; frag < nr_frags; frag++) {
376 		this_frag = &skb_shinfo(skb)->frags[frag];
377 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
378 		ebdp = (struct bufdesc_ex *)bdp;
379 
380 		status = bdp->cbd_sc;
381 		status &= ~BD_ENET_TX_STATS;
382 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
383 		frag_len = skb_shinfo(skb)->frags[frag].size;
384 
385 		/* Handle the last BD specially */
386 		if (frag == nr_frags - 1) {
387 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
388 			if (fep->bufdesc_ex) {
389 				estatus |= BD_ENET_TX_INT;
390 				if (unlikely(skb_shinfo(skb)->tx_flags &
391 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
392 					estatus |= BD_ENET_TX_TS;
393 			}
394 		}
395 
396 		if (fep->bufdesc_ex) {
397 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
398 				estatus |= FEC_TX_BD_FTYPE(queue);
399 			if (skb->ip_summed == CHECKSUM_PARTIAL)
400 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
401 			ebdp->cbd_bdu = 0;
402 			ebdp->cbd_esc = estatus;
403 		}
404 
405 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
406 
407 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
408 		if (((unsigned long) bufaddr) & fep->tx_align ||
409 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
410 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
411 			bufaddr = txq->tx_bounce[index];
412 
413 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
414 				swap_buffer(bufaddr, frag_len);
415 		}
416 
417 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
418 				      DMA_TO_DEVICE);
419 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
420 			dev_kfree_skb_any(skb);
421 			if (net_ratelimit())
422 				netdev_err(ndev, "Tx DMA memory map failed\n");
423 			goto dma_mapping_error;
424 		}
425 
426 		bdp->cbd_bufaddr = addr;
427 		bdp->cbd_datlen = frag_len;
428 		bdp->cbd_sc = status;
429 	}
430 
431 	txq->cur_tx = bdp;
432 
433 	return 0;
434 
435 dma_mapping_error:
436 	bdp = txq->cur_tx;
437 	for (i = 0; i < frag; i++) {
438 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
439 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
440 				bdp->cbd_datlen, DMA_TO_DEVICE);
441 	}
442 	return NETDEV_TX_OK;
443 }
444 
445 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
446 				   struct sk_buff *skb, struct net_device *ndev)
447 {
448 	struct fec_enet_private *fep = netdev_priv(ndev);
449 	int nr_frags = skb_shinfo(skb)->nr_frags;
450 	struct bufdesc *bdp, *last_bdp;
451 	void *bufaddr;
452 	dma_addr_t addr;
453 	unsigned short status;
454 	unsigned short buflen;
455 	unsigned short queue;
456 	unsigned int estatus = 0;
457 	unsigned int index;
458 	int entries_free;
459 	int ret;
460 
461 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
462 	if (entries_free < MAX_SKB_FRAGS + 1) {
463 		dev_kfree_skb_any(skb);
464 		if (net_ratelimit())
465 			netdev_err(ndev, "NOT enough BD for SG!\n");
466 		return NETDEV_TX_OK;
467 	}
468 
469 	/* Protocol checksum off-load for TCP and UDP. */
470 	if (fec_enet_clear_csum(skb, ndev)) {
471 		dev_kfree_skb_any(skb);
472 		return NETDEV_TX_OK;
473 	}
474 
475 	/* Fill in a Tx ring entry */
476 	bdp = txq->cur_tx;
477 	status = bdp->cbd_sc;
478 	status &= ~BD_ENET_TX_STATS;
479 
480 	/* Set buffer length and buffer pointer */
481 	bufaddr = skb->data;
482 	buflen = skb_headlen(skb);
483 
484 	queue = skb_get_queue_mapping(skb);
485 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
486 	if (((unsigned long) bufaddr) & fep->tx_align ||
487 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
488 		memcpy(txq->tx_bounce[index], skb->data, buflen);
489 		bufaddr = txq->tx_bounce[index];
490 
491 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
492 			swap_buffer(bufaddr, buflen);
493 	}
494 
495 	/* Push the data cache so the CPM does not get stale memory data. */
496 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
497 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
498 		dev_kfree_skb_any(skb);
499 		if (net_ratelimit())
500 			netdev_err(ndev, "Tx DMA memory map failed\n");
501 		return NETDEV_TX_OK;
502 	}
503 
504 	if (nr_frags) {
505 		ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
506 		if (ret)
507 			return ret;
508 	} else {
509 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
510 		if (fep->bufdesc_ex) {
511 			estatus = BD_ENET_TX_INT;
512 			if (unlikely(skb_shinfo(skb)->tx_flags &
513 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
514 				estatus |= BD_ENET_TX_TS;
515 		}
516 	}
517 
518 	if (fep->bufdesc_ex) {
519 
520 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
521 
522 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
523 			fep->hwts_tx_en))
524 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
525 
526 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
527 			estatus |= FEC_TX_BD_FTYPE(queue);
528 
529 		if (skb->ip_summed == CHECKSUM_PARTIAL)
530 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
531 
532 		ebdp->cbd_bdu = 0;
533 		ebdp->cbd_esc = estatus;
534 	}
535 
536 	last_bdp = txq->cur_tx;
537 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
538 	/* Save skb pointer */
539 	txq->tx_skbuff[index] = skb;
540 
541 	bdp->cbd_datlen = buflen;
542 	bdp->cbd_bufaddr = addr;
543 
544 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
545 	 * it's the last BD of the frame, and to put the CRC on the end.
546 	 */
547 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
548 	bdp->cbd_sc = status;
549 
550 	/* If this was the last BD in the ring, start at the beginning again. */
551 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
552 
553 	skb_tx_timestamp(skb);
554 
555 	txq->cur_tx = bdp;
556 
557 	/* Trigger transmission start */
558 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
559 
560 	return 0;
561 }
562 
563 static int
564 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
565 			  struct net_device *ndev,
566 			  struct bufdesc *bdp, int index, char *data,
567 			  int size, bool last_tcp, bool is_last)
568 {
569 	struct fec_enet_private *fep = netdev_priv(ndev);
570 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
571 	unsigned short queue = skb_get_queue_mapping(skb);
572 	unsigned short status;
573 	unsigned int estatus = 0;
574 	dma_addr_t addr;
575 
576 	status = bdp->cbd_sc;
577 	status &= ~BD_ENET_TX_STATS;
578 
579 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
580 
581 	if (((unsigned long) data) & fep->tx_align ||
582 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
583 		memcpy(txq->tx_bounce[index], data, size);
584 		data = txq->tx_bounce[index];
585 
586 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
587 			swap_buffer(data, size);
588 	}
589 
590 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
591 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
592 		dev_kfree_skb_any(skb);
593 		if (net_ratelimit())
594 			netdev_err(ndev, "Tx DMA memory map failed\n");
595 		return NETDEV_TX_BUSY;
596 	}
597 
598 	bdp->cbd_datlen = size;
599 	bdp->cbd_bufaddr = addr;
600 
601 	if (fep->bufdesc_ex) {
602 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
603 			estatus |= FEC_TX_BD_FTYPE(queue);
604 		if (skb->ip_summed == CHECKSUM_PARTIAL)
605 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
606 		ebdp->cbd_bdu = 0;
607 		ebdp->cbd_esc = estatus;
608 	}
609 
610 	/* Handle the last BD specially */
611 	if (last_tcp)
612 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
613 	if (is_last) {
614 		status |= BD_ENET_TX_INTR;
615 		if (fep->bufdesc_ex)
616 			ebdp->cbd_esc |= BD_ENET_TX_INT;
617 	}
618 
619 	bdp->cbd_sc = status;
620 
621 	return 0;
622 }
623 
624 static int
625 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
626 			 struct sk_buff *skb, struct net_device *ndev,
627 			 struct bufdesc *bdp, int index)
628 {
629 	struct fec_enet_private *fep = netdev_priv(ndev);
630 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
631 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
632 	unsigned short queue = skb_get_queue_mapping(skb);
633 	void *bufaddr;
634 	unsigned long dmabuf;
635 	unsigned short status;
636 	unsigned int estatus = 0;
637 
638 	status = bdp->cbd_sc;
639 	status &= ~BD_ENET_TX_STATS;
640 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
641 
642 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
643 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
644 	if (((unsigned long)bufaddr) & fep->tx_align ||
645 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
646 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
647 		bufaddr = txq->tx_bounce[index];
648 
649 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
650 			swap_buffer(bufaddr, hdr_len);
651 
652 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
653 					hdr_len, DMA_TO_DEVICE);
654 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
655 			dev_kfree_skb_any(skb);
656 			if (net_ratelimit())
657 				netdev_err(ndev, "Tx DMA memory map failed\n");
658 			return NETDEV_TX_BUSY;
659 		}
660 	}
661 
662 	bdp->cbd_bufaddr = dmabuf;
663 	bdp->cbd_datlen = hdr_len;
664 
665 	if (fep->bufdesc_ex) {
666 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
667 			estatus |= FEC_TX_BD_FTYPE(queue);
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = estatus;
672 	}
673 
674 	bdp->cbd_sc = status;
675 
676 	return 0;
677 }
678 
679 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
680 				   struct sk_buff *skb,
681 				   struct net_device *ndev)
682 {
683 	struct fec_enet_private *fep = netdev_priv(ndev);
684 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
685 	int total_len, data_left;
686 	struct bufdesc *bdp = txq->cur_tx;
687 	unsigned short queue = skb_get_queue_mapping(skb);
688 	struct tso_t tso;
689 	unsigned int index = 0;
690 	int ret;
691 
692 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
693 		dev_kfree_skb_any(skb);
694 		if (net_ratelimit())
695 			netdev_err(ndev, "NOT enough BD for TSO!\n");
696 		return NETDEV_TX_OK;
697 	}
698 
699 	/* Protocol checksum off-load for TCP and UDP. */
700 	if (fec_enet_clear_csum(skb, ndev)) {
701 		dev_kfree_skb_any(skb);
702 		return NETDEV_TX_OK;
703 	}
704 
705 	/* Initialize the TSO handler, and prepare the first payload */
706 	tso_start(skb, &tso);
707 
708 	total_len = skb->len - hdr_len;
709 	while (total_len > 0) {
710 		char *hdr;
711 
712 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
713 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
714 		total_len -= data_left;
715 
716 		/* prepare packet headers: MAC + IP + TCP */
717 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
718 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
719 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
720 		if (ret)
721 			goto err_release;
722 
723 		while (data_left > 0) {
724 			int size;
725 
726 			size = min_t(int, tso.size, data_left);
727 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
728 			index = fec_enet_get_bd_index(txq->tx_bd_base,
729 						      bdp, fep);
730 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
731 							bdp, index,
732 							tso.data, size,
733 							size == data_left,
734 							total_len == 0);
735 			if (ret)
736 				goto err_release;
737 
738 			data_left -= size;
739 			tso_build_data(skb, &tso, size);
740 		}
741 
742 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
743 	}
744 
745 	/* Save skb pointer */
746 	txq->tx_skbuff[index] = skb;
747 
748 	skb_tx_timestamp(skb);
749 	txq->cur_tx = bdp;
750 
751 	/* Trigger transmission start */
752 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
753 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
754 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
755 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
757 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
758 
759 	return 0;
760 
761 err_release:
762 	/* TODO: Release all used data descriptors for TSO */
763 	return ret;
764 }
765 
766 static netdev_tx_t
767 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
768 {
769 	struct fec_enet_private *fep = netdev_priv(ndev);
770 	int entries_free;
771 	unsigned short queue;
772 	struct fec_enet_priv_tx_q *txq;
773 	struct netdev_queue *nq;
774 	int ret;
775 
776 	queue = skb_get_queue_mapping(skb);
777 	txq = fep->tx_queue[queue];
778 	nq = netdev_get_tx_queue(ndev, queue);
779 
780 	if (skb_is_gso(skb))
781 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
782 	else
783 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
784 	if (ret)
785 		return ret;
786 
787 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
788 	if (entries_free <= txq->tx_stop_threshold)
789 		netif_tx_stop_queue(nq);
790 
791 	return NETDEV_TX_OK;
792 }
793 
794 /* Init RX & TX buffer descriptors
795  */
796 static void fec_enet_bd_init(struct net_device *dev)
797 {
798 	struct fec_enet_private *fep = netdev_priv(dev);
799 	struct fec_enet_priv_tx_q *txq;
800 	struct fec_enet_priv_rx_q *rxq;
801 	struct bufdesc *bdp;
802 	unsigned int i;
803 	unsigned int q;
804 
805 	for (q = 0; q < fep->num_rx_queues; q++) {
806 		/* Initialize the receive buffer descriptors. */
807 		rxq = fep->rx_queue[q];
808 		bdp = rxq->rx_bd_base;
809 
810 		for (i = 0; i < rxq->rx_ring_size; i++) {
811 
812 			/* Initialize the BD for every fragment in the page. */
813 			if (bdp->cbd_bufaddr)
814 				bdp->cbd_sc = BD_ENET_RX_EMPTY;
815 			else
816 				bdp->cbd_sc = 0;
817 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
818 		}
819 
820 		/* Set the last buffer to wrap */
821 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
822 		bdp->cbd_sc |= BD_SC_WRAP;
823 
824 		rxq->cur_rx = rxq->rx_bd_base;
825 	}
826 
827 	for (q = 0; q < fep->num_tx_queues; q++) {
828 		/* ...and the same for transmit */
829 		txq = fep->tx_queue[q];
830 		bdp = txq->tx_bd_base;
831 		txq->cur_tx = bdp;
832 
833 		for (i = 0; i < txq->tx_ring_size; i++) {
834 			/* Initialize the BD for every fragment in the page. */
835 			bdp->cbd_sc = 0;
836 			if (txq->tx_skbuff[i]) {
837 				dev_kfree_skb_any(txq->tx_skbuff[i]);
838 				txq->tx_skbuff[i] = NULL;
839 			}
840 			bdp->cbd_bufaddr = 0;
841 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
842 		}
843 
844 		/* Set the last buffer to wrap */
845 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
846 		bdp->cbd_sc |= BD_SC_WRAP;
847 		txq->dirty_tx = bdp;
848 	}
849 }
850 
851 static void fec_enet_active_rxring(struct net_device *ndev)
852 {
853 	struct fec_enet_private *fep = netdev_priv(ndev);
854 	int i;
855 
856 	for (i = 0; i < fep->num_rx_queues; i++)
857 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
858 }
859 
860 static void fec_enet_enable_ring(struct net_device *ndev)
861 {
862 	struct fec_enet_private *fep = netdev_priv(ndev);
863 	struct fec_enet_priv_tx_q *txq;
864 	struct fec_enet_priv_rx_q *rxq;
865 	int i;
866 
867 	for (i = 0; i < fep->num_rx_queues; i++) {
868 		rxq = fep->rx_queue[i];
869 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
870 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
871 
872 		/* enable DMA1/2 */
873 		if (i)
874 			writel(RCMR_MATCHEN | RCMR_CMP(i),
875 			       fep->hwp + FEC_RCMR(i));
876 	}
877 
878 	for (i = 0; i < fep->num_tx_queues; i++) {
879 		txq = fep->tx_queue[i];
880 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
881 
882 		/* enable DMA1/2 */
883 		if (i)
884 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
885 			       fep->hwp + FEC_DMA_CFG(i));
886 	}
887 }
888 
889 static void fec_enet_reset_skb(struct net_device *ndev)
890 {
891 	struct fec_enet_private *fep = netdev_priv(ndev);
892 	struct fec_enet_priv_tx_q *txq;
893 	int i, j;
894 
895 	for (i = 0; i < fep->num_tx_queues; i++) {
896 		txq = fep->tx_queue[i];
897 
898 		for (j = 0; j < txq->tx_ring_size; j++) {
899 			if (txq->tx_skbuff[j]) {
900 				dev_kfree_skb_any(txq->tx_skbuff[j]);
901 				txq->tx_skbuff[j] = NULL;
902 			}
903 		}
904 	}
905 }
906 
907 /*
908  * This function is called to start or restart the FEC during a link
909  * change, transmit timeout, or to reconfigure the FEC.  The network
910  * packet processing for this device must be stopped before this call.
911  */
912 static void
913 fec_restart(struct net_device *ndev)
914 {
915 	struct fec_enet_private *fep = netdev_priv(ndev);
916 	u32 val;
917 	u32 temp_mac[2];
918 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
919 	u32 ecntl = 0x2; /* ETHEREN */
920 
921 	/* Whack a reset.  We should wait for this.
922 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
923 	 * instead of reset MAC itself.
924 	 */
925 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
926 		writel(0, fep->hwp + FEC_ECNTRL);
927 	} else {
928 		writel(1, fep->hwp + FEC_ECNTRL);
929 		udelay(10);
930 	}
931 
932 	/*
933 	 * enet-mac reset will reset mac address registers too,
934 	 * so need to reconfigure it.
935 	 */
936 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
937 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
938 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
939 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
940 	}
941 
942 	/* Clear any outstanding interrupt. */
943 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
944 
945 	fec_enet_bd_init(ndev);
946 
947 	fec_enet_enable_ring(ndev);
948 
949 	/* Reset tx SKB buffers. */
950 	fec_enet_reset_skb(ndev);
951 
952 	/* Enable MII mode */
953 	if (fep->full_duplex == DUPLEX_FULL) {
954 		/* FD enable */
955 		writel(0x04, fep->hwp + FEC_X_CNTRL);
956 	} else {
957 		/* No Rcv on Xmit */
958 		rcntl |= 0x02;
959 		writel(0x0, fep->hwp + FEC_X_CNTRL);
960 	}
961 
962 	/* Set MII speed */
963 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
964 
965 #if !defined(CONFIG_M5272)
966 	/* set RX checksum */
967 	val = readl(fep->hwp + FEC_RACC);
968 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
969 		val |= FEC_RACC_OPTIONS;
970 	else
971 		val &= ~FEC_RACC_OPTIONS;
972 	writel(val, fep->hwp + FEC_RACC);
973 #endif
974 
975 	/*
976 	 * The phy interface and speed need to get configured
977 	 * differently on enet-mac.
978 	 */
979 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
980 		/* Enable flow control and length check */
981 		rcntl |= 0x40000000 | 0x00000020;
982 
983 		/* RGMII, RMII or MII */
984 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
985 			rcntl |= (1 << 6);
986 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
987 			rcntl |= (1 << 8);
988 		else
989 			rcntl &= ~(1 << 8);
990 
991 		/* 1G, 100M or 10M */
992 		if (fep->phy_dev) {
993 			if (fep->phy_dev->speed == SPEED_1000)
994 				ecntl |= (1 << 5);
995 			else if (fep->phy_dev->speed == SPEED_100)
996 				rcntl &= ~(1 << 9);
997 			else
998 				rcntl |= (1 << 9);
999 		}
1000 	} else {
1001 #ifdef FEC_MIIGSK_ENR
1002 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1003 			u32 cfgr;
1004 			/* disable the gasket and wait */
1005 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1006 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1007 				udelay(1);
1008 
1009 			/*
1010 			 * configure the gasket:
1011 			 *   RMII, 50 MHz, no loopback, no echo
1012 			 *   MII, 25 MHz, no loopback, no echo
1013 			 */
1014 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1015 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1016 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1017 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1018 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1019 
1020 			/* re-enable the gasket */
1021 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1022 		}
1023 #endif
1024 	}
1025 
1026 #if !defined(CONFIG_M5272)
1027 	/* enable pause frame*/
1028 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1029 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1030 	     fep->phy_dev && fep->phy_dev->pause)) {
1031 		rcntl |= FEC_ENET_FCE;
1032 
1033 		/* set FIFO threshold parameter to reduce overrun */
1034 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1035 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1036 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1037 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1038 
1039 		/* OPD */
1040 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1041 	} else {
1042 		rcntl &= ~FEC_ENET_FCE;
1043 	}
1044 #endif /* !defined(CONFIG_M5272) */
1045 
1046 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1047 
1048 	/* Setup multicast filter. */
1049 	set_multicast_list(ndev);
1050 #ifndef CONFIG_M5272
1051 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1052 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1053 #endif
1054 
1055 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1056 		/* enable ENET endian swap */
1057 		ecntl |= (1 << 8);
1058 		/* enable ENET store and forward mode */
1059 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1060 	}
1061 
1062 	if (fep->bufdesc_ex)
1063 		ecntl |= (1 << 4);
1064 
1065 #ifndef CONFIG_M5272
1066 	/* Enable the MIB statistic event counters */
1067 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1068 #endif
1069 
1070 	/* And last, enable the transmit and receive processing */
1071 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1072 	fec_enet_active_rxring(ndev);
1073 
1074 	if (fep->bufdesc_ex)
1075 		fec_ptp_start_cyclecounter(ndev);
1076 
1077 	/* Enable interrupts we wish to service */
1078 	if (fep->link)
1079 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1080 	else
1081 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1082 
1083 	/* Init the interrupt coalescing */
1084 	fec_enet_itr_coal_init(ndev);
1085 
1086 }
1087 
1088 static void
1089 fec_stop(struct net_device *ndev)
1090 {
1091 	struct fec_enet_private *fep = netdev_priv(ndev);
1092 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1093 
1094 	/* We cannot expect a graceful transmit stop without link !!! */
1095 	if (fep->link) {
1096 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1097 		udelay(10);
1098 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1099 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1100 	}
1101 
1102 	/* Whack a reset.  We should wait for this.
1103 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1104 	 * instead of reset MAC itself.
1105 	 */
1106 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1107 		writel(0, fep->hwp + FEC_ECNTRL);
1108 	} else {
1109 		writel(1, fep->hwp + FEC_ECNTRL);
1110 		udelay(10);
1111 	}
1112 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1113 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1114 
1115 	/* We have to keep ENET enabled to have MII interrupt stay working */
1116 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1117 		writel(2, fep->hwp + FEC_ECNTRL);
1118 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1119 	}
1120 }
1121 
1122 
1123 static void
1124 fec_timeout(struct net_device *ndev)
1125 {
1126 	struct fec_enet_private *fep = netdev_priv(ndev);
1127 
1128 	fec_dump(ndev);
1129 
1130 	ndev->stats.tx_errors++;
1131 
1132 	schedule_work(&fep->tx_timeout_work);
1133 }
1134 
1135 static void fec_enet_timeout_work(struct work_struct *work)
1136 {
1137 	struct fec_enet_private *fep =
1138 		container_of(work, struct fec_enet_private, tx_timeout_work);
1139 	struct net_device *ndev = fep->netdev;
1140 
1141 	rtnl_lock();
1142 	if (netif_device_present(ndev) || netif_running(ndev)) {
1143 		napi_disable(&fep->napi);
1144 		netif_tx_lock_bh(ndev);
1145 		fec_restart(ndev);
1146 		netif_wake_queue(ndev);
1147 		netif_tx_unlock_bh(ndev);
1148 		napi_enable(&fep->napi);
1149 	}
1150 	rtnl_unlock();
1151 }
1152 
1153 static void
1154 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1155 	struct skb_shared_hwtstamps *hwtstamps)
1156 {
1157 	unsigned long flags;
1158 	u64 ns;
1159 
1160 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1161 	ns = timecounter_cyc2time(&fep->tc, ts);
1162 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1163 
1164 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1165 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1166 }
1167 
1168 static void
1169 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1170 {
1171 	struct	fec_enet_private *fep;
1172 	struct bufdesc *bdp;
1173 	unsigned short status;
1174 	struct	sk_buff	*skb;
1175 	struct fec_enet_priv_tx_q *txq;
1176 	struct netdev_queue *nq;
1177 	int	index = 0;
1178 	int	entries_free;
1179 
1180 	fep = netdev_priv(ndev);
1181 
1182 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1183 
1184 	txq = fep->tx_queue[queue_id];
1185 	/* get next bdp of dirty_tx */
1186 	nq = netdev_get_tx_queue(ndev, queue_id);
1187 	bdp = txq->dirty_tx;
1188 
1189 	/* get next bdp of dirty_tx */
1190 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1191 
1192 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1193 
1194 		/* current queue is empty */
1195 		if (bdp == txq->cur_tx)
1196 			break;
1197 
1198 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1199 
1200 		skb = txq->tx_skbuff[index];
1201 		txq->tx_skbuff[index] = NULL;
1202 		if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1203 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1204 					bdp->cbd_datlen, DMA_TO_DEVICE);
1205 		bdp->cbd_bufaddr = 0;
1206 		if (!skb) {
1207 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1208 			continue;
1209 		}
1210 
1211 		/* Check for errors. */
1212 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1213 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1214 				   BD_ENET_TX_CSL)) {
1215 			ndev->stats.tx_errors++;
1216 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1217 				ndev->stats.tx_heartbeat_errors++;
1218 			if (status & BD_ENET_TX_LC)  /* Late collision */
1219 				ndev->stats.tx_window_errors++;
1220 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1221 				ndev->stats.tx_aborted_errors++;
1222 			if (status & BD_ENET_TX_UN)  /* Underrun */
1223 				ndev->stats.tx_fifo_errors++;
1224 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1225 				ndev->stats.tx_carrier_errors++;
1226 		} else {
1227 			ndev->stats.tx_packets++;
1228 			ndev->stats.tx_bytes += skb->len;
1229 		}
1230 
1231 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1232 			fep->bufdesc_ex) {
1233 			struct skb_shared_hwtstamps shhwtstamps;
1234 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1235 
1236 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1237 			skb_tstamp_tx(skb, &shhwtstamps);
1238 		}
1239 
1240 		/* Deferred means some collisions occurred during transmit,
1241 		 * but we eventually sent the packet OK.
1242 		 */
1243 		if (status & BD_ENET_TX_DEF)
1244 			ndev->stats.collisions++;
1245 
1246 		/* Free the sk buffer associated with this last transmit */
1247 		dev_kfree_skb_any(skb);
1248 
1249 		txq->dirty_tx = bdp;
1250 
1251 		/* Update pointer to next buffer descriptor to be transmitted */
1252 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1253 
1254 		/* Since we have freed up a buffer, the ring is no longer full
1255 		 */
1256 		if (netif_queue_stopped(ndev)) {
1257 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1258 			if (entries_free >= txq->tx_wake_threshold)
1259 				netif_tx_wake_queue(nq);
1260 		}
1261 	}
1262 
1263 	/* ERR006538: Keep the transmitter going */
1264 	if (bdp != txq->cur_tx &&
1265 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1266 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1267 }
1268 
1269 static void
1270 fec_enet_tx(struct net_device *ndev)
1271 {
1272 	struct fec_enet_private *fep = netdev_priv(ndev);
1273 	u16 queue_id;
1274 	/* First process class A queue, then Class B and Best Effort queue */
1275 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1276 		clear_bit(queue_id, &fep->work_tx);
1277 		fec_enet_tx_queue(ndev, queue_id);
1278 	}
1279 	return;
1280 }
1281 
1282 static int
1283 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1284 {
1285 	struct  fec_enet_private *fep = netdev_priv(ndev);
1286 	int off;
1287 
1288 	off = ((unsigned long)skb->data) & fep->rx_align;
1289 	if (off)
1290 		skb_reserve(skb, fep->rx_align + 1 - off);
1291 
1292 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1293 					  FEC_ENET_RX_FRSIZE - fep->rx_align,
1294 					  DMA_FROM_DEVICE);
1295 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1296 		if (net_ratelimit())
1297 			netdev_err(ndev, "Rx DMA memory map failed\n");
1298 		return -ENOMEM;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1305 			       struct bufdesc *bdp, u32 length, bool swap)
1306 {
1307 	struct  fec_enet_private *fep = netdev_priv(ndev);
1308 	struct sk_buff *new_skb;
1309 
1310 	if (length > fep->rx_copybreak)
1311 		return false;
1312 
1313 	new_skb = netdev_alloc_skb(ndev, length);
1314 	if (!new_skb)
1315 		return false;
1316 
1317 	dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1318 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1319 				DMA_FROM_DEVICE);
1320 	if (!swap)
1321 		memcpy(new_skb->data, (*skb)->data, length);
1322 	else
1323 		swap_buffer2(new_skb->data, (*skb)->data, length);
1324 	*skb = new_skb;
1325 
1326 	return true;
1327 }
1328 
1329 /* During a receive, the cur_rx points to the current incoming buffer.
1330  * When we update through the ring, if the next incoming buffer has
1331  * not been given to the system, we just set the empty indicator,
1332  * effectively tossing the packet.
1333  */
1334 static int
1335 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1336 {
1337 	struct fec_enet_private *fep = netdev_priv(ndev);
1338 	struct fec_enet_priv_rx_q *rxq;
1339 	struct bufdesc *bdp;
1340 	unsigned short status;
1341 	struct  sk_buff *skb_new = NULL;
1342 	struct  sk_buff *skb;
1343 	ushort	pkt_len;
1344 	__u8 *data;
1345 	int	pkt_received = 0;
1346 	struct	bufdesc_ex *ebdp = NULL;
1347 	bool	vlan_packet_rcvd = false;
1348 	u16	vlan_tag;
1349 	int	index = 0;
1350 	bool	is_copybreak;
1351 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1352 
1353 #ifdef CONFIG_M532x
1354 	flush_cache_all();
1355 #endif
1356 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1357 	rxq = fep->rx_queue[queue_id];
1358 
1359 	/* First, grab all of the stats for the incoming packet.
1360 	 * These get messed up if we get called due to a busy condition.
1361 	 */
1362 	bdp = rxq->cur_rx;
1363 
1364 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1365 
1366 		if (pkt_received >= budget)
1367 			break;
1368 		pkt_received++;
1369 
1370 		/* Since we have allocated space to hold a complete frame,
1371 		 * the last indicator should be set.
1372 		 */
1373 		if ((status & BD_ENET_RX_LAST) == 0)
1374 			netdev_err(ndev, "rcv is not +last\n");
1375 
1376 
1377 		/* Check for errors. */
1378 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1379 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1380 			ndev->stats.rx_errors++;
1381 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1382 				/* Frame too long or too short. */
1383 				ndev->stats.rx_length_errors++;
1384 			}
1385 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1386 				ndev->stats.rx_frame_errors++;
1387 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1388 				ndev->stats.rx_crc_errors++;
1389 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1390 				ndev->stats.rx_fifo_errors++;
1391 		}
1392 
1393 		/* Report late collisions as a frame error.
1394 		 * On this error, the BD is closed, but we don't know what we
1395 		 * have in the buffer.  So, just drop this frame on the floor.
1396 		 */
1397 		if (status & BD_ENET_RX_CL) {
1398 			ndev->stats.rx_errors++;
1399 			ndev->stats.rx_frame_errors++;
1400 			goto rx_processing_done;
1401 		}
1402 
1403 		/* Process the incoming frame. */
1404 		ndev->stats.rx_packets++;
1405 		pkt_len = bdp->cbd_datlen;
1406 		ndev->stats.rx_bytes += pkt_len;
1407 
1408 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1409 		skb = rxq->rx_skbuff[index];
1410 
1411 		/* The packet length includes FCS, but we don't want to
1412 		 * include that when passing upstream as it messes up
1413 		 * bridging applications.
1414 		 */
1415 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1416 						  need_swap);
1417 		if (!is_copybreak) {
1418 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1419 			if (unlikely(!skb_new)) {
1420 				ndev->stats.rx_dropped++;
1421 				goto rx_processing_done;
1422 			}
1423 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1424 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1425 					 DMA_FROM_DEVICE);
1426 		}
1427 
1428 		prefetch(skb->data - NET_IP_ALIGN);
1429 		skb_put(skb, pkt_len - 4);
1430 		data = skb->data;
1431 		if (!is_copybreak && need_swap)
1432 			swap_buffer(data, pkt_len);
1433 
1434 		/* Extract the enhanced buffer descriptor */
1435 		ebdp = NULL;
1436 		if (fep->bufdesc_ex)
1437 			ebdp = (struct bufdesc_ex *)bdp;
1438 
1439 		/* If this is a VLAN packet remove the VLAN Tag */
1440 		vlan_packet_rcvd = false;
1441 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1442 			fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1443 			/* Push and remove the vlan tag */
1444 			struct vlan_hdr *vlan_header =
1445 					(struct vlan_hdr *) (data + ETH_HLEN);
1446 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1447 
1448 			vlan_packet_rcvd = true;
1449 
1450 			skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1451 						       data, (2 * ETH_ALEN));
1452 			skb_pull(skb, VLAN_HLEN);
1453 		}
1454 
1455 		skb->protocol = eth_type_trans(skb, ndev);
1456 
1457 		/* Get receive timestamp from the skb */
1458 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1459 			fec_enet_hwtstamp(fep, ebdp->ts,
1460 					  skb_hwtstamps(skb));
1461 
1462 		if (fep->bufdesc_ex &&
1463 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1464 			if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1465 				/* don't check it */
1466 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1467 			} else {
1468 				skb_checksum_none_assert(skb);
1469 			}
1470 		}
1471 
1472 		/* Handle received VLAN packets */
1473 		if (vlan_packet_rcvd)
1474 			__vlan_hwaccel_put_tag(skb,
1475 					       htons(ETH_P_8021Q),
1476 					       vlan_tag);
1477 
1478 		napi_gro_receive(&fep->napi, skb);
1479 
1480 		if (is_copybreak) {
1481 			dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1482 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1483 						   DMA_FROM_DEVICE);
1484 		} else {
1485 			rxq->rx_skbuff[index] = skb_new;
1486 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1487 		}
1488 
1489 rx_processing_done:
1490 		/* Clear the status flags for this buffer */
1491 		status &= ~BD_ENET_RX_STATS;
1492 
1493 		/* Mark the buffer empty */
1494 		status |= BD_ENET_RX_EMPTY;
1495 		bdp->cbd_sc = status;
1496 
1497 		if (fep->bufdesc_ex) {
1498 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1499 
1500 			ebdp->cbd_esc = BD_ENET_RX_INT;
1501 			ebdp->cbd_prot = 0;
1502 			ebdp->cbd_bdu = 0;
1503 		}
1504 
1505 		/* Update BD pointer to next entry */
1506 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1507 
1508 		/* Doing this here will keep the FEC running while we process
1509 		 * incoming frames.  On a heavily loaded network, we should be
1510 		 * able to keep up at the expense of system resources.
1511 		 */
1512 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1513 	}
1514 	rxq->cur_rx = bdp;
1515 	return pkt_received;
1516 }
1517 
1518 static int
1519 fec_enet_rx(struct net_device *ndev, int budget)
1520 {
1521 	int     pkt_received = 0;
1522 	u16	queue_id;
1523 	struct fec_enet_private *fep = netdev_priv(ndev);
1524 
1525 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1526 		clear_bit(queue_id, &fep->work_rx);
1527 		pkt_received += fec_enet_rx_queue(ndev,
1528 					budget - pkt_received, queue_id);
1529 	}
1530 	return pkt_received;
1531 }
1532 
1533 static bool
1534 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1535 {
1536 	if (int_events == 0)
1537 		return false;
1538 
1539 	if (int_events & FEC_ENET_RXF)
1540 		fep->work_rx |= (1 << 2);
1541 	if (int_events & FEC_ENET_RXF_1)
1542 		fep->work_rx |= (1 << 0);
1543 	if (int_events & FEC_ENET_RXF_2)
1544 		fep->work_rx |= (1 << 1);
1545 
1546 	if (int_events & FEC_ENET_TXF)
1547 		fep->work_tx |= (1 << 2);
1548 	if (int_events & FEC_ENET_TXF_1)
1549 		fep->work_tx |= (1 << 0);
1550 	if (int_events & FEC_ENET_TXF_2)
1551 		fep->work_tx |= (1 << 1);
1552 
1553 	return true;
1554 }
1555 
1556 static irqreturn_t
1557 fec_enet_interrupt(int irq, void *dev_id)
1558 {
1559 	struct net_device *ndev = dev_id;
1560 	struct fec_enet_private *fep = netdev_priv(ndev);
1561 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1562 	uint int_events;
1563 	irqreturn_t ret = IRQ_NONE;
1564 
1565 	int_events = readl(fep->hwp + FEC_IEVENT);
1566 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1567 	fec_enet_collect_events(fep, int_events);
1568 
1569 	if (int_events & napi_mask) {
1570 		ret = IRQ_HANDLED;
1571 
1572 		/* Disable the NAPI interrupts */
1573 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1574 		napi_schedule(&fep->napi);
1575 	}
1576 
1577 	if (int_events & FEC_ENET_MII) {
1578 		ret = IRQ_HANDLED;
1579 		complete(&fep->mdio_done);
1580 	}
1581 
1582 	if (fep->ptp_clock)
1583 		fec_ptp_check_pps_event(fep);
1584 
1585 	return ret;
1586 }
1587 
1588 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1589 {
1590 	struct net_device *ndev = napi->dev;
1591 	struct fec_enet_private *fep = netdev_priv(ndev);
1592 	int pkts;
1593 
1594 	/*
1595 	 * Clear any pending transmit or receive interrupts before
1596 	 * processing the rings to avoid racing with the hardware.
1597 	 */
1598 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1599 
1600 	pkts = fec_enet_rx(ndev, budget);
1601 
1602 	fec_enet_tx(ndev);
1603 
1604 	if (pkts < budget) {
1605 		napi_complete(napi);
1606 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1607 	}
1608 	return pkts;
1609 }
1610 
1611 /* ------------------------------------------------------------------------- */
1612 static void fec_get_mac(struct net_device *ndev)
1613 {
1614 	struct fec_enet_private *fep = netdev_priv(ndev);
1615 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1616 	unsigned char *iap, tmpaddr[ETH_ALEN];
1617 
1618 	/*
1619 	 * try to get mac address in following order:
1620 	 *
1621 	 * 1) module parameter via kernel command line in form
1622 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1623 	 */
1624 	iap = macaddr;
1625 
1626 	/*
1627 	 * 2) from device tree data
1628 	 */
1629 	if (!is_valid_ether_addr(iap)) {
1630 		struct device_node *np = fep->pdev->dev.of_node;
1631 		if (np) {
1632 			const char *mac = of_get_mac_address(np);
1633 			if (mac)
1634 				iap = (unsigned char *) mac;
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * 3) from flash or fuse (via platform data)
1640 	 */
1641 	if (!is_valid_ether_addr(iap)) {
1642 #ifdef CONFIG_M5272
1643 		if (FEC_FLASHMAC)
1644 			iap = (unsigned char *)FEC_FLASHMAC;
1645 #else
1646 		if (pdata)
1647 			iap = (unsigned char *)&pdata->mac;
1648 #endif
1649 	}
1650 
1651 	/*
1652 	 * 4) FEC mac registers set by bootloader
1653 	 */
1654 	if (!is_valid_ether_addr(iap)) {
1655 		*((__be32 *) &tmpaddr[0]) =
1656 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1657 		*((__be16 *) &tmpaddr[4]) =
1658 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1659 		iap = &tmpaddr[0];
1660 	}
1661 
1662 	/*
1663 	 * 5) random mac address
1664 	 */
1665 	if (!is_valid_ether_addr(iap)) {
1666 		/* Report it and use a random ethernet address instead */
1667 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1668 		eth_hw_addr_random(ndev);
1669 		netdev_info(ndev, "Using random MAC address: %pM\n",
1670 			    ndev->dev_addr);
1671 		return;
1672 	}
1673 
1674 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1675 
1676 	/* Adjust MAC if using macaddr */
1677 	if (iap == macaddr)
1678 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1679 }
1680 
1681 /* ------------------------------------------------------------------------- */
1682 
1683 /*
1684  * Phy section
1685  */
1686 static void fec_enet_adjust_link(struct net_device *ndev)
1687 {
1688 	struct fec_enet_private *fep = netdev_priv(ndev);
1689 	struct phy_device *phy_dev = fep->phy_dev;
1690 	int status_change = 0;
1691 
1692 	/* Prevent a state halted on mii error */
1693 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1694 		phy_dev->state = PHY_RESUMING;
1695 		return;
1696 	}
1697 
1698 	/*
1699 	 * If the netdev is down, or is going down, we're not interested
1700 	 * in link state events, so just mark our idea of the link as down
1701 	 * and ignore the event.
1702 	 */
1703 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1704 		fep->link = 0;
1705 	} else if (phy_dev->link) {
1706 		if (!fep->link) {
1707 			fep->link = phy_dev->link;
1708 			status_change = 1;
1709 		}
1710 
1711 		if (fep->full_duplex != phy_dev->duplex) {
1712 			fep->full_duplex = phy_dev->duplex;
1713 			status_change = 1;
1714 		}
1715 
1716 		if (phy_dev->speed != fep->speed) {
1717 			fep->speed = phy_dev->speed;
1718 			status_change = 1;
1719 		}
1720 
1721 		/* if any of the above changed restart the FEC */
1722 		if (status_change) {
1723 			napi_disable(&fep->napi);
1724 			netif_tx_lock_bh(ndev);
1725 			fec_restart(ndev);
1726 			netif_wake_queue(ndev);
1727 			netif_tx_unlock_bh(ndev);
1728 			napi_enable(&fep->napi);
1729 		}
1730 	} else {
1731 		if (fep->link) {
1732 			napi_disable(&fep->napi);
1733 			netif_tx_lock_bh(ndev);
1734 			fec_stop(ndev);
1735 			netif_tx_unlock_bh(ndev);
1736 			napi_enable(&fep->napi);
1737 			fep->link = phy_dev->link;
1738 			status_change = 1;
1739 		}
1740 	}
1741 
1742 	if (status_change)
1743 		phy_print_status(phy_dev);
1744 }
1745 
1746 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1747 {
1748 	struct fec_enet_private *fep = bus->priv;
1749 	unsigned long time_left;
1750 
1751 	fep->mii_timeout = 0;
1752 	init_completion(&fep->mdio_done);
1753 
1754 	/* start a read op */
1755 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1756 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1757 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1758 
1759 	/* wait for end of transfer */
1760 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1761 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1762 	if (time_left == 0) {
1763 		fep->mii_timeout = 1;
1764 		netdev_err(fep->netdev, "MDIO read timeout\n");
1765 		return -ETIMEDOUT;
1766 	}
1767 
1768 	/* return value */
1769 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1770 }
1771 
1772 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1773 			   u16 value)
1774 {
1775 	struct fec_enet_private *fep = bus->priv;
1776 	unsigned long time_left;
1777 
1778 	fep->mii_timeout = 0;
1779 	init_completion(&fep->mdio_done);
1780 
1781 	/* start a write op */
1782 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1783 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1785 		fep->hwp + FEC_MII_DATA);
1786 
1787 	/* wait for end of transfer */
1788 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1789 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1790 	if (time_left == 0) {
1791 		fep->mii_timeout = 1;
1792 		netdev_err(fep->netdev, "MDIO write timeout\n");
1793 		return -ETIMEDOUT;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1800 {
1801 	struct fec_enet_private *fep = netdev_priv(ndev);
1802 	int ret;
1803 
1804 	if (enable) {
1805 		ret = clk_prepare_enable(fep->clk_ahb);
1806 		if (ret)
1807 			return ret;
1808 		ret = clk_prepare_enable(fep->clk_ipg);
1809 		if (ret)
1810 			goto failed_clk_ipg;
1811 		if (fep->clk_enet_out) {
1812 			ret = clk_prepare_enable(fep->clk_enet_out);
1813 			if (ret)
1814 				goto failed_clk_enet_out;
1815 		}
1816 		if (fep->clk_ptp) {
1817 			mutex_lock(&fep->ptp_clk_mutex);
1818 			ret = clk_prepare_enable(fep->clk_ptp);
1819 			if (ret) {
1820 				mutex_unlock(&fep->ptp_clk_mutex);
1821 				goto failed_clk_ptp;
1822 			} else {
1823 				fep->ptp_clk_on = true;
1824 			}
1825 			mutex_unlock(&fep->ptp_clk_mutex);
1826 		}
1827 		if (fep->clk_ref) {
1828 			ret = clk_prepare_enable(fep->clk_ref);
1829 			if (ret)
1830 				goto failed_clk_ref;
1831 		}
1832 	} else {
1833 		clk_disable_unprepare(fep->clk_ahb);
1834 		clk_disable_unprepare(fep->clk_ipg);
1835 		if (fep->clk_enet_out)
1836 			clk_disable_unprepare(fep->clk_enet_out);
1837 		if (fep->clk_ptp) {
1838 			mutex_lock(&fep->ptp_clk_mutex);
1839 			clk_disable_unprepare(fep->clk_ptp);
1840 			fep->ptp_clk_on = false;
1841 			mutex_unlock(&fep->ptp_clk_mutex);
1842 		}
1843 		if (fep->clk_ref)
1844 			clk_disable_unprepare(fep->clk_ref);
1845 	}
1846 
1847 	return 0;
1848 
1849 failed_clk_ref:
1850 	if (fep->clk_ref)
1851 		clk_disable_unprepare(fep->clk_ref);
1852 failed_clk_ptp:
1853 	if (fep->clk_enet_out)
1854 		clk_disable_unprepare(fep->clk_enet_out);
1855 failed_clk_enet_out:
1856 		clk_disable_unprepare(fep->clk_ipg);
1857 failed_clk_ipg:
1858 		clk_disable_unprepare(fep->clk_ahb);
1859 
1860 	return ret;
1861 }
1862 
1863 static int fec_enet_mii_probe(struct net_device *ndev)
1864 {
1865 	struct fec_enet_private *fep = netdev_priv(ndev);
1866 	struct phy_device *phy_dev = NULL;
1867 	char mdio_bus_id[MII_BUS_ID_SIZE];
1868 	char phy_name[MII_BUS_ID_SIZE + 3];
1869 	int phy_id;
1870 	int dev_id = fep->dev_id;
1871 
1872 	fep->phy_dev = NULL;
1873 
1874 	if (fep->phy_node) {
1875 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1876 					 &fec_enet_adjust_link, 0,
1877 					 fep->phy_interface);
1878 		if (!phy_dev)
1879 			return -ENODEV;
1880 	} else {
1881 		/* check for attached phy */
1882 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1883 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1884 				continue;
1885 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1886 				continue;
1887 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1888 				continue;
1889 			if (dev_id--)
1890 				continue;
1891 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1892 			break;
1893 		}
1894 
1895 		if (phy_id >= PHY_MAX_ADDR) {
1896 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1897 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1898 			phy_id = 0;
1899 		}
1900 
1901 		snprintf(phy_name, sizeof(phy_name),
1902 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1903 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1904 				      fep->phy_interface);
1905 	}
1906 
1907 	if (IS_ERR(phy_dev)) {
1908 		netdev_err(ndev, "could not attach to PHY\n");
1909 		return PTR_ERR(phy_dev);
1910 	}
1911 
1912 	/* mask with MAC supported features */
1913 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1914 		phy_dev->supported &= PHY_GBIT_FEATURES;
1915 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1916 #if !defined(CONFIG_M5272)
1917 		phy_dev->supported |= SUPPORTED_Pause;
1918 #endif
1919 	}
1920 	else
1921 		phy_dev->supported &= PHY_BASIC_FEATURES;
1922 
1923 	phy_dev->advertising = phy_dev->supported;
1924 
1925 	fep->phy_dev = phy_dev;
1926 	fep->link = 0;
1927 	fep->full_duplex = 0;
1928 
1929 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1930 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1931 		    fep->phy_dev->irq);
1932 
1933 	return 0;
1934 }
1935 
1936 static int fec_enet_mii_init(struct platform_device *pdev)
1937 {
1938 	static struct mii_bus *fec0_mii_bus;
1939 	struct net_device *ndev = platform_get_drvdata(pdev);
1940 	struct fec_enet_private *fep = netdev_priv(ndev);
1941 	struct device_node *node;
1942 	int err = -ENXIO, i;
1943 
1944 	/*
1945 	 * The dual fec interfaces are not equivalent with enet-mac.
1946 	 * Here are the differences:
1947 	 *
1948 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1949 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1950 	 *  - external phys can only be configured by fec0
1951 	 *
1952 	 * That is to say fec1 can not work independently. It only works
1953 	 * when fec0 is working. The reason behind this design is that the
1954 	 * second interface is added primarily for Switch mode.
1955 	 *
1956 	 * Because of the last point above, both phys are attached on fec0
1957 	 * mdio interface in board design, and need to be configured by
1958 	 * fec0 mii_bus.
1959 	 */
1960 	if ((fep->quirks & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1961 		/* fec1 uses fec0 mii_bus */
1962 		if (mii_cnt && fec0_mii_bus) {
1963 			fep->mii_bus = fec0_mii_bus;
1964 			mii_cnt++;
1965 			return 0;
1966 		}
1967 		return -ENOENT;
1968 	}
1969 
1970 	fep->mii_timeout = 0;
1971 
1972 	/*
1973 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1974 	 *
1975 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1976 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1977 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1978 	 * document.
1979 	 */
1980 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1981 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1982 		fep->phy_speed--;
1983 	fep->phy_speed <<= 1;
1984 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1985 
1986 	fep->mii_bus = mdiobus_alloc();
1987 	if (fep->mii_bus == NULL) {
1988 		err = -ENOMEM;
1989 		goto err_out;
1990 	}
1991 
1992 	fep->mii_bus->name = "fec_enet_mii_bus";
1993 	fep->mii_bus->read = fec_enet_mdio_read;
1994 	fep->mii_bus->write = fec_enet_mdio_write;
1995 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1996 		pdev->name, fep->dev_id + 1);
1997 	fep->mii_bus->priv = fep;
1998 	fep->mii_bus->parent = &pdev->dev;
1999 
2000 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2001 	if (!fep->mii_bus->irq) {
2002 		err = -ENOMEM;
2003 		goto err_out_free_mdiobus;
2004 	}
2005 
2006 	for (i = 0; i < PHY_MAX_ADDR; i++)
2007 		fep->mii_bus->irq[i] = PHY_POLL;
2008 
2009 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2010 	if (node) {
2011 		err = of_mdiobus_register(fep->mii_bus, node);
2012 		of_node_put(node);
2013 	} else {
2014 		err = mdiobus_register(fep->mii_bus);
2015 	}
2016 
2017 	if (err)
2018 		goto err_out_free_mdio_irq;
2019 
2020 	mii_cnt++;
2021 
2022 	/* save fec0 mii_bus */
2023 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2024 		fec0_mii_bus = fep->mii_bus;
2025 
2026 	return 0;
2027 
2028 err_out_free_mdio_irq:
2029 	kfree(fep->mii_bus->irq);
2030 err_out_free_mdiobus:
2031 	mdiobus_free(fep->mii_bus);
2032 err_out:
2033 	return err;
2034 }
2035 
2036 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2037 {
2038 	if (--mii_cnt == 0) {
2039 		mdiobus_unregister(fep->mii_bus);
2040 		kfree(fep->mii_bus->irq);
2041 		mdiobus_free(fep->mii_bus);
2042 	}
2043 }
2044 
2045 static int fec_enet_get_settings(struct net_device *ndev,
2046 				  struct ethtool_cmd *cmd)
2047 {
2048 	struct fec_enet_private *fep = netdev_priv(ndev);
2049 	struct phy_device *phydev = fep->phy_dev;
2050 
2051 	if (!phydev)
2052 		return -ENODEV;
2053 
2054 	return phy_ethtool_gset(phydev, cmd);
2055 }
2056 
2057 static int fec_enet_set_settings(struct net_device *ndev,
2058 				 struct ethtool_cmd *cmd)
2059 {
2060 	struct fec_enet_private *fep = netdev_priv(ndev);
2061 	struct phy_device *phydev = fep->phy_dev;
2062 
2063 	if (!phydev)
2064 		return -ENODEV;
2065 
2066 	return phy_ethtool_sset(phydev, cmd);
2067 }
2068 
2069 static void fec_enet_get_drvinfo(struct net_device *ndev,
2070 				 struct ethtool_drvinfo *info)
2071 {
2072 	struct fec_enet_private *fep = netdev_priv(ndev);
2073 
2074 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2075 		sizeof(info->driver));
2076 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2077 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2078 }
2079 
2080 static int fec_enet_get_ts_info(struct net_device *ndev,
2081 				struct ethtool_ts_info *info)
2082 {
2083 	struct fec_enet_private *fep = netdev_priv(ndev);
2084 
2085 	if (fep->bufdesc_ex) {
2086 
2087 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2088 					SOF_TIMESTAMPING_RX_SOFTWARE |
2089 					SOF_TIMESTAMPING_SOFTWARE |
2090 					SOF_TIMESTAMPING_TX_HARDWARE |
2091 					SOF_TIMESTAMPING_RX_HARDWARE |
2092 					SOF_TIMESTAMPING_RAW_HARDWARE;
2093 		if (fep->ptp_clock)
2094 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2095 		else
2096 			info->phc_index = -1;
2097 
2098 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2099 				 (1 << HWTSTAMP_TX_ON);
2100 
2101 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2102 				   (1 << HWTSTAMP_FILTER_ALL);
2103 		return 0;
2104 	} else {
2105 		return ethtool_op_get_ts_info(ndev, info);
2106 	}
2107 }
2108 
2109 #if !defined(CONFIG_M5272)
2110 
2111 static void fec_enet_get_pauseparam(struct net_device *ndev,
2112 				    struct ethtool_pauseparam *pause)
2113 {
2114 	struct fec_enet_private *fep = netdev_priv(ndev);
2115 
2116 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2117 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2118 	pause->rx_pause = pause->tx_pause;
2119 }
2120 
2121 static int fec_enet_set_pauseparam(struct net_device *ndev,
2122 				   struct ethtool_pauseparam *pause)
2123 {
2124 	struct fec_enet_private *fep = netdev_priv(ndev);
2125 
2126 	if (!fep->phy_dev)
2127 		return -ENODEV;
2128 
2129 	if (pause->tx_pause != pause->rx_pause) {
2130 		netdev_info(ndev,
2131 			"hardware only support enable/disable both tx and rx");
2132 		return -EINVAL;
2133 	}
2134 
2135 	fep->pause_flag = 0;
2136 
2137 	/* tx pause must be same as rx pause */
2138 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2139 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2140 
2141 	if (pause->rx_pause || pause->autoneg) {
2142 		fep->phy_dev->supported |= ADVERTISED_Pause;
2143 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2144 	} else {
2145 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2146 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2147 	}
2148 
2149 	if (pause->autoneg) {
2150 		if (netif_running(ndev))
2151 			fec_stop(ndev);
2152 		phy_start_aneg(fep->phy_dev);
2153 	}
2154 	if (netif_running(ndev)) {
2155 		napi_disable(&fep->napi);
2156 		netif_tx_lock_bh(ndev);
2157 		fec_restart(ndev);
2158 		netif_wake_queue(ndev);
2159 		netif_tx_unlock_bh(ndev);
2160 		napi_enable(&fep->napi);
2161 	}
2162 
2163 	return 0;
2164 }
2165 
2166 static const struct fec_stat {
2167 	char name[ETH_GSTRING_LEN];
2168 	u16 offset;
2169 } fec_stats[] = {
2170 	/* RMON TX */
2171 	{ "tx_dropped", RMON_T_DROP },
2172 	{ "tx_packets", RMON_T_PACKETS },
2173 	{ "tx_broadcast", RMON_T_BC_PKT },
2174 	{ "tx_multicast", RMON_T_MC_PKT },
2175 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2176 	{ "tx_undersize", RMON_T_UNDERSIZE },
2177 	{ "tx_oversize", RMON_T_OVERSIZE },
2178 	{ "tx_fragment", RMON_T_FRAG },
2179 	{ "tx_jabber", RMON_T_JAB },
2180 	{ "tx_collision", RMON_T_COL },
2181 	{ "tx_64byte", RMON_T_P64 },
2182 	{ "tx_65to127byte", RMON_T_P65TO127 },
2183 	{ "tx_128to255byte", RMON_T_P128TO255 },
2184 	{ "tx_256to511byte", RMON_T_P256TO511 },
2185 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2186 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2187 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2188 	{ "tx_octets", RMON_T_OCTETS },
2189 
2190 	/* IEEE TX */
2191 	{ "IEEE_tx_drop", IEEE_T_DROP },
2192 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2193 	{ "IEEE_tx_1col", IEEE_T_1COL },
2194 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2195 	{ "IEEE_tx_def", IEEE_T_DEF },
2196 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2197 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2198 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2199 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2200 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2201 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2202 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2203 
2204 	/* RMON RX */
2205 	{ "rx_packets", RMON_R_PACKETS },
2206 	{ "rx_broadcast", RMON_R_BC_PKT },
2207 	{ "rx_multicast", RMON_R_MC_PKT },
2208 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2209 	{ "rx_undersize", RMON_R_UNDERSIZE },
2210 	{ "rx_oversize", RMON_R_OVERSIZE },
2211 	{ "rx_fragment", RMON_R_FRAG },
2212 	{ "rx_jabber", RMON_R_JAB },
2213 	{ "rx_64byte", RMON_R_P64 },
2214 	{ "rx_65to127byte", RMON_R_P65TO127 },
2215 	{ "rx_128to255byte", RMON_R_P128TO255 },
2216 	{ "rx_256to511byte", RMON_R_P256TO511 },
2217 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2218 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2219 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2220 	{ "rx_octets", RMON_R_OCTETS },
2221 
2222 	/* IEEE RX */
2223 	{ "IEEE_rx_drop", IEEE_R_DROP },
2224 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2225 	{ "IEEE_rx_crc", IEEE_R_CRC },
2226 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2227 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2228 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2229 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2230 };
2231 
2232 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2233 	struct ethtool_stats *stats, u64 *data)
2234 {
2235 	struct fec_enet_private *fep = netdev_priv(dev);
2236 	int i;
2237 
2238 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2239 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2240 }
2241 
2242 static void fec_enet_get_strings(struct net_device *netdev,
2243 	u32 stringset, u8 *data)
2244 {
2245 	int i;
2246 	switch (stringset) {
2247 	case ETH_SS_STATS:
2248 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2249 			memcpy(data + i * ETH_GSTRING_LEN,
2250 				fec_stats[i].name, ETH_GSTRING_LEN);
2251 		break;
2252 	}
2253 }
2254 
2255 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2256 {
2257 	switch (sset) {
2258 	case ETH_SS_STATS:
2259 		return ARRAY_SIZE(fec_stats);
2260 	default:
2261 		return -EOPNOTSUPP;
2262 	}
2263 }
2264 #endif /* !defined(CONFIG_M5272) */
2265 
2266 static int fec_enet_nway_reset(struct net_device *dev)
2267 {
2268 	struct fec_enet_private *fep = netdev_priv(dev);
2269 	struct phy_device *phydev = fep->phy_dev;
2270 
2271 	if (!phydev)
2272 		return -ENODEV;
2273 
2274 	return genphy_restart_aneg(phydev);
2275 }
2276 
2277 /* ITR clock source is enet system clock (clk_ahb).
2278  * TCTT unit is cycle_ns * 64 cycle
2279  * So, the ICTT value = X us / (cycle_ns * 64)
2280  */
2281 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2282 {
2283 	struct fec_enet_private *fep = netdev_priv(ndev);
2284 
2285 	return us * (fep->itr_clk_rate / 64000) / 1000;
2286 }
2287 
2288 /* Set threshold for interrupt coalescing */
2289 static void fec_enet_itr_coal_set(struct net_device *ndev)
2290 {
2291 	struct fec_enet_private *fep = netdev_priv(ndev);
2292 	int rx_itr, tx_itr;
2293 
2294 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2295 		return;
2296 
2297 	/* Must be greater than zero to avoid unpredictable behavior */
2298 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2299 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2300 		return;
2301 
2302 	/* Select enet system clock as Interrupt Coalescing
2303 	 * timer Clock Source
2304 	 */
2305 	rx_itr = FEC_ITR_CLK_SEL;
2306 	tx_itr = FEC_ITR_CLK_SEL;
2307 
2308 	/* set ICFT and ICTT */
2309 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2310 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2311 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2312 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2313 
2314 	rx_itr |= FEC_ITR_EN;
2315 	tx_itr |= FEC_ITR_EN;
2316 
2317 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2318 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2319 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2320 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2321 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2322 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2323 }
2324 
2325 static int
2326 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2327 {
2328 	struct fec_enet_private *fep = netdev_priv(ndev);
2329 
2330 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2331 		return -EOPNOTSUPP;
2332 
2333 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2334 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2335 
2336 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2337 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2338 
2339 	return 0;
2340 }
2341 
2342 static int
2343 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2344 {
2345 	struct fec_enet_private *fep = netdev_priv(ndev);
2346 	unsigned int cycle;
2347 
2348 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2349 		return -EOPNOTSUPP;
2350 
2351 	if (ec->rx_max_coalesced_frames > 255) {
2352 		pr_err("Rx coalesced frames exceed hardware limiation");
2353 		return -EINVAL;
2354 	}
2355 
2356 	if (ec->tx_max_coalesced_frames > 255) {
2357 		pr_err("Tx coalesced frame exceed hardware limiation");
2358 		return -EINVAL;
2359 	}
2360 
2361 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2362 	if (cycle > 0xFFFF) {
2363 		pr_err("Rx coalesed usec exceeed hardware limiation");
2364 		return -EINVAL;
2365 	}
2366 
2367 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2368 	if (cycle > 0xFFFF) {
2369 		pr_err("Rx coalesed usec exceeed hardware limiation");
2370 		return -EINVAL;
2371 	}
2372 
2373 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2374 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2375 
2376 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2377 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2378 
2379 	fec_enet_itr_coal_set(ndev);
2380 
2381 	return 0;
2382 }
2383 
2384 static void fec_enet_itr_coal_init(struct net_device *ndev)
2385 {
2386 	struct ethtool_coalesce ec;
2387 
2388 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2389 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2390 
2391 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2392 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2393 
2394 	fec_enet_set_coalesce(ndev, &ec);
2395 }
2396 
2397 static int fec_enet_get_tunable(struct net_device *netdev,
2398 				const struct ethtool_tunable *tuna,
2399 				void *data)
2400 {
2401 	struct fec_enet_private *fep = netdev_priv(netdev);
2402 	int ret = 0;
2403 
2404 	switch (tuna->id) {
2405 	case ETHTOOL_RX_COPYBREAK:
2406 		*(u32 *)data = fep->rx_copybreak;
2407 		break;
2408 	default:
2409 		ret = -EINVAL;
2410 		break;
2411 	}
2412 
2413 	return ret;
2414 }
2415 
2416 static int fec_enet_set_tunable(struct net_device *netdev,
2417 				const struct ethtool_tunable *tuna,
2418 				const void *data)
2419 {
2420 	struct fec_enet_private *fep = netdev_priv(netdev);
2421 	int ret = 0;
2422 
2423 	switch (tuna->id) {
2424 	case ETHTOOL_RX_COPYBREAK:
2425 		fep->rx_copybreak = *(u32 *)data;
2426 		break;
2427 	default:
2428 		ret = -EINVAL;
2429 		break;
2430 	}
2431 
2432 	return ret;
2433 }
2434 
2435 static const struct ethtool_ops fec_enet_ethtool_ops = {
2436 	.get_settings		= fec_enet_get_settings,
2437 	.set_settings		= fec_enet_set_settings,
2438 	.get_drvinfo		= fec_enet_get_drvinfo,
2439 	.nway_reset		= fec_enet_nway_reset,
2440 	.get_link		= ethtool_op_get_link,
2441 	.get_coalesce		= fec_enet_get_coalesce,
2442 	.set_coalesce		= fec_enet_set_coalesce,
2443 #ifndef CONFIG_M5272
2444 	.get_pauseparam		= fec_enet_get_pauseparam,
2445 	.set_pauseparam		= fec_enet_set_pauseparam,
2446 	.get_strings		= fec_enet_get_strings,
2447 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2448 	.get_sset_count		= fec_enet_get_sset_count,
2449 #endif
2450 	.get_ts_info		= fec_enet_get_ts_info,
2451 	.get_tunable		= fec_enet_get_tunable,
2452 	.set_tunable		= fec_enet_set_tunable,
2453 };
2454 
2455 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2456 {
2457 	struct fec_enet_private *fep = netdev_priv(ndev);
2458 	struct phy_device *phydev = fep->phy_dev;
2459 
2460 	if (!netif_running(ndev))
2461 		return -EINVAL;
2462 
2463 	if (!phydev)
2464 		return -ENODEV;
2465 
2466 	if (fep->bufdesc_ex) {
2467 		if (cmd == SIOCSHWTSTAMP)
2468 			return fec_ptp_set(ndev, rq);
2469 		if (cmd == SIOCGHWTSTAMP)
2470 			return fec_ptp_get(ndev, rq);
2471 	}
2472 
2473 	return phy_mii_ioctl(phydev, rq, cmd);
2474 }
2475 
2476 static void fec_enet_free_buffers(struct net_device *ndev)
2477 {
2478 	struct fec_enet_private *fep = netdev_priv(ndev);
2479 	unsigned int i;
2480 	struct sk_buff *skb;
2481 	struct bufdesc	*bdp;
2482 	struct fec_enet_priv_tx_q *txq;
2483 	struct fec_enet_priv_rx_q *rxq;
2484 	unsigned int q;
2485 
2486 	for (q = 0; q < fep->num_rx_queues; q++) {
2487 		rxq = fep->rx_queue[q];
2488 		bdp = rxq->rx_bd_base;
2489 		for (i = 0; i < rxq->rx_ring_size; i++) {
2490 			skb = rxq->rx_skbuff[i];
2491 			rxq->rx_skbuff[i] = NULL;
2492 			if (skb) {
2493 				dma_unmap_single(&fep->pdev->dev,
2494 						 bdp->cbd_bufaddr,
2495 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2496 						 DMA_FROM_DEVICE);
2497 				dev_kfree_skb(skb);
2498 			}
2499 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2500 		}
2501 	}
2502 
2503 	for (q = 0; q < fep->num_tx_queues; q++) {
2504 		txq = fep->tx_queue[q];
2505 		bdp = txq->tx_bd_base;
2506 		for (i = 0; i < txq->tx_ring_size; i++) {
2507 			kfree(txq->tx_bounce[i]);
2508 			txq->tx_bounce[i] = NULL;
2509 			skb = txq->tx_skbuff[i];
2510 			txq->tx_skbuff[i] = NULL;
2511 			dev_kfree_skb(skb);
2512 		}
2513 	}
2514 }
2515 
2516 static void fec_enet_free_queue(struct net_device *ndev)
2517 {
2518 	struct fec_enet_private *fep = netdev_priv(ndev);
2519 	int i;
2520 	struct fec_enet_priv_tx_q *txq;
2521 
2522 	for (i = 0; i < fep->num_tx_queues; i++)
2523 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2524 			txq = fep->tx_queue[i];
2525 			dma_free_coherent(NULL,
2526 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2527 					  txq->tso_hdrs,
2528 					  txq->tso_hdrs_dma);
2529 		}
2530 
2531 	for (i = 0; i < fep->num_rx_queues; i++)
2532 		if (fep->rx_queue[i])
2533 			kfree(fep->rx_queue[i]);
2534 
2535 	for (i = 0; i < fep->num_tx_queues; i++)
2536 		if (fep->tx_queue[i])
2537 			kfree(fep->tx_queue[i]);
2538 }
2539 
2540 static int fec_enet_alloc_queue(struct net_device *ndev)
2541 {
2542 	struct fec_enet_private *fep = netdev_priv(ndev);
2543 	int i;
2544 	int ret = 0;
2545 	struct fec_enet_priv_tx_q *txq;
2546 
2547 	for (i = 0; i < fep->num_tx_queues; i++) {
2548 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2549 		if (!txq) {
2550 			ret = -ENOMEM;
2551 			goto alloc_failed;
2552 		}
2553 
2554 		fep->tx_queue[i] = txq;
2555 		txq->tx_ring_size = TX_RING_SIZE;
2556 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2557 
2558 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2559 		txq->tx_wake_threshold =
2560 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2561 
2562 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2563 					txq->tx_ring_size * TSO_HEADER_SIZE,
2564 					&txq->tso_hdrs_dma,
2565 					GFP_KERNEL);
2566 		if (!txq->tso_hdrs) {
2567 			ret = -ENOMEM;
2568 			goto alloc_failed;
2569 		}
2570 	}
2571 
2572 	for (i = 0; i < fep->num_rx_queues; i++) {
2573 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2574 					   GFP_KERNEL);
2575 		if (!fep->rx_queue[i]) {
2576 			ret = -ENOMEM;
2577 			goto alloc_failed;
2578 		}
2579 
2580 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2581 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2582 	}
2583 	return ret;
2584 
2585 alloc_failed:
2586 	fec_enet_free_queue(ndev);
2587 	return ret;
2588 }
2589 
2590 static int
2591 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2592 {
2593 	struct fec_enet_private *fep = netdev_priv(ndev);
2594 	unsigned int i;
2595 	struct sk_buff *skb;
2596 	struct bufdesc	*bdp;
2597 	struct fec_enet_priv_rx_q *rxq;
2598 
2599 	rxq = fep->rx_queue[queue];
2600 	bdp = rxq->rx_bd_base;
2601 	for (i = 0; i < rxq->rx_ring_size; i++) {
2602 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2603 		if (!skb)
2604 			goto err_alloc;
2605 
2606 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2607 			dev_kfree_skb(skb);
2608 			goto err_alloc;
2609 		}
2610 
2611 		rxq->rx_skbuff[i] = skb;
2612 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2613 
2614 		if (fep->bufdesc_ex) {
2615 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2616 			ebdp->cbd_esc = BD_ENET_RX_INT;
2617 		}
2618 
2619 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2620 	}
2621 
2622 	/* Set the last buffer to wrap. */
2623 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2624 	bdp->cbd_sc |= BD_SC_WRAP;
2625 	return 0;
2626 
2627  err_alloc:
2628 	fec_enet_free_buffers(ndev);
2629 	return -ENOMEM;
2630 }
2631 
2632 static int
2633 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2634 {
2635 	struct fec_enet_private *fep = netdev_priv(ndev);
2636 	unsigned int i;
2637 	struct bufdesc  *bdp;
2638 	struct fec_enet_priv_tx_q *txq;
2639 
2640 	txq = fep->tx_queue[queue];
2641 	bdp = txq->tx_bd_base;
2642 	for (i = 0; i < txq->tx_ring_size; i++) {
2643 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2644 		if (!txq->tx_bounce[i])
2645 			goto err_alloc;
2646 
2647 		bdp->cbd_sc = 0;
2648 		bdp->cbd_bufaddr = 0;
2649 
2650 		if (fep->bufdesc_ex) {
2651 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2652 			ebdp->cbd_esc = BD_ENET_TX_INT;
2653 		}
2654 
2655 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2656 	}
2657 
2658 	/* Set the last buffer to wrap. */
2659 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2660 	bdp->cbd_sc |= BD_SC_WRAP;
2661 
2662 	return 0;
2663 
2664  err_alloc:
2665 	fec_enet_free_buffers(ndev);
2666 	return -ENOMEM;
2667 }
2668 
2669 static int fec_enet_alloc_buffers(struct net_device *ndev)
2670 {
2671 	struct fec_enet_private *fep = netdev_priv(ndev);
2672 	unsigned int i;
2673 
2674 	for (i = 0; i < fep->num_rx_queues; i++)
2675 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2676 			return -ENOMEM;
2677 
2678 	for (i = 0; i < fep->num_tx_queues; i++)
2679 		if (fec_enet_alloc_txq_buffers(ndev, i))
2680 			return -ENOMEM;
2681 	return 0;
2682 }
2683 
2684 static int
2685 fec_enet_open(struct net_device *ndev)
2686 {
2687 	struct fec_enet_private *fep = netdev_priv(ndev);
2688 	int ret;
2689 
2690 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2691 	ret = fec_enet_clk_enable(ndev, true);
2692 	if (ret)
2693 		return ret;
2694 
2695 	/* I should reset the ring buffers here, but I don't yet know
2696 	 * a simple way to do that.
2697 	 */
2698 
2699 	ret = fec_enet_alloc_buffers(ndev);
2700 	if (ret)
2701 		goto err_enet_alloc;
2702 
2703 	/* Probe and connect to PHY when open the interface */
2704 	ret = fec_enet_mii_probe(ndev);
2705 	if (ret)
2706 		goto err_enet_mii_probe;
2707 
2708 	fec_restart(ndev);
2709 	napi_enable(&fep->napi);
2710 	phy_start(fep->phy_dev);
2711 	netif_tx_start_all_queues(ndev);
2712 
2713 	return 0;
2714 
2715 err_enet_mii_probe:
2716 	fec_enet_free_buffers(ndev);
2717 err_enet_alloc:
2718 	fec_enet_clk_enable(ndev, false);
2719 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2720 	return ret;
2721 }
2722 
2723 static int
2724 fec_enet_close(struct net_device *ndev)
2725 {
2726 	struct fec_enet_private *fep = netdev_priv(ndev);
2727 
2728 	phy_stop(fep->phy_dev);
2729 
2730 	if (netif_device_present(ndev)) {
2731 		napi_disable(&fep->napi);
2732 		netif_tx_disable(ndev);
2733 		fec_stop(ndev);
2734 	}
2735 
2736 	phy_disconnect(fep->phy_dev);
2737 	fep->phy_dev = NULL;
2738 
2739 	fec_enet_clk_enable(ndev, false);
2740 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2741 	fec_enet_free_buffers(ndev);
2742 
2743 	return 0;
2744 }
2745 
2746 /* Set or clear the multicast filter for this adaptor.
2747  * Skeleton taken from sunlance driver.
2748  * The CPM Ethernet implementation allows Multicast as well as individual
2749  * MAC address filtering.  Some of the drivers check to make sure it is
2750  * a group multicast address, and discard those that are not.  I guess I
2751  * will do the same for now, but just remove the test if you want
2752  * individual filtering as well (do the upper net layers want or support
2753  * this kind of feature?).
2754  */
2755 
2756 #define HASH_BITS	6		/* #bits in hash */
2757 #define CRC32_POLY	0xEDB88320
2758 
2759 static void set_multicast_list(struct net_device *ndev)
2760 {
2761 	struct fec_enet_private *fep = netdev_priv(ndev);
2762 	struct netdev_hw_addr *ha;
2763 	unsigned int i, bit, data, crc, tmp;
2764 	unsigned char hash;
2765 
2766 	if (ndev->flags & IFF_PROMISC) {
2767 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2768 		tmp |= 0x8;
2769 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2770 		return;
2771 	}
2772 
2773 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2774 	tmp &= ~0x8;
2775 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2776 
2777 	if (ndev->flags & IFF_ALLMULTI) {
2778 		/* Catch all multicast addresses, so set the
2779 		 * filter to all 1's
2780 		 */
2781 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2782 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2783 
2784 		return;
2785 	}
2786 
2787 	/* Clear filter and add the addresses in hash register
2788 	 */
2789 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2790 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2791 
2792 	netdev_for_each_mc_addr(ha, ndev) {
2793 		/* calculate crc32 value of mac address */
2794 		crc = 0xffffffff;
2795 
2796 		for (i = 0; i < ndev->addr_len; i++) {
2797 			data = ha->addr[i];
2798 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2799 				crc = (crc >> 1) ^
2800 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2801 			}
2802 		}
2803 
2804 		/* only upper 6 bits (HASH_BITS) are used
2805 		 * which point to specific bit in he hash registers
2806 		 */
2807 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2808 
2809 		if (hash > 31) {
2810 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2811 			tmp |= 1 << (hash - 32);
2812 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2813 		} else {
2814 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2815 			tmp |= 1 << hash;
2816 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2817 		}
2818 	}
2819 }
2820 
2821 /* Set a MAC change in hardware. */
2822 static int
2823 fec_set_mac_address(struct net_device *ndev, void *p)
2824 {
2825 	struct fec_enet_private *fep = netdev_priv(ndev);
2826 	struct sockaddr *addr = p;
2827 
2828 	if (addr) {
2829 		if (!is_valid_ether_addr(addr->sa_data))
2830 			return -EADDRNOTAVAIL;
2831 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2832 	}
2833 
2834 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2835 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2836 		fep->hwp + FEC_ADDR_LOW);
2837 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2838 		fep->hwp + FEC_ADDR_HIGH);
2839 	return 0;
2840 }
2841 
2842 #ifdef CONFIG_NET_POLL_CONTROLLER
2843 /**
2844  * fec_poll_controller - FEC Poll controller function
2845  * @dev: The FEC network adapter
2846  *
2847  * Polled functionality used by netconsole and others in non interrupt mode
2848  *
2849  */
2850 static void fec_poll_controller(struct net_device *dev)
2851 {
2852 	int i;
2853 	struct fec_enet_private *fep = netdev_priv(dev);
2854 
2855 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2856 		if (fep->irq[i] > 0) {
2857 			disable_irq(fep->irq[i]);
2858 			fec_enet_interrupt(fep->irq[i], dev);
2859 			enable_irq(fep->irq[i]);
2860 		}
2861 	}
2862 }
2863 #endif
2864 
2865 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2866 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2867 	netdev_features_t features)
2868 {
2869 	struct fec_enet_private *fep = netdev_priv(netdev);
2870 	netdev_features_t changed = features ^ netdev->features;
2871 
2872 	netdev->features = features;
2873 
2874 	/* Receive checksum has been changed */
2875 	if (changed & NETIF_F_RXCSUM) {
2876 		if (features & NETIF_F_RXCSUM)
2877 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2878 		else
2879 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2880 	}
2881 }
2882 
2883 static int fec_set_features(struct net_device *netdev,
2884 	netdev_features_t features)
2885 {
2886 	struct fec_enet_private *fep = netdev_priv(netdev);
2887 	netdev_features_t changed = features ^ netdev->features;
2888 
2889 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2890 		napi_disable(&fep->napi);
2891 		netif_tx_lock_bh(netdev);
2892 		fec_stop(netdev);
2893 		fec_enet_set_netdev_features(netdev, features);
2894 		fec_restart(netdev);
2895 		netif_tx_wake_all_queues(netdev);
2896 		netif_tx_unlock_bh(netdev);
2897 		napi_enable(&fep->napi);
2898 	} else {
2899 		fec_enet_set_netdev_features(netdev, features);
2900 	}
2901 
2902 	return 0;
2903 }
2904 
2905 static const struct net_device_ops fec_netdev_ops = {
2906 	.ndo_open		= fec_enet_open,
2907 	.ndo_stop		= fec_enet_close,
2908 	.ndo_start_xmit		= fec_enet_start_xmit,
2909 	.ndo_set_rx_mode	= set_multicast_list,
2910 	.ndo_change_mtu		= eth_change_mtu,
2911 	.ndo_validate_addr	= eth_validate_addr,
2912 	.ndo_tx_timeout		= fec_timeout,
2913 	.ndo_set_mac_address	= fec_set_mac_address,
2914 	.ndo_do_ioctl		= fec_enet_ioctl,
2915 #ifdef CONFIG_NET_POLL_CONTROLLER
2916 	.ndo_poll_controller	= fec_poll_controller,
2917 #endif
2918 	.ndo_set_features	= fec_set_features,
2919 };
2920 
2921  /*
2922   * XXX:  We need to clean up on failure exits here.
2923   *
2924   */
2925 static int fec_enet_init(struct net_device *ndev)
2926 {
2927 	struct fec_enet_private *fep = netdev_priv(ndev);
2928 	struct fec_enet_priv_tx_q *txq;
2929 	struct fec_enet_priv_rx_q *rxq;
2930 	struct bufdesc *cbd_base;
2931 	dma_addr_t bd_dma;
2932 	int bd_size;
2933 	unsigned int i;
2934 
2935 #if defined(CONFIG_ARM)
2936 	fep->rx_align = 0xf;
2937 	fep->tx_align = 0xf;
2938 #else
2939 	fep->rx_align = 0x3;
2940 	fep->tx_align = 0x3;
2941 #endif
2942 
2943 	fec_enet_alloc_queue(ndev);
2944 
2945 	if (fep->bufdesc_ex)
2946 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2947 	else
2948 		fep->bufdesc_size = sizeof(struct bufdesc);
2949 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2950 			fep->bufdesc_size;
2951 
2952 	/* Allocate memory for buffer descriptors. */
2953 	cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2954 				      GFP_KERNEL);
2955 	if (!cbd_base) {
2956 		return -ENOMEM;
2957 	}
2958 
2959 	memset(cbd_base, 0, bd_size);
2960 
2961 	/* Get the Ethernet address */
2962 	fec_get_mac(ndev);
2963 	/* make sure MAC we just acquired is programmed into the hw */
2964 	fec_set_mac_address(ndev, NULL);
2965 
2966 	/* Set receive and transmit descriptor base. */
2967 	for (i = 0; i < fep->num_rx_queues; i++) {
2968 		rxq = fep->rx_queue[i];
2969 		rxq->index = i;
2970 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2971 		rxq->bd_dma = bd_dma;
2972 		if (fep->bufdesc_ex) {
2973 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2974 			cbd_base = (struct bufdesc *)
2975 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2976 		} else {
2977 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2978 			cbd_base += rxq->rx_ring_size;
2979 		}
2980 	}
2981 
2982 	for (i = 0; i < fep->num_tx_queues; i++) {
2983 		txq = fep->tx_queue[i];
2984 		txq->index = i;
2985 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
2986 		txq->bd_dma = bd_dma;
2987 		if (fep->bufdesc_ex) {
2988 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
2989 			cbd_base = (struct bufdesc *)
2990 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
2991 		} else {
2992 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
2993 			cbd_base += txq->tx_ring_size;
2994 		}
2995 	}
2996 
2997 
2998 	/* The FEC Ethernet specific entries in the device structure */
2999 	ndev->watchdog_timeo = TX_TIMEOUT;
3000 	ndev->netdev_ops = &fec_netdev_ops;
3001 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3002 
3003 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3004 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3005 
3006 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3007 		/* enable hw VLAN support */
3008 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3009 
3010 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3011 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3012 
3013 		/* enable hw accelerator */
3014 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3015 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3016 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3017 	}
3018 
3019 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3020 		fep->tx_align = 0;
3021 		fep->rx_align = 0x3f;
3022 	}
3023 
3024 	ndev->hw_features = ndev->features;
3025 
3026 	fec_restart(ndev);
3027 
3028 	return 0;
3029 }
3030 
3031 #ifdef CONFIG_OF
3032 static void fec_reset_phy(struct platform_device *pdev)
3033 {
3034 	int err, phy_reset;
3035 	int msec = 1;
3036 	struct device_node *np = pdev->dev.of_node;
3037 
3038 	if (!np)
3039 		return;
3040 
3041 	of_property_read_u32(np, "phy-reset-duration", &msec);
3042 	/* A sane reset duration should not be longer than 1s */
3043 	if (msec > 1000)
3044 		msec = 1;
3045 
3046 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3047 	if (!gpio_is_valid(phy_reset))
3048 		return;
3049 
3050 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3051 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3052 	if (err) {
3053 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3054 		return;
3055 	}
3056 	msleep(msec);
3057 	gpio_set_value(phy_reset, 1);
3058 }
3059 #else /* CONFIG_OF */
3060 static void fec_reset_phy(struct platform_device *pdev)
3061 {
3062 	/*
3063 	 * In case of platform probe, the reset has been done
3064 	 * by machine code.
3065 	 */
3066 }
3067 #endif /* CONFIG_OF */
3068 
3069 static void
3070 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3071 {
3072 	struct device_node *np = pdev->dev.of_node;
3073 	int err;
3074 
3075 	*num_tx = *num_rx = 1;
3076 
3077 	if (!np || !of_device_is_available(np))
3078 		return;
3079 
3080 	/* parse the num of tx and rx queues */
3081 	err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3082 	if (err)
3083 		*num_tx = 1;
3084 
3085 	err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3086 	if (err)
3087 		*num_rx = 1;
3088 
3089 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3090 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3091 			 *num_tx);
3092 		*num_tx = 1;
3093 		return;
3094 	}
3095 
3096 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3097 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3098 			 *num_rx);
3099 		*num_rx = 1;
3100 		return;
3101 	}
3102 
3103 }
3104 
3105 static int
3106 fec_probe(struct platform_device *pdev)
3107 {
3108 	struct fec_enet_private *fep;
3109 	struct fec_platform_data *pdata;
3110 	struct net_device *ndev;
3111 	int i, irq, ret = 0;
3112 	struct resource *r;
3113 	const struct of_device_id *of_id;
3114 	static int dev_id;
3115 	struct device_node *np = pdev->dev.of_node, *phy_node;
3116 	int num_tx_qs;
3117 	int num_rx_qs;
3118 
3119 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3120 
3121 	/* Init network device */
3122 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3123 				  num_tx_qs, num_rx_qs);
3124 	if (!ndev)
3125 		return -ENOMEM;
3126 
3127 	SET_NETDEV_DEV(ndev, &pdev->dev);
3128 
3129 	/* setup board info structure */
3130 	fep = netdev_priv(ndev);
3131 
3132 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3133 	if (of_id)
3134 		pdev->id_entry = of_id->data;
3135 	fep->quirks = pdev->id_entry->driver_data;
3136 
3137 	fep->num_rx_queues = num_rx_qs;
3138 	fep->num_tx_queues = num_tx_qs;
3139 
3140 #if !defined(CONFIG_M5272)
3141 	/* default enable pause frame auto negotiation */
3142 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3143 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3144 #endif
3145 
3146 	/* Select default pin state */
3147 	pinctrl_pm_select_default_state(&pdev->dev);
3148 
3149 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3150 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3151 	if (IS_ERR(fep->hwp)) {
3152 		ret = PTR_ERR(fep->hwp);
3153 		goto failed_ioremap;
3154 	}
3155 
3156 	fep->pdev = pdev;
3157 	fep->dev_id = dev_id++;
3158 
3159 	platform_set_drvdata(pdev, ndev);
3160 
3161 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3162 	if (!phy_node && of_phy_is_fixed_link(np)) {
3163 		ret = of_phy_register_fixed_link(np);
3164 		if (ret < 0) {
3165 			dev_err(&pdev->dev,
3166 				"broken fixed-link specification\n");
3167 			goto failed_phy;
3168 		}
3169 		phy_node = of_node_get(np);
3170 	}
3171 	fep->phy_node = phy_node;
3172 
3173 	ret = of_get_phy_mode(pdev->dev.of_node);
3174 	if (ret < 0) {
3175 		pdata = dev_get_platdata(&pdev->dev);
3176 		if (pdata)
3177 			fep->phy_interface = pdata->phy;
3178 		else
3179 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3180 	} else {
3181 		fep->phy_interface = ret;
3182 	}
3183 
3184 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3185 	if (IS_ERR(fep->clk_ipg)) {
3186 		ret = PTR_ERR(fep->clk_ipg);
3187 		goto failed_clk;
3188 	}
3189 
3190 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3191 	if (IS_ERR(fep->clk_ahb)) {
3192 		ret = PTR_ERR(fep->clk_ahb);
3193 		goto failed_clk;
3194 	}
3195 
3196 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3197 
3198 	/* enet_out is optional, depends on board */
3199 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3200 	if (IS_ERR(fep->clk_enet_out))
3201 		fep->clk_enet_out = NULL;
3202 
3203 	fep->ptp_clk_on = false;
3204 	mutex_init(&fep->ptp_clk_mutex);
3205 
3206 	/* clk_ref is optional, depends on board */
3207 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3208 	if (IS_ERR(fep->clk_ref))
3209 		fep->clk_ref = NULL;
3210 
3211 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3212 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3213 	if (IS_ERR(fep->clk_ptp)) {
3214 		fep->clk_ptp = NULL;
3215 		fep->bufdesc_ex = false;
3216 	}
3217 
3218 	ret = fec_enet_clk_enable(ndev, true);
3219 	if (ret)
3220 		goto failed_clk;
3221 
3222 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3223 	if (!IS_ERR(fep->reg_phy)) {
3224 		ret = regulator_enable(fep->reg_phy);
3225 		if (ret) {
3226 			dev_err(&pdev->dev,
3227 				"Failed to enable phy regulator: %d\n", ret);
3228 			goto failed_regulator;
3229 		}
3230 	} else {
3231 		fep->reg_phy = NULL;
3232 	}
3233 
3234 	fec_reset_phy(pdev);
3235 
3236 	if (fep->bufdesc_ex)
3237 		fec_ptp_init(pdev);
3238 
3239 	ret = fec_enet_init(ndev);
3240 	if (ret)
3241 		goto failed_init;
3242 
3243 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3244 		irq = platform_get_irq(pdev, i);
3245 		if (irq < 0) {
3246 			if (i)
3247 				break;
3248 			ret = irq;
3249 			goto failed_irq;
3250 		}
3251 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3252 				       0, pdev->name, ndev);
3253 		if (ret)
3254 			goto failed_irq;
3255 	}
3256 
3257 	init_completion(&fep->mdio_done);
3258 	ret = fec_enet_mii_init(pdev);
3259 	if (ret)
3260 		goto failed_mii_init;
3261 
3262 	/* Carrier starts down, phylib will bring it up */
3263 	netif_carrier_off(ndev);
3264 	fec_enet_clk_enable(ndev, false);
3265 	pinctrl_pm_select_sleep_state(&pdev->dev);
3266 
3267 	ret = register_netdev(ndev);
3268 	if (ret)
3269 		goto failed_register;
3270 
3271 	if (fep->bufdesc_ex && fep->ptp_clock)
3272 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3273 
3274 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3275 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3276 	return 0;
3277 
3278 failed_register:
3279 	fec_enet_mii_remove(fep);
3280 failed_mii_init:
3281 failed_irq:
3282 failed_init:
3283 	if (fep->reg_phy)
3284 		regulator_disable(fep->reg_phy);
3285 failed_regulator:
3286 	fec_enet_clk_enable(ndev, false);
3287 failed_clk:
3288 failed_phy:
3289 	of_node_put(phy_node);
3290 failed_ioremap:
3291 	free_netdev(ndev);
3292 
3293 	return ret;
3294 }
3295 
3296 static int
3297 fec_drv_remove(struct platform_device *pdev)
3298 {
3299 	struct net_device *ndev = platform_get_drvdata(pdev);
3300 	struct fec_enet_private *fep = netdev_priv(ndev);
3301 
3302 	cancel_delayed_work_sync(&fep->time_keep);
3303 	cancel_work_sync(&fep->tx_timeout_work);
3304 	unregister_netdev(ndev);
3305 	fec_enet_mii_remove(fep);
3306 	if (fep->reg_phy)
3307 		regulator_disable(fep->reg_phy);
3308 	if (fep->ptp_clock)
3309 		ptp_clock_unregister(fep->ptp_clock);
3310 	fec_enet_clk_enable(ndev, false);
3311 	of_node_put(fep->phy_node);
3312 	free_netdev(ndev);
3313 
3314 	return 0;
3315 }
3316 
3317 static int __maybe_unused fec_suspend(struct device *dev)
3318 {
3319 	struct net_device *ndev = dev_get_drvdata(dev);
3320 	struct fec_enet_private *fep = netdev_priv(ndev);
3321 
3322 	rtnl_lock();
3323 	if (netif_running(ndev)) {
3324 		phy_stop(fep->phy_dev);
3325 		napi_disable(&fep->napi);
3326 		netif_tx_lock_bh(ndev);
3327 		netif_device_detach(ndev);
3328 		netif_tx_unlock_bh(ndev);
3329 		fec_stop(ndev);
3330 		fec_enet_clk_enable(ndev, false);
3331 		pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3332 	}
3333 	rtnl_unlock();
3334 
3335 	if (fep->reg_phy)
3336 		regulator_disable(fep->reg_phy);
3337 
3338 	/* SOC supply clock to phy, when clock is disabled, phy link down
3339 	 * SOC control phy regulator, when regulator is disabled, phy link down
3340 	 */
3341 	if (fep->clk_enet_out || fep->reg_phy)
3342 		fep->link = 0;
3343 
3344 	return 0;
3345 }
3346 
3347 static int __maybe_unused fec_resume(struct device *dev)
3348 {
3349 	struct net_device *ndev = dev_get_drvdata(dev);
3350 	struct fec_enet_private *fep = netdev_priv(ndev);
3351 	int ret;
3352 
3353 	if (fep->reg_phy) {
3354 		ret = regulator_enable(fep->reg_phy);
3355 		if (ret)
3356 			return ret;
3357 	}
3358 
3359 	rtnl_lock();
3360 	if (netif_running(ndev)) {
3361 		pinctrl_pm_select_default_state(&fep->pdev->dev);
3362 		ret = fec_enet_clk_enable(ndev, true);
3363 		if (ret) {
3364 			rtnl_unlock();
3365 			goto failed_clk;
3366 		}
3367 		fec_restart(ndev);
3368 		netif_tx_lock_bh(ndev);
3369 		netif_device_attach(ndev);
3370 		netif_tx_unlock_bh(ndev);
3371 		napi_enable(&fep->napi);
3372 		phy_start(fep->phy_dev);
3373 	}
3374 	rtnl_unlock();
3375 
3376 	return 0;
3377 
3378 failed_clk:
3379 	if (fep->reg_phy)
3380 		regulator_disable(fep->reg_phy);
3381 	return ret;
3382 }
3383 
3384 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3385 
3386 static struct platform_driver fec_driver = {
3387 	.driver	= {
3388 		.name	= DRIVER_NAME,
3389 		.owner	= THIS_MODULE,
3390 		.pm	= &fec_pm_ops,
3391 		.of_match_table = fec_dt_ids,
3392 	},
3393 	.id_table = fec_devtype,
3394 	.probe	= fec_probe,
3395 	.remove	= fec_drv_remove,
3396 };
3397 
3398 module_platform_driver(fec_driver);
3399 
3400 MODULE_ALIAS("platform:"DRIVER_NAME);
3401 MODULE_LICENSE("GPL");
3402