xref: /linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140 
141 MODULE_DESCRIPTION(DRV_DESC);
142 MODULE_AUTHOR("Chelsio Communications");
143 MODULE_LICENSE("Dual BSD/GPL");
144 MODULE_VERSION(DRV_VERSION);
145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146 MODULE_FIRMWARE(FW4_FNAME);
147 MODULE_FIRMWARE(FW5_FNAME);
148 
149 /*
150  * Normally we're willing to become the firmware's Master PF but will be happy
151  * if another PF has already become the Master and initialized the adapter.
152  * Setting "force_init" will cause this driver to forcibly establish itself as
153  * the Master PF and initialize the adapter.
154  */
155 static uint force_init;
156 
157 module_param(force_init, uint, 0644);
158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159 
160 /*
161  * Normally if the firmware we connect to has Configuration File support, we
162  * use that and only fall back to the old Driver-based initialization if the
163  * Configuration File fails for some reason.  If force_old_init is set, then
164  * we'll always use the old Driver-based initialization sequence.
165  */
166 static uint force_old_init;
167 
168 module_param(force_old_init, uint, 0644);
169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170 		 " parameter");
171 
172 static int dflt_msg_enable = DFLT_MSG_ENABLE;
173 
174 module_param(dflt_msg_enable, int, 0644);
175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176 
177 /*
178  * The driver uses the best interrupt scheme available on a platform in the
179  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180  * of these schemes the driver may consider as follows:
181  *
182  * msi = 2: choose from among all three options
183  * msi = 1: only consider MSI and INTx interrupts
184  * msi = 0: force INTx interrupts
185  */
186 static int msi = 2;
187 
188 module_param(msi, int, 0644);
189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190 
191 /*
192  * Queue interrupt hold-off timer values.  Queues default to the first of these
193  * upon creation.
194  */
195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196 
197 module_param_array(intr_holdoff, uint, NULL, 0644);
198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199 		 "0..4 in microseconds, deprecated parameter");
200 
201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202 
203 module_param_array(intr_cnt, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_cnt,
205 		 "thresholds 1..3 for queue interrupt packet counters, "
206 		 "deprecated parameter");
207 
208 /*
209  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210  * offset by 2 bytes in order to have the IP headers line up on 4-byte
211  * boundaries.  This is a requirement for many architectures which will throw
212  * a machine check fault if an attempt is made to access one of the 4-byte IP
213  * header fields on a non-4-byte boundary.  And it's a major performance issue
214  * even on some architectures which allow it like some implementations of the
215  * x86 ISA.  However, some architectures don't mind this and for some very
216  * edge-case performance sensitive applications (like forwarding large volumes
217  * of small packets), setting this DMA offset to 0 will decrease the number of
218  * PCI-E Bus transfers enough to measurably affect performance.
219  */
220 static int rx_dma_offset = 2;
221 
222 static bool vf_acls;
223 
224 #ifdef CONFIG_PCI_IOV
225 module_param(vf_acls, bool, 0644);
226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227 		 "deprecated parameter");
228 
229 /* Configure the number of PCI-E Virtual Function which are to be instantiated
230  * on SR-IOV Capable Physical Functions.
231  */
232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233 
234 module_param_array(num_vf, uint, NULL, 0644);
235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 #endif
237 
238 /* TX Queue select used to determine what algorithm to use for selecting TX
239  * queue. Select between the kernel provided function (select_queue=0) or user
240  * cxgb_select_queue function (select_queue=1)
241  *
242  * Default: select_queue=0
243  */
244 static int select_queue;
245 module_param(select_queue, int, 0644);
246 MODULE_PARM_DESC(select_queue,
247 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248 
249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250 
251 module_param(tp_vlan_pri_map, uint, 0644);
252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253 		 "deprecated parameter");
254 
255 static struct dentry *cxgb4_debugfs_root;
256 
257 static LIST_HEAD(adapter_list);
258 static DEFINE_MUTEX(uld_mutex);
259 /* Adapter list to be accessed from atomic context */
260 static LIST_HEAD(adap_rcu_list);
261 static DEFINE_SPINLOCK(adap_rcu_lock);
262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263 static const char *uld_str[] = { "RDMA", "iSCSI" };
264 
265 static void link_report(struct net_device *dev)
266 {
267 	if (!netif_carrier_ok(dev))
268 		netdev_info(dev, "link down\n");
269 	else {
270 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271 
272 		const char *s = "10Mbps";
273 		const struct port_info *p = netdev_priv(dev);
274 
275 		switch (p->link_cfg.speed) {
276 		case 10000:
277 			s = "10Gbps";
278 			break;
279 		case 1000:
280 			s = "1000Mbps";
281 			break;
282 		case 100:
283 			s = "100Mbps";
284 			break;
285 		case 40000:
286 			s = "40Gbps";
287 			break;
288 		}
289 
290 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291 			    fc[p->link_cfg.fc]);
292 	}
293 }
294 
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298 {
299 	struct port_info *pi = netdev_priv(dev);
300 	struct adapter *adap = pi->adapter;
301 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302 	int i;
303 
304 	/* We use a simple mapping of Port TX Queue Index to DCB
305 	 * Priority when we're enabling DCB.
306 	 */
307 	for (i = 0; i < pi->nqsets; i++, txq++) {
308 		u32 name, value;
309 		int err;
310 
311 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312 			FW_PARAMS_PARAM_X_V(
313 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315 		value = enable ? i : 0xffffffff;
316 
317 		/* Since we can be called while atomic (from "interrupt
318 		 * level") we need to issue the Set Parameters Commannd
319 		 * without sleeping (timeout < 0).
320 		 */
321 		err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322 					    &name, &value);
323 
324 		if (err)
325 			dev_err(adap->pdev_dev,
326 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327 				enable ? "set" : "unset", pi->port_id, i, -err);
328 		else
329 			txq->dcb_prio = value;
330 	}
331 }
332 #endif /* CONFIG_CHELSIO_T4_DCB */
333 
334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335 {
336 	struct net_device *dev = adapter->port[port_id];
337 
338 	/* Skip changes from disabled ports. */
339 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340 		if (link_stat)
341 			netif_carrier_on(dev);
342 		else {
343 #ifdef CONFIG_CHELSIO_T4_DCB
344 			cxgb4_dcb_state_init(dev);
345 			dcb_tx_queue_prio_enable(dev, false);
346 #endif /* CONFIG_CHELSIO_T4_DCB */
347 			netif_carrier_off(dev);
348 		}
349 
350 		link_report(dev);
351 	}
352 }
353 
354 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355 {
356 	static const char *mod_str[] = {
357 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358 	};
359 
360 	const struct net_device *dev = adap->port[port_id];
361 	const struct port_info *pi = netdev_priv(dev);
362 
363 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364 		netdev_info(dev, "port module unplugged\n");
365 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
366 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367 }
368 
369 /*
370  * Configure the exact and hash address filters to handle a port's multicast
371  * and secondary unicast MAC addresses.
372  */
373 static int set_addr_filters(const struct net_device *dev, bool sleep)
374 {
375 	u64 mhash = 0;
376 	u64 uhash = 0;
377 	bool free = true;
378 	u16 filt_idx[7];
379 	const u8 *addr[7];
380 	int ret, naddr = 0;
381 	const struct netdev_hw_addr *ha;
382 	int uc_cnt = netdev_uc_count(dev);
383 	int mc_cnt = netdev_mc_count(dev);
384 	const struct port_info *pi = netdev_priv(dev);
385 	unsigned int mb = pi->adapter->fn;
386 
387 	/* first do the secondary unicast addresses */
388 	netdev_for_each_uc_addr(ha, dev) {
389 		addr[naddr++] = ha->addr;
390 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392 					naddr, addr, filt_idx, &uhash, sleep);
393 			if (ret < 0)
394 				return ret;
395 
396 			free = false;
397 			naddr = 0;
398 		}
399 	}
400 
401 	/* next set up the multicast addresses */
402 	netdev_for_each_mc_addr(ha, dev) {
403 		addr[naddr++] = ha->addr;
404 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406 					naddr, addr, filt_idx, &mhash, sleep);
407 			if (ret < 0)
408 				return ret;
409 
410 			free = false;
411 			naddr = 0;
412 		}
413 	}
414 
415 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416 				uhash | mhash, sleep);
417 }
418 
419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420 module_param(dbfifo_int_thresh, int, 0644);
421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422 
423 /*
424  * usecs to sleep while draining the dbfifo
425  */
426 static int dbfifo_drain_delay = 1000;
427 module_param(dbfifo_drain_delay, int, 0644);
428 MODULE_PARM_DESC(dbfifo_drain_delay,
429 		 "usecs to sleep while draining the dbfifo");
430 
431 /*
432  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433  * If @mtu is -1 it is left unchanged.
434  */
435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436 {
437 	int ret;
438 	struct port_info *pi = netdev_priv(dev);
439 
440 	ret = set_addr_filters(dev, sleep_ok);
441 	if (ret == 0)
442 		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
444 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445 				    sleep_ok);
446 	return ret;
447 }
448 
449 /**
450  *	link_start - enable a port
451  *	@dev: the port to enable
452  *
453  *	Performs the MAC and PHY actions needed to enable a port.
454  */
455 static int link_start(struct net_device *dev)
456 {
457 	int ret;
458 	struct port_info *pi = netdev_priv(dev);
459 	unsigned int mb = pi->adapter->fn;
460 
461 	/*
462 	 * We do not set address filters and promiscuity here, the stack does
463 	 * that step explicitly.
464 	 */
465 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467 	if (ret == 0) {
468 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
469 				    pi->xact_addr_filt, dev->dev_addr, true,
470 				    true);
471 		if (ret >= 0) {
472 			pi->xact_addr_filt = ret;
473 			ret = 0;
474 		}
475 	}
476 	if (ret == 0)
477 		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478 				    &pi->link_cfg);
479 	if (ret == 0) {
480 		local_bh_disable();
481 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482 					  true, CXGB4_DCB_ENABLED);
483 		local_bh_enable();
484 	}
485 
486 	return ret;
487 }
488 
489 int cxgb4_dcb_enabled(const struct net_device *dev)
490 {
491 #ifdef CONFIG_CHELSIO_T4_DCB
492 	struct port_info *pi = netdev_priv(dev);
493 
494 	if (!pi->dcb.enabled)
495 		return 0;
496 
497 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 #else
500 	return 0;
501 #endif
502 }
503 EXPORT_SYMBOL(cxgb4_dcb_enabled);
504 
505 #ifdef CONFIG_CHELSIO_T4_DCB
506 /* Handle a Data Center Bridging update message from the firmware. */
507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508 {
509 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510 	struct net_device *dev = adap->port[port];
511 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512 	int new_dcb_enabled;
513 
514 	cxgb4_dcb_handle_fw_update(adap, pcmd);
515 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
516 
517 	/* If the DCB has become enabled or disabled on the port then we're
518 	 * going to need to set up/tear down DCB Priority parameters for the
519 	 * TX Queues associated with the port.
520 	 */
521 	if (new_dcb_enabled != old_dcb_enabled)
522 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523 }
524 #endif /* CONFIG_CHELSIO_T4_DCB */
525 
526 /* Clear a filter and release any of its resources that we own.  This also
527  * clears the filter's "pending" status.
528  */
529 static void clear_filter(struct adapter *adap, struct filter_entry *f)
530 {
531 	/* If the new or old filter have loopback rewriteing rules then we'll
532 	 * need to free any existing Layer Two Table (L2T) entries of the old
533 	 * filter rule.  The firmware will handle freeing up any Source MAC
534 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
535 	 * loopback rules.
536 	 */
537 	if (f->l2t)
538 		cxgb4_l2t_release(f->l2t);
539 
540 	/* The zeroing of the filter rule below clears the filter valid,
541 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
542 	 * this operation.
543 	 */
544 	memset(f, 0, sizeof(*f));
545 }
546 
547 /* Handle a filter write/deletion reply.
548  */
549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550 {
551 	unsigned int idx = GET_TID(rpl);
552 	unsigned int nidx = idx - adap->tids.ftid_base;
553 	unsigned int ret;
554 	struct filter_entry *f;
555 
556 	if (idx >= adap->tids.ftid_base && nidx <
557 	   (adap->tids.nftids + adap->tids.nsftids)) {
558 		idx = nidx;
559 		ret = TCB_COOKIE_G(rpl->cookie);
560 		f = &adap->tids.ftid_tab[idx];
561 
562 		if (ret == FW_FILTER_WR_FLT_DELETED) {
563 			/* Clear the filter when we get confirmation from the
564 			 * hardware that the filter has been deleted.
565 			 */
566 			clear_filter(adap, f);
567 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569 				idx);
570 			clear_filter(adap, f);
571 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
572 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573 			f->pending = 0;  /* asynchronous setup completed */
574 			f->valid = 1;
575 		} else {
576 			/* Something went wrong.  Issue a warning about the
577 			 * problem and clear everything out.
578 			 */
579 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580 				idx, ret);
581 			clear_filter(adap, f);
582 		}
583 	}
584 }
585 
586 /* Response queue handler for the FW event queue.
587  */
588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589 			  const struct pkt_gl *gl)
590 {
591 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
592 
593 	rsp++;                                          /* skip RSS header */
594 
595 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596 	 */
597 	if (unlikely(opcode == CPL_FW4_MSG &&
598 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599 		rsp++;
600 		opcode = ((const struct rss_header *)rsp)->opcode;
601 		rsp++;
602 		if (opcode != CPL_SGE_EGR_UPDATE) {
603 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604 				, opcode);
605 			goto out;
606 		}
607 	}
608 
609 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610 		const struct cpl_sge_egr_update *p = (void *)rsp;
611 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612 		struct sge_txq *txq;
613 
614 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615 		txq->restarts++;
616 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617 			struct sge_eth_txq *eq;
618 
619 			eq = container_of(txq, struct sge_eth_txq, q);
620 			netif_tx_wake_queue(eq->txq);
621 		} else {
622 			struct sge_ofld_txq *oq;
623 
624 			oq = container_of(txq, struct sge_ofld_txq, q);
625 			tasklet_schedule(&oq->qresume_tsk);
626 		}
627 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628 		const struct cpl_fw6_msg *p = (void *)rsp;
629 
630 #ifdef CONFIG_CHELSIO_T4_DCB
631 		const struct fw_port_cmd *pcmd = (const void *)p->data;
632 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633 		unsigned int action =
634 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635 
636 		if (cmd == FW_PORT_CMD &&
637 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
638 			int port = FW_PORT_CMD_PORTID_G(
639 					be32_to_cpu(pcmd->op_to_portid));
640 			struct net_device *dev = q->adap->port[port];
641 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
642 					    FW_PORT_CMD_DCBXDIS_F)
643 					   ? CXGB4_DCB_INPUT_FW_DISABLED
644 					   : CXGB4_DCB_INPUT_FW_ENABLED);
645 
646 			cxgb4_dcb_state_fsm(dev, state_input);
647 		}
648 
649 		if (cmd == FW_PORT_CMD &&
650 		    action == FW_PORT_ACTION_L2_DCB_CFG)
651 			dcb_rpl(q->adap, pcmd);
652 		else
653 #endif
654 			if (p->type == 0)
655 				t4_handle_fw_rpl(q->adap, p->data);
656 	} else if (opcode == CPL_L2T_WRITE_RPL) {
657 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
658 
659 		do_l2t_write_rpl(q->adap, p);
660 	} else if (opcode == CPL_SET_TCB_RPL) {
661 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
662 
663 		filter_rpl(q->adap, p);
664 	} else
665 		dev_err(q->adap->pdev_dev,
666 			"unexpected CPL %#x on FW event queue\n", opcode);
667 out:
668 	return 0;
669 }
670 
671 /**
672  *	uldrx_handler - response queue handler for ULD queues
673  *	@q: the response queue that received the packet
674  *	@rsp: the response queue descriptor holding the offload message
675  *	@gl: the gather list of packet fragments
676  *
677  *	Deliver an ingress offload packet to a ULD.  All processing is done by
678  *	the ULD, we just maintain statistics.
679  */
680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681 			 const struct pkt_gl *gl)
682 {
683 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684 
685 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686 	 */
687 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689 		rsp += 2;
690 
691 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692 		rxq->stats.nomem++;
693 		return -1;
694 	}
695 	if (gl == NULL)
696 		rxq->stats.imm++;
697 	else if (gl == CXGB4_MSG_AN)
698 		rxq->stats.an++;
699 	else
700 		rxq->stats.pkts++;
701 	return 0;
702 }
703 
704 static void disable_msi(struct adapter *adapter)
705 {
706 	if (adapter->flags & USING_MSIX) {
707 		pci_disable_msix(adapter->pdev);
708 		adapter->flags &= ~USING_MSIX;
709 	} else if (adapter->flags & USING_MSI) {
710 		pci_disable_msi(adapter->pdev);
711 		adapter->flags &= ~USING_MSI;
712 	}
713 }
714 
715 /*
716  * Interrupt handler for non-data events used with MSI-X.
717  */
718 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719 {
720 	struct adapter *adap = cookie;
721 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722 
723 	if (v & PFSW_F) {
724 		adap->swintr = 1;
725 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726 	}
727 	if (adap->flags & MASTER_PF)
728 		t4_slow_intr_handler(adap);
729 	return IRQ_HANDLED;
730 }
731 
732 /*
733  * Name the MSI-X interrupts.
734  */
735 static void name_msix_vecs(struct adapter *adap)
736 {
737 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738 
739 	/* non-data interrupts */
740 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741 
742 	/* FW events */
743 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744 		 adap->port[0]->name);
745 
746 	/* Ethernet queues */
747 	for_each_port(adap, j) {
748 		struct net_device *d = adap->port[j];
749 		const struct port_info *pi = netdev_priv(d);
750 
751 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
752 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753 				 d->name, i);
754 	}
755 
756 	/* offload queues */
757 	for_each_ofldrxq(&adap->sge, i)
758 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759 			 adap->port[0]->name, i);
760 
761 	for_each_rdmarxq(&adap->sge, i)
762 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763 			 adap->port[0]->name, i);
764 
765 	for_each_rdmaciq(&adap->sge, i)
766 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767 			 adap->port[0]->name, i);
768 }
769 
770 static int request_msix_queue_irqs(struct adapter *adap)
771 {
772 	struct sge *s = &adap->sge;
773 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774 	int msi_index = 2;
775 
776 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777 			  adap->msix_info[1].desc, &s->fw_evtq);
778 	if (err)
779 		return err;
780 
781 	for_each_ethrxq(s, ethqidx) {
782 		err = request_irq(adap->msix_info[msi_index].vec,
783 				  t4_sge_intr_msix, 0,
784 				  adap->msix_info[msi_index].desc,
785 				  &s->ethrxq[ethqidx].rspq);
786 		if (err)
787 			goto unwind;
788 		msi_index++;
789 	}
790 	for_each_ofldrxq(s, ofldqidx) {
791 		err = request_irq(adap->msix_info[msi_index].vec,
792 				  t4_sge_intr_msix, 0,
793 				  adap->msix_info[msi_index].desc,
794 				  &s->ofldrxq[ofldqidx].rspq);
795 		if (err)
796 			goto unwind;
797 		msi_index++;
798 	}
799 	for_each_rdmarxq(s, rdmaqidx) {
800 		err = request_irq(adap->msix_info[msi_index].vec,
801 				  t4_sge_intr_msix, 0,
802 				  adap->msix_info[msi_index].desc,
803 				  &s->rdmarxq[rdmaqidx].rspq);
804 		if (err)
805 			goto unwind;
806 		msi_index++;
807 	}
808 	for_each_rdmaciq(s, rdmaciqqidx) {
809 		err = request_irq(adap->msix_info[msi_index].vec,
810 				  t4_sge_intr_msix, 0,
811 				  adap->msix_info[msi_index].desc,
812 				  &s->rdmaciq[rdmaciqqidx].rspq);
813 		if (err)
814 			goto unwind;
815 		msi_index++;
816 	}
817 	return 0;
818 
819 unwind:
820 	while (--rdmaciqqidx >= 0)
821 		free_irq(adap->msix_info[--msi_index].vec,
822 			 &s->rdmaciq[rdmaciqqidx].rspq);
823 	while (--rdmaqidx >= 0)
824 		free_irq(adap->msix_info[--msi_index].vec,
825 			 &s->rdmarxq[rdmaqidx].rspq);
826 	while (--ofldqidx >= 0)
827 		free_irq(adap->msix_info[--msi_index].vec,
828 			 &s->ofldrxq[ofldqidx].rspq);
829 	while (--ethqidx >= 0)
830 		free_irq(adap->msix_info[--msi_index].vec,
831 			 &s->ethrxq[ethqidx].rspq);
832 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833 	return err;
834 }
835 
836 static void free_msix_queue_irqs(struct adapter *adap)
837 {
838 	int i, msi_index = 2;
839 	struct sge *s = &adap->sge;
840 
841 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842 	for_each_ethrxq(s, i)
843 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844 	for_each_ofldrxq(s, i)
845 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846 	for_each_rdmarxq(s, i)
847 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848 	for_each_rdmaciq(s, i)
849 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850 }
851 
852 /**
853  *	cxgb4_write_rss - write the RSS table for a given port
854  *	@pi: the port
855  *	@queues: array of queue indices for RSS
856  *
857  *	Sets up the portion of the HW RSS table for the port's VI to distribute
858  *	packets to the Rx queues in @queues.
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862 	u16 *rss;
863 	int i, err;
864 	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
865 
866 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
867 	if (!rss)
868 		return -ENOMEM;
869 
870 	/* map the queue indices to queue ids */
871 	for (i = 0; i < pi->rss_size; i++, queues++)
872 		rss[i] = q[*queues].rspq.abs_id;
873 
874 	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
875 				  pi->rss_size, rss, pi->rss_size);
876 	kfree(rss);
877 	return err;
878 }
879 
880 /**
881  *	setup_rss - configure RSS
882  *	@adap: the adapter
883  *
884  *	Sets up RSS for each port.
885  */
886 static int setup_rss(struct adapter *adap)
887 {
888 	int i, err;
889 
890 	for_each_port(adap, i) {
891 		const struct port_info *pi = adap2pinfo(adap, i);
892 
893 		err = cxgb4_write_rss(pi, pi->rss);
894 		if (err)
895 			return err;
896 	}
897 	return 0;
898 }
899 
900 /*
901  * Return the channel of the ingress queue with the given qid.
902  */
903 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
904 {
905 	qid -= p->ingr_start;
906 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
907 }
908 
909 /*
910  * Wait until all NAPI handlers are descheduled.
911  */
912 static void quiesce_rx(struct adapter *adap)
913 {
914 	int i;
915 
916 	for (i = 0; i < adap->sge.ingr_sz; i++) {
917 		struct sge_rspq *q = adap->sge.ingr_map[i];
918 
919 		if (q && q->handler) {
920 			napi_disable(&q->napi);
921 			local_bh_disable();
922 			while (!cxgb_poll_lock_napi(q))
923 				mdelay(1);
924 			local_bh_enable();
925 		}
926 
927 	}
928 }
929 
930 /* Disable interrupt and napi handler */
931 static void disable_interrupts(struct adapter *adap)
932 {
933 	if (adap->flags & FULL_INIT_DONE) {
934 		t4_intr_disable(adap);
935 		if (adap->flags & USING_MSIX) {
936 			free_msix_queue_irqs(adap);
937 			free_irq(adap->msix_info[0].vec, adap);
938 		} else {
939 			free_irq(adap->pdev->irq, adap);
940 		}
941 		quiesce_rx(adap);
942 	}
943 }
944 
945 /*
946  * Enable NAPI scheduling and interrupt generation for all Rx queues.
947  */
948 static void enable_rx(struct adapter *adap)
949 {
950 	int i;
951 
952 	for (i = 0; i < adap->sge.ingr_sz; i++) {
953 		struct sge_rspq *q = adap->sge.ingr_map[i];
954 
955 		if (!q)
956 			continue;
957 		if (q->handler) {
958 			cxgb_busy_poll_init_lock(q);
959 			napi_enable(&q->napi);
960 		}
961 		/* 0-increment GTS to start the timer and enable interrupts */
962 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
963 			     SEINTARM_V(q->intr_params) |
964 			     INGRESSQID_V(q->cntxt_id));
965 	}
966 }
967 
968 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
969 			   unsigned int nq, unsigned int per_chan, int msi_idx,
970 			   u16 *ids)
971 {
972 	int i, err;
973 
974 	for (i = 0; i < nq; i++, q++) {
975 		if (msi_idx > 0)
976 			msi_idx++;
977 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
978 				       adap->port[i / per_chan],
979 				       msi_idx, q->fl.size ? &q->fl : NULL,
980 				       uldrx_handler);
981 		if (err)
982 			return err;
983 		memset(&q->stats, 0, sizeof(q->stats));
984 		if (ids)
985 			ids[i] = q->rspq.abs_id;
986 	}
987 	return 0;
988 }
989 
990 /**
991  *	setup_sge_queues - configure SGE Tx/Rx/response queues
992  *	@adap: the adapter
993  *
994  *	Determines how many sets of SGE queues to use and initializes them.
995  *	We support multiple queue sets per port if we have MSI-X, otherwise
996  *	just one queue set per port.
997  */
998 static int setup_sge_queues(struct adapter *adap)
999 {
1000 	int err, msi_idx, i, j;
1001 	struct sge *s = &adap->sge;
1002 
1003 	bitmap_zero(s->starving_fl, s->egr_sz);
1004 	bitmap_zero(s->txq_maperr, s->egr_sz);
1005 
1006 	if (adap->flags & USING_MSIX)
1007 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1008 	else {
1009 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1010 				       NULL, NULL);
1011 		if (err)
1012 			return err;
1013 		msi_idx = -((int)s->intrq.abs_id + 1);
1014 	}
1015 
1016 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017 	 * don't forget to update the following which need to be
1018 	 * synchronized to and changes here.
1019 	 *
1020 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1021 	 *
1022 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023 	 *    to accommodate any new/deleted Ingress Queues
1024 	 *    which need MSI-X Vectors.
1025 	 *
1026 	 * 3. Update sge_qinfo_show() to include information on the
1027 	 *    new/deleted queues.
1028 	 */
1029 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030 			       msi_idx, NULL, fwevtq_handler);
1031 	if (err) {
1032 freeout:	t4_free_sge_resources(adap);
1033 		return err;
1034 	}
1035 
1036 	for_each_port(adap, i) {
1037 		struct net_device *dev = adap->port[i];
1038 		struct port_info *pi = netdev_priv(dev);
1039 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041 
1042 		for (j = 0; j < pi->nqsets; j++, q++) {
1043 			if (msi_idx > 0)
1044 				msi_idx++;
1045 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046 					       msi_idx, &q->fl,
1047 					       t4_ethrx_handler);
1048 			if (err)
1049 				goto freeout;
1050 			q->rspq.idx = j;
1051 			memset(&q->stats, 0, sizeof(q->stats));
1052 		}
1053 		for (j = 0; j < pi->nqsets; j++, t++) {
1054 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1055 					netdev_get_tx_queue(dev, j),
1056 					s->fw_evtq.cntxt_id);
1057 			if (err)
1058 				goto freeout;
1059 		}
1060 	}
1061 
1062 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1063 	for_each_ofldrxq(s, i) {
1064 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1065 					    adap->port[i / j],
1066 					    s->fw_evtq.cntxt_id);
1067 		if (err)
1068 			goto freeout;
1069 	}
1070 
1071 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1072 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1073 	if (err) \
1074 		goto freeout; \
1075 	if (msi_idx > 0) \
1076 		msi_idx += nq; \
1077 } while (0)
1078 
1079 	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1080 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1081 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1082 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1083 
1084 #undef ALLOC_OFLD_RXQS
1085 
1086 	for_each_port(adap, i) {
1087 		/*
1088 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1089 		 * have RDMA queues, and that's the right value.
1090 		 */
1091 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1092 					    s->fw_evtq.cntxt_id,
1093 					    s->rdmarxq[i].rspq.cntxt_id);
1094 		if (err)
1095 			goto freeout;
1096 	}
1097 
1098 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1099 				MPS_TRC_RSS_CONTROL_A :
1100 				MPS_T5_TRC_RSS_CONTROL_A,
1101 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1102 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1103 	return 0;
1104 }
1105 
1106 /*
1107  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1108  * The allocated memory is cleared.
1109  */
1110 void *t4_alloc_mem(size_t size)
1111 {
1112 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1113 
1114 	if (!p)
1115 		p = vzalloc(size);
1116 	return p;
1117 }
1118 
1119 /*
1120  * Free memory allocated through alloc_mem().
1121  */
1122 void t4_free_mem(void *addr)
1123 {
1124 	if (is_vmalloc_addr(addr))
1125 		vfree(addr);
1126 	else
1127 		kfree(addr);
1128 }
1129 
1130 /* Send a Work Request to write the filter at a specified index.  We construct
1131  * a Firmware Filter Work Request to have the work done and put the indicated
1132  * filter into "pending" mode which will prevent any further actions against
1133  * it till we get a reply from the firmware on the completion status of the
1134  * request.
1135  */
1136 static int set_filter_wr(struct adapter *adapter, int fidx)
1137 {
1138 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1139 	struct sk_buff *skb;
1140 	struct fw_filter_wr *fwr;
1141 	unsigned int ftid;
1142 
1143 	/* If the new filter requires loopback Destination MAC and/or VLAN
1144 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1145 	 * the filter.
1146 	 */
1147 	if (f->fs.newdmac || f->fs.newvlan) {
1148 		/* allocate L2T entry for new filter */
1149 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1150 		if (f->l2t == NULL)
1151 			return -EAGAIN;
1152 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1153 					f->fs.eport, f->fs.dmac)) {
1154 			cxgb4_l2t_release(f->l2t);
1155 			f->l2t = NULL;
1156 			return -ENOMEM;
1157 		}
1158 	}
1159 
1160 	ftid = adapter->tids.ftid_base + fidx;
1161 
1162 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1163 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1164 	memset(fwr, 0, sizeof(*fwr));
1165 
1166 	/* It would be nice to put most of the following in t4_hw.c but most
1167 	 * of the work is translating the cxgbtool ch_filter_specification
1168 	 * into the Work Request and the definition of that structure is
1169 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1170 	 * common code.  We may eventually try to come up with a more neutral
1171 	 * filter specification structure but for now it's easiest to simply
1172 	 * put this fairly direct code in line ...
1173 	 */
1174 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1175 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1176 	fwr->tid_to_iq =
1177 		htonl(FW_FILTER_WR_TID_V(ftid) |
1178 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1179 		      FW_FILTER_WR_NOREPLY_V(0) |
1180 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1181 	fwr->del_filter_to_l2tix =
1182 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1183 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1184 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1185 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1186 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1187 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1188 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1189 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1190 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1191 					     f->fs.newvlan == VLAN_REWRITE) |
1192 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1193 					    f->fs.newvlan == VLAN_REWRITE) |
1194 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1195 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1196 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1197 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1198 	fwr->ethtype = htons(f->fs.val.ethtype);
1199 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1200 	fwr->frag_to_ovlan_vldm =
1201 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1202 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1203 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1204 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1205 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1206 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1207 	fwr->smac_sel = 0;
1208 	fwr->rx_chan_rx_rpl_iq =
1209 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1210 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1211 	fwr->maci_to_matchtypem =
1212 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1213 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1214 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1215 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1216 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1217 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1218 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1219 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1220 	fwr->ptcl = f->fs.val.proto;
1221 	fwr->ptclm = f->fs.mask.proto;
1222 	fwr->ttyp = f->fs.val.tos;
1223 	fwr->ttypm = f->fs.mask.tos;
1224 	fwr->ivlan = htons(f->fs.val.ivlan);
1225 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1226 	fwr->ovlan = htons(f->fs.val.ovlan);
1227 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1228 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1229 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1230 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1231 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1232 	fwr->lp = htons(f->fs.val.lport);
1233 	fwr->lpm = htons(f->fs.mask.lport);
1234 	fwr->fp = htons(f->fs.val.fport);
1235 	fwr->fpm = htons(f->fs.mask.fport);
1236 	if (f->fs.newsmac)
1237 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1238 
1239 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1240 	 * When we get the Work Request Reply we'll clear the pending status.
1241 	 */
1242 	f->pending = 1;
1243 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1244 	t4_ofld_send(adapter, skb);
1245 	return 0;
1246 }
1247 
1248 /* Delete the filter at a specified index.
1249  */
1250 static int del_filter_wr(struct adapter *adapter, int fidx)
1251 {
1252 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1253 	struct sk_buff *skb;
1254 	struct fw_filter_wr *fwr;
1255 	unsigned int len, ftid;
1256 
1257 	len = sizeof(*fwr);
1258 	ftid = adapter->tids.ftid_base + fidx;
1259 
1260 	skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1261 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1262 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1263 
1264 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1265 	 * When we get the Work Request Reply we'll clear the pending status.
1266 	 */
1267 	f->pending = 1;
1268 	t4_mgmt_tx(adapter, skb);
1269 	return 0;
1270 }
1271 
1272 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1273 			     void *accel_priv, select_queue_fallback_t fallback)
1274 {
1275 	int txq;
1276 
1277 #ifdef CONFIG_CHELSIO_T4_DCB
1278 	/* If a Data Center Bridging has been successfully negotiated on this
1279 	 * link then we'll use the skb's priority to map it to a TX Queue.
1280 	 * The skb's priority is determined via the VLAN Tag Priority Code
1281 	 * Point field.
1282 	 */
1283 	if (cxgb4_dcb_enabled(dev)) {
1284 		u16 vlan_tci;
1285 		int err;
1286 
1287 		err = vlan_get_tag(skb, &vlan_tci);
1288 		if (unlikely(err)) {
1289 			if (net_ratelimit())
1290 				netdev_warn(dev,
1291 					    "TX Packet without VLAN Tag on DCB Link\n");
1292 			txq = 0;
1293 		} else {
1294 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1295 #ifdef CONFIG_CHELSIO_T4_FCOE
1296 			if (skb->protocol == htons(ETH_P_FCOE))
1297 				txq = skb->priority & 0x7;
1298 #endif /* CONFIG_CHELSIO_T4_FCOE */
1299 		}
1300 		return txq;
1301 	}
1302 #endif /* CONFIG_CHELSIO_T4_DCB */
1303 
1304 	if (select_queue) {
1305 		txq = (skb_rx_queue_recorded(skb)
1306 			? skb_get_rx_queue(skb)
1307 			: smp_processor_id());
1308 
1309 		while (unlikely(txq >= dev->real_num_tx_queues))
1310 			txq -= dev->real_num_tx_queues;
1311 
1312 		return txq;
1313 	}
1314 
1315 	return fallback(dev, skb) % dev->real_num_tx_queues;
1316 }
1317 
1318 static inline int is_offload(const struct adapter *adap)
1319 {
1320 	return adap->params.offload;
1321 }
1322 
1323 static int closest_timer(const struct sge *s, int time)
1324 {
1325 	int i, delta, match = 0, min_delta = INT_MAX;
1326 
1327 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1328 		delta = time - s->timer_val[i];
1329 		if (delta < 0)
1330 			delta = -delta;
1331 		if (delta < min_delta) {
1332 			min_delta = delta;
1333 			match = i;
1334 		}
1335 	}
1336 	return match;
1337 }
1338 
1339 static int closest_thres(const struct sge *s, int thres)
1340 {
1341 	int i, delta, match = 0, min_delta = INT_MAX;
1342 
1343 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1344 		delta = thres - s->counter_val[i];
1345 		if (delta < 0)
1346 			delta = -delta;
1347 		if (delta < min_delta) {
1348 			min_delta = delta;
1349 			match = i;
1350 		}
1351 	}
1352 	return match;
1353 }
1354 
1355 /**
1356  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1357  *	@q: the Rx queue
1358  *	@us: the hold-off time in us, or 0 to disable timer
1359  *	@cnt: the hold-off packet count, or 0 to disable counter
1360  *
1361  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1362  *	one of the two needs to be enabled for the queue to generate interrupts.
1363  */
1364 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1365 			       unsigned int us, unsigned int cnt)
1366 {
1367 	struct adapter *adap = q->adap;
1368 
1369 	if ((us | cnt) == 0)
1370 		cnt = 1;
1371 
1372 	if (cnt) {
1373 		int err;
1374 		u32 v, new_idx;
1375 
1376 		new_idx = closest_thres(&adap->sge, cnt);
1377 		if (q->desc && q->pktcnt_idx != new_idx) {
1378 			/* the queue has already been created, update it */
1379 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1380 			    FW_PARAMS_PARAM_X_V(
1381 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1382 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1383 			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1384 					    &new_idx);
1385 			if (err)
1386 				return err;
1387 		}
1388 		q->pktcnt_idx = new_idx;
1389 	}
1390 
1391 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1392 	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1393 	return 0;
1394 }
1395 
1396 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1397 {
1398 	const struct port_info *pi = netdev_priv(dev);
1399 	netdev_features_t changed = dev->features ^ features;
1400 	int err;
1401 
1402 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1403 		return 0;
1404 
1405 	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1406 			    -1, -1, -1,
1407 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1408 	if (unlikely(err))
1409 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1410 	return err;
1411 }
1412 
1413 static int setup_debugfs(struct adapter *adap)
1414 {
1415 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1416 		return -1;
1417 
1418 #ifdef CONFIG_DEBUG_FS
1419 	t4_setup_debugfs(adap);
1420 #endif
1421 	return 0;
1422 }
1423 
1424 /*
1425  * upper-layer driver support
1426  */
1427 
1428 /*
1429  * Allocate an active-open TID and set it to the supplied value.
1430  */
1431 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1432 {
1433 	int atid = -1;
1434 
1435 	spin_lock_bh(&t->atid_lock);
1436 	if (t->afree) {
1437 		union aopen_entry *p = t->afree;
1438 
1439 		atid = (p - t->atid_tab) + t->atid_base;
1440 		t->afree = p->next;
1441 		p->data = data;
1442 		t->atids_in_use++;
1443 	}
1444 	spin_unlock_bh(&t->atid_lock);
1445 	return atid;
1446 }
1447 EXPORT_SYMBOL(cxgb4_alloc_atid);
1448 
1449 /*
1450  * Release an active-open TID.
1451  */
1452 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1453 {
1454 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1455 
1456 	spin_lock_bh(&t->atid_lock);
1457 	p->next = t->afree;
1458 	t->afree = p;
1459 	t->atids_in_use--;
1460 	spin_unlock_bh(&t->atid_lock);
1461 }
1462 EXPORT_SYMBOL(cxgb4_free_atid);
1463 
1464 /*
1465  * Allocate a server TID and set it to the supplied value.
1466  */
1467 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1468 {
1469 	int stid;
1470 
1471 	spin_lock_bh(&t->stid_lock);
1472 	if (family == PF_INET) {
1473 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1474 		if (stid < t->nstids)
1475 			__set_bit(stid, t->stid_bmap);
1476 		else
1477 			stid = -1;
1478 	} else {
1479 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1480 		if (stid < 0)
1481 			stid = -1;
1482 	}
1483 	if (stid >= 0) {
1484 		t->stid_tab[stid].data = data;
1485 		stid += t->stid_base;
1486 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1487 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1488 		 * needs 2 TIDs.
1489 		 */
1490 		if (family == PF_INET)
1491 			t->stids_in_use++;
1492 		else
1493 			t->stids_in_use += 4;
1494 	}
1495 	spin_unlock_bh(&t->stid_lock);
1496 	return stid;
1497 }
1498 EXPORT_SYMBOL(cxgb4_alloc_stid);
1499 
1500 /* Allocate a server filter TID and set it to the supplied value.
1501  */
1502 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1503 {
1504 	int stid;
1505 
1506 	spin_lock_bh(&t->stid_lock);
1507 	if (family == PF_INET) {
1508 		stid = find_next_zero_bit(t->stid_bmap,
1509 				t->nstids + t->nsftids, t->nstids);
1510 		if (stid < (t->nstids + t->nsftids))
1511 			__set_bit(stid, t->stid_bmap);
1512 		else
1513 			stid = -1;
1514 	} else {
1515 		stid = -1;
1516 	}
1517 	if (stid >= 0) {
1518 		t->stid_tab[stid].data = data;
1519 		stid -= t->nstids;
1520 		stid += t->sftid_base;
1521 		t->stids_in_use++;
1522 	}
1523 	spin_unlock_bh(&t->stid_lock);
1524 	return stid;
1525 }
1526 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1527 
1528 /* Release a server TID.
1529  */
1530 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1531 {
1532 	/* Is it a server filter TID? */
1533 	if (t->nsftids && (stid >= t->sftid_base)) {
1534 		stid -= t->sftid_base;
1535 		stid += t->nstids;
1536 	} else {
1537 		stid -= t->stid_base;
1538 	}
1539 
1540 	spin_lock_bh(&t->stid_lock);
1541 	if (family == PF_INET)
1542 		__clear_bit(stid, t->stid_bmap);
1543 	else
1544 		bitmap_release_region(t->stid_bmap, stid, 2);
1545 	t->stid_tab[stid].data = NULL;
1546 	if (family == PF_INET)
1547 		t->stids_in_use--;
1548 	else
1549 		t->stids_in_use -= 4;
1550 	spin_unlock_bh(&t->stid_lock);
1551 }
1552 EXPORT_SYMBOL(cxgb4_free_stid);
1553 
1554 /*
1555  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1556  */
1557 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1558 			   unsigned int tid)
1559 {
1560 	struct cpl_tid_release *req;
1561 
1562 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1563 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1564 	INIT_TP_WR(req, tid);
1565 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1566 }
1567 
1568 /*
1569  * Queue a TID release request and if necessary schedule a work queue to
1570  * process it.
1571  */
1572 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1573 				    unsigned int tid)
1574 {
1575 	void **p = &t->tid_tab[tid];
1576 	struct adapter *adap = container_of(t, struct adapter, tids);
1577 
1578 	spin_lock_bh(&adap->tid_release_lock);
1579 	*p = adap->tid_release_head;
1580 	/* Low 2 bits encode the Tx channel number */
1581 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1582 	if (!adap->tid_release_task_busy) {
1583 		adap->tid_release_task_busy = true;
1584 		queue_work(adap->workq, &adap->tid_release_task);
1585 	}
1586 	spin_unlock_bh(&adap->tid_release_lock);
1587 }
1588 
1589 /*
1590  * Process the list of pending TID release requests.
1591  */
1592 static void process_tid_release_list(struct work_struct *work)
1593 {
1594 	struct sk_buff *skb;
1595 	struct adapter *adap;
1596 
1597 	adap = container_of(work, struct adapter, tid_release_task);
1598 
1599 	spin_lock_bh(&adap->tid_release_lock);
1600 	while (adap->tid_release_head) {
1601 		void **p = adap->tid_release_head;
1602 		unsigned int chan = (uintptr_t)p & 3;
1603 		p = (void *)p - chan;
1604 
1605 		adap->tid_release_head = *p;
1606 		*p = NULL;
1607 		spin_unlock_bh(&adap->tid_release_lock);
1608 
1609 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1610 					 GFP_KERNEL)))
1611 			schedule_timeout_uninterruptible(1);
1612 
1613 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1614 		t4_ofld_send(adap, skb);
1615 		spin_lock_bh(&adap->tid_release_lock);
1616 	}
1617 	adap->tid_release_task_busy = false;
1618 	spin_unlock_bh(&adap->tid_release_lock);
1619 }
1620 
1621 /*
1622  * Release a TID and inform HW.  If we are unable to allocate the release
1623  * message we defer to a work queue.
1624  */
1625 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1626 {
1627 	void *old;
1628 	struct sk_buff *skb;
1629 	struct adapter *adap = container_of(t, struct adapter, tids);
1630 
1631 	old = t->tid_tab[tid];
1632 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1633 	if (likely(skb)) {
1634 		t->tid_tab[tid] = NULL;
1635 		mk_tid_release(skb, chan, tid);
1636 		t4_ofld_send(adap, skb);
1637 	} else
1638 		cxgb4_queue_tid_release(t, chan, tid);
1639 	if (old)
1640 		atomic_dec(&t->tids_in_use);
1641 }
1642 EXPORT_SYMBOL(cxgb4_remove_tid);
1643 
1644 /*
1645  * Allocate and initialize the TID tables.  Returns 0 on success.
1646  */
1647 static int tid_init(struct tid_info *t)
1648 {
1649 	size_t size;
1650 	unsigned int stid_bmap_size;
1651 	unsigned int natids = t->natids;
1652 	struct adapter *adap = container_of(t, struct adapter, tids);
1653 
1654 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1655 	size = t->ntids * sizeof(*t->tid_tab) +
1656 	       natids * sizeof(*t->atid_tab) +
1657 	       t->nstids * sizeof(*t->stid_tab) +
1658 	       t->nsftids * sizeof(*t->stid_tab) +
1659 	       stid_bmap_size * sizeof(long) +
1660 	       t->nftids * sizeof(*t->ftid_tab) +
1661 	       t->nsftids * sizeof(*t->ftid_tab);
1662 
1663 	t->tid_tab = t4_alloc_mem(size);
1664 	if (!t->tid_tab)
1665 		return -ENOMEM;
1666 
1667 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1668 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1669 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1670 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1671 	spin_lock_init(&t->stid_lock);
1672 	spin_lock_init(&t->atid_lock);
1673 
1674 	t->stids_in_use = 0;
1675 	t->afree = NULL;
1676 	t->atids_in_use = 0;
1677 	atomic_set(&t->tids_in_use, 0);
1678 
1679 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1680 	if (natids) {
1681 		while (--natids)
1682 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1683 		t->afree = t->atid_tab;
1684 	}
1685 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1686 	/* Reserve stid 0 for T4/T5 adapters */
1687 	if (!t->stid_base &&
1688 	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1689 		__set_bit(0, t->stid_bmap);
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  *	cxgb4_create_server - create an IP server
1696  *	@dev: the device
1697  *	@stid: the server TID
1698  *	@sip: local IP address to bind server to
1699  *	@sport: the server's TCP port
1700  *	@queue: queue to direct messages from this server to
1701  *
1702  *	Create an IP server for the given port and address.
1703  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1704  */
1705 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1706 			__be32 sip, __be16 sport, __be16 vlan,
1707 			unsigned int queue)
1708 {
1709 	unsigned int chan;
1710 	struct sk_buff *skb;
1711 	struct adapter *adap;
1712 	struct cpl_pass_open_req *req;
1713 	int ret;
1714 
1715 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1716 	if (!skb)
1717 		return -ENOMEM;
1718 
1719 	adap = netdev2adap(dev);
1720 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1721 	INIT_TP_WR(req, 0);
1722 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1723 	req->local_port = sport;
1724 	req->peer_port = htons(0);
1725 	req->local_ip = sip;
1726 	req->peer_ip = htonl(0);
1727 	chan = rxq_to_chan(&adap->sge, queue);
1728 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1729 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1730 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1731 	ret = t4_mgmt_tx(adap, skb);
1732 	return net_xmit_eval(ret);
1733 }
1734 EXPORT_SYMBOL(cxgb4_create_server);
1735 
1736 /*	cxgb4_create_server6 - create an IPv6 server
1737  *	@dev: the device
1738  *	@stid: the server TID
1739  *	@sip: local IPv6 address to bind server to
1740  *	@sport: the server's TCP port
1741  *	@queue: queue to direct messages from this server to
1742  *
1743  *	Create an IPv6 server for the given port and address.
1744  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1745  */
1746 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1747 			 const struct in6_addr *sip, __be16 sport,
1748 			 unsigned int queue)
1749 {
1750 	unsigned int chan;
1751 	struct sk_buff *skb;
1752 	struct adapter *adap;
1753 	struct cpl_pass_open_req6 *req;
1754 	int ret;
1755 
1756 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1757 	if (!skb)
1758 		return -ENOMEM;
1759 
1760 	adap = netdev2adap(dev);
1761 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1762 	INIT_TP_WR(req, 0);
1763 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1764 	req->local_port = sport;
1765 	req->peer_port = htons(0);
1766 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1767 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1768 	req->peer_ip_hi = cpu_to_be64(0);
1769 	req->peer_ip_lo = cpu_to_be64(0);
1770 	chan = rxq_to_chan(&adap->sge, queue);
1771 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1772 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1773 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1774 	ret = t4_mgmt_tx(adap, skb);
1775 	return net_xmit_eval(ret);
1776 }
1777 EXPORT_SYMBOL(cxgb4_create_server6);
1778 
1779 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1780 			unsigned int queue, bool ipv6)
1781 {
1782 	struct sk_buff *skb;
1783 	struct adapter *adap;
1784 	struct cpl_close_listsvr_req *req;
1785 	int ret;
1786 
1787 	adap = netdev2adap(dev);
1788 
1789 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1790 	if (!skb)
1791 		return -ENOMEM;
1792 
1793 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1794 	INIT_TP_WR(req, 0);
1795 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1796 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1797 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1798 	ret = t4_mgmt_tx(adap, skb);
1799 	return net_xmit_eval(ret);
1800 }
1801 EXPORT_SYMBOL(cxgb4_remove_server);
1802 
1803 /**
1804  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1805  *	@mtus: the HW MTU table
1806  *	@mtu: the target MTU
1807  *	@idx: index of selected entry in the MTU table
1808  *
1809  *	Returns the index and the value in the HW MTU table that is closest to
1810  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1811  *	table, in which case that smallest available value is selected.
1812  */
1813 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1814 			    unsigned int *idx)
1815 {
1816 	unsigned int i = 0;
1817 
1818 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1819 		++i;
1820 	if (idx)
1821 		*idx = i;
1822 	return mtus[i];
1823 }
1824 EXPORT_SYMBOL(cxgb4_best_mtu);
1825 
1826 /**
1827  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1828  *     @mtus: the HW MTU table
1829  *     @header_size: Header Size
1830  *     @data_size_max: maximum Data Segment Size
1831  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1832  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1833  *
1834  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1835  *     MTU Table based solely on a Maximum MTU parameter, we break that
1836  *     parameter up into a Header Size and Maximum Data Segment Size, and
1837  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1838  *     the Hardware MTU Table which will result in a Data Segment Size with
1839  *     the requested alignment _and_ that MTU isn't "too far" from the
1840  *     closest MTU, then we'll return that rather than the closest MTU.
1841  */
1842 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1843 				    unsigned short header_size,
1844 				    unsigned short data_size_max,
1845 				    unsigned short data_size_align,
1846 				    unsigned int *mtu_idxp)
1847 {
1848 	unsigned short max_mtu = header_size + data_size_max;
1849 	unsigned short data_size_align_mask = data_size_align - 1;
1850 	int mtu_idx, aligned_mtu_idx;
1851 
1852 	/* Scan the MTU Table till we find an MTU which is larger than our
1853 	 * Maximum MTU or we reach the end of the table.  Along the way,
1854 	 * record the last MTU found, if any, which will result in a Data
1855 	 * Segment Length matching the requested alignment.
1856 	 */
1857 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1858 		unsigned short data_size = mtus[mtu_idx] - header_size;
1859 
1860 		/* If this MTU minus the Header Size would result in a
1861 		 * Data Segment Size of the desired alignment, remember it.
1862 		 */
1863 		if ((data_size & data_size_align_mask) == 0)
1864 			aligned_mtu_idx = mtu_idx;
1865 
1866 		/* If we're not at the end of the Hardware MTU Table and the
1867 		 * next element is larger than our Maximum MTU, drop out of
1868 		 * the loop.
1869 		 */
1870 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1871 			break;
1872 	}
1873 
1874 	/* If we fell out of the loop because we ran to the end of the table,
1875 	 * then we just have to use the last [largest] entry.
1876 	 */
1877 	if (mtu_idx == NMTUS)
1878 		mtu_idx--;
1879 
1880 	/* If we found an MTU which resulted in the requested Data Segment
1881 	 * Length alignment and that's "not far" from the largest MTU which is
1882 	 * less than or equal to the maximum MTU, then use that.
1883 	 */
1884 	if (aligned_mtu_idx >= 0 &&
1885 	    mtu_idx - aligned_mtu_idx <= 1)
1886 		mtu_idx = aligned_mtu_idx;
1887 
1888 	/* If the caller has passed in an MTU Index pointer, pass the
1889 	 * MTU Index back.  Return the MTU value.
1890 	 */
1891 	if (mtu_idxp)
1892 		*mtu_idxp = mtu_idx;
1893 	return mtus[mtu_idx];
1894 }
1895 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1896 
1897 /**
1898  *	cxgb4_port_chan - get the HW channel of a port
1899  *	@dev: the net device for the port
1900  *
1901  *	Return the HW Tx channel of the given port.
1902  */
1903 unsigned int cxgb4_port_chan(const struct net_device *dev)
1904 {
1905 	return netdev2pinfo(dev)->tx_chan;
1906 }
1907 EXPORT_SYMBOL(cxgb4_port_chan);
1908 
1909 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1910 {
1911 	struct adapter *adap = netdev2adap(dev);
1912 	u32 v1, v2, lp_count, hp_count;
1913 
1914 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1915 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1916 	if (is_t4(adap->params.chip)) {
1917 		lp_count = LP_COUNT_G(v1);
1918 		hp_count = HP_COUNT_G(v1);
1919 	} else {
1920 		lp_count = LP_COUNT_T5_G(v1);
1921 		hp_count = HP_COUNT_T5_G(v2);
1922 	}
1923 	return lpfifo ? lp_count : hp_count;
1924 }
1925 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1926 
1927 /**
1928  *	cxgb4_port_viid - get the VI id of a port
1929  *	@dev: the net device for the port
1930  *
1931  *	Return the VI id of the given port.
1932  */
1933 unsigned int cxgb4_port_viid(const struct net_device *dev)
1934 {
1935 	return netdev2pinfo(dev)->viid;
1936 }
1937 EXPORT_SYMBOL(cxgb4_port_viid);
1938 
1939 /**
1940  *	cxgb4_port_idx - get the index of a port
1941  *	@dev: the net device for the port
1942  *
1943  *	Return the index of the given port.
1944  */
1945 unsigned int cxgb4_port_idx(const struct net_device *dev)
1946 {
1947 	return netdev2pinfo(dev)->port_id;
1948 }
1949 EXPORT_SYMBOL(cxgb4_port_idx);
1950 
1951 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1952 			 struct tp_tcp_stats *v6)
1953 {
1954 	struct adapter *adap = pci_get_drvdata(pdev);
1955 
1956 	spin_lock(&adap->stats_lock);
1957 	t4_tp_get_tcp_stats(adap, v4, v6);
1958 	spin_unlock(&adap->stats_lock);
1959 }
1960 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1961 
1962 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1963 		      const unsigned int *pgsz_order)
1964 {
1965 	struct adapter *adap = netdev2adap(dev);
1966 
1967 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1968 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1969 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1970 		     HPZ3_V(pgsz_order[3]));
1971 }
1972 EXPORT_SYMBOL(cxgb4_iscsi_init);
1973 
1974 int cxgb4_flush_eq_cache(struct net_device *dev)
1975 {
1976 	struct adapter *adap = netdev2adap(dev);
1977 	int ret;
1978 
1979 	ret = t4_fwaddrspace_write(adap, adap->mbox,
1980 				   0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1984 
1985 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1986 {
1987 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1988 	__be64 indices;
1989 	int ret;
1990 
1991 	spin_lock(&adap->win0_lock);
1992 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1993 			   sizeof(indices), (__be32 *)&indices,
1994 			   T4_MEMORY_READ);
1995 	spin_unlock(&adap->win0_lock);
1996 	if (!ret) {
1997 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1998 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1999 	}
2000 	return ret;
2001 }
2002 
2003 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2004 			u16 size)
2005 {
2006 	struct adapter *adap = netdev2adap(dev);
2007 	u16 hw_pidx, hw_cidx;
2008 	int ret;
2009 
2010 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2011 	if (ret)
2012 		goto out;
2013 
2014 	if (pidx != hw_pidx) {
2015 		u16 delta;
2016 		u32 val;
2017 
2018 		if (pidx >= hw_pidx)
2019 			delta = pidx - hw_pidx;
2020 		else
2021 			delta = size - hw_pidx + pidx;
2022 
2023 		if (is_t4(adap->params.chip))
2024 			val = PIDX_V(delta);
2025 		else
2026 			val = PIDX_T5_V(delta);
2027 		wmb();
2028 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2029 			     QID_V(qid) | val);
2030 	}
2031 out:
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2035 
2036 void cxgb4_disable_db_coalescing(struct net_device *dev)
2037 {
2038 	struct adapter *adap;
2039 
2040 	adap = netdev2adap(dev);
2041 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2042 			 NOCOALESCE_F);
2043 }
2044 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2045 
2046 void cxgb4_enable_db_coalescing(struct net_device *dev)
2047 {
2048 	struct adapter *adap;
2049 
2050 	adap = netdev2adap(dev);
2051 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2052 }
2053 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2054 
2055 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2056 {
2057 	struct adapter *adap;
2058 	u32 offset, memtype, memaddr;
2059 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2060 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2061 	int ret;
2062 
2063 	adap = netdev2adap(dev);
2064 
2065 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2066 
2067 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2068 	 * This code assumes that the memory is laid out starting at offset 0
2069 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2070 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2071 	 * MC0, and some have both MC0 and MC1.
2072 	 */
2073 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2074 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2075 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2076 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2077 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2078 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2079 
2080 	edc0_end = edc0_size;
2081 	edc1_end = edc0_end + edc1_size;
2082 	mc0_end = edc1_end + mc0_size;
2083 
2084 	if (offset < edc0_end) {
2085 		memtype = MEM_EDC0;
2086 		memaddr = offset;
2087 	} else if (offset < edc1_end) {
2088 		memtype = MEM_EDC1;
2089 		memaddr = offset - edc0_end;
2090 	} else {
2091 		if (offset < mc0_end) {
2092 			memtype = MEM_MC0;
2093 			memaddr = offset - edc1_end;
2094 		} else if (is_t4(adap->params.chip)) {
2095 			/* T4 only has a single memory channel */
2096 			goto err;
2097 		} else {
2098 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2099 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2100 			mc1_end = mc0_end + mc1_size;
2101 			if (offset < mc1_end) {
2102 				memtype = MEM_MC1;
2103 				memaddr = offset - mc0_end;
2104 			} else {
2105 				/* offset beyond the end of any memory */
2106 				goto err;
2107 			}
2108 		}
2109 	}
2110 
2111 	spin_lock(&adap->win0_lock);
2112 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2113 	spin_unlock(&adap->win0_lock);
2114 	return ret;
2115 
2116 err:
2117 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2118 		stag, offset);
2119 	return -EINVAL;
2120 }
2121 EXPORT_SYMBOL(cxgb4_read_tpte);
2122 
2123 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2124 {
2125 	u32 hi, lo;
2126 	struct adapter *adap;
2127 
2128 	adap = netdev2adap(dev);
2129 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2130 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2131 
2132 	return ((u64)hi << 32) | (u64)lo;
2133 }
2134 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2135 
2136 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2137 			 unsigned int qid,
2138 			 enum cxgb4_bar2_qtype qtype,
2139 			 u64 *pbar2_qoffset,
2140 			 unsigned int *pbar2_qid)
2141 {
2142 	return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2143 				 qid,
2144 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2145 				  ? T4_BAR2_QTYPE_EGRESS
2146 				  : T4_BAR2_QTYPE_INGRESS),
2147 				 pbar2_qoffset,
2148 				 pbar2_qid);
2149 }
2150 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2151 
2152 static struct pci_driver cxgb4_driver;
2153 
2154 static void check_neigh_update(struct neighbour *neigh)
2155 {
2156 	const struct device *parent;
2157 	const struct net_device *netdev = neigh->dev;
2158 
2159 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2160 		netdev = vlan_dev_real_dev(netdev);
2161 	parent = netdev->dev.parent;
2162 	if (parent && parent->driver == &cxgb4_driver.driver)
2163 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2164 }
2165 
2166 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2167 		       void *data)
2168 {
2169 	switch (event) {
2170 	case NETEVENT_NEIGH_UPDATE:
2171 		check_neigh_update(data);
2172 		break;
2173 	case NETEVENT_REDIRECT:
2174 	default:
2175 		break;
2176 	}
2177 	return 0;
2178 }
2179 
2180 static bool netevent_registered;
2181 static struct notifier_block cxgb4_netevent_nb = {
2182 	.notifier_call = netevent_cb
2183 };
2184 
2185 static void drain_db_fifo(struct adapter *adap, int usecs)
2186 {
2187 	u32 v1, v2, lp_count, hp_count;
2188 
2189 	do {
2190 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2191 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2192 		if (is_t4(adap->params.chip)) {
2193 			lp_count = LP_COUNT_G(v1);
2194 			hp_count = HP_COUNT_G(v1);
2195 		} else {
2196 			lp_count = LP_COUNT_T5_G(v1);
2197 			hp_count = HP_COUNT_T5_G(v2);
2198 		}
2199 
2200 		if (lp_count == 0 && hp_count == 0)
2201 			break;
2202 		set_current_state(TASK_UNINTERRUPTIBLE);
2203 		schedule_timeout(usecs_to_jiffies(usecs));
2204 	} while (1);
2205 }
2206 
2207 static void disable_txq_db(struct sge_txq *q)
2208 {
2209 	unsigned long flags;
2210 
2211 	spin_lock_irqsave(&q->db_lock, flags);
2212 	q->db_disabled = 1;
2213 	spin_unlock_irqrestore(&q->db_lock, flags);
2214 }
2215 
2216 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2217 {
2218 	spin_lock_irq(&q->db_lock);
2219 	if (q->db_pidx_inc) {
2220 		/* Make sure that all writes to the TX descriptors
2221 		 * are committed before we tell HW about them.
2222 		 */
2223 		wmb();
2224 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2225 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2226 		q->db_pidx_inc = 0;
2227 	}
2228 	q->db_disabled = 0;
2229 	spin_unlock_irq(&q->db_lock);
2230 }
2231 
2232 static void disable_dbs(struct adapter *adap)
2233 {
2234 	int i;
2235 
2236 	for_each_ethrxq(&adap->sge, i)
2237 		disable_txq_db(&adap->sge.ethtxq[i].q);
2238 	for_each_ofldrxq(&adap->sge, i)
2239 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2240 	for_each_port(adap, i)
2241 		disable_txq_db(&adap->sge.ctrlq[i].q);
2242 }
2243 
2244 static void enable_dbs(struct adapter *adap)
2245 {
2246 	int i;
2247 
2248 	for_each_ethrxq(&adap->sge, i)
2249 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2250 	for_each_ofldrxq(&adap->sge, i)
2251 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2252 	for_each_port(adap, i)
2253 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2254 }
2255 
2256 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2257 {
2258 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2259 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2260 				cmd);
2261 }
2262 
2263 static void process_db_full(struct work_struct *work)
2264 {
2265 	struct adapter *adap;
2266 
2267 	adap = container_of(work, struct adapter, db_full_task);
2268 
2269 	drain_db_fifo(adap, dbfifo_drain_delay);
2270 	enable_dbs(adap);
2271 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2272 	t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2273 			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2274 			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2275 }
2276 
2277 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2278 {
2279 	u16 hw_pidx, hw_cidx;
2280 	int ret;
2281 
2282 	spin_lock_irq(&q->db_lock);
2283 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2284 	if (ret)
2285 		goto out;
2286 	if (q->db_pidx != hw_pidx) {
2287 		u16 delta;
2288 		u32 val;
2289 
2290 		if (q->db_pidx >= hw_pidx)
2291 			delta = q->db_pidx - hw_pidx;
2292 		else
2293 			delta = q->size - hw_pidx + q->db_pidx;
2294 
2295 		if (is_t4(adap->params.chip))
2296 			val = PIDX_V(delta);
2297 		else
2298 			val = PIDX_T5_V(delta);
2299 		wmb();
2300 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2301 			     QID_V(q->cntxt_id) | val);
2302 	}
2303 out:
2304 	q->db_disabled = 0;
2305 	q->db_pidx_inc = 0;
2306 	spin_unlock_irq(&q->db_lock);
2307 	if (ret)
2308 		CH_WARN(adap, "DB drop recovery failed.\n");
2309 }
2310 static void recover_all_queues(struct adapter *adap)
2311 {
2312 	int i;
2313 
2314 	for_each_ethrxq(&adap->sge, i)
2315 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2316 	for_each_ofldrxq(&adap->sge, i)
2317 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2318 	for_each_port(adap, i)
2319 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2320 }
2321 
2322 static void process_db_drop(struct work_struct *work)
2323 {
2324 	struct adapter *adap;
2325 
2326 	adap = container_of(work, struct adapter, db_drop_task);
2327 
2328 	if (is_t4(adap->params.chip)) {
2329 		drain_db_fifo(adap, dbfifo_drain_delay);
2330 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2331 		drain_db_fifo(adap, dbfifo_drain_delay);
2332 		recover_all_queues(adap);
2333 		drain_db_fifo(adap, dbfifo_drain_delay);
2334 		enable_dbs(adap);
2335 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2336 	} else {
2337 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2338 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2339 		u16 pidx_inc = dropped_db & 0x1fff;
2340 		u64 bar2_qoffset;
2341 		unsigned int bar2_qid;
2342 		int ret;
2343 
2344 		ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2345 					&bar2_qoffset, &bar2_qid);
2346 		if (ret)
2347 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2348 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2349 		else
2350 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2351 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2352 
2353 		/* Re-enable BAR2 WC */
2354 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2355 	}
2356 
2357 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2358 }
2359 
2360 void t4_db_full(struct adapter *adap)
2361 {
2362 	if (is_t4(adap->params.chip)) {
2363 		disable_dbs(adap);
2364 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2365 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2366 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2367 		queue_work(adap->workq, &adap->db_full_task);
2368 	}
2369 }
2370 
2371 void t4_db_dropped(struct adapter *adap)
2372 {
2373 	if (is_t4(adap->params.chip)) {
2374 		disable_dbs(adap);
2375 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2376 	}
2377 	queue_work(adap->workq, &adap->db_drop_task);
2378 }
2379 
2380 static void uld_attach(struct adapter *adap, unsigned int uld)
2381 {
2382 	void *handle;
2383 	struct cxgb4_lld_info lli;
2384 	unsigned short i;
2385 
2386 	lli.pdev = adap->pdev;
2387 	lli.pf = adap->fn;
2388 	lli.l2t = adap->l2t;
2389 	lli.tids = &adap->tids;
2390 	lli.ports = adap->port;
2391 	lli.vr = &adap->vres;
2392 	lli.mtus = adap->params.mtus;
2393 	if (uld == CXGB4_ULD_RDMA) {
2394 		lli.rxq_ids = adap->sge.rdma_rxq;
2395 		lli.ciq_ids = adap->sge.rdma_ciq;
2396 		lli.nrxq = adap->sge.rdmaqs;
2397 		lli.nciq = adap->sge.rdmaciqs;
2398 	} else if (uld == CXGB4_ULD_ISCSI) {
2399 		lli.rxq_ids = adap->sge.ofld_rxq;
2400 		lli.nrxq = adap->sge.ofldqsets;
2401 	}
2402 	lli.ntxq = adap->sge.ofldqsets;
2403 	lli.nchan = adap->params.nports;
2404 	lli.nports = adap->params.nports;
2405 	lli.wr_cred = adap->params.ofldq_wr_cred;
2406 	lli.adapter_type = adap->params.chip;
2407 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2408 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2409 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2410 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2411 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2412 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2413 	for (i = 0; i < NCHAN; i++)
2414 		lli.tx_modq[i] = i;
2415 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2416 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2417 	lli.fw_vers = adap->params.fw_vers;
2418 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2419 	lli.sge_ingpadboundary = adap->sge.fl_align;
2420 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2421 	lli.sge_pktshift = adap->sge.pktshift;
2422 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2423 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2424 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2425 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2426 
2427 	handle = ulds[uld].add(&lli);
2428 	if (IS_ERR(handle)) {
2429 		dev_warn(adap->pdev_dev,
2430 			 "could not attach to the %s driver, error %ld\n",
2431 			 uld_str[uld], PTR_ERR(handle));
2432 		return;
2433 	}
2434 
2435 	adap->uld_handle[uld] = handle;
2436 
2437 	if (!netevent_registered) {
2438 		register_netevent_notifier(&cxgb4_netevent_nb);
2439 		netevent_registered = true;
2440 	}
2441 
2442 	if (adap->flags & FULL_INIT_DONE)
2443 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2444 }
2445 
2446 static void attach_ulds(struct adapter *adap)
2447 {
2448 	unsigned int i;
2449 
2450 	spin_lock(&adap_rcu_lock);
2451 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2452 	spin_unlock(&adap_rcu_lock);
2453 
2454 	mutex_lock(&uld_mutex);
2455 	list_add_tail(&adap->list_node, &adapter_list);
2456 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2457 		if (ulds[i].add)
2458 			uld_attach(adap, i);
2459 	mutex_unlock(&uld_mutex);
2460 }
2461 
2462 static void detach_ulds(struct adapter *adap)
2463 {
2464 	unsigned int i;
2465 
2466 	mutex_lock(&uld_mutex);
2467 	list_del(&adap->list_node);
2468 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2469 		if (adap->uld_handle[i]) {
2470 			ulds[i].state_change(adap->uld_handle[i],
2471 					     CXGB4_STATE_DETACH);
2472 			adap->uld_handle[i] = NULL;
2473 		}
2474 	if (netevent_registered && list_empty(&adapter_list)) {
2475 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2476 		netevent_registered = false;
2477 	}
2478 	mutex_unlock(&uld_mutex);
2479 
2480 	spin_lock(&adap_rcu_lock);
2481 	list_del_rcu(&adap->rcu_node);
2482 	spin_unlock(&adap_rcu_lock);
2483 }
2484 
2485 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2486 {
2487 	unsigned int i;
2488 
2489 	mutex_lock(&uld_mutex);
2490 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2491 		if (adap->uld_handle[i])
2492 			ulds[i].state_change(adap->uld_handle[i], new_state);
2493 	mutex_unlock(&uld_mutex);
2494 }
2495 
2496 /**
2497  *	cxgb4_register_uld - register an upper-layer driver
2498  *	@type: the ULD type
2499  *	@p: the ULD methods
2500  *
2501  *	Registers an upper-layer driver with this driver and notifies the ULD
2502  *	about any presently available devices that support its type.  Returns
2503  *	%-EBUSY if a ULD of the same type is already registered.
2504  */
2505 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2506 {
2507 	int ret = 0;
2508 	struct adapter *adap;
2509 
2510 	if (type >= CXGB4_ULD_MAX)
2511 		return -EINVAL;
2512 	mutex_lock(&uld_mutex);
2513 	if (ulds[type].add) {
2514 		ret = -EBUSY;
2515 		goto out;
2516 	}
2517 	ulds[type] = *p;
2518 	list_for_each_entry(adap, &adapter_list, list_node)
2519 		uld_attach(adap, type);
2520 out:	mutex_unlock(&uld_mutex);
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL(cxgb4_register_uld);
2524 
2525 /**
2526  *	cxgb4_unregister_uld - unregister an upper-layer driver
2527  *	@type: the ULD type
2528  *
2529  *	Unregisters an existing upper-layer driver.
2530  */
2531 int cxgb4_unregister_uld(enum cxgb4_uld type)
2532 {
2533 	struct adapter *adap;
2534 
2535 	if (type >= CXGB4_ULD_MAX)
2536 		return -EINVAL;
2537 	mutex_lock(&uld_mutex);
2538 	list_for_each_entry(adap, &adapter_list, list_node)
2539 		adap->uld_handle[type] = NULL;
2540 	ulds[type].add = NULL;
2541 	mutex_unlock(&uld_mutex);
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL(cxgb4_unregister_uld);
2545 
2546 #if IS_ENABLED(CONFIG_IPV6)
2547 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2548 				   unsigned long event, void *data)
2549 {
2550 	struct inet6_ifaddr *ifa = data;
2551 	struct net_device *event_dev = ifa->idev->dev;
2552 	const struct device *parent = NULL;
2553 #if IS_ENABLED(CONFIG_BONDING)
2554 	struct adapter *adap;
2555 #endif
2556 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2557 		event_dev = vlan_dev_real_dev(event_dev);
2558 #if IS_ENABLED(CONFIG_BONDING)
2559 	if (event_dev->flags & IFF_MASTER) {
2560 		list_for_each_entry(adap, &adapter_list, list_node) {
2561 			switch (event) {
2562 			case NETDEV_UP:
2563 				cxgb4_clip_get(adap->port[0],
2564 					       (const u32 *)ifa, 1);
2565 				break;
2566 			case NETDEV_DOWN:
2567 				cxgb4_clip_release(adap->port[0],
2568 						   (const u32 *)ifa, 1);
2569 				break;
2570 			default:
2571 				break;
2572 			}
2573 		}
2574 		return NOTIFY_OK;
2575 	}
2576 #endif
2577 
2578 	if (event_dev)
2579 		parent = event_dev->dev.parent;
2580 
2581 	if (parent && parent->driver == &cxgb4_driver.driver) {
2582 		switch (event) {
2583 		case NETDEV_UP:
2584 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2585 			break;
2586 		case NETDEV_DOWN:
2587 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2588 			break;
2589 		default:
2590 			break;
2591 		}
2592 	}
2593 	return NOTIFY_OK;
2594 }
2595 
2596 static bool inet6addr_registered;
2597 static struct notifier_block cxgb4_inet6addr_notifier = {
2598 	.notifier_call = cxgb4_inet6addr_handler
2599 };
2600 
2601 static void update_clip(const struct adapter *adap)
2602 {
2603 	int i;
2604 	struct net_device *dev;
2605 	int ret;
2606 
2607 	rcu_read_lock();
2608 
2609 	for (i = 0; i < MAX_NPORTS; i++) {
2610 		dev = adap->port[i];
2611 		ret = 0;
2612 
2613 		if (dev)
2614 			ret = cxgb4_update_root_dev_clip(dev);
2615 
2616 		if (ret < 0)
2617 			break;
2618 	}
2619 	rcu_read_unlock();
2620 }
2621 #endif /* IS_ENABLED(CONFIG_IPV6) */
2622 
2623 /**
2624  *	cxgb_up - enable the adapter
2625  *	@adap: adapter being enabled
2626  *
2627  *	Called when the first port is enabled, this function performs the
2628  *	actions necessary to make an adapter operational, such as completing
2629  *	the initialization of HW modules, and enabling interrupts.
2630  *
2631  *	Must be called with the rtnl lock held.
2632  */
2633 static int cxgb_up(struct adapter *adap)
2634 {
2635 	int err;
2636 
2637 	err = setup_sge_queues(adap);
2638 	if (err)
2639 		goto out;
2640 	err = setup_rss(adap);
2641 	if (err)
2642 		goto freeq;
2643 
2644 	if (adap->flags & USING_MSIX) {
2645 		name_msix_vecs(adap);
2646 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2647 				  adap->msix_info[0].desc, adap);
2648 		if (err)
2649 			goto irq_err;
2650 
2651 		err = request_msix_queue_irqs(adap);
2652 		if (err) {
2653 			free_irq(adap->msix_info[0].vec, adap);
2654 			goto irq_err;
2655 		}
2656 	} else {
2657 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2658 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2659 				  adap->port[0]->name, adap);
2660 		if (err)
2661 			goto irq_err;
2662 	}
2663 	enable_rx(adap);
2664 	t4_sge_start(adap);
2665 	t4_intr_enable(adap);
2666 	adap->flags |= FULL_INIT_DONE;
2667 	notify_ulds(adap, CXGB4_STATE_UP);
2668 #if IS_ENABLED(CONFIG_IPV6)
2669 	update_clip(adap);
2670 #endif
2671  out:
2672 	return err;
2673  irq_err:
2674 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2675  freeq:
2676 	t4_free_sge_resources(adap);
2677 	goto out;
2678 }
2679 
2680 static void cxgb_down(struct adapter *adapter)
2681 {
2682 	cancel_work_sync(&adapter->tid_release_task);
2683 	cancel_work_sync(&adapter->db_full_task);
2684 	cancel_work_sync(&adapter->db_drop_task);
2685 	adapter->tid_release_task_busy = false;
2686 	adapter->tid_release_head = NULL;
2687 
2688 	t4_sge_stop(adapter);
2689 	t4_free_sge_resources(adapter);
2690 	adapter->flags &= ~FULL_INIT_DONE;
2691 }
2692 
2693 /*
2694  * net_device operations
2695  */
2696 static int cxgb_open(struct net_device *dev)
2697 {
2698 	int err;
2699 	struct port_info *pi = netdev_priv(dev);
2700 	struct adapter *adapter = pi->adapter;
2701 
2702 	netif_carrier_off(dev);
2703 
2704 	if (!(adapter->flags & FULL_INIT_DONE)) {
2705 		err = cxgb_up(adapter);
2706 		if (err < 0)
2707 			return err;
2708 	}
2709 
2710 	err = link_start(dev);
2711 	if (!err)
2712 		netif_tx_start_all_queues(dev);
2713 	return err;
2714 }
2715 
2716 static int cxgb_close(struct net_device *dev)
2717 {
2718 	struct port_info *pi = netdev_priv(dev);
2719 	struct adapter *adapter = pi->adapter;
2720 
2721 	netif_tx_stop_all_queues(dev);
2722 	netif_carrier_off(dev);
2723 	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2724 }
2725 
2726 /* Return an error number if the indicated filter isn't writable ...
2727  */
2728 static int writable_filter(struct filter_entry *f)
2729 {
2730 	if (f->locked)
2731 		return -EPERM;
2732 	if (f->pending)
2733 		return -EBUSY;
2734 
2735 	return 0;
2736 }
2737 
2738 /* Delete the filter at the specified index (if valid).  The checks for all
2739  * the common problems with doing this like the filter being locked, currently
2740  * pending in another operation, etc.
2741  */
2742 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2743 {
2744 	struct filter_entry *f;
2745 	int ret;
2746 
2747 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2748 		return -EINVAL;
2749 
2750 	f = &adapter->tids.ftid_tab[fidx];
2751 	ret = writable_filter(f);
2752 	if (ret)
2753 		return ret;
2754 	if (f->valid)
2755 		return del_filter_wr(adapter, fidx);
2756 
2757 	return 0;
2758 }
2759 
2760 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2761 		__be32 sip, __be16 sport, __be16 vlan,
2762 		unsigned int queue, unsigned char port, unsigned char mask)
2763 {
2764 	int ret;
2765 	struct filter_entry *f;
2766 	struct adapter *adap;
2767 	int i;
2768 	u8 *val;
2769 
2770 	adap = netdev2adap(dev);
2771 
2772 	/* Adjust stid to correct filter index */
2773 	stid -= adap->tids.sftid_base;
2774 	stid += adap->tids.nftids;
2775 
2776 	/* Check to make sure the filter requested is writable ...
2777 	 */
2778 	f = &adap->tids.ftid_tab[stid];
2779 	ret = writable_filter(f);
2780 	if (ret)
2781 		return ret;
2782 
2783 	/* Clear out any old resources being used by the filter before
2784 	 * we start constructing the new filter.
2785 	 */
2786 	if (f->valid)
2787 		clear_filter(adap, f);
2788 
2789 	/* Clear out filter specifications */
2790 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2791 	f->fs.val.lport = cpu_to_be16(sport);
2792 	f->fs.mask.lport  = ~0;
2793 	val = (u8 *)&sip;
2794 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2795 		for (i = 0; i < 4; i++) {
2796 			f->fs.val.lip[i] = val[i];
2797 			f->fs.mask.lip[i] = ~0;
2798 		}
2799 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2800 			f->fs.val.iport = port;
2801 			f->fs.mask.iport = mask;
2802 		}
2803 	}
2804 
2805 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2806 		f->fs.val.proto = IPPROTO_TCP;
2807 		f->fs.mask.proto = ~0;
2808 	}
2809 
2810 	f->fs.dirsteer = 1;
2811 	f->fs.iq = queue;
2812 	/* Mark filter as locked */
2813 	f->locked = 1;
2814 	f->fs.rpttid = 1;
2815 
2816 	ret = set_filter_wr(adap, stid);
2817 	if (ret) {
2818 		clear_filter(adap, f);
2819 		return ret;
2820 	}
2821 
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL(cxgb4_create_server_filter);
2825 
2826 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2827 		unsigned int queue, bool ipv6)
2828 {
2829 	int ret;
2830 	struct filter_entry *f;
2831 	struct adapter *adap;
2832 
2833 	adap = netdev2adap(dev);
2834 
2835 	/* Adjust stid to correct filter index */
2836 	stid -= adap->tids.sftid_base;
2837 	stid += adap->tids.nftids;
2838 
2839 	f = &adap->tids.ftid_tab[stid];
2840 	/* Unlock the filter */
2841 	f->locked = 0;
2842 
2843 	ret = delete_filter(adap, stid);
2844 	if (ret)
2845 		return ret;
2846 
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2850 
2851 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2852 						struct rtnl_link_stats64 *ns)
2853 {
2854 	struct port_stats stats;
2855 	struct port_info *p = netdev_priv(dev);
2856 	struct adapter *adapter = p->adapter;
2857 
2858 	/* Block retrieving statistics during EEH error
2859 	 * recovery. Otherwise, the recovery might fail
2860 	 * and the PCI device will be removed permanently
2861 	 */
2862 	spin_lock(&adapter->stats_lock);
2863 	if (!netif_device_present(dev)) {
2864 		spin_unlock(&adapter->stats_lock);
2865 		return ns;
2866 	}
2867 	t4_get_port_stats(adapter, p->tx_chan, &stats);
2868 	spin_unlock(&adapter->stats_lock);
2869 
2870 	ns->tx_bytes   = stats.tx_octets;
2871 	ns->tx_packets = stats.tx_frames;
2872 	ns->rx_bytes   = stats.rx_octets;
2873 	ns->rx_packets = stats.rx_frames;
2874 	ns->multicast  = stats.rx_mcast_frames;
2875 
2876 	/* detailed rx_errors */
2877 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2878 			       stats.rx_runt;
2879 	ns->rx_over_errors   = 0;
2880 	ns->rx_crc_errors    = stats.rx_fcs_err;
2881 	ns->rx_frame_errors  = stats.rx_symbol_err;
2882 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2883 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2884 			       stats.rx_trunc0 + stats.rx_trunc1 +
2885 			       stats.rx_trunc2 + stats.rx_trunc3;
2886 	ns->rx_missed_errors = 0;
2887 
2888 	/* detailed tx_errors */
2889 	ns->tx_aborted_errors   = 0;
2890 	ns->tx_carrier_errors   = 0;
2891 	ns->tx_fifo_errors      = 0;
2892 	ns->tx_heartbeat_errors = 0;
2893 	ns->tx_window_errors    = 0;
2894 
2895 	ns->tx_errors = stats.tx_error_frames;
2896 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2897 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2898 	return ns;
2899 }
2900 
2901 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2902 {
2903 	unsigned int mbox;
2904 	int ret = 0, prtad, devad;
2905 	struct port_info *pi = netdev_priv(dev);
2906 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2907 
2908 	switch (cmd) {
2909 	case SIOCGMIIPHY:
2910 		if (pi->mdio_addr < 0)
2911 			return -EOPNOTSUPP;
2912 		data->phy_id = pi->mdio_addr;
2913 		break;
2914 	case SIOCGMIIREG:
2915 	case SIOCSMIIREG:
2916 		if (mdio_phy_id_is_c45(data->phy_id)) {
2917 			prtad = mdio_phy_id_prtad(data->phy_id);
2918 			devad = mdio_phy_id_devad(data->phy_id);
2919 		} else if (data->phy_id < 32) {
2920 			prtad = data->phy_id;
2921 			devad = 0;
2922 			data->reg_num &= 0x1f;
2923 		} else
2924 			return -EINVAL;
2925 
2926 		mbox = pi->adapter->fn;
2927 		if (cmd == SIOCGMIIREG)
2928 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2929 					 data->reg_num, &data->val_out);
2930 		else
2931 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2932 					 data->reg_num, data->val_in);
2933 		break;
2934 	default:
2935 		return -EOPNOTSUPP;
2936 	}
2937 	return ret;
2938 }
2939 
2940 static void cxgb_set_rxmode(struct net_device *dev)
2941 {
2942 	/* unfortunately we can't return errors to the stack */
2943 	set_rxmode(dev, -1, false);
2944 }
2945 
2946 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2947 {
2948 	int ret;
2949 	struct port_info *pi = netdev_priv(dev);
2950 
2951 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2952 		return -EINVAL;
2953 	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2954 			    -1, -1, -1, true);
2955 	if (!ret)
2956 		dev->mtu = new_mtu;
2957 	return ret;
2958 }
2959 
2960 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2961 {
2962 	int ret;
2963 	struct sockaddr *addr = p;
2964 	struct port_info *pi = netdev_priv(dev);
2965 
2966 	if (!is_valid_ether_addr(addr->sa_data))
2967 		return -EADDRNOTAVAIL;
2968 
2969 	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2970 			    pi->xact_addr_filt, addr->sa_data, true, true);
2971 	if (ret < 0)
2972 		return ret;
2973 
2974 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2975 	pi->xact_addr_filt = ret;
2976 	return 0;
2977 }
2978 
2979 #ifdef CONFIG_NET_POLL_CONTROLLER
2980 static void cxgb_netpoll(struct net_device *dev)
2981 {
2982 	struct port_info *pi = netdev_priv(dev);
2983 	struct adapter *adap = pi->adapter;
2984 
2985 	if (adap->flags & USING_MSIX) {
2986 		int i;
2987 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2988 
2989 		for (i = pi->nqsets; i; i--, rx++)
2990 			t4_sge_intr_msix(0, &rx->rspq);
2991 	} else
2992 		t4_intr_handler(adap)(0, adap);
2993 }
2994 #endif
2995 
2996 static const struct net_device_ops cxgb4_netdev_ops = {
2997 	.ndo_open             = cxgb_open,
2998 	.ndo_stop             = cxgb_close,
2999 	.ndo_start_xmit       = t4_eth_xmit,
3000 	.ndo_select_queue     =	cxgb_select_queue,
3001 	.ndo_get_stats64      = cxgb_get_stats,
3002 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3003 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3004 	.ndo_set_features     = cxgb_set_features,
3005 	.ndo_validate_addr    = eth_validate_addr,
3006 	.ndo_do_ioctl         = cxgb_ioctl,
3007 	.ndo_change_mtu       = cxgb_change_mtu,
3008 #ifdef CONFIG_NET_POLL_CONTROLLER
3009 	.ndo_poll_controller  = cxgb_netpoll,
3010 #endif
3011 #ifdef CONFIG_CHELSIO_T4_FCOE
3012 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3013 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3014 #endif /* CONFIG_CHELSIO_T4_FCOE */
3015 #ifdef CONFIG_NET_RX_BUSY_POLL
3016 	.ndo_busy_poll        = cxgb_busy_poll,
3017 #endif
3018 
3019 };
3020 
3021 void t4_fatal_err(struct adapter *adap)
3022 {
3023 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3024 	t4_intr_disable(adap);
3025 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3026 }
3027 
3028 /* Return the specified PCI-E Configuration Space register from our Physical
3029  * Function.  We try first via a Firmware LDST Command since we prefer to let
3030  * the firmware own all of these registers, but if that fails we go for it
3031  * directly ourselves.
3032  */
3033 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3034 {
3035 	struct fw_ldst_cmd ldst_cmd;
3036 	u32 val;
3037 	int ret;
3038 
3039 	/* Construct and send the Firmware LDST Command to retrieve the
3040 	 * specified PCI-E Configuration Space register.
3041 	 */
3042 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3043 	ldst_cmd.op_to_addrspace =
3044 		htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3045 		      FW_CMD_REQUEST_F |
3046 		      FW_CMD_READ_F |
3047 		      FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3048 	ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3049 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3050 	ldst_cmd.u.pcie.ctrl_to_fn =
3051 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3052 	ldst_cmd.u.pcie.r = reg;
3053 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3054 			 &ldst_cmd);
3055 
3056 	/* If the LDST Command suucceeded, exctract the returned register
3057 	 * value.  Otherwise read it directly ourself.
3058 	 */
3059 	if (ret == 0)
3060 		val = ntohl(ldst_cmd.u.pcie.data[0]);
3061 	else
3062 		t4_hw_pci_read_cfg4(adap, reg, &val);
3063 
3064 	return val;
3065 }
3066 
3067 static void setup_memwin(struct adapter *adap)
3068 {
3069 	u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3070 
3071 	if (is_t4(adap->params.chip)) {
3072 		u32 bar0;
3073 
3074 		/* Truncation intentional: we only read the bottom 32-bits of
3075 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3076 		 * mechanism to read BAR0 instead of using
3077 		 * pci_resource_start() because we could be operating from
3078 		 * within a Virtual Machine which is trapping our accesses to
3079 		 * our Configuration Space and we need to set up the PCI-E
3080 		 * Memory Window decoders with the actual addresses which will
3081 		 * be coming across the PCI-E link.
3082 		 */
3083 		bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3084 		bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3085 		adap->t4_bar0 = bar0;
3086 
3087 		mem_win0_base = bar0 + MEMWIN0_BASE;
3088 		mem_win1_base = bar0 + MEMWIN1_BASE;
3089 		mem_win2_base = bar0 + MEMWIN2_BASE;
3090 		mem_win2_aperture = MEMWIN2_APERTURE;
3091 	} else {
3092 		/* For T5, only relative offset inside the PCIe BAR is passed */
3093 		mem_win0_base = MEMWIN0_BASE;
3094 		mem_win1_base = MEMWIN1_BASE;
3095 		mem_win2_base = MEMWIN2_BASE_T5;
3096 		mem_win2_aperture = MEMWIN2_APERTURE_T5;
3097 	}
3098 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3099 		     mem_win0_base | BIR_V(0) |
3100 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3101 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3102 		     mem_win1_base | BIR_V(0) |
3103 		     WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3104 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3105 		     mem_win2_base | BIR_V(0) |
3106 		     WINDOW_V(ilog2(mem_win2_aperture) - 10));
3107 	t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3108 }
3109 
3110 static void setup_memwin_rdma(struct adapter *adap)
3111 {
3112 	if (adap->vres.ocq.size) {
3113 		u32 start;
3114 		unsigned int sz_kb;
3115 
3116 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3117 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3118 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3119 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3120 		t4_write_reg(adap,
3121 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3122 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3123 		t4_write_reg(adap,
3124 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3125 			     adap->vres.ocq.start);
3126 		t4_read_reg(adap,
3127 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3128 	}
3129 }
3130 
3131 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3132 {
3133 	u32 v;
3134 	int ret;
3135 
3136 	/* get device capabilities */
3137 	memset(c, 0, sizeof(*c));
3138 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3139 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3140 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3141 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3142 	if (ret < 0)
3143 		return ret;
3144 
3145 	/* select capabilities we'll be using */
3146 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3147 		if (!vf_acls)
3148 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3149 		else
3150 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3151 	} else if (vf_acls) {
3152 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3153 		return ret;
3154 	}
3155 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3156 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3157 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3158 	if (ret < 0)
3159 		return ret;
3160 
3161 	ret = t4_config_glbl_rss(adap, adap->fn,
3162 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3163 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3164 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3165 	if (ret < 0)
3166 		return ret;
3167 
3168 	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3169 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3170 			  FW_CMD_CAP_PF);
3171 	if (ret < 0)
3172 		return ret;
3173 
3174 	t4_sge_init(adap);
3175 
3176 	/* tweak some settings */
3177 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3178 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3179 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3180 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3181 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3182 
3183 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3184 	adap->params.tp.tx_modq_map = 0xE4;
3185 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3186 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3187 
3188 	/* associate each Tx modulation queue with consecutive Tx channels */
3189 	v = 0x84218421;
3190 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3191 			  &v, 1, TP_TX_SCHED_HDR_A);
3192 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3193 			  &v, 1, TP_TX_SCHED_FIFO_A);
3194 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3195 			  &v, 1, TP_TX_SCHED_PCMD_A);
3196 
3197 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3198 	if (is_offload(adap)) {
3199 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3200 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3201 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3202 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3203 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3204 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3205 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3208 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3209 	}
3210 
3211 	/* get basic stuff going */
3212 	return t4_early_init(adap, adap->fn);
3213 }
3214 
3215 /*
3216  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3217  */
3218 #define MAX_ATIDS 8192U
3219 
3220 /*
3221  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3222  *
3223  * If the firmware we're dealing with has Configuration File support, then
3224  * we use that to perform all configuration
3225  */
3226 
3227 /*
3228  * Tweak configuration based on module parameters, etc.  Most of these have
3229  * defaults assigned to them by Firmware Configuration Files (if we're using
3230  * them) but need to be explicitly set if we're using hard-coded
3231  * initialization.  But even in the case of using Firmware Configuration
3232  * Files, we'd like to expose the ability to change these via module
3233  * parameters so these are essentially common tweaks/settings for
3234  * Configuration Files and hard-coded initialization ...
3235  */
3236 static int adap_init0_tweaks(struct adapter *adapter)
3237 {
3238 	/*
3239 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3240 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3241 	 * 64B Cache Line Size ...
3242 	 */
3243 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3244 
3245 	/*
3246 	 * Process module parameters which affect early initialization.
3247 	 */
3248 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3249 		dev_err(&adapter->pdev->dev,
3250 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3251 			rx_dma_offset);
3252 		rx_dma_offset = 2;
3253 	}
3254 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3255 			 PKTSHIFT_V(PKTSHIFT_M),
3256 			 PKTSHIFT_V(rx_dma_offset));
3257 
3258 	/*
3259 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3260 	 * adds the pseudo header itself.
3261 	 */
3262 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3263 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3264 
3265 	return 0;
3266 }
3267 
3268 /*
3269  * Attempt to initialize the adapter via a Firmware Configuration File.
3270  */
3271 static int adap_init0_config(struct adapter *adapter, int reset)
3272 {
3273 	struct fw_caps_config_cmd caps_cmd;
3274 	const struct firmware *cf;
3275 	unsigned long mtype = 0, maddr = 0;
3276 	u32 finiver, finicsum, cfcsum;
3277 	int ret;
3278 	int config_issued = 0;
3279 	char *fw_config_file, fw_config_file_path[256];
3280 	char *config_name = NULL;
3281 
3282 	/*
3283 	 * Reset device if necessary.
3284 	 */
3285 	if (reset) {
3286 		ret = t4_fw_reset(adapter, adapter->mbox,
3287 				  PIORSTMODE_F | PIORST_F);
3288 		if (ret < 0)
3289 			goto bye;
3290 	}
3291 
3292 	/*
3293 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3294 	 * then use that.  Otherwise, use the configuration file stored
3295 	 * in the adapter flash ...
3296 	 */
3297 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3298 	case CHELSIO_T4:
3299 		fw_config_file = FW4_CFNAME;
3300 		break;
3301 	case CHELSIO_T5:
3302 		fw_config_file = FW5_CFNAME;
3303 		break;
3304 	default:
3305 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3306 		       adapter->pdev->device);
3307 		ret = -EINVAL;
3308 		goto bye;
3309 	}
3310 
3311 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3312 	if (ret < 0) {
3313 		config_name = "On FLASH";
3314 		mtype = FW_MEMTYPE_CF_FLASH;
3315 		maddr = t4_flash_cfg_addr(adapter);
3316 	} else {
3317 		u32 params[7], val[7];
3318 
3319 		sprintf(fw_config_file_path,
3320 			"/lib/firmware/%s", fw_config_file);
3321 		config_name = fw_config_file_path;
3322 
3323 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3324 			ret = -ENOMEM;
3325 		else {
3326 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3327 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3328 			ret = t4_query_params(adapter, adapter->mbox,
3329 					      adapter->fn, 0, 1, params, val);
3330 			if (ret == 0) {
3331 				/*
3332 				 * For t4_memory_rw() below addresses and
3333 				 * sizes have to be in terms of multiples of 4
3334 				 * bytes.  So, if the Configuration File isn't
3335 				 * a multiple of 4 bytes in length we'll have
3336 				 * to write that out separately since we can't
3337 				 * guarantee that the bytes following the
3338 				 * residual byte in the buffer returned by
3339 				 * request_firmware() are zeroed out ...
3340 				 */
3341 				size_t resid = cf->size & 0x3;
3342 				size_t size = cf->size & ~0x3;
3343 				__be32 *data = (__be32 *)cf->data;
3344 
3345 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3346 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3347 
3348 				spin_lock(&adapter->win0_lock);
3349 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3350 						   size, data, T4_MEMORY_WRITE);
3351 				if (ret == 0 && resid != 0) {
3352 					union {
3353 						__be32 word;
3354 						char buf[4];
3355 					} last;
3356 					int i;
3357 
3358 					last.word = data[size >> 2];
3359 					for (i = resid; i < 4; i++)
3360 						last.buf[i] = 0;
3361 					ret = t4_memory_rw(adapter, 0, mtype,
3362 							   maddr + size,
3363 							   4, &last.word,
3364 							   T4_MEMORY_WRITE);
3365 				}
3366 				spin_unlock(&adapter->win0_lock);
3367 			}
3368 		}
3369 
3370 		release_firmware(cf);
3371 		if (ret)
3372 			goto bye;
3373 	}
3374 
3375 	/*
3376 	 * Issue a Capability Configuration command to the firmware to get it
3377 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3378 	 * because we want the ability to modify various features after we've
3379 	 * processed the configuration file ...
3380 	 */
3381 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3382 	caps_cmd.op_to_write =
3383 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3384 		      FW_CMD_REQUEST_F |
3385 		      FW_CMD_READ_F);
3386 	caps_cmd.cfvalid_to_len16 =
3387 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3388 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3389 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3390 		      FW_LEN16(caps_cmd));
3391 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3392 			 &caps_cmd);
3393 
3394 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3395 	 * Configuration File in FLASH), our last gasp effort is to use the
3396 	 * Firmware Configuration File which is embedded in the firmware.  A
3397 	 * very few early versions of the firmware didn't have one embedded
3398 	 * but we can ignore those.
3399 	 */
3400 	if (ret == -ENOENT) {
3401 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3402 		caps_cmd.op_to_write =
3403 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3404 					FW_CMD_REQUEST_F |
3405 					FW_CMD_READ_F);
3406 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3407 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3408 				sizeof(caps_cmd), &caps_cmd);
3409 		config_name = "Firmware Default";
3410 	}
3411 
3412 	config_issued = 1;
3413 	if (ret < 0)
3414 		goto bye;
3415 
3416 	finiver = ntohl(caps_cmd.finiver);
3417 	finicsum = ntohl(caps_cmd.finicsum);
3418 	cfcsum = ntohl(caps_cmd.cfcsum);
3419 	if (finicsum != cfcsum)
3420 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3421 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3422 			 finicsum, cfcsum);
3423 
3424 	/*
3425 	 * And now tell the firmware to use the configuration we just loaded.
3426 	 */
3427 	caps_cmd.op_to_write =
3428 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3429 		      FW_CMD_REQUEST_F |
3430 		      FW_CMD_WRITE_F);
3431 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3432 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3433 			 NULL);
3434 	if (ret < 0)
3435 		goto bye;
3436 
3437 	/*
3438 	 * Tweak configuration based on system architecture, module
3439 	 * parameters, etc.
3440 	 */
3441 	ret = adap_init0_tweaks(adapter);
3442 	if (ret < 0)
3443 		goto bye;
3444 
3445 	/*
3446 	 * And finally tell the firmware to initialize itself using the
3447 	 * parameters from the Configuration File.
3448 	 */
3449 	ret = t4_fw_initialize(adapter, adapter->mbox);
3450 	if (ret < 0)
3451 		goto bye;
3452 
3453 	/* Emit Firmware Configuration File information and return
3454 	 * successfully.
3455 	 */
3456 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3457 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3458 		 config_name, finiver, cfcsum);
3459 	return 0;
3460 
3461 	/*
3462 	 * Something bad happened.  Return the error ...  (If the "error"
3463 	 * is that there's no Configuration File on the adapter we don't
3464 	 * want to issue a warning since this is fairly common.)
3465 	 */
3466 bye:
3467 	if (config_issued && ret != -ENOENT)
3468 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3469 			 config_name, -ret);
3470 	return ret;
3471 }
3472 
3473 static struct fw_info fw_info_array[] = {
3474 	{
3475 		.chip = CHELSIO_T4,
3476 		.fs_name = FW4_CFNAME,
3477 		.fw_mod_name = FW4_FNAME,
3478 		.fw_hdr = {
3479 			.chip = FW_HDR_CHIP_T4,
3480 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3481 			.intfver_nic = FW_INTFVER(T4, NIC),
3482 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3483 			.intfver_ri = FW_INTFVER(T4, RI),
3484 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3485 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3486 		},
3487 	}, {
3488 		.chip = CHELSIO_T5,
3489 		.fs_name = FW5_CFNAME,
3490 		.fw_mod_name = FW5_FNAME,
3491 		.fw_hdr = {
3492 			.chip = FW_HDR_CHIP_T5,
3493 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3494 			.intfver_nic = FW_INTFVER(T5, NIC),
3495 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3496 			.intfver_ri = FW_INTFVER(T5, RI),
3497 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3498 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3499 		},
3500 	}
3501 };
3502 
3503 static struct fw_info *find_fw_info(int chip)
3504 {
3505 	int i;
3506 
3507 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3508 		if (fw_info_array[i].chip == chip)
3509 			return &fw_info_array[i];
3510 	}
3511 	return NULL;
3512 }
3513 
3514 /*
3515  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3516  */
3517 static int adap_init0(struct adapter *adap)
3518 {
3519 	int ret;
3520 	u32 v, port_vec;
3521 	enum dev_state state;
3522 	u32 params[7], val[7];
3523 	struct fw_caps_config_cmd caps_cmd;
3524 	int reset = 1;
3525 
3526 	/* Grab Firmware Device Log parameters as early as possible so we have
3527 	 * access to it for debugging, etc.
3528 	 */
3529 	ret = t4_init_devlog_params(adap);
3530 	if (ret < 0)
3531 		return ret;
3532 
3533 	/* Contact FW, advertising Master capability */
3534 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3535 	if (ret < 0) {
3536 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3537 			ret);
3538 		return ret;
3539 	}
3540 	if (ret == adap->mbox)
3541 		adap->flags |= MASTER_PF;
3542 
3543 	/*
3544 	 * If we're the Master PF Driver and the device is uninitialized,
3545 	 * then let's consider upgrading the firmware ...  (We always want
3546 	 * to check the firmware version number in order to A. get it for
3547 	 * later reporting and B. to warn if the currently loaded firmware
3548 	 * is excessively mismatched relative to the driver.)
3549 	 */
3550 	t4_get_fw_version(adap, &adap->params.fw_vers);
3551 	t4_get_tp_version(adap, &adap->params.tp_vers);
3552 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3553 		struct fw_info *fw_info;
3554 		struct fw_hdr *card_fw;
3555 		const struct firmware *fw;
3556 		const u8 *fw_data = NULL;
3557 		unsigned int fw_size = 0;
3558 
3559 		/* This is the firmware whose headers the driver was compiled
3560 		 * against
3561 		 */
3562 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3563 		if (fw_info == NULL) {
3564 			dev_err(adap->pdev_dev,
3565 				"unable to get firmware info for chip %d.\n",
3566 				CHELSIO_CHIP_VERSION(adap->params.chip));
3567 			return -EINVAL;
3568 		}
3569 
3570 		/* allocate memory to read the header of the firmware on the
3571 		 * card
3572 		 */
3573 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3574 
3575 		/* Get FW from from /lib/firmware/ */
3576 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3577 				       adap->pdev_dev);
3578 		if (ret < 0) {
3579 			dev_err(adap->pdev_dev,
3580 				"unable to load firmware image %s, error %d\n",
3581 				fw_info->fw_mod_name, ret);
3582 		} else {
3583 			fw_data = fw->data;
3584 			fw_size = fw->size;
3585 		}
3586 
3587 		/* upgrade FW logic */
3588 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3589 				 state, &reset);
3590 
3591 		/* Cleaning up */
3592 		release_firmware(fw);
3593 		t4_free_mem(card_fw);
3594 
3595 		if (ret < 0)
3596 			goto bye;
3597 	}
3598 
3599 	/*
3600 	 * Grab VPD parameters.  This should be done after we establish a
3601 	 * connection to the firmware since some of the VPD parameters
3602 	 * (notably the Core Clock frequency) are retrieved via requests to
3603 	 * the firmware.  On the other hand, we need these fairly early on
3604 	 * so we do this right after getting ahold of the firmware.
3605 	 */
3606 	ret = get_vpd_params(adap, &adap->params.vpd);
3607 	if (ret < 0)
3608 		goto bye;
3609 
3610 	/*
3611 	 * Find out what ports are available to us.  Note that we need to do
3612 	 * this before calling adap_init0_no_config() since it needs nports
3613 	 * and portvec ...
3614 	 */
3615 	v =
3616 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3617 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3618 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3619 	if (ret < 0)
3620 		goto bye;
3621 
3622 	adap->params.nports = hweight32(port_vec);
3623 	adap->params.portvec = port_vec;
3624 
3625 	/* If the firmware is initialized already, emit a simply note to that
3626 	 * effect. Otherwise, it's time to try initializing the adapter.
3627 	 */
3628 	if (state == DEV_STATE_INIT) {
3629 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3630 			 "Adapter already initialized\n",
3631 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3632 	} else {
3633 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3634 			 "Initializing adapter\n");
3635 
3636 		/* Find out whether we're dealing with a version of the
3637 		 * firmware which has configuration file support.
3638 		 */
3639 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3640 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3641 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3642 				      params, val);
3643 
3644 		/* If the firmware doesn't support Configuration Files,
3645 		 * return an error.
3646 		 */
3647 		if (ret < 0) {
3648 			dev_err(adap->pdev_dev, "firmware doesn't support "
3649 				"Firmware Configuration Files\n");
3650 			goto bye;
3651 		}
3652 
3653 		/* The firmware provides us with a memory buffer where we can
3654 		 * load a Configuration File from the host if we want to
3655 		 * override the Configuration File in flash.
3656 		 */
3657 		ret = adap_init0_config(adap, reset);
3658 		if (ret == -ENOENT) {
3659 			dev_err(adap->pdev_dev, "no Configuration File "
3660 				"present on adapter.\n");
3661 			goto bye;
3662 		}
3663 		if (ret < 0) {
3664 			dev_err(adap->pdev_dev, "could not initialize "
3665 				"adapter, error %d\n", -ret);
3666 			goto bye;
3667 		}
3668 	}
3669 
3670 	/* Give the SGE code a chance to pull in anything that it needs ...
3671 	 * Note that this must be called after we retrieve our VPD parameters
3672 	 * in order to know how to convert core ticks to seconds, etc.
3673 	 */
3674 	ret = t4_sge_init(adap);
3675 	if (ret < 0)
3676 		goto bye;
3677 
3678 	if (is_bypass_device(adap->pdev->device))
3679 		adap->params.bypass = 1;
3680 
3681 	/*
3682 	 * Grab some of our basic fundamental operating parameters.
3683 	 */
3684 #define FW_PARAM_DEV(param) \
3685 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3686 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3687 
3688 #define FW_PARAM_PFVF(param) \
3689 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3690 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3691 	FW_PARAMS_PARAM_Y_V(0) | \
3692 	FW_PARAMS_PARAM_Z_V(0)
3693 
3694 	params[0] = FW_PARAM_PFVF(EQ_START);
3695 	params[1] = FW_PARAM_PFVF(L2T_START);
3696 	params[2] = FW_PARAM_PFVF(L2T_END);
3697 	params[3] = FW_PARAM_PFVF(FILTER_START);
3698 	params[4] = FW_PARAM_PFVF(FILTER_END);
3699 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3700 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3701 	if (ret < 0)
3702 		goto bye;
3703 	adap->sge.egr_start = val[0];
3704 	adap->l2t_start = val[1];
3705 	adap->l2t_end = val[2];
3706 	adap->tids.ftid_base = val[3];
3707 	adap->tids.nftids = val[4] - val[3] + 1;
3708 	adap->sge.ingr_start = val[5];
3709 
3710 	/* qids (ingress/egress) returned from firmware can be anywhere
3711 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3712 	 * Hence driver needs to allocate memory for this range to
3713 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3714 	 * in FW_EQ_*_CMD.alloc command.
3715 	 */
3716 	params[0] = FW_PARAM_PFVF(EQ_END);
3717 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3718 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3719 	if (ret < 0)
3720 		goto bye;
3721 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3722 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3723 
3724 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3725 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3726 	if (!adap->sge.egr_map) {
3727 		ret = -ENOMEM;
3728 		goto bye;
3729 	}
3730 
3731 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3732 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3733 	if (!adap->sge.ingr_map) {
3734 		ret = -ENOMEM;
3735 		goto bye;
3736 	}
3737 
3738 	/* Allocate the memory for the vaious egress queue bitmaps
3739 	 * ie starving_fl and txq_maperr.
3740 	 */
3741 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3742 					sizeof(long), GFP_KERNEL);
3743 	if (!adap->sge.starving_fl) {
3744 		ret = -ENOMEM;
3745 		goto bye;
3746 	}
3747 
3748 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3749 				       sizeof(long), GFP_KERNEL);
3750 	if (!adap->sge.txq_maperr) {
3751 		ret = -ENOMEM;
3752 		goto bye;
3753 	}
3754 
3755 	params[0] = FW_PARAM_PFVF(CLIP_START);
3756 	params[1] = FW_PARAM_PFVF(CLIP_END);
3757 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3758 	if (ret < 0)
3759 		goto bye;
3760 	adap->clipt_start = val[0];
3761 	adap->clipt_end = val[1];
3762 
3763 	/* query params related to active filter region */
3764 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3765 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3766 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3767 	/* If Active filter size is set we enable establishing
3768 	 * offload connection through firmware work request
3769 	 */
3770 	if ((val[0] != val[1]) && (ret >= 0)) {
3771 		adap->flags |= FW_OFLD_CONN;
3772 		adap->tids.aftid_base = val[0];
3773 		adap->tids.aftid_end = val[1];
3774 	}
3775 
3776 	/* If we're running on newer firmware, let it know that we're
3777 	 * prepared to deal with encapsulated CPL messages.  Older
3778 	 * firmware won't understand this and we'll just get
3779 	 * unencapsulated messages ...
3780 	 */
3781 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3782 	val[0] = 1;
3783 	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3784 
3785 	/*
3786 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3787 	 * capability.  Earlier versions of the firmware didn't have the
3788 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3789 	 * permission to use ULPTX MEMWRITE DSGL.
3790 	 */
3791 	if (is_t4(adap->params.chip)) {
3792 		adap->params.ulptx_memwrite_dsgl = false;
3793 	} else {
3794 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3795 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3796 				      1, params, val);
3797 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3798 	}
3799 
3800 	/*
3801 	 * Get device capabilities so we can determine what resources we need
3802 	 * to manage.
3803 	 */
3804 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3805 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3806 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3807 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3808 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3809 			 &caps_cmd);
3810 	if (ret < 0)
3811 		goto bye;
3812 
3813 	if (caps_cmd.ofldcaps) {
3814 		/* query offload-related parameters */
3815 		params[0] = FW_PARAM_DEV(NTID);
3816 		params[1] = FW_PARAM_PFVF(SERVER_START);
3817 		params[2] = FW_PARAM_PFVF(SERVER_END);
3818 		params[3] = FW_PARAM_PFVF(TDDP_START);
3819 		params[4] = FW_PARAM_PFVF(TDDP_END);
3820 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3821 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3822 				      params, val);
3823 		if (ret < 0)
3824 			goto bye;
3825 		adap->tids.ntids = val[0];
3826 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3827 		adap->tids.stid_base = val[1];
3828 		adap->tids.nstids = val[2] - val[1] + 1;
3829 		/*
3830 		 * Setup server filter region. Divide the available filter
3831 		 * region into two parts. Regular filters get 1/3rd and server
3832 		 * filters get 2/3rd part. This is only enabled if workarond
3833 		 * path is enabled.
3834 		 * 1. For regular filters.
3835 		 * 2. Server filter: This are special filters which are used
3836 		 * to redirect SYN packets to offload queue.
3837 		 */
3838 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3839 			adap->tids.sftid_base = adap->tids.ftid_base +
3840 					DIV_ROUND_UP(adap->tids.nftids, 3);
3841 			adap->tids.nsftids = adap->tids.nftids -
3842 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3843 			adap->tids.nftids = adap->tids.sftid_base -
3844 						adap->tids.ftid_base;
3845 		}
3846 		adap->vres.ddp.start = val[3];
3847 		adap->vres.ddp.size = val[4] - val[3] + 1;
3848 		adap->params.ofldq_wr_cred = val[5];
3849 
3850 		adap->params.offload = 1;
3851 	}
3852 	if (caps_cmd.rdmacaps) {
3853 		params[0] = FW_PARAM_PFVF(STAG_START);
3854 		params[1] = FW_PARAM_PFVF(STAG_END);
3855 		params[2] = FW_PARAM_PFVF(RQ_START);
3856 		params[3] = FW_PARAM_PFVF(RQ_END);
3857 		params[4] = FW_PARAM_PFVF(PBL_START);
3858 		params[5] = FW_PARAM_PFVF(PBL_END);
3859 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3860 				      params, val);
3861 		if (ret < 0)
3862 			goto bye;
3863 		adap->vres.stag.start = val[0];
3864 		adap->vres.stag.size = val[1] - val[0] + 1;
3865 		adap->vres.rq.start = val[2];
3866 		adap->vres.rq.size = val[3] - val[2] + 1;
3867 		adap->vres.pbl.start = val[4];
3868 		adap->vres.pbl.size = val[5] - val[4] + 1;
3869 
3870 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3871 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3872 		params[2] = FW_PARAM_PFVF(CQ_START);
3873 		params[3] = FW_PARAM_PFVF(CQ_END);
3874 		params[4] = FW_PARAM_PFVF(OCQ_START);
3875 		params[5] = FW_PARAM_PFVF(OCQ_END);
3876 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3877 				      val);
3878 		if (ret < 0)
3879 			goto bye;
3880 		adap->vres.qp.start = val[0];
3881 		adap->vres.qp.size = val[1] - val[0] + 1;
3882 		adap->vres.cq.start = val[2];
3883 		adap->vres.cq.size = val[3] - val[2] + 1;
3884 		adap->vres.ocq.start = val[4];
3885 		adap->vres.ocq.size = val[5] - val[4] + 1;
3886 
3887 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3888 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3889 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3890 				      val);
3891 		if (ret < 0) {
3892 			adap->params.max_ordird_qp = 8;
3893 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3894 			ret = 0;
3895 		} else {
3896 			adap->params.max_ordird_qp = val[0];
3897 			adap->params.max_ird_adapter = val[1];
3898 		}
3899 		dev_info(adap->pdev_dev,
3900 			 "max_ordird_qp %d max_ird_adapter %d\n",
3901 			 adap->params.max_ordird_qp,
3902 			 adap->params.max_ird_adapter);
3903 	}
3904 	if (caps_cmd.iscsicaps) {
3905 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3906 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3907 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3908 				      params, val);
3909 		if (ret < 0)
3910 			goto bye;
3911 		adap->vres.iscsi.start = val[0];
3912 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3913 	}
3914 #undef FW_PARAM_PFVF
3915 #undef FW_PARAM_DEV
3916 
3917 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3918 	 * we're initializing the adapter, then we'll make any modifications
3919 	 * we want to the MTU/MSS Table and also initialize the congestion
3920 	 * parameters.
3921 	 */
3922 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3923 	if (state != DEV_STATE_INIT) {
3924 		int i;
3925 
3926 		/* The default MTU Table contains values 1492 and 1500.
3927 		 * However, for TCP, it's better to have two values which are
3928 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3929 		 * This allows us to have a TCP Data Payload which is a
3930 		 * multiple of 8 regardless of what combination of TCP Options
3931 		 * are in use (always a multiple of 4 bytes) which is
3932 		 * important for performance reasons.  For instance, if no
3933 		 * options are in use, then we have a 20-byte IP header and a
3934 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3935 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3936 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3937 		 * this case results in a TCP Data Payload of 1448 bytes which
3938 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3939 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3940 		 * results in a TCP Data Payload of 1448 bytes which, as
3941 		 * above, is a multiple of 8 bytes ...
3942 		 */
3943 		for (i = 0; i < NMTUS; i++)
3944 			if (adap->params.mtus[i] == 1492) {
3945 				adap->params.mtus[i] = 1488;
3946 				break;
3947 			}
3948 
3949 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3950 			     adap->params.b_wnd);
3951 	}
3952 	t4_init_sge_params(adap);
3953 	t4_init_tp_params(adap);
3954 	adap->flags |= FW_OK;
3955 	return 0;
3956 
3957 	/*
3958 	 * Something bad happened.  If a command timed out or failed with EIO
3959 	 * FW does not operate within its spec or something catastrophic
3960 	 * happened to HW/FW, stop issuing commands.
3961 	 */
3962 bye:
3963 	kfree(adap->sge.egr_map);
3964 	kfree(adap->sge.ingr_map);
3965 	kfree(adap->sge.starving_fl);
3966 	kfree(adap->sge.txq_maperr);
3967 	if (ret != -ETIMEDOUT && ret != -EIO)
3968 		t4_fw_bye(adap, adap->mbox);
3969 	return ret;
3970 }
3971 
3972 /* EEH callbacks */
3973 
3974 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3975 					 pci_channel_state_t state)
3976 {
3977 	int i;
3978 	struct adapter *adap = pci_get_drvdata(pdev);
3979 
3980 	if (!adap)
3981 		goto out;
3982 
3983 	rtnl_lock();
3984 	adap->flags &= ~FW_OK;
3985 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3986 	spin_lock(&adap->stats_lock);
3987 	for_each_port(adap, i) {
3988 		struct net_device *dev = adap->port[i];
3989 
3990 		netif_device_detach(dev);
3991 		netif_carrier_off(dev);
3992 	}
3993 	spin_unlock(&adap->stats_lock);
3994 	disable_interrupts(adap);
3995 	if (adap->flags & FULL_INIT_DONE)
3996 		cxgb_down(adap);
3997 	rtnl_unlock();
3998 	if ((adap->flags & DEV_ENABLED)) {
3999 		pci_disable_device(pdev);
4000 		adap->flags &= ~DEV_ENABLED;
4001 	}
4002 out:	return state == pci_channel_io_perm_failure ?
4003 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4004 }
4005 
4006 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4007 {
4008 	int i, ret;
4009 	struct fw_caps_config_cmd c;
4010 	struct adapter *adap = pci_get_drvdata(pdev);
4011 
4012 	if (!adap) {
4013 		pci_restore_state(pdev);
4014 		pci_save_state(pdev);
4015 		return PCI_ERS_RESULT_RECOVERED;
4016 	}
4017 
4018 	if (!(adap->flags & DEV_ENABLED)) {
4019 		if (pci_enable_device(pdev)) {
4020 			dev_err(&pdev->dev, "Cannot reenable PCI "
4021 					    "device after reset\n");
4022 			return PCI_ERS_RESULT_DISCONNECT;
4023 		}
4024 		adap->flags |= DEV_ENABLED;
4025 	}
4026 
4027 	pci_set_master(pdev);
4028 	pci_restore_state(pdev);
4029 	pci_save_state(pdev);
4030 	pci_cleanup_aer_uncorrect_error_status(pdev);
4031 
4032 	if (t4_wait_dev_ready(adap->regs) < 0)
4033 		return PCI_ERS_RESULT_DISCONNECT;
4034 	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4035 		return PCI_ERS_RESULT_DISCONNECT;
4036 	adap->flags |= FW_OK;
4037 	if (adap_init1(adap, &c))
4038 		return PCI_ERS_RESULT_DISCONNECT;
4039 
4040 	for_each_port(adap, i) {
4041 		struct port_info *p = adap2pinfo(adap, i);
4042 
4043 		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4044 				  NULL, NULL);
4045 		if (ret < 0)
4046 			return PCI_ERS_RESULT_DISCONNECT;
4047 		p->viid = ret;
4048 		p->xact_addr_filt = -1;
4049 	}
4050 
4051 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4052 		     adap->params.b_wnd);
4053 	setup_memwin(adap);
4054 	if (cxgb_up(adap))
4055 		return PCI_ERS_RESULT_DISCONNECT;
4056 	return PCI_ERS_RESULT_RECOVERED;
4057 }
4058 
4059 static void eeh_resume(struct pci_dev *pdev)
4060 {
4061 	int i;
4062 	struct adapter *adap = pci_get_drvdata(pdev);
4063 
4064 	if (!adap)
4065 		return;
4066 
4067 	rtnl_lock();
4068 	for_each_port(adap, i) {
4069 		struct net_device *dev = adap->port[i];
4070 
4071 		if (netif_running(dev)) {
4072 			link_start(dev);
4073 			cxgb_set_rxmode(dev);
4074 		}
4075 		netif_device_attach(dev);
4076 	}
4077 	rtnl_unlock();
4078 }
4079 
4080 static const struct pci_error_handlers cxgb4_eeh = {
4081 	.error_detected = eeh_err_detected,
4082 	.slot_reset     = eeh_slot_reset,
4083 	.resume         = eeh_resume,
4084 };
4085 
4086 static inline bool is_x_10g_port(const struct link_config *lc)
4087 {
4088 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4089 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4090 }
4091 
4092 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4093 			     unsigned int us, unsigned int cnt,
4094 			     unsigned int size, unsigned int iqe_size)
4095 {
4096 	q->adap = adap;
4097 	cxgb4_set_rspq_intr_params(q, us, cnt);
4098 	q->iqe_len = iqe_size;
4099 	q->size = size;
4100 }
4101 
4102 /*
4103  * Perform default configuration of DMA queues depending on the number and type
4104  * of ports we found and the number of available CPUs.  Most settings can be
4105  * modified by the admin prior to actual use.
4106  */
4107 static void cfg_queues(struct adapter *adap)
4108 {
4109 	struct sge *s = &adap->sge;
4110 	int i, n10g = 0, qidx = 0;
4111 #ifndef CONFIG_CHELSIO_T4_DCB
4112 	int q10g = 0;
4113 #endif
4114 	int ciq_size;
4115 
4116 	for_each_port(adap, i)
4117 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4118 #ifdef CONFIG_CHELSIO_T4_DCB
4119 	/* For Data Center Bridging support we need to be able to support up
4120 	 * to 8 Traffic Priorities; each of which will be assigned to its
4121 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4122 	 */
4123 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4124 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4125 			MAX_ETH_QSETS, adap->params.nports * 8);
4126 		BUG_ON(1);
4127 	}
4128 
4129 	for_each_port(adap, i) {
4130 		struct port_info *pi = adap2pinfo(adap, i);
4131 
4132 		pi->first_qset = qidx;
4133 		pi->nqsets = 8;
4134 		qidx += pi->nqsets;
4135 	}
4136 #else /* !CONFIG_CHELSIO_T4_DCB */
4137 	/*
4138 	 * We default to 1 queue per non-10G port and up to # of cores queues
4139 	 * per 10G port.
4140 	 */
4141 	if (n10g)
4142 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4143 	if (q10g > netif_get_num_default_rss_queues())
4144 		q10g = netif_get_num_default_rss_queues();
4145 
4146 	for_each_port(adap, i) {
4147 		struct port_info *pi = adap2pinfo(adap, i);
4148 
4149 		pi->first_qset = qidx;
4150 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4151 		qidx += pi->nqsets;
4152 	}
4153 #endif /* !CONFIG_CHELSIO_T4_DCB */
4154 
4155 	s->ethqsets = qidx;
4156 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4157 
4158 	if (is_offload(adap)) {
4159 		/*
4160 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4161 		 * otherwise we divide all available queues amongst the channels
4162 		 * capped by the number of available cores.
4163 		 */
4164 		if (n10g) {
4165 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4166 				  num_online_cpus());
4167 			s->ofldqsets = roundup(i, adap->params.nports);
4168 		} else
4169 			s->ofldqsets = adap->params.nports;
4170 		/* For RDMA one Rx queue per channel suffices */
4171 		s->rdmaqs = adap->params.nports;
4172 		/* Try and allow at least 1 CIQ per cpu rounding down
4173 		 * to the number of ports, with a minimum of 1 per port.
4174 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4175 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4176 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4177 		 */
4178 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4179 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4180 				adap->params.nports;
4181 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4182 	}
4183 
4184 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4185 		struct sge_eth_rxq *r = &s->ethrxq[i];
4186 
4187 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4188 		r->fl.size = 72;
4189 	}
4190 
4191 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4192 		s->ethtxq[i].q.size = 1024;
4193 
4194 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4195 		s->ctrlq[i].q.size = 512;
4196 
4197 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4198 		s->ofldtxq[i].q.size = 1024;
4199 
4200 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4201 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
4202 
4203 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4204 		r->rspq.uld = CXGB4_ULD_ISCSI;
4205 		r->fl.size = 72;
4206 	}
4207 
4208 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4209 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4210 
4211 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4212 		r->rspq.uld = CXGB4_ULD_RDMA;
4213 		r->fl.size = 72;
4214 	}
4215 
4216 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4217 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4218 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4219 		ciq_size = SGE_MAX_IQ_SIZE;
4220 	}
4221 
4222 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4223 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4224 
4225 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4226 		r->rspq.uld = CXGB4_ULD_RDMA;
4227 	}
4228 
4229 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4230 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4231 }
4232 
4233 /*
4234  * Reduce the number of Ethernet queues across all ports to at most n.
4235  * n provides at least one queue per port.
4236  */
4237 static void reduce_ethqs(struct adapter *adap, int n)
4238 {
4239 	int i;
4240 	struct port_info *pi;
4241 
4242 	while (n < adap->sge.ethqsets)
4243 		for_each_port(adap, i) {
4244 			pi = adap2pinfo(adap, i);
4245 			if (pi->nqsets > 1) {
4246 				pi->nqsets--;
4247 				adap->sge.ethqsets--;
4248 				if (adap->sge.ethqsets <= n)
4249 					break;
4250 			}
4251 		}
4252 
4253 	n = 0;
4254 	for_each_port(adap, i) {
4255 		pi = adap2pinfo(adap, i);
4256 		pi->first_qset = n;
4257 		n += pi->nqsets;
4258 	}
4259 }
4260 
4261 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4262 #define EXTRA_VECS 2
4263 
4264 static int enable_msix(struct adapter *adap)
4265 {
4266 	int ofld_need = 0;
4267 	int i, want, need, allocated;
4268 	struct sge *s = &adap->sge;
4269 	unsigned int nchan = adap->params.nports;
4270 	struct msix_entry *entries;
4271 
4272 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4273 			  GFP_KERNEL);
4274 	if (!entries)
4275 		return -ENOMEM;
4276 
4277 	for (i = 0; i < MAX_INGQ + 1; ++i)
4278 		entries[i].entry = i;
4279 
4280 	want = s->max_ethqsets + EXTRA_VECS;
4281 	if (is_offload(adap)) {
4282 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4283 		/* need nchan for each possible ULD */
4284 		ofld_need = 3 * nchan;
4285 	}
4286 #ifdef CONFIG_CHELSIO_T4_DCB
4287 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4288 	 * each port.
4289 	 */
4290 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4291 #else
4292 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4293 #endif
4294 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4295 	if (allocated < 0) {
4296 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4297 			 " not using MSI-X\n");
4298 		kfree(entries);
4299 		return allocated;
4300 	}
4301 
4302 	/* Distribute available vectors to the various queue groups.
4303 	 * Every group gets its minimum requirement and NIC gets top
4304 	 * priority for leftovers.
4305 	 */
4306 	i = allocated - EXTRA_VECS - ofld_need;
4307 	if (i < s->max_ethqsets) {
4308 		s->max_ethqsets = i;
4309 		if (i < s->ethqsets)
4310 			reduce_ethqs(adap, i);
4311 	}
4312 	if (is_offload(adap)) {
4313 		if (allocated < want) {
4314 			s->rdmaqs = nchan;
4315 			s->rdmaciqs = nchan;
4316 		}
4317 
4318 		/* leftovers go to OFLD */
4319 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4320 		    s->rdmaqs - s->rdmaciqs;
4321 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
4322 	}
4323 	for (i = 0; i < allocated; ++i)
4324 		adap->msix_info[i].vec = entries[i].vector;
4325 
4326 	kfree(entries);
4327 	return 0;
4328 }
4329 
4330 #undef EXTRA_VECS
4331 
4332 static int init_rss(struct adapter *adap)
4333 {
4334 	unsigned int i, j;
4335 
4336 	for_each_port(adap, i) {
4337 		struct port_info *pi = adap2pinfo(adap, i);
4338 
4339 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4340 		if (!pi->rss)
4341 			return -ENOMEM;
4342 		for (j = 0; j < pi->rss_size; j++)
4343 			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4344 	}
4345 	return 0;
4346 }
4347 
4348 static void print_port_info(const struct net_device *dev)
4349 {
4350 	char buf[80];
4351 	char *bufp = buf;
4352 	const char *spd = "";
4353 	const struct port_info *pi = netdev_priv(dev);
4354 	const struct adapter *adap = pi->adapter;
4355 
4356 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4357 		spd = " 2.5 GT/s";
4358 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4359 		spd = " 5 GT/s";
4360 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4361 		spd = " 8 GT/s";
4362 
4363 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4364 		bufp += sprintf(bufp, "100/");
4365 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4366 		bufp += sprintf(bufp, "1000/");
4367 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4368 		bufp += sprintf(bufp, "10G/");
4369 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4370 		bufp += sprintf(bufp, "40G/");
4371 	if (bufp != buf)
4372 		--bufp;
4373 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4374 
4375 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4376 		    adap->params.vpd.id,
4377 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4378 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4379 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4380 		    (adap->flags & USING_MSI) ? " MSI" : "");
4381 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4382 		    adap->params.vpd.sn, adap->params.vpd.pn);
4383 }
4384 
4385 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4386 {
4387 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4388 }
4389 
4390 /*
4391  * Free the following resources:
4392  * - memory used for tables
4393  * - MSI/MSI-X
4394  * - net devices
4395  * - resources FW is holding for us
4396  */
4397 static void free_some_resources(struct adapter *adapter)
4398 {
4399 	unsigned int i;
4400 
4401 	t4_free_mem(adapter->l2t);
4402 	t4_free_mem(adapter->tids.tid_tab);
4403 	kfree(adapter->sge.egr_map);
4404 	kfree(adapter->sge.ingr_map);
4405 	kfree(adapter->sge.starving_fl);
4406 	kfree(adapter->sge.txq_maperr);
4407 	disable_msi(adapter);
4408 
4409 	for_each_port(adapter, i)
4410 		if (adapter->port[i]) {
4411 			kfree(adap2pinfo(adapter, i)->rss);
4412 			free_netdev(adapter->port[i]);
4413 		}
4414 	if (adapter->flags & FW_OK)
4415 		t4_fw_bye(adapter, adapter->fn);
4416 }
4417 
4418 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4419 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4420 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4421 #define SEGMENT_SIZE 128
4422 
4423 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4424 {
4425 	int func, i, err, s_qpp, qpp, num_seg;
4426 	struct port_info *pi;
4427 	bool highdma = false;
4428 	struct adapter *adapter = NULL;
4429 	void __iomem *regs;
4430 
4431 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4432 
4433 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4434 	if (err) {
4435 		/* Just info, some other driver may have claimed the device. */
4436 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4437 		return err;
4438 	}
4439 
4440 	err = pci_enable_device(pdev);
4441 	if (err) {
4442 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4443 		goto out_release_regions;
4444 	}
4445 
4446 	regs = pci_ioremap_bar(pdev, 0);
4447 	if (!regs) {
4448 		dev_err(&pdev->dev, "cannot map device registers\n");
4449 		err = -ENOMEM;
4450 		goto out_disable_device;
4451 	}
4452 
4453 	err = t4_wait_dev_ready(regs);
4454 	if (err < 0)
4455 		goto out_unmap_bar0;
4456 
4457 	/* We control everything through one PF */
4458 	func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4459 	if (func != ent->driver_data) {
4460 		iounmap(regs);
4461 		pci_disable_device(pdev);
4462 		pci_save_state(pdev);        /* to restore SR-IOV later */
4463 		goto sriov;
4464 	}
4465 
4466 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4467 		highdma = true;
4468 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4469 		if (err) {
4470 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4471 				"coherent allocations\n");
4472 			goto out_unmap_bar0;
4473 		}
4474 	} else {
4475 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4476 		if (err) {
4477 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4478 			goto out_unmap_bar0;
4479 		}
4480 	}
4481 
4482 	pci_enable_pcie_error_reporting(pdev);
4483 	enable_pcie_relaxed_ordering(pdev);
4484 	pci_set_master(pdev);
4485 	pci_save_state(pdev);
4486 
4487 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4488 	if (!adapter) {
4489 		err = -ENOMEM;
4490 		goto out_unmap_bar0;
4491 	}
4492 
4493 	adapter->workq = create_singlethread_workqueue("cxgb4");
4494 	if (!adapter->workq) {
4495 		err = -ENOMEM;
4496 		goto out_free_adapter;
4497 	}
4498 
4499 	/* PCI device has been enabled */
4500 	adapter->flags |= DEV_ENABLED;
4501 
4502 	adapter->regs = regs;
4503 	adapter->pdev = pdev;
4504 	adapter->pdev_dev = &pdev->dev;
4505 	adapter->mbox = func;
4506 	adapter->fn = func;
4507 	adapter->msg_enable = dflt_msg_enable;
4508 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4509 
4510 	spin_lock_init(&adapter->stats_lock);
4511 	spin_lock_init(&adapter->tid_release_lock);
4512 	spin_lock_init(&adapter->win0_lock);
4513 
4514 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4515 	INIT_WORK(&adapter->db_full_task, process_db_full);
4516 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4517 
4518 	err = t4_prep_adapter(adapter);
4519 	if (err)
4520 		goto out_free_adapter;
4521 
4522 
4523 	if (!is_t4(adapter->params.chip)) {
4524 		s_qpp = (QUEUESPERPAGEPF0_S +
4525 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4526 			adapter->fn);
4527 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4528 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4529 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4530 
4531 		/* Each segment size is 128B. Write coalescing is enabled only
4532 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4533 		 * queue is less no of segments that can be accommodated in
4534 		 * a page size.
4535 		 */
4536 		if (qpp > num_seg) {
4537 			dev_err(&pdev->dev,
4538 				"Incorrect number of egress queues per page\n");
4539 			err = -EINVAL;
4540 			goto out_free_adapter;
4541 		}
4542 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4543 		pci_resource_len(pdev, 2));
4544 		if (!adapter->bar2) {
4545 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4546 			err = -ENOMEM;
4547 			goto out_free_adapter;
4548 		}
4549 	}
4550 
4551 	setup_memwin(adapter);
4552 	err = adap_init0(adapter);
4553 	setup_memwin_rdma(adapter);
4554 	if (err)
4555 		goto out_unmap_bar;
4556 
4557 	for_each_port(adapter, i) {
4558 		struct net_device *netdev;
4559 
4560 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4561 					   MAX_ETH_QSETS);
4562 		if (!netdev) {
4563 			err = -ENOMEM;
4564 			goto out_free_dev;
4565 		}
4566 
4567 		SET_NETDEV_DEV(netdev, &pdev->dev);
4568 
4569 		adapter->port[i] = netdev;
4570 		pi = netdev_priv(netdev);
4571 		pi->adapter = adapter;
4572 		pi->xact_addr_filt = -1;
4573 		pi->port_id = i;
4574 		netdev->irq = pdev->irq;
4575 
4576 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4577 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4578 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4579 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4580 		if (highdma)
4581 			netdev->hw_features |= NETIF_F_HIGHDMA;
4582 		netdev->features |= netdev->hw_features;
4583 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4584 
4585 		netdev->priv_flags |= IFF_UNICAST_FLT;
4586 
4587 		netdev->netdev_ops = &cxgb4_netdev_ops;
4588 #ifdef CONFIG_CHELSIO_T4_DCB
4589 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4590 		cxgb4_dcb_state_init(netdev);
4591 #endif
4592 		cxgb4_set_ethtool_ops(netdev);
4593 	}
4594 
4595 	pci_set_drvdata(pdev, adapter);
4596 
4597 	if (adapter->flags & FW_OK) {
4598 		err = t4_port_init(adapter, func, func, 0);
4599 		if (err)
4600 			goto out_free_dev;
4601 	}
4602 
4603 	/*
4604 	 * Configure queues and allocate tables now, they can be needed as
4605 	 * soon as the first register_netdev completes.
4606 	 */
4607 	cfg_queues(adapter);
4608 
4609 	adapter->l2t = t4_init_l2t();
4610 	if (!adapter->l2t) {
4611 		/* We tolerate a lack of L2T, giving up some functionality */
4612 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4613 		adapter->params.offload = 0;
4614 	}
4615 
4616 #if IS_ENABLED(CONFIG_IPV6)
4617 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4618 					  adapter->clipt_end);
4619 	if (!adapter->clipt) {
4620 		/* We tolerate a lack of clip_table, giving up
4621 		 * some functionality
4622 		 */
4623 		dev_warn(&pdev->dev,
4624 			 "could not allocate Clip table, continuing\n");
4625 		adapter->params.offload = 0;
4626 	}
4627 #endif
4628 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4629 		dev_warn(&pdev->dev, "could not allocate TID table, "
4630 			 "continuing\n");
4631 		adapter->params.offload = 0;
4632 	}
4633 
4634 	/* See what interrupts we'll be using */
4635 	if (msi > 1 && enable_msix(adapter) == 0)
4636 		adapter->flags |= USING_MSIX;
4637 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4638 		adapter->flags |= USING_MSI;
4639 
4640 	err = init_rss(adapter);
4641 	if (err)
4642 		goto out_free_dev;
4643 
4644 	/*
4645 	 * The card is now ready to go.  If any errors occur during device
4646 	 * registration we do not fail the whole card but rather proceed only
4647 	 * with the ports we manage to register successfully.  However we must
4648 	 * register at least one net device.
4649 	 */
4650 	for_each_port(adapter, i) {
4651 		pi = adap2pinfo(adapter, i);
4652 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4653 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4654 
4655 		err = register_netdev(adapter->port[i]);
4656 		if (err)
4657 			break;
4658 		adapter->chan_map[pi->tx_chan] = i;
4659 		print_port_info(adapter->port[i]);
4660 	}
4661 	if (i == 0) {
4662 		dev_err(&pdev->dev, "could not register any net devices\n");
4663 		goto out_free_dev;
4664 	}
4665 	if (err) {
4666 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4667 		err = 0;
4668 	}
4669 
4670 	if (cxgb4_debugfs_root) {
4671 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4672 							   cxgb4_debugfs_root);
4673 		setup_debugfs(adapter);
4674 	}
4675 
4676 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4677 	pdev->needs_freset = 1;
4678 
4679 	if (is_offload(adapter))
4680 		attach_ulds(adapter);
4681 
4682 sriov:
4683 #ifdef CONFIG_PCI_IOV
4684 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4685 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4686 			dev_info(&pdev->dev,
4687 				 "instantiated %u virtual functions\n",
4688 				 num_vf[func]);
4689 #endif
4690 	return 0;
4691 
4692  out_free_dev:
4693 	free_some_resources(adapter);
4694  out_unmap_bar:
4695 	if (!is_t4(adapter->params.chip))
4696 		iounmap(adapter->bar2);
4697  out_free_adapter:
4698 	if (adapter->workq)
4699 		destroy_workqueue(adapter->workq);
4700 
4701 	kfree(adapter);
4702  out_unmap_bar0:
4703 	iounmap(regs);
4704  out_disable_device:
4705 	pci_disable_pcie_error_reporting(pdev);
4706 	pci_disable_device(pdev);
4707  out_release_regions:
4708 	pci_release_regions(pdev);
4709 	return err;
4710 }
4711 
4712 static void remove_one(struct pci_dev *pdev)
4713 {
4714 	struct adapter *adapter = pci_get_drvdata(pdev);
4715 
4716 #ifdef CONFIG_PCI_IOV
4717 	pci_disable_sriov(pdev);
4718 
4719 #endif
4720 
4721 	if (adapter) {
4722 		int i;
4723 
4724 		/* Tear down per-adapter Work Queue first since it can contain
4725 		 * references to our adapter data structure.
4726 		 */
4727 		destroy_workqueue(adapter->workq);
4728 
4729 		if (is_offload(adapter))
4730 			detach_ulds(adapter);
4731 
4732 		disable_interrupts(adapter);
4733 
4734 		for_each_port(adapter, i)
4735 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4736 				unregister_netdev(adapter->port[i]);
4737 
4738 		debugfs_remove_recursive(adapter->debugfs_root);
4739 
4740 		/* If we allocated filters, free up state associated with any
4741 		 * valid filters ...
4742 		 */
4743 		if (adapter->tids.ftid_tab) {
4744 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4745 			for (i = 0; i < (adapter->tids.nftids +
4746 					adapter->tids.nsftids); i++, f++)
4747 				if (f->valid)
4748 					clear_filter(adapter, f);
4749 		}
4750 
4751 		if (adapter->flags & FULL_INIT_DONE)
4752 			cxgb_down(adapter);
4753 
4754 		free_some_resources(adapter);
4755 #if IS_ENABLED(CONFIG_IPV6)
4756 		t4_cleanup_clip_tbl(adapter);
4757 #endif
4758 		iounmap(adapter->regs);
4759 		if (!is_t4(adapter->params.chip))
4760 			iounmap(adapter->bar2);
4761 		pci_disable_pcie_error_reporting(pdev);
4762 		if ((adapter->flags & DEV_ENABLED)) {
4763 			pci_disable_device(pdev);
4764 			adapter->flags &= ~DEV_ENABLED;
4765 		}
4766 		pci_release_regions(pdev);
4767 		synchronize_rcu();
4768 		kfree(adapter);
4769 	} else
4770 		pci_release_regions(pdev);
4771 }
4772 
4773 static struct pci_driver cxgb4_driver = {
4774 	.name     = KBUILD_MODNAME,
4775 	.id_table = cxgb4_pci_tbl,
4776 	.probe    = init_one,
4777 	.remove   = remove_one,
4778 	.shutdown = remove_one,
4779 	.err_handler = &cxgb4_eeh,
4780 };
4781 
4782 static int __init cxgb4_init_module(void)
4783 {
4784 	int ret;
4785 
4786 	/* Debugfs support is optional, just warn if this fails */
4787 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4788 	if (!cxgb4_debugfs_root)
4789 		pr_warn("could not create debugfs entry, continuing\n");
4790 
4791 	ret = pci_register_driver(&cxgb4_driver);
4792 	if (ret < 0)
4793 		debugfs_remove(cxgb4_debugfs_root);
4794 
4795 #if IS_ENABLED(CONFIG_IPV6)
4796 	if (!inet6addr_registered) {
4797 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4798 		inet6addr_registered = true;
4799 	}
4800 #endif
4801 
4802 	return ret;
4803 }
4804 
4805 static void __exit cxgb4_cleanup_module(void)
4806 {
4807 #if IS_ENABLED(CONFIG_IPV6)
4808 	if (inet6addr_registered) {
4809 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4810 		inet6addr_registered = false;
4811 	}
4812 #endif
4813 	pci_unregister_driver(&cxgb4_driver);
4814 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4815 }
4816 
4817 module_init(cxgb4_init_module);
4818 module_exit(cxgb4_cleanup_module);
4819