xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2015 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/module.h>
11 
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53 
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 
59 #define BNXT_TX_TIMEOUT		(5 * HZ)
60 
61 static const char version[] =
62 	"Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63 
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67 
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71 
72 #define BNXT_TX_PUSH_THRESH 164
73 
74 enum board_idx {
75 	BCM57301,
76 	BCM57302,
77 	BCM57304,
78 	BCM57402,
79 	BCM57404,
80 	BCM57406,
81 	BCM57304_VF,
82 	BCM57404_VF,
83 };
84 
85 /* indexed by enum above */
86 static const struct {
87 	char *name;
88 } board_info[] = {
89 	{ "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 	{ "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 	{ "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 	{ "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 	{ "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 	{ "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 	{ "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 	{ "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98 
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 	{ 0 }
111 };
112 
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114 
115 static const u16 bnxt_vf_req_snif[] = {
116 	HWRM_FUNC_CFG,
117 	HWRM_PORT_PHY_QCFG,
118 	HWRM_CFA_L2_FILTER_ALLOC,
119 };
120 
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 	return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125 
126 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
129 
130 #define BNXT_CP_DB_REARM(db, raw_cons)					\
131 		writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132 
133 #define BNXT_CP_DB(db, raw_cons)					\
134 		writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135 
136 #define BNXT_CP_DB_IRQ_DIS(db)						\
137 		writel(DB_CP_IRQ_DIS_FLAGS, db)
138 
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 	/* Tell compiler to fetch tx indices from memory. */
142 	barrier();
143 
144 	return bp->tx_ring_size -
145 		((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147 
148 static const u16 bnxt_lhint_arr[] = {
149 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 	TX_BD_FLAGS_LHINT_512_TO_1023,
151 	TX_BD_FLAGS_LHINT_1024_TO_2047,
152 	TX_BD_FLAGS_LHINT_1024_TO_2047,
153 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169 
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 	struct bnxt *bp = netdev_priv(dev);
173 	struct tx_bd *txbd;
174 	struct tx_bd_ext *txbd1;
175 	struct netdev_queue *txq;
176 	int i;
177 	dma_addr_t mapping;
178 	unsigned int length, pad = 0;
179 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 	u16 prod, last_frag;
181 	struct pci_dev *pdev = bp->pdev;
182 	struct bnxt_tx_ring_info *txr;
183 	struct bnxt_sw_tx_bd *tx_buf;
184 
185 	i = skb_get_queue_mapping(skb);
186 	if (unlikely(i >= bp->tx_nr_rings)) {
187 		dev_kfree_skb_any(skb);
188 		return NETDEV_TX_OK;
189 	}
190 
191 	txr = &bp->tx_ring[i];
192 	txq = netdev_get_tx_queue(dev, i);
193 	prod = txr->tx_prod;
194 
195 	free_size = bnxt_tx_avail(bp, txr);
196 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 		netif_tx_stop_queue(txq);
198 		return NETDEV_TX_BUSY;
199 	}
200 
201 	length = skb->len;
202 	len = skb_headlen(skb);
203 	last_frag = skb_shinfo(skb)->nr_frags;
204 
205 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206 
207 	txbd->tx_bd_opaque = prod;
208 
209 	tx_buf = &txr->tx_buf_ring[prod];
210 	tx_buf->skb = skb;
211 	tx_buf->nr_frags = last_frag;
212 
213 	vlan_tag_flags = 0;
214 	cfa_action = 0;
215 	if (skb_vlan_tag_present(skb)) {
216 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 				 skb_vlan_tag_get(skb);
218 		/* Currently supports 8021Q, 8021AD vlan offloads
219 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 		 */
221 		if (skb->vlan_proto == htons(ETH_P_8021Q))
222 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 	}
224 
225 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 		void *pdata = tx_push_buf->data;
230 		u64 *end;
231 		int j, push_len;
232 
233 		/* Set COAL_NOW to be ready quickly for the next push */
234 		tx_push->tx_bd_len_flags_type =
235 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 					TX_BD_TYPE_LONG_TX_BD |
237 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 					TX_BD_FLAGS_COAL_NOW |
239 					TX_BD_FLAGS_PACKET_END |
240 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241 
242 		if (skb->ip_summed == CHECKSUM_PARTIAL)
243 			tx_push1->tx_bd_hsize_lflags =
244 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 		else
246 			tx_push1->tx_bd_hsize_lflags = 0;
247 
248 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 		tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250 
251 		end = pdata + length;
252 		end = PTR_ALIGN(end, 8) - 1;
253 		*end = 0;
254 
255 		skb_copy_from_linear_data(skb, pdata, len);
256 		pdata += len;
257 		for (j = 0; j < last_frag; j++) {
258 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 			void *fptr;
260 
261 			fptr = skb_frag_address_safe(frag);
262 			if (!fptr)
263 				goto normal_tx;
264 
265 			memcpy(pdata, fptr, skb_frag_size(frag));
266 			pdata += skb_frag_size(frag);
267 		}
268 
269 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 		txbd->tx_bd_haddr = txr->data_mapping;
271 		prod = NEXT_TX(prod);
272 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 		memcpy(txbd, tx_push1, sizeof(*txbd));
274 		prod = NEXT_TX(prod);
275 		tx_push->doorbell =
276 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 		txr->tx_prod = prod;
278 
279 		netdev_tx_sent_queue(txq, skb->len);
280 
281 		push_len = (length + sizeof(*tx_push) + 7) / 8;
282 		if (push_len > 16) {
283 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 			__iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 					 push_len - 16);
286 		} else {
287 			__iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 					 push_len);
289 		}
290 
291 		tx_buf->is_push = 1;
292 		goto tx_done;
293 	}
294 
295 normal_tx:
296 	if (length < BNXT_MIN_PKT_SIZE) {
297 		pad = BNXT_MIN_PKT_SIZE - length;
298 		if (skb_pad(skb, pad)) {
299 			/* SKB already freed. */
300 			tx_buf->skb = NULL;
301 			return NETDEV_TX_OK;
302 		}
303 		length = BNXT_MIN_PKT_SIZE;
304 	}
305 
306 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307 
308 	if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 		dev_kfree_skb_any(skb);
310 		tx_buf->skb = NULL;
311 		return NETDEV_TX_OK;
312 	}
313 
314 	dma_unmap_addr_set(tx_buf, mapping, mapping);
315 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317 
318 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
319 
320 	prod = NEXT_TX(prod);
321 	txbd1 = (struct tx_bd_ext *)
322 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323 
324 	txbd1->tx_bd_hsize_lflags = 0;
325 	if (skb_is_gso(skb)) {
326 		u32 hdr_len;
327 
328 		if (skb->encapsulation)
329 			hdr_len = skb_inner_network_offset(skb) +
330 				skb_inner_network_header_len(skb) +
331 				inner_tcp_hdrlen(skb);
332 		else
333 			hdr_len = skb_transport_offset(skb) +
334 				tcp_hdrlen(skb);
335 
336 		txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 					TX_BD_FLAGS_T_IPID |
338 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 		length = skb_shinfo(skb)->gso_size;
340 		txbd1->tx_bd_mss = cpu_to_le32(length);
341 		length += hdr_len;
342 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 		txbd1->tx_bd_hsize_lflags =
344 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 		txbd1->tx_bd_mss = 0;
346 	}
347 
348 	length >>= 9;
349 	flags |= bnxt_lhint_arr[length];
350 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351 
352 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 	txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 	for (i = 0; i < last_frag; i++) {
355 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356 
357 		prod = NEXT_TX(prod);
358 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359 
360 		len = skb_frag_size(frag);
361 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 					   DMA_TO_DEVICE);
363 
364 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 			goto tx_dma_error;
366 
367 		tx_buf = &txr->tx_buf_ring[prod];
368 		dma_unmap_addr_set(tx_buf, mapping, mapping);
369 
370 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
371 
372 		flags = len << TX_BD_LEN_SHIFT;
373 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 	}
375 
376 	flags &= ~TX_BD_LEN;
377 	txbd->tx_bd_len_flags_type =
378 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 			    TX_BD_FLAGS_PACKET_END);
380 
381 	netdev_tx_sent_queue(txq, skb->len);
382 
383 	/* Sync BD data before updating doorbell */
384 	wmb();
385 
386 	prod = NEXT_TX(prod);
387 	txr->tx_prod = prod;
388 
389 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 	writel(DB_KEY_TX | prod, txr->tx_doorbell);
391 
392 tx_done:
393 
394 	mmiowb();
395 
396 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 		netif_tx_stop_queue(txq);
398 
399 		/* netif_tx_stop_queue() must be done before checking
400 		 * tx index in bnxt_tx_avail() below, because in
401 		 * bnxt_tx_int(), we update tx index before checking for
402 		 * netif_tx_queue_stopped().
403 		 */
404 		smp_mb();
405 		if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 			netif_tx_wake_queue(txq);
407 	}
408 	return NETDEV_TX_OK;
409 
410 tx_dma_error:
411 	last_frag = i;
412 
413 	/* start back at beginning and unmap skb */
414 	prod = txr->tx_prod;
415 	tx_buf = &txr->tx_buf_ring[prod];
416 	tx_buf->skb = NULL;
417 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 			 skb_headlen(skb), PCI_DMA_TODEVICE);
419 	prod = NEXT_TX(prod);
420 
421 	/* unmap remaining mapped pages */
422 	for (i = 0; i < last_frag; i++) {
423 		prod = NEXT_TX(prod);
424 		tx_buf = &txr->tx_buf_ring[prod];
425 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 			       PCI_DMA_TODEVICE);
428 	}
429 
430 	dev_kfree_skb_any(skb);
431 	return NETDEV_TX_OK;
432 }
433 
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 	int index = txr - &bp->tx_ring[0];
438 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 	u16 cons = txr->tx_cons;
440 	struct pci_dev *pdev = bp->pdev;
441 	int i;
442 	unsigned int tx_bytes = 0;
443 
444 	for (i = 0; i < nr_pkts; i++) {
445 		struct bnxt_sw_tx_bd *tx_buf;
446 		struct sk_buff *skb;
447 		int j, last;
448 
449 		tx_buf = &txr->tx_buf_ring[cons];
450 		cons = NEXT_TX(cons);
451 		skb = tx_buf->skb;
452 		tx_buf->skb = NULL;
453 
454 		if (tx_buf->is_push) {
455 			tx_buf->is_push = 0;
456 			goto next_tx_int;
457 		}
458 
459 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 				 skb_headlen(skb), PCI_DMA_TODEVICE);
461 		last = tx_buf->nr_frags;
462 
463 		for (j = 0; j < last; j++) {
464 			cons = NEXT_TX(cons);
465 			tx_buf = &txr->tx_buf_ring[cons];
466 			dma_unmap_page(
467 				&pdev->dev,
468 				dma_unmap_addr(tx_buf, mapping),
469 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 				PCI_DMA_TODEVICE);
471 		}
472 
473 next_tx_int:
474 		cons = NEXT_TX(cons);
475 
476 		tx_bytes += skb->len;
477 		dev_kfree_skb_any(skb);
478 	}
479 
480 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 	txr->tx_cons = cons;
482 
483 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
484 	 * before checking for netif_tx_queue_stopped().  Without the
485 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 	 * will miss it and cause the queue to be stopped forever.
487 	 */
488 	smp_mb();
489 
490 	if (unlikely(netif_tx_queue_stopped(txq)) &&
491 	    (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 		__netif_tx_lock(txq, smp_processor_id());
493 		if (netif_tx_queue_stopped(txq) &&
494 		    bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 		    txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 			netif_tx_wake_queue(txq);
497 		__netif_tx_unlock(txq);
498 	}
499 }
500 
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 				       gfp_t gfp)
503 {
504 	u8 *data;
505 	struct pci_dev *pdev = bp->pdev;
506 
507 	data = kmalloc(bp->rx_buf_size, gfp);
508 	if (!data)
509 		return NULL;
510 
511 	*mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 				  bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513 
514 	if (dma_mapping_error(&pdev->dev, *mapping)) {
515 		kfree(data);
516 		data = NULL;
517 	}
518 	return data;
519 }
520 
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 				     struct bnxt_rx_ring_info *rxr,
523 				     u16 prod, gfp_t gfp)
524 {
525 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 	u8 *data;
528 	dma_addr_t mapping;
529 
530 	data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 	if (!data)
532 		return -ENOMEM;
533 
534 	rx_buf->data = data;
535 	dma_unmap_addr_set(rx_buf, mapping, mapping);
536 
537 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538 
539 	return 0;
540 }
541 
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 			       u8 *data)
544 {
545 	u16 prod = rxr->rx_prod;
546 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 	struct rx_bd *cons_bd, *prod_bd;
548 
549 	prod_rx_buf = &rxr->rx_buf_ring[prod];
550 	cons_rx_buf = &rxr->rx_buf_ring[cons];
551 
552 	prod_rx_buf->data = data;
553 
554 	dma_unmap_addr_set(prod_rx_buf, mapping,
555 			   dma_unmap_addr(cons_rx_buf, mapping));
556 
557 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559 
560 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562 
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 	u16 next, max = rxr->rx_agg_bmap_size;
566 
567 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 	if (next >= max)
569 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 	return next;
571 }
572 
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 				     struct bnxt_rx_ring_info *rxr,
575 				     u16 prod, gfp_t gfp)
576 {
577 	struct rx_bd *rxbd =
578 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 	struct pci_dev *pdev = bp->pdev;
581 	struct page *page;
582 	dma_addr_t mapping;
583 	u16 sw_prod = rxr->rx_sw_agg_prod;
584 
585 	page = alloc_page(gfp);
586 	if (!page)
587 		return -ENOMEM;
588 
589 	mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
590 			       PCI_DMA_FROMDEVICE);
591 	if (dma_mapping_error(&pdev->dev, mapping)) {
592 		__free_page(page);
593 		return -EIO;
594 	}
595 
596 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
597 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
598 
599 	__set_bit(sw_prod, rxr->rx_agg_bmap);
600 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
601 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
602 
603 	rx_agg_buf->page = page;
604 	rx_agg_buf->mapping = mapping;
605 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
606 	rxbd->rx_bd_opaque = sw_prod;
607 	return 0;
608 }
609 
610 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
611 				   u32 agg_bufs)
612 {
613 	struct bnxt *bp = bnapi->bp;
614 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
615 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
616 	u16 prod = rxr->rx_agg_prod;
617 	u16 sw_prod = rxr->rx_sw_agg_prod;
618 	u32 i;
619 
620 	for (i = 0; i < agg_bufs; i++) {
621 		u16 cons;
622 		struct rx_agg_cmp *agg;
623 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
624 		struct rx_bd *prod_bd;
625 		struct page *page;
626 
627 		agg = (struct rx_agg_cmp *)
628 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
629 		cons = agg->rx_agg_cmp_opaque;
630 		__clear_bit(cons, rxr->rx_agg_bmap);
631 
632 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
633 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
634 
635 		__set_bit(sw_prod, rxr->rx_agg_bmap);
636 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
637 		cons_rx_buf = &rxr->rx_agg_ring[cons];
638 
639 		/* It is possible for sw_prod to be equal to cons, so
640 		 * set cons_rx_buf->page to NULL first.
641 		 */
642 		page = cons_rx_buf->page;
643 		cons_rx_buf->page = NULL;
644 		prod_rx_buf->page = page;
645 
646 		prod_rx_buf->mapping = cons_rx_buf->mapping;
647 
648 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
649 
650 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
651 		prod_bd->rx_bd_opaque = sw_prod;
652 
653 		prod = NEXT_RX_AGG(prod);
654 		sw_prod = NEXT_RX_AGG(sw_prod);
655 		cp_cons = NEXT_CMP(cp_cons);
656 	}
657 	rxr->rx_agg_prod = prod;
658 	rxr->rx_sw_agg_prod = sw_prod;
659 }
660 
661 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
662 				   struct bnxt_rx_ring_info *rxr, u16 cons,
663 				   u16 prod, u8 *data, dma_addr_t dma_addr,
664 				   unsigned int len)
665 {
666 	int err;
667 	struct sk_buff *skb;
668 
669 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
670 	if (unlikely(err)) {
671 		bnxt_reuse_rx_data(rxr, cons, data);
672 		return NULL;
673 	}
674 
675 	skb = build_skb(data, 0);
676 	dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
677 			 PCI_DMA_FROMDEVICE);
678 	if (!skb) {
679 		kfree(data);
680 		return NULL;
681 	}
682 
683 	skb_reserve(skb, BNXT_RX_OFFSET);
684 	skb_put(skb, len);
685 	return skb;
686 }
687 
688 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
689 				     struct sk_buff *skb, u16 cp_cons,
690 				     u32 agg_bufs)
691 {
692 	struct pci_dev *pdev = bp->pdev;
693 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
694 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
695 	u16 prod = rxr->rx_agg_prod;
696 	u32 i;
697 
698 	for (i = 0; i < agg_bufs; i++) {
699 		u16 cons, frag_len;
700 		struct rx_agg_cmp *agg;
701 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
702 		struct page *page;
703 		dma_addr_t mapping;
704 
705 		agg = (struct rx_agg_cmp *)
706 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
707 		cons = agg->rx_agg_cmp_opaque;
708 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
709 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
710 
711 		cons_rx_buf = &rxr->rx_agg_ring[cons];
712 		skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
713 		__clear_bit(cons, rxr->rx_agg_bmap);
714 
715 		/* It is possible for bnxt_alloc_rx_page() to allocate
716 		 * a sw_prod index that equals the cons index, so we
717 		 * need to clear the cons entry now.
718 		 */
719 		mapping = dma_unmap_addr(cons_rx_buf, mapping);
720 		page = cons_rx_buf->page;
721 		cons_rx_buf->page = NULL;
722 
723 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
724 			struct skb_shared_info *shinfo;
725 			unsigned int nr_frags;
726 
727 			shinfo = skb_shinfo(skb);
728 			nr_frags = --shinfo->nr_frags;
729 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
730 
731 			dev_kfree_skb(skb);
732 
733 			cons_rx_buf->page = page;
734 
735 			/* Update prod since possibly some pages have been
736 			 * allocated already.
737 			 */
738 			rxr->rx_agg_prod = prod;
739 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
740 			return NULL;
741 		}
742 
743 		dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
744 			       PCI_DMA_FROMDEVICE);
745 
746 		skb->data_len += frag_len;
747 		skb->len += frag_len;
748 		skb->truesize += PAGE_SIZE;
749 
750 		prod = NEXT_RX_AGG(prod);
751 		cp_cons = NEXT_CMP(cp_cons);
752 	}
753 	rxr->rx_agg_prod = prod;
754 	return skb;
755 }
756 
757 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
758 			       u8 agg_bufs, u32 *raw_cons)
759 {
760 	u16 last;
761 	struct rx_agg_cmp *agg;
762 
763 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
764 	last = RING_CMP(*raw_cons);
765 	agg = (struct rx_agg_cmp *)
766 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
767 	return RX_AGG_CMP_VALID(agg, *raw_cons);
768 }
769 
770 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
771 					    unsigned int len,
772 					    dma_addr_t mapping)
773 {
774 	struct bnxt *bp = bnapi->bp;
775 	struct pci_dev *pdev = bp->pdev;
776 	struct sk_buff *skb;
777 
778 	skb = napi_alloc_skb(&bnapi->napi, len);
779 	if (!skb)
780 		return NULL;
781 
782 	dma_sync_single_for_cpu(&pdev->dev, mapping,
783 				bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
784 
785 	memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
786 
787 	dma_sync_single_for_device(&pdev->dev, mapping,
788 				   bp->rx_copy_thresh,
789 				   PCI_DMA_FROMDEVICE);
790 
791 	skb_put(skb, len);
792 	return skb;
793 }
794 
795 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
796 			   struct rx_tpa_start_cmp *tpa_start,
797 			   struct rx_tpa_start_cmp_ext *tpa_start1)
798 {
799 	u8 agg_id = TPA_START_AGG_ID(tpa_start);
800 	u16 cons, prod;
801 	struct bnxt_tpa_info *tpa_info;
802 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
803 	struct rx_bd *prod_bd;
804 	dma_addr_t mapping;
805 
806 	cons = tpa_start->rx_tpa_start_cmp_opaque;
807 	prod = rxr->rx_prod;
808 	cons_rx_buf = &rxr->rx_buf_ring[cons];
809 	prod_rx_buf = &rxr->rx_buf_ring[prod];
810 	tpa_info = &rxr->rx_tpa[agg_id];
811 
812 	prod_rx_buf->data = tpa_info->data;
813 
814 	mapping = tpa_info->mapping;
815 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
816 
817 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818 
819 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
820 
821 	tpa_info->data = cons_rx_buf->data;
822 	cons_rx_buf->data = NULL;
823 	tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
824 
825 	tpa_info->len =
826 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
827 				RX_TPA_START_CMP_LEN_SHIFT;
828 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
829 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
830 
831 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
832 		tpa_info->gso_type = SKB_GSO_TCPV4;
833 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
834 		if (hash_type == 3)
835 			tpa_info->gso_type = SKB_GSO_TCPV6;
836 		tpa_info->rss_hash =
837 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
838 	} else {
839 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
840 		tpa_info->gso_type = 0;
841 		if (netif_msg_rx_err(bp))
842 			netdev_warn(bp->dev, "TPA packet without valid hash\n");
843 	}
844 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
845 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
846 
847 	rxr->rx_prod = NEXT_RX(prod);
848 	cons = NEXT_RX(cons);
849 	cons_rx_buf = &rxr->rx_buf_ring[cons];
850 
851 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
852 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
853 	cons_rx_buf->data = NULL;
854 }
855 
856 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
857 			   u16 cp_cons, u32 agg_bufs)
858 {
859 	if (agg_bufs)
860 		bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
861 }
862 
863 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
864 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
865 
866 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
867 					   struct rx_tpa_end_cmp *tpa_end,
868 					   struct rx_tpa_end_cmp_ext *tpa_end1,
869 					   struct sk_buff *skb)
870 {
871 #ifdef CONFIG_INET
872 	struct tcphdr *th;
873 	int payload_off, tcp_opt_len = 0;
874 	int len, nw_off;
875 	u16 segs;
876 
877 	segs = TPA_END_TPA_SEGS(tpa_end);
878 	if (segs == 1)
879 		return skb;
880 
881 	NAPI_GRO_CB(skb)->count = segs;
882 	skb_shinfo(skb)->gso_size =
883 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
884 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
885 	payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
886 		       RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
887 		      RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
888 	if (TPA_END_GRO_TS(tpa_end))
889 		tcp_opt_len = 12;
890 
891 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
892 		struct iphdr *iph;
893 
894 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
895 			 ETH_HLEN;
896 		skb_set_network_header(skb, nw_off);
897 		iph = ip_hdr(skb);
898 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
899 		len = skb->len - skb_transport_offset(skb);
900 		th = tcp_hdr(skb);
901 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
902 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
903 		struct ipv6hdr *iph;
904 
905 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
906 			 ETH_HLEN;
907 		skb_set_network_header(skb, nw_off);
908 		iph = ipv6_hdr(skb);
909 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
910 		len = skb->len - skb_transport_offset(skb);
911 		th = tcp_hdr(skb);
912 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
913 	} else {
914 		dev_kfree_skb_any(skb);
915 		return NULL;
916 	}
917 	tcp_gro_complete(skb);
918 
919 	if (nw_off) { /* tunnel */
920 		struct udphdr *uh = NULL;
921 
922 		if (skb->protocol == htons(ETH_P_IP)) {
923 			struct iphdr *iph = (struct iphdr *)skb->data;
924 
925 			if (iph->protocol == IPPROTO_UDP)
926 				uh = (struct udphdr *)(iph + 1);
927 		} else {
928 			struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
929 
930 			if (iph->nexthdr == IPPROTO_UDP)
931 				uh = (struct udphdr *)(iph + 1);
932 		}
933 		if (uh) {
934 			if (uh->check)
935 				skb_shinfo(skb)->gso_type |=
936 					SKB_GSO_UDP_TUNNEL_CSUM;
937 			else
938 				skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
939 		}
940 	}
941 #endif
942 	return skb;
943 }
944 
945 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
946 					   struct bnxt_napi *bnapi,
947 					   u32 *raw_cons,
948 					   struct rx_tpa_end_cmp *tpa_end,
949 					   struct rx_tpa_end_cmp_ext *tpa_end1,
950 					   bool *agg_event)
951 {
952 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
953 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
954 	u8 agg_id = TPA_END_AGG_ID(tpa_end);
955 	u8 *data, agg_bufs;
956 	u16 cp_cons = RING_CMP(*raw_cons);
957 	unsigned int len;
958 	struct bnxt_tpa_info *tpa_info;
959 	dma_addr_t mapping;
960 	struct sk_buff *skb;
961 
962 	tpa_info = &rxr->rx_tpa[agg_id];
963 	data = tpa_info->data;
964 	prefetch(data);
965 	len = tpa_info->len;
966 	mapping = tpa_info->mapping;
967 
968 	agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
969 		    RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
970 
971 	if (agg_bufs) {
972 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
973 			return ERR_PTR(-EBUSY);
974 
975 		*agg_event = true;
976 		cp_cons = NEXT_CMP(cp_cons);
977 	}
978 
979 	if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
980 		bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
981 		netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
982 			    agg_bufs, (int)MAX_SKB_FRAGS);
983 		return NULL;
984 	}
985 
986 	if (len <= bp->rx_copy_thresh) {
987 		skb = bnxt_copy_skb(bnapi, data, len, mapping);
988 		if (!skb) {
989 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
990 			return NULL;
991 		}
992 	} else {
993 		u8 *new_data;
994 		dma_addr_t new_mapping;
995 
996 		new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
997 		if (!new_data) {
998 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
999 			return NULL;
1000 		}
1001 
1002 		tpa_info->data = new_data;
1003 		tpa_info->mapping = new_mapping;
1004 
1005 		skb = build_skb(data, 0);
1006 		dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1007 				 PCI_DMA_FROMDEVICE);
1008 
1009 		if (!skb) {
1010 			kfree(data);
1011 			bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1012 			return NULL;
1013 		}
1014 		skb_reserve(skb, BNXT_RX_OFFSET);
1015 		skb_put(skb, len);
1016 	}
1017 
1018 	if (agg_bufs) {
1019 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1020 		if (!skb) {
1021 			/* Page reuse already handled by bnxt_rx_pages(). */
1022 			return NULL;
1023 		}
1024 	}
1025 	skb->protocol = eth_type_trans(skb, bp->dev);
1026 
1027 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1028 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1029 
1030 	if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1031 		netdev_features_t features = skb->dev->features;
1032 		u16 vlan_proto = tpa_info->metadata >>
1033 			RX_CMP_FLAGS2_METADATA_TPID_SFT;
1034 
1035 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1036 		     vlan_proto == ETH_P_8021Q) ||
1037 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1038 		     vlan_proto == ETH_P_8021AD)) {
1039 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1040 					       tpa_info->metadata &
1041 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1042 		}
1043 	}
1044 
1045 	skb_checksum_none_assert(skb);
1046 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1047 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1048 		skb->csum_level =
1049 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1050 	}
1051 
1052 	if (TPA_END_GRO(tpa_end))
1053 		skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1054 
1055 	return skb;
1056 }
1057 
1058 /* returns the following:
1059  * 1       - 1 packet successfully received
1060  * 0       - successful TPA_START, packet not completed yet
1061  * -EBUSY  - completion ring does not have all the agg buffers yet
1062  * -ENOMEM - packet aborted due to out of memory
1063  * -EIO    - packet aborted due to hw error indicated in BD
1064  */
1065 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1066 		       bool *agg_event)
1067 {
1068 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1069 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1070 	struct net_device *dev = bp->dev;
1071 	struct rx_cmp *rxcmp;
1072 	struct rx_cmp_ext *rxcmp1;
1073 	u32 tmp_raw_cons = *raw_cons;
1074 	u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1075 	struct bnxt_sw_rx_bd *rx_buf;
1076 	unsigned int len;
1077 	u8 *data, agg_bufs, cmp_type;
1078 	dma_addr_t dma_addr;
1079 	struct sk_buff *skb;
1080 	int rc = 0;
1081 
1082 	rxcmp = (struct rx_cmp *)
1083 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1084 
1085 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1086 	cp_cons = RING_CMP(tmp_raw_cons);
1087 	rxcmp1 = (struct rx_cmp_ext *)
1088 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1089 
1090 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1091 		return -EBUSY;
1092 
1093 	cmp_type = RX_CMP_TYPE(rxcmp);
1094 
1095 	prod = rxr->rx_prod;
1096 
1097 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1098 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1099 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1100 
1101 		goto next_rx_no_prod;
1102 
1103 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1104 		skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1105 				   (struct rx_tpa_end_cmp *)rxcmp,
1106 				   (struct rx_tpa_end_cmp_ext *)rxcmp1,
1107 				   agg_event);
1108 
1109 		if (unlikely(IS_ERR(skb)))
1110 			return -EBUSY;
1111 
1112 		rc = -ENOMEM;
1113 		if (likely(skb)) {
1114 			skb_record_rx_queue(skb, bnapi->index);
1115 			skb_mark_napi_id(skb, &bnapi->napi);
1116 			if (bnxt_busy_polling(bnapi))
1117 				netif_receive_skb(skb);
1118 			else
1119 				napi_gro_receive(&bnapi->napi, skb);
1120 			rc = 1;
1121 		}
1122 		goto next_rx_no_prod;
1123 	}
1124 
1125 	cons = rxcmp->rx_cmp_opaque;
1126 	rx_buf = &rxr->rx_buf_ring[cons];
1127 	data = rx_buf->data;
1128 	prefetch(data);
1129 
1130 	agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1131 				RX_CMP_AGG_BUFS_SHIFT;
1132 
1133 	if (agg_bufs) {
1134 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1135 			return -EBUSY;
1136 
1137 		cp_cons = NEXT_CMP(cp_cons);
1138 		*agg_event = true;
1139 	}
1140 
1141 	rx_buf->data = NULL;
1142 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1143 		bnxt_reuse_rx_data(rxr, cons, data);
1144 		if (agg_bufs)
1145 			bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146 
1147 		rc = -EIO;
1148 		goto next_rx;
1149 	}
1150 
1151 	len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1152 	dma_addr = dma_unmap_addr(rx_buf, mapping);
1153 
1154 	if (len <= bp->rx_copy_thresh) {
1155 		skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1156 		bnxt_reuse_rx_data(rxr, cons, data);
1157 		if (!skb) {
1158 			rc = -ENOMEM;
1159 			goto next_rx;
1160 		}
1161 	} else {
1162 		skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1163 		if (!skb) {
1164 			rc = -ENOMEM;
1165 			goto next_rx;
1166 		}
1167 	}
1168 
1169 	if (agg_bufs) {
1170 		skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1171 		if (!skb) {
1172 			rc = -ENOMEM;
1173 			goto next_rx;
1174 		}
1175 	}
1176 
1177 	if (RX_CMP_HASH_VALID(rxcmp)) {
1178 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1179 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1180 
1181 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1182 		if (hash_type != 1 && hash_type != 3)
1183 			type = PKT_HASH_TYPE_L3;
1184 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1185 	}
1186 
1187 	skb->protocol = eth_type_trans(skb, dev);
1188 
1189 	if (rxcmp1->rx_cmp_flags2 &
1190 	    cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1191 		netdev_features_t features = skb->dev->features;
1192 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1193 		u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1194 
1195 		if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1196 		     vlan_proto == ETH_P_8021Q) ||
1197 		    ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1198 		     vlan_proto == ETH_P_8021AD))
1199 			__vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1200 					       meta_data &
1201 					       RX_CMP_FLAGS2_METADATA_VID_MASK);
1202 	}
1203 
1204 	skb_checksum_none_assert(skb);
1205 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1206 		if (dev->features & NETIF_F_RXCSUM) {
1207 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1208 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1209 		}
1210 	} else {
1211 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1212 			if (dev->features & NETIF_F_RXCSUM)
1213 				cpr->rx_l4_csum_errors++;
1214 		}
1215 	}
1216 
1217 	skb_record_rx_queue(skb, bnapi->index);
1218 	skb_mark_napi_id(skb, &bnapi->napi);
1219 	if (bnxt_busy_polling(bnapi))
1220 		netif_receive_skb(skb);
1221 	else
1222 		napi_gro_receive(&bnapi->napi, skb);
1223 	rc = 1;
1224 
1225 next_rx:
1226 	rxr->rx_prod = NEXT_RX(prod);
1227 
1228 next_rx_no_prod:
1229 	*raw_cons = tmp_raw_cons;
1230 
1231 	return rc;
1232 }
1233 
1234 static int bnxt_async_event_process(struct bnxt *bp,
1235 				    struct hwrm_async_event_cmpl *cmpl)
1236 {
1237 	u16 event_id = le16_to_cpu(cmpl->event_id);
1238 
1239 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
1240 	switch (event_id) {
1241 	case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1242 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1243 		schedule_work(&bp->sp_task);
1244 		break;
1245 	default:
1246 		netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1247 			   event_id);
1248 		break;
1249 	}
1250 	return 0;
1251 }
1252 
1253 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1254 {
1255 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1256 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1257 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1258 				(struct hwrm_fwd_req_cmpl *)txcmp;
1259 
1260 	switch (cmpl_type) {
1261 	case CMPL_BASE_TYPE_HWRM_DONE:
1262 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
1263 		if (seq_id == bp->hwrm_intr_seq_id)
1264 			bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1265 		else
1266 			netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1267 		break;
1268 
1269 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1270 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1271 
1272 		if ((vf_id < bp->pf.first_vf_id) ||
1273 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1274 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1275 				   vf_id);
1276 			return -EINVAL;
1277 		}
1278 
1279 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1280 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1281 		schedule_work(&bp->sp_task);
1282 		break;
1283 
1284 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1285 		bnxt_async_event_process(bp,
1286 					 (struct hwrm_async_event_cmpl *)txcmp);
1287 
1288 	default:
1289 		break;
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1296 {
1297 	struct bnxt_napi *bnapi = dev_instance;
1298 	struct bnxt *bp = bnapi->bp;
1299 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1300 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1301 
1302 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1303 	napi_schedule(&bnapi->napi);
1304 	return IRQ_HANDLED;
1305 }
1306 
1307 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1308 {
1309 	u32 raw_cons = cpr->cp_raw_cons;
1310 	u16 cons = RING_CMP(raw_cons);
1311 	struct tx_cmp *txcmp;
1312 
1313 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1314 
1315 	return TX_CMP_VALID(txcmp, raw_cons);
1316 }
1317 
1318 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1319 {
1320 	struct bnxt_napi *bnapi = dev_instance;
1321 	struct bnxt *bp = bnapi->bp;
1322 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1323 	u32 cons = RING_CMP(cpr->cp_raw_cons);
1324 	u32 int_status;
1325 
1326 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1327 
1328 	if (!bnxt_has_work(bp, cpr)) {
1329 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1330 		/* return if erroneous interrupt */
1331 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1332 			return IRQ_NONE;
1333 	}
1334 
1335 	/* disable ring IRQ */
1336 	BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1337 
1338 	/* Return here if interrupt is shared and is disabled. */
1339 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
1340 		return IRQ_HANDLED;
1341 
1342 	napi_schedule(&bnapi->napi);
1343 	return IRQ_HANDLED;
1344 }
1345 
1346 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1347 {
1348 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1349 	u32 raw_cons = cpr->cp_raw_cons;
1350 	u32 cons;
1351 	int tx_pkts = 0;
1352 	int rx_pkts = 0;
1353 	bool rx_event = false;
1354 	bool agg_event = false;
1355 	struct tx_cmp *txcmp;
1356 
1357 	while (1) {
1358 		int rc;
1359 
1360 		cons = RING_CMP(raw_cons);
1361 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1362 
1363 		if (!TX_CMP_VALID(txcmp, raw_cons))
1364 			break;
1365 
1366 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1367 			tx_pkts++;
1368 			/* return full budget so NAPI will complete. */
1369 			if (unlikely(tx_pkts > bp->tx_wake_thresh))
1370 				rx_pkts = budget;
1371 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1372 			rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1373 			if (likely(rc >= 0))
1374 				rx_pkts += rc;
1375 			else if (rc == -EBUSY)	/* partial completion */
1376 				break;
1377 			rx_event = true;
1378 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
1379 				     CMPL_BASE_TYPE_HWRM_DONE) ||
1380 				    (TX_CMP_TYPE(txcmp) ==
1381 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1382 				    (TX_CMP_TYPE(txcmp) ==
1383 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1384 			bnxt_hwrm_handler(bp, txcmp);
1385 		}
1386 		raw_cons = NEXT_RAW_CMP(raw_cons);
1387 
1388 		if (rx_pkts == budget)
1389 			break;
1390 	}
1391 
1392 	cpr->cp_raw_cons = raw_cons;
1393 	/* ACK completion ring before freeing tx ring and producing new
1394 	 * buffers in rx/agg rings to prevent overflowing the completion
1395 	 * ring.
1396 	 */
1397 	BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1398 
1399 	if (tx_pkts)
1400 		bnxt_tx_int(bp, bnapi, tx_pkts);
1401 
1402 	if (rx_event) {
1403 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404 
1405 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1406 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1407 		if (agg_event) {
1408 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1409 			       rxr->rx_agg_doorbell);
1410 			writel(DB_KEY_RX | rxr->rx_agg_prod,
1411 			       rxr->rx_agg_doorbell);
1412 		}
1413 	}
1414 	return rx_pkts;
1415 }
1416 
1417 static int bnxt_poll(struct napi_struct *napi, int budget)
1418 {
1419 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1420 	struct bnxt *bp = bnapi->bp;
1421 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1422 	int work_done = 0;
1423 
1424 	if (!bnxt_lock_napi(bnapi))
1425 		return budget;
1426 
1427 	while (1) {
1428 		work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1429 
1430 		if (work_done >= budget)
1431 			break;
1432 
1433 		if (!bnxt_has_work(bp, cpr)) {
1434 			napi_complete(napi);
1435 			BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1436 			break;
1437 		}
1438 	}
1439 	mmiowb();
1440 	bnxt_unlock_napi(bnapi);
1441 	return work_done;
1442 }
1443 
1444 #ifdef CONFIG_NET_RX_BUSY_POLL
1445 static int bnxt_busy_poll(struct napi_struct *napi)
1446 {
1447 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1448 	struct bnxt *bp = bnapi->bp;
1449 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1450 	int rx_work, budget = 4;
1451 
1452 	if (atomic_read(&bp->intr_sem) != 0)
1453 		return LL_FLUSH_FAILED;
1454 
1455 	if (!bnxt_lock_poll(bnapi))
1456 		return LL_FLUSH_BUSY;
1457 
1458 	rx_work = bnxt_poll_work(bp, bnapi, budget);
1459 
1460 	BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1461 
1462 	bnxt_unlock_poll(bnapi);
1463 	return rx_work;
1464 }
1465 #endif
1466 
1467 static void bnxt_free_tx_skbs(struct bnxt *bp)
1468 {
1469 	int i, max_idx;
1470 	struct pci_dev *pdev = bp->pdev;
1471 
1472 	if (!bp->tx_ring)
1473 		return;
1474 
1475 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1476 	for (i = 0; i < bp->tx_nr_rings; i++) {
1477 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1478 		int j;
1479 
1480 		for (j = 0; j < max_idx;) {
1481 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1482 			struct sk_buff *skb = tx_buf->skb;
1483 			int k, last;
1484 
1485 			if (!skb) {
1486 				j++;
1487 				continue;
1488 			}
1489 
1490 			tx_buf->skb = NULL;
1491 
1492 			if (tx_buf->is_push) {
1493 				dev_kfree_skb(skb);
1494 				j += 2;
1495 				continue;
1496 			}
1497 
1498 			dma_unmap_single(&pdev->dev,
1499 					 dma_unmap_addr(tx_buf, mapping),
1500 					 skb_headlen(skb),
1501 					 PCI_DMA_TODEVICE);
1502 
1503 			last = tx_buf->nr_frags;
1504 			j += 2;
1505 			for (k = 0; k < last; k++, j++) {
1506 				int ring_idx = j & bp->tx_ring_mask;
1507 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1508 
1509 				tx_buf = &txr->tx_buf_ring[ring_idx];
1510 				dma_unmap_page(
1511 					&pdev->dev,
1512 					dma_unmap_addr(tx_buf, mapping),
1513 					skb_frag_size(frag), PCI_DMA_TODEVICE);
1514 			}
1515 			dev_kfree_skb(skb);
1516 		}
1517 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1518 	}
1519 }
1520 
1521 static void bnxt_free_rx_skbs(struct bnxt *bp)
1522 {
1523 	int i, max_idx, max_agg_idx;
1524 	struct pci_dev *pdev = bp->pdev;
1525 
1526 	if (!bp->rx_ring)
1527 		return;
1528 
1529 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1530 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1531 	for (i = 0; i < bp->rx_nr_rings; i++) {
1532 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1533 		int j;
1534 
1535 		if (rxr->rx_tpa) {
1536 			for (j = 0; j < MAX_TPA; j++) {
1537 				struct bnxt_tpa_info *tpa_info =
1538 							&rxr->rx_tpa[j];
1539 				u8 *data = tpa_info->data;
1540 
1541 				if (!data)
1542 					continue;
1543 
1544 				dma_unmap_single(
1545 					&pdev->dev,
1546 					dma_unmap_addr(tpa_info, mapping),
1547 					bp->rx_buf_use_size,
1548 					PCI_DMA_FROMDEVICE);
1549 
1550 				tpa_info->data = NULL;
1551 
1552 				kfree(data);
1553 			}
1554 		}
1555 
1556 		for (j = 0; j < max_idx; j++) {
1557 			struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1558 			u8 *data = rx_buf->data;
1559 
1560 			if (!data)
1561 				continue;
1562 
1563 			dma_unmap_single(&pdev->dev,
1564 					 dma_unmap_addr(rx_buf, mapping),
1565 					 bp->rx_buf_use_size,
1566 					 PCI_DMA_FROMDEVICE);
1567 
1568 			rx_buf->data = NULL;
1569 
1570 			kfree(data);
1571 		}
1572 
1573 		for (j = 0; j < max_agg_idx; j++) {
1574 			struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1575 				&rxr->rx_agg_ring[j];
1576 			struct page *page = rx_agg_buf->page;
1577 
1578 			if (!page)
1579 				continue;
1580 
1581 			dma_unmap_page(&pdev->dev,
1582 				       dma_unmap_addr(rx_agg_buf, mapping),
1583 				       PAGE_SIZE, PCI_DMA_FROMDEVICE);
1584 
1585 			rx_agg_buf->page = NULL;
1586 			__clear_bit(j, rxr->rx_agg_bmap);
1587 
1588 			__free_page(page);
1589 		}
1590 	}
1591 }
1592 
1593 static void bnxt_free_skbs(struct bnxt *bp)
1594 {
1595 	bnxt_free_tx_skbs(bp);
1596 	bnxt_free_rx_skbs(bp);
1597 }
1598 
1599 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1600 {
1601 	struct pci_dev *pdev = bp->pdev;
1602 	int i;
1603 
1604 	for (i = 0; i < ring->nr_pages; i++) {
1605 		if (!ring->pg_arr[i])
1606 			continue;
1607 
1608 		dma_free_coherent(&pdev->dev, ring->page_size,
1609 				  ring->pg_arr[i], ring->dma_arr[i]);
1610 
1611 		ring->pg_arr[i] = NULL;
1612 	}
1613 	if (ring->pg_tbl) {
1614 		dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1615 				  ring->pg_tbl, ring->pg_tbl_map);
1616 		ring->pg_tbl = NULL;
1617 	}
1618 	if (ring->vmem_size && *ring->vmem) {
1619 		vfree(*ring->vmem);
1620 		*ring->vmem = NULL;
1621 	}
1622 }
1623 
1624 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1625 {
1626 	int i;
1627 	struct pci_dev *pdev = bp->pdev;
1628 
1629 	if (ring->nr_pages > 1) {
1630 		ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1631 						  ring->nr_pages * 8,
1632 						  &ring->pg_tbl_map,
1633 						  GFP_KERNEL);
1634 		if (!ring->pg_tbl)
1635 			return -ENOMEM;
1636 	}
1637 
1638 	for (i = 0; i < ring->nr_pages; i++) {
1639 		ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1640 						     ring->page_size,
1641 						     &ring->dma_arr[i],
1642 						     GFP_KERNEL);
1643 		if (!ring->pg_arr[i])
1644 			return -ENOMEM;
1645 
1646 		if (ring->nr_pages > 1)
1647 			ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1648 	}
1649 
1650 	if (ring->vmem_size) {
1651 		*ring->vmem = vzalloc(ring->vmem_size);
1652 		if (!(*ring->vmem))
1653 			return -ENOMEM;
1654 	}
1655 	return 0;
1656 }
1657 
1658 static void bnxt_free_rx_rings(struct bnxt *bp)
1659 {
1660 	int i;
1661 
1662 	if (!bp->rx_ring)
1663 		return;
1664 
1665 	for (i = 0; i < bp->rx_nr_rings; i++) {
1666 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1667 		struct bnxt_ring_struct *ring;
1668 
1669 		kfree(rxr->rx_tpa);
1670 		rxr->rx_tpa = NULL;
1671 
1672 		kfree(rxr->rx_agg_bmap);
1673 		rxr->rx_agg_bmap = NULL;
1674 
1675 		ring = &rxr->rx_ring_struct;
1676 		bnxt_free_ring(bp, ring);
1677 
1678 		ring = &rxr->rx_agg_ring_struct;
1679 		bnxt_free_ring(bp, ring);
1680 	}
1681 }
1682 
1683 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1684 {
1685 	int i, rc, agg_rings = 0, tpa_rings = 0;
1686 
1687 	if (!bp->rx_ring)
1688 		return -ENOMEM;
1689 
1690 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
1691 		agg_rings = 1;
1692 
1693 	if (bp->flags & BNXT_FLAG_TPA)
1694 		tpa_rings = 1;
1695 
1696 	for (i = 0; i < bp->rx_nr_rings; i++) {
1697 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1698 		struct bnxt_ring_struct *ring;
1699 
1700 		ring = &rxr->rx_ring_struct;
1701 
1702 		rc = bnxt_alloc_ring(bp, ring);
1703 		if (rc)
1704 			return rc;
1705 
1706 		if (agg_rings) {
1707 			u16 mem_size;
1708 
1709 			ring = &rxr->rx_agg_ring_struct;
1710 			rc = bnxt_alloc_ring(bp, ring);
1711 			if (rc)
1712 				return rc;
1713 
1714 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1715 			mem_size = rxr->rx_agg_bmap_size / 8;
1716 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1717 			if (!rxr->rx_agg_bmap)
1718 				return -ENOMEM;
1719 
1720 			if (tpa_rings) {
1721 				rxr->rx_tpa = kcalloc(MAX_TPA,
1722 						sizeof(struct bnxt_tpa_info),
1723 						GFP_KERNEL);
1724 				if (!rxr->rx_tpa)
1725 					return -ENOMEM;
1726 			}
1727 		}
1728 	}
1729 	return 0;
1730 }
1731 
1732 static void bnxt_free_tx_rings(struct bnxt *bp)
1733 {
1734 	int i;
1735 	struct pci_dev *pdev = bp->pdev;
1736 
1737 	if (!bp->tx_ring)
1738 		return;
1739 
1740 	for (i = 0; i < bp->tx_nr_rings; i++) {
1741 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1742 		struct bnxt_ring_struct *ring;
1743 
1744 		if (txr->tx_push) {
1745 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
1746 					  txr->tx_push, txr->tx_push_mapping);
1747 			txr->tx_push = NULL;
1748 		}
1749 
1750 		ring = &txr->tx_ring_struct;
1751 
1752 		bnxt_free_ring(bp, ring);
1753 	}
1754 }
1755 
1756 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1757 {
1758 	int i, j, rc;
1759 	struct pci_dev *pdev = bp->pdev;
1760 
1761 	bp->tx_push_size = 0;
1762 	if (bp->tx_push_thresh) {
1763 		int push_size;
1764 
1765 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1766 					bp->tx_push_thresh);
1767 
1768 		if (push_size > 256) {
1769 			push_size = 0;
1770 			bp->tx_push_thresh = 0;
1771 		}
1772 
1773 		bp->tx_push_size = push_size;
1774 	}
1775 
1776 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1777 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1778 		struct bnxt_ring_struct *ring;
1779 
1780 		ring = &txr->tx_ring_struct;
1781 
1782 		rc = bnxt_alloc_ring(bp, ring);
1783 		if (rc)
1784 			return rc;
1785 
1786 		if (bp->tx_push_size) {
1787 			dma_addr_t mapping;
1788 
1789 			/* One pre-allocated DMA buffer to backup
1790 			 * TX push operation
1791 			 */
1792 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
1793 						bp->tx_push_size,
1794 						&txr->tx_push_mapping,
1795 						GFP_KERNEL);
1796 
1797 			if (!txr->tx_push)
1798 				return -ENOMEM;
1799 
1800 			mapping = txr->tx_push_mapping +
1801 				sizeof(struct tx_push_bd);
1802 			txr->data_mapping = cpu_to_le64(mapping);
1803 
1804 			memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1805 		}
1806 		ring->queue_id = bp->q_info[j].queue_id;
1807 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1808 			j++;
1809 	}
1810 	return 0;
1811 }
1812 
1813 static void bnxt_free_cp_rings(struct bnxt *bp)
1814 {
1815 	int i;
1816 
1817 	if (!bp->bnapi)
1818 		return;
1819 
1820 	for (i = 0; i < bp->cp_nr_rings; i++) {
1821 		struct bnxt_napi *bnapi = bp->bnapi[i];
1822 		struct bnxt_cp_ring_info *cpr;
1823 		struct bnxt_ring_struct *ring;
1824 
1825 		if (!bnapi)
1826 			continue;
1827 
1828 		cpr = &bnapi->cp_ring;
1829 		ring = &cpr->cp_ring_struct;
1830 
1831 		bnxt_free_ring(bp, ring);
1832 	}
1833 }
1834 
1835 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1836 {
1837 	int i, rc;
1838 
1839 	for (i = 0; i < bp->cp_nr_rings; i++) {
1840 		struct bnxt_napi *bnapi = bp->bnapi[i];
1841 		struct bnxt_cp_ring_info *cpr;
1842 		struct bnxt_ring_struct *ring;
1843 
1844 		if (!bnapi)
1845 			continue;
1846 
1847 		cpr = &bnapi->cp_ring;
1848 		ring = &cpr->cp_ring_struct;
1849 
1850 		rc = bnxt_alloc_ring(bp, ring);
1851 		if (rc)
1852 			return rc;
1853 	}
1854 	return 0;
1855 }
1856 
1857 static void bnxt_init_ring_struct(struct bnxt *bp)
1858 {
1859 	int i;
1860 
1861 	for (i = 0; i < bp->cp_nr_rings; i++) {
1862 		struct bnxt_napi *bnapi = bp->bnapi[i];
1863 		struct bnxt_cp_ring_info *cpr;
1864 		struct bnxt_rx_ring_info *rxr;
1865 		struct bnxt_tx_ring_info *txr;
1866 		struct bnxt_ring_struct *ring;
1867 
1868 		if (!bnapi)
1869 			continue;
1870 
1871 		cpr = &bnapi->cp_ring;
1872 		ring = &cpr->cp_ring_struct;
1873 		ring->nr_pages = bp->cp_nr_pages;
1874 		ring->page_size = HW_CMPD_RING_SIZE;
1875 		ring->pg_arr = (void **)cpr->cp_desc_ring;
1876 		ring->dma_arr = cpr->cp_desc_mapping;
1877 		ring->vmem_size = 0;
1878 
1879 		rxr = bnapi->rx_ring;
1880 		if (!rxr)
1881 			goto skip_rx;
1882 
1883 		ring = &rxr->rx_ring_struct;
1884 		ring->nr_pages = bp->rx_nr_pages;
1885 		ring->page_size = HW_RXBD_RING_SIZE;
1886 		ring->pg_arr = (void **)rxr->rx_desc_ring;
1887 		ring->dma_arr = rxr->rx_desc_mapping;
1888 		ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1889 		ring->vmem = (void **)&rxr->rx_buf_ring;
1890 
1891 		ring = &rxr->rx_agg_ring_struct;
1892 		ring->nr_pages = bp->rx_agg_nr_pages;
1893 		ring->page_size = HW_RXBD_RING_SIZE;
1894 		ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1895 		ring->dma_arr = rxr->rx_agg_desc_mapping;
1896 		ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1897 		ring->vmem = (void **)&rxr->rx_agg_ring;
1898 
1899 skip_rx:
1900 		txr = bnapi->tx_ring;
1901 		if (!txr)
1902 			continue;
1903 
1904 		ring = &txr->tx_ring_struct;
1905 		ring->nr_pages = bp->tx_nr_pages;
1906 		ring->page_size = HW_RXBD_RING_SIZE;
1907 		ring->pg_arr = (void **)txr->tx_desc_ring;
1908 		ring->dma_arr = txr->tx_desc_mapping;
1909 		ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1910 		ring->vmem = (void **)&txr->tx_buf_ring;
1911 	}
1912 }
1913 
1914 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1915 {
1916 	int i;
1917 	u32 prod;
1918 	struct rx_bd **rx_buf_ring;
1919 
1920 	rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1921 	for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1922 		int j;
1923 		struct rx_bd *rxbd;
1924 
1925 		rxbd = rx_buf_ring[i];
1926 		if (!rxbd)
1927 			continue;
1928 
1929 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1930 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1931 			rxbd->rx_bd_opaque = prod;
1932 		}
1933 	}
1934 }
1935 
1936 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1937 {
1938 	struct net_device *dev = bp->dev;
1939 	struct bnxt_rx_ring_info *rxr;
1940 	struct bnxt_ring_struct *ring;
1941 	u32 prod, type;
1942 	int i;
1943 
1944 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1945 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1946 
1947 	if (NET_IP_ALIGN == 2)
1948 		type |= RX_BD_FLAGS_SOP;
1949 
1950 	rxr = &bp->rx_ring[ring_nr];
1951 	ring = &rxr->rx_ring_struct;
1952 	bnxt_init_rxbd_pages(ring, type);
1953 
1954 	prod = rxr->rx_prod;
1955 	for (i = 0; i < bp->rx_ring_size; i++) {
1956 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1957 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1958 				    ring_nr, i, bp->rx_ring_size);
1959 			break;
1960 		}
1961 		prod = NEXT_RX(prod);
1962 	}
1963 	rxr->rx_prod = prod;
1964 	ring->fw_ring_id = INVALID_HW_RING_ID;
1965 
1966 	ring = &rxr->rx_agg_ring_struct;
1967 	ring->fw_ring_id = INVALID_HW_RING_ID;
1968 
1969 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1970 		return 0;
1971 
1972 	type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1973 		RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1974 
1975 	bnxt_init_rxbd_pages(ring, type);
1976 
1977 	prod = rxr->rx_agg_prod;
1978 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
1979 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1980 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1981 				    ring_nr, i, bp->rx_ring_size);
1982 			break;
1983 		}
1984 		prod = NEXT_RX_AGG(prod);
1985 	}
1986 	rxr->rx_agg_prod = prod;
1987 
1988 	if (bp->flags & BNXT_FLAG_TPA) {
1989 		if (rxr->rx_tpa) {
1990 			u8 *data;
1991 			dma_addr_t mapping;
1992 
1993 			for (i = 0; i < MAX_TPA; i++) {
1994 				data = __bnxt_alloc_rx_data(bp, &mapping,
1995 							    GFP_KERNEL);
1996 				if (!data)
1997 					return -ENOMEM;
1998 
1999 				rxr->rx_tpa[i].data = data;
2000 				rxr->rx_tpa[i].mapping = mapping;
2001 			}
2002 		} else {
2003 			netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2004 			return -ENOMEM;
2005 		}
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static int bnxt_init_rx_rings(struct bnxt *bp)
2012 {
2013 	int i, rc = 0;
2014 
2015 	for (i = 0; i < bp->rx_nr_rings; i++) {
2016 		rc = bnxt_init_one_rx_ring(bp, i);
2017 		if (rc)
2018 			break;
2019 	}
2020 
2021 	return rc;
2022 }
2023 
2024 static int bnxt_init_tx_rings(struct bnxt *bp)
2025 {
2026 	u16 i;
2027 
2028 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2029 				   MAX_SKB_FRAGS + 1);
2030 
2031 	for (i = 0; i < bp->tx_nr_rings; i++) {
2032 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2033 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2034 
2035 		ring->fw_ring_id = INVALID_HW_RING_ID;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static void bnxt_free_ring_grps(struct bnxt *bp)
2042 {
2043 	kfree(bp->grp_info);
2044 	bp->grp_info = NULL;
2045 }
2046 
2047 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2048 {
2049 	int i;
2050 
2051 	if (irq_re_init) {
2052 		bp->grp_info = kcalloc(bp->cp_nr_rings,
2053 				       sizeof(struct bnxt_ring_grp_info),
2054 				       GFP_KERNEL);
2055 		if (!bp->grp_info)
2056 			return -ENOMEM;
2057 	}
2058 	for (i = 0; i < bp->cp_nr_rings; i++) {
2059 		if (irq_re_init)
2060 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2061 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2062 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2063 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2064 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2065 	}
2066 	return 0;
2067 }
2068 
2069 static void bnxt_free_vnics(struct bnxt *bp)
2070 {
2071 	kfree(bp->vnic_info);
2072 	bp->vnic_info = NULL;
2073 	bp->nr_vnics = 0;
2074 }
2075 
2076 static int bnxt_alloc_vnics(struct bnxt *bp)
2077 {
2078 	int num_vnics = 1;
2079 
2080 #ifdef CONFIG_RFS_ACCEL
2081 	if (bp->flags & BNXT_FLAG_RFS)
2082 		num_vnics += bp->rx_nr_rings;
2083 #endif
2084 
2085 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2086 				GFP_KERNEL);
2087 	if (!bp->vnic_info)
2088 		return -ENOMEM;
2089 
2090 	bp->nr_vnics = num_vnics;
2091 	return 0;
2092 }
2093 
2094 static void bnxt_init_vnics(struct bnxt *bp)
2095 {
2096 	int i;
2097 
2098 	for (i = 0; i < bp->nr_vnics; i++) {
2099 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2100 
2101 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
2102 		vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2103 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2104 
2105 		if (bp->vnic_info[i].rss_hash_key) {
2106 			if (i == 0)
2107 				prandom_bytes(vnic->rss_hash_key,
2108 					      HW_HASH_KEY_SIZE);
2109 			else
2110 				memcpy(vnic->rss_hash_key,
2111 				       bp->vnic_info[0].rss_hash_key,
2112 				       HW_HASH_KEY_SIZE);
2113 		}
2114 	}
2115 }
2116 
2117 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2118 {
2119 	int pages;
2120 
2121 	pages = ring_size / desc_per_pg;
2122 
2123 	if (!pages)
2124 		return 1;
2125 
2126 	pages++;
2127 
2128 	while (pages & (pages - 1))
2129 		pages++;
2130 
2131 	return pages;
2132 }
2133 
2134 static void bnxt_set_tpa_flags(struct bnxt *bp)
2135 {
2136 	bp->flags &= ~BNXT_FLAG_TPA;
2137 	if (bp->dev->features & NETIF_F_LRO)
2138 		bp->flags |= BNXT_FLAG_LRO;
2139 	if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2140 		bp->flags |= BNXT_FLAG_GRO;
2141 }
2142 
2143 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2144  * be set on entry.
2145  */
2146 void bnxt_set_ring_params(struct bnxt *bp)
2147 {
2148 	u32 ring_size, rx_size, rx_space;
2149 	u32 agg_factor = 0, agg_ring_size = 0;
2150 
2151 	/* 8 for CRC and VLAN */
2152 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2153 
2154 	rx_space = rx_size + NET_SKB_PAD +
2155 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2156 
2157 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2158 	ring_size = bp->rx_ring_size;
2159 	bp->rx_agg_ring_size = 0;
2160 	bp->rx_agg_nr_pages = 0;
2161 
2162 	if (bp->flags & BNXT_FLAG_TPA)
2163 		agg_factor = 4;
2164 
2165 	bp->flags &= ~BNXT_FLAG_JUMBO;
2166 	if (rx_space > PAGE_SIZE) {
2167 		u32 jumbo_factor;
2168 
2169 		bp->flags |= BNXT_FLAG_JUMBO;
2170 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2171 		if (jumbo_factor > agg_factor)
2172 			agg_factor = jumbo_factor;
2173 	}
2174 	agg_ring_size = ring_size * agg_factor;
2175 
2176 	if (agg_ring_size) {
2177 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2178 							RX_DESC_CNT);
2179 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2180 			u32 tmp = agg_ring_size;
2181 
2182 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2183 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2184 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2185 				    tmp, agg_ring_size);
2186 		}
2187 		bp->rx_agg_ring_size = agg_ring_size;
2188 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2189 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2190 		rx_space = rx_size + NET_SKB_PAD +
2191 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2192 	}
2193 
2194 	bp->rx_buf_use_size = rx_size;
2195 	bp->rx_buf_size = rx_space;
2196 
2197 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2198 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2199 
2200 	ring_size = bp->tx_ring_size;
2201 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2202 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2203 
2204 	ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2205 	bp->cp_ring_size = ring_size;
2206 
2207 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2208 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
2209 		bp->cp_nr_pages = MAX_CP_PAGES;
2210 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2211 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2212 			    ring_size, bp->cp_ring_size);
2213 	}
2214 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2215 	bp->cp_ring_mask = bp->cp_bit - 1;
2216 }
2217 
2218 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2219 {
2220 	int i;
2221 	struct bnxt_vnic_info *vnic;
2222 	struct pci_dev *pdev = bp->pdev;
2223 
2224 	if (!bp->vnic_info)
2225 		return;
2226 
2227 	for (i = 0; i < bp->nr_vnics; i++) {
2228 		vnic = &bp->vnic_info[i];
2229 
2230 		kfree(vnic->fw_grp_ids);
2231 		vnic->fw_grp_ids = NULL;
2232 
2233 		kfree(vnic->uc_list);
2234 		vnic->uc_list = NULL;
2235 
2236 		if (vnic->mc_list) {
2237 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2238 					  vnic->mc_list, vnic->mc_list_mapping);
2239 			vnic->mc_list = NULL;
2240 		}
2241 
2242 		if (vnic->rss_table) {
2243 			dma_free_coherent(&pdev->dev, PAGE_SIZE,
2244 					  vnic->rss_table,
2245 					  vnic->rss_table_dma_addr);
2246 			vnic->rss_table = NULL;
2247 		}
2248 
2249 		vnic->rss_hash_key = NULL;
2250 		vnic->flags = 0;
2251 	}
2252 }
2253 
2254 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2255 {
2256 	int i, rc = 0, size;
2257 	struct bnxt_vnic_info *vnic;
2258 	struct pci_dev *pdev = bp->pdev;
2259 	int max_rings;
2260 
2261 	for (i = 0; i < bp->nr_vnics; i++) {
2262 		vnic = &bp->vnic_info[i];
2263 
2264 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2265 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2266 
2267 			if (mem_size > 0) {
2268 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2269 				if (!vnic->uc_list) {
2270 					rc = -ENOMEM;
2271 					goto out;
2272 				}
2273 			}
2274 		}
2275 
2276 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2277 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2278 			vnic->mc_list =
2279 				dma_alloc_coherent(&pdev->dev,
2280 						   vnic->mc_list_size,
2281 						   &vnic->mc_list_mapping,
2282 						   GFP_KERNEL);
2283 			if (!vnic->mc_list) {
2284 				rc = -ENOMEM;
2285 				goto out;
2286 			}
2287 		}
2288 
2289 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2290 			max_rings = bp->rx_nr_rings;
2291 		else
2292 			max_rings = 1;
2293 
2294 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2295 		if (!vnic->fw_grp_ids) {
2296 			rc = -ENOMEM;
2297 			goto out;
2298 		}
2299 
2300 		/* Allocate rss table and hash key */
2301 		vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2302 						     &vnic->rss_table_dma_addr,
2303 						     GFP_KERNEL);
2304 		if (!vnic->rss_table) {
2305 			rc = -ENOMEM;
2306 			goto out;
2307 		}
2308 
2309 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2310 
2311 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2312 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2313 	}
2314 	return 0;
2315 
2316 out:
2317 	return rc;
2318 }
2319 
2320 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2321 {
2322 	struct pci_dev *pdev = bp->pdev;
2323 
2324 	dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2325 			  bp->hwrm_cmd_resp_dma_addr);
2326 
2327 	bp->hwrm_cmd_resp_addr = NULL;
2328 	if (bp->hwrm_dbg_resp_addr) {
2329 		dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2330 				  bp->hwrm_dbg_resp_addr,
2331 				  bp->hwrm_dbg_resp_dma_addr);
2332 
2333 		bp->hwrm_dbg_resp_addr = NULL;
2334 	}
2335 }
2336 
2337 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2338 {
2339 	struct pci_dev *pdev = bp->pdev;
2340 
2341 	bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2342 						   &bp->hwrm_cmd_resp_dma_addr,
2343 						   GFP_KERNEL);
2344 	if (!bp->hwrm_cmd_resp_addr)
2345 		return -ENOMEM;
2346 	bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2347 						    HWRM_DBG_REG_BUF_SIZE,
2348 						    &bp->hwrm_dbg_resp_dma_addr,
2349 						    GFP_KERNEL);
2350 	if (!bp->hwrm_dbg_resp_addr)
2351 		netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2352 
2353 	return 0;
2354 }
2355 
2356 static void bnxt_free_stats(struct bnxt *bp)
2357 {
2358 	u32 size, i;
2359 	struct pci_dev *pdev = bp->pdev;
2360 
2361 	if (!bp->bnapi)
2362 		return;
2363 
2364 	size = sizeof(struct ctx_hw_stats);
2365 
2366 	for (i = 0; i < bp->cp_nr_rings; i++) {
2367 		struct bnxt_napi *bnapi = bp->bnapi[i];
2368 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2369 
2370 		if (cpr->hw_stats) {
2371 			dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2372 					  cpr->hw_stats_map);
2373 			cpr->hw_stats = NULL;
2374 		}
2375 	}
2376 }
2377 
2378 static int bnxt_alloc_stats(struct bnxt *bp)
2379 {
2380 	u32 size, i;
2381 	struct pci_dev *pdev = bp->pdev;
2382 
2383 	size = sizeof(struct ctx_hw_stats);
2384 
2385 	for (i = 0; i < bp->cp_nr_rings; i++) {
2386 		struct bnxt_napi *bnapi = bp->bnapi[i];
2387 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2388 
2389 		cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2390 						   &cpr->hw_stats_map,
2391 						   GFP_KERNEL);
2392 		if (!cpr->hw_stats)
2393 			return -ENOMEM;
2394 
2395 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2396 	}
2397 	return 0;
2398 }
2399 
2400 static void bnxt_clear_ring_indices(struct bnxt *bp)
2401 {
2402 	int i;
2403 
2404 	if (!bp->bnapi)
2405 		return;
2406 
2407 	for (i = 0; i < bp->cp_nr_rings; i++) {
2408 		struct bnxt_napi *bnapi = bp->bnapi[i];
2409 		struct bnxt_cp_ring_info *cpr;
2410 		struct bnxt_rx_ring_info *rxr;
2411 		struct bnxt_tx_ring_info *txr;
2412 
2413 		if (!bnapi)
2414 			continue;
2415 
2416 		cpr = &bnapi->cp_ring;
2417 		cpr->cp_raw_cons = 0;
2418 
2419 		txr = bnapi->tx_ring;
2420 		if (txr) {
2421 			txr->tx_prod = 0;
2422 			txr->tx_cons = 0;
2423 		}
2424 
2425 		rxr = bnapi->rx_ring;
2426 		if (rxr) {
2427 			rxr->rx_prod = 0;
2428 			rxr->rx_agg_prod = 0;
2429 			rxr->rx_sw_agg_prod = 0;
2430 		}
2431 	}
2432 }
2433 
2434 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2435 {
2436 #ifdef CONFIG_RFS_ACCEL
2437 	int i;
2438 
2439 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
2440 	 * safe to delete the hash table.
2441 	 */
2442 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2443 		struct hlist_head *head;
2444 		struct hlist_node *tmp;
2445 		struct bnxt_ntuple_filter *fltr;
2446 
2447 		head = &bp->ntp_fltr_hash_tbl[i];
2448 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2449 			hlist_del(&fltr->hash);
2450 			kfree(fltr);
2451 		}
2452 	}
2453 	if (irq_reinit) {
2454 		kfree(bp->ntp_fltr_bmap);
2455 		bp->ntp_fltr_bmap = NULL;
2456 	}
2457 	bp->ntp_fltr_count = 0;
2458 #endif
2459 }
2460 
2461 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2462 {
2463 #ifdef CONFIG_RFS_ACCEL
2464 	int i, rc = 0;
2465 
2466 	if (!(bp->flags & BNXT_FLAG_RFS))
2467 		return 0;
2468 
2469 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2470 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2471 
2472 	bp->ntp_fltr_count = 0;
2473 	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2474 				    GFP_KERNEL);
2475 
2476 	if (!bp->ntp_fltr_bmap)
2477 		rc = -ENOMEM;
2478 
2479 	return rc;
2480 #else
2481 	return 0;
2482 #endif
2483 }
2484 
2485 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2486 {
2487 	bnxt_free_vnic_attributes(bp);
2488 	bnxt_free_tx_rings(bp);
2489 	bnxt_free_rx_rings(bp);
2490 	bnxt_free_cp_rings(bp);
2491 	bnxt_free_ntp_fltrs(bp, irq_re_init);
2492 	if (irq_re_init) {
2493 		bnxt_free_stats(bp);
2494 		bnxt_free_ring_grps(bp);
2495 		bnxt_free_vnics(bp);
2496 		kfree(bp->tx_ring);
2497 		bp->tx_ring = NULL;
2498 		kfree(bp->rx_ring);
2499 		bp->rx_ring = NULL;
2500 		kfree(bp->bnapi);
2501 		bp->bnapi = NULL;
2502 	} else {
2503 		bnxt_clear_ring_indices(bp);
2504 	}
2505 }
2506 
2507 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2508 {
2509 	int i, j, rc, size, arr_size;
2510 	void *bnapi;
2511 
2512 	if (irq_re_init) {
2513 		/* Allocate bnapi mem pointer array and mem block for
2514 		 * all queues
2515 		 */
2516 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2517 				bp->cp_nr_rings);
2518 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2519 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2520 		if (!bnapi)
2521 			return -ENOMEM;
2522 
2523 		bp->bnapi = bnapi;
2524 		bnapi += arr_size;
2525 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2526 			bp->bnapi[i] = bnapi;
2527 			bp->bnapi[i]->index = i;
2528 			bp->bnapi[i]->bp = bp;
2529 		}
2530 
2531 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
2532 				      sizeof(struct bnxt_rx_ring_info),
2533 				      GFP_KERNEL);
2534 		if (!bp->rx_ring)
2535 			return -ENOMEM;
2536 
2537 		for (i = 0; i < bp->rx_nr_rings; i++) {
2538 			bp->rx_ring[i].bnapi = bp->bnapi[i];
2539 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2540 		}
2541 
2542 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
2543 				      sizeof(struct bnxt_tx_ring_info),
2544 				      GFP_KERNEL);
2545 		if (!bp->tx_ring)
2546 			return -ENOMEM;
2547 
2548 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2549 			j = 0;
2550 		else
2551 			j = bp->rx_nr_rings;
2552 
2553 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2554 			bp->tx_ring[i].bnapi = bp->bnapi[j];
2555 			bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2556 		}
2557 
2558 		rc = bnxt_alloc_stats(bp);
2559 		if (rc)
2560 			goto alloc_mem_err;
2561 
2562 		rc = bnxt_alloc_ntp_fltrs(bp);
2563 		if (rc)
2564 			goto alloc_mem_err;
2565 
2566 		rc = bnxt_alloc_vnics(bp);
2567 		if (rc)
2568 			goto alloc_mem_err;
2569 	}
2570 
2571 	bnxt_init_ring_struct(bp);
2572 
2573 	rc = bnxt_alloc_rx_rings(bp);
2574 	if (rc)
2575 		goto alloc_mem_err;
2576 
2577 	rc = bnxt_alloc_tx_rings(bp);
2578 	if (rc)
2579 		goto alloc_mem_err;
2580 
2581 	rc = bnxt_alloc_cp_rings(bp);
2582 	if (rc)
2583 		goto alloc_mem_err;
2584 
2585 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2586 				  BNXT_VNIC_UCAST_FLAG;
2587 	rc = bnxt_alloc_vnic_attributes(bp);
2588 	if (rc)
2589 		goto alloc_mem_err;
2590 	return 0;
2591 
2592 alloc_mem_err:
2593 	bnxt_free_mem(bp, true);
2594 	return rc;
2595 }
2596 
2597 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2598 			    u16 cmpl_ring, u16 target_id)
2599 {
2600 	struct hwrm_cmd_req_hdr *req = request;
2601 
2602 	req->cmpl_ring_req_type =
2603 		cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2604 	req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2605 	req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2606 }
2607 
2608 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2609 {
2610 	int i, intr_process, rc;
2611 	struct hwrm_cmd_req_hdr *req = msg;
2612 	u32 *data = msg;
2613 	__le32 *resp_len, *valid;
2614 	u16 cp_ring_id, len = 0;
2615 	struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2616 
2617 	req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2618 	memset(resp, 0, PAGE_SIZE);
2619 	cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2620 		      HWRM_CMPL_RING_MASK) >>
2621 		     HWRM_CMPL_RING_SFT;
2622 	intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2623 
2624 	/* Write request msg to hwrm channel */
2625 	__iowrite32_copy(bp->bar0, data, msg_len / 4);
2626 
2627 	for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2628 		writel(0, bp->bar0 + i);
2629 
2630 	/* currently supports only one outstanding message */
2631 	if (intr_process)
2632 		bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2633 				       HWRM_SEQ_ID_MASK;
2634 
2635 	/* Ring channel doorbell */
2636 	writel(1, bp->bar0 + 0x100);
2637 
2638 	i = 0;
2639 	if (intr_process) {
2640 		/* Wait until hwrm response cmpl interrupt is processed */
2641 		while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2642 		       i++ < timeout) {
2643 			usleep_range(600, 800);
2644 		}
2645 
2646 		if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2647 			netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2648 				   req->cmpl_ring_req_type);
2649 			return -1;
2650 		}
2651 	} else {
2652 		/* Check if response len is updated */
2653 		resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2654 		for (i = 0; i < timeout; i++) {
2655 			len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2656 			      HWRM_RESP_LEN_SFT;
2657 			if (len)
2658 				break;
2659 			usleep_range(600, 800);
2660 		}
2661 
2662 		if (i >= timeout) {
2663 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2664 				   timeout, req->cmpl_ring_req_type,
2665 				   req->target_id_seq_id, *resp_len);
2666 			return -1;
2667 		}
2668 
2669 		/* Last word of resp contains valid bit */
2670 		valid = bp->hwrm_cmd_resp_addr + len - 4;
2671 		for (i = 0; i < timeout; i++) {
2672 			if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2673 				break;
2674 			usleep_range(600, 800);
2675 		}
2676 
2677 		if (i >= timeout) {
2678 			netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2679 				   timeout, req->cmpl_ring_req_type,
2680 				   req->target_id_seq_id, len, *valid);
2681 			return -1;
2682 		}
2683 	}
2684 
2685 	rc = le16_to_cpu(resp->error_code);
2686 	if (rc) {
2687 		netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2688 			   le16_to_cpu(resp->req_type),
2689 			   le16_to_cpu(resp->seq_id), rc);
2690 		return rc;
2691 	}
2692 	return 0;
2693 }
2694 
2695 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2696 {
2697 	int rc;
2698 
2699 	mutex_lock(&bp->hwrm_cmd_lock);
2700 	rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2701 	mutex_unlock(&bp->hwrm_cmd_lock);
2702 	return rc;
2703 }
2704 
2705 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2706 {
2707 	struct hwrm_func_drv_rgtr_input req = {0};
2708 	int i;
2709 
2710 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2711 
2712 	req.enables =
2713 		cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2714 			    FUNC_DRV_RGTR_REQ_ENABLES_VER |
2715 			    FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2716 
2717 	/* TODO: current async event fwd bits are not defined and the firmware
2718 	 * only checks if it is non-zero to enable async event forwarding
2719 	 */
2720 	req.async_event_fwd[0] |= cpu_to_le32(1);
2721 	req.os_type = cpu_to_le16(1);
2722 	req.ver_maj = DRV_VER_MAJ;
2723 	req.ver_min = DRV_VER_MIN;
2724 	req.ver_upd = DRV_VER_UPD;
2725 
2726 	if (BNXT_PF(bp)) {
2727 		DECLARE_BITMAP(vf_req_snif_bmap, 256);
2728 		u32 *data = (u32 *)vf_req_snif_bmap;
2729 
2730 		memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2731 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2732 			__set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2733 
2734 		for (i = 0; i < 8; i++)
2735 			req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2736 
2737 		req.enables |=
2738 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2739 	}
2740 
2741 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2742 }
2743 
2744 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2745 {
2746 	struct hwrm_func_drv_unrgtr_input req = {0};
2747 
2748 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2749 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2750 }
2751 
2752 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2753 {
2754 	u32 rc = 0;
2755 	struct hwrm_tunnel_dst_port_free_input req = {0};
2756 
2757 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2758 	req.tunnel_type = tunnel_type;
2759 
2760 	switch (tunnel_type) {
2761 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2762 		req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2763 		break;
2764 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2765 		req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2766 		break;
2767 	default:
2768 		break;
2769 	}
2770 
2771 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2772 	if (rc)
2773 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2774 			   rc);
2775 	return rc;
2776 }
2777 
2778 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2779 					   u8 tunnel_type)
2780 {
2781 	u32 rc = 0;
2782 	struct hwrm_tunnel_dst_port_alloc_input req = {0};
2783 	struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2784 
2785 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2786 
2787 	req.tunnel_type = tunnel_type;
2788 	req.tunnel_dst_port_val = port;
2789 
2790 	mutex_lock(&bp->hwrm_cmd_lock);
2791 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2792 	if (rc) {
2793 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2794 			   rc);
2795 		goto err_out;
2796 	}
2797 
2798 	if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2799 		bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2800 
2801 	else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2802 		bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2803 err_out:
2804 	mutex_unlock(&bp->hwrm_cmd_lock);
2805 	return rc;
2806 }
2807 
2808 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2809 {
2810 	struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2811 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2812 
2813 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2814 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2815 
2816 	req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2817 	req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2818 	req.mask = cpu_to_le32(vnic->rx_mask);
2819 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2820 }
2821 
2822 #ifdef CONFIG_RFS_ACCEL
2823 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2824 					    struct bnxt_ntuple_filter *fltr)
2825 {
2826 	struct hwrm_cfa_ntuple_filter_free_input req = {0};
2827 
2828 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2829 	req.ntuple_filter_id = fltr->filter_id;
2830 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2831 }
2832 
2833 #define BNXT_NTP_FLTR_FLAGS					\
2834 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
2835 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
2836 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
2837 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
2838 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
2839 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
2840 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
2841 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
2842 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
2843 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
2844 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
2845 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
2846 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
2847 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2848 
2849 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2850 					     struct bnxt_ntuple_filter *fltr)
2851 {
2852 	int rc = 0;
2853 	struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2854 	struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2855 		bp->hwrm_cmd_resp_addr;
2856 	struct flow_keys *keys = &fltr->fkeys;
2857 	struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2858 
2859 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2860 	req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2861 
2862 	req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2863 
2864 	req.ethertype = htons(ETH_P_IP);
2865 	memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2866 	req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2867 	req.ip_protocol = keys->basic.ip_proto;
2868 
2869 	req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2870 	req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2871 	req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2872 	req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2873 
2874 	req.src_port = keys->ports.src;
2875 	req.src_port_mask = cpu_to_be16(0xffff);
2876 	req.dst_port = keys->ports.dst;
2877 	req.dst_port_mask = cpu_to_be16(0xffff);
2878 
2879 	req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2880 	mutex_lock(&bp->hwrm_cmd_lock);
2881 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2882 	if (!rc)
2883 		fltr->filter_id = resp->ntuple_filter_id;
2884 	mutex_unlock(&bp->hwrm_cmd_lock);
2885 	return rc;
2886 }
2887 #endif
2888 
2889 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2890 				     u8 *mac_addr)
2891 {
2892 	u32 rc = 0;
2893 	struct hwrm_cfa_l2_filter_alloc_input req = {0};
2894 	struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2895 
2896 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2897 	req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2898 				CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2899 	req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2900 	req.enables =
2901 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2902 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2903 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2904 	memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2905 	req.l2_addr_mask[0] = 0xff;
2906 	req.l2_addr_mask[1] = 0xff;
2907 	req.l2_addr_mask[2] = 0xff;
2908 	req.l2_addr_mask[3] = 0xff;
2909 	req.l2_addr_mask[4] = 0xff;
2910 	req.l2_addr_mask[5] = 0xff;
2911 
2912 	mutex_lock(&bp->hwrm_cmd_lock);
2913 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2914 	if (!rc)
2915 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2916 							resp->l2_filter_id;
2917 	mutex_unlock(&bp->hwrm_cmd_lock);
2918 	return rc;
2919 }
2920 
2921 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2922 {
2923 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2924 	int rc = 0;
2925 
2926 	/* Any associated ntuple filters will also be cleared by firmware. */
2927 	mutex_lock(&bp->hwrm_cmd_lock);
2928 	for (i = 0; i < num_of_vnics; i++) {
2929 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2930 
2931 		for (j = 0; j < vnic->uc_filter_count; j++) {
2932 			struct hwrm_cfa_l2_filter_free_input req = {0};
2933 
2934 			bnxt_hwrm_cmd_hdr_init(bp, &req,
2935 					       HWRM_CFA_L2_FILTER_FREE, -1, -1);
2936 
2937 			req.l2_filter_id = vnic->fw_l2_filter_id[j];
2938 
2939 			rc = _hwrm_send_message(bp, &req, sizeof(req),
2940 						HWRM_CMD_TIMEOUT);
2941 		}
2942 		vnic->uc_filter_count = 0;
2943 	}
2944 	mutex_unlock(&bp->hwrm_cmd_lock);
2945 
2946 	return rc;
2947 }
2948 
2949 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2950 {
2951 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2952 	struct hwrm_vnic_tpa_cfg_input req = {0};
2953 
2954 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2955 
2956 	if (tpa_flags) {
2957 		u16 mss = bp->dev->mtu - 40;
2958 		u32 nsegs, n, segs = 0, flags;
2959 
2960 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2961 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2962 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2963 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2964 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2965 		if (tpa_flags & BNXT_FLAG_GRO)
2966 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2967 
2968 		req.flags = cpu_to_le32(flags);
2969 
2970 		req.enables =
2971 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2972 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2973 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2974 
2975 		/* Number of segs are log2 units, and first packet is not
2976 		 * included as part of this units.
2977 		 */
2978 		if (mss <= PAGE_SIZE) {
2979 			n = PAGE_SIZE / mss;
2980 			nsegs = (MAX_SKB_FRAGS - 1) * n;
2981 		} else {
2982 			n = mss / PAGE_SIZE;
2983 			if (mss & (PAGE_SIZE - 1))
2984 				n++;
2985 			nsegs = (MAX_SKB_FRAGS - n) / n;
2986 		}
2987 
2988 		segs = ilog2(nsegs);
2989 		req.max_agg_segs = cpu_to_le16(segs);
2990 		req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2991 
2992 		req.min_agg_len = cpu_to_le32(512);
2993 	}
2994 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2995 
2996 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2997 }
2998 
2999 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3000 {
3001 	u32 i, j, max_rings;
3002 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3003 	struct hwrm_vnic_rss_cfg_input req = {0};
3004 
3005 	if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3006 		return 0;
3007 
3008 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3009 	if (set_rss) {
3010 		vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3011 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3012 				 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3013 				 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3014 
3015 		req.hash_type = cpu_to_le32(vnic->hash_type);
3016 
3017 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3018 			max_rings = bp->rx_nr_rings;
3019 		else
3020 			max_rings = 1;
3021 
3022 		/* Fill the RSS indirection table with ring group ids */
3023 		for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3024 			if (j == max_rings)
3025 				j = 0;
3026 			vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3027 		}
3028 
3029 		req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3030 		req.hash_key_tbl_addr =
3031 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
3032 	}
3033 	req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3034 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3035 }
3036 
3037 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3038 {
3039 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3040 	struct hwrm_vnic_plcmodes_cfg_input req = {0};
3041 
3042 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3043 	req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3044 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3045 				VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3046 	req.enables =
3047 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3048 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3049 	/* thresholds not implemented in firmware yet */
3050 	req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3051 	req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3052 	req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3053 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3054 }
3055 
3056 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3057 {
3058 	struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3059 
3060 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3061 	req.rss_cos_lb_ctx_id =
3062 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3063 
3064 	hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3065 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3066 }
3067 
3068 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < bp->nr_vnics; i++) {
3073 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3074 
3075 		if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3076 			bnxt_hwrm_vnic_ctx_free_one(bp, i);
3077 	}
3078 	bp->rsscos_nr_ctxs = 0;
3079 }
3080 
3081 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3082 {
3083 	int rc;
3084 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3085 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3086 						bp->hwrm_cmd_resp_addr;
3087 
3088 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3089 			       -1);
3090 
3091 	mutex_lock(&bp->hwrm_cmd_lock);
3092 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3093 	if (!rc)
3094 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3095 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
3096 	mutex_unlock(&bp->hwrm_cmd_lock);
3097 
3098 	return rc;
3099 }
3100 
3101 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3102 {
3103 	unsigned int ring = 0, grp_idx;
3104 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3105 	struct hwrm_vnic_cfg_input req = {0};
3106 
3107 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3108 	/* Only RSS support for now TBD: COS & LB */
3109 	req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3110 				  VNIC_CFG_REQ_ENABLES_RSS_RULE);
3111 	req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3112 	req.cos_rule = cpu_to_le16(0xffff);
3113 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3114 		ring = 0;
3115 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3116 		ring = vnic_id - 1;
3117 
3118 	grp_idx = bp->rx_ring[ring].bnapi->index;
3119 	req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3120 	req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3121 
3122 	req.lb_rule = cpu_to_le16(0xffff);
3123 	req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3124 			      VLAN_HLEN);
3125 
3126 	if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3127 		req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3128 
3129 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3130 }
3131 
3132 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3133 {
3134 	u32 rc = 0;
3135 
3136 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3137 		struct hwrm_vnic_free_input req = {0};
3138 
3139 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3140 		req.vnic_id =
3141 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3142 
3143 		rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3144 		if (rc)
3145 			return rc;
3146 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3147 	}
3148 	return rc;
3149 }
3150 
3151 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3152 {
3153 	u16 i;
3154 
3155 	for (i = 0; i < bp->nr_vnics; i++)
3156 		bnxt_hwrm_vnic_free_one(bp, i);
3157 }
3158 
3159 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3160 				unsigned int start_rx_ring_idx,
3161 				unsigned int nr_rings)
3162 {
3163 	int rc = 0;
3164 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3165 	struct hwrm_vnic_alloc_input req = {0};
3166 	struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3167 
3168 	/* map ring groups to this vnic */
3169 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3170 		grp_idx = bp->rx_ring[i].bnapi->index;
3171 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3172 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3173 				   j, nr_rings);
3174 			break;
3175 		}
3176 		bp->vnic_info[vnic_id].fw_grp_ids[j] =
3177 					bp->grp_info[grp_idx].fw_grp_id;
3178 	}
3179 
3180 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3181 	if (vnic_id == 0)
3182 		req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3183 
3184 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3185 
3186 	mutex_lock(&bp->hwrm_cmd_lock);
3187 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3188 	if (!rc)
3189 		bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3190 	mutex_unlock(&bp->hwrm_cmd_lock);
3191 	return rc;
3192 }
3193 
3194 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3195 {
3196 	u16 i;
3197 	u32 rc = 0;
3198 
3199 	mutex_lock(&bp->hwrm_cmd_lock);
3200 	for (i = 0; i < bp->rx_nr_rings; i++) {
3201 		struct hwrm_ring_grp_alloc_input req = {0};
3202 		struct hwrm_ring_grp_alloc_output *resp =
3203 					bp->hwrm_cmd_resp_addr;
3204 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3205 
3206 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3207 
3208 		req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3209 		req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3210 		req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3211 		req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3212 
3213 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3214 					HWRM_CMD_TIMEOUT);
3215 		if (rc)
3216 			break;
3217 
3218 		bp->grp_info[grp_idx].fw_grp_id =
3219 			le32_to_cpu(resp->ring_group_id);
3220 	}
3221 	mutex_unlock(&bp->hwrm_cmd_lock);
3222 	return rc;
3223 }
3224 
3225 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3226 {
3227 	u16 i;
3228 	u32 rc = 0;
3229 	struct hwrm_ring_grp_free_input req = {0};
3230 
3231 	if (!bp->grp_info)
3232 		return 0;
3233 
3234 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3235 
3236 	mutex_lock(&bp->hwrm_cmd_lock);
3237 	for (i = 0; i < bp->cp_nr_rings; i++) {
3238 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3239 			continue;
3240 		req.ring_group_id =
3241 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
3242 
3243 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3244 					HWRM_CMD_TIMEOUT);
3245 		if (rc)
3246 			break;
3247 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3248 	}
3249 	mutex_unlock(&bp->hwrm_cmd_lock);
3250 	return rc;
3251 }
3252 
3253 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3254 				    struct bnxt_ring_struct *ring,
3255 				    u32 ring_type, u32 map_index,
3256 				    u32 stats_ctx_id)
3257 {
3258 	int rc = 0, err = 0;
3259 	struct hwrm_ring_alloc_input req = {0};
3260 	struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3261 	u16 ring_id;
3262 
3263 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3264 
3265 	req.enables = 0;
3266 	if (ring->nr_pages > 1) {
3267 		req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3268 		/* Page size is in log2 units */
3269 		req.page_size = BNXT_PAGE_SHIFT;
3270 		req.page_tbl_depth = 1;
3271 	} else {
3272 		req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3273 	}
3274 	req.fbo = 0;
3275 	/* Association of ring index with doorbell index and MSIX number */
3276 	req.logical_id = cpu_to_le16(map_index);
3277 
3278 	switch (ring_type) {
3279 	case HWRM_RING_ALLOC_TX:
3280 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3281 		/* Association of transmit ring with completion ring */
3282 		req.cmpl_ring_id =
3283 			cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3284 		req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3285 		req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3286 		req.queue_id = cpu_to_le16(ring->queue_id);
3287 		break;
3288 	case HWRM_RING_ALLOC_RX:
3289 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3290 		req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3291 		break;
3292 	case HWRM_RING_ALLOC_AGG:
3293 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3294 		req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3295 		break;
3296 	case HWRM_RING_ALLOC_CMPL:
3297 		req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3298 		req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3299 		if (bp->flags & BNXT_FLAG_USING_MSIX)
3300 			req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3301 		break;
3302 	default:
3303 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3304 			   ring_type);
3305 		return -1;
3306 	}
3307 
3308 	mutex_lock(&bp->hwrm_cmd_lock);
3309 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3310 	err = le16_to_cpu(resp->error_code);
3311 	ring_id = le16_to_cpu(resp->ring_id);
3312 	mutex_unlock(&bp->hwrm_cmd_lock);
3313 
3314 	if (rc || err) {
3315 		switch (ring_type) {
3316 		case RING_FREE_REQ_RING_TYPE_CMPL:
3317 			netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3318 				   rc, err);
3319 			return -1;
3320 
3321 		case RING_FREE_REQ_RING_TYPE_RX:
3322 			netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3323 				   rc, err);
3324 			return -1;
3325 
3326 		case RING_FREE_REQ_RING_TYPE_TX:
3327 			netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3328 				   rc, err);
3329 			return -1;
3330 
3331 		default:
3332 			netdev_err(bp->dev, "Invalid ring\n");
3333 			return -1;
3334 		}
3335 	}
3336 	ring->fw_ring_id = ring_id;
3337 	return rc;
3338 }
3339 
3340 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3341 {
3342 	int i, rc = 0;
3343 
3344 	for (i = 0; i < bp->cp_nr_rings; i++) {
3345 		struct bnxt_napi *bnapi = bp->bnapi[i];
3346 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3347 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3348 
3349 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3350 					      INVALID_STATS_CTX_ID);
3351 		if (rc)
3352 			goto err_out;
3353 		cpr->cp_doorbell = bp->bar1 + i * 0x80;
3354 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3355 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3356 	}
3357 
3358 	for (i = 0; i < bp->tx_nr_rings; i++) {
3359 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3360 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3361 		u32 map_idx = txr->bnapi->index;
3362 		u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3363 
3364 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3365 					      map_idx, fw_stats_ctx);
3366 		if (rc)
3367 			goto err_out;
3368 		txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3369 	}
3370 
3371 	for (i = 0; i < bp->rx_nr_rings; i++) {
3372 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3373 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3374 		u32 map_idx = rxr->bnapi->index;
3375 
3376 		rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3377 					      map_idx, INVALID_STATS_CTX_ID);
3378 		if (rc)
3379 			goto err_out;
3380 		rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3381 		writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3382 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3383 	}
3384 
3385 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3386 		for (i = 0; i < bp->rx_nr_rings; i++) {
3387 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3388 			struct bnxt_ring_struct *ring =
3389 						&rxr->rx_agg_ring_struct;
3390 			u32 grp_idx = rxr->bnapi->index;
3391 			u32 map_idx = grp_idx + bp->rx_nr_rings;
3392 
3393 			rc = hwrm_ring_alloc_send_msg(bp, ring,
3394 						      HWRM_RING_ALLOC_AGG,
3395 						      map_idx,
3396 						      INVALID_STATS_CTX_ID);
3397 			if (rc)
3398 				goto err_out;
3399 
3400 			rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3401 			writel(DB_KEY_RX | rxr->rx_agg_prod,
3402 			       rxr->rx_agg_doorbell);
3403 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3404 		}
3405 	}
3406 err_out:
3407 	return rc;
3408 }
3409 
3410 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3411 				   struct bnxt_ring_struct *ring,
3412 				   u32 ring_type, int cmpl_ring_id)
3413 {
3414 	int rc;
3415 	struct hwrm_ring_free_input req = {0};
3416 	struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3417 	u16 error_code;
3418 
3419 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3420 	req.ring_type = ring_type;
3421 	req.ring_id = cpu_to_le16(ring->fw_ring_id);
3422 
3423 	mutex_lock(&bp->hwrm_cmd_lock);
3424 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3425 	error_code = le16_to_cpu(resp->error_code);
3426 	mutex_unlock(&bp->hwrm_cmd_lock);
3427 
3428 	if (rc || error_code) {
3429 		switch (ring_type) {
3430 		case RING_FREE_REQ_RING_TYPE_CMPL:
3431 			netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3432 				   rc);
3433 			return rc;
3434 		case RING_FREE_REQ_RING_TYPE_RX:
3435 			netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3436 				   rc);
3437 			return rc;
3438 		case RING_FREE_REQ_RING_TYPE_TX:
3439 			netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3440 				   rc);
3441 			return rc;
3442 		default:
3443 			netdev_err(bp->dev, "Invalid ring\n");
3444 			return -1;
3445 		}
3446 	}
3447 	return 0;
3448 }
3449 
3450 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3451 {
3452 	int i;
3453 
3454 	if (!bp->bnapi)
3455 		return;
3456 
3457 	for (i = 0; i < bp->tx_nr_rings; i++) {
3458 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3459 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3460 		u32 grp_idx = txr->bnapi->index;
3461 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3462 
3463 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3464 			hwrm_ring_free_send_msg(bp, ring,
3465 						RING_FREE_REQ_RING_TYPE_TX,
3466 						close_path ? cmpl_ring_id :
3467 						INVALID_HW_RING_ID);
3468 			ring->fw_ring_id = INVALID_HW_RING_ID;
3469 		}
3470 	}
3471 
3472 	for (i = 0; i < bp->rx_nr_rings; i++) {
3473 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3474 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3475 		u32 grp_idx = rxr->bnapi->index;
3476 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3477 
3478 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3479 			hwrm_ring_free_send_msg(bp, ring,
3480 						RING_FREE_REQ_RING_TYPE_RX,
3481 						close_path ? cmpl_ring_id :
3482 						INVALID_HW_RING_ID);
3483 			ring->fw_ring_id = INVALID_HW_RING_ID;
3484 			bp->grp_info[grp_idx].rx_fw_ring_id =
3485 				INVALID_HW_RING_ID;
3486 		}
3487 	}
3488 
3489 	for (i = 0; i < bp->rx_nr_rings; i++) {
3490 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3491 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3492 		u32 grp_idx = rxr->bnapi->index;
3493 		u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3494 
3495 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3496 			hwrm_ring_free_send_msg(bp, ring,
3497 						RING_FREE_REQ_RING_TYPE_RX,
3498 						close_path ? cmpl_ring_id :
3499 						INVALID_HW_RING_ID);
3500 			ring->fw_ring_id = INVALID_HW_RING_ID;
3501 			bp->grp_info[grp_idx].agg_fw_ring_id =
3502 				INVALID_HW_RING_ID;
3503 		}
3504 	}
3505 
3506 	for (i = 0; i < bp->cp_nr_rings; i++) {
3507 		struct bnxt_napi *bnapi = bp->bnapi[i];
3508 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3509 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3510 
3511 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3512 			hwrm_ring_free_send_msg(bp, ring,
3513 						RING_FREE_REQ_RING_TYPE_CMPL,
3514 						INVALID_HW_RING_ID);
3515 			ring->fw_ring_id = INVALID_HW_RING_ID;
3516 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3517 		}
3518 	}
3519 }
3520 
3521 int bnxt_hwrm_set_coal(struct bnxt *bp)
3522 {
3523 	int i, rc = 0;
3524 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3525 	u16 max_buf, max_buf_irq;
3526 	u16 buf_tmr, buf_tmr_irq;
3527 	u32 flags;
3528 
3529 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3530 			       -1, -1);
3531 
3532 	/* Each rx completion (2 records) should be DMAed immediately */
3533 	max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3534 	/* max_buf must not be zero */
3535 	max_buf = clamp_t(u16, max_buf, 1, 63);
3536 	max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3537 	buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3538 	buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3539 
3540 	flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3541 
3542 	/* RING_IDLE generates more IRQs for lower latency.  Enable it only
3543 	 * if coal_ticks is less than 25 us.
3544 	 */
3545 	if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3546 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3547 
3548 	req.flags = cpu_to_le16(flags);
3549 	req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3550 	req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3551 	req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3552 	req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3553 	req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3554 	req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3555 	req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3556 
3557 	mutex_lock(&bp->hwrm_cmd_lock);
3558 	for (i = 0; i < bp->cp_nr_rings; i++) {
3559 		req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3560 
3561 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3562 					HWRM_CMD_TIMEOUT);
3563 		if (rc)
3564 			break;
3565 	}
3566 	mutex_unlock(&bp->hwrm_cmd_lock);
3567 	return rc;
3568 }
3569 
3570 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3571 {
3572 	int rc = 0, i;
3573 	struct hwrm_stat_ctx_free_input req = {0};
3574 
3575 	if (!bp->bnapi)
3576 		return 0;
3577 
3578 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3579 
3580 	mutex_lock(&bp->hwrm_cmd_lock);
3581 	for (i = 0; i < bp->cp_nr_rings; i++) {
3582 		struct bnxt_napi *bnapi = bp->bnapi[i];
3583 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3584 
3585 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3586 			req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3587 
3588 			rc = _hwrm_send_message(bp, &req, sizeof(req),
3589 						HWRM_CMD_TIMEOUT);
3590 			if (rc)
3591 				break;
3592 
3593 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3594 		}
3595 	}
3596 	mutex_unlock(&bp->hwrm_cmd_lock);
3597 	return rc;
3598 }
3599 
3600 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3601 {
3602 	int rc = 0, i;
3603 	struct hwrm_stat_ctx_alloc_input req = {0};
3604 	struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3605 
3606 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3607 
3608 	req.update_period_ms = cpu_to_le32(1000);
3609 
3610 	mutex_lock(&bp->hwrm_cmd_lock);
3611 	for (i = 0; i < bp->cp_nr_rings; i++) {
3612 		struct bnxt_napi *bnapi = bp->bnapi[i];
3613 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3614 
3615 		req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3616 
3617 		rc = _hwrm_send_message(bp, &req, sizeof(req),
3618 					HWRM_CMD_TIMEOUT);
3619 		if (rc)
3620 			break;
3621 
3622 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3623 
3624 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3625 	}
3626 	mutex_unlock(&bp->hwrm_cmd_lock);
3627 	return 0;
3628 }
3629 
3630 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3631 {
3632 	int rc = 0;
3633 	struct hwrm_func_qcaps_input req = {0};
3634 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3635 
3636 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3637 	req.fid = cpu_to_le16(0xffff);
3638 
3639 	mutex_lock(&bp->hwrm_cmd_lock);
3640 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3641 	if (rc)
3642 		goto hwrm_func_qcaps_exit;
3643 
3644 	if (BNXT_PF(bp)) {
3645 		struct bnxt_pf_info *pf = &bp->pf;
3646 
3647 		pf->fw_fid = le16_to_cpu(resp->fid);
3648 		pf->port_id = le16_to_cpu(resp->port_id);
3649 		memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3650 		memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3651 		pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3652 		pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3653 		pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3654 		pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3655 		pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3656 		if (!pf->max_hw_ring_grps)
3657 			pf->max_hw_ring_grps = pf->max_tx_rings;
3658 		pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3659 		pf->max_vnics = le16_to_cpu(resp->max_vnics);
3660 		pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3661 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3662 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
3663 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3664 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3665 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3666 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3667 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3668 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3669 	} else {
3670 #ifdef CONFIG_BNXT_SRIOV
3671 		struct bnxt_vf_info *vf = &bp->vf;
3672 
3673 		vf->fw_fid = le16_to_cpu(resp->fid);
3674 		memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3675 		if (is_valid_ether_addr(vf->mac_addr))
3676 			/* overwrite netdev dev_adr with admin VF MAC */
3677 			memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3678 		else
3679 			random_ether_addr(bp->dev->dev_addr);
3680 
3681 		vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3682 		vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3683 		vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3684 		vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3685 		vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3686 		if (!vf->max_hw_ring_grps)
3687 			vf->max_hw_ring_grps = vf->max_tx_rings;
3688 		vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3689 		vf->max_vnics = le16_to_cpu(resp->max_vnics);
3690 		vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3691 #endif
3692 	}
3693 
3694 	bp->tx_push_thresh = 0;
3695 	if (resp->flags &
3696 	    cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3697 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3698 
3699 hwrm_func_qcaps_exit:
3700 	mutex_unlock(&bp->hwrm_cmd_lock);
3701 	return rc;
3702 }
3703 
3704 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3705 {
3706 	struct hwrm_func_reset_input req = {0};
3707 
3708 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3709 	req.enables = 0;
3710 
3711 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3712 }
3713 
3714 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3715 {
3716 	int rc = 0;
3717 	struct hwrm_queue_qportcfg_input req = {0};
3718 	struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3719 	u8 i, *qptr;
3720 
3721 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3722 
3723 	mutex_lock(&bp->hwrm_cmd_lock);
3724 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3725 	if (rc)
3726 		goto qportcfg_exit;
3727 
3728 	if (!resp->max_configurable_queues) {
3729 		rc = -EINVAL;
3730 		goto qportcfg_exit;
3731 	}
3732 	bp->max_tc = resp->max_configurable_queues;
3733 	if (bp->max_tc > BNXT_MAX_QUEUE)
3734 		bp->max_tc = BNXT_MAX_QUEUE;
3735 
3736 	qptr = &resp->queue_id0;
3737 	for (i = 0; i < bp->max_tc; i++) {
3738 		bp->q_info[i].queue_id = *qptr++;
3739 		bp->q_info[i].queue_profile = *qptr++;
3740 	}
3741 
3742 qportcfg_exit:
3743 	mutex_unlock(&bp->hwrm_cmd_lock);
3744 	return rc;
3745 }
3746 
3747 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3748 {
3749 	int rc;
3750 	struct hwrm_ver_get_input req = {0};
3751 	struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3752 
3753 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3754 	req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3755 	req.hwrm_intf_min = HWRM_VERSION_MINOR;
3756 	req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3757 	mutex_lock(&bp->hwrm_cmd_lock);
3758 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3759 	if (rc)
3760 		goto hwrm_ver_get_exit;
3761 
3762 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3763 
3764 	if (resp->hwrm_intf_maj < 1) {
3765 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3766 			    resp->hwrm_intf_maj, resp->hwrm_intf_min,
3767 			    resp->hwrm_intf_upd);
3768 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3769 	}
3770 	snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3771 		 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3772 		 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3773 
3774 hwrm_ver_get_exit:
3775 	mutex_unlock(&bp->hwrm_cmd_lock);
3776 	return rc;
3777 }
3778 
3779 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3780 {
3781 	if (bp->vxlan_port_cnt) {
3782 		bnxt_hwrm_tunnel_dst_port_free(
3783 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3784 	}
3785 	bp->vxlan_port_cnt = 0;
3786 	if (bp->nge_port_cnt) {
3787 		bnxt_hwrm_tunnel_dst_port_free(
3788 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3789 	}
3790 	bp->nge_port_cnt = 0;
3791 }
3792 
3793 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3794 {
3795 	int rc, i;
3796 	u32 tpa_flags = 0;
3797 
3798 	if (set_tpa)
3799 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
3800 	for (i = 0; i < bp->nr_vnics; i++) {
3801 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3802 		if (rc) {
3803 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3804 				   rc, i);
3805 			return rc;
3806 		}
3807 	}
3808 	return 0;
3809 }
3810 
3811 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3812 {
3813 	int i;
3814 
3815 	for (i = 0; i < bp->nr_vnics; i++)
3816 		bnxt_hwrm_vnic_set_rss(bp, i, false);
3817 }
3818 
3819 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3820 				    bool irq_re_init)
3821 {
3822 	if (bp->vnic_info) {
3823 		bnxt_hwrm_clear_vnic_filter(bp);
3824 		/* clear all RSS setting before free vnic ctx */
3825 		bnxt_hwrm_clear_vnic_rss(bp);
3826 		bnxt_hwrm_vnic_ctx_free(bp);
3827 		/* before free the vnic, undo the vnic tpa settings */
3828 		if (bp->flags & BNXT_FLAG_TPA)
3829 			bnxt_set_tpa(bp, false);
3830 		bnxt_hwrm_vnic_free(bp);
3831 	}
3832 	bnxt_hwrm_ring_free(bp, close_path);
3833 	bnxt_hwrm_ring_grp_free(bp);
3834 	if (irq_re_init) {
3835 		bnxt_hwrm_stat_ctx_free(bp);
3836 		bnxt_hwrm_free_tunnel_ports(bp);
3837 	}
3838 }
3839 
3840 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3841 {
3842 	int rc;
3843 
3844 	/* allocate context for vnic */
3845 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3846 	if (rc) {
3847 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3848 			   vnic_id, rc);
3849 		goto vnic_setup_err;
3850 	}
3851 	bp->rsscos_nr_ctxs++;
3852 
3853 	/* configure default vnic, ring grp */
3854 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3855 	if (rc) {
3856 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3857 			   vnic_id, rc);
3858 		goto vnic_setup_err;
3859 	}
3860 
3861 	/* Enable RSS hashing on vnic */
3862 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3863 	if (rc) {
3864 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3865 			   vnic_id, rc);
3866 		goto vnic_setup_err;
3867 	}
3868 
3869 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3870 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3871 		if (rc) {
3872 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3873 				   vnic_id, rc);
3874 		}
3875 	}
3876 
3877 vnic_setup_err:
3878 	return rc;
3879 }
3880 
3881 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3882 {
3883 #ifdef CONFIG_RFS_ACCEL
3884 	int i, rc = 0;
3885 
3886 	for (i = 0; i < bp->rx_nr_rings; i++) {
3887 		u16 vnic_id = i + 1;
3888 		u16 ring_id = i;
3889 
3890 		if (vnic_id >= bp->nr_vnics)
3891 			break;
3892 
3893 		bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3894 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3895 		if (rc) {
3896 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3897 				   vnic_id, rc);
3898 			break;
3899 		}
3900 		rc = bnxt_setup_vnic(bp, vnic_id);
3901 		if (rc)
3902 			break;
3903 	}
3904 	return rc;
3905 #else
3906 	return 0;
3907 #endif
3908 }
3909 
3910 static int bnxt_cfg_rx_mode(struct bnxt *);
3911 
3912 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3913 {
3914 	int rc = 0;
3915 
3916 	if (irq_re_init) {
3917 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
3918 		if (rc) {
3919 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3920 				   rc);
3921 			goto err_out;
3922 		}
3923 	}
3924 
3925 	rc = bnxt_hwrm_ring_alloc(bp);
3926 	if (rc) {
3927 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3928 		goto err_out;
3929 	}
3930 
3931 	rc = bnxt_hwrm_ring_grp_alloc(bp);
3932 	if (rc) {
3933 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3934 		goto err_out;
3935 	}
3936 
3937 	/* default vnic 0 */
3938 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3939 	if (rc) {
3940 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3941 		goto err_out;
3942 	}
3943 
3944 	rc = bnxt_setup_vnic(bp, 0);
3945 	if (rc)
3946 		goto err_out;
3947 
3948 	if (bp->flags & BNXT_FLAG_RFS) {
3949 		rc = bnxt_alloc_rfs_vnics(bp);
3950 		if (rc)
3951 			goto err_out;
3952 	}
3953 
3954 	if (bp->flags & BNXT_FLAG_TPA) {
3955 		rc = bnxt_set_tpa(bp, true);
3956 		if (rc)
3957 			goto err_out;
3958 	}
3959 
3960 	if (BNXT_VF(bp))
3961 		bnxt_update_vf_mac(bp);
3962 
3963 	/* Filter for default vnic 0 */
3964 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3965 	if (rc) {
3966 		netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3967 		goto err_out;
3968 	}
3969 	bp->vnic_info[0].uc_filter_count = 1;
3970 
3971 	bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3972 
3973 	if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3974 		bp->vnic_info[0].rx_mask |=
3975 				CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3976 
3977 	rc = bnxt_cfg_rx_mode(bp);
3978 	if (rc)
3979 		goto err_out;
3980 
3981 	rc = bnxt_hwrm_set_coal(bp);
3982 	if (rc)
3983 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3984 			    rc);
3985 
3986 	return 0;
3987 
3988 err_out:
3989 	bnxt_hwrm_resource_free(bp, 0, true);
3990 
3991 	return rc;
3992 }
3993 
3994 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3995 {
3996 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3997 	return 0;
3998 }
3999 
4000 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4001 {
4002 	bnxt_init_rx_rings(bp);
4003 	bnxt_init_tx_rings(bp);
4004 	bnxt_init_ring_grps(bp, irq_re_init);
4005 	bnxt_init_vnics(bp);
4006 
4007 	return bnxt_init_chip(bp, irq_re_init);
4008 }
4009 
4010 static void bnxt_disable_int(struct bnxt *bp)
4011 {
4012 	int i;
4013 
4014 	if (!bp->bnapi)
4015 		return;
4016 
4017 	for (i = 0; i < bp->cp_nr_rings; i++) {
4018 		struct bnxt_napi *bnapi = bp->bnapi[i];
4019 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4020 
4021 		BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4022 	}
4023 }
4024 
4025 static void bnxt_enable_int(struct bnxt *bp)
4026 {
4027 	int i;
4028 
4029 	atomic_set(&bp->intr_sem, 0);
4030 	for (i = 0; i < bp->cp_nr_rings; i++) {
4031 		struct bnxt_napi *bnapi = bp->bnapi[i];
4032 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4033 
4034 		BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4035 	}
4036 }
4037 
4038 static int bnxt_set_real_num_queues(struct bnxt *bp)
4039 {
4040 	int rc;
4041 	struct net_device *dev = bp->dev;
4042 
4043 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4044 	if (rc)
4045 		return rc;
4046 
4047 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4048 	if (rc)
4049 		return rc;
4050 
4051 #ifdef CONFIG_RFS_ACCEL
4052 	if (bp->flags & BNXT_FLAG_RFS)
4053 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4054 #endif
4055 
4056 	return rc;
4057 }
4058 
4059 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4060 			   bool shared)
4061 {
4062 	int _rx = *rx, _tx = *tx;
4063 
4064 	if (shared) {
4065 		*rx = min_t(int, _rx, max);
4066 		*tx = min_t(int, _tx, max);
4067 	} else {
4068 		if (max < 2)
4069 			return -ENOMEM;
4070 
4071 		while (_rx + _tx > max) {
4072 			if (_rx > _tx && _rx > 1)
4073 				_rx--;
4074 			else if (_tx > 1)
4075 				_tx--;
4076 		}
4077 		*rx = _rx;
4078 		*tx = _tx;
4079 	}
4080 	return 0;
4081 }
4082 
4083 static int bnxt_setup_msix(struct bnxt *bp)
4084 {
4085 	struct msix_entry *msix_ent;
4086 	struct net_device *dev = bp->dev;
4087 	int i, total_vecs, rc = 0, min = 1;
4088 	const int len = sizeof(bp->irq_tbl[0].name);
4089 
4090 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
4091 	total_vecs = bp->cp_nr_rings;
4092 
4093 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4094 	if (!msix_ent)
4095 		return -ENOMEM;
4096 
4097 	for (i = 0; i < total_vecs; i++) {
4098 		msix_ent[i].entry = i;
4099 		msix_ent[i].vector = 0;
4100 	}
4101 
4102 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4103 		min = 2;
4104 
4105 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4106 	if (total_vecs < 0) {
4107 		rc = -ENODEV;
4108 		goto msix_setup_exit;
4109 	}
4110 
4111 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4112 	if (bp->irq_tbl) {
4113 		int tcs;
4114 
4115 		/* Trim rings based upon num of vectors allocated */
4116 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4117 				     total_vecs, min == 1);
4118 		if (rc)
4119 			goto msix_setup_exit;
4120 
4121 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4122 		tcs = netdev_get_num_tc(dev);
4123 		if (tcs > 1) {
4124 			bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4125 			if (bp->tx_nr_rings_per_tc == 0) {
4126 				netdev_reset_tc(dev);
4127 				bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4128 			} else {
4129 				int i, off, count;
4130 
4131 				bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4132 				for (i = 0; i < tcs; i++) {
4133 					count = bp->tx_nr_rings_per_tc;
4134 					off = i * count;
4135 					netdev_set_tc_queue(dev, i, count, off);
4136 				}
4137 			}
4138 		}
4139 		bp->cp_nr_rings = total_vecs;
4140 
4141 		for (i = 0; i < bp->cp_nr_rings; i++) {
4142 			char *attr;
4143 
4144 			bp->irq_tbl[i].vector = msix_ent[i].vector;
4145 			if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4146 				attr = "TxRx";
4147 			else if (i < bp->rx_nr_rings)
4148 				attr = "rx";
4149 			else
4150 				attr = "tx";
4151 
4152 			snprintf(bp->irq_tbl[i].name, len,
4153 				 "%s-%s-%d", dev->name, attr, i);
4154 			bp->irq_tbl[i].handler = bnxt_msix;
4155 		}
4156 		rc = bnxt_set_real_num_queues(bp);
4157 		if (rc)
4158 			goto msix_setup_exit;
4159 	} else {
4160 		rc = -ENOMEM;
4161 		goto msix_setup_exit;
4162 	}
4163 	bp->flags |= BNXT_FLAG_USING_MSIX;
4164 	kfree(msix_ent);
4165 	return 0;
4166 
4167 msix_setup_exit:
4168 	netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4169 	pci_disable_msix(bp->pdev);
4170 	kfree(msix_ent);
4171 	return rc;
4172 }
4173 
4174 static int bnxt_setup_inta(struct bnxt *bp)
4175 {
4176 	int rc;
4177 	const int len = sizeof(bp->irq_tbl[0].name);
4178 
4179 	if (netdev_get_num_tc(bp->dev))
4180 		netdev_reset_tc(bp->dev);
4181 
4182 	bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4183 	if (!bp->irq_tbl) {
4184 		rc = -ENOMEM;
4185 		return rc;
4186 	}
4187 	bp->rx_nr_rings = 1;
4188 	bp->tx_nr_rings = 1;
4189 	bp->cp_nr_rings = 1;
4190 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4191 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
4192 	bp->irq_tbl[0].vector = bp->pdev->irq;
4193 	snprintf(bp->irq_tbl[0].name, len,
4194 		 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4195 	bp->irq_tbl[0].handler = bnxt_inta;
4196 	rc = bnxt_set_real_num_queues(bp);
4197 	return rc;
4198 }
4199 
4200 static int bnxt_setup_int_mode(struct bnxt *bp)
4201 {
4202 	int rc = 0;
4203 
4204 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
4205 		rc = bnxt_setup_msix(bp);
4206 
4207 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4208 		/* fallback to INTA */
4209 		rc = bnxt_setup_inta(bp);
4210 	}
4211 	return rc;
4212 }
4213 
4214 static void bnxt_free_irq(struct bnxt *bp)
4215 {
4216 	struct bnxt_irq *irq;
4217 	int i;
4218 
4219 #ifdef CONFIG_RFS_ACCEL
4220 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4221 	bp->dev->rx_cpu_rmap = NULL;
4222 #endif
4223 	if (!bp->irq_tbl)
4224 		return;
4225 
4226 	for (i = 0; i < bp->cp_nr_rings; i++) {
4227 		irq = &bp->irq_tbl[i];
4228 		if (irq->requested)
4229 			free_irq(irq->vector, bp->bnapi[i]);
4230 		irq->requested = 0;
4231 	}
4232 	if (bp->flags & BNXT_FLAG_USING_MSIX)
4233 		pci_disable_msix(bp->pdev);
4234 	kfree(bp->irq_tbl);
4235 	bp->irq_tbl = NULL;
4236 }
4237 
4238 static int bnxt_request_irq(struct bnxt *bp)
4239 {
4240 	int i, j, rc = 0;
4241 	unsigned long flags = 0;
4242 #ifdef CONFIG_RFS_ACCEL
4243 	struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4244 #endif
4245 
4246 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4247 		flags = IRQF_SHARED;
4248 
4249 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4250 		struct bnxt_irq *irq = &bp->irq_tbl[i];
4251 #ifdef CONFIG_RFS_ACCEL
4252 		if (rmap && bp->bnapi[i]->rx_ring) {
4253 			rc = irq_cpu_rmap_add(rmap, irq->vector);
4254 			if (rc)
4255 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4256 					    j);
4257 			j++;
4258 		}
4259 #endif
4260 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4261 				 bp->bnapi[i]);
4262 		if (rc)
4263 			break;
4264 
4265 		irq->requested = 1;
4266 	}
4267 	return rc;
4268 }
4269 
4270 static void bnxt_del_napi(struct bnxt *bp)
4271 {
4272 	int i;
4273 
4274 	if (!bp->bnapi)
4275 		return;
4276 
4277 	for (i = 0; i < bp->cp_nr_rings; i++) {
4278 		struct bnxt_napi *bnapi = bp->bnapi[i];
4279 
4280 		napi_hash_del(&bnapi->napi);
4281 		netif_napi_del(&bnapi->napi);
4282 	}
4283 }
4284 
4285 static void bnxt_init_napi(struct bnxt *bp)
4286 {
4287 	int i;
4288 	struct bnxt_napi *bnapi;
4289 
4290 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
4291 		for (i = 0; i < bp->cp_nr_rings; i++) {
4292 			bnapi = bp->bnapi[i];
4293 			netif_napi_add(bp->dev, &bnapi->napi,
4294 				       bnxt_poll, 64);
4295 		}
4296 	} else {
4297 		bnapi = bp->bnapi[0];
4298 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4299 	}
4300 }
4301 
4302 static void bnxt_disable_napi(struct bnxt *bp)
4303 {
4304 	int i;
4305 
4306 	if (!bp->bnapi)
4307 		return;
4308 
4309 	for (i = 0; i < bp->cp_nr_rings; i++) {
4310 		napi_disable(&bp->bnapi[i]->napi);
4311 		bnxt_disable_poll(bp->bnapi[i]);
4312 	}
4313 }
4314 
4315 static void bnxt_enable_napi(struct bnxt *bp)
4316 {
4317 	int i;
4318 
4319 	for (i = 0; i < bp->cp_nr_rings; i++) {
4320 		bnxt_enable_poll(bp->bnapi[i]);
4321 		napi_enable(&bp->bnapi[i]->napi);
4322 	}
4323 }
4324 
4325 static void bnxt_tx_disable(struct bnxt *bp)
4326 {
4327 	int i;
4328 	struct bnxt_tx_ring_info *txr;
4329 	struct netdev_queue *txq;
4330 
4331 	if (bp->tx_ring) {
4332 		for (i = 0; i < bp->tx_nr_rings; i++) {
4333 			txr = &bp->tx_ring[i];
4334 			txq = netdev_get_tx_queue(bp->dev, i);
4335 			__netif_tx_lock(txq, smp_processor_id());
4336 			txr->dev_state = BNXT_DEV_STATE_CLOSING;
4337 			__netif_tx_unlock(txq);
4338 		}
4339 	}
4340 	/* Stop all TX queues */
4341 	netif_tx_disable(bp->dev);
4342 	netif_carrier_off(bp->dev);
4343 }
4344 
4345 static void bnxt_tx_enable(struct bnxt *bp)
4346 {
4347 	int i;
4348 	struct bnxt_tx_ring_info *txr;
4349 	struct netdev_queue *txq;
4350 
4351 	for (i = 0; i < bp->tx_nr_rings; i++) {
4352 		txr = &bp->tx_ring[i];
4353 		txq = netdev_get_tx_queue(bp->dev, i);
4354 		txr->dev_state = 0;
4355 	}
4356 	netif_tx_wake_all_queues(bp->dev);
4357 	if (bp->link_info.link_up)
4358 		netif_carrier_on(bp->dev);
4359 }
4360 
4361 static void bnxt_report_link(struct bnxt *bp)
4362 {
4363 	if (bp->link_info.link_up) {
4364 		const char *duplex;
4365 		const char *flow_ctrl;
4366 		u16 speed;
4367 
4368 		netif_carrier_on(bp->dev);
4369 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4370 			duplex = "full";
4371 		else
4372 			duplex = "half";
4373 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4374 			flow_ctrl = "ON - receive & transmit";
4375 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4376 			flow_ctrl = "ON - transmit";
4377 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4378 			flow_ctrl = "ON - receive";
4379 		else
4380 			flow_ctrl = "none";
4381 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4382 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4383 			    speed, duplex, flow_ctrl);
4384 	} else {
4385 		netif_carrier_off(bp->dev);
4386 		netdev_err(bp->dev, "NIC Link is Down\n");
4387 	}
4388 }
4389 
4390 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4391 {
4392 	int rc = 0;
4393 	struct bnxt_link_info *link_info = &bp->link_info;
4394 	struct hwrm_port_phy_qcfg_input req = {0};
4395 	struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4396 	u8 link_up = link_info->link_up;
4397 
4398 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4399 
4400 	mutex_lock(&bp->hwrm_cmd_lock);
4401 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4402 	if (rc) {
4403 		mutex_unlock(&bp->hwrm_cmd_lock);
4404 		return rc;
4405 	}
4406 
4407 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4408 	link_info->phy_link_status = resp->link;
4409 	link_info->duplex =  resp->duplex;
4410 	link_info->pause = resp->pause;
4411 	link_info->auto_mode = resp->auto_mode;
4412 	link_info->auto_pause_setting = resp->auto_pause;
4413 	link_info->force_pause_setting = resp->force_pause;
4414 	link_info->duplex_setting = resp->duplex;
4415 	if (link_info->phy_link_status == BNXT_LINK_LINK)
4416 		link_info->link_speed = le16_to_cpu(resp->link_speed);
4417 	else
4418 		link_info->link_speed = 0;
4419 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4420 	link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4421 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4422 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4423 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4424 	link_info->phy_ver[0] = resp->phy_maj;
4425 	link_info->phy_ver[1] = resp->phy_min;
4426 	link_info->phy_ver[2] = resp->phy_bld;
4427 	link_info->media_type = resp->media_type;
4428 	link_info->transceiver = resp->transceiver_type;
4429 	link_info->phy_addr = resp->phy_addr;
4430 
4431 	/* TODO: need to add more logic to report VF link */
4432 	if (chng_link_state) {
4433 		if (link_info->phy_link_status == BNXT_LINK_LINK)
4434 			link_info->link_up = 1;
4435 		else
4436 			link_info->link_up = 0;
4437 		if (link_up != link_info->link_up)
4438 			bnxt_report_link(bp);
4439 	} else {
4440 		/* alwasy link down if not require to update link state */
4441 		link_info->link_up = 0;
4442 	}
4443 	mutex_unlock(&bp->hwrm_cmd_lock);
4444 	return 0;
4445 }
4446 
4447 static void
4448 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4449 {
4450 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4451 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4452 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4453 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4454 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4455 		req->enables |=
4456 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4457 	} else {
4458 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4459 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4460 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4461 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4462 		req->enables |=
4463 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4464 	}
4465 }
4466 
4467 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4468 				      struct hwrm_port_phy_cfg_input *req)
4469 {
4470 	u8 autoneg = bp->link_info.autoneg;
4471 	u16 fw_link_speed = bp->link_info.req_link_speed;
4472 	u32 advertising = bp->link_info.advertising;
4473 
4474 	if (autoneg & BNXT_AUTONEG_SPEED) {
4475 		req->auto_mode |=
4476 			PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4477 
4478 		req->enables |= cpu_to_le32(
4479 			PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4480 		req->auto_link_speed_mask = cpu_to_le16(advertising);
4481 
4482 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4483 		req->flags |=
4484 			cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4485 	} else {
4486 		req->force_link_speed = cpu_to_le16(fw_link_speed);
4487 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4488 	}
4489 
4490 	/* currently don't support half duplex */
4491 	req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4492 	req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4493 	/* tell chimp that the setting takes effect immediately */
4494 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4495 }
4496 
4497 int bnxt_hwrm_set_pause(struct bnxt *bp)
4498 {
4499 	struct hwrm_port_phy_cfg_input req = {0};
4500 	int rc;
4501 
4502 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4503 	bnxt_hwrm_set_pause_common(bp, &req);
4504 
4505 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4506 	    bp->link_info.force_link_chng)
4507 		bnxt_hwrm_set_link_common(bp, &req);
4508 
4509 	mutex_lock(&bp->hwrm_cmd_lock);
4510 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4511 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4512 		/* since changing of pause setting doesn't trigger any link
4513 		 * change event, the driver needs to update the current pause
4514 		 * result upon successfully return of the phy_cfg command
4515 		 */
4516 		bp->link_info.pause =
4517 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4518 		bp->link_info.auto_pause_setting = 0;
4519 		if (!bp->link_info.force_link_chng)
4520 			bnxt_report_link(bp);
4521 	}
4522 	bp->link_info.force_link_chng = false;
4523 	mutex_unlock(&bp->hwrm_cmd_lock);
4524 	return rc;
4525 }
4526 
4527 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4528 {
4529 	struct hwrm_port_phy_cfg_input req = {0};
4530 
4531 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4532 	if (set_pause)
4533 		bnxt_hwrm_set_pause_common(bp, &req);
4534 
4535 	bnxt_hwrm_set_link_common(bp, &req);
4536 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4537 }
4538 
4539 static int bnxt_update_phy_setting(struct bnxt *bp)
4540 {
4541 	int rc;
4542 	bool update_link = false;
4543 	bool update_pause = false;
4544 	struct bnxt_link_info *link_info = &bp->link_info;
4545 
4546 	rc = bnxt_update_link(bp, true);
4547 	if (rc) {
4548 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4549 			   rc);
4550 		return rc;
4551 	}
4552 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4553 	    link_info->auto_pause_setting != link_info->req_flow_ctrl)
4554 		update_pause = true;
4555 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4556 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
4557 		update_pause = true;
4558 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4559 		if (BNXT_AUTO_MODE(link_info->auto_mode))
4560 			update_link = true;
4561 		if (link_info->req_link_speed != link_info->force_link_speed)
4562 			update_link = true;
4563 		if (link_info->req_duplex != link_info->duplex_setting)
4564 			update_link = true;
4565 	} else {
4566 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4567 			update_link = true;
4568 		if (link_info->advertising != link_info->auto_link_speeds)
4569 			update_link = true;
4570 	}
4571 
4572 	if (update_link)
4573 		rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4574 	else if (update_pause)
4575 		rc = bnxt_hwrm_set_pause(bp);
4576 	if (rc) {
4577 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4578 			   rc);
4579 		return rc;
4580 	}
4581 
4582 	return rc;
4583 }
4584 
4585 /* Common routine to pre-map certain register block to different GRC window.
4586  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4587  * in PF and 3 windows in VF that can be customized to map in different
4588  * register blocks.
4589  */
4590 static void bnxt_preset_reg_win(struct bnxt *bp)
4591 {
4592 	if (BNXT_PF(bp)) {
4593 		/* CAG registers map to GRC window #4 */
4594 		writel(BNXT_CAG_REG_BASE,
4595 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4596 	}
4597 }
4598 
4599 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4600 {
4601 	int rc = 0;
4602 
4603 	bnxt_preset_reg_win(bp);
4604 	netif_carrier_off(bp->dev);
4605 	if (irq_re_init) {
4606 		rc = bnxt_setup_int_mode(bp);
4607 		if (rc) {
4608 			netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4609 				   rc);
4610 			return rc;
4611 		}
4612 	}
4613 	if ((bp->flags & BNXT_FLAG_RFS) &&
4614 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4615 		/* disable RFS if falling back to INTA */
4616 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4617 		bp->flags &= ~BNXT_FLAG_RFS;
4618 	}
4619 
4620 	rc = bnxt_alloc_mem(bp, irq_re_init);
4621 	if (rc) {
4622 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4623 		goto open_err_free_mem;
4624 	}
4625 
4626 	if (irq_re_init) {
4627 		bnxt_init_napi(bp);
4628 		rc = bnxt_request_irq(bp);
4629 		if (rc) {
4630 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4631 			goto open_err;
4632 		}
4633 	}
4634 
4635 	bnxt_enable_napi(bp);
4636 
4637 	rc = bnxt_init_nic(bp, irq_re_init);
4638 	if (rc) {
4639 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4640 		goto open_err;
4641 	}
4642 
4643 	if (link_re_init) {
4644 		rc = bnxt_update_phy_setting(bp);
4645 		if (rc)
4646 			netdev_warn(bp->dev, "failed to update phy settings\n");
4647 	}
4648 
4649 	if (irq_re_init) {
4650 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4651 		vxlan_get_rx_port(bp->dev);
4652 #endif
4653 		if (!bnxt_hwrm_tunnel_dst_port_alloc(
4654 				bp, htons(0x17c1),
4655 				TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4656 			bp->nge_port_cnt = 1;
4657 	}
4658 
4659 	set_bit(BNXT_STATE_OPEN, &bp->state);
4660 	bnxt_enable_int(bp);
4661 	/* Enable TX queues */
4662 	bnxt_tx_enable(bp);
4663 	mod_timer(&bp->timer, jiffies + bp->current_interval);
4664 	bnxt_update_link(bp, true);
4665 
4666 	return 0;
4667 
4668 open_err:
4669 	bnxt_disable_napi(bp);
4670 	bnxt_del_napi(bp);
4671 
4672 open_err_free_mem:
4673 	bnxt_free_skbs(bp);
4674 	bnxt_free_irq(bp);
4675 	bnxt_free_mem(bp, true);
4676 	return rc;
4677 }
4678 
4679 /* rtnl_lock held */
4680 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4681 {
4682 	int rc = 0;
4683 
4684 	rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4685 	if (rc) {
4686 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4687 		dev_close(bp->dev);
4688 	}
4689 	return rc;
4690 }
4691 
4692 static int bnxt_open(struct net_device *dev)
4693 {
4694 	struct bnxt *bp = netdev_priv(dev);
4695 	int rc = 0;
4696 
4697 	rc = bnxt_hwrm_func_reset(bp);
4698 	if (rc) {
4699 		netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4700 			   rc);
4701 		rc = -1;
4702 		return rc;
4703 	}
4704 	return __bnxt_open_nic(bp, true, true);
4705 }
4706 
4707 static void bnxt_disable_int_sync(struct bnxt *bp)
4708 {
4709 	int i;
4710 
4711 	atomic_inc(&bp->intr_sem);
4712 	if (!netif_running(bp->dev))
4713 		return;
4714 
4715 	bnxt_disable_int(bp);
4716 	for (i = 0; i < bp->cp_nr_rings; i++)
4717 		synchronize_irq(bp->irq_tbl[i].vector);
4718 }
4719 
4720 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4721 {
4722 	int rc = 0;
4723 
4724 #ifdef CONFIG_BNXT_SRIOV
4725 	if (bp->sriov_cfg) {
4726 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4727 						      !bp->sriov_cfg,
4728 						      BNXT_SRIOV_CFG_WAIT_TMO);
4729 		if (rc)
4730 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4731 	}
4732 #endif
4733 	/* Change device state to avoid TX queue wake up's */
4734 	bnxt_tx_disable(bp);
4735 
4736 	clear_bit(BNXT_STATE_OPEN, &bp->state);
4737 	smp_mb__after_atomic();
4738 	while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4739 		msleep(20);
4740 
4741 	/* Flush rings before disabling interrupts */
4742 	bnxt_shutdown_nic(bp, irq_re_init);
4743 
4744 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4745 
4746 	bnxt_disable_napi(bp);
4747 	bnxt_disable_int_sync(bp);
4748 	del_timer_sync(&bp->timer);
4749 	bnxt_free_skbs(bp);
4750 
4751 	if (irq_re_init) {
4752 		bnxt_free_irq(bp);
4753 		bnxt_del_napi(bp);
4754 	}
4755 	bnxt_free_mem(bp, irq_re_init);
4756 	return rc;
4757 }
4758 
4759 static int bnxt_close(struct net_device *dev)
4760 {
4761 	struct bnxt *bp = netdev_priv(dev);
4762 
4763 	bnxt_close_nic(bp, true, true);
4764 	return 0;
4765 }
4766 
4767 /* rtnl_lock held */
4768 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4769 {
4770 	switch (cmd) {
4771 	case SIOCGMIIPHY:
4772 		/* fallthru */
4773 	case SIOCGMIIREG: {
4774 		if (!netif_running(dev))
4775 			return -EAGAIN;
4776 
4777 		return 0;
4778 	}
4779 
4780 	case SIOCSMIIREG:
4781 		if (!netif_running(dev))
4782 			return -EAGAIN;
4783 
4784 		return 0;
4785 
4786 	default:
4787 		/* do nothing */
4788 		break;
4789 	}
4790 	return -EOPNOTSUPP;
4791 }
4792 
4793 static struct rtnl_link_stats64 *
4794 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4795 {
4796 	u32 i;
4797 	struct bnxt *bp = netdev_priv(dev);
4798 
4799 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
4800 
4801 	if (!bp->bnapi)
4802 		return stats;
4803 
4804 	/* TODO check if we need to synchronize with bnxt_close path */
4805 	for (i = 0; i < bp->cp_nr_rings; i++) {
4806 		struct bnxt_napi *bnapi = bp->bnapi[i];
4807 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4808 		struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4809 
4810 		stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4811 		stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4812 		stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4813 
4814 		stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4815 		stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4816 		stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4817 
4818 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4819 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4820 		stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4821 
4822 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4823 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4824 		stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4825 
4826 		stats->rx_missed_errors +=
4827 			le64_to_cpu(hw_stats->rx_discard_pkts);
4828 
4829 		stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4830 
4831 		stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4832 	}
4833 
4834 	return stats;
4835 }
4836 
4837 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4838 {
4839 	struct net_device *dev = bp->dev;
4840 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4841 	struct netdev_hw_addr *ha;
4842 	u8 *haddr;
4843 	int mc_count = 0;
4844 	bool update = false;
4845 	int off = 0;
4846 
4847 	netdev_for_each_mc_addr(ha, dev) {
4848 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
4849 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4850 			vnic->mc_list_count = 0;
4851 			return false;
4852 		}
4853 		haddr = ha->addr;
4854 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4855 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4856 			update = true;
4857 		}
4858 		off += ETH_ALEN;
4859 		mc_count++;
4860 	}
4861 	if (mc_count)
4862 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4863 
4864 	if (mc_count != vnic->mc_list_count) {
4865 		vnic->mc_list_count = mc_count;
4866 		update = true;
4867 	}
4868 	return update;
4869 }
4870 
4871 static bool bnxt_uc_list_updated(struct bnxt *bp)
4872 {
4873 	struct net_device *dev = bp->dev;
4874 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4875 	struct netdev_hw_addr *ha;
4876 	int off = 0;
4877 
4878 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4879 		return true;
4880 
4881 	netdev_for_each_uc_addr(ha, dev) {
4882 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4883 			return true;
4884 
4885 		off += ETH_ALEN;
4886 	}
4887 	return false;
4888 }
4889 
4890 static void bnxt_set_rx_mode(struct net_device *dev)
4891 {
4892 	struct bnxt *bp = netdev_priv(dev);
4893 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4894 	u32 mask = vnic->rx_mask;
4895 	bool mc_update = false;
4896 	bool uc_update;
4897 
4898 	if (!netif_running(dev))
4899 		return;
4900 
4901 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4902 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4903 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4904 
4905 	/* Only allow PF to be in promiscuous mode */
4906 	if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4907 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4908 
4909 	uc_update = bnxt_uc_list_updated(bp);
4910 
4911 	if (dev->flags & IFF_ALLMULTI) {
4912 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4913 		vnic->mc_list_count = 0;
4914 	} else {
4915 		mc_update = bnxt_mc_list_updated(bp, &mask);
4916 	}
4917 
4918 	if (mask != vnic->rx_mask || uc_update || mc_update) {
4919 		vnic->rx_mask = mask;
4920 
4921 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4922 		schedule_work(&bp->sp_task);
4923 	}
4924 }
4925 
4926 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4927 {
4928 	struct net_device *dev = bp->dev;
4929 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4930 	struct netdev_hw_addr *ha;
4931 	int i, off = 0, rc;
4932 	bool uc_update;
4933 
4934 	netif_addr_lock_bh(dev);
4935 	uc_update = bnxt_uc_list_updated(bp);
4936 	netif_addr_unlock_bh(dev);
4937 
4938 	if (!uc_update)
4939 		goto skip_uc;
4940 
4941 	mutex_lock(&bp->hwrm_cmd_lock);
4942 	for (i = 1; i < vnic->uc_filter_count; i++) {
4943 		struct hwrm_cfa_l2_filter_free_input req = {0};
4944 
4945 		bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4946 				       -1);
4947 
4948 		req.l2_filter_id = vnic->fw_l2_filter_id[i];
4949 
4950 		rc = _hwrm_send_message(bp, &req, sizeof(req),
4951 					HWRM_CMD_TIMEOUT);
4952 	}
4953 	mutex_unlock(&bp->hwrm_cmd_lock);
4954 
4955 	vnic->uc_filter_count = 1;
4956 
4957 	netif_addr_lock_bh(dev);
4958 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4959 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4960 	} else {
4961 		netdev_for_each_uc_addr(ha, dev) {
4962 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4963 			off += ETH_ALEN;
4964 			vnic->uc_filter_count++;
4965 		}
4966 	}
4967 	netif_addr_unlock_bh(dev);
4968 
4969 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4970 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4971 		if (rc) {
4972 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4973 				   rc);
4974 			vnic->uc_filter_count = i;
4975 			return rc;
4976 		}
4977 	}
4978 
4979 skip_uc:
4980 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4981 	if (rc)
4982 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4983 			   rc);
4984 
4985 	return rc;
4986 }
4987 
4988 static bool bnxt_rfs_capable(struct bnxt *bp)
4989 {
4990 #ifdef CONFIG_RFS_ACCEL
4991 	struct bnxt_pf_info *pf = &bp->pf;
4992 	int vnics;
4993 
4994 	if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4995 		return false;
4996 
4997 	vnics = 1 + bp->rx_nr_rings;
4998 	if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4999 		return false;
5000 
5001 	return true;
5002 #else
5003 	return false;
5004 #endif
5005 }
5006 
5007 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5008 					   netdev_features_t features)
5009 {
5010 	struct bnxt *bp = netdev_priv(dev);
5011 
5012 	if (!bnxt_rfs_capable(bp))
5013 		features &= ~NETIF_F_NTUPLE;
5014 	return features;
5015 }
5016 
5017 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5018 {
5019 	struct bnxt *bp = netdev_priv(dev);
5020 	u32 flags = bp->flags;
5021 	u32 changes;
5022 	int rc = 0;
5023 	bool re_init = false;
5024 	bool update_tpa = false;
5025 
5026 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5027 	if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5028 		flags |= BNXT_FLAG_GRO;
5029 	if (features & NETIF_F_LRO)
5030 		flags |= BNXT_FLAG_LRO;
5031 
5032 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5033 		flags |= BNXT_FLAG_STRIP_VLAN;
5034 
5035 	if (features & NETIF_F_NTUPLE)
5036 		flags |= BNXT_FLAG_RFS;
5037 
5038 	changes = flags ^ bp->flags;
5039 	if (changes & BNXT_FLAG_TPA) {
5040 		update_tpa = true;
5041 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5042 		    (flags & BNXT_FLAG_TPA) == 0)
5043 			re_init = true;
5044 	}
5045 
5046 	if (changes & ~BNXT_FLAG_TPA)
5047 		re_init = true;
5048 
5049 	if (flags != bp->flags) {
5050 		u32 old_flags = bp->flags;
5051 
5052 		bp->flags = flags;
5053 
5054 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5055 			if (update_tpa)
5056 				bnxt_set_ring_params(bp);
5057 			return rc;
5058 		}
5059 
5060 		if (re_init) {
5061 			bnxt_close_nic(bp, false, false);
5062 			if (update_tpa)
5063 				bnxt_set_ring_params(bp);
5064 
5065 			return bnxt_open_nic(bp, false, false);
5066 		}
5067 		if (update_tpa) {
5068 			rc = bnxt_set_tpa(bp,
5069 					  (flags & BNXT_FLAG_TPA) ?
5070 					  true : false);
5071 			if (rc)
5072 				bp->flags = old_flags;
5073 		}
5074 	}
5075 	return rc;
5076 }
5077 
5078 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5079 {
5080 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5081 	int i = bnapi->index;
5082 
5083 	if (!txr)
5084 		return;
5085 
5086 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5087 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5088 		    txr->tx_cons);
5089 }
5090 
5091 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5092 {
5093 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5094 	int i = bnapi->index;
5095 
5096 	if (!rxr)
5097 		return;
5098 
5099 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5100 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5101 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5102 		    rxr->rx_sw_agg_prod);
5103 }
5104 
5105 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5106 {
5107 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5108 	int i = bnapi->index;
5109 
5110 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5111 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5112 }
5113 
5114 static void bnxt_dbg_dump_states(struct bnxt *bp)
5115 {
5116 	int i;
5117 	struct bnxt_napi *bnapi;
5118 
5119 	for (i = 0; i < bp->cp_nr_rings; i++) {
5120 		bnapi = bp->bnapi[i];
5121 		if (netif_msg_drv(bp)) {
5122 			bnxt_dump_tx_sw_state(bnapi);
5123 			bnxt_dump_rx_sw_state(bnapi);
5124 			bnxt_dump_cp_sw_state(bnapi);
5125 		}
5126 	}
5127 }
5128 
5129 static void bnxt_reset_task(struct bnxt *bp)
5130 {
5131 	bnxt_dbg_dump_states(bp);
5132 	if (netif_running(bp->dev)) {
5133 		bnxt_close_nic(bp, false, false);
5134 		bnxt_open_nic(bp, false, false);
5135 	}
5136 }
5137 
5138 static void bnxt_tx_timeout(struct net_device *dev)
5139 {
5140 	struct bnxt *bp = netdev_priv(dev);
5141 
5142 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
5143 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5144 	schedule_work(&bp->sp_task);
5145 }
5146 
5147 #ifdef CONFIG_NET_POLL_CONTROLLER
5148 static void bnxt_poll_controller(struct net_device *dev)
5149 {
5150 	struct bnxt *bp = netdev_priv(dev);
5151 	int i;
5152 
5153 	for (i = 0; i < bp->cp_nr_rings; i++) {
5154 		struct bnxt_irq *irq = &bp->irq_tbl[i];
5155 
5156 		disable_irq(irq->vector);
5157 		irq->handler(irq->vector, bp->bnapi[i]);
5158 		enable_irq(irq->vector);
5159 	}
5160 }
5161 #endif
5162 
5163 static void bnxt_timer(unsigned long data)
5164 {
5165 	struct bnxt *bp = (struct bnxt *)data;
5166 	struct net_device *dev = bp->dev;
5167 
5168 	if (!netif_running(dev))
5169 		return;
5170 
5171 	if (atomic_read(&bp->intr_sem) != 0)
5172 		goto bnxt_restart_timer;
5173 
5174 bnxt_restart_timer:
5175 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5176 }
5177 
5178 static void bnxt_cfg_ntp_filters(struct bnxt *);
5179 
5180 static void bnxt_sp_task(struct work_struct *work)
5181 {
5182 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5183 	int rc;
5184 
5185 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5186 	smp_mb__after_atomic();
5187 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5188 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5189 		return;
5190 	}
5191 
5192 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5193 		bnxt_cfg_rx_mode(bp);
5194 
5195 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5196 		bnxt_cfg_ntp_filters(bp);
5197 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5198 		rc = bnxt_update_link(bp, true);
5199 		if (rc)
5200 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5201 				   rc);
5202 	}
5203 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5204 		bnxt_hwrm_exec_fwd_req(bp);
5205 	if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5206 		bnxt_hwrm_tunnel_dst_port_alloc(
5207 			bp, bp->vxlan_port,
5208 			TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5209 	}
5210 	if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5211 		bnxt_hwrm_tunnel_dst_port_free(
5212 			bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5213 	}
5214 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5215 		/* bnxt_reset_task() calls bnxt_close_nic() which waits
5216 		 * for BNXT_STATE_IN_SP_TASK to clear.
5217 		 */
5218 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5219 		rtnl_lock();
5220 		bnxt_reset_task(bp);
5221 		set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5222 		rtnl_unlock();
5223 	}
5224 
5225 	smp_mb__before_atomic();
5226 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5227 }
5228 
5229 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5230 {
5231 	int rc;
5232 	struct bnxt *bp = netdev_priv(dev);
5233 
5234 	SET_NETDEV_DEV(dev, &pdev->dev);
5235 
5236 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
5237 	rc = pci_enable_device(pdev);
5238 	if (rc) {
5239 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5240 		goto init_err;
5241 	}
5242 
5243 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5244 		dev_err(&pdev->dev,
5245 			"Cannot find PCI device base address, aborting\n");
5246 		rc = -ENODEV;
5247 		goto init_err_disable;
5248 	}
5249 
5250 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5251 	if (rc) {
5252 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5253 		goto init_err_disable;
5254 	}
5255 
5256 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5257 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5258 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5259 		goto init_err_disable;
5260 	}
5261 
5262 	pci_set_master(pdev);
5263 
5264 	bp->dev = dev;
5265 	bp->pdev = pdev;
5266 
5267 	bp->bar0 = pci_ioremap_bar(pdev, 0);
5268 	if (!bp->bar0) {
5269 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5270 		rc = -ENOMEM;
5271 		goto init_err_release;
5272 	}
5273 
5274 	bp->bar1 = pci_ioremap_bar(pdev, 2);
5275 	if (!bp->bar1) {
5276 		dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5277 		rc = -ENOMEM;
5278 		goto init_err_release;
5279 	}
5280 
5281 	bp->bar2 = pci_ioremap_bar(pdev, 4);
5282 	if (!bp->bar2) {
5283 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5284 		rc = -ENOMEM;
5285 		goto init_err_release;
5286 	}
5287 
5288 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
5289 
5290 	spin_lock_init(&bp->ntp_fltr_lock);
5291 
5292 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5293 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5294 
5295 	bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5296 	bp->coal_bufs = 20;
5297 	bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5298 	bp->coal_bufs_irq = 2;
5299 
5300 	init_timer(&bp->timer);
5301 	bp->timer.data = (unsigned long)bp;
5302 	bp->timer.function = bnxt_timer;
5303 	bp->current_interval = BNXT_TIMER_INTERVAL;
5304 
5305 	clear_bit(BNXT_STATE_OPEN, &bp->state);
5306 
5307 	return 0;
5308 
5309 init_err_release:
5310 	if (bp->bar2) {
5311 		pci_iounmap(pdev, bp->bar2);
5312 		bp->bar2 = NULL;
5313 	}
5314 
5315 	if (bp->bar1) {
5316 		pci_iounmap(pdev, bp->bar1);
5317 		bp->bar1 = NULL;
5318 	}
5319 
5320 	if (bp->bar0) {
5321 		pci_iounmap(pdev, bp->bar0);
5322 		bp->bar0 = NULL;
5323 	}
5324 
5325 	pci_release_regions(pdev);
5326 
5327 init_err_disable:
5328 	pci_disable_device(pdev);
5329 
5330 init_err:
5331 	return rc;
5332 }
5333 
5334 /* rtnl_lock held */
5335 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5336 {
5337 	struct sockaddr *addr = p;
5338 	struct bnxt *bp = netdev_priv(dev);
5339 	int rc = 0;
5340 
5341 	if (!is_valid_ether_addr(addr->sa_data))
5342 		return -EADDRNOTAVAIL;
5343 
5344 #ifdef CONFIG_BNXT_SRIOV
5345 	if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5346 		return -EADDRNOTAVAIL;
5347 #endif
5348 
5349 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5350 		return 0;
5351 
5352 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5353 	if (netif_running(dev)) {
5354 		bnxt_close_nic(bp, false, false);
5355 		rc = bnxt_open_nic(bp, false, false);
5356 	}
5357 
5358 	return rc;
5359 }
5360 
5361 /* rtnl_lock held */
5362 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5363 {
5364 	struct bnxt *bp = netdev_priv(dev);
5365 
5366 	if (new_mtu < 60 || new_mtu > 9000)
5367 		return -EINVAL;
5368 
5369 	if (netif_running(dev))
5370 		bnxt_close_nic(bp, false, false);
5371 
5372 	dev->mtu = new_mtu;
5373 	bnxt_set_ring_params(bp);
5374 
5375 	if (netif_running(dev))
5376 		return bnxt_open_nic(bp, false, false);
5377 
5378 	return 0;
5379 }
5380 
5381 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5382 {
5383 	struct bnxt *bp = netdev_priv(dev);
5384 
5385 	if (tc > bp->max_tc) {
5386 		netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5387 			   tc, bp->max_tc);
5388 		return -EINVAL;
5389 	}
5390 
5391 	if (netdev_get_num_tc(dev) == tc)
5392 		return 0;
5393 
5394 	if (tc) {
5395 		int max_rx_rings, max_tx_rings, rc;
5396 		bool sh = false;
5397 
5398 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5399 			sh = true;
5400 
5401 		rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5402 		if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5403 			return -ENOMEM;
5404 	}
5405 
5406 	/* Needs to close the device and do hw resource re-allocations */
5407 	if (netif_running(bp->dev))
5408 		bnxt_close_nic(bp, true, false);
5409 
5410 	if (tc) {
5411 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5412 		netdev_set_num_tc(dev, tc);
5413 	} else {
5414 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5415 		netdev_reset_tc(dev);
5416 	}
5417 	bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5418 	bp->num_stat_ctxs = bp->cp_nr_rings;
5419 
5420 	if (netif_running(bp->dev))
5421 		return bnxt_open_nic(bp, true, false);
5422 
5423 	return 0;
5424 }
5425 
5426 #ifdef CONFIG_RFS_ACCEL
5427 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5428 			    struct bnxt_ntuple_filter *f2)
5429 {
5430 	struct flow_keys *keys1 = &f1->fkeys;
5431 	struct flow_keys *keys2 = &f2->fkeys;
5432 
5433 	if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5434 	    keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5435 	    keys1->ports.ports == keys2->ports.ports &&
5436 	    keys1->basic.ip_proto == keys2->basic.ip_proto &&
5437 	    keys1->basic.n_proto == keys2->basic.n_proto &&
5438 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5439 		return true;
5440 
5441 	return false;
5442 }
5443 
5444 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5445 			      u16 rxq_index, u32 flow_id)
5446 {
5447 	struct bnxt *bp = netdev_priv(dev);
5448 	struct bnxt_ntuple_filter *fltr, *new_fltr;
5449 	struct flow_keys *fkeys;
5450 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5451 	int rc = 0, idx, bit_id;
5452 	struct hlist_head *head;
5453 
5454 	if (skb->encapsulation)
5455 		return -EPROTONOSUPPORT;
5456 
5457 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5458 	if (!new_fltr)
5459 		return -ENOMEM;
5460 
5461 	fkeys = &new_fltr->fkeys;
5462 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5463 		rc = -EPROTONOSUPPORT;
5464 		goto err_free;
5465 	}
5466 
5467 	if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5468 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5469 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5470 		rc = -EPROTONOSUPPORT;
5471 		goto err_free;
5472 	}
5473 
5474 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5475 
5476 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5477 	head = &bp->ntp_fltr_hash_tbl[idx];
5478 	rcu_read_lock();
5479 	hlist_for_each_entry_rcu(fltr, head, hash) {
5480 		if (bnxt_fltr_match(fltr, new_fltr)) {
5481 			rcu_read_unlock();
5482 			rc = 0;
5483 			goto err_free;
5484 		}
5485 	}
5486 	rcu_read_unlock();
5487 
5488 	spin_lock_bh(&bp->ntp_fltr_lock);
5489 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5490 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
5491 	if (bit_id < 0) {
5492 		spin_unlock_bh(&bp->ntp_fltr_lock);
5493 		rc = -ENOMEM;
5494 		goto err_free;
5495 	}
5496 
5497 	new_fltr->sw_id = (u16)bit_id;
5498 	new_fltr->flow_id = flow_id;
5499 	new_fltr->rxq = rxq_index;
5500 	hlist_add_head_rcu(&new_fltr->hash, head);
5501 	bp->ntp_fltr_count++;
5502 	spin_unlock_bh(&bp->ntp_fltr_lock);
5503 
5504 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5505 	schedule_work(&bp->sp_task);
5506 
5507 	return new_fltr->sw_id;
5508 
5509 err_free:
5510 	kfree(new_fltr);
5511 	return rc;
5512 }
5513 
5514 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5515 {
5516 	int i;
5517 
5518 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5519 		struct hlist_head *head;
5520 		struct hlist_node *tmp;
5521 		struct bnxt_ntuple_filter *fltr;
5522 		int rc;
5523 
5524 		head = &bp->ntp_fltr_hash_tbl[i];
5525 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5526 			bool del = false;
5527 
5528 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5529 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
5530 							fltr->flow_id,
5531 							fltr->sw_id)) {
5532 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
5533 									 fltr);
5534 					del = true;
5535 				}
5536 			} else {
5537 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5538 								       fltr);
5539 				if (rc)
5540 					del = true;
5541 				else
5542 					set_bit(BNXT_FLTR_VALID, &fltr->state);
5543 			}
5544 
5545 			if (del) {
5546 				spin_lock_bh(&bp->ntp_fltr_lock);
5547 				hlist_del_rcu(&fltr->hash);
5548 				bp->ntp_fltr_count--;
5549 				spin_unlock_bh(&bp->ntp_fltr_lock);
5550 				synchronize_rcu();
5551 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5552 				kfree(fltr);
5553 			}
5554 		}
5555 	}
5556 }
5557 
5558 #else
5559 
5560 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5561 {
5562 }
5563 
5564 #endif /* CONFIG_RFS_ACCEL */
5565 
5566 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5567 				__be16 port)
5568 {
5569 	struct bnxt *bp = netdev_priv(dev);
5570 
5571 	if (!netif_running(dev))
5572 		return;
5573 
5574 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5575 		return;
5576 
5577 	if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5578 		return;
5579 
5580 	bp->vxlan_port_cnt++;
5581 	if (bp->vxlan_port_cnt == 1) {
5582 		bp->vxlan_port = port;
5583 		set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5584 		schedule_work(&bp->sp_task);
5585 	}
5586 }
5587 
5588 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5589 				__be16 port)
5590 {
5591 	struct bnxt *bp = netdev_priv(dev);
5592 
5593 	if (!netif_running(dev))
5594 		return;
5595 
5596 	if (sa_family != AF_INET6 && sa_family != AF_INET)
5597 		return;
5598 
5599 	if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5600 		bp->vxlan_port_cnt--;
5601 
5602 		if (bp->vxlan_port_cnt == 0) {
5603 			set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5604 			schedule_work(&bp->sp_task);
5605 		}
5606 	}
5607 }
5608 
5609 static const struct net_device_ops bnxt_netdev_ops = {
5610 	.ndo_open		= bnxt_open,
5611 	.ndo_start_xmit		= bnxt_start_xmit,
5612 	.ndo_stop		= bnxt_close,
5613 	.ndo_get_stats64	= bnxt_get_stats64,
5614 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
5615 	.ndo_do_ioctl		= bnxt_ioctl,
5616 	.ndo_validate_addr	= eth_validate_addr,
5617 	.ndo_set_mac_address	= bnxt_change_mac_addr,
5618 	.ndo_change_mtu		= bnxt_change_mtu,
5619 	.ndo_fix_features	= bnxt_fix_features,
5620 	.ndo_set_features	= bnxt_set_features,
5621 	.ndo_tx_timeout		= bnxt_tx_timeout,
5622 #ifdef CONFIG_BNXT_SRIOV
5623 	.ndo_get_vf_config	= bnxt_get_vf_config,
5624 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
5625 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
5626 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
5627 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
5628 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
5629 #endif
5630 #ifdef CONFIG_NET_POLL_CONTROLLER
5631 	.ndo_poll_controller	= bnxt_poll_controller,
5632 #endif
5633 	.ndo_setup_tc           = bnxt_setup_tc,
5634 #ifdef CONFIG_RFS_ACCEL
5635 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
5636 #endif
5637 	.ndo_add_vxlan_port	= bnxt_add_vxlan_port,
5638 	.ndo_del_vxlan_port	= bnxt_del_vxlan_port,
5639 #ifdef CONFIG_NET_RX_BUSY_POLL
5640 	.ndo_busy_poll		= bnxt_busy_poll,
5641 #endif
5642 };
5643 
5644 static void bnxt_remove_one(struct pci_dev *pdev)
5645 {
5646 	struct net_device *dev = pci_get_drvdata(pdev);
5647 	struct bnxt *bp = netdev_priv(dev);
5648 
5649 	if (BNXT_PF(bp))
5650 		bnxt_sriov_disable(bp);
5651 
5652 	unregister_netdev(dev);
5653 	cancel_work_sync(&bp->sp_task);
5654 	bp->sp_event = 0;
5655 
5656 	bnxt_hwrm_func_drv_unrgtr(bp);
5657 	bnxt_free_hwrm_resources(bp);
5658 	pci_iounmap(pdev, bp->bar2);
5659 	pci_iounmap(pdev, bp->bar1);
5660 	pci_iounmap(pdev, bp->bar0);
5661 	free_netdev(dev);
5662 
5663 	pci_release_regions(pdev);
5664 	pci_disable_device(pdev);
5665 }
5666 
5667 static int bnxt_probe_phy(struct bnxt *bp)
5668 {
5669 	int rc = 0;
5670 	struct bnxt_link_info *link_info = &bp->link_info;
5671 	char phy_ver[PHY_VER_STR_LEN];
5672 
5673 	rc = bnxt_update_link(bp, false);
5674 	if (rc) {
5675 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5676 			   rc);
5677 		return rc;
5678 	}
5679 
5680 	/*initialize the ethool setting copy with NVM settings */
5681 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5682 		link_info->autoneg = BNXT_AUTONEG_SPEED |
5683 				     BNXT_AUTONEG_FLOW_CTRL;
5684 		link_info->advertising = link_info->auto_link_speeds;
5685 		link_info->req_flow_ctrl = link_info->auto_pause_setting;
5686 	} else {
5687 		link_info->req_link_speed = link_info->force_link_speed;
5688 		link_info->req_duplex = link_info->duplex_setting;
5689 		link_info->req_flow_ctrl = link_info->force_pause_setting;
5690 	}
5691 	snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5692 		 link_info->phy_ver[0],
5693 		 link_info->phy_ver[1],
5694 		 link_info->phy_ver[2]);
5695 	strcat(bp->fw_ver_str, phy_ver);
5696 	return rc;
5697 }
5698 
5699 static int bnxt_get_max_irq(struct pci_dev *pdev)
5700 {
5701 	u16 ctrl;
5702 
5703 	if (!pdev->msix_cap)
5704 		return 1;
5705 
5706 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5707 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5708 }
5709 
5710 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5711 				int *max_cp)
5712 {
5713 	int max_ring_grps = 0;
5714 
5715 #ifdef CONFIG_BNXT_SRIOV
5716 	if (!BNXT_PF(bp)) {
5717 		*max_tx = bp->vf.max_tx_rings;
5718 		*max_rx = bp->vf.max_rx_rings;
5719 		*max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5720 		*max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5721 		max_ring_grps = bp->vf.max_hw_ring_grps;
5722 	} else
5723 #endif
5724 	{
5725 		*max_tx = bp->pf.max_tx_rings;
5726 		*max_rx = bp->pf.max_rx_rings;
5727 		*max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5728 		*max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5729 		max_ring_grps = bp->pf.max_hw_ring_grps;
5730 	}
5731 
5732 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
5733 		*max_rx >>= 1;
5734 	*max_rx = min_t(int, *max_rx, max_ring_grps);
5735 }
5736 
5737 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5738 {
5739 	int rx, tx, cp;
5740 
5741 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
5742 	if (!rx || !tx || !cp)
5743 		return -ENOMEM;
5744 
5745 	*max_rx = rx;
5746 	*max_tx = tx;
5747 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5748 }
5749 
5750 static int bnxt_set_dflt_rings(struct bnxt *bp)
5751 {
5752 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
5753 	bool sh = true;
5754 
5755 	if (sh)
5756 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
5757 	dflt_rings = netif_get_num_default_rss_queues();
5758 	rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5759 	if (rc)
5760 		return rc;
5761 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5762 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5763 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5764 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5765 			       bp->tx_nr_rings + bp->rx_nr_rings;
5766 	bp->num_stat_ctxs = bp->cp_nr_rings;
5767 	return rc;
5768 }
5769 
5770 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5771 {
5772 	static int version_printed;
5773 	struct net_device *dev;
5774 	struct bnxt *bp;
5775 	int rc, max_irqs;
5776 
5777 	if (version_printed++ == 0)
5778 		pr_info("%s", version);
5779 
5780 	max_irqs = bnxt_get_max_irq(pdev);
5781 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5782 	if (!dev)
5783 		return -ENOMEM;
5784 
5785 	bp = netdev_priv(dev);
5786 
5787 	if (bnxt_vf_pciid(ent->driver_data))
5788 		bp->flags |= BNXT_FLAG_VF;
5789 
5790 	if (pdev->msix_cap)
5791 		bp->flags |= BNXT_FLAG_MSIX_CAP;
5792 
5793 	rc = bnxt_init_board(pdev, dev);
5794 	if (rc < 0)
5795 		goto init_err_free;
5796 
5797 	dev->netdev_ops = &bnxt_netdev_ops;
5798 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5799 	dev->ethtool_ops = &bnxt_ethtool_ops;
5800 
5801 	pci_set_drvdata(pdev, dev);
5802 
5803 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5804 			   NETIF_F_TSO | NETIF_F_TSO6 |
5805 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5806 			   NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5807 			   NETIF_F_RXHASH |
5808 			   NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5809 
5810 	dev->hw_enc_features =
5811 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5812 			NETIF_F_TSO | NETIF_F_TSO6 |
5813 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5814 			NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5815 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5816 	dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5817 			    NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5818 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5819 	dev->priv_flags |= IFF_UNICAST_FLT;
5820 
5821 #ifdef CONFIG_BNXT_SRIOV
5822 	init_waitqueue_head(&bp->sriov_cfg_wait);
5823 #endif
5824 	rc = bnxt_alloc_hwrm_resources(bp);
5825 	if (rc)
5826 		goto init_err;
5827 
5828 	mutex_init(&bp->hwrm_cmd_lock);
5829 	bnxt_hwrm_ver_get(bp);
5830 
5831 	rc = bnxt_hwrm_func_drv_rgtr(bp);
5832 	if (rc)
5833 		goto init_err;
5834 
5835 	/* Get the MAX capabilities for this function */
5836 	rc = bnxt_hwrm_func_qcaps(bp);
5837 	if (rc) {
5838 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5839 			   rc);
5840 		rc = -1;
5841 		goto init_err;
5842 	}
5843 
5844 	rc = bnxt_hwrm_queue_qportcfg(bp);
5845 	if (rc) {
5846 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5847 			   rc);
5848 		rc = -1;
5849 		goto init_err;
5850 	}
5851 
5852 	bnxt_set_tpa_flags(bp);
5853 	bnxt_set_ring_params(bp);
5854 	if (BNXT_PF(bp))
5855 		bp->pf.max_irqs = max_irqs;
5856 #if defined(CONFIG_BNXT_SRIOV)
5857 	else
5858 		bp->vf.max_irqs = max_irqs;
5859 #endif
5860 	bnxt_set_dflt_rings(bp);
5861 
5862 	if (BNXT_PF(bp)) {
5863 		dev->hw_features |= NETIF_F_NTUPLE;
5864 		if (bnxt_rfs_capable(bp)) {
5865 			bp->flags |= BNXT_FLAG_RFS;
5866 			dev->features |= NETIF_F_NTUPLE;
5867 		}
5868 	}
5869 
5870 	if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5871 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
5872 
5873 	rc = bnxt_probe_phy(bp);
5874 	if (rc)
5875 		goto init_err;
5876 
5877 	rc = register_netdev(dev);
5878 	if (rc)
5879 		goto init_err;
5880 
5881 	netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5882 		    board_info[ent->driver_data].name,
5883 		    (long)pci_resource_start(pdev, 0), dev->dev_addr);
5884 
5885 	return 0;
5886 
5887 init_err:
5888 	pci_iounmap(pdev, bp->bar0);
5889 	pci_release_regions(pdev);
5890 	pci_disable_device(pdev);
5891 
5892 init_err_free:
5893 	free_netdev(dev);
5894 	return rc;
5895 }
5896 
5897 static struct pci_driver bnxt_pci_driver = {
5898 	.name		= DRV_MODULE_NAME,
5899 	.id_table	= bnxt_pci_tbl,
5900 	.probe		= bnxt_init_one,
5901 	.remove		= bnxt_remove_one,
5902 #if defined(CONFIG_BNXT_SRIOV)
5903 	.sriov_configure = bnxt_sriov_configure,
5904 #endif
5905 };
5906 
5907 module_pci_driver(bnxt_pci_driver);
5908