1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 68 #include "cxgb4.h" 69 #include "t4_regs.h" 70 #include "t4_values.h" 71 #include "t4_msg.h" 72 #include "t4fw_api.h" 73 #include "t4fw_version.h" 74 #include "cxgb4_dcb.h" 75 #include "cxgb4_debugfs.h" 76 #include "clip_tbl.h" 77 #include "l2t.h" 78 79 char cxgb4_driver_name[] = KBUILD_MODNAME; 80 81 #ifdef DRV_VERSION 82 #undef DRV_VERSION 83 #endif 84 #define DRV_VERSION "2.0.0-ko" 85 const char cxgb4_driver_version[] = DRV_VERSION; 86 #define DRV_DESC "Chelsio T4/T5 Network Driver" 87 88 /* Host shadow copy of ingress filter entry. This is in host native format 89 * and doesn't match the ordering or bit order, etc. of the hardware of the 90 * firmware command. The use of bit-field structure elements is purely to 91 * remind ourselves of the field size limitations and save memory in the case 92 * where the filter table is large. 93 */ 94 struct filter_entry { 95 /* Administrative fields for filter. 96 */ 97 u32 valid:1; /* filter allocated and valid */ 98 u32 locked:1; /* filter is administratively locked */ 99 100 u32 pending:1; /* filter action is pending firmware reply */ 101 u32 smtidx:8; /* Source MAC Table index for smac */ 102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 103 104 /* The filter itself. Most of this is a straight copy of information 105 * provided by the extended ioctl(). Some fields are translated to 106 * internal forms -- for instance the Ingress Queue ID passed in from 107 * the ioctl() is translated into the Absolute Ingress Queue ID. 108 */ 109 struct ch_filter_specification fs; 110 }; 111 112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 115 116 /* Macros needed to support the PCI Device ID Table ... 117 */ 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 119 static const struct pci_device_id cxgb4_pci_tbl[] = { 120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 121 122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 123 * called for both. 124 */ 125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 126 127 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 128 {PCI_VDEVICE(CHELSIO, (devid)), 4} 129 130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 131 { 0, } \ 132 } 133 134 #include "t4_pci_id_tbl.h" 135 136 #define FW4_FNAME "cxgb4/t4fw.bin" 137 #define FW5_FNAME "cxgb4/t5fw.bin" 138 #define FW4_CFNAME "cxgb4/t4-config.txt" 139 #define FW5_CFNAME "cxgb4/t5-config.txt" 140 141 MODULE_DESCRIPTION(DRV_DESC); 142 MODULE_AUTHOR("Chelsio Communications"); 143 MODULE_LICENSE("Dual BSD/GPL"); 144 MODULE_VERSION(DRV_VERSION); 145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 146 MODULE_FIRMWARE(FW4_FNAME); 147 MODULE_FIRMWARE(FW5_FNAME); 148 149 /* 150 * Normally we're willing to become the firmware's Master PF but will be happy 151 * if another PF has already become the Master and initialized the adapter. 152 * Setting "force_init" will cause this driver to forcibly establish itself as 153 * the Master PF and initialize the adapter. 154 */ 155 static uint force_init; 156 157 module_param(force_init, uint, 0644); 158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 159 160 /* 161 * Normally if the firmware we connect to has Configuration File support, we 162 * use that and only fall back to the old Driver-based initialization if the 163 * Configuration File fails for some reason. If force_old_init is set, then 164 * we'll always use the old Driver-based initialization sequence. 165 */ 166 static uint force_old_init; 167 168 module_param(force_old_init, uint, 0644); 169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated" 170 " parameter"); 171 172 static int dflt_msg_enable = DFLT_MSG_ENABLE; 173 174 module_param(dflt_msg_enable, int, 0644); 175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 176 177 /* 178 * The driver uses the best interrupt scheme available on a platform in the 179 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 180 * of these schemes the driver may consider as follows: 181 * 182 * msi = 2: choose from among all three options 183 * msi = 1: only consider MSI and INTx interrupts 184 * msi = 0: force INTx interrupts 185 */ 186 static int msi = 2; 187 188 module_param(msi, int, 0644); 189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 190 191 /* 192 * Queue interrupt hold-off timer values. Queues default to the first of these 193 * upon creation. 194 */ 195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 196 197 module_param_array(intr_holdoff, uint, NULL, 0644); 198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 199 "0..4 in microseconds, deprecated parameter"); 200 201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 202 203 module_param_array(intr_cnt, uint, NULL, 0644); 204 MODULE_PARM_DESC(intr_cnt, 205 "thresholds 1..3 for queue interrupt packet counters, " 206 "deprecated parameter"); 207 208 /* 209 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 210 * offset by 2 bytes in order to have the IP headers line up on 4-byte 211 * boundaries. This is a requirement for many architectures which will throw 212 * a machine check fault if an attempt is made to access one of the 4-byte IP 213 * header fields on a non-4-byte boundary. And it's a major performance issue 214 * even on some architectures which allow it like some implementations of the 215 * x86 ISA. However, some architectures don't mind this and for some very 216 * edge-case performance sensitive applications (like forwarding large volumes 217 * of small packets), setting this DMA offset to 0 will decrease the number of 218 * PCI-E Bus transfers enough to measurably affect performance. 219 */ 220 static int rx_dma_offset = 2; 221 222 static bool vf_acls; 223 224 #ifdef CONFIG_PCI_IOV 225 module_param(vf_acls, bool, 0644); 226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, " 227 "deprecated parameter"); 228 229 /* Configure the number of PCI-E Virtual Function which are to be instantiated 230 * on SR-IOV Capable Physical Functions. 231 */ 232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 233 234 module_param_array(num_vf, uint, NULL, 0644); 235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 236 #endif 237 238 /* TX Queue select used to determine what algorithm to use for selecting TX 239 * queue. Select between the kernel provided function (select_queue=0) or user 240 * cxgb_select_queue function (select_queue=1) 241 * 242 * Default: select_queue=0 243 */ 244 static int select_queue; 245 module_param(select_queue, int, 0644); 246 MODULE_PARM_DESC(select_queue, 247 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 248 249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC; 250 251 module_param(tp_vlan_pri_map, uint, 0644); 252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, " 253 "deprecated parameter"); 254 255 static struct dentry *cxgb4_debugfs_root; 256 257 static LIST_HEAD(adapter_list); 258 static DEFINE_MUTEX(uld_mutex); 259 /* Adapter list to be accessed from atomic context */ 260 static LIST_HEAD(adap_rcu_list); 261 static DEFINE_SPINLOCK(adap_rcu_lock); 262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 263 static const char *uld_str[] = { "RDMA", "iSCSI" }; 264 265 static void link_report(struct net_device *dev) 266 { 267 if (!netif_carrier_ok(dev)) 268 netdev_info(dev, "link down\n"); 269 else { 270 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 271 272 const char *s = "10Mbps"; 273 const struct port_info *p = netdev_priv(dev); 274 275 switch (p->link_cfg.speed) { 276 case 10000: 277 s = "10Gbps"; 278 break; 279 case 1000: 280 s = "1000Mbps"; 281 break; 282 case 100: 283 s = "100Mbps"; 284 break; 285 case 40000: 286 s = "40Gbps"; 287 break; 288 } 289 290 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 291 fc[p->link_cfg.fc]); 292 } 293 } 294 295 #ifdef CONFIG_CHELSIO_T4_DCB 296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 298 { 299 struct port_info *pi = netdev_priv(dev); 300 struct adapter *adap = pi->adapter; 301 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 302 int i; 303 304 /* We use a simple mapping of Port TX Queue Index to DCB 305 * Priority when we're enabling DCB. 306 */ 307 for (i = 0; i < pi->nqsets; i++, txq++) { 308 u32 name, value; 309 int err; 310 311 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 312 FW_PARAMS_PARAM_X_V( 313 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 314 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 315 value = enable ? i : 0xffffffff; 316 317 /* Since we can be called while atomic (from "interrupt 318 * level") we need to issue the Set Parameters Commannd 319 * without sleeping (timeout < 0). 320 */ 321 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1, 322 &name, &value); 323 324 if (err) 325 dev_err(adap->pdev_dev, 326 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 327 enable ? "set" : "unset", pi->port_id, i, -err); 328 else 329 txq->dcb_prio = value; 330 } 331 } 332 #endif /* CONFIG_CHELSIO_T4_DCB */ 333 334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 335 { 336 struct net_device *dev = adapter->port[port_id]; 337 338 /* Skip changes from disabled ports. */ 339 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 340 if (link_stat) 341 netif_carrier_on(dev); 342 else { 343 #ifdef CONFIG_CHELSIO_T4_DCB 344 cxgb4_dcb_state_init(dev); 345 dcb_tx_queue_prio_enable(dev, false); 346 #endif /* CONFIG_CHELSIO_T4_DCB */ 347 netif_carrier_off(dev); 348 } 349 350 link_report(dev); 351 } 352 } 353 354 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 355 { 356 static const char *mod_str[] = { 357 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 358 }; 359 360 const struct net_device *dev = adap->port[port_id]; 361 const struct port_info *pi = netdev_priv(dev); 362 363 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 364 netdev_info(dev, "port module unplugged\n"); 365 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 366 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 367 } 368 369 /* 370 * Configure the exact and hash address filters to handle a port's multicast 371 * and secondary unicast MAC addresses. 372 */ 373 static int set_addr_filters(const struct net_device *dev, bool sleep) 374 { 375 u64 mhash = 0; 376 u64 uhash = 0; 377 bool free = true; 378 u16 filt_idx[7]; 379 const u8 *addr[7]; 380 int ret, naddr = 0; 381 const struct netdev_hw_addr *ha; 382 int uc_cnt = netdev_uc_count(dev); 383 int mc_cnt = netdev_mc_count(dev); 384 const struct port_info *pi = netdev_priv(dev); 385 unsigned int mb = pi->adapter->fn; 386 387 /* first do the secondary unicast addresses */ 388 netdev_for_each_uc_addr(ha, dev) { 389 addr[naddr++] = ha->addr; 390 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 391 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 392 naddr, addr, filt_idx, &uhash, sleep); 393 if (ret < 0) 394 return ret; 395 396 free = false; 397 naddr = 0; 398 } 399 } 400 401 /* next set up the multicast addresses */ 402 netdev_for_each_mc_addr(ha, dev) { 403 addr[naddr++] = ha->addr; 404 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 405 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 406 naddr, addr, filt_idx, &mhash, sleep); 407 if (ret < 0) 408 return ret; 409 410 free = false; 411 naddr = 0; 412 } 413 } 414 415 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 416 uhash | mhash, sleep); 417 } 418 419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 420 module_param(dbfifo_int_thresh, int, 0644); 421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 422 423 /* 424 * usecs to sleep while draining the dbfifo 425 */ 426 static int dbfifo_drain_delay = 1000; 427 module_param(dbfifo_drain_delay, int, 0644); 428 MODULE_PARM_DESC(dbfifo_drain_delay, 429 "usecs to sleep while draining the dbfifo"); 430 431 /* 432 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 433 * If @mtu is -1 it is left unchanged. 434 */ 435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 436 { 437 int ret; 438 struct port_info *pi = netdev_priv(dev); 439 440 ret = set_addr_filters(dev, sleep_ok); 441 if (ret == 0) 442 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 443 (dev->flags & IFF_PROMISC) ? 1 : 0, 444 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 445 sleep_ok); 446 return ret; 447 } 448 449 /** 450 * link_start - enable a port 451 * @dev: the port to enable 452 * 453 * Performs the MAC and PHY actions needed to enable a port. 454 */ 455 static int link_start(struct net_device *dev) 456 { 457 int ret; 458 struct port_info *pi = netdev_priv(dev); 459 unsigned int mb = pi->adapter->fn; 460 461 /* 462 * We do not set address filters and promiscuity here, the stack does 463 * that step explicitly. 464 */ 465 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 466 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 467 if (ret == 0) { 468 ret = t4_change_mac(pi->adapter, mb, pi->viid, 469 pi->xact_addr_filt, dev->dev_addr, true, 470 true); 471 if (ret >= 0) { 472 pi->xact_addr_filt = ret; 473 ret = 0; 474 } 475 } 476 if (ret == 0) 477 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 478 &pi->link_cfg); 479 if (ret == 0) { 480 local_bh_disable(); 481 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 482 true, CXGB4_DCB_ENABLED); 483 local_bh_enable(); 484 } 485 486 return ret; 487 } 488 489 int cxgb4_dcb_enabled(const struct net_device *dev) 490 { 491 #ifdef CONFIG_CHELSIO_T4_DCB 492 struct port_info *pi = netdev_priv(dev); 493 494 if (!pi->dcb.enabled) 495 return 0; 496 497 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 498 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 499 #else 500 return 0; 501 #endif 502 } 503 EXPORT_SYMBOL(cxgb4_dcb_enabled); 504 505 #ifdef CONFIG_CHELSIO_T4_DCB 506 /* Handle a Data Center Bridging update message from the firmware. */ 507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 508 { 509 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 510 struct net_device *dev = adap->port[port]; 511 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 512 int new_dcb_enabled; 513 514 cxgb4_dcb_handle_fw_update(adap, pcmd); 515 new_dcb_enabled = cxgb4_dcb_enabled(dev); 516 517 /* If the DCB has become enabled or disabled on the port then we're 518 * going to need to set up/tear down DCB Priority parameters for the 519 * TX Queues associated with the port. 520 */ 521 if (new_dcb_enabled != old_dcb_enabled) 522 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 523 } 524 #endif /* CONFIG_CHELSIO_T4_DCB */ 525 526 /* Clear a filter and release any of its resources that we own. This also 527 * clears the filter's "pending" status. 528 */ 529 static void clear_filter(struct adapter *adap, struct filter_entry *f) 530 { 531 /* If the new or old filter have loopback rewriteing rules then we'll 532 * need to free any existing Layer Two Table (L2T) entries of the old 533 * filter rule. The firmware will handle freeing up any Source MAC 534 * Table (SMT) entries used for rewriting Source MAC Addresses in 535 * loopback rules. 536 */ 537 if (f->l2t) 538 cxgb4_l2t_release(f->l2t); 539 540 /* The zeroing of the filter rule below clears the filter valid, 541 * pending, locked flags, l2t pointer, etc. so it's all we need for 542 * this operation. 543 */ 544 memset(f, 0, sizeof(*f)); 545 } 546 547 /* Handle a filter write/deletion reply. 548 */ 549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 550 { 551 unsigned int idx = GET_TID(rpl); 552 unsigned int nidx = idx - adap->tids.ftid_base; 553 unsigned int ret; 554 struct filter_entry *f; 555 556 if (idx >= adap->tids.ftid_base && nidx < 557 (adap->tids.nftids + adap->tids.nsftids)) { 558 idx = nidx; 559 ret = TCB_COOKIE_G(rpl->cookie); 560 f = &adap->tids.ftid_tab[idx]; 561 562 if (ret == FW_FILTER_WR_FLT_DELETED) { 563 /* Clear the filter when we get confirmation from the 564 * hardware that the filter has been deleted. 565 */ 566 clear_filter(adap, f); 567 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 568 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 569 idx); 570 clear_filter(adap, f); 571 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 572 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 573 f->pending = 0; /* asynchronous setup completed */ 574 f->valid = 1; 575 } else { 576 /* Something went wrong. Issue a warning about the 577 * problem and clear everything out. 578 */ 579 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 580 idx, ret); 581 clear_filter(adap, f); 582 } 583 } 584 } 585 586 /* Response queue handler for the FW event queue. 587 */ 588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 589 const struct pkt_gl *gl) 590 { 591 u8 opcode = ((const struct rss_header *)rsp)->opcode; 592 593 rsp++; /* skip RSS header */ 594 595 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 596 */ 597 if (unlikely(opcode == CPL_FW4_MSG && 598 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 599 rsp++; 600 opcode = ((const struct rss_header *)rsp)->opcode; 601 rsp++; 602 if (opcode != CPL_SGE_EGR_UPDATE) { 603 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 604 , opcode); 605 goto out; 606 } 607 } 608 609 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 610 const struct cpl_sge_egr_update *p = (void *)rsp; 611 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 612 struct sge_txq *txq; 613 614 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 615 txq->restarts++; 616 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 617 struct sge_eth_txq *eq; 618 619 eq = container_of(txq, struct sge_eth_txq, q); 620 netif_tx_wake_queue(eq->txq); 621 } else { 622 struct sge_ofld_txq *oq; 623 624 oq = container_of(txq, struct sge_ofld_txq, q); 625 tasklet_schedule(&oq->qresume_tsk); 626 } 627 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 628 const struct cpl_fw6_msg *p = (void *)rsp; 629 630 #ifdef CONFIG_CHELSIO_T4_DCB 631 const struct fw_port_cmd *pcmd = (const void *)p->data; 632 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 633 unsigned int action = 634 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 635 636 if (cmd == FW_PORT_CMD && 637 action == FW_PORT_ACTION_GET_PORT_INFO) { 638 int port = FW_PORT_CMD_PORTID_G( 639 be32_to_cpu(pcmd->op_to_portid)); 640 struct net_device *dev = q->adap->port[port]; 641 int state_input = ((pcmd->u.info.dcbxdis_pkd & 642 FW_PORT_CMD_DCBXDIS_F) 643 ? CXGB4_DCB_INPUT_FW_DISABLED 644 : CXGB4_DCB_INPUT_FW_ENABLED); 645 646 cxgb4_dcb_state_fsm(dev, state_input); 647 } 648 649 if (cmd == FW_PORT_CMD && 650 action == FW_PORT_ACTION_L2_DCB_CFG) 651 dcb_rpl(q->adap, pcmd); 652 else 653 #endif 654 if (p->type == 0) 655 t4_handle_fw_rpl(q->adap, p->data); 656 } else if (opcode == CPL_L2T_WRITE_RPL) { 657 const struct cpl_l2t_write_rpl *p = (void *)rsp; 658 659 do_l2t_write_rpl(q->adap, p); 660 } else if (opcode == CPL_SET_TCB_RPL) { 661 const struct cpl_set_tcb_rpl *p = (void *)rsp; 662 663 filter_rpl(q->adap, p); 664 } else 665 dev_err(q->adap->pdev_dev, 666 "unexpected CPL %#x on FW event queue\n", opcode); 667 out: 668 return 0; 669 } 670 671 /** 672 * uldrx_handler - response queue handler for ULD queues 673 * @q: the response queue that received the packet 674 * @rsp: the response queue descriptor holding the offload message 675 * @gl: the gather list of packet fragments 676 * 677 * Deliver an ingress offload packet to a ULD. All processing is done by 678 * the ULD, we just maintain statistics. 679 */ 680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 681 const struct pkt_gl *gl) 682 { 683 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 684 685 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 686 */ 687 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 688 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 689 rsp += 2; 690 691 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 692 rxq->stats.nomem++; 693 return -1; 694 } 695 if (gl == NULL) 696 rxq->stats.imm++; 697 else if (gl == CXGB4_MSG_AN) 698 rxq->stats.an++; 699 else 700 rxq->stats.pkts++; 701 return 0; 702 } 703 704 static void disable_msi(struct adapter *adapter) 705 { 706 if (adapter->flags & USING_MSIX) { 707 pci_disable_msix(adapter->pdev); 708 adapter->flags &= ~USING_MSIX; 709 } else if (adapter->flags & USING_MSI) { 710 pci_disable_msi(adapter->pdev); 711 adapter->flags &= ~USING_MSI; 712 } 713 } 714 715 /* 716 * Interrupt handler for non-data events used with MSI-X. 717 */ 718 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 719 { 720 struct adapter *adap = cookie; 721 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 722 723 if (v & PFSW_F) { 724 adap->swintr = 1; 725 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 726 } 727 if (adap->flags & MASTER_PF) 728 t4_slow_intr_handler(adap); 729 return IRQ_HANDLED; 730 } 731 732 /* 733 * Name the MSI-X interrupts. 734 */ 735 static void name_msix_vecs(struct adapter *adap) 736 { 737 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 738 739 /* non-data interrupts */ 740 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 741 742 /* FW events */ 743 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 744 adap->port[0]->name); 745 746 /* Ethernet queues */ 747 for_each_port(adap, j) { 748 struct net_device *d = adap->port[j]; 749 const struct port_info *pi = netdev_priv(d); 750 751 for (i = 0; i < pi->nqsets; i++, msi_idx++) 752 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 753 d->name, i); 754 } 755 756 /* offload queues */ 757 for_each_ofldrxq(&adap->sge, i) 758 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 759 adap->port[0]->name, i); 760 761 for_each_rdmarxq(&adap->sge, i) 762 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 763 adap->port[0]->name, i); 764 765 for_each_rdmaciq(&adap->sge, i) 766 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 767 adap->port[0]->name, i); 768 } 769 770 static int request_msix_queue_irqs(struct adapter *adap) 771 { 772 struct sge *s = &adap->sge; 773 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 774 int msi_index = 2; 775 776 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 777 adap->msix_info[1].desc, &s->fw_evtq); 778 if (err) 779 return err; 780 781 for_each_ethrxq(s, ethqidx) { 782 err = request_irq(adap->msix_info[msi_index].vec, 783 t4_sge_intr_msix, 0, 784 adap->msix_info[msi_index].desc, 785 &s->ethrxq[ethqidx].rspq); 786 if (err) 787 goto unwind; 788 msi_index++; 789 } 790 for_each_ofldrxq(s, ofldqidx) { 791 err = request_irq(adap->msix_info[msi_index].vec, 792 t4_sge_intr_msix, 0, 793 adap->msix_info[msi_index].desc, 794 &s->ofldrxq[ofldqidx].rspq); 795 if (err) 796 goto unwind; 797 msi_index++; 798 } 799 for_each_rdmarxq(s, rdmaqidx) { 800 err = request_irq(adap->msix_info[msi_index].vec, 801 t4_sge_intr_msix, 0, 802 adap->msix_info[msi_index].desc, 803 &s->rdmarxq[rdmaqidx].rspq); 804 if (err) 805 goto unwind; 806 msi_index++; 807 } 808 for_each_rdmaciq(s, rdmaciqqidx) { 809 err = request_irq(adap->msix_info[msi_index].vec, 810 t4_sge_intr_msix, 0, 811 adap->msix_info[msi_index].desc, 812 &s->rdmaciq[rdmaciqqidx].rspq); 813 if (err) 814 goto unwind; 815 msi_index++; 816 } 817 return 0; 818 819 unwind: 820 while (--rdmaciqqidx >= 0) 821 free_irq(adap->msix_info[--msi_index].vec, 822 &s->rdmaciq[rdmaciqqidx].rspq); 823 while (--rdmaqidx >= 0) 824 free_irq(adap->msix_info[--msi_index].vec, 825 &s->rdmarxq[rdmaqidx].rspq); 826 while (--ofldqidx >= 0) 827 free_irq(adap->msix_info[--msi_index].vec, 828 &s->ofldrxq[ofldqidx].rspq); 829 while (--ethqidx >= 0) 830 free_irq(adap->msix_info[--msi_index].vec, 831 &s->ethrxq[ethqidx].rspq); 832 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 833 return err; 834 } 835 836 static void free_msix_queue_irqs(struct adapter *adap) 837 { 838 int i, msi_index = 2; 839 struct sge *s = &adap->sge; 840 841 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 842 for_each_ethrxq(s, i) 843 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 844 for_each_ofldrxq(s, i) 845 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 846 for_each_rdmarxq(s, i) 847 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 848 for_each_rdmaciq(s, i) 849 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 850 } 851 852 /** 853 * cxgb4_write_rss - write the RSS table for a given port 854 * @pi: the port 855 * @queues: array of queue indices for RSS 856 * 857 * Sets up the portion of the HW RSS table for the port's VI to distribute 858 * packets to the Rx queues in @queues. 859 */ 860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 861 { 862 u16 *rss; 863 int i, err; 864 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 865 866 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 867 if (!rss) 868 return -ENOMEM; 869 870 /* map the queue indices to queue ids */ 871 for (i = 0; i < pi->rss_size; i++, queues++) 872 rss[i] = q[*queues].rspq.abs_id; 873 874 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 875 pi->rss_size, rss, pi->rss_size); 876 kfree(rss); 877 return err; 878 } 879 880 /** 881 * setup_rss - configure RSS 882 * @adap: the adapter 883 * 884 * Sets up RSS for each port. 885 */ 886 static int setup_rss(struct adapter *adap) 887 { 888 int i, err; 889 890 for_each_port(adap, i) { 891 const struct port_info *pi = adap2pinfo(adap, i); 892 893 err = cxgb4_write_rss(pi, pi->rss); 894 if (err) 895 return err; 896 } 897 return 0; 898 } 899 900 /* 901 * Return the channel of the ingress queue with the given qid. 902 */ 903 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 904 { 905 qid -= p->ingr_start; 906 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 907 } 908 909 /* 910 * Wait until all NAPI handlers are descheduled. 911 */ 912 static void quiesce_rx(struct adapter *adap) 913 { 914 int i; 915 916 for (i = 0; i < adap->sge.ingr_sz; i++) { 917 struct sge_rspq *q = adap->sge.ingr_map[i]; 918 919 if (q && q->handler) { 920 napi_disable(&q->napi); 921 local_bh_disable(); 922 while (!cxgb_poll_lock_napi(q)) 923 mdelay(1); 924 local_bh_enable(); 925 } 926 927 } 928 } 929 930 /* Disable interrupt and napi handler */ 931 static void disable_interrupts(struct adapter *adap) 932 { 933 if (adap->flags & FULL_INIT_DONE) { 934 t4_intr_disable(adap); 935 if (adap->flags & USING_MSIX) { 936 free_msix_queue_irqs(adap); 937 free_irq(adap->msix_info[0].vec, adap); 938 } else { 939 free_irq(adap->pdev->irq, adap); 940 } 941 quiesce_rx(adap); 942 } 943 } 944 945 /* 946 * Enable NAPI scheduling and interrupt generation for all Rx queues. 947 */ 948 static void enable_rx(struct adapter *adap) 949 { 950 int i; 951 952 for (i = 0; i < adap->sge.ingr_sz; i++) { 953 struct sge_rspq *q = adap->sge.ingr_map[i]; 954 955 if (!q) 956 continue; 957 if (q->handler) { 958 cxgb_busy_poll_init_lock(q); 959 napi_enable(&q->napi); 960 } 961 /* 0-increment GTS to start the timer and enable interrupts */ 962 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 963 SEINTARM_V(q->intr_params) | 964 INGRESSQID_V(q->cntxt_id)); 965 } 966 } 967 968 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 969 unsigned int nq, unsigned int per_chan, int msi_idx, 970 u16 *ids) 971 { 972 int i, err; 973 974 for (i = 0; i < nq; i++, q++) { 975 if (msi_idx > 0) 976 msi_idx++; 977 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 978 adap->port[i / per_chan], 979 msi_idx, q->fl.size ? &q->fl : NULL, 980 uldrx_handler); 981 if (err) 982 return err; 983 memset(&q->stats, 0, sizeof(q->stats)); 984 if (ids) 985 ids[i] = q->rspq.abs_id; 986 } 987 return 0; 988 } 989 990 /** 991 * setup_sge_queues - configure SGE Tx/Rx/response queues 992 * @adap: the adapter 993 * 994 * Determines how many sets of SGE queues to use and initializes them. 995 * We support multiple queue sets per port if we have MSI-X, otherwise 996 * just one queue set per port. 997 */ 998 static int setup_sge_queues(struct adapter *adap) 999 { 1000 int err, msi_idx, i, j; 1001 struct sge *s = &adap->sge; 1002 1003 bitmap_zero(s->starving_fl, s->egr_sz); 1004 bitmap_zero(s->txq_maperr, s->egr_sz); 1005 1006 if (adap->flags & USING_MSIX) 1007 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1008 else { 1009 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1010 NULL, NULL); 1011 if (err) 1012 return err; 1013 msi_idx = -((int)s->intrq.abs_id + 1); 1014 } 1015 1016 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1017 * don't forget to update the following which need to be 1018 * synchronized to and changes here. 1019 * 1020 * 1. The calculations of MAX_INGQ in cxgb4.h. 1021 * 1022 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1023 * to accommodate any new/deleted Ingress Queues 1024 * which need MSI-X Vectors. 1025 * 1026 * 3. Update sge_qinfo_show() to include information on the 1027 * new/deleted queues. 1028 */ 1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1030 msi_idx, NULL, fwevtq_handler); 1031 if (err) { 1032 freeout: t4_free_sge_resources(adap); 1033 return err; 1034 } 1035 1036 for_each_port(adap, i) { 1037 struct net_device *dev = adap->port[i]; 1038 struct port_info *pi = netdev_priv(dev); 1039 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1040 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1041 1042 for (j = 0; j < pi->nqsets; j++, q++) { 1043 if (msi_idx > 0) 1044 msi_idx++; 1045 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1046 msi_idx, &q->fl, 1047 t4_ethrx_handler); 1048 if (err) 1049 goto freeout; 1050 q->rspq.idx = j; 1051 memset(&q->stats, 0, sizeof(q->stats)); 1052 } 1053 for (j = 0; j < pi->nqsets; j++, t++) { 1054 err = t4_sge_alloc_eth_txq(adap, t, dev, 1055 netdev_get_tx_queue(dev, j), 1056 s->fw_evtq.cntxt_id); 1057 if (err) 1058 goto freeout; 1059 } 1060 } 1061 1062 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1063 for_each_ofldrxq(s, i) { 1064 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1065 adap->port[i / j], 1066 s->fw_evtq.cntxt_id); 1067 if (err) 1068 goto freeout; 1069 } 1070 1071 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \ 1072 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \ 1073 if (err) \ 1074 goto freeout; \ 1075 if (msi_idx > 0) \ 1076 msi_idx += nq; \ 1077 } while (0) 1078 1079 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq); 1080 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq); 1081 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1082 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq); 1083 1084 #undef ALLOC_OFLD_RXQS 1085 1086 for_each_port(adap, i) { 1087 /* 1088 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1089 * have RDMA queues, and that's the right value. 1090 */ 1091 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1092 s->fw_evtq.cntxt_id, 1093 s->rdmarxq[i].rspq.cntxt_id); 1094 if (err) 1095 goto freeout; 1096 } 1097 1098 t4_write_reg(adap, is_t4(adap->params.chip) ? 1099 MPS_TRC_RSS_CONTROL_A : 1100 MPS_T5_TRC_RSS_CONTROL_A, 1101 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1102 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1103 return 0; 1104 } 1105 1106 /* 1107 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1108 * The allocated memory is cleared. 1109 */ 1110 void *t4_alloc_mem(size_t size) 1111 { 1112 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1113 1114 if (!p) 1115 p = vzalloc(size); 1116 return p; 1117 } 1118 1119 /* 1120 * Free memory allocated through alloc_mem(). 1121 */ 1122 void t4_free_mem(void *addr) 1123 { 1124 if (is_vmalloc_addr(addr)) 1125 vfree(addr); 1126 else 1127 kfree(addr); 1128 } 1129 1130 /* Send a Work Request to write the filter at a specified index. We construct 1131 * a Firmware Filter Work Request to have the work done and put the indicated 1132 * filter into "pending" mode which will prevent any further actions against 1133 * it till we get a reply from the firmware on the completion status of the 1134 * request. 1135 */ 1136 static int set_filter_wr(struct adapter *adapter, int fidx) 1137 { 1138 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1139 struct sk_buff *skb; 1140 struct fw_filter_wr *fwr; 1141 unsigned int ftid; 1142 1143 /* If the new filter requires loopback Destination MAC and/or VLAN 1144 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1145 * the filter. 1146 */ 1147 if (f->fs.newdmac || f->fs.newvlan) { 1148 /* allocate L2T entry for new filter */ 1149 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1150 if (f->l2t == NULL) 1151 return -EAGAIN; 1152 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1153 f->fs.eport, f->fs.dmac)) { 1154 cxgb4_l2t_release(f->l2t); 1155 f->l2t = NULL; 1156 return -ENOMEM; 1157 } 1158 } 1159 1160 ftid = adapter->tids.ftid_base + fidx; 1161 1162 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL); 1163 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1164 memset(fwr, 0, sizeof(*fwr)); 1165 1166 /* It would be nice to put most of the following in t4_hw.c but most 1167 * of the work is translating the cxgbtool ch_filter_specification 1168 * into the Work Request and the definition of that structure is 1169 * currently in cxgbtool.h which isn't appropriate to pull into the 1170 * common code. We may eventually try to come up with a more neutral 1171 * filter specification structure but for now it's easiest to simply 1172 * put this fairly direct code in line ... 1173 */ 1174 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1175 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1176 fwr->tid_to_iq = 1177 htonl(FW_FILTER_WR_TID_V(ftid) | 1178 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1179 FW_FILTER_WR_NOREPLY_V(0) | 1180 FW_FILTER_WR_IQ_V(f->fs.iq)); 1181 fwr->del_filter_to_l2tix = 1182 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1183 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1184 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1185 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1186 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1187 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1188 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1189 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1190 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1191 f->fs.newvlan == VLAN_REWRITE) | 1192 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1193 f->fs.newvlan == VLAN_REWRITE) | 1194 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1195 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1196 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1197 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1198 fwr->ethtype = htons(f->fs.val.ethtype); 1199 fwr->ethtypem = htons(f->fs.mask.ethtype); 1200 fwr->frag_to_ovlan_vldm = 1201 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1202 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1203 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1204 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1205 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1206 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1207 fwr->smac_sel = 0; 1208 fwr->rx_chan_rx_rpl_iq = 1209 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1210 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1211 fwr->maci_to_matchtypem = 1212 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1213 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1214 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1215 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1216 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1217 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1218 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1219 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1220 fwr->ptcl = f->fs.val.proto; 1221 fwr->ptclm = f->fs.mask.proto; 1222 fwr->ttyp = f->fs.val.tos; 1223 fwr->ttypm = f->fs.mask.tos; 1224 fwr->ivlan = htons(f->fs.val.ivlan); 1225 fwr->ivlanm = htons(f->fs.mask.ivlan); 1226 fwr->ovlan = htons(f->fs.val.ovlan); 1227 fwr->ovlanm = htons(f->fs.mask.ovlan); 1228 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1229 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1230 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1231 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1232 fwr->lp = htons(f->fs.val.lport); 1233 fwr->lpm = htons(f->fs.mask.lport); 1234 fwr->fp = htons(f->fs.val.fport); 1235 fwr->fpm = htons(f->fs.mask.fport); 1236 if (f->fs.newsmac) 1237 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1238 1239 /* Mark the filter as "pending" and ship off the Filter Work Request. 1240 * When we get the Work Request Reply we'll clear the pending status. 1241 */ 1242 f->pending = 1; 1243 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1244 t4_ofld_send(adapter, skb); 1245 return 0; 1246 } 1247 1248 /* Delete the filter at a specified index. 1249 */ 1250 static int del_filter_wr(struct adapter *adapter, int fidx) 1251 { 1252 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1253 struct sk_buff *skb; 1254 struct fw_filter_wr *fwr; 1255 unsigned int len, ftid; 1256 1257 len = sizeof(*fwr); 1258 ftid = adapter->tids.ftid_base + fidx; 1259 1260 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL); 1261 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1262 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1263 1264 /* Mark the filter as "pending" and ship off the Filter Work Request. 1265 * When we get the Work Request Reply we'll clear the pending status. 1266 */ 1267 f->pending = 1; 1268 t4_mgmt_tx(adapter, skb); 1269 return 0; 1270 } 1271 1272 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1273 void *accel_priv, select_queue_fallback_t fallback) 1274 { 1275 int txq; 1276 1277 #ifdef CONFIG_CHELSIO_T4_DCB 1278 /* If a Data Center Bridging has been successfully negotiated on this 1279 * link then we'll use the skb's priority to map it to a TX Queue. 1280 * The skb's priority is determined via the VLAN Tag Priority Code 1281 * Point field. 1282 */ 1283 if (cxgb4_dcb_enabled(dev)) { 1284 u16 vlan_tci; 1285 int err; 1286 1287 err = vlan_get_tag(skb, &vlan_tci); 1288 if (unlikely(err)) { 1289 if (net_ratelimit()) 1290 netdev_warn(dev, 1291 "TX Packet without VLAN Tag on DCB Link\n"); 1292 txq = 0; 1293 } else { 1294 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1295 #ifdef CONFIG_CHELSIO_T4_FCOE 1296 if (skb->protocol == htons(ETH_P_FCOE)) 1297 txq = skb->priority & 0x7; 1298 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1299 } 1300 return txq; 1301 } 1302 #endif /* CONFIG_CHELSIO_T4_DCB */ 1303 1304 if (select_queue) { 1305 txq = (skb_rx_queue_recorded(skb) 1306 ? skb_get_rx_queue(skb) 1307 : smp_processor_id()); 1308 1309 while (unlikely(txq >= dev->real_num_tx_queues)) 1310 txq -= dev->real_num_tx_queues; 1311 1312 return txq; 1313 } 1314 1315 return fallback(dev, skb) % dev->real_num_tx_queues; 1316 } 1317 1318 static inline int is_offload(const struct adapter *adap) 1319 { 1320 return adap->params.offload; 1321 } 1322 1323 static int closest_timer(const struct sge *s, int time) 1324 { 1325 int i, delta, match = 0, min_delta = INT_MAX; 1326 1327 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1328 delta = time - s->timer_val[i]; 1329 if (delta < 0) 1330 delta = -delta; 1331 if (delta < min_delta) { 1332 min_delta = delta; 1333 match = i; 1334 } 1335 } 1336 return match; 1337 } 1338 1339 static int closest_thres(const struct sge *s, int thres) 1340 { 1341 int i, delta, match = 0, min_delta = INT_MAX; 1342 1343 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1344 delta = thres - s->counter_val[i]; 1345 if (delta < 0) 1346 delta = -delta; 1347 if (delta < min_delta) { 1348 min_delta = delta; 1349 match = i; 1350 } 1351 } 1352 return match; 1353 } 1354 1355 /** 1356 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1357 * @q: the Rx queue 1358 * @us: the hold-off time in us, or 0 to disable timer 1359 * @cnt: the hold-off packet count, or 0 to disable counter 1360 * 1361 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1362 * one of the two needs to be enabled for the queue to generate interrupts. 1363 */ 1364 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1365 unsigned int us, unsigned int cnt) 1366 { 1367 struct adapter *adap = q->adap; 1368 1369 if ((us | cnt) == 0) 1370 cnt = 1; 1371 1372 if (cnt) { 1373 int err; 1374 u32 v, new_idx; 1375 1376 new_idx = closest_thres(&adap->sge, cnt); 1377 if (q->desc && q->pktcnt_idx != new_idx) { 1378 /* the queue has already been created, update it */ 1379 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1380 FW_PARAMS_PARAM_X_V( 1381 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1382 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1383 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 1384 &new_idx); 1385 if (err) 1386 return err; 1387 } 1388 q->pktcnt_idx = new_idx; 1389 } 1390 1391 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1392 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 1393 return 0; 1394 } 1395 1396 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1397 { 1398 const struct port_info *pi = netdev_priv(dev); 1399 netdev_features_t changed = dev->features ^ features; 1400 int err; 1401 1402 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1403 return 0; 1404 1405 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 1406 -1, -1, -1, 1407 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1408 if (unlikely(err)) 1409 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1410 return err; 1411 } 1412 1413 static int setup_debugfs(struct adapter *adap) 1414 { 1415 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1416 return -1; 1417 1418 #ifdef CONFIG_DEBUG_FS 1419 t4_setup_debugfs(adap); 1420 #endif 1421 return 0; 1422 } 1423 1424 /* 1425 * upper-layer driver support 1426 */ 1427 1428 /* 1429 * Allocate an active-open TID and set it to the supplied value. 1430 */ 1431 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1432 { 1433 int atid = -1; 1434 1435 spin_lock_bh(&t->atid_lock); 1436 if (t->afree) { 1437 union aopen_entry *p = t->afree; 1438 1439 atid = (p - t->atid_tab) + t->atid_base; 1440 t->afree = p->next; 1441 p->data = data; 1442 t->atids_in_use++; 1443 } 1444 spin_unlock_bh(&t->atid_lock); 1445 return atid; 1446 } 1447 EXPORT_SYMBOL(cxgb4_alloc_atid); 1448 1449 /* 1450 * Release an active-open TID. 1451 */ 1452 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1453 { 1454 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1455 1456 spin_lock_bh(&t->atid_lock); 1457 p->next = t->afree; 1458 t->afree = p; 1459 t->atids_in_use--; 1460 spin_unlock_bh(&t->atid_lock); 1461 } 1462 EXPORT_SYMBOL(cxgb4_free_atid); 1463 1464 /* 1465 * Allocate a server TID and set it to the supplied value. 1466 */ 1467 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1468 { 1469 int stid; 1470 1471 spin_lock_bh(&t->stid_lock); 1472 if (family == PF_INET) { 1473 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1474 if (stid < t->nstids) 1475 __set_bit(stid, t->stid_bmap); 1476 else 1477 stid = -1; 1478 } else { 1479 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 1480 if (stid < 0) 1481 stid = -1; 1482 } 1483 if (stid >= 0) { 1484 t->stid_tab[stid].data = data; 1485 stid += t->stid_base; 1486 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1487 * This is equivalent to 4 TIDs. With CLIP enabled it 1488 * needs 2 TIDs. 1489 */ 1490 if (family == PF_INET) 1491 t->stids_in_use++; 1492 else 1493 t->stids_in_use += 4; 1494 } 1495 spin_unlock_bh(&t->stid_lock); 1496 return stid; 1497 } 1498 EXPORT_SYMBOL(cxgb4_alloc_stid); 1499 1500 /* Allocate a server filter TID and set it to the supplied value. 1501 */ 1502 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1503 { 1504 int stid; 1505 1506 spin_lock_bh(&t->stid_lock); 1507 if (family == PF_INET) { 1508 stid = find_next_zero_bit(t->stid_bmap, 1509 t->nstids + t->nsftids, t->nstids); 1510 if (stid < (t->nstids + t->nsftids)) 1511 __set_bit(stid, t->stid_bmap); 1512 else 1513 stid = -1; 1514 } else { 1515 stid = -1; 1516 } 1517 if (stid >= 0) { 1518 t->stid_tab[stid].data = data; 1519 stid -= t->nstids; 1520 stid += t->sftid_base; 1521 t->stids_in_use++; 1522 } 1523 spin_unlock_bh(&t->stid_lock); 1524 return stid; 1525 } 1526 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1527 1528 /* Release a server TID. 1529 */ 1530 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1531 { 1532 /* Is it a server filter TID? */ 1533 if (t->nsftids && (stid >= t->sftid_base)) { 1534 stid -= t->sftid_base; 1535 stid += t->nstids; 1536 } else { 1537 stid -= t->stid_base; 1538 } 1539 1540 spin_lock_bh(&t->stid_lock); 1541 if (family == PF_INET) 1542 __clear_bit(stid, t->stid_bmap); 1543 else 1544 bitmap_release_region(t->stid_bmap, stid, 2); 1545 t->stid_tab[stid].data = NULL; 1546 if (family == PF_INET) 1547 t->stids_in_use--; 1548 else 1549 t->stids_in_use -= 4; 1550 spin_unlock_bh(&t->stid_lock); 1551 } 1552 EXPORT_SYMBOL(cxgb4_free_stid); 1553 1554 /* 1555 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1556 */ 1557 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1558 unsigned int tid) 1559 { 1560 struct cpl_tid_release *req; 1561 1562 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1563 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1564 INIT_TP_WR(req, tid); 1565 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1566 } 1567 1568 /* 1569 * Queue a TID release request and if necessary schedule a work queue to 1570 * process it. 1571 */ 1572 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1573 unsigned int tid) 1574 { 1575 void **p = &t->tid_tab[tid]; 1576 struct adapter *adap = container_of(t, struct adapter, tids); 1577 1578 spin_lock_bh(&adap->tid_release_lock); 1579 *p = adap->tid_release_head; 1580 /* Low 2 bits encode the Tx channel number */ 1581 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1582 if (!adap->tid_release_task_busy) { 1583 adap->tid_release_task_busy = true; 1584 queue_work(adap->workq, &adap->tid_release_task); 1585 } 1586 spin_unlock_bh(&adap->tid_release_lock); 1587 } 1588 1589 /* 1590 * Process the list of pending TID release requests. 1591 */ 1592 static void process_tid_release_list(struct work_struct *work) 1593 { 1594 struct sk_buff *skb; 1595 struct adapter *adap; 1596 1597 adap = container_of(work, struct adapter, tid_release_task); 1598 1599 spin_lock_bh(&adap->tid_release_lock); 1600 while (adap->tid_release_head) { 1601 void **p = adap->tid_release_head; 1602 unsigned int chan = (uintptr_t)p & 3; 1603 p = (void *)p - chan; 1604 1605 adap->tid_release_head = *p; 1606 *p = NULL; 1607 spin_unlock_bh(&adap->tid_release_lock); 1608 1609 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1610 GFP_KERNEL))) 1611 schedule_timeout_uninterruptible(1); 1612 1613 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1614 t4_ofld_send(adap, skb); 1615 spin_lock_bh(&adap->tid_release_lock); 1616 } 1617 adap->tid_release_task_busy = false; 1618 spin_unlock_bh(&adap->tid_release_lock); 1619 } 1620 1621 /* 1622 * Release a TID and inform HW. If we are unable to allocate the release 1623 * message we defer to a work queue. 1624 */ 1625 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1626 { 1627 void *old; 1628 struct sk_buff *skb; 1629 struct adapter *adap = container_of(t, struct adapter, tids); 1630 1631 old = t->tid_tab[tid]; 1632 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1633 if (likely(skb)) { 1634 t->tid_tab[tid] = NULL; 1635 mk_tid_release(skb, chan, tid); 1636 t4_ofld_send(adap, skb); 1637 } else 1638 cxgb4_queue_tid_release(t, chan, tid); 1639 if (old) 1640 atomic_dec(&t->tids_in_use); 1641 } 1642 EXPORT_SYMBOL(cxgb4_remove_tid); 1643 1644 /* 1645 * Allocate and initialize the TID tables. Returns 0 on success. 1646 */ 1647 static int tid_init(struct tid_info *t) 1648 { 1649 size_t size; 1650 unsigned int stid_bmap_size; 1651 unsigned int natids = t->natids; 1652 struct adapter *adap = container_of(t, struct adapter, tids); 1653 1654 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1655 size = t->ntids * sizeof(*t->tid_tab) + 1656 natids * sizeof(*t->atid_tab) + 1657 t->nstids * sizeof(*t->stid_tab) + 1658 t->nsftids * sizeof(*t->stid_tab) + 1659 stid_bmap_size * sizeof(long) + 1660 t->nftids * sizeof(*t->ftid_tab) + 1661 t->nsftids * sizeof(*t->ftid_tab); 1662 1663 t->tid_tab = t4_alloc_mem(size); 1664 if (!t->tid_tab) 1665 return -ENOMEM; 1666 1667 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1668 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1669 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1670 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1671 spin_lock_init(&t->stid_lock); 1672 spin_lock_init(&t->atid_lock); 1673 1674 t->stids_in_use = 0; 1675 t->afree = NULL; 1676 t->atids_in_use = 0; 1677 atomic_set(&t->tids_in_use, 0); 1678 1679 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1680 if (natids) { 1681 while (--natids) 1682 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1683 t->afree = t->atid_tab; 1684 } 1685 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1686 /* Reserve stid 0 for T4/T5 adapters */ 1687 if (!t->stid_base && 1688 (is_t4(adap->params.chip) || is_t5(adap->params.chip))) 1689 __set_bit(0, t->stid_bmap); 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * cxgb4_create_server - create an IP server 1696 * @dev: the device 1697 * @stid: the server TID 1698 * @sip: local IP address to bind server to 1699 * @sport: the server's TCP port 1700 * @queue: queue to direct messages from this server to 1701 * 1702 * Create an IP server for the given port and address. 1703 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1704 */ 1705 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1706 __be32 sip, __be16 sport, __be16 vlan, 1707 unsigned int queue) 1708 { 1709 unsigned int chan; 1710 struct sk_buff *skb; 1711 struct adapter *adap; 1712 struct cpl_pass_open_req *req; 1713 int ret; 1714 1715 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1716 if (!skb) 1717 return -ENOMEM; 1718 1719 adap = netdev2adap(dev); 1720 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1721 INIT_TP_WR(req, 0); 1722 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1723 req->local_port = sport; 1724 req->peer_port = htons(0); 1725 req->local_ip = sip; 1726 req->peer_ip = htonl(0); 1727 chan = rxq_to_chan(&adap->sge, queue); 1728 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1729 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1730 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1731 ret = t4_mgmt_tx(adap, skb); 1732 return net_xmit_eval(ret); 1733 } 1734 EXPORT_SYMBOL(cxgb4_create_server); 1735 1736 /* cxgb4_create_server6 - create an IPv6 server 1737 * @dev: the device 1738 * @stid: the server TID 1739 * @sip: local IPv6 address to bind server to 1740 * @sport: the server's TCP port 1741 * @queue: queue to direct messages from this server to 1742 * 1743 * Create an IPv6 server for the given port and address. 1744 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1745 */ 1746 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1747 const struct in6_addr *sip, __be16 sport, 1748 unsigned int queue) 1749 { 1750 unsigned int chan; 1751 struct sk_buff *skb; 1752 struct adapter *adap; 1753 struct cpl_pass_open_req6 *req; 1754 int ret; 1755 1756 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1757 if (!skb) 1758 return -ENOMEM; 1759 1760 adap = netdev2adap(dev); 1761 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1762 INIT_TP_WR(req, 0); 1763 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1764 req->local_port = sport; 1765 req->peer_port = htons(0); 1766 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1767 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1768 req->peer_ip_hi = cpu_to_be64(0); 1769 req->peer_ip_lo = cpu_to_be64(0); 1770 chan = rxq_to_chan(&adap->sge, queue); 1771 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1772 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1773 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1774 ret = t4_mgmt_tx(adap, skb); 1775 return net_xmit_eval(ret); 1776 } 1777 EXPORT_SYMBOL(cxgb4_create_server6); 1778 1779 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1780 unsigned int queue, bool ipv6) 1781 { 1782 struct sk_buff *skb; 1783 struct adapter *adap; 1784 struct cpl_close_listsvr_req *req; 1785 int ret; 1786 1787 adap = netdev2adap(dev); 1788 1789 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1790 if (!skb) 1791 return -ENOMEM; 1792 1793 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1794 INIT_TP_WR(req, 0); 1795 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1796 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1797 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1798 ret = t4_mgmt_tx(adap, skb); 1799 return net_xmit_eval(ret); 1800 } 1801 EXPORT_SYMBOL(cxgb4_remove_server); 1802 1803 /** 1804 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1805 * @mtus: the HW MTU table 1806 * @mtu: the target MTU 1807 * @idx: index of selected entry in the MTU table 1808 * 1809 * Returns the index and the value in the HW MTU table that is closest to 1810 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1811 * table, in which case that smallest available value is selected. 1812 */ 1813 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1814 unsigned int *idx) 1815 { 1816 unsigned int i = 0; 1817 1818 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1819 ++i; 1820 if (idx) 1821 *idx = i; 1822 return mtus[i]; 1823 } 1824 EXPORT_SYMBOL(cxgb4_best_mtu); 1825 1826 /** 1827 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1828 * @mtus: the HW MTU table 1829 * @header_size: Header Size 1830 * @data_size_max: maximum Data Segment Size 1831 * @data_size_align: desired Data Segment Size Alignment (2^N) 1832 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1833 * 1834 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1835 * MTU Table based solely on a Maximum MTU parameter, we break that 1836 * parameter up into a Header Size and Maximum Data Segment Size, and 1837 * provide a desired Data Segment Size Alignment. If we find an MTU in 1838 * the Hardware MTU Table which will result in a Data Segment Size with 1839 * the requested alignment _and_ that MTU isn't "too far" from the 1840 * closest MTU, then we'll return that rather than the closest MTU. 1841 */ 1842 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1843 unsigned short header_size, 1844 unsigned short data_size_max, 1845 unsigned short data_size_align, 1846 unsigned int *mtu_idxp) 1847 { 1848 unsigned short max_mtu = header_size + data_size_max; 1849 unsigned short data_size_align_mask = data_size_align - 1; 1850 int mtu_idx, aligned_mtu_idx; 1851 1852 /* Scan the MTU Table till we find an MTU which is larger than our 1853 * Maximum MTU or we reach the end of the table. Along the way, 1854 * record the last MTU found, if any, which will result in a Data 1855 * Segment Length matching the requested alignment. 1856 */ 1857 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1858 unsigned short data_size = mtus[mtu_idx] - header_size; 1859 1860 /* If this MTU minus the Header Size would result in a 1861 * Data Segment Size of the desired alignment, remember it. 1862 */ 1863 if ((data_size & data_size_align_mask) == 0) 1864 aligned_mtu_idx = mtu_idx; 1865 1866 /* If we're not at the end of the Hardware MTU Table and the 1867 * next element is larger than our Maximum MTU, drop out of 1868 * the loop. 1869 */ 1870 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1871 break; 1872 } 1873 1874 /* If we fell out of the loop because we ran to the end of the table, 1875 * then we just have to use the last [largest] entry. 1876 */ 1877 if (mtu_idx == NMTUS) 1878 mtu_idx--; 1879 1880 /* If we found an MTU which resulted in the requested Data Segment 1881 * Length alignment and that's "not far" from the largest MTU which is 1882 * less than or equal to the maximum MTU, then use that. 1883 */ 1884 if (aligned_mtu_idx >= 0 && 1885 mtu_idx - aligned_mtu_idx <= 1) 1886 mtu_idx = aligned_mtu_idx; 1887 1888 /* If the caller has passed in an MTU Index pointer, pass the 1889 * MTU Index back. Return the MTU value. 1890 */ 1891 if (mtu_idxp) 1892 *mtu_idxp = mtu_idx; 1893 return mtus[mtu_idx]; 1894 } 1895 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1896 1897 /** 1898 * cxgb4_port_chan - get the HW channel of a port 1899 * @dev: the net device for the port 1900 * 1901 * Return the HW Tx channel of the given port. 1902 */ 1903 unsigned int cxgb4_port_chan(const struct net_device *dev) 1904 { 1905 return netdev2pinfo(dev)->tx_chan; 1906 } 1907 EXPORT_SYMBOL(cxgb4_port_chan); 1908 1909 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1910 { 1911 struct adapter *adap = netdev2adap(dev); 1912 u32 v1, v2, lp_count, hp_count; 1913 1914 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1915 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1916 if (is_t4(adap->params.chip)) { 1917 lp_count = LP_COUNT_G(v1); 1918 hp_count = HP_COUNT_G(v1); 1919 } else { 1920 lp_count = LP_COUNT_T5_G(v1); 1921 hp_count = HP_COUNT_T5_G(v2); 1922 } 1923 return lpfifo ? lp_count : hp_count; 1924 } 1925 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1926 1927 /** 1928 * cxgb4_port_viid - get the VI id of a port 1929 * @dev: the net device for the port 1930 * 1931 * Return the VI id of the given port. 1932 */ 1933 unsigned int cxgb4_port_viid(const struct net_device *dev) 1934 { 1935 return netdev2pinfo(dev)->viid; 1936 } 1937 EXPORT_SYMBOL(cxgb4_port_viid); 1938 1939 /** 1940 * cxgb4_port_idx - get the index of a port 1941 * @dev: the net device for the port 1942 * 1943 * Return the index of the given port. 1944 */ 1945 unsigned int cxgb4_port_idx(const struct net_device *dev) 1946 { 1947 return netdev2pinfo(dev)->port_id; 1948 } 1949 EXPORT_SYMBOL(cxgb4_port_idx); 1950 1951 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1952 struct tp_tcp_stats *v6) 1953 { 1954 struct adapter *adap = pci_get_drvdata(pdev); 1955 1956 spin_lock(&adap->stats_lock); 1957 t4_tp_get_tcp_stats(adap, v4, v6); 1958 spin_unlock(&adap->stats_lock); 1959 } 1960 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1961 1962 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1963 const unsigned int *pgsz_order) 1964 { 1965 struct adapter *adap = netdev2adap(dev); 1966 1967 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1968 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1969 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1970 HPZ3_V(pgsz_order[3])); 1971 } 1972 EXPORT_SYMBOL(cxgb4_iscsi_init); 1973 1974 int cxgb4_flush_eq_cache(struct net_device *dev) 1975 { 1976 struct adapter *adap = netdev2adap(dev); 1977 int ret; 1978 1979 ret = t4_fwaddrspace_write(adap, adap->mbox, 1980 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000); 1981 return ret; 1982 } 1983 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1984 1985 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1986 { 1987 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1988 __be64 indices; 1989 int ret; 1990 1991 spin_lock(&adap->win0_lock); 1992 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1993 sizeof(indices), (__be32 *)&indices, 1994 T4_MEMORY_READ); 1995 spin_unlock(&adap->win0_lock); 1996 if (!ret) { 1997 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1998 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1999 } 2000 return ret; 2001 } 2002 2003 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2004 u16 size) 2005 { 2006 struct adapter *adap = netdev2adap(dev); 2007 u16 hw_pidx, hw_cidx; 2008 int ret; 2009 2010 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2011 if (ret) 2012 goto out; 2013 2014 if (pidx != hw_pidx) { 2015 u16 delta; 2016 u32 val; 2017 2018 if (pidx >= hw_pidx) 2019 delta = pidx - hw_pidx; 2020 else 2021 delta = size - hw_pidx + pidx; 2022 2023 if (is_t4(adap->params.chip)) 2024 val = PIDX_V(delta); 2025 else 2026 val = PIDX_T5_V(delta); 2027 wmb(); 2028 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2029 QID_V(qid) | val); 2030 } 2031 out: 2032 return ret; 2033 } 2034 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2035 2036 void cxgb4_disable_db_coalescing(struct net_device *dev) 2037 { 2038 struct adapter *adap; 2039 2040 adap = netdev2adap(dev); 2041 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 2042 NOCOALESCE_F); 2043 } 2044 EXPORT_SYMBOL(cxgb4_disable_db_coalescing); 2045 2046 void cxgb4_enable_db_coalescing(struct net_device *dev) 2047 { 2048 struct adapter *adap; 2049 2050 adap = netdev2adap(dev); 2051 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0); 2052 } 2053 EXPORT_SYMBOL(cxgb4_enable_db_coalescing); 2054 2055 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2056 { 2057 struct adapter *adap; 2058 u32 offset, memtype, memaddr; 2059 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2060 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2061 int ret; 2062 2063 adap = netdev2adap(dev); 2064 2065 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2066 2067 /* Figure out where the offset lands in the Memory Type/Address scheme. 2068 * This code assumes that the memory is laid out starting at offset 0 2069 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2070 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2071 * MC0, and some have both MC0 and MC1. 2072 */ 2073 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2074 edc0_size = EDRAM0_SIZE_G(size) << 20; 2075 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2076 edc1_size = EDRAM1_SIZE_G(size) << 20; 2077 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2078 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2079 2080 edc0_end = edc0_size; 2081 edc1_end = edc0_end + edc1_size; 2082 mc0_end = edc1_end + mc0_size; 2083 2084 if (offset < edc0_end) { 2085 memtype = MEM_EDC0; 2086 memaddr = offset; 2087 } else if (offset < edc1_end) { 2088 memtype = MEM_EDC1; 2089 memaddr = offset - edc0_end; 2090 } else { 2091 if (offset < mc0_end) { 2092 memtype = MEM_MC0; 2093 memaddr = offset - edc1_end; 2094 } else if (is_t4(adap->params.chip)) { 2095 /* T4 only has a single memory channel */ 2096 goto err; 2097 } else { 2098 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2099 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2100 mc1_end = mc0_end + mc1_size; 2101 if (offset < mc1_end) { 2102 memtype = MEM_MC1; 2103 memaddr = offset - mc0_end; 2104 } else { 2105 /* offset beyond the end of any memory */ 2106 goto err; 2107 } 2108 } 2109 } 2110 2111 spin_lock(&adap->win0_lock); 2112 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2113 spin_unlock(&adap->win0_lock); 2114 return ret; 2115 2116 err: 2117 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2118 stag, offset); 2119 return -EINVAL; 2120 } 2121 EXPORT_SYMBOL(cxgb4_read_tpte); 2122 2123 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2124 { 2125 u32 hi, lo; 2126 struct adapter *adap; 2127 2128 adap = netdev2adap(dev); 2129 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2130 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2131 2132 return ((u64)hi << 32) | (u64)lo; 2133 } 2134 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2135 2136 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2137 unsigned int qid, 2138 enum cxgb4_bar2_qtype qtype, 2139 u64 *pbar2_qoffset, 2140 unsigned int *pbar2_qid) 2141 { 2142 return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev), 2143 qid, 2144 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2145 ? T4_BAR2_QTYPE_EGRESS 2146 : T4_BAR2_QTYPE_INGRESS), 2147 pbar2_qoffset, 2148 pbar2_qid); 2149 } 2150 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2151 2152 static struct pci_driver cxgb4_driver; 2153 2154 static void check_neigh_update(struct neighbour *neigh) 2155 { 2156 const struct device *parent; 2157 const struct net_device *netdev = neigh->dev; 2158 2159 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2160 netdev = vlan_dev_real_dev(netdev); 2161 parent = netdev->dev.parent; 2162 if (parent && parent->driver == &cxgb4_driver.driver) 2163 t4_l2t_update(dev_get_drvdata(parent), neigh); 2164 } 2165 2166 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2167 void *data) 2168 { 2169 switch (event) { 2170 case NETEVENT_NEIGH_UPDATE: 2171 check_neigh_update(data); 2172 break; 2173 case NETEVENT_REDIRECT: 2174 default: 2175 break; 2176 } 2177 return 0; 2178 } 2179 2180 static bool netevent_registered; 2181 static struct notifier_block cxgb4_netevent_nb = { 2182 .notifier_call = netevent_cb 2183 }; 2184 2185 static void drain_db_fifo(struct adapter *adap, int usecs) 2186 { 2187 u32 v1, v2, lp_count, hp_count; 2188 2189 do { 2190 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2191 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2192 if (is_t4(adap->params.chip)) { 2193 lp_count = LP_COUNT_G(v1); 2194 hp_count = HP_COUNT_G(v1); 2195 } else { 2196 lp_count = LP_COUNT_T5_G(v1); 2197 hp_count = HP_COUNT_T5_G(v2); 2198 } 2199 2200 if (lp_count == 0 && hp_count == 0) 2201 break; 2202 set_current_state(TASK_UNINTERRUPTIBLE); 2203 schedule_timeout(usecs_to_jiffies(usecs)); 2204 } while (1); 2205 } 2206 2207 static void disable_txq_db(struct sge_txq *q) 2208 { 2209 unsigned long flags; 2210 2211 spin_lock_irqsave(&q->db_lock, flags); 2212 q->db_disabled = 1; 2213 spin_unlock_irqrestore(&q->db_lock, flags); 2214 } 2215 2216 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2217 { 2218 spin_lock_irq(&q->db_lock); 2219 if (q->db_pidx_inc) { 2220 /* Make sure that all writes to the TX descriptors 2221 * are committed before we tell HW about them. 2222 */ 2223 wmb(); 2224 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2225 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2226 q->db_pidx_inc = 0; 2227 } 2228 q->db_disabled = 0; 2229 spin_unlock_irq(&q->db_lock); 2230 } 2231 2232 static void disable_dbs(struct adapter *adap) 2233 { 2234 int i; 2235 2236 for_each_ethrxq(&adap->sge, i) 2237 disable_txq_db(&adap->sge.ethtxq[i].q); 2238 for_each_ofldrxq(&adap->sge, i) 2239 disable_txq_db(&adap->sge.ofldtxq[i].q); 2240 for_each_port(adap, i) 2241 disable_txq_db(&adap->sge.ctrlq[i].q); 2242 } 2243 2244 static void enable_dbs(struct adapter *adap) 2245 { 2246 int i; 2247 2248 for_each_ethrxq(&adap->sge, i) 2249 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2250 for_each_ofldrxq(&adap->sge, i) 2251 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2252 for_each_port(adap, i) 2253 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2254 } 2255 2256 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2257 { 2258 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2259 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2260 cmd); 2261 } 2262 2263 static void process_db_full(struct work_struct *work) 2264 { 2265 struct adapter *adap; 2266 2267 adap = container_of(work, struct adapter, db_full_task); 2268 2269 drain_db_fifo(adap, dbfifo_drain_delay); 2270 enable_dbs(adap); 2271 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2272 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2273 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2274 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2275 } 2276 2277 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2278 { 2279 u16 hw_pidx, hw_cidx; 2280 int ret; 2281 2282 spin_lock_irq(&q->db_lock); 2283 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2284 if (ret) 2285 goto out; 2286 if (q->db_pidx != hw_pidx) { 2287 u16 delta; 2288 u32 val; 2289 2290 if (q->db_pidx >= hw_pidx) 2291 delta = q->db_pidx - hw_pidx; 2292 else 2293 delta = q->size - hw_pidx + q->db_pidx; 2294 2295 if (is_t4(adap->params.chip)) 2296 val = PIDX_V(delta); 2297 else 2298 val = PIDX_T5_V(delta); 2299 wmb(); 2300 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2301 QID_V(q->cntxt_id) | val); 2302 } 2303 out: 2304 q->db_disabled = 0; 2305 q->db_pidx_inc = 0; 2306 spin_unlock_irq(&q->db_lock); 2307 if (ret) 2308 CH_WARN(adap, "DB drop recovery failed.\n"); 2309 } 2310 static void recover_all_queues(struct adapter *adap) 2311 { 2312 int i; 2313 2314 for_each_ethrxq(&adap->sge, i) 2315 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2316 for_each_ofldrxq(&adap->sge, i) 2317 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2318 for_each_port(adap, i) 2319 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2320 } 2321 2322 static void process_db_drop(struct work_struct *work) 2323 { 2324 struct adapter *adap; 2325 2326 adap = container_of(work, struct adapter, db_drop_task); 2327 2328 if (is_t4(adap->params.chip)) { 2329 drain_db_fifo(adap, dbfifo_drain_delay); 2330 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2331 drain_db_fifo(adap, dbfifo_drain_delay); 2332 recover_all_queues(adap); 2333 drain_db_fifo(adap, dbfifo_drain_delay); 2334 enable_dbs(adap); 2335 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2336 } else { 2337 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2338 u16 qid = (dropped_db >> 15) & 0x1ffff; 2339 u16 pidx_inc = dropped_db & 0x1fff; 2340 u64 bar2_qoffset; 2341 unsigned int bar2_qid; 2342 int ret; 2343 2344 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2345 &bar2_qoffset, &bar2_qid); 2346 if (ret) 2347 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2348 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2349 else 2350 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2351 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2352 2353 /* Re-enable BAR2 WC */ 2354 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2355 } 2356 2357 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2358 } 2359 2360 void t4_db_full(struct adapter *adap) 2361 { 2362 if (is_t4(adap->params.chip)) { 2363 disable_dbs(adap); 2364 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2365 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2366 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2367 queue_work(adap->workq, &adap->db_full_task); 2368 } 2369 } 2370 2371 void t4_db_dropped(struct adapter *adap) 2372 { 2373 if (is_t4(adap->params.chip)) { 2374 disable_dbs(adap); 2375 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2376 } 2377 queue_work(adap->workq, &adap->db_drop_task); 2378 } 2379 2380 static void uld_attach(struct adapter *adap, unsigned int uld) 2381 { 2382 void *handle; 2383 struct cxgb4_lld_info lli; 2384 unsigned short i; 2385 2386 lli.pdev = adap->pdev; 2387 lli.pf = adap->fn; 2388 lli.l2t = adap->l2t; 2389 lli.tids = &adap->tids; 2390 lli.ports = adap->port; 2391 lli.vr = &adap->vres; 2392 lli.mtus = adap->params.mtus; 2393 if (uld == CXGB4_ULD_RDMA) { 2394 lli.rxq_ids = adap->sge.rdma_rxq; 2395 lli.ciq_ids = adap->sge.rdma_ciq; 2396 lli.nrxq = adap->sge.rdmaqs; 2397 lli.nciq = adap->sge.rdmaciqs; 2398 } else if (uld == CXGB4_ULD_ISCSI) { 2399 lli.rxq_ids = adap->sge.ofld_rxq; 2400 lli.nrxq = adap->sge.ofldqsets; 2401 } 2402 lli.ntxq = adap->sge.ofldqsets; 2403 lli.nchan = adap->params.nports; 2404 lli.nports = adap->params.nports; 2405 lli.wr_cred = adap->params.ofldq_wr_cred; 2406 lli.adapter_type = adap->params.chip; 2407 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2408 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2409 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2410 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2411 lli.filt_mode = adap->params.tp.vlan_pri_map; 2412 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2413 for (i = 0; i < NCHAN; i++) 2414 lli.tx_modq[i] = i; 2415 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2416 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2417 lli.fw_vers = adap->params.fw_vers; 2418 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2419 lli.sge_ingpadboundary = adap->sge.fl_align; 2420 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2421 lli.sge_pktshift = adap->sge.pktshift; 2422 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2423 lli.max_ordird_qp = adap->params.max_ordird_qp; 2424 lli.max_ird_adapter = adap->params.max_ird_adapter; 2425 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2426 2427 handle = ulds[uld].add(&lli); 2428 if (IS_ERR(handle)) { 2429 dev_warn(adap->pdev_dev, 2430 "could not attach to the %s driver, error %ld\n", 2431 uld_str[uld], PTR_ERR(handle)); 2432 return; 2433 } 2434 2435 adap->uld_handle[uld] = handle; 2436 2437 if (!netevent_registered) { 2438 register_netevent_notifier(&cxgb4_netevent_nb); 2439 netevent_registered = true; 2440 } 2441 2442 if (adap->flags & FULL_INIT_DONE) 2443 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2444 } 2445 2446 static void attach_ulds(struct adapter *adap) 2447 { 2448 unsigned int i; 2449 2450 spin_lock(&adap_rcu_lock); 2451 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2452 spin_unlock(&adap_rcu_lock); 2453 2454 mutex_lock(&uld_mutex); 2455 list_add_tail(&adap->list_node, &adapter_list); 2456 for (i = 0; i < CXGB4_ULD_MAX; i++) 2457 if (ulds[i].add) 2458 uld_attach(adap, i); 2459 mutex_unlock(&uld_mutex); 2460 } 2461 2462 static void detach_ulds(struct adapter *adap) 2463 { 2464 unsigned int i; 2465 2466 mutex_lock(&uld_mutex); 2467 list_del(&adap->list_node); 2468 for (i = 0; i < CXGB4_ULD_MAX; i++) 2469 if (adap->uld_handle[i]) { 2470 ulds[i].state_change(adap->uld_handle[i], 2471 CXGB4_STATE_DETACH); 2472 adap->uld_handle[i] = NULL; 2473 } 2474 if (netevent_registered && list_empty(&adapter_list)) { 2475 unregister_netevent_notifier(&cxgb4_netevent_nb); 2476 netevent_registered = false; 2477 } 2478 mutex_unlock(&uld_mutex); 2479 2480 spin_lock(&adap_rcu_lock); 2481 list_del_rcu(&adap->rcu_node); 2482 spin_unlock(&adap_rcu_lock); 2483 } 2484 2485 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2486 { 2487 unsigned int i; 2488 2489 mutex_lock(&uld_mutex); 2490 for (i = 0; i < CXGB4_ULD_MAX; i++) 2491 if (adap->uld_handle[i]) 2492 ulds[i].state_change(adap->uld_handle[i], new_state); 2493 mutex_unlock(&uld_mutex); 2494 } 2495 2496 /** 2497 * cxgb4_register_uld - register an upper-layer driver 2498 * @type: the ULD type 2499 * @p: the ULD methods 2500 * 2501 * Registers an upper-layer driver with this driver and notifies the ULD 2502 * about any presently available devices that support its type. Returns 2503 * %-EBUSY if a ULD of the same type is already registered. 2504 */ 2505 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2506 { 2507 int ret = 0; 2508 struct adapter *adap; 2509 2510 if (type >= CXGB4_ULD_MAX) 2511 return -EINVAL; 2512 mutex_lock(&uld_mutex); 2513 if (ulds[type].add) { 2514 ret = -EBUSY; 2515 goto out; 2516 } 2517 ulds[type] = *p; 2518 list_for_each_entry(adap, &adapter_list, list_node) 2519 uld_attach(adap, type); 2520 out: mutex_unlock(&uld_mutex); 2521 return ret; 2522 } 2523 EXPORT_SYMBOL(cxgb4_register_uld); 2524 2525 /** 2526 * cxgb4_unregister_uld - unregister an upper-layer driver 2527 * @type: the ULD type 2528 * 2529 * Unregisters an existing upper-layer driver. 2530 */ 2531 int cxgb4_unregister_uld(enum cxgb4_uld type) 2532 { 2533 struct adapter *adap; 2534 2535 if (type >= CXGB4_ULD_MAX) 2536 return -EINVAL; 2537 mutex_lock(&uld_mutex); 2538 list_for_each_entry(adap, &adapter_list, list_node) 2539 adap->uld_handle[type] = NULL; 2540 ulds[type].add = NULL; 2541 mutex_unlock(&uld_mutex); 2542 return 0; 2543 } 2544 EXPORT_SYMBOL(cxgb4_unregister_uld); 2545 2546 #if IS_ENABLED(CONFIG_IPV6) 2547 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2548 unsigned long event, void *data) 2549 { 2550 struct inet6_ifaddr *ifa = data; 2551 struct net_device *event_dev = ifa->idev->dev; 2552 const struct device *parent = NULL; 2553 #if IS_ENABLED(CONFIG_BONDING) 2554 struct adapter *adap; 2555 #endif 2556 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2557 event_dev = vlan_dev_real_dev(event_dev); 2558 #if IS_ENABLED(CONFIG_BONDING) 2559 if (event_dev->flags & IFF_MASTER) { 2560 list_for_each_entry(adap, &adapter_list, list_node) { 2561 switch (event) { 2562 case NETDEV_UP: 2563 cxgb4_clip_get(adap->port[0], 2564 (const u32 *)ifa, 1); 2565 break; 2566 case NETDEV_DOWN: 2567 cxgb4_clip_release(adap->port[0], 2568 (const u32 *)ifa, 1); 2569 break; 2570 default: 2571 break; 2572 } 2573 } 2574 return NOTIFY_OK; 2575 } 2576 #endif 2577 2578 if (event_dev) 2579 parent = event_dev->dev.parent; 2580 2581 if (parent && parent->driver == &cxgb4_driver.driver) { 2582 switch (event) { 2583 case NETDEV_UP: 2584 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2585 break; 2586 case NETDEV_DOWN: 2587 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2588 break; 2589 default: 2590 break; 2591 } 2592 } 2593 return NOTIFY_OK; 2594 } 2595 2596 static bool inet6addr_registered; 2597 static struct notifier_block cxgb4_inet6addr_notifier = { 2598 .notifier_call = cxgb4_inet6addr_handler 2599 }; 2600 2601 static void update_clip(const struct adapter *adap) 2602 { 2603 int i; 2604 struct net_device *dev; 2605 int ret; 2606 2607 rcu_read_lock(); 2608 2609 for (i = 0; i < MAX_NPORTS; i++) { 2610 dev = adap->port[i]; 2611 ret = 0; 2612 2613 if (dev) 2614 ret = cxgb4_update_root_dev_clip(dev); 2615 2616 if (ret < 0) 2617 break; 2618 } 2619 rcu_read_unlock(); 2620 } 2621 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2622 2623 /** 2624 * cxgb_up - enable the adapter 2625 * @adap: adapter being enabled 2626 * 2627 * Called when the first port is enabled, this function performs the 2628 * actions necessary to make an adapter operational, such as completing 2629 * the initialization of HW modules, and enabling interrupts. 2630 * 2631 * Must be called with the rtnl lock held. 2632 */ 2633 static int cxgb_up(struct adapter *adap) 2634 { 2635 int err; 2636 2637 err = setup_sge_queues(adap); 2638 if (err) 2639 goto out; 2640 err = setup_rss(adap); 2641 if (err) 2642 goto freeq; 2643 2644 if (adap->flags & USING_MSIX) { 2645 name_msix_vecs(adap); 2646 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2647 adap->msix_info[0].desc, adap); 2648 if (err) 2649 goto irq_err; 2650 2651 err = request_msix_queue_irqs(adap); 2652 if (err) { 2653 free_irq(adap->msix_info[0].vec, adap); 2654 goto irq_err; 2655 } 2656 } else { 2657 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2658 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2659 adap->port[0]->name, adap); 2660 if (err) 2661 goto irq_err; 2662 } 2663 enable_rx(adap); 2664 t4_sge_start(adap); 2665 t4_intr_enable(adap); 2666 adap->flags |= FULL_INIT_DONE; 2667 notify_ulds(adap, CXGB4_STATE_UP); 2668 #if IS_ENABLED(CONFIG_IPV6) 2669 update_clip(adap); 2670 #endif 2671 out: 2672 return err; 2673 irq_err: 2674 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2675 freeq: 2676 t4_free_sge_resources(adap); 2677 goto out; 2678 } 2679 2680 static void cxgb_down(struct adapter *adapter) 2681 { 2682 cancel_work_sync(&adapter->tid_release_task); 2683 cancel_work_sync(&adapter->db_full_task); 2684 cancel_work_sync(&adapter->db_drop_task); 2685 adapter->tid_release_task_busy = false; 2686 adapter->tid_release_head = NULL; 2687 2688 t4_sge_stop(adapter); 2689 t4_free_sge_resources(adapter); 2690 adapter->flags &= ~FULL_INIT_DONE; 2691 } 2692 2693 /* 2694 * net_device operations 2695 */ 2696 static int cxgb_open(struct net_device *dev) 2697 { 2698 int err; 2699 struct port_info *pi = netdev_priv(dev); 2700 struct adapter *adapter = pi->adapter; 2701 2702 netif_carrier_off(dev); 2703 2704 if (!(adapter->flags & FULL_INIT_DONE)) { 2705 err = cxgb_up(adapter); 2706 if (err < 0) 2707 return err; 2708 } 2709 2710 err = link_start(dev); 2711 if (!err) 2712 netif_tx_start_all_queues(dev); 2713 return err; 2714 } 2715 2716 static int cxgb_close(struct net_device *dev) 2717 { 2718 struct port_info *pi = netdev_priv(dev); 2719 struct adapter *adapter = pi->adapter; 2720 2721 netif_tx_stop_all_queues(dev); 2722 netif_carrier_off(dev); 2723 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 2724 } 2725 2726 /* Return an error number if the indicated filter isn't writable ... 2727 */ 2728 static int writable_filter(struct filter_entry *f) 2729 { 2730 if (f->locked) 2731 return -EPERM; 2732 if (f->pending) 2733 return -EBUSY; 2734 2735 return 0; 2736 } 2737 2738 /* Delete the filter at the specified index (if valid). The checks for all 2739 * the common problems with doing this like the filter being locked, currently 2740 * pending in another operation, etc. 2741 */ 2742 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2743 { 2744 struct filter_entry *f; 2745 int ret; 2746 2747 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2748 return -EINVAL; 2749 2750 f = &adapter->tids.ftid_tab[fidx]; 2751 ret = writable_filter(f); 2752 if (ret) 2753 return ret; 2754 if (f->valid) 2755 return del_filter_wr(adapter, fidx); 2756 2757 return 0; 2758 } 2759 2760 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2761 __be32 sip, __be16 sport, __be16 vlan, 2762 unsigned int queue, unsigned char port, unsigned char mask) 2763 { 2764 int ret; 2765 struct filter_entry *f; 2766 struct adapter *adap; 2767 int i; 2768 u8 *val; 2769 2770 adap = netdev2adap(dev); 2771 2772 /* Adjust stid to correct filter index */ 2773 stid -= adap->tids.sftid_base; 2774 stid += adap->tids.nftids; 2775 2776 /* Check to make sure the filter requested is writable ... 2777 */ 2778 f = &adap->tids.ftid_tab[stid]; 2779 ret = writable_filter(f); 2780 if (ret) 2781 return ret; 2782 2783 /* Clear out any old resources being used by the filter before 2784 * we start constructing the new filter. 2785 */ 2786 if (f->valid) 2787 clear_filter(adap, f); 2788 2789 /* Clear out filter specifications */ 2790 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2791 f->fs.val.lport = cpu_to_be16(sport); 2792 f->fs.mask.lport = ~0; 2793 val = (u8 *)&sip; 2794 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2795 for (i = 0; i < 4; i++) { 2796 f->fs.val.lip[i] = val[i]; 2797 f->fs.mask.lip[i] = ~0; 2798 } 2799 if (adap->params.tp.vlan_pri_map & PORT_F) { 2800 f->fs.val.iport = port; 2801 f->fs.mask.iport = mask; 2802 } 2803 } 2804 2805 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2806 f->fs.val.proto = IPPROTO_TCP; 2807 f->fs.mask.proto = ~0; 2808 } 2809 2810 f->fs.dirsteer = 1; 2811 f->fs.iq = queue; 2812 /* Mark filter as locked */ 2813 f->locked = 1; 2814 f->fs.rpttid = 1; 2815 2816 ret = set_filter_wr(adap, stid); 2817 if (ret) { 2818 clear_filter(adap, f); 2819 return ret; 2820 } 2821 2822 return 0; 2823 } 2824 EXPORT_SYMBOL(cxgb4_create_server_filter); 2825 2826 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2827 unsigned int queue, bool ipv6) 2828 { 2829 int ret; 2830 struct filter_entry *f; 2831 struct adapter *adap; 2832 2833 adap = netdev2adap(dev); 2834 2835 /* Adjust stid to correct filter index */ 2836 stid -= adap->tids.sftid_base; 2837 stid += adap->tids.nftids; 2838 2839 f = &adap->tids.ftid_tab[stid]; 2840 /* Unlock the filter */ 2841 f->locked = 0; 2842 2843 ret = delete_filter(adap, stid); 2844 if (ret) 2845 return ret; 2846 2847 return 0; 2848 } 2849 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2850 2851 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2852 struct rtnl_link_stats64 *ns) 2853 { 2854 struct port_stats stats; 2855 struct port_info *p = netdev_priv(dev); 2856 struct adapter *adapter = p->adapter; 2857 2858 /* Block retrieving statistics during EEH error 2859 * recovery. Otherwise, the recovery might fail 2860 * and the PCI device will be removed permanently 2861 */ 2862 spin_lock(&adapter->stats_lock); 2863 if (!netif_device_present(dev)) { 2864 spin_unlock(&adapter->stats_lock); 2865 return ns; 2866 } 2867 t4_get_port_stats(adapter, p->tx_chan, &stats); 2868 spin_unlock(&adapter->stats_lock); 2869 2870 ns->tx_bytes = stats.tx_octets; 2871 ns->tx_packets = stats.tx_frames; 2872 ns->rx_bytes = stats.rx_octets; 2873 ns->rx_packets = stats.rx_frames; 2874 ns->multicast = stats.rx_mcast_frames; 2875 2876 /* detailed rx_errors */ 2877 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2878 stats.rx_runt; 2879 ns->rx_over_errors = 0; 2880 ns->rx_crc_errors = stats.rx_fcs_err; 2881 ns->rx_frame_errors = stats.rx_symbol_err; 2882 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2883 stats.rx_ovflow2 + stats.rx_ovflow3 + 2884 stats.rx_trunc0 + stats.rx_trunc1 + 2885 stats.rx_trunc2 + stats.rx_trunc3; 2886 ns->rx_missed_errors = 0; 2887 2888 /* detailed tx_errors */ 2889 ns->tx_aborted_errors = 0; 2890 ns->tx_carrier_errors = 0; 2891 ns->tx_fifo_errors = 0; 2892 ns->tx_heartbeat_errors = 0; 2893 ns->tx_window_errors = 0; 2894 2895 ns->tx_errors = stats.tx_error_frames; 2896 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2897 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2898 return ns; 2899 } 2900 2901 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2902 { 2903 unsigned int mbox; 2904 int ret = 0, prtad, devad; 2905 struct port_info *pi = netdev_priv(dev); 2906 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2907 2908 switch (cmd) { 2909 case SIOCGMIIPHY: 2910 if (pi->mdio_addr < 0) 2911 return -EOPNOTSUPP; 2912 data->phy_id = pi->mdio_addr; 2913 break; 2914 case SIOCGMIIREG: 2915 case SIOCSMIIREG: 2916 if (mdio_phy_id_is_c45(data->phy_id)) { 2917 prtad = mdio_phy_id_prtad(data->phy_id); 2918 devad = mdio_phy_id_devad(data->phy_id); 2919 } else if (data->phy_id < 32) { 2920 prtad = data->phy_id; 2921 devad = 0; 2922 data->reg_num &= 0x1f; 2923 } else 2924 return -EINVAL; 2925 2926 mbox = pi->adapter->fn; 2927 if (cmd == SIOCGMIIREG) 2928 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2929 data->reg_num, &data->val_out); 2930 else 2931 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2932 data->reg_num, data->val_in); 2933 break; 2934 default: 2935 return -EOPNOTSUPP; 2936 } 2937 return ret; 2938 } 2939 2940 static void cxgb_set_rxmode(struct net_device *dev) 2941 { 2942 /* unfortunately we can't return errors to the stack */ 2943 set_rxmode(dev, -1, false); 2944 } 2945 2946 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2947 { 2948 int ret; 2949 struct port_info *pi = netdev_priv(dev); 2950 2951 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 2952 return -EINVAL; 2953 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 2954 -1, -1, -1, true); 2955 if (!ret) 2956 dev->mtu = new_mtu; 2957 return ret; 2958 } 2959 2960 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2961 { 2962 int ret; 2963 struct sockaddr *addr = p; 2964 struct port_info *pi = netdev_priv(dev); 2965 2966 if (!is_valid_ether_addr(addr->sa_data)) 2967 return -EADDRNOTAVAIL; 2968 2969 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 2970 pi->xact_addr_filt, addr->sa_data, true, true); 2971 if (ret < 0) 2972 return ret; 2973 2974 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2975 pi->xact_addr_filt = ret; 2976 return 0; 2977 } 2978 2979 #ifdef CONFIG_NET_POLL_CONTROLLER 2980 static void cxgb_netpoll(struct net_device *dev) 2981 { 2982 struct port_info *pi = netdev_priv(dev); 2983 struct adapter *adap = pi->adapter; 2984 2985 if (adap->flags & USING_MSIX) { 2986 int i; 2987 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2988 2989 for (i = pi->nqsets; i; i--, rx++) 2990 t4_sge_intr_msix(0, &rx->rspq); 2991 } else 2992 t4_intr_handler(adap)(0, adap); 2993 } 2994 #endif 2995 2996 static const struct net_device_ops cxgb4_netdev_ops = { 2997 .ndo_open = cxgb_open, 2998 .ndo_stop = cxgb_close, 2999 .ndo_start_xmit = t4_eth_xmit, 3000 .ndo_select_queue = cxgb_select_queue, 3001 .ndo_get_stats64 = cxgb_get_stats, 3002 .ndo_set_rx_mode = cxgb_set_rxmode, 3003 .ndo_set_mac_address = cxgb_set_mac_addr, 3004 .ndo_set_features = cxgb_set_features, 3005 .ndo_validate_addr = eth_validate_addr, 3006 .ndo_do_ioctl = cxgb_ioctl, 3007 .ndo_change_mtu = cxgb_change_mtu, 3008 #ifdef CONFIG_NET_POLL_CONTROLLER 3009 .ndo_poll_controller = cxgb_netpoll, 3010 #endif 3011 #ifdef CONFIG_CHELSIO_T4_FCOE 3012 .ndo_fcoe_enable = cxgb_fcoe_enable, 3013 .ndo_fcoe_disable = cxgb_fcoe_disable, 3014 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3015 #ifdef CONFIG_NET_RX_BUSY_POLL 3016 .ndo_busy_poll = cxgb_busy_poll, 3017 #endif 3018 3019 }; 3020 3021 void t4_fatal_err(struct adapter *adap) 3022 { 3023 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3024 t4_intr_disable(adap); 3025 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3026 } 3027 3028 /* Return the specified PCI-E Configuration Space register from our Physical 3029 * Function. We try first via a Firmware LDST Command since we prefer to let 3030 * the firmware own all of these registers, but if that fails we go for it 3031 * directly ourselves. 3032 */ 3033 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 3034 { 3035 struct fw_ldst_cmd ldst_cmd; 3036 u32 val; 3037 int ret; 3038 3039 /* Construct and send the Firmware LDST Command to retrieve the 3040 * specified PCI-E Configuration Space register. 3041 */ 3042 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 3043 ldst_cmd.op_to_addrspace = 3044 htonl(FW_CMD_OP_V(FW_LDST_CMD) | 3045 FW_CMD_REQUEST_F | 3046 FW_CMD_READ_F | 3047 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE)); 3048 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); 3049 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 3050 ldst_cmd.u.pcie.ctrl_to_fn = 3051 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn)); 3052 ldst_cmd.u.pcie.r = reg; 3053 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 3054 &ldst_cmd); 3055 3056 /* If the LDST Command suucceeded, exctract the returned register 3057 * value. Otherwise read it directly ourself. 3058 */ 3059 if (ret == 0) 3060 val = ntohl(ldst_cmd.u.pcie.data[0]); 3061 else 3062 t4_hw_pci_read_cfg4(adap, reg, &val); 3063 3064 return val; 3065 } 3066 3067 static void setup_memwin(struct adapter *adap) 3068 { 3069 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture; 3070 3071 if (is_t4(adap->params.chip)) { 3072 u32 bar0; 3073 3074 /* Truncation intentional: we only read the bottom 32-bits of 3075 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 3076 * mechanism to read BAR0 instead of using 3077 * pci_resource_start() because we could be operating from 3078 * within a Virtual Machine which is trapping our accesses to 3079 * our Configuration Space and we need to set up the PCI-E 3080 * Memory Window decoders with the actual addresses which will 3081 * be coming across the PCI-E link. 3082 */ 3083 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0); 3084 bar0 &= PCI_BASE_ADDRESS_MEM_MASK; 3085 adap->t4_bar0 = bar0; 3086 3087 mem_win0_base = bar0 + MEMWIN0_BASE; 3088 mem_win1_base = bar0 + MEMWIN1_BASE; 3089 mem_win2_base = bar0 + MEMWIN2_BASE; 3090 mem_win2_aperture = MEMWIN2_APERTURE; 3091 } else { 3092 /* For T5, only relative offset inside the PCIe BAR is passed */ 3093 mem_win0_base = MEMWIN0_BASE; 3094 mem_win1_base = MEMWIN1_BASE; 3095 mem_win2_base = MEMWIN2_BASE_T5; 3096 mem_win2_aperture = MEMWIN2_APERTURE_T5; 3097 } 3098 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0), 3099 mem_win0_base | BIR_V(0) | 3100 WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10)); 3101 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1), 3102 mem_win1_base | BIR_V(0) | 3103 WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10)); 3104 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2), 3105 mem_win2_base | BIR_V(0) | 3106 WINDOW_V(ilog2(mem_win2_aperture) - 10)); 3107 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2)); 3108 } 3109 3110 static void setup_memwin_rdma(struct adapter *adap) 3111 { 3112 if (adap->vres.ocq.size) { 3113 u32 start; 3114 unsigned int sz_kb; 3115 3116 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3117 start &= PCI_BASE_ADDRESS_MEM_MASK; 3118 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3119 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3120 t4_write_reg(adap, 3121 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3122 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3123 t4_write_reg(adap, 3124 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3125 adap->vres.ocq.start); 3126 t4_read_reg(adap, 3127 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3128 } 3129 } 3130 3131 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3132 { 3133 u32 v; 3134 int ret; 3135 3136 /* get device capabilities */ 3137 memset(c, 0, sizeof(*c)); 3138 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3139 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3140 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3141 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 3142 if (ret < 0) 3143 return ret; 3144 3145 /* select capabilities we'll be using */ 3146 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 3147 if (!vf_acls) 3148 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 3149 else 3150 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 3151 } else if (vf_acls) { 3152 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 3153 return ret; 3154 } 3155 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3156 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3157 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 3158 if (ret < 0) 3159 return ret; 3160 3161 ret = t4_config_glbl_rss(adap, adap->fn, 3162 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3163 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3164 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3165 if (ret < 0) 3166 return ret; 3167 3168 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64, 3169 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3170 FW_CMD_CAP_PF); 3171 if (ret < 0) 3172 return ret; 3173 3174 t4_sge_init(adap); 3175 3176 /* tweak some settings */ 3177 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3178 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3179 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3180 v = t4_read_reg(adap, TP_PIO_DATA_A); 3181 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3182 3183 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3184 adap->params.tp.tx_modq_map = 0xE4; 3185 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3186 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3187 3188 /* associate each Tx modulation queue with consecutive Tx channels */ 3189 v = 0x84218421; 3190 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3191 &v, 1, TP_TX_SCHED_HDR_A); 3192 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3193 &v, 1, TP_TX_SCHED_FIFO_A); 3194 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3195 &v, 1, TP_TX_SCHED_PCMD_A); 3196 3197 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3198 if (is_offload(adap)) { 3199 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3200 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3201 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3202 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3203 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3204 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3205 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3206 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3207 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3208 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3209 } 3210 3211 /* get basic stuff going */ 3212 return t4_early_init(adap, adap->fn); 3213 } 3214 3215 /* 3216 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3217 */ 3218 #define MAX_ATIDS 8192U 3219 3220 /* 3221 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3222 * 3223 * If the firmware we're dealing with has Configuration File support, then 3224 * we use that to perform all configuration 3225 */ 3226 3227 /* 3228 * Tweak configuration based on module parameters, etc. Most of these have 3229 * defaults assigned to them by Firmware Configuration Files (if we're using 3230 * them) but need to be explicitly set if we're using hard-coded 3231 * initialization. But even in the case of using Firmware Configuration 3232 * Files, we'd like to expose the ability to change these via module 3233 * parameters so these are essentially common tweaks/settings for 3234 * Configuration Files and hard-coded initialization ... 3235 */ 3236 static int adap_init0_tweaks(struct adapter *adapter) 3237 { 3238 /* 3239 * Fix up various Host-Dependent Parameters like Page Size, Cache 3240 * Line Size, etc. The firmware default is for a 4KB Page Size and 3241 * 64B Cache Line Size ... 3242 */ 3243 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3244 3245 /* 3246 * Process module parameters which affect early initialization. 3247 */ 3248 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3249 dev_err(&adapter->pdev->dev, 3250 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3251 rx_dma_offset); 3252 rx_dma_offset = 2; 3253 } 3254 t4_set_reg_field(adapter, SGE_CONTROL_A, 3255 PKTSHIFT_V(PKTSHIFT_M), 3256 PKTSHIFT_V(rx_dma_offset)); 3257 3258 /* 3259 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3260 * adds the pseudo header itself. 3261 */ 3262 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3263 CSUM_HAS_PSEUDO_HDR_F, 0); 3264 3265 return 0; 3266 } 3267 3268 /* 3269 * Attempt to initialize the adapter via a Firmware Configuration File. 3270 */ 3271 static int adap_init0_config(struct adapter *adapter, int reset) 3272 { 3273 struct fw_caps_config_cmd caps_cmd; 3274 const struct firmware *cf; 3275 unsigned long mtype = 0, maddr = 0; 3276 u32 finiver, finicsum, cfcsum; 3277 int ret; 3278 int config_issued = 0; 3279 char *fw_config_file, fw_config_file_path[256]; 3280 char *config_name = NULL; 3281 3282 /* 3283 * Reset device if necessary. 3284 */ 3285 if (reset) { 3286 ret = t4_fw_reset(adapter, adapter->mbox, 3287 PIORSTMODE_F | PIORST_F); 3288 if (ret < 0) 3289 goto bye; 3290 } 3291 3292 /* 3293 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3294 * then use that. Otherwise, use the configuration file stored 3295 * in the adapter flash ... 3296 */ 3297 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3298 case CHELSIO_T4: 3299 fw_config_file = FW4_CFNAME; 3300 break; 3301 case CHELSIO_T5: 3302 fw_config_file = FW5_CFNAME; 3303 break; 3304 default: 3305 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3306 adapter->pdev->device); 3307 ret = -EINVAL; 3308 goto bye; 3309 } 3310 3311 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3312 if (ret < 0) { 3313 config_name = "On FLASH"; 3314 mtype = FW_MEMTYPE_CF_FLASH; 3315 maddr = t4_flash_cfg_addr(adapter); 3316 } else { 3317 u32 params[7], val[7]; 3318 3319 sprintf(fw_config_file_path, 3320 "/lib/firmware/%s", fw_config_file); 3321 config_name = fw_config_file_path; 3322 3323 if (cf->size >= FLASH_CFG_MAX_SIZE) 3324 ret = -ENOMEM; 3325 else { 3326 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3327 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3328 ret = t4_query_params(adapter, adapter->mbox, 3329 adapter->fn, 0, 1, params, val); 3330 if (ret == 0) { 3331 /* 3332 * For t4_memory_rw() below addresses and 3333 * sizes have to be in terms of multiples of 4 3334 * bytes. So, if the Configuration File isn't 3335 * a multiple of 4 bytes in length we'll have 3336 * to write that out separately since we can't 3337 * guarantee that the bytes following the 3338 * residual byte in the buffer returned by 3339 * request_firmware() are zeroed out ... 3340 */ 3341 size_t resid = cf->size & 0x3; 3342 size_t size = cf->size & ~0x3; 3343 __be32 *data = (__be32 *)cf->data; 3344 3345 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3346 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3347 3348 spin_lock(&adapter->win0_lock); 3349 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3350 size, data, T4_MEMORY_WRITE); 3351 if (ret == 0 && resid != 0) { 3352 union { 3353 __be32 word; 3354 char buf[4]; 3355 } last; 3356 int i; 3357 3358 last.word = data[size >> 2]; 3359 for (i = resid; i < 4; i++) 3360 last.buf[i] = 0; 3361 ret = t4_memory_rw(adapter, 0, mtype, 3362 maddr + size, 3363 4, &last.word, 3364 T4_MEMORY_WRITE); 3365 } 3366 spin_unlock(&adapter->win0_lock); 3367 } 3368 } 3369 3370 release_firmware(cf); 3371 if (ret) 3372 goto bye; 3373 } 3374 3375 /* 3376 * Issue a Capability Configuration command to the firmware to get it 3377 * to parse the Configuration File. We don't use t4_fw_config_file() 3378 * because we want the ability to modify various features after we've 3379 * processed the configuration file ... 3380 */ 3381 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3382 caps_cmd.op_to_write = 3383 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3384 FW_CMD_REQUEST_F | 3385 FW_CMD_READ_F); 3386 caps_cmd.cfvalid_to_len16 = 3387 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3388 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3389 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3390 FW_LEN16(caps_cmd)); 3391 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3392 &caps_cmd); 3393 3394 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3395 * Configuration File in FLASH), our last gasp effort is to use the 3396 * Firmware Configuration File which is embedded in the firmware. A 3397 * very few early versions of the firmware didn't have one embedded 3398 * but we can ignore those. 3399 */ 3400 if (ret == -ENOENT) { 3401 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3402 caps_cmd.op_to_write = 3403 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3404 FW_CMD_REQUEST_F | 3405 FW_CMD_READ_F); 3406 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3407 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3408 sizeof(caps_cmd), &caps_cmd); 3409 config_name = "Firmware Default"; 3410 } 3411 3412 config_issued = 1; 3413 if (ret < 0) 3414 goto bye; 3415 3416 finiver = ntohl(caps_cmd.finiver); 3417 finicsum = ntohl(caps_cmd.finicsum); 3418 cfcsum = ntohl(caps_cmd.cfcsum); 3419 if (finicsum != cfcsum) 3420 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3421 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3422 finicsum, cfcsum); 3423 3424 /* 3425 * And now tell the firmware to use the configuration we just loaded. 3426 */ 3427 caps_cmd.op_to_write = 3428 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3429 FW_CMD_REQUEST_F | 3430 FW_CMD_WRITE_F); 3431 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3432 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3433 NULL); 3434 if (ret < 0) 3435 goto bye; 3436 3437 /* 3438 * Tweak configuration based on system architecture, module 3439 * parameters, etc. 3440 */ 3441 ret = adap_init0_tweaks(adapter); 3442 if (ret < 0) 3443 goto bye; 3444 3445 /* 3446 * And finally tell the firmware to initialize itself using the 3447 * parameters from the Configuration File. 3448 */ 3449 ret = t4_fw_initialize(adapter, adapter->mbox); 3450 if (ret < 0) 3451 goto bye; 3452 3453 /* Emit Firmware Configuration File information and return 3454 * successfully. 3455 */ 3456 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3457 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3458 config_name, finiver, cfcsum); 3459 return 0; 3460 3461 /* 3462 * Something bad happened. Return the error ... (If the "error" 3463 * is that there's no Configuration File on the adapter we don't 3464 * want to issue a warning since this is fairly common.) 3465 */ 3466 bye: 3467 if (config_issued && ret != -ENOENT) 3468 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3469 config_name, -ret); 3470 return ret; 3471 } 3472 3473 static struct fw_info fw_info_array[] = { 3474 { 3475 .chip = CHELSIO_T4, 3476 .fs_name = FW4_CFNAME, 3477 .fw_mod_name = FW4_FNAME, 3478 .fw_hdr = { 3479 .chip = FW_HDR_CHIP_T4, 3480 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3481 .intfver_nic = FW_INTFVER(T4, NIC), 3482 .intfver_vnic = FW_INTFVER(T4, VNIC), 3483 .intfver_ri = FW_INTFVER(T4, RI), 3484 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3485 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3486 }, 3487 }, { 3488 .chip = CHELSIO_T5, 3489 .fs_name = FW5_CFNAME, 3490 .fw_mod_name = FW5_FNAME, 3491 .fw_hdr = { 3492 .chip = FW_HDR_CHIP_T5, 3493 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3494 .intfver_nic = FW_INTFVER(T5, NIC), 3495 .intfver_vnic = FW_INTFVER(T5, VNIC), 3496 .intfver_ri = FW_INTFVER(T5, RI), 3497 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3498 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3499 }, 3500 } 3501 }; 3502 3503 static struct fw_info *find_fw_info(int chip) 3504 { 3505 int i; 3506 3507 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3508 if (fw_info_array[i].chip == chip) 3509 return &fw_info_array[i]; 3510 } 3511 return NULL; 3512 } 3513 3514 /* 3515 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3516 */ 3517 static int adap_init0(struct adapter *adap) 3518 { 3519 int ret; 3520 u32 v, port_vec; 3521 enum dev_state state; 3522 u32 params[7], val[7]; 3523 struct fw_caps_config_cmd caps_cmd; 3524 int reset = 1; 3525 3526 /* Grab Firmware Device Log parameters as early as possible so we have 3527 * access to it for debugging, etc. 3528 */ 3529 ret = t4_init_devlog_params(adap); 3530 if (ret < 0) 3531 return ret; 3532 3533 /* Contact FW, advertising Master capability */ 3534 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); 3535 if (ret < 0) { 3536 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3537 ret); 3538 return ret; 3539 } 3540 if (ret == adap->mbox) 3541 adap->flags |= MASTER_PF; 3542 3543 /* 3544 * If we're the Master PF Driver and the device is uninitialized, 3545 * then let's consider upgrading the firmware ... (We always want 3546 * to check the firmware version number in order to A. get it for 3547 * later reporting and B. to warn if the currently loaded firmware 3548 * is excessively mismatched relative to the driver.) 3549 */ 3550 t4_get_fw_version(adap, &adap->params.fw_vers); 3551 t4_get_tp_version(adap, &adap->params.tp_vers); 3552 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3553 struct fw_info *fw_info; 3554 struct fw_hdr *card_fw; 3555 const struct firmware *fw; 3556 const u8 *fw_data = NULL; 3557 unsigned int fw_size = 0; 3558 3559 /* This is the firmware whose headers the driver was compiled 3560 * against 3561 */ 3562 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3563 if (fw_info == NULL) { 3564 dev_err(adap->pdev_dev, 3565 "unable to get firmware info for chip %d.\n", 3566 CHELSIO_CHIP_VERSION(adap->params.chip)); 3567 return -EINVAL; 3568 } 3569 3570 /* allocate memory to read the header of the firmware on the 3571 * card 3572 */ 3573 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3574 3575 /* Get FW from from /lib/firmware/ */ 3576 ret = request_firmware(&fw, fw_info->fw_mod_name, 3577 adap->pdev_dev); 3578 if (ret < 0) { 3579 dev_err(adap->pdev_dev, 3580 "unable to load firmware image %s, error %d\n", 3581 fw_info->fw_mod_name, ret); 3582 } else { 3583 fw_data = fw->data; 3584 fw_size = fw->size; 3585 } 3586 3587 /* upgrade FW logic */ 3588 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3589 state, &reset); 3590 3591 /* Cleaning up */ 3592 release_firmware(fw); 3593 t4_free_mem(card_fw); 3594 3595 if (ret < 0) 3596 goto bye; 3597 } 3598 3599 /* 3600 * Grab VPD parameters. This should be done after we establish a 3601 * connection to the firmware since some of the VPD parameters 3602 * (notably the Core Clock frequency) are retrieved via requests to 3603 * the firmware. On the other hand, we need these fairly early on 3604 * so we do this right after getting ahold of the firmware. 3605 */ 3606 ret = get_vpd_params(adap, &adap->params.vpd); 3607 if (ret < 0) 3608 goto bye; 3609 3610 /* 3611 * Find out what ports are available to us. Note that we need to do 3612 * this before calling adap_init0_no_config() since it needs nports 3613 * and portvec ... 3614 */ 3615 v = 3616 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3617 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3618 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 3619 if (ret < 0) 3620 goto bye; 3621 3622 adap->params.nports = hweight32(port_vec); 3623 adap->params.portvec = port_vec; 3624 3625 /* If the firmware is initialized already, emit a simply note to that 3626 * effect. Otherwise, it's time to try initializing the adapter. 3627 */ 3628 if (state == DEV_STATE_INIT) { 3629 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3630 "Adapter already initialized\n", 3631 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3632 } else { 3633 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3634 "Initializing adapter\n"); 3635 3636 /* Find out whether we're dealing with a version of the 3637 * firmware which has configuration file support. 3638 */ 3639 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3640 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3641 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 3642 params, val); 3643 3644 /* If the firmware doesn't support Configuration Files, 3645 * return an error. 3646 */ 3647 if (ret < 0) { 3648 dev_err(adap->pdev_dev, "firmware doesn't support " 3649 "Firmware Configuration Files\n"); 3650 goto bye; 3651 } 3652 3653 /* The firmware provides us with a memory buffer where we can 3654 * load a Configuration File from the host if we want to 3655 * override the Configuration File in flash. 3656 */ 3657 ret = adap_init0_config(adap, reset); 3658 if (ret == -ENOENT) { 3659 dev_err(adap->pdev_dev, "no Configuration File " 3660 "present on adapter.\n"); 3661 goto bye; 3662 } 3663 if (ret < 0) { 3664 dev_err(adap->pdev_dev, "could not initialize " 3665 "adapter, error %d\n", -ret); 3666 goto bye; 3667 } 3668 } 3669 3670 /* Give the SGE code a chance to pull in anything that it needs ... 3671 * Note that this must be called after we retrieve our VPD parameters 3672 * in order to know how to convert core ticks to seconds, etc. 3673 */ 3674 ret = t4_sge_init(adap); 3675 if (ret < 0) 3676 goto bye; 3677 3678 if (is_bypass_device(adap->pdev->device)) 3679 adap->params.bypass = 1; 3680 3681 /* 3682 * Grab some of our basic fundamental operating parameters. 3683 */ 3684 #define FW_PARAM_DEV(param) \ 3685 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3686 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3687 3688 #define FW_PARAM_PFVF(param) \ 3689 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3690 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3691 FW_PARAMS_PARAM_Y_V(0) | \ 3692 FW_PARAMS_PARAM_Z_V(0) 3693 3694 params[0] = FW_PARAM_PFVF(EQ_START); 3695 params[1] = FW_PARAM_PFVF(L2T_START); 3696 params[2] = FW_PARAM_PFVF(L2T_END); 3697 params[3] = FW_PARAM_PFVF(FILTER_START); 3698 params[4] = FW_PARAM_PFVF(FILTER_END); 3699 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3700 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 3701 if (ret < 0) 3702 goto bye; 3703 adap->sge.egr_start = val[0]; 3704 adap->l2t_start = val[1]; 3705 adap->l2t_end = val[2]; 3706 adap->tids.ftid_base = val[3]; 3707 adap->tids.nftids = val[4] - val[3] + 1; 3708 adap->sge.ingr_start = val[5]; 3709 3710 /* qids (ingress/egress) returned from firmware can be anywhere 3711 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3712 * Hence driver needs to allocate memory for this range to 3713 * store the queue info. Get the highest IQFLINT/EQ index returned 3714 * in FW_EQ_*_CMD.alloc command. 3715 */ 3716 params[0] = FW_PARAM_PFVF(EQ_END); 3717 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3718 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3719 if (ret < 0) 3720 goto bye; 3721 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3722 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3723 3724 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3725 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3726 if (!adap->sge.egr_map) { 3727 ret = -ENOMEM; 3728 goto bye; 3729 } 3730 3731 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3732 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3733 if (!adap->sge.ingr_map) { 3734 ret = -ENOMEM; 3735 goto bye; 3736 } 3737 3738 /* Allocate the memory for the vaious egress queue bitmaps 3739 * ie starving_fl and txq_maperr. 3740 */ 3741 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3742 sizeof(long), GFP_KERNEL); 3743 if (!adap->sge.starving_fl) { 3744 ret = -ENOMEM; 3745 goto bye; 3746 } 3747 3748 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3749 sizeof(long), GFP_KERNEL); 3750 if (!adap->sge.txq_maperr) { 3751 ret = -ENOMEM; 3752 goto bye; 3753 } 3754 3755 params[0] = FW_PARAM_PFVF(CLIP_START); 3756 params[1] = FW_PARAM_PFVF(CLIP_END); 3757 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3758 if (ret < 0) 3759 goto bye; 3760 adap->clipt_start = val[0]; 3761 adap->clipt_end = val[1]; 3762 3763 /* query params related to active filter region */ 3764 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3765 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3766 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3767 /* If Active filter size is set we enable establishing 3768 * offload connection through firmware work request 3769 */ 3770 if ((val[0] != val[1]) && (ret >= 0)) { 3771 adap->flags |= FW_OFLD_CONN; 3772 adap->tids.aftid_base = val[0]; 3773 adap->tids.aftid_end = val[1]; 3774 } 3775 3776 /* If we're running on newer firmware, let it know that we're 3777 * prepared to deal with encapsulated CPL messages. Older 3778 * firmware won't understand this and we'll just get 3779 * unencapsulated messages ... 3780 */ 3781 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3782 val[0] = 1; 3783 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val); 3784 3785 /* 3786 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3787 * capability. Earlier versions of the firmware didn't have the 3788 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3789 * permission to use ULPTX MEMWRITE DSGL. 3790 */ 3791 if (is_t4(adap->params.chip)) { 3792 adap->params.ulptx_memwrite_dsgl = false; 3793 } else { 3794 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3795 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 3796 1, params, val); 3797 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3798 } 3799 3800 /* 3801 * Get device capabilities so we can determine what resources we need 3802 * to manage. 3803 */ 3804 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3805 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3806 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3807 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3808 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3809 &caps_cmd); 3810 if (ret < 0) 3811 goto bye; 3812 3813 if (caps_cmd.ofldcaps) { 3814 /* query offload-related parameters */ 3815 params[0] = FW_PARAM_DEV(NTID); 3816 params[1] = FW_PARAM_PFVF(SERVER_START); 3817 params[2] = FW_PARAM_PFVF(SERVER_END); 3818 params[3] = FW_PARAM_PFVF(TDDP_START); 3819 params[4] = FW_PARAM_PFVF(TDDP_END); 3820 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3821 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 3822 params, val); 3823 if (ret < 0) 3824 goto bye; 3825 adap->tids.ntids = val[0]; 3826 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3827 adap->tids.stid_base = val[1]; 3828 adap->tids.nstids = val[2] - val[1] + 1; 3829 /* 3830 * Setup server filter region. Divide the available filter 3831 * region into two parts. Regular filters get 1/3rd and server 3832 * filters get 2/3rd part. This is only enabled if workarond 3833 * path is enabled. 3834 * 1. For regular filters. 3835 * 2. Server filter: This are special filters which are used 3836 * to redirect SYN packets to offload queue. 3837 */ 3838 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3839 adap->tids.sftid_base = adap->tids.ftid_base + 3840 DIV_ROUND_UP(adap->tids.nftids, 3); 3841 adap->tids.nsftids = adap->tids.nftids - 3842 DIV_ROUND_UP(adap->tids.nftids, 3); 3843 adap->tids.nftids = adap->tids.sftid_base - 3844 adap->tids.ftid_base; 3845 } 3846 adap->vres.ddp.start = val[3]; 3847 adap->vres.ddp.size = val[4] - val[3] + 1; 3848 adap->params.ofldq_wr_cred = val[5]; 3849 3850 adap->params.offload = 1; 3851 } 3852 if (caps_cmd.rdmacaps) { 3853 params[0] = FW_PARAM_PFVF(STAG_START); 3854 params[1] = FW_PARAM_PFVF(STAG_END); 3855 params[2] = FW_PARAM_PFVF(RQ_START); 3856 params[3] = FW_PARAM_PFVF(RQ_END); 3857 params[4] = FW_PARAM_PFVF(PBL_START); 3858 params[5] = FW_PARAM_PFVF(PBL_END); 3859 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 3860 params, val); 3861 if (ret < 0) 3862 goto bye; 3863 adap->vres.stag.start = val[0]; 3864 adap->vres.stag.size = val[1] - val[0] + 1; 3865 adap->vres.rq.start = val[2]; 3866 adap->vres.rq.size = val[3] - val[2] + 1; 3867 adap->vres.pbl.start = val[4]; 3868 adap->vres.pbl.size = val[5] - val[4] + 1; 3869 3870 params[0] = FW_PARAM_PFVF(SQRQ_START); 3871 params[1] = FW_PARAM_PFVF(SQRQ_END); 3872 params[2] = FW_PARAM_PFVF(CQ_START); 3873 params[3] = FW_PARAM_PFVF(CQ_END); 3874 params[4] = FW_PARAM_PFVF(OCQ_START); 3875 params[5] = FW_PARAM_PFVF(OCQ_END); 3876 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, 3877 val); 3878 if (ret < 0) 3879 goto bye; 3880 adap->vres.qp.start = val[0]; 3881 adap->vres.qp.size = val[1] - val[0] + 1; 3882 adap->vres.cq.start = val[2]; 3883 adap->vres.cq.size = val[3] - val[2] + 1; 3884 adap->vres.ocq.start = val[4]; 3885 adap->vres.ocq.size = val[5] - val[4] + 1; 3886 3887 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3888 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3889 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, 3890 val); 3891 if (ret < 0) { 3892 adap->params.max_ordird_qp = 8; 3893 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3894 ret = 0; 3895 } else { 3896 adap->params.max_ordird_qp = val[0]; 3897 adap->params.max_ird_adapter = val[1]; 3898 } 3899 dev_info(adap->pdev_dev, 3900 "max_ordird_qp %d max_ird_adapter %d\n", 3901 adap->params.max_ordird_qp, 3902 adap->params.max_ird_adapter); 3903 } 3904 if (caps_cmd.iscsicaps) { 3905 params[0] = FW_PARAM_PFVF(ISCSI_START); 3906 params[1] = FW_PARAM_PFVF(ISCSI_END); 3907 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 3908 params, val); 3909 if (ret < 0) 3910 goto bye; 3911 adap->vres.iscsi.start = val[0]; 3912 adap->vres.iscsi.size = val[1] - val[0] + 1; 3913 } 3914 #undef FW_PARAM_PFVF 3915 #undef FW_PARAM_DEV 3916 3917 /* The MTU/MSS Table is initialized by now, so load their values. If 3918 * we're initializing the adapter, then we'll make any modifications 3919 * we want to the MTU/MSS Table and also initialize the congestion 3920 * parameters. 3921 */ 3922 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3923 if (state != DEV_STATE_INIT) { 3924 int i; 3925 3926 /* The default MTU Table contains values 1492 and 1500. 3927 * However, for TCP, it's better to have two values which are 3928 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3929 * This allows us to have a TCP Data Payload which is a 3930 * multiple of 8 regardless of what combination of TCP Options 3931 * are in use (always a multiple of 4 bytes) which is 3932 * important for performance reasons. For instance, if no 3933 * options are in use, then we have a 20-byte IP header and a 3934 * 20-byte TCP header. In this case, a 1500-byte MSS would 3935 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3936 * which is not a multiple of 8. So using an MSS of 1488 in 3937 * this case results in a TCP Data Payload of 1448 bytes which 3938 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3939 * Stamps have been negotiated, then an MTU of 1500 bytes 3940 * results in a TCP Data Payload of 1448 bytes which, as 3941 * above, is a multiple of 8 bytes ... 3942 */ 3943 for (i = 0; i < NMTUS; i++) 3944 if (adap->params.mtus[i] == 1492) { 3945 adap->params.mtus[i] = 1488; 3946 break; 3947 } 3948 3949 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3950 adap->params.b_wnd); 3951 } 3952 t4_init_sge_params(adap); 3953 t4_init_tp_params(adap); 3954 adap->flags |= FW_OK; 3955 return 0; 3956 3957 /* 3958 * Something bad happened. If a command timed out or failed with EIO 3959 * FW does not operate within its spec or something catastrophic 3960 * happened to HW/FW, stop issuing commands. 3961 */ 3962 bye: 3963 kfree(adap->sge.egr_map); 3964 kfree(adap->sge.ingr_map); 3965 kfree(adap->sge.starving_fl); 3966 kfree(adap->sge.txq_maperr); 3967 if (ret != -ETIMEDOUT && ret != -EIO) 3968 t4_fw_bye(adap, adap->mbox); 3969 return ret; 3970 } 3971 3972 /* EEH callbacks */ 3973 3974 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3975 pci_channel_state_t state) 3976 { 3977 int i; 3978 struct adapter *adap = pci_get_drvdata(pdev); 3979 3980 if (!adap) 3981 goto out; 3982 3983 rtnl_lock(); 3984 adap->flags &= ~FW_OK; 3985 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3986 spin_lock(&adap->stats_lock); 3987 for_each_port(adap, i) { 3988 struct net_device *dev = adap->port[i]; 3989 3990 netif_device_detach(dev); 3991 netif_carrier_off(dev); 3992 } 3993 spin_unlock(&adap->stats_lock); 3994 disable_interrupts(adap); 3995 if (adap->flags & FULL_INIT_DONE) 3996 cxgb_down(adap); 3997 rtnl_unlock(); 3998 if ((adap->flags & DEV_ENABLED)) { 3999 pci_disable_device(pdev); 4000 adap->flags &= ~DEV_ENABLED; 4001 } 4002 out: return state == pci_channel_io_perm_failure ? 4003 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4004 } 4005 4006 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4007 { 4008 int i, ret; 4009 struct fw_caps_config_cmd c; 4010 struct adapter *adap = pci_get_drvdata(pdev); 4011 4012 if (!adap) { 4013 pci_restore_state(pdev); 4014 pci_save_state(pdev); 4015 return PCI_ERS_RESULT_RECOVERED; 4016 } 4017 4018 if (!(adap->flags & DEV_ENABLED)) { 4019 if (pci_enable_device(pdev)) { 4020 dev_err(&pdev->dev, "Cannot reenable PCI " 4021 "device after reset\n"); 4022 return PCI_ERS_RESULT_DISCONNECT; 4023 } 4024 adap->flags |= DEV_ENABLED; 4025 } 4026 4027 pci_set_master(pdev); 4028 pci_restore_state(pdev); 4029 pci_save_state(pdev); 4030 pci_cleanup_aer_uncorrect_error_status(pdev); 4031 4032 if (t4_wait_dev_ready(adap->regs) < 0) 4033 return PCI_ERS_RESULT_DISCONNECT; 4034 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0) 4035 return PCI_ERS_RESULT_DISCONNECT; 4036 adap->flags |= FW_OK; 4037 if (adap_init1(adap, &c)) 4038 return PCI_ERS_RESULT_DISCONNECT; 4039 4040 for_each_port(adap, i) { 4041 struct port_info *p = adap2pinfo(adap, i); 4042 4043 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 4044 NULL, NULL); 4045 if (ret < 0) 4046 return PCI_ERS_RESULT_DISCONNECT; 4047 p->viid = ret; 4048 p->xact_addr_filt = -1; 4049 } 4050 4051 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4052 adap->params.b_wnd); 4053 setup_memwin(adap); 4054 if (cxgb_up(adap)) 4055 return PCI_ERS_RESULT_DISCONNECT; 4056 return PCI_ERS_RESULT_RECOVERED; 4057 } 4058 4059 static void eeh_resume(struct pci_dev *pdev) 4060 { 4061 int i; 4062 struct adapter *adap = pci_get_drvdata(pdev); 4063 4064 if (!adap) 4065 return; 4066 4067 rtnl_lock(); 4068 for_each_port(adap, i) { 4069 struct net_device *dev = adap->port[i]; 4070 4071 if (netif_running(dev)) { 4072 link_start(dev); 4073 cxgb_set_rxmode(dev); 4074 } 4075 netif_device_attach(dev); 4076 } 4077 rtnl_unlock(); 4078 } 4079 4080 static const struct pci_error_handlers cxgb4_eeh = { 4081 .error_detected = eeh_err_detected, 4082 .slot_reset = eeh_slot_reset, 4083 .resume = eeh_resume, 4084 }; 4085 4086 static inline bool is_x_10g_port(const struct link_config *lc) 4087 { 4088 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4089 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4090 } 4091 4092 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4093 unsigned int us, unsigned int cnt, 4094 unsigned int size, unsigned int iqe_size) 4095 { 4096 q->adap = adap; 4097 cxgb4_set_rspq_intr_params(q, us, cnt); 4098 q->iqe_len = iqe_size; 4099 q->size = size; 4100 } 4101 4102 /* 4103 * Perform default configuration of DMA queues depending on the number and type 4104 * of ports we found and the number of available CPUs. Most settings can be 4105 * modified by the admin prior to actual use. 4106 */ 4107 static void cfg_queues(struct adapter *adap) 4108 { 4109 struct sge *s = &adap->sge; 4110 int i, n10g = 0, qidx = 0; 4111 #ifndef CONFIG_CHELSIO_T4_DCB 4112 int q10g = 0; 4113 #endif 4114 int ciq_size; 4115 4116 for_each_port(adap, i) 4117 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4118 #ifdef CONFIG_CHELSIO_T4_DCB 4119 /* For Data Center Bridging support we need to be able to support up 4120 * to 8 Traffic Priorities; each of which will be assigned to its 4121 * own TX Queue in order to prevent Head-Of-Line Blocking. 4122 */ 4123 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4124 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4125 MAX_ETH_QSETS, adap->params.nports * 8); 4126 BUG_ON(1); 4127 } 4128 4129 for_each_port(adap, i) { 4130 struct port_info *pi = adap2pinfo(adap, i); 4131 4132 pi->first_qset = qidx; 4133 pi->nqsets = 8; 4134 qidx += pi->nqsets; 4135 } 4136 #else /* !CONFIG_CHELSIO_T4_DCB */ 4137 /* 4138 * We default to 1 queue per non-10G port and up to # of cores queues 4139 * per 10G port. 4140 */ 4141 if (n10g) 4142 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4143 if (q10g > netif_get_num_default_rss_queues()) 4144 q10g = netif_get_num_default_rss_queues(); 4145 4146 for_each_port(adap, i) { 4147 struct port_info *pi = adap2pinfo(adap, i); 4148 4149 pi->first_qset = qidx; 4150 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4151 qidx += pi->nqsets; 4152 } 4153 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4154 4155 s->ethqsets = qidx; 4156 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4157 4158 if (is_offload(adap)) { 4159 /* 4160 * For offload we use 1 queue/channel if all ports are up to 1G, 4161 * otherwise we divide all available queues amongst the channels 4162 * capped by the number of available cores. 4163 */ 4164 if (n10g) { 4165 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 4166 num_online_cpus()); 4167 s->ofldqsets = roundup(i, adap->params.nports); 4168 } else 4169 s->ofldqsets = adap->params.nports; 4170 /* For RDMA one Rx queue per channel suffices */ 4171 s->rdmaqs = adap->params.nports; 4172 /* Try and allow at least 1 CIQ per cpu rounding down 4173 * to the number of ports, with a minimum of 1 per port. 4174 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4175 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4176 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4177 */ 4178 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4179 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4180 adap->params.nports; 4181 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4182 } 4183 4184 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4185 struct sge_eth_rxq *r = &s->ethrxq[i]; 4186 4187 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4188 r->fl.size = 72; 4189 } 4190 4191 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4192 s->ethtxq[i].q.size = 1024; 4193 4194 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4195 s->ctrlq[i].q.size = 512; 4196 4197 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4198 s->ofldtxq[i].q.size = 1024; 4199 4200 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 4201 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 4202 4203 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4204 r->rspq.uld = CXGB4_ULD_ISCSI; 4205 r->fl.size = 72; 4206 } 4207 4208 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4209 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4210 4211 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4212 r->rspq.uld = CXGB4_ULD_RDMA; 4213 r->fl.size = 72; 4214 } 4215 4216 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4217 if (ciq_size > SGE_MAX_IQ_SIZE) { 4218 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4219 ciq_size = SGE_MAX_IQ_SIZE; 4220 } 4221 4222 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4223 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4224 4225 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4226 r->rspq.uld = CXGB4_ULD_RDMA; 4227 } 4228 4229 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4230 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4231 } 4232 4233 /* 4234 * Reduce the number of Ethernet queues across all ports to at most n. 4235 * n provides at least one queue per port. 4236 */ 4237 static void reduce_ethqs(struct adapter *adap, int n) 4238 { 4239 int i; 4240 struct port_info *pi; 4241 4242 while (n < adap->sge.ethqsets) 4243 for_each_port(adap, i) { 4244 pi = adap2pinfo(adap, i); 4245 if (pi->nqsets > 1) { 4246 pi->nqsets--; 4247 adap->sge.ethqsets--; 4248 if (adap->sge.ethqsets <= n) 4249 break; 4250 } 4251 } 4252 4253 n = 0; 4254 for_each_port(adap, i) { 4255 pi = adap2pinfo(adap, i); 4256 pi->first_qset = n; 4257 n += pi->nqsets; 4258 } 4259 } 4260 4261 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4262 #define EXTRA_VECS 2 4263 4264 static int enable_msix(struct adapter *adap) 4265 { 4266 int ofld_need = 0; 4267 int i, want, need, allocated; 4268 struct sge *s = &adap->sge; 4269 unsigned int nchan = adap->params.nports; 4270 struct msix_entry *entries; 4271 4272 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4273 GFP_KERNEL); 4274 if (!entries) 4275 return -ENOMEM; 4276 4277 for (i = 0; i < MAX_INGQ + 1; ++i) 4278 entries[i].entry = i; 4279 4280 want = s->max_ethqsets + EXTRA_VECS; 4281 if (is_offload(adap)) { 4282 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets; 4283 /* need nchan for each possible ULD */ 4284 ofld_need = 3 * nchan; 4285 } 4286 #ifdef CONFIG_CHELSIO_T4_DCB 4287 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4288 * each port. 4289 */ 4290 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4291 #else 4292 need = adap->params.nports + EXTRA_VECS + ofld_need; 4293 #endif 4294 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4295 if (allocated < 0) { 4296 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4297 " not using MSI-X\n"); 4298 kfree(entries); 4299 return allocated; 4300 } 4301 4302 /* Distribute available vectors to the various queue groups. 4303 * Every group gets its minimum requirement and NIC gets top 4304 * priority for leftovers. 4305 */ 4306 i = allocated - EXTRA_VECS - ofld_need; 4307 if (i < s->max_ethqsets) { 4308 s->max_ethqsets = i; 4309 if (i < s->ethqsets) 4310 reduce_ethqs(adap, i); 4311 } 4312 if (is_offload(adap)) { 4313 if (allocated < want) { 4314 s->rdmaqs = nchan; 4315 s->rdmaciqs = nchan; 4316 } 4317 4318 /* leftovers go to OFLD */ 4319 i = allocated - EXTRA_VECS - s->max_ethqsets - 4320 s->rdmaqs - s->rdmaciqs; 4321 s->ofldqsets = (i / nchan) * nchan; /* round down */ 4322 } 4323 for (i = 0; i < allocated; ++i) 4324 adap->msix_info[i].vec = entries[i].vector; 4325 4326 kfree(entries); 4327 return 0; 4328 } 4329 4330 #undef EXTRA_VECS 4331 4332 static int init_rss(struct adapter *adap) 4333 { 4334 unsigned int i, j; 4335 4336 for_each_port(adap, i) { 4337 struct port_info *pi = adap2pinfo(adap, i); 4338 4339 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4340 if (!pi->rss) 4341 return -ENOMEM; 4342 for (j = 0; j < pi->rss_size; j++) 4343 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 4344 } 4345 return 0; 4346 } 4347 4348 static void print_port_info(const struct net_device *dev) 4349 { 4350 char buf[80]; 4351 char *bufp = buf; 4352 const char *spd = ""; 4353 const struct port_info *pi = netdev_priv(dev); 4354 const struct adapter *adap = pi->adapter; 4355 4356 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4357 spd = " 2.5 GT/s"; 4358 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4359 spd = " 5 GT/s"; 4360 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4361 spd = " 8 GT/s"; 4362 4363 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4364 bufp += sprintf(bufp, "100/"); 4365 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4366 bufp += sprintf(bufp, "1000/"); 4367 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4368 bufp += sprintf(bufp, "10G/"); 4369 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4370 bufp += sprintf(bufp, "40G/"); 4371 if (bufp != buf) 4372 --bufp; 4373 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4374 4375 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 4376 adap->params.vpd.id, 4377 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 4378 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 4379 (adap->flags & USING_MSIX) ? " MSI-X" : 4380 (adap->flags & USING_MSI) ? " MSI" : ""); 4381 netdev_info(dev, "S/N: %s, P/N: %s\n", 4382 adap->params.vpd.sn, adap->params.vpd.pn); 4383 } 4384 4385 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4386 { 4387 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4388 } 4389 4390 /* 4391 * Free the following resources: 4392 * - memory used for tables 4393 * - MSI/MSI-X 4394 * - net devices 4395 * - resources FW is holding for us 4396 */ 4397 static void free_some_resources(struct adapter *adapter) 4398 { 4399 unsigned int i; 4400 4401 t4_free_mem(adapter->l2t); 4402 t4_free_mem(adapter->tids.tid_tab); 4403 kfree(adapter->sge.egr_map); 4404 kfree(adapter->sge.ingr_map); 4405 kfree(adapter->sge.starving_fl); 4406 kfree(adapter->sge.txq_maperr); 4407 disable_msi(adapter); 4408 4409 for_each_port(adapter, i) 4410 if (adapter->port[i]) { 4411 kfree(adap2pinfo(adapter, i)->rss); 4412 free_netdev(adapter->port[i]); 4413 } 4414 if (adapter->flags & FW_OK) 4415 t4_fw_bye(adapter, adapter->fn); 4416 } 4417 4418 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4419 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4420 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4421 #define SEGMENT_SIZE 128 4422 4423 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4424 { 4425 int func, i, err, s_qpp, qpp, num_seg; 4426 struct port_info *pi; 4427 bool highdma = false; 4428 struct adapter *adapter = NULL; 4429 void __iomem *regs; 4430 4431 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4432 4433 err = pci_request_regions(pdev, KBUILD_MODNAME); 4434 if (err) { 4435 /* Just info, some other driver may have claimed the device. */ 4436 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4437 return err; 4438 } 4439 4440 err = pci_enable_device(pdev); 4441 if (err) { 4442 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4443 goto out_release_regions; 4444 } 4445 4446 regs = pci_ioremap_bar(pdev, 0); 4447 if (!regs) { 4448 dev_err(&pdev->dev, "cannot map device registers\n"); 4449 err = -ENOMEM; 4450 goto out_disable_device; 4451 } 4452 4453 err = t4_wait_dev_ready(regs); 4454 if (err < 0) 4455 goto out_unmap_bar0; 4456 4457 /* We control everything through one PF */ 4458 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A)); 4459 if (func != ent->driver_data) { 4460 iounmap(regs); 4461 pci_disable_device(pdev); 4462 pci_save_state(pdev); /* to restore SR-IOV later */ 4463 goto sriov; 4464 } 4465 4466 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4467 highdma = true; 4468 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4469 if (err) { 4470 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4471 "coherent allocations\n"); 4472 goto out_unmap_bar0; 4473 } 4474 } else { 4475 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4476 if (err) { 4477 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4478 goto out_unmap_bar0; 4479 } 4480 } 4481 4482 pci_enable_pcie_error_reporting(pdev); 4483 enable_pcie_relaxed_ordering(pdev); 4484 pci_set_master(pdev); 4485 pci_save_state(pdev); 4486 4487 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4488 if (!adapter) { 4489 err = -ENOMEM; 4490 goto out_unmap_bar0; 4491 } 4492 4493 adapter->workq = create_singlethread_workqueue("cxgb4"); 4494 if (!adapter->workq) { 4495 err = -ENOMEM; 4496 goto out_free_adapter; 4497 } 4498 4499 /* PCI device has been enabled */ 4500 adapter->flags |= DEV_ENABLED; 4501 4502 adapter->regs = regs; 4503 adapter->pdev = pdev; 4504 adapter->pdev_dev = &pdev->dev; 4505 adapter->mbox = func; 4506 adapter->fn = func; 4507 adapter->msg_enable = dflt_msg_enable; 4508 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4509 4510 spin_lock_init(&adapter->stats_lock); 4511 spin_lock_init(&adapter->tid_release_lock); 4512 spin_lock_init(&adapter->win0_lock); 4513 4514 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4515 INIT_WORK(&adapter->db_full_task, process_db_full); 4516 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4517 4518 err = t4_prep_adapter(adapter); 4519 if (err) 4520 goto out_free_adapter; 4521 4522 4523 if (!is_t4(adapter->params.chip)) { 4524 s_qpp = (QUEUESPERPAGEPF0_S + 4525 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4526 adapter->fn); 4527 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4528 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4529 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4530 4531 /* Each segment size is 128B. Write coalescing is enabled only 4532 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4533 * queue is less no of segments that can be accommodated in 4534 * a page size. 4535 */ 4536 if (qpp > num_seg) { 4537 dev_err(&pdev->dev, 4538 "Incorrect number of egress queues per page\n"); 4539 err = -EINVAL; 4540 goto out_free_adapter; 4541 } 4542 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4543 pci_resource_len(pdev, 2)); 4544 if (!adapter->bar2) { 4545 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4546 err = -ENOMEM; 4547 goto out_free_adapter; 4548 } 4549 } 4550 4551 setup_memwin(adapter); 4552 err = adap_init0(adapter); 4553 setup_memwin_rdma(adapter); 4554 if (err) 4555 goto out_unmap_bar; 4556 4557 for_each_port(adapter, i) { 4558 struct net_device *netdev; 4559 4560 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4561 MAX_ETH_QSETS); 4562 if (!netdev) { 4563 err = -ENOMEM; 4564 goto out_free_dev; 4565 } 4566 4567 SET_NETDEV_DEV(netdev, &pdev->dev); 4568 4569 adapter->port[i] = netdev; 4570 pi = netdev_priv(netdev); 4571 pi->adapter = adapter; 4572 pi->xact_addr_filt = -1; 4573 pi->port_id = i; 4574 netdev->irq = pdev->irq; 4575 4576 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4577 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4578 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4579 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 4580 if (highdma) 4581 netdev->hw_features |= NETIF_F_HIGHDMA; 4582 netdev->features |= netdev->hw_features; 4583 netdev->vlan_features = netdev->features & VLAN_FEAT; 4584 4585 netdev->priv_flags |= IFF_UNICAST_FLT; 4586 4587 netdev->netdev_ops = &cxgb4_netdev_ops; 4588 #ifdef CONFIG_CHELSIO_T4_DCB 4589 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4590 cxgb4_dcb_state_init(netdev); 4591 #endif 4592 cxgb4_set_ethtool_ops(netdev); 4593 } 4594 4595 pci_set_drvdata(pdev, adapter); 4596 4597 if (adapter->flags & FW_OK) { 4598 err = t4_port_init(adapter, func, func, 0); 4599 if (err) 4600 goto out_free_dev; 4601 } 4602 4603 /* 4604 * Configure queues and allocate tables now, they can be needed as 4605 * soon as the first register_netdev completes. 4606 */ 4607 cfg_queues(adapter); 4608 4609 adapter->l2t = t4_init_l2t(); 4610 if (!adapter->l2t) { 4611 /* We tolerate a lack of L2T, giving up some functionality */ 4612 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4613 adapter->params.offload = 0; 4614 } 4615 4616 #if IS_ENABLED(CONFIG_IPV6) 4617 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4618 adapter->clipt_end); 4619 if (!adapter->clipt) { 4620 /* We tolerate a lack of clip_table, giving up 4621 * some functionality 4622 */ 4623 dev_warn(&pdev->dev, 4624 "could not allocate Clip table, continuing\n"); 4625 adapter->params.offload = 0; 4626 } 4627 #endif 4628 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 4629 dev_warn(&pdev->dev, "could not allocate TID table, " 4630 "continuing\n"); 4631 adapter->params.offload = 0; 4632 } 4633 4634 /* See what interrupts we'll be using */ 4635 if (msi > 1 && enable_msix(adapter) == 0) 4636 adapter->flags |= USING_MSIX; 4637 else if (msi > 0 && pci_enable_msi(pdev) == 0) 4638 adapter->flags |= USING_MSI; 4639 4640 err = init_rss(adapter); 4641 if (err) 4642 goto out_free_dev; 4643 4644 /* 4645 * The card is now ready to go. If any errors occur during device 4646 * registration we do not fail the whole card but rather proceed only 4647 * with the ports we manage to register successfully. However we must 4648 * register at least one net device. 4649 */ 4650 for_each_port(adapter, i) { 4651 pi = adap2pinfo(adapter, i); 4652 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4653 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4654 4655 err = register_netdev(adapter->port[i]); 4656 if (err) 4657 break; 4658 adapter->chan_map[pi->tx_chan] = i; 4659 print_port_info(adapter->port[i]); 4660 } 4661 if (i == 0) { 4662 dev_err(&pdev->dev, "could not register any net devices\n"); 4663 goto out_free_dev; 4664 } 4665 if (err) { 4666 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4667 err = 0; 4668 } 4669 4670 if (cxgb4_debugfs_root) { 4671 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4672 cxgb4_debugfs_root); 4673 setup_debugfs(adapter); 4674 } 4675 4676 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4677 pdev->needs_freset = 1; 4678 4679 if (is_offload(adapter)) 4680 attach_ulds(adapter); 4681 4682 sriov: 4683 #ifdef CONFIG_PCI_IOV 4684 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 4685 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4686 dev_info(&pdev->dev, 4687 "instantiated %u virtual functions\n", 4688 num_vf[func]); 4689 #endif 4690 return 0; 4691 4692 out_free_dev: 4693 free_some_resources(adapter); 4694 out_unmap_bar: 4695 if (!is_t4(adapter->params.chip)) 4696 iounmap(adapter->bar2); 4697 out_free_adapter: 4698 if (adapter->workq) 4699 destroy_workqueue(adapter->workq); 4700 4701 kfree(adapter); 4702 out_unmap_bar0: 4703 iounmap(regs); 4704 out_disable_device: 4705 pci_disable_pcie_error_reporting(pdev); 4706 pci_disable_device(pdev); 4707 out_release_regions: 4708 pci_release_regions(pdev); 4709 return err; 4710 } 4711 4712 static void remove_one(struct pci_dev *pdev) 4713 { 4714 struct adapter *adapter = pci_get_drvdata(pdev); 4715 4716 #ifdef CONFIG_PCI_IOV 4717 pci_disable_sriov(pdev); 4718 4719 #endif 4720 4721 if (adapter) { 4722 int i; 4723 4724 /* Tear down per-adapter Work Queue first since it can contain 4725 * references to our adapter data structure. 4726 */ 4727 destroy_workqueue(adapter->workq); 4728 4729 if (is_offload(adapter)) 4730 detach_ulds(adapter); 4731 4732 disable_interrupts(adapter); 4733 4734 for_each_port(adapter, i) 4735 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 4736 unregister_netdev(adapter->port[i]); 4737 4738 debugfs_remove_recursive(adapter->debugfs_root); 4739 4740 /* If we allocated filters, free up state associated with any 4741 * valid filters ... 4742 */ 4743 if (adapter->tids.ftid_tab) { 4744 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 4745 for (i = 0; i < (adapter->tids.nftids + 4746 adapter->tids.nsftids); i++, f++) 4747 if (f->valid) 4748 clear_filter(adapter, f); 4749 } 4750 4751 if (adapter->flags & FULL_INIT_DONE) 4752 cxgb_down(adapter); 4753 4754 free_some_resources(adapter); 4755 #if IS_ENABLED(CONFIG_IPV6) 4756 t4_cleanup_clip_tbl(adapter); 4757 #endif 4758 iounmap(adapter->regs); 4759 if (!is_t4(adapter->params.chip)) 4760 iounmap(adapter->bar2); 4761 pci_disable_pcie_error_reporting(pdev); 4762 if ((adapter->flags & DEV_ENABLED)) { 4763 pci_disable_device(pdev); 4764 adapter->flags &= ~DEV_ENABLED; 4765 } 4766 pci_release_regions(pdev); 4767 synchronize_rcu(); 4768 kfree(adapter); 4769 } else 4770 pci_release_regions(pdev); 4771 } 4772 4773 static struct pci_driver cxgb4_driver = { 4774 .name = KBUILD_MODNAME, 4775 .id_table = cxgb4_pci_tbl, 4776 .probe = init_one, 4777 .remove = remove_one, 4778 .shutdown = remove_one, 4779 .err_handler = &cxgb4_eeh, 4780 }; 4781 4782 static int __init cxgb4_init_module(void) 4783 { 4784 int ret; 4785 4786 /* Debugfs support is optional, just warn if this fails */ 4787 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 4788 if (!cxgb4_debugfs_root) 4789 pr_warn("could not create debugfs entry, continuing\n"); 4790 4791 ret = pci_register_driver(&cxgb4_driver); 4792 if (ret < 0) 4793 debugfs_remove(cxgb4_debugfs_root); 4794 4795 #if IS_ENABLED(CONFIG_IPV6) 4796 if (!inet6addr_registered) { 4797 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 4798 inet6addr_registered = true; 4799 } 4800 #endif 4801 4802 return ret; 4803 } 4804 4805 static void __exit cxgb4_cleanup_module(void) 4806 { 4807 #if IS_ENABLED(CONFIG_IPV6) 4808 if (inet6addr_registered) { 4809 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 4810 inet6addr_registered = false; 4811 } 4812 #endif 4813 pci_unregister_driver(&cxgb4_driver); 4814 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 4815 } 4816 4817 module_init(cxgb4_init_module); 4818 module_exit(cxgb4_cleanup_module); 4819