1 /* bnx2x_main.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/kernel.h> 25 #include <linux/device.h> /* for dev_info() */ 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/ioport.h> 29 #include <linux/slab.h> 30 #include <linux/interrupt.h> 31 #include <linux/pci.h> 32 #include <linux/aer.h> 33 #include <linux/init.h> 34 #include <linux/netdevice.h> 35 #include <linux/etherdevice.h> 36 #include <linux/skbuff.h> 37 #include <linux/dma-mapping.h> 38 #include <linux/bitops.h> 39 #include <linux/irq.h> 40 #include <linux/delay.h> 41 #include <asm/byteorder.h> 42 #include <linux/time.h> 43 #include <linux/ethtool.h> 44 #include <linux/mii.h> 45 #include <linux/if_vlan.h> 46 #include <linux/crash_dump.h> 47 #include <net/ip.h> 48 #include <net/ipv6.h> 49 #include <net/tcp.h> 50 #include <net/vxlan.h> 51 #include <net/checksum.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/workqueue.h> 54 #include <linux/crc32.h> 55 #include <linux/crc32c.h> 56 #include <linux/prefetch.h> 57 #include <linux/zlib.h> 58 #include <linux/io.h> 59 #include <linux/semaphore.h> 60 #include <linux/stringify.h> 61 #include <linux/vmalloc.h> 62 63 #include "bnx2x.h" 64 #include "bnx2x_init.h" 65 #include "bnx2x_init_ops.h" 66 #include "bnx2x_cmn.h" 67 #include "bnx2x_vfpf.h" 68 #include "bnx2x_dcb.h" 69 #include "bnx2x_sp.h" 70 #include <linux/firmware.h> 71 #include "bnx2x_fw_file_hdr.h" 72 /* FW files */ 73 #define FW_FILE_VERSION \ 74 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \ 75 __stringify(BCM_5710_FW_MINOR_VERSION) "." \ 76 __stringify(BCM_5710_FW_REVISION_VERSION) "." \ 77 __stringify(BCM_5710_FW_ENGINEERING_VERSION) 78 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" 79 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" 80 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" 81 82 /* Time in jiffies before concluding the transmitter is hung */ 83 #define TX_TIMEOUT (5*HZ) 84 85 static char version[] = 86 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver " 87 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 88 89 MODULE_AUTHOR("Eliezer Tamir"); 90 MODULE_DESCRIPTION("QLogic " 91 "BCM57710/57711/57711E/" 92 "57712/57712_MF/57800/57800_MF/57810/57810_MF/" 93 "57840/57840_MF Driver"); 94 MODULE_LICENSE("GPL"); 95 MODULE_VERSION(DRV_MODULE_VERSION); 96 MODULE_FIRMWARE(FW_FILE_NAME_E1); 97 MODULE_FIRMWARE(FW_FILE_NAME_E1H); 98 MODULE_FIRMWARE(FW_FILE_NAME_E2); 99 100 int bnx2x_num_queues; 101 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO); 102 MODULE_PARM_DESC(num_queues, 103 " Set number of queues (default is as a number of CPUs)"); 104 105 static int disable_tpa; 106 module_param(disable_tpa, int, S_IRUGO); 107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); 108 109 static int int_mode; 110 module_param(int_mode, int, S_IRUGO); 111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " 112 "(1 INT#x; 2 MSI)"); 113 114 static int dropless_fc; 115 module_param(dropless_fc, int, S_IRUGO); 116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); 117 118 static int mrrs = -1; 119 module_param(mrrs, int, S_IRUGO); 120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); 121 122 static int debug; 123 module_param(debug, int, S_IRUGO); 124 MODULE_PARM_DESC(debug, " Default debug msglevel"); 125 126 static struct workqueue_struct *bnx2x_wq; 127 struct workqueue_struct *bnx2x_iov_wq; 128 129 struct bnx2x_mac_vals { 130 u32 xmac_addr; 131 u32 xmac_val; 132 u32 emac_addr; 133 u32 emac_val; 134 u32 umac_addr[2]; 135 u32 umac_val[2]; 136 u32 bmac_addr; 137 u32 bmac_val[2]; 138 }; 139 140 enum bnx2x_board_type { 141 BCM57710 = 0, 142 BCM57711, 143 BCM57711E, 144 BCM57712, 145 BCM57712_MF, 146 BCM57712_VF, 147 BCM57800, 148 BCM57800_MF, 149 BCM57800_VF, 150 BCM57810, 151 BCM57810_MF, 152 BCM57810_VF, 153 BCM57840_4_10, 154 BCM57840_2_20, 155 BCM57840_MF, 156 BCM57840_VF, 157 BCM57811, 158 BCM57811_MF, 159 BCM57840_O, 160 BCM57840_MFO, 161 BCM57811_VF 162 }; 163 164 /* indexed by board_type, above */ 165 static struct { 166 char *name; 167 } board_info[] = { 168 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" }, 169 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" }, 170 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" }, 171 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" }, 172 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" }, 173 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" }, 174 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" }, 175 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" }, 176 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" }, 177 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" }, 178 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" }, 179 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" }, 180 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" }, 181 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" }, 182 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 183 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }, 184 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" }, 185 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" }, 186 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" }, 187 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" }, 188 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" } 189 }; 190 191 #ifndef PCI_DEVICE_ID_NX2_57710 192 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710 193 #endif 194 #ifndef PCI_DEVICE_ID_NX2_57711 195 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711 196 #endif 197 #ifndef PCI_DEVICE_ID_NX2_57711E 198 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E 199 #endif 200 #ifndef PCI_DEVICE_ID_NX2_57712 201 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712 202 #endif 203 #ifndef PCI_DEVICE_ID_NX2_57712_MF 204 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF 205 #endif 206 #ifndef PCI_DEVICE_ID_NX2_57712_VF 207 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF 208 #endif 209 #ifndef PCI_DEVICE_ID_NX2_57800 210 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800 211 #endif 212 #ifndef PCI_DEVICE_ID_NX2_57800_MF 213 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF 214 #endif 215 #ifndef PCI_DEVICE_ID_NX2_57800_VF 216 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF 217 #endif 218 #ifndef PCI_DEVICE_ID_NX2_57810 219 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810 220 #endif 221 #ifndef PCI_DEVICE_ID_NX2_57810_MF 222 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF 223 #endif 224 #ifndef PCI_DEVICE_ID_NX2_57840_O 225 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE 226 #endif 227 #ifndef PCI_DEVICE_ID_NX2_57810_VF 228 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF 229 #endif 230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10 231 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10 232 #endif 233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20 234 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20 235 #endif 236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO 237 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE 238 #endif 239 #ifndef PCI_DEVICE_ID_NX2_57840_MF 240 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF 241 #endif 242 #ifndef PCI_DEVICE_ID_NX2_57840_VF 243 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF 244 #endif 245 #ifndef PCI_DEVICE_ID_NX2_57811 246 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811 247 #endif 248 #ifndef PCI_DEVICE_ID_NX2_57811_MF 249 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF 250 #endif 251 #ifndef PCI_DEVICE_ID_NX2_57811_VF 252 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF 253 #endif 254 255 static const struct pci_device_id bnx2x_pci_tbl[] = { 256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, 257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, 258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, 259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, 260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, 261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, 262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, 263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, 264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, 265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, 266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, 267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, 268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 269 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, 270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, 271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, 272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, 273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 274 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, 275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 276 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, 277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, 278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, 279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, 280 { 0 } 281 }; 282 283 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); 284 285 /* Global resources for unloading a previously loaded device */ 286 #define BNX2X_PREV_WAIT_NEEDED 1 287 static DEFINE_SEMAPHORE(bnx2x_prev_sem); 288 static LIST_HEAD(bnx2x_prev_list); 289 290 /* Forward declaration */ 291 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev); 292 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); 293 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); 294 295 /**************************************************************************** 296 * General service functions 297 ****************************************************************************/ 298 299 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); 300 301 static void __storm_memset_dma_mapping(struct bnx2x *bp, 302 u32 addr, dma_addr_t mapping) 303 { 304 REG_WR(bp, addr, U64_LO(mapping)); 305 REG_WR(bp, addr + 4, U64_HI(mapping)); 306 } 307 308 static void storm_memset_spq_addr(struct bnx2x *bp, 309 dma_addr_t mapping, u16 abs_fid) 310 { 311 u32 addr = XSEM_REG_FAST_MEMORY + 312 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); 313 314 __storm_memset_dma_mapping(bp, addr, mapping); 315 } 316 317 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid, 318 u16 pf_id) 319 { 320 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), 321 pf_id); 322 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), 323 pf_id); 324 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), 325 pf_id); 326 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), 327 pf_id); 328 } 329 330 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid, 331 u8 enable) 332 { 333 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), 334 enable); 335 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), 336 enable); 337 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), 338 enable); 339 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), 340 enable); 341 } 342 343 static void storm_memset_eq_data(struct bnx2x *bp, 344 struct event_ring_data *eq_data, 345 u16 pfid) 346 { 347 size_t size = sizeof(struct event_ring_data); 348 349 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); 350 351 __storm_memset_struct(bp, addr, size, (u32 *)eq_data); 352 } 353 354 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod, 355 u16 pfid) 356 { 357 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); 358 REG_WR16(bp, addr, eq_prod); 359 } 360 361 /* used only at init 362 * locking is done by mcp 363 */ 364 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val) 365 { 366 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 367 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); 368 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 369 PCICFG_VENDOR_ID_OFFSET); 370 } 371 372 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr) 373 { 374 u32 val; 375 376 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); 377 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); 378 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 379 PCICFG_VENDOR_ID_OFFSET); 380 381 return val; 382 } 383 384 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]" 385 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]" 386 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]" 387 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]" 388 #define DMAE_DP_DST_NONE "dst_addr [none]" 389 390 static void bnx2x_dp_dmae(struct bnx2x *bp, 391 struct dmae_command *dmae, int msglvl) 392 { 393 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC; 394 int i; 395 396 switch (dmae->opcode & DMAE_COMMAND_DST) { 397 case DMAE_CMD_DST_PCI: 398 if (src_type == DMAE_CMD_SRC_PCI) 399 DP(msglvl, "DMAE: opcode 0x%08x\n" 400 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" 401 "comp_addr [%x:%08x], comp_val 0x%08x\n", 402 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 403 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 404 dmae->comp_addr_hi, dmae->comp_addr_lo, 405 dmae->comp_val); 406 else 407 DP(msglvl, "DMAE: opcode 0x%08x\n" 408 "src [%08x], len [%d*4], dst [%x:%08x]\n" 409 "comp_addr [%x:%08x], comp_val 0x%08x\n", 410 dmae->opcode, dmae->src_addr_lo >> 2, 411 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, 412 dmae->comp_addr_hi, dmae->comp_addr_lo, 413 dmae->comp_val); 414 break; 415 case DMAE_CMD_DST_GRC: 416 if (src_type == DMAE_CMD_SRC_PCI) 417 DP(msglvl, "DMAE: opcode 0x%08x\n" 418 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" 419 "comp_addr [%x:%08x], comp_val 0x%08x\n", 420 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 421 dmae->len, dmae->dst_addr_lo >> 2, 422 dmae->comp_addr_hi, dmae->comp_addr_lo, 423 dmae->comp_val); 424 else 425 DP(msglvl, "DMAE: opcode 0x%08x\n" 426 "src [%08x], len [%d*4], dst [%08x]\n" 427 "comp_addr [%x:%08x], comp_val 0x%08x\n", 428 dmae->opcode, dmae->src_addr_lo >> 2, 429 dmae->len, dmae->dst_addr_lo >> 2, 430 dmae->comp_addr_hi, dmae->comp_addr_lo, 431 dmae->comp_val); 432 break; 433 default: 434 if (src_type == DMAE_CMD_SRC_PCI) 435 DP(msglvl, "DMAE: opcode 0x%08x\n" 436 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" 437 "comp_addr [%x:%08x] comp_val 0x%08x\n", 438 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, 439 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 440 dmae->comp_val); 441 else 442 DP(msglvl, "DMAE: opcode 0x%08x\n" 443 "src_addr [%08x] len [%d * 4] dst_addr [none]\n" 444 "comp_addr [%x:%08x] comp_val 0x%08x\n", 445 dmae->opcode, dmae->src_addr_lo >> 2, 446 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, 447 dmae->comp_val); 448 break; 449 } 450 451 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) 452 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", 453 i, *(((u32 *)dmae) + i)); 454 } 455 456 /* copy command into DMAE command memory and set DMAE command go */ 457 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) 458 { 459 u32 cmd_offset; 460 int i; 461 462 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); 463 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { 464 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i)); 465 } 466 REG_WR(bp, dmae_reg_go_c[idx], 1); 467 } 468 469 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type) 470 { 471 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | 472 DMAE_CMD_C_ENABLE); 473 } 474 475 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode) 476 { 477 return opcode & ~DMAE_CMD_SRC_RESET; 478 } 479 480 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type, 481 bool with_comp, u8 comp_type) 482 { 483 u32 opcode = 0; 484 485 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | 486 (dst_type << DMAE_COMMAND_DST_SHIFT)); 487 488 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 489 490 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 491 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | 492 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); 493 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); 494 495 #ifdef __BIG_ENDIAN 496 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 497 #else 498 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 499 #endif 500 if (with_comp) 501 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); 502 return opcode; 503 } 504 505 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, 506 struct dmae_command *dmae, 507 u8 src_type, u8 dst_type) 508 { 509 memset(dmae, 0, sizeof(struct dmae_command)); 510 511 /* set the opcode */ 512 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, 513 true, DMAE_COMP_PCI); 514 515 /* fill in the completion parameters */ 516 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); 517 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); 518 dmae->comp_val = DMAE_COMP_VAL; 519 } 520 521 /* issue a dmae command over the init-channel and wait for completion */ 522 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, 523 u32 *comp) 524 { 525 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; 526 int rc = 0; 527 528 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); 529 530 /* Lock the dmae channel. Disable BHs to prevent a dead-lock 531 * as long as this code is called both from syscall context and 532 * from ndo_set_rx_mode() flow that may be called from BH. 533 */ 534 535 spin_lock_bh(&bp->dmae_lock); 536 537 /* reset completion */ 538 *comp = 0; 539 540 /* post the command on the channel used for initializations */ 541 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); 542 543 /* wait for completion */ 544 udelay(5); 545 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 546 547 if (!cnt || 548 (bp->recovery_state != BNX2X_RECOVERY_DONE && 549 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 550 BNX2X_ERR("DMAE timeout!\n"); 551 rc = DMAE_TIMEOUT; 552 goto unlock; 553 } 554 cnt--; 555 udelay(50); 556 } 557 if (*comp & DMAE_PCI_ERR_FLAG) { 558 BNX2X_ERR("DMAE PCI error!\n"); 559 rc = DMAE_PCI_ERROR; 560 } 561 562 unlock: 563 564 spin_unlock_bh(&bp->dmae_lock); 565 566 return rc; 567 } 568 569 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, 570 u32 len32) 571 { 572 int rc; 573 struct dmae_command dmae; 574 575 if (!bp->dmae_ready) { 576 u32 *data = bnx2x_sp(bp, wb_data[0]); 577 578 if (CHIP_IS_E1(bp)) 579 bnx2x_init_ind_wr(bp, dst_addr, data, len32); 580 else 581 bnx2x_init_str_wr(bp, dst_addr, data, len32); 582 return; 583 } 584 585 /* set opcode and fixed command fields */ 586 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 587 588 /* fill in addresses and len */ 589 dmae.src_addr_lo = U64_LO(dma_addr); 590 dmae.src_addr_hi = U64_HI(dma_addr); 591 dmae.dst_addr_lo = dst_addr >> 2; 592 dmae.dst_addr_hi = 0; 593 dmae.len = len32; 594 595 /* issue the command and wait for completion */ 596 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 597 if (rc) { 598 BNX2X_ERR("DMAE returned failure %d\n", rc); 599 #ifdef BNX2X_STOP_ON_ERROR 600 bnx2x_panic(); 601 #endif 602 } 603 } 604 605 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32) 606 { 607 int rc; 608 struct dmae_command dmae; 609 610 if (!bp->dmae_ready) { 611 u32 *data = bnx2x_sp(bp, wb_data[0]); 612 int i; 613 614 if (CHIP_IS_E1(bp)) 615 for (i = 0; i < len32; i++) 616 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); 617 else 618 for (i = 0; i < len32; i++) 619 data[i] = REG_RD(bp, src_addr + i*4); 620 621 return; 622 } 623 624 /* set opcode and fixed command fields */ 625 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 626 627 /* fill in addresses and len */ 628 dmae.src_addr_lo = src_addr >> 2; 629 dmae.src_addr_hi = 0; 630 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); 631 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); 632 dmae.len = len32; 633 634 /* issue the command and wait for completion */ 635 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); 636 if (rc) { 637 BNX2X_ERR("DMAE returned failure %d\n", rc); 638 #ifdef BNX2X_STOP_ON_ERROR 639 bnx2x_panic(); 640 #endif 641 } 642 } 643 644 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, 645 u32 addr, u32 len) 646 { 647 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); 648 int offset = 0; 649 650 while (len > dmae_wr_max) { 651 bnx2x_write_dmae(bp, phys_addr + offset, 652 addr + offset, dmae_wr_max); 653 offset += dmae_wr_max * 4; 654 len -= dmae_wr_max; 655 } 656 657 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); 658 } 659 660 enum storms { 661 XSTORM, 662 TSTORM, 663 CSTORM, 664 USTORM, 665 MAX_STORMS 666 }; 667 668 #define STORMS_NUM 4 669 #define REGS_IN_ENTRY 4 670 671 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, 672 enum storms storm, 673 int entry) 674 { 675 switch (storm) { 676 case XSTORM: 677 return XSTORM_ASSERT_LIST_OFFSET(entry); 678 case TSTORM: 679 return TSTORM_ASSERT_LIST_OFFSET(entry); 680 case CSTORM: 681 return CSTORM_ASSERT_LIST_OFFSET(entry); 682 case USTORM: 683 return USTORM_ASSERT_LIST_OFFSET(entry); 684 case MAX_STORMS: 685 default: 686 BNX2X_ERR("unknown storm\n"); 687 } 688 return -EINVAL; 689 } 690 691 static int bnx2x_mc_assert(struct bnx2x *bp) 692 { 693 char last_idx; 694 int i, j, rc = 0; 695 enum storms storm; 696 u32 regs[REGS_IN_ENTRY]; 697 u32 bar_storm_intmem[STORMS_NUM] = { 698 BAR_XSTRORM_INTMEM, 699 BAR_TSTRORM_INTMEM, 700 BAR_CSTRORM_INTMEM, 701 BAR_USTRORM_INTMEM 702 }; 703 u32 storm_assert_list_index[STORMS_NUM] = { 704 XSTORM_ASSERT_LIST_INDEX_OFFSET, 705 TSTORM_ASSERT_LIST_INDEX_OFFSET, 706 CSTORM_ASSERT_LIST_INDEX_OFFSET, 707 USTORM_ASSERT_LIST_INDEX_OFFSET 708 }; 709 char *storms_string[STORMS_NUM] = { 710 "XSTORM", 711 "TSTORM", 712 "CSTORM", 713 "USTORM" 714 }; 715 716 for (storm = XSTORM; storm < MAX_STORMS; storm++) { 717 last_idx = REG_RD8(bp, bar_storm_intmem[storm] + 718 storm_assert_list_index[storm]); 719 if (last_idx) 720 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", 721 storms_string[storm], last_idx); 722 723 /* print the asserts */ 724 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { 725 /* read a single assert entry */ 726 for (j = 0; j < REGS_IN_ENTRY; j++) 727 regs[j] = REG_RD(bp, bar_storm_intmem[storm] + 728 bnx2x_get_assert_list_entry(bp, 729 storm, 730 i) + 731 sizeof(u32) * j); 732 733 /* log entry if it contains a valid assert */ 734 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { 735 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 736 storms_string[storm], i, regs[3], 737 regs[2], regs[1], regs[0]); 738 rc++; 739 } else { 740 break; 741 } 742 } 743 } 744 745 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", 746 CHIP_IS_E1(bp) ? "everest1" : 747 CHIP_IS_E1H(bp) ? "everest1h" : 748 CHIP_IS_E2(bp) ? "everest2" : "everest3", 749 BCM_5710_FW_MAJOR_VERSION, 750 BCM_5710_FW_MINOR_VERSION, 751 BCM_5710_FW_REVISION_VERSION); 752 753 return rc; 754 } 755 756 #define MCPR_TRACE_BUFFER_SIZE (0x800) 757 #define SCRATCH_BUFFER_SIZE(bp) \ 758 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) 759 760 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) 761 { 762 u32 addr, val; 763 u32 mark, offset; 764 __be32 data[9]; 765 int word; 766 u32 trace_shmem_base; 767 if (BP_NOMCP(bp)) { 768 BNX2X_ERR("NO MCP - can not dump\n"); 769 return; 770 } 771 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", 772 (bp->common.bc_ver & 0xff0000) >> 16, 773 (bp->common.bc_ver & 0xff00) >> 8, 774 (bp->common.bc_ver & 0xff)); 775 776 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); 777 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) 778 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); 779 780 if (BP_PATH(bp) == 0) 781 trace_shmem_base = bp->common.shmem_base; 782 else 783 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); 784 785 /* sanity */ 786 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || 787 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + 788 SCRATCH_BUFFER_SIZE(bp)) { 789 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", 790 trace_shmem_base); 791 return; 792 } 793 794 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; 795 796 /* validate TRCB signature */ 797 mark = REG_RD(bp, addr); 798 if (mark != MFW_TRACE_SIGNATURE) { 799 BNX2X_ERR("Trace buffer signature is missing."); 800 return ; 801 } 802 803 /* read cyclic buffer pointer */ 804 addr += 4; 805 mark = REG_RD(bp, addr); 806 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; 807 if (mark >= trace_shmem_base || mark < addr + 4) { 808 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); 809 return; 810 } 811 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); 812 813 printk("%s", lvl); 814 815 /* dump buffer after the mark */ 816 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { 817 for (word = 0; word < 8; word++) 818 data[word] = htonl(REG_RD(bp, offset + 4*word)); 819 data[8] = 0x0; 820 pr_cont("%s", (char *)data); 821 } 822 823 /* dump buffer before the mark */ 824 for (offset = addr + 4; offset <= mark; offset += 0x8*4) { 825 for (word = 0; word < 8; word++) 826 data[word] = htonl(REG_RD(bp, offset + 4*word)); 827 data[8] = 0x0; 828 pr_cont("%s", (char *)data); 829 } 830 printk("%s" "end of fw dump\n", lvl); 831 } 832 833 static void bnx2x_fw_dump(struct bnx2x *bp) 834 { 835 bnx2x_fw_dump_lvl(bp, KERN_ERR); 836 } 837 838 static void bnx2x_hc_int_disable(struct bnx2x *bp) 839 { 840 int port = BP_PORT(bp); 841 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 842 u32 val = REG_RD(bp, addr); 843 844 /* in E1 we must use only PCI configuration space to disable 845 * MSI/MSIX capability 846 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block 847 */ 848 if (CHIP_IS_E1(bp)) { 849 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on 850 * Use mask register to prevent from HC sending interrupts 851 * after we exit the function 852 */ 853 REG_WR(bp, HC_REG_INT_MASK + port*4, 0); 854 855 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 856 HC_CONFIG_0_REG_INT_LINE_EN_0 | 857 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 858 } else 859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 860 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 861 HC_CONFIG_0_REG_INT_LINE_EN_0 | 862 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 863 864 DP(NETIF_MSG_IFDOWN, 865 "write %x to HC %d (addr 0x%x)\n", 866 val, port, addr); 867 868 /* flush all outstanding writes */ 869 mmiowb(); 870 871 REG_WR(bp, addr, val); 872 if (REG_RD(bp, addr) != val) 873 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 874 } 875 876 static void bnx2x_igu_int_disable(struct bnx2x *bp) 877 { 878 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 879 880 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 881 IGU_PF_CONF_INT_LINE_EN | 882 IGU_PF_CONF_ATTN_BIT_EN); 883 884 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); 885 886 /* flush all outstanding writes */ 887 mmiowb(); 888 889 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 890 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) 891 BNX2X_ERR("BUG! Proper val not read from IGU!\n"); 892 } 893 894 static void bnx2x_int_disable(struct bnx2x *bp) 895 { 896 if (bp->common.int_block == INT_BLOCK_HC) 897 bnx2x_hc_int_disable(bp); 898 else 899 bnx2x_igu_int_disable(bp); 900 } 901 902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) 903 { 904 int i; 905 u16 j; 906 struct hc_sp_status_block_data sp_sb_data; 907 int func = BP_FUNC(bp); 908 #ifdef BNX2X_STOP_ON_ERROR 909 u16 start = 0, end = 0; 910 u8 cos; 911 #endif 912 if (IS_PF(bp) && disable_int) 913 bnx2x_int_disable(bp); 914 915 bp->stats_state = STATS_STATE_DISABLED; 916 bp->eth_stats.unrecoverable_error++; 917 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); 918 919 BNX2X_ERR("begin crash dump -----------------\n"); 920 921 /* Indices */ 922 /* Common */ 923 if (IS_PF(bp)) { 924 struct host_sp_status_block *def_sb = bp->def_status_blk; 925 int data_size, cstorm_offset; 926 927 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", 928 bp->def_idx, bp->def_att_idx, bp->attn_state, 929 bp->spq_prod_idx, bp->stats_counter); 930 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n", 931 def_sb->atten_status_block.attn_bits, 932 def_sb->atten_status_block.attn_bits_ack, 933 def_sb->atten_status_block.status_block_id, 934 def_sb->atten_status_block.attn_bits_index); 935 BNX2X_ERR(" def ("); 936 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) 937 pr_cont("0x%x%s", 938 def_sb->sp_sb.index_values[i], 939 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " "); 940 941 data_size = sizeof(struct hc_sp_status_block_data) / 942 sizeof(u32); 943 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); 944 for (i = 0; i < data_size; i++) 945 *((u32 *)&sp_sb_data + i) = 946 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + 947 i * sizeof(u32)); 948 949 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n", 950 sp_sb_data.igu_sb_id, 951 sp_sb_data.igu_seg_id, 952 sp_sb_data.p_func.pf_id, 953 sp_sb_data.p_func.vnic_id, 954 sp_sb_data.p_func.vf_id, 955 sp_sb_data.p_func.vf_valid, 956 sp_sb_data.state); 957 } 958 959 for_each_eth_queue(bp, i) { 960 struct bnx2x_fastpath *fp = &bp->fp[i]; 961 int loop; 962 struct hc_status_block_data_e2 sb_data_e2; 963 struct hc_status_block_data_e1x sb_data_e1x; 964 struct hc_status_block_sm *hc_sm_p = 965 CHIP_IS_E1x(bp) ? 966 sb_data_e1x.common.state_machine : 967 sb_data_e2.common.state_machine; 968 struct hc_index_data *hc_index_p = 969 CHIP_IS_E1x(bp) ? 970 sb_data_e1x.index_data : 971 sb_data_e2.index_data; 972 u8 data_size, cos; 973 u32 *sb_data_p; 974 struct bnx2x_fp_txdata txdata; 975 976 if (!bp->fp) 977 break; 978 979 if (!fp->rx_cons_sb) 980 continue; 981 982 /* Rx */ 983 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n", 984 i, fp->rx_bd_prod, fp->rx_bd_cons, 985 fp->rx_comp_prod, 986 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); 987 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n", 988 fp->rx_sge_prod, fp->last_max_sge, 989 le16_to_cpu(fp->fp_hc_idx)); 990 991 /* Tx */ 992 for_each_cos_in_tx_queue(fp, cos) 993 { 994 if (!fp->txdata_ptr[cos]) 995 break; 996 997 txdata = *fp->txdata_ptr[cos]; 998 999 if (!txdata.tx_cons_sb) 1000 continue; 1001 1002 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n", 1003 i, txdata.tx_pkt_prod, 1004 txdata.tx_pkt_cons, txdata.tx_bd_prod, 1005 txdata.tx_bd_cons, 1006 le16_to_cpu(*txdata.tx_cons_sb)); 1007 } 1008 1009 loop = CHIP_IS_E1x(bp) ? 1010 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; 1011 1012 /* host sb data */ 1013 1014 if (IS_FCOE_FP(fp)) 1015 continue; 1016 1017 BNX2X_ERR(" run indexes ("); 1018 for (j = 0; j < HC_SB_MAX_SM; j++) 1019 pr_cont("0x%x%s", 1020 fp->sb_running_index[j], 1021 (j == HC_SB_MAX_SM - 1) ? ")" : " "); 1022 1023 BNX2X_ERR(" indexes ("); 1024 for (j = 0; j < loop; j++) 1025 pr_cont("0x%x%s", 1026 fp->sb_index_values[j], 1027 (j == loop - 1) ? ")" : " "); 1028 1029 /* VF cannot access FW refelection for status block */ 1030 if (IS_VF(bp)) 1031 continue; 1032 1033 /* fw sb data */ 1034 data_size = CHIP_IS_E1x(bp) ? 1035 sizeof(struct hc_status_block_data_e1x) : 1036 sizeof(struct hc_status_block_data_e2); 1037 data_size /= sizeof(u32); 1038 sb_data_p = CHIP_IS_E1x(bp) ? 1039 (u32 *)&sb_data_e1x : 1040 (u32 *)&sb_data_e2; 1041 /* copy sb data in here */ 1042 for (j = 0; j < data_size; j++) 1043 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + 1044 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + 1045 j * sizeof(u32)); 1046 1047 if (!CHIP_IS_E1x(bp)) { 1048 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1049 sb_data_e2.common.p_func.pf_id, 1050 sb_data_e2.common.p_func.vf_id, 1051 sb_data_e2.common.p_func.vf_valid, 1052 sb_data_e2.common.p_func.vnic_id, 1053 sb_data_e2.common.same_igu_sb_1b, 1054 sb_data_e2.common.state); 1055 } else { 1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n", 1057 sb_data_e1x.common.p_func.pf_id, 1058 sb_data_e1x.common.p_func.vf_id, 1059 sb_data_e1x.common.p_func.vf_valid, 1060 sb_data_e1x.common.p_func.vnic_id, 1061 sb_data_e1x.common.same_igu_sb_1b, 1062 sb_data_e1x.common.state); 1063 } 1064 1065 /* SB_SMs data */ 1066 for (j = 0; j < HC_SB_MAX_SM; j++) { 1067 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", 1068 j, hc_sm_p[j].__flags, 1069 hc_sm_p[j].igu_sb_id, 1070 hc_sm_p[j].igu_seg_id, 1071 hc_sm_p[j].time_to_expire, 1072 hc_sm_p[j].timer_value); 1073 } 1074 1075 /* Indices data */ 1076 for (j = 0; j < loop; j++) { 1077 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, 1078 hc_index_p[j].flags, 1079 hc_index_p[j].timeout); 1080 } 1081 } 1082 1083 #ifdef BNX2X_STOP_ON_ERROR 1084 if (IS_PF(bp)) { 1085 /* event queue */ 1086 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); 1087 for (i = 0; i < NUM_EQ_DESC; i++) { 1088 u32 *data = (u32 *)&bp->eq_ring[i].message.data; 1089 1090 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", 1091 i, bp->eq_ring[i].message.opcode, 1092 bp->eq_ring[i].message.error); 1093 BNX2X_ERR("data: %x %x %x\n", 1094 data[0], data[1], data[2]); 1095 } 1096 } 1097 1098 /* Rings */ 1099 /* Rx */ 1100 for_each_valid_rx_queue(bp, i) { 1101 struct bnx2x_fastpath *fp = &bp->fp[i]; 1102 1103 if (!bp->fp) 1104 break; 1105 1106 if (!fp->rx_cons_sb) 1107 continue; 1108 1109 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); 1110 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); 1111 for (j = start; j != end; j = RX_BD(j + 1)) { 1112 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j]; 1113 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; 1114 1115 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n", 1116 i, j, rx_bd[1], rx_bd[0], sw_bd->data); 1117 } 1118 1119 start = RX_SGE(fp->rx_sge_prod); 1120 end = RX_SGE(fp->last_max_sge); 1121 for (j = start; j != end; j = RX_SGE(j + 1)) { 1122 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j]; 1123 struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; 1124 1125 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n", 1126 i, j, rx_sge[1], rx_sge[0], sw_page->page); 1127 } 1128 1129 start = RCQ_BD(fp->rx_comp_cons - 10); 1130 end = RCQ_BD(fp->rx_comp_cons + 503); 1131 for (j = start; j != end; j = RCQ_BD(j + 1)) { 1132 u32 *cqe = (u32 *)&fp->rx_comp_ring[j]; 1133 1134 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", 1135 i, j, cqe[0], cqe[1], cqe[2], cqe[3]); 1136 } 1137 } 1138 1139 /* Tx */ 1140 for_each_valid_tx_queue(bp, i) { 1141 struct bnx2x_fastpath *fp = &bp->fp[i]; 1142 1143 if (!bp->fp) 1144 break; 1145 1146 for_each_cos_in_tx_queue(fp, cos) { 1147 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1148 1149 if (!fp->txdata_ptr[cos]) 1150 break; 1151 1152 if (!txdata->tx_cons_sb) 1153 continue; 1154 1155 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); 1156 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); 1157 for (j = start; j != end; j = TX_BD(j + 1)) { 1158 struct sw_tx_bd *sw_bd = 1159 &txdata->tx_buf_ring[j]; 1160 1161 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", 1162 i, cos, j, sw_bd->skb, 1163 sw_bd->first_bd); 1164 } 1165 1166 start = TX_BD(txdata->tx_bd_cons - 10); 1167 end = TX_BD(txdata->tx_bd_cons + 254); 1168 for (j = start; j != end; j = TX_BD(j + 1)) { 1169 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j]; 1170 1171 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", 1172 i, cos, j, tx_bd[0], tx_bd[1], 1173 tx_bd[2], tx_bd[3]); 1174 } 1175 } 1176 } 1177 #endif 1178 if (IS_PF(bp)) { 1179 bnx2x_fw_dump(bp); 1180 bnx2x_mc_assert(bp); 1181 } 1182 BNX2X_ERR("end crash dump -----------------\n"); 1183 } 1184 1185 /* 1186 * FLR Support for E2 1187 * 1188 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW 1189 * initialization. 1190 */ 1191 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */ 1192 #define FLR_WAIT_INTERVAL 50 /* usec */ 1193 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ 1194 1195 struct pbf_pN_buf_regs { 1196 int pN; 1197 u32 init_crd; 1198 u32 crd; 1199 u32 crd_freed; 1200 }; 1201 1202 struct pbf_pN_cmd_regs { 1203 int pN; 1204 u32 lines_occup; 1205 u32 lines_freed; 1206 }; 1207 1208 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, 1209 struct pbf_pN_buf_regs *regs, 1210 u32 poll_count) 1211 { 1212 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start; 1213 u32 cur_cnt = poll_count; 1214 1215 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); 1216 crd = crd_start = REG_RD(bp, regs->crd); 1217 init_crd = REG_RD(bp, regs->init_crd); 1218 1219 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 1220 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd); 1221 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 1222 1223 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) < 1224 (init_crd - crd_start))) { 1225 if (cur_cnt--) { 1226 udelay(FLR_WAIT_INTERVAL); 1227 crd = REG_RD(bp, regs->crd); 1228 crd_freed = REG_RD(bp, regs->crd_freed); 1229 } else { 1230 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", 1231 regs->pN); 1232 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n", 1233 regs->pN, crd); 1234 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", 1235 regs->pN, crd_freed); 1236 break; 1237 } 1238 } 1239 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", 1240 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1241 } 1242 1243 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, 1244 struct pbf_pN_cmd_regs *regs, 1245 u32 poll_count) 1246 { 1247 u32 occup, to_free, freed, freed_start; 1248 u32 cur_cnt = poll_count; 1249 1250 occup = to_free = REG_RD(bp, regs->lines_occup); 1251 freed = freed_start = REG_RD(bp, regs->lines_freed); 1252 1253 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 1254 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 1255 1256 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) { 1257 if (cur_cnt--) { 1258 udelay(FLR_WAIT_INTERVAL); 1259 occup = REG_RD(bp, regs->lines_occup); 1260 freed = REG_RD(bp, regs->lines_freed); 1261 } else { 1262 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", 1263 regs->pN); 1264 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", 1265 regs->pN, occup); 1266 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", 1267 regs->pN, freed); 1268 break; 1269 } 1270 } 1271 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", 1272 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 1273 } 1274 1275 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg, 1276 u32 expected, u32 poll_count) 1277 { 1278 u32 cur_cnt = poll_count; 1279 u32 val; 1280 1281 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) 1282 udelay(FLR_WAIT_INTERVAL); 1283 1284 return val; 1285 } 1286 1287 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg, 1288 char *msg, u32 poll_cnt) 1289 { 1290 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); 1291 if (val != 0) { 1292 BNX2X_ERR("%s usage count=%d\n", msg, val); 1293 return 1; 1294 } 1295 return 0; 1296 } 1297 1298 /* Common routines with VF FLR cleanup */ 1299 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp) 1300 { 1301 /* adjust polling timeout */ 1302 if (CHIP_REV_IS_EMUL(bp)) 1303 return FLR_POLL_CNT * 2000; 1304 1305 if (CHIP_REV_IS_FPGA(bp)) 1306 return FLR_POLL_CNT * 120; 1307 1308 return FLR_POLL_CNT; 1309 } 1310 1311 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count) 1312 { 1313 struct pbf_pN_cmd_regs cmd_regs[] = { 1314 {0, (CHIP_IS_E3B0(bp)) ? 1315 PBF_REG_TQ_OCCUPANCY_Q0 : 1316 PBF_REG_P0_TQ_OCCUPANCY, 1317 (CHIP_IS_E3B0(bp)) ? 1318 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 1319 PBF_REG_P0_TQ_LINES_FREED_CNT}, 1320 {1, (CHIP_IS_E3B0(bp)) ? 1321 PBF_REG_TQ_OCCUPANCY_Q1 : 1322 PBF_REG_P1_TQ_OCCUPANCY, 1323 (CHIP_IS_E3B0(bp)) ? 1324 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 1325 PBF_REG_P1_TQ_LINES_FREED_CNT}, 1326 {4, (CHIP_IS_E3B0(bp)) ? 1327 PBF_REG_TQ_OCCUPANCY_LB_Q : 1328 PBF_REG_P4_TQ_OCCUPANCY, 1329 (CHIP_IS_E3B0(bp)) ? 1330 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 1331 PBF_REG_P4_TQ_LINES_FREED_CNT} 1332 }; 1333 1334 struct pbf_pN_buf_regs buf_regs[] = { 1335 {0, (CHIP_IS_E3B0(bp)) ? 1336 PBF_REG_INIT_CRD_Q0 : 1337 PBF_REG_P0_INIT_CRD , 1338 (CHIP_IS_E3B0(bp)) ? 1339 PBF_REG_CREDIT_Q0 : 1340 PBF_REG_P0_CREDIT, 1341 (CHIP_IS_E3B0(bp)) ? 1342 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 1343 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 1344 {1, (CHIP_IS_E3B0(bp)) ? 1345 PBF_REG_INIT_CRD_Q1 : 1346 PBF_REG_P1_INIT_CRD, 1347 (CHIP_IS_E3B0(bp)) ? 1348 PBF_REG_CREDIT_Q1 : 1349 PBF_REG_P1_CREDIT, 1350 (CHIP_IS_E3B0(bp)) ? 1351 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 1352 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 1353 {4, (CHIP_IS_E3B0(bp)) ? 1354 PBF_REG_INIT_CRD_LB_Q : 1355 PBF_REG_P4_INIT_CRD, 1356 (CHIP_IS_E3B0(bp)) ? 1357 PBF_REG_CREDIT_LB_Q : 1358 PBF_REG_P4_CREDIT, 1359 (CHIP_IS_E3B0(bp)) ? 1360 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 1361 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 1362 }; 1363 1364 int i; 1365 1366 /* Verify the command queues are flushed P0, P1, P4 */ 1367 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) 1368 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); 1369 1370 /* Verify the transmission buffers are flushed P0, P1, P4 */ 1371 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) 1372 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); 1373 } 1374 1375 #define OP_GEN_PARAM(param) \ 1376 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 1377 1378 #define OP_GEN_TYPE(type) \ 1379 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 1380 1381 #define OP_GEN_AGG_VECT(index) \ 1382 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 1383 1384 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt) 1385 { 1386 u32 op_gen_command = 0; 1387 u32 comp_addr = BAR_CSTRORM_INTMEM + 1388 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); 1389 int ret = 0; 1390 1391 if (REG_RD(bp, comp_addr)) { 1392 BNX2X_ERR("Cleanup complete was not 0 before sending\n"); 1393 return 1; 1394 } 1395 1396 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 1397 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 1398 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 1399 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 1400 1401 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); 1402 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); 1403 1404 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { 1405 BNX2X_ERR("FW final cleanup did not succeed\n"); 1406 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", 1407 (REG_RD(bp, comp_addr))); 1408 bnx2x_panic(); 1409 return 1; 1410 } 1411 /* Zero completion for next FLR */ 1412 REG_WR(bp, comp_addr, 0); 1413 1414 return ret; 1415 } 1416 1417 u8 bnx2x_is_pcie_pending(struct pci_dev *dev) 1418 { 1419 u16 status; 1420 1421 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 1422 return status & PCI_EXP_DEVSTA_TRPND; 1423 } 1424 1425 /* PF FLR specific routines 1426 */ 1427 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt) 1428 { 1429 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 1430 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1431 CFC_REG_NUM_LCIDS_INSIDE_PF, 1432 "CFC PF usage counter timed out", 1433 poll_cnt)) 1434 return 1; 1435 1436 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 1437 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1438 DORQ_REG_PF_USAGE_CNT, 1439 "DQ PF usage counter timed out", 1440 poll_cnt)) 1441 return 1; 1442 1443 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 1444 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1445 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), 1446 "QM PF usage counter timed out", 1447 poll_cnt)) 1448 return 1; 1449 1450 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 1451 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1452 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), 1453 "Timers VNIC usage counter timed out", 1454 poll_cnt)) 1455 return 1; 1456 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1457 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), 1458 "Timers NUM_SCANS usage counter timed out", 1459 poll_cnt)) 1460 return 1; 1461 1462 /* Wait DMAE PF usage counter to zero */ 1463 if (bnx2x_flr_clnup_poll_hw_counter(bp, 1464 dmae_reg_go_c[INIT_DMAE_C(bp)], 1465 "DMAE command register timed out", 1466 poll_cnt)) 1467 return 1; 1468 1469 return 0; 1470 } 1471 1472 static void bnx2x_hw_enable_status(struct bnx2x *bp) 1473 { 1474 u32 val; 1475 1476 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); 1477 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 1478 1479 val = REG_RD(bp, PBF_REG_DISABLE_PF); 1480 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); 1481 1482 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); 1483 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 1484 1485 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); 1486 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 1487 1488 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 1489 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 1490 1491 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 1492 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 1493 1494 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 1495 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 1496 1497 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 1498 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", 1499 val); 1500 } 1501 1502 static int bnx2x_pf_flr_clnup(struct bnx2x *bp) 1503 { 1504 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp); 1505 1506 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); 1507 1508 /* Re-enable PF target read access */ 1509 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 1510 1511 /* Poll HW usage counters */ 1512 DP(BNX2X_MSG_SP, "Polling usage counters\n"); 1513 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) 1514 return -EBUSY; 1515 1516 /* Zero the igu 'trailing edge' and 'leading edge' */ 1517 1518 /* Send the FW cleanup command */ 1519 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt)) 1520 return -EBUSY; 1521 1522 /* ATC cleanup */ 1523 1524 /* Verify TX hw is flushed */ 1525 bnx2x_tx_hw_flushed(bp, poll_cnt); 1526 1527 /* Wait 100ms (not adjusted according to platform) */ 1528 msleep(100); 1529 1530 /* Verify no pending pci transactions */ 1531 if (bnx2x_is_pcie_pending(bp->pdev)) 1532 BNX2X_ERR("PCIE Transactions still pending\n"); 1533 1534 /* Debug */ 1535 bnx2x_hw_enable_status(bp); 1536 1537 /* 1538 * Master enable - Due to WB DMAE writes performed before this 1539 * register is re-initialized as part of the regular function init 1540 */ 1541 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 1542 1543 return 0; 1544 } 1545 1546 static void bnx2x_hc_int_enable(struct bnx2x *bp) 1547 { 1548 int port = BP_PORT(bp); 1549 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 1550 u32 val = REG_RD(bp, addr); 1551 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1552 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1553 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1554 1555 if (msix) { 1556 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1557 HC_CONFIG_0_REG_INT_LINE_EN_0); 1558 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1559 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1560 if (single_msix) 1561 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 1562 } else if (msi) { 1563 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 1564 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1565 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1566 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1567 } else { 1568 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 1569 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 1570 HC_CONFIG_0_REG_INT_LINE_EN_0 | 1571 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 1572 1573 if (!CHIP_IS_E1(bp)) { 1574 DP(NETIF_MSG_IFUP, 1575 "write %x to HC %d (addr 0x%x)\n", val, port, addr); 1576 1577 REG_WR(bp, addr, val); 1578 1579 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 1580 } 1581 } 1582 1583 if (CHIP_IS_E1(bp)) 1584 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); 1585 1586 DP(NETIF_MSG_IFUP, 1587 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, 1588 (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1589 1590 REG_WR(bp, addr, val); 1591 /* 1592 * Ensure that HC_CONFIG is written before leading/trailing edge config 1593 */ 1594 mmiowb(); 1595 barrier(); 1596 1597 if (!CHIP_IS_E1(bp)) { 1598 /* init leading/trailing edge */ 1599 if (IS_MF(bp)) { 1600 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1601 if (bp->port.pmf) 1602 /* enable nig and gpio3 attention */ 1603 val |= 0x1100; 1604 } else 1605 val = 0xffff; 1606 1607 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 1608 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 1609 } 1610 1611 /* Make sure that interrupts are indeed enabled from here on */ 1612 mmiowb(); 1613 } 1614 1615 static void bnx2x_igu_int_enable(struct bnx2x *bp) 1616 { 1617 u32 val; 1618 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; 1619 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; 1620 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; 1621 1622 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 1623 1624 if (msix) { 1625 val &= ~(IGU_PF_CONF_INT_LINE_EN | 1626 IGU_PF_CONF_SINGLE_ISR_EN); 1627 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1628 IGU_PF_CONF_ATTN_BIT_EN); 1629 1630 if (single_msix) 1631 val |= IGU_PF_CONF_SINGLE_ISR_EN; 1632 } else if (msi) { 1633 val &= ~IGU_PF_CONF_INT_LINE_EN; 1634 val |= (IGU_PF_CONF_MSI_MSIX_EN | 1635 IGU_PF_CONF_ATTN_BIT_EN | 1636 IGU_PF_CONF_SINGLE_ISR_EN); 1637 } else { 1638 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 1639 val |= (IGU_PF_CONF_INT_LINE_EN | 1640 IGU_PF_CONF_ATTN_BIT_EN | 1641 IGU_PF_CONF_SINGLE_ISR_EN); 1642 } 1643 1644 /* Clean previous status - need to configure igu prior to ack*/ 1645 if ((!msix) || single_msix) { 1646 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1647 bnx2x_ack_int(bp); 1648 } 1649 1650 val |= IGU_PF_CONF_FUNC_EN; 1651 1652 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n", 1653 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); 1654 1655 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 1656 1657 if (val & IGU_PF_CONF_INT_LINE_EN) 1658 pci_intx(bp->pdev, true); 1659 1660 barrier(); 1661 1662 /* init leading/trailing edge */ 1663 if (IS_MF(bp)) { 1664 val = (0xee0f | (1 << (BP_VN(bp) + 4))); 1665 if (bp->port.pmf) 1666 /* enable nig and gpio3 attention */ 1667 val |= 0x1100; 1668 } else 1669 val = 0xffff; 1670 1671 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 1672 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 1673 1674 /* Make sure that interrupts are indeed enabled from here on */ 1675 mmiowb(); 1676 } 1677 1678 void bnx2x_int_enable(struct bnx2x *bp) 1679 { 1680 if (bp->common.int_block == INT_BLOCK_HC) 1681 bnx2x_hc_int_enable(bp); 1682 else 1683 bnx2x_igu_int_enable(bp); 1684 } 1685 1686 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) 1687 { 1688 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 1689 int i, offset; 1690 1691 if (disable_hw) 1692 /* prevent the HW from sending interrupts */ 1693 bnx2x_int_disable(bp); 1694 1695 /* make sure all ISRs are done */ 1696 if (msix) { 1697 synchronize_irq(bp->msix_table[0].vector); 1698 offset = 1; 1699 if (CNIC_SUPPORT(bp)) 1700 offset++; 1701 for_each_eth_queue(bp, i) 1702 synchronize_irq(bp->msix_table[offset++].vector); 1703 } else 1704 synchronize_irq(bp->pdev->irq); 1705 1706 /* make sure sp_task is not running */ 1707 cancel_delayed_work(&bp->sp_task); 1708 cancel_delayed_work(&bp->period_task); 1709 flush_workqueue(bnx2x_wq); 1710 } 1711 1712 /* fast path */ 1713 1714 /* 1715 * General service functions 1716 */ 1717 1718 /* Return true if succeeded to acquire the lock */ 1719 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource) 1720 { 1721 u32 lock_status; 1722 u32 resource_bit = (1 << resource); 1723 int func = BP_FUNC(bp); 1724 u32 hw_lock_control_reg; 1725 1726 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1727 "Trying to take a lock on resource %d\n", resource); 1728 1729 /* Validating that the resource is within range */ 1730 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1731 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1732 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1733 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1734 return false; 1735 } 1736 1737 if (func <= 5) 1738 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 1739 else 1740 hw_lock_control_reg = 1741 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 1742 1743 /* Try to acquire the lock */ 1744 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 1745 lock_status = REG_RD(bp, hw_lock_control_reg); 1746 if (lock_status & resource_bit) 1747 return true; 1748 1749 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, 1750 "Failed to get a lock on resource %d\n", resource); 1751 return false; 1752 } 1753 1754 /** 1755 * bnx2x_get_leader_lock_resource - get the recovery leader resource id 1756 * 1757 * @bp: driver handle 1758 * 1759 * Returns the recovery leader resource id according to the engine this function 1760 * belongs to. Currently only only 2 engines is supported. 1761 */ 1762 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) 1763 { 1764 if (BP_PATH(bp)) 1765 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; 1766 else 1767 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; 1768 } 1769 1770 /** 1771 * bnx2x_trylock_leader_lock- try to acquire a leader lock. 1772 * 1773 * @bp: driver handle 1774 * 1775 * Tries to acquire a leader lock for current engine. 1776 */ 1777 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) 1778 { 1779 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 1780 } 1781 1782 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err); 1783 1784 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ 1785 static int bnx2x_schedule_sp_task(struct bnx2x *bp) 1786 { 1787 /* Set the interrupt occurred bit for the sp-task to recognize it 1788 * must ack the interrupt and transition according to the IGU 1789 * state machine. 1790 */ 1791 atomic_set(&bp->interrupt_occurred, 1); 1792 1793 /* The sp_task must execute only after this bit 1794 * is set, otherwise we will get out of sync and miss all 1795 * further interrupts. Hence, the barrier. 1796 */ 1797 smp_wmb(); 1798 1799 /* schedule sp_task to workqueue */ 1800 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); 1801 } 1802 1803 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) 1804 { 1805 struct bnx2x *bp = fp->bp; 1806 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1807 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 1808 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; 1809 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 1810 1811 DP(BNX2X_MSG_SP, 1812 "fp %d cid %d got ramrod #%d state is %x type is %d\n", 1813 fp->index, cid, command, bp->state, 1814 rr_cqe->ramrod_cqe.ramrod_type); 1815 1816 /* If cid is within VF range, replace the slowpath object with the 1817 * one corresponding to this VF 1818 */ 1819 if (cid >= BNX2X_FIRST_VF_CID && 1820 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) 1821 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); 1822 1823 switch (command) { 1824 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 1825 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); 1826 drv_cmd = BNX2X_Q_CMD_UPDATE; 1827 break; 1828 1829 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 1830 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); 1831 drv_cmd = BNX2X_Q_CMD_SETUP; 1832 break; 1833 1834 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 1835 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 1836 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 1837 break; 1838 1839 case (RAMROD_CMD_ID_ETH_HALT): 1840 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); 1841 drv_cmd = BNX2X_Q_CMD_HALT; 1842 break; 1843 1844 case (RAMROD_CMD_ID_ETH_TERMINATE): 1845 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); 1846 drv_cmd = BNX2X_Q_CMD_TERMINATE; 1847 break; 1848 1849 case (RAMROD_CMD_ID_ETH_EMPTY): 1850 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); 1851 drv_cmd = BNX2X_Q_CMD_EMPTY; 1852 break; 1853 1854 case (RAMROD_CMD_ID_ETH_TPA_UPDATE): 1855 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); 1856 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; 1857 break; 1858 1859 default: 1860 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", 1861 command, fp->index); 1862 return; 1863 } 1864 1865 if ((drv_cmd != BNX2X_Q_CMD_MAX) && 1866 q_obj->complete_cmd(bp, q_obj, drv_cmd)) 1867 /* q_obj->complete_cmd() failure means that this was 1868 * an unexpected completion. 1869 * 1870 * In this case we don't want to increase the bp->spq_left 1871 * because apparently we haven't sent this command the first 1872 * place. 1873 */ 1874 #ifdef BNX2X_STOP_ON_ERROR 1875 bnx2x_panic(); 1876 #else 1877 return; 1878 #endif 1879 1880 smp_mb__before_atomic(); 1881 atomic_inc(&bp->cq_spq_left); 1882 /* push the change in bp->spq_left and towards the memory */ 1883 smp_mb__after_atomic(); 1884 1885 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); 1886 1887 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && 1888 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { 1889 /* if Q update ramrod is completed for last Q in AFEX vif set 1890 * flow, then ACK MCP at the end 1891 * 1892 * mark pending ACK to MCP bit. 1893 * prevent case that both bits are cleared. 1894 * At the end of load/unload driver checks that 1895 * sp_state is cleared, and this order prevents 1896 * races 1897 */ 1898 smp_mb__before_atomic(); 1899 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); 1900 wmb(); 1901 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 1902 smp_mb__after_atomic(); 1903 1904 /* schedule the sp task as mcp ack is required */ 1905 bnx2x_schedule_sp_task(bp); 1906 } 1907 1908 return; 1909 } 1910 1911 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance) 1912 { 1913 struct bnx2x *bp = netdev_priv(dev_instance); 1914 u16 status = bnx2x_ack_int(bp); 1915 u16 mask; 1916 int i; 1917 u8 cos; 1918 1919 /* Return here if interrupt is shared and it's not for us */ 1920 if (unlikely(status == 0)) { 1921 DP(NETIF_MSG_INTR, "not our interrupt!\n"); 1922 return IRQ_NONE; 1923 } 1924 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status); 1925 1926 #ifdef BNX2X_STOP_ON_ERROR 1927 if (unlikely(bp->panic)) 1928 return IRQ_HANDLED; 1929 #endif 1930 1931 for_each_eth_queue(bp, i) { 1932 struct bnx2x_fastpath *fp = &bp->fp[i]; 1933 1934 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); 1935 if (status & mask) { 1936 /* Handle Rx or Tx according to SB id */ 1937 for_each_cos_in_tx_queue(fp, cos) 1938 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1939 prefetch(&fp->sb_running_index[SM_RX_ID]); 1940 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1941 status &= ~mask; 1942 } 1943 } 1944 1945 if (CNIC_SUPPORT(bp)) { 1946 mask = 0x2; 1947 if (status & (mask | 0x1)) { 1948 struct cnic_ops *c_ops = NULL; 1949 1950 rcu_read_lock(); 1951 c_ops = rcu_dereference(bp->cnic_ops); 1952 if (c_ops && (bp->cnic_eth_dev.drv_state & 1953 CNIC_DRV_STATE_HANDLES_IRQ)) 1954 c_ops->cnic_handler(bp->cnic_data, NULL); 1955 rcu_read_unlock(); 1956 1957 status &= ~mask; 1958 } 1959 } 1960 1961 if (unlikely(status & 0x1)) { 1962 1963 /* schedule sp task to perform default status block work, ack 1964 * attentions and enable interrupts. 1965 */ 1966 bnx2x_schedule_sp_task(bp); 1967 1968 status &= ~0x1; 1969 if (!status) 1970 return IRQ_HANDLED; 1971 } 1972 1973 if (unlikely(status)) 1974 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", 1975 status); 1976 1977 return IRQ_HANDLED; 1978 } 1979 1980 /* Link */ 1981 1982 /* 1983 * General service functions 1984 */ 1985 1986 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource) 1987 { 1988 u32 lock_status; 1989 u32 resource_bit = (1 << resource); 1990 int func = BP_FUNC(bp); 1991 u32 hw_lock_control_reg; 1992 int cnt; 1993 1994 /* Validating that the resource is within range */ 1995 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1996 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 1997 resource, HW_LOCK_MAX_RESOURCE_VALUE); 1998 return -EINVAL; 1999 } 2000 2001 if (func <= 5) { 2002 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2003 } else { 2004 hw_lock_control_reg = 2005 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2006 } 2007 2008 /* Validating that the resource is not already taken */ 2009 lock_status = REG_RD(bp, hw_lock_control_reg); 2010 if (lock_status & resource_bit) { 2011 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n", 2012 lock_status, resource_bit); 2013 return -EEXIST; 2014 } 2015 2016 /* Try for 5 second every 5ms */ 2017 for (cnt = 0; cnt < 1000; cnt++) { 2018 /* Try to acquire the lock */ 2019 REG_WR(bp, hw_lock_control_reg + 4, resource_bit); 2020 lock_status = REG_RD(bp, hw_lock_control_reg); 2021 if (lock_status & resource_bit) 2022 return 0; 2023 2024 usleep_range(5000, 10000); 2025 } 2026 BNX2X_ERR("Timeout\n"); 2027 return -EAGAIN; 2028 } 2029 2030 int bnx2x_release_leader_lock(struct bnx2x *bp) 2031 { 2032 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); 2033 } 2034 2035 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource) 2036 { 2037 u32 lock_status; 2038 u32 resource_bit = (1 << resource); 2039 int func = BP_FUNC(bp); 2040 u32 hw_lock_control_reg; 2041 2042 /* Validating that the resource is within range */ 2043 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 2044 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 2045 resource, HW_LOCK_MAX_RESOURCE_VALUE); 2046 return -EINVAL; 2047 } 2048 2049 if (func <= 5) { 2050 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 2051 } else { 2052 hw_lock_control_reg = 2053 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 2054 } 2055 2056 /* Validating that the resource is currently taken */ 2057 lock_status = REG_RD(bp, hw_lock_control_reg); 2058 if (!(lock_status & resource_bit)) { 2059 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", 2060 lock_status, resource_bit); 2061 return -EFAULT; 2062 } 2063 2064 REG_WR(bp, hw_lock_control_reg, resource_bit); 2065 return 0; 2066 } 2067 2068 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port) 2069 { 2070 /* The GPIO should be swapped if swap register is set and active */ 2071 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2072 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2073 int gpio_shift = gpio_num + 2074 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2075 u32 gpio_mask = (1 << gpio_shift); 2076 u32 gpio_reg; 2077 int value; 2078 2079 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2080 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2081 return -EINVAL; 2082 } 2083 2084 /* read GPIO value */ 2085 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2086 2087 /* get the requested pin value */ 2088 if ((gpio_reg & gpio_mask) == gpio_mask) 2089 value = 1; 2090 else 2091 value = 0; 2092 2093 return value; 2094 } 2095 2096 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2097 { 2098 /* The GPIO should be swapped if swap register is set and active */ 2099 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2100 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2101 int gpio_shift = gpio_num + 2102 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2103 u32 gpio_mask = (1 << gpio_shift); 2104 u32 gpio_reg; 2105 2106 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2107 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2108 return -EINVAL; 2109 } 2110 2111 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2112 /* read GPIO and mask except the float bits */ 2113 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 2114 2115 switch (mode) { 2116 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2117 DP(NETIF_MSG_LINK, 2118 "Set GPIO %d (shift %d) -> output low\n", 2119 gpio_num, gpio_shift); 2120 /* clear FLOAT and set CLR */ 2121 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2122 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 2123 break; 2124 2125 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2126 DP(NETIF_MSG_LINK, 2127 "Set GPIO %d (shift %d) -> output high\n", 2128 gpio_num, gpio_shift); 2129 /* clear FLOAT and set SET */ 2130 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2131 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 2132 break; 2133 2134 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2135 DP(NETIF_MSG_LINK, 2136 "Set GPIO %d (shift %d) -> input\n", 2137 gpio_num, gpio_shift); 2138 /* set FLOAT */ 2139 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 2140 break; 2141 2142 default: 2143 break; 2144 } 2145 2146 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2147 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2148 2149 return 0; 2150 } 2151 2152 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode) 2153 { 2154 u32 gpio_reg = 0; 2155 int rc = 0; 2156 2157 /* Any port swapping should be handled by caller. */ 2158 2159 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2160 /* read GPIO and mask except the float bits */ 2161 gpio_reg = REG_RD(bp, MISC_REG_GPIO); 2162 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2163 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2164 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2165 2166 switch (mode) { 2167 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2168 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); 2169 /* set CLR */ 2170 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2171 break; 2172 2173 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2174 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); 2175 /* set SET */ 2176 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2177 break; 2178 2179 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2180 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); 2181 /* set FLOAT */ 2182 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2183 break; 2184 2185 default: 2186 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); 2187 rc = -EINVAL; 2188 break; 2189 } 2190 2191 if (rc == 0) 2192 REG_WR(bp, MISC_REG_GPIO, gpio_reg); 2193 2194 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2195 2196 return rc; 2197 } 2198 2199 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port) 2200 { 2201 /* The GPIO should be swapped if swap register is set and active */ 2202 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && 2203 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; 2204 int gpio_shift = gpio_num + 2205 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); 2206 u32 gpio_mask = (1 << gpio_shift); 2207 u32 gpio_reg; 2208 2209 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2210 BNX2X_ERR("Invalid GPIO %d\n", gpio_num); 2211 return -EINVAL; 2212 } 2213 2214 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2215 /* read GPIO int */ 2216 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); 2217 2218 switch (mode) { 2219 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2220 DP(NETIF_MSG_LINK, 2221 "Clear GPIO INT %d (shift %d) -> output low\n", 2222 gpio_num, gpio_shift); 2223 /* clear SET and set CLR */ 2224 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2225 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2226 break; 2227 2228 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2229 DP(NETIF_MSG_LINK, 2230 "Set GPIO INT %d (shift %d) -> output high\n", 2231 gpio_num, gpio_shift); 2232 /* clear CLR and set SET */ 2233 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2234 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2235 break; 2236 2237 default: 2238 break; 2239 } 2240 2241 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); 2242 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); 2243 2244 return 0; 2245 } 2246 2247 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode) 2248 { 2249 u32 spio_reg; 2250 2251 /* Only 2 SPIOs are configurable */ 2252 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 2253 BNX2X_ERR("Invalid SPIO 0x%x\n", spio); 2254 return -EINVAL; 2255 } 2256 2257 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2258 /* read SPIO and mask except the float bits */ 2259 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 2260 2261 switch (mode) { 2262 case MISC_SPIO_OUTPUT_LOW: 2263 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); 2264 /* clear FLOAT and set CLR */ 2265 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2266 spio_reg |= (spio << MISC_SPIO_CLR_POS); 2267 break; 2268 2269 case MISC_SPIO_OUTPUT_HIGH: 2270 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); 2271 /* clear FLOAT and set SET */ 2272 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 2273 spio_reg |= (spio << MISC_SPIO_SET_POS); 2274 break; 2275 2276 case MISC_SPIO_INPUT_HI_Z: 2277 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); 2278 /* set FLOAT */ 2279 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 2280 break; 2281 2282 default: 2283 break; 2284 } 2285 2286 REG_WR(bp, MISC_REG_SPIO, spio_reg); 2287 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); 2288 2289 return 0; 2290 } 2291 2292 void bnx2x_calc_fc_adv(struct bnx2x *bp) 2293 { 2294 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp); 2295 2296 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 2297 ADVERTISED_Pause); 2298 switch (bp->link_vars.ieee_fc & 2299 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 2300 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 2301 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 2302 ADVERTISED_Pause); 2303 break; 2304 2305 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 2306 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 2307 break; 2308 2309 default: 2310 break; 2311 } 2312 } 2313 2314 static void bnx2x_set_requested_fc(struct bnx2x *bp) 2315 { 2316 /* Initialize link parameters structure variables 2317 * It is recommended to turn off RX FC for jumbo frames 2318 * for better performance 2319 */ 2320 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) 2321 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; 2322 else 2323 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; 2324 } 2325 2326 static void bnx2x_init_dropless_fc(struct bnx2x *bp) 2327 { 2328 u32 pause_enabled = 0; 2329 2330 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { 2331 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 2332 pause_enabled = 1; 2333 2334 REG_WR(bp, BAR_USTRORM_INTMEM + 2335 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), 2336 pause_enabled); 2337 } 2338 2339 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", 2340 pause_enabled ? "enabled" : "disabled"); 2341 } 2342 2343 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) 2344 { 2345 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); 2346 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx]; 2347 2348 if (!BP_NOMCP(bp)) { 2349 bnx2x_set_requested_fc(bp); 2350 bnx2x_acquire_phy_lock(bp); 2351 2352 if (load_mode == LOAD_DIAG) { 2353 struct link_params *lp = &bp->link_params; 2354 lp->loopback_mode = LOOPBACK_XGXS; 2355 /* Prefer doing PHY loopback at highest speed */ 2356 if (lp->req_line_speed[cfx_idx] < SPEED_20000) { 2357 if (lp->speed_cap_mask[cfx_idx] & 2358 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G) 2359 lp->req_line_speed[cfx_idx] = 2360 SPEED_20000; 2361 else if (lp->speed_cap_mask[cfx_idx] & 2362 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) 2363 lp->req_line_speed[cfx_idx] = 2364 SPEED_10000; 2365 else 2366 lp->req_line_speed[cfx_idx] = 2367 SPEED_1000; 2368 } 2369 } 2370 2371 if (load_mode == LOAD_LOOPBACK_EXT) { 2372 struct link_params *lp = &bp->link_params; 2373 lp->loopback_mode = LOOPBACK_EXT; 2374 } 2375 2376 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2377 2378 bnx2x_release_phy_lock(bp); 2379 2380 bnx2x_init_dropless_fc(bp); 2381 2382 bnx2x_calc_fc_adv(bp); 2383 2384 if (bp->link_vars.link_up) { 2385 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2386 bnx2x_link_report(bp); 2387 } 2388 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2389 bp->link_params.req_line_speed[cfx_idx] = req_line_speed; 2390 return rc; 2391 } 2392 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 2393 return -EINVAL; 2394 } 2395 2396 void bnx2x_link_set(struct bnx2x *bp) 2397 { 2398 if (!BP_NOMCP(bp)) { 2399 bnx2x_acquire_phy_lock(bp); 2400 bnx2x_phy_init(&bp->link_params, &bp->link_vars); 2401 bnx2x_release_phy_lock(bp); 2402 2403 bnx2x_init_dropless_fc(bp); 2404 2405 bnx2x_calc_fc_adv(bp); 2406 } else 2407 BNX2X_ERR("Bootcode is missing - can not set link\n"); 2408 } 2409 2410 static void bnx2x__link_reset(struct bnx2x *bp) 2411 { 2412 if (!BP_NOMCP(bp)) { 2413 bnx2x_acquire_phy_lock(bp); 2414 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); 2415 bnx2x_release_phy_lock(bp); 2416 } else 2417 BNX2X_ERR("Bootcode is missing - can not reset link\n"); 2418 } 2419 2420 void bnx2x_force_link_reset(struct bnx2x *bp) 2421 { 2422 bnx2x_acquire_phy_lock(bp); 2423 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); 2424 bnx2x_release_phy_lock(bp); 2425 } 2426 2427 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes) 2428 { 2429 u8 rc = 0; 2430 2431 if (!BP_NOMCP(bp)) { 2432 bnx2x_acquire_phy_lock(bp); 2433 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, 2434 is_serdes); 2435 bnx2x_release_phy_lock(bp); 2436 } else 2437 BNX2X_ERR("Bootcode is missing - can not test link\n"); 2438 2439 return rc; 2440 } 2441 2442 /* Calculates the sum of vn_min_rates. 2443 It's needed for further normalizing of the min_rates. 2444 Returns: 2445 sum of vn_min_rates. 2446 or 2447 0 - if all the min_rates are 0. 2448 In the later case fairness algorithm should be deactivated. 2449 If not all min_rates are zero then those that are zeroes will be set to 1. 2450 */ 2451 static void bnx2x_calc_vn_min(struct bnx2x *bp, 2452 struct cmng_init_input *input) 2453 { 2454 int all_zero = 1; 2455 int vn; 2456 2457 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2458 u32 vn_cfg = bp->mf_config[vn]; 2459 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 2460 FUNC_MF_CFG_MIN_BW_SHIFT) * 100; 2461 2462 /* Skip hidden vns */ 2463 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2464 vn_min_rate = 0; 2465 /* If min rate is zero - set it to 1 */ 2466 else if (!vn_min_rate) 2467 vn_min_rate = DEF_MIN_RATE; 2468 else 2469 all_zero = 0; 2470 2471 input->vnic_min_rate[vn] = vn_min_rate; 2472 } 2473 2474 /* if ETS or all min rates are zeros - disable fairness */ 2475 if (BNX2X_IS_ETS_ENABLED(bp)) { 2476 input->flags.cmng_enables &= 2477 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2478 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); 2479 } else if (all_zero) { 2480 input->flags.cmng_enables &= 2481 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2482 DP(NETIF_MSG_IFUP, 2483 "All MIN values are zeroes fairness will be disabled\n"); 2484 } else 2485 input->flags.cmng_enables |= 2486 CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 2487 } 2488 2489 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, 2490 struct cmng_init_input *input) 2491 { 2492 u16 vn_max_rate; 2493 u32 vn_cfg = bp->mf_config[vn]; 2494 2495 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) 2496 vn_max_rate = 0; 2497 else { 2498 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); 2499 2500 if (IS_MF_PERCENT_BW(bp)) { 2501 /* maxCfg in percents of linkspeed */ 2502 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; 2503 } else /* SD modes */ 2504 /* maxCfg is absolute in 100Mb units */ 2505 vn_max_rate = maxCfg * 100; 2506 } 2507 2508 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 2509 2510 input->vnic_max_rate[vn] = vn_max_rate; 2511 } 2512 2513 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) 2514 { 2515 if (CHIP_REV_IS_SLOW(bp)) 2516 return CMNG_FNS_NONE; 2517 if (IS_MF(bp)) 2518 return CMNG_FNS_MINMAX; 2519 2520 return CMNG_FNS_NONE; 2521 } 2522 2523 void bnx2x_read_mf_cfg(struct bnx2x *bp) 2524 { 2525 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); 2526 2527 if (BP_NOMCP(bp)) 2528 return; /* what should be the default value in this case */ 2529 2530 /* For 2 port configuration the absolute function number formula 2531 * is: 2532 * abs_func = 2 * vn + BP_PORT + BP_PATH 2533 * 2534 * and there are 4 functions per port 2535 * 2536 * For 4 port configuration it is 2537 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH 2538 * 2539 * and there are 2 functions per port 2540 */ 2541 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2542 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); 2543 2544 if (func >= E1H_FUNC_MAX) 2545 break; 2546 2547 bp->mf_config[vn] = 2548 MF_CFG_RD(bp, func_mf_config[func].config); 2549 } 2550 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 2551 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); 2552 bp->flags |= MF_FUNC_DIS; 2553 } else { 2554 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); 2555 bp->flags &= ~MF_FUNC_DIS; 2556 } 2557 } 2558 2559 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type) 2560 { 2561 struct cmng_init_input input; 2562 memset(&input, 0, sizeof(struct cmng_init_input)); 2563 2564 input.port_rate = bp->link_vars.line_speed; 2565 2566 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { 2567 int vn; 2568 2569 /* read mf conf from shmem */ 2570 if (read_cfg) 2571 bnx2x_read_mf_cfg(bp); 2572 2573 /* vn_weight_sum and enable fairness if not 0 */ 2574 bnx2x_calc_vn_min(bp, &input); 2575 2576 /* calculate and set min-max rate for each vn */ 2577 if (bp->port.pmf) 2578 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) 2579 bnx2x_calc_vn_max(bp, vn, &input); 2580 2581 /* always enable rate shaping and fairness */ 2582 input.flags.cmng_enables |= 2583 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 2584 2585 bnx2x_init_cmng(&input, &bp->cmng); 2586 return; 2587 } 2588 2589 /* rate shaping and fairness are disabled */ 2590 DP(NETIF_MSG_IFUP, 2591 "rate shaping and fairness are disabled\n"); 2592 } 2593 2594 static void storm_memset_cmng(struct bnx2x *bp, 2595 struct cmng_init *cmng, 2596 u8 port) 2597 { 2598 int vn; 2599 size_t size = sizeof(struct cmng_struct_per_port); 2600 2601 u32 addr = BAR_XSTRORM_INTMEM + 2602 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); 2603 2604 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port); 2605 2606 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { 2607 int func = func_by_vn(bp, vn); 2608 2609 addr = BAR_XSTRORM_INTMEM + 2610 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); 2611 size = sizeof(struct rate_shaping_vars_per_vn); 2612 __storm_memset_struct(bp, addr, size, 2613 (u32 *)&cmng->vnic.vnic_max_rate[vn]); 2614 2615 addr = BAR_XSTRORM_INTMEM + 2616 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); 2617 size = sizeof(struct fairness_vars_per_vn); 2618 __storm_memset_struct(bp, addr, size, 2619 (u32 *)&cmng->vnic.vnic_min_rate[vn]); 2620 } 2621 } 2622 2623 /* init cmng mode in HW according to local configuration */ 2624 void bnx2x_set_local_cmng(struct bnx2x *bp) 2625 { 2626 int cmng_fns = bnx2x_get_cmng_fns_mode(bp); 2627 2628 if (cmng_fns != CMNG_FNS_NONE) { 2629 bnx2x_cmng_fns_init(bp, false, cmng_fns); 2630 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 2631 } else { 2632 /* rate shaping and fairness are disabled */ 2633 DP(NETIF_MSG_IFUP, 2634 "single function mode without fairness\n"); 2635 } 2636 } 2637 2638 /* This function is called upon link interrupt */ 2639 static void bnx2x_link_attn(struct bnx2x *bp) 2640 { 2641 /* Make sure that we are synced with the current statistics */ 2642 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2643 2644 bnx2x_link_update(&bp->link_params, &bp->link_vars); 2645 2646 bnx2x_init_dropless_fc(bp); 2647 2648 if (bp->link_vars.link_up) { 2649 2650 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { 2651 struct host_port_stats *pstats; 2652 2653 pstats = bnx2x_sp(bp, port_stats); 2654 /* reset old mac stats */ 2655 memset(&(pstats->mac_stx[0]), 0, 2656 sizeof(struct mac_stx)); 2657 } 2658 if (bp->state == BNX2X_STATE_OPEN) 2659 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2660 } 2661 2662 if (bp->link_vars.link_up && bp->link_vars.line_speed) 2663 bnx2x_set_local_cmng(bp); 2664 2665 __bnx2x_link_report(bp); 2666 2667 if (IS_MF(bp)) 2668 bnx2x_link_sync_notify(bp); 2669 } 2670 2671 void bnx2x__link_status_update(struct bnx2x *bp) 2672 { 2673 if (bp->state != BNX2X_STATE_OPEN) 2674 return; 2675 2676 /* read updated dcb configuration */ 2677 if (IS_PF(bp)) { 2678 bnx2x_dcbx_pmf_update(bp); 2679 bnx2x_link_status_update(&bp->link_params, &bp->link_vars); 2680 if (bp->link_vars.link_up) 2681 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2682 else 2683 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 2684 /* indicate link status */ 2685 bnx2x_link_report(bp); 2686 2687 } else { /* VF */ 2688 bp->port.supported[0] |= (SUPPORTED_10baseT_Half | 2689 SUPPORTED_10baseT_Full | 2690 SUPPORTED_100baseT_Half | 2691 SUPPORTED_100baseT_Full | 2692 SUPPORTED_1000baseT_Full | 2693 SUPPORTED_2500baseX_Full | 2694 SUPPORTED_10000baseT_Full | 2695 SUPPORTED_TP | 2696 SUPPORTED_FIBRE | 2697 SUPPORTED_Autoneg | 2698 SUPPORTED_Pause | 2699 SUPPORTED_Asym_Pause); 2700 bp->port.advertising[0] = bp->port.supported[0]; 2701 2702 bp->link_params.bp = bp; 2703 bp->link_params.port = BP_PORT(bp); 2704 bp->link_params.req_duplex[0] = DUPLEX_FULL; 2705 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; 2706 bp->link_params.req_line_speed[0] = SPEED_10000; 2707 bp->link_params.speed_cap_mask[0] = 0x7f0000; 2708 bp->link_params.switch_cfg = SWITCH_CFG_10G; 2709 bp->link_vars.mac_type = MAC_TYPE_BMAC; 2710 bp->link_vars.line_speed = SPEED_10000; 2711 bp->link_vars.link_status = 2712 (LINK_STATUS_LINK_UP | 2713 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 2714 bp->link_vars.link_up = 1; 2715 bp->link_vars.duplex = DUPLEX_FULL; 2716 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; 2717 __bnx2x_link_report(bp); 2718 2719 bnx2x_sample_bulletin(bp); 2720 2721 /* if bulletin board did not have an update for link status 2722 * __bnx2x_link_report will report current status 2723 * but it will NOT duplicate report in case of already reported 2724 * during sampling bulletin board. 2725 */ 2726 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); 2727 } 2728 } 2729 2730 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid, 2731 u16 vlan_val, u8 allowed_prio) 2732 { 2733 struct bnx2x_func_state_params func_params = {NULL}; 2734 struct bnx2x_func_afex_update_params *f_update_params = 2735 &func_params.params.afex_update; 2736 2737 func_params.f_obj = &bp->func_obj; 2738 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; 2739 2740 /* no need to wait for RAMROD completion, so don't 2741 * set RAMROD_COMP_WAIT flag 2742 */ 2743 2744 f_update_params->vif_id = vifid; 2745 f_update_params->afex_default_vlan = vlan_val; 2746 f_update_params->allowed_priorities = allowed_prio; 2747 2748 /* if ramrod can not be sent, response to MCP immediately */ 2749 if (bnx2x_func_state_change(bp, &func_params) < 0) 2750 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 2751 2752 return 0; 2753 } 2754 2755 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type, 2756 u16 vif_index, u8 func_bit_map) 2757 { 2758 struct bnx2x_func_state_params func_params = {NULL}; 2759 struct bnx2x_func_afex_viflists_params *update_params = 2760 &func_params.params.afex_viflists; 2761 int rc; 2762 u32 drv_msg_code; 2763 2764 /* validate only LIST_SET and LIST_GET are received from switch */ 2765 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) 2766 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", 2767 cmd_type); 2768 2769 func_params.f_obj = &bp->func_obj; 2770 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; 2771 2772 /* set parameters according to cmd_type */ 2773 update_params->afex_vif_list_command = cmd_type; 2774 update_params->vif_list_index = vif_index; 2775 update_params->func_bit_map = 2776 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; 2777 update_params->func_to_clear = 0; 2778 drv_msg_code = 2779 (cmd_type == VIF_LIST_RULE_GET) ? 2780 DRV_MSG_CODE_AFEX_LISTGET_ACK : 2781 DRV_MSG_CODE_AFEX_LISTSET_ACK; 2782 2783 /* if ramrod can not be sent, respond to MCP immediately for 2784 * SET and GET requests (other are not triggered from MCP) 2785 */ 2786 rc = bnx2x_func_state_change(bp, &func_params); 2787 if (rc < 0) 2788 bnx2x_fw_command(bp, drv_msg_code, 0); 2789 2790 return 0; 2791 } 2792 2793 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd) 2794 { 2795 struct afex_stats afex_stats; 2796 u32 func = BP_ABS_FUNC(bp); 2797 u32 mf_config; 2798 u16 vlan_val; 2799 u32 vlan_prio; 2800 u16 vif_id; 2801 u8 allowed_prio; 2802 u8 vlan_mode; 2803 u32 addr_to_write, vifid, addrs, stats_type, i; 2804 2805 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { 2806 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2807 DP(BNX2X_MSG_MCP, 2808 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); 2809 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); 2810 } 2811 2812 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { 2813 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2814 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); 2815 DP(BNX2X_MSG_MCP, 2816 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", 2817 vifid, addrs); 2818 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, 2819 addrs); 2820 } 2821 2822 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { 2823 addr_to_write = SHMEM2_RD(bp, 2824 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); 2825 stats_type = SHMEM2_RD(bp, 2826 afex_param1_to_driver[BP_FW_MB_IDX(bp)]); 2827 2828 DP(BNX2X_MSG_MCP, 2829 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", 2830 addr_to_write); 2831 2832 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); 2833 2834 /* write response to scratchpad, for MCP */ 2835 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++) 2836 REG_WR(bp, addr_to_write + i*sizeof(u32), 2837 *(((u32 *)(&afex_stats))+i)); 2838 2839 /* send ack message to MCP */ 2840 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); 2841 } 2842 2843 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { 2844 mf_config = MF_CFG_RD(bp, func_mf_config[func].config); 2845 bp->mf_config[BP_VN(bp)] = mf_config; 2846 DP(BNX2X_MSG_MCP, 2847 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", 2848 mf_config); 2849 2850 /* if VIF_SET is "enabled" */ 2851 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { 2852 /* set rate limit directly to internal RAM */ 2853 struct cmng_init_input cmng_input; 2854 struct rate_shaping_vars_per_vn m_rs_vn; 2855 size_t size = sizeof(struct rate_shaping_vars_per_vn); 2856 u32 addr = BAR_XSTRORM_INTMEM + 2857 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); 2858 2859 bp->mf_config[BP_VN(bp)] = mf_config; 2860 2861 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); 2862 m_rs_vn.vn_counter.rate = 2863 cmng_input.vnic_max_rate[BP_VN(bp)]; 2864 m_rs_vn.vn_counter.quota = 2865 (m_rs_vn.vn_counter.rate * 2866 RS_PERIODIC_TIMEOUT_USEC) / 8; 2867 2868 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn); 2869 2870 /* read relevant values from mf_cfg struct in shmem */ 2871 vif_id = 2872 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2873 FUNC_MF_CFG_E1HOV_TAG_MASK) >> 2874 FUNC_MF_CFG_E1HOV_TAG_SHIFT; 2875 vlan_val = 2876 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2877 FUNC_MF_CFG_AFEX_VLAN_MASK) >> 2878 FUNC_MF_CFG_AFEX_VLAN_SHIFT; 2879 vlan_prio = (mf_config & 2880 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 2881 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; 2882 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); 2883 vlan_mode = 2884 (MF_CFG_RD(bp, 2885 func_mf_config[func].afex_config) & 2886 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 2887 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; 2888 allowed_prio = 2889 (MF_CFG_RD(bp, 2890 func_mf_config[func].afex_config) & 2891 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 2892 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; 2893 2894 /* send ramrod to FW, return in case of failure */ 2895 if (bnx2x_afex_func_update(bp, vif_id, vlan_val, 2896 allowed_prio)) 2897 return; 2898 2899 bp->afex_def_vlan_tag = vlan_val; 2900 bp->afex_vlan_mode = vlan_mode; 2901 } else { 2902 /* notify link down because BP->flags is disabled */ 2903 bnx2x_link_report(bp); 2904 2905 /* send INVALID VIF ramrod to FW */ 2906 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); 2907 2908 /* Reset the default afex VLAN */ 2909 bp->afex_def_vlan_tag = -1; 2910 } 2911 } 2912 } 2913 2914 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) 2915 { 2916 struct bnx2x_func_switch_update_params *switch_update_params; 2917 struct bnx2x_func_state_params func_params; 2918 2919 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); 2920 switch_update_params = &func_params.params.switch_update; 2921 func_params.f_obj = &bp->func_obj; 2922 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 2923 2924 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) { 2925 int func = BP_ABS_FUNC(bp); 2926 u32 val; 2927 2928 /* Re-learn the S-tag from shmem */ 2929 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 2930 FUNC_MF_CFG_E1HOV_TAG_MASK; 2931 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 2932 bp->mf_ov = val; 2933 } else { 2934 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); 2935 goto fail; 2936 } 2937 2938 /* Configure new S-tag in LLH */ 2939 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, 2940 bp->mf_ov); 2941 2942 /* Send Ramrod to update FW of change */ 2943 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, 2944 &switch_update_params->changes); 2945 switch_update_params->vlan = bp->mf_ov; 2946 2947 if (bnx2x_func_state_change(bp, &func_params) < 0) { 2948 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", 2949 bp->mf_ov); 2950 goto fail; 2951 } else { 2952 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", 2953 bp->mf_ov); 2954 } 2955 } else { 2956 goto fail; 2957 } 2958 2959 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); 2960 return; 2961 fail: 2962 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); 2963 } 2964 2965 static void bnx2x_pmf_update(struct bnx2x *bp) 2966 { 2967 int port = BP_PORT(bp); 2968 u32 val; 2969 2970 bp->port.pmf = 1; 2971 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); 2972 2973 /* 2974 * We need the mb() to ensure the ordering between the writing to 2975 * bp->port.pmf here and reading it from the bnx2x_periodic_task(). 2976 */ 2977 smp_mb(); 2978 2979 /* queue a periodic task */ 2980 queue_delayed_work(bnx2x_wq, &bp->period_task, 0); 2981 2982 bnx2x_dcbx_pmf_update(bp); 2983 2984 /* enable nig attention */ 2985 val = (0xff0f | (1 << (BP_VN(bp) + 4))); 2986 if (bp->common.int_block == INT_BLOCK_HC) { 2987 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); 2988 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); 2989 } else if (!CHIP_IS_E1x(bp)) { 2990 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); 2991 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); 2992 } 2993 2994 bnx2x_stats_handle(bp, STATS_EVENT_PMF); 2995 } 2996 2997 /* end of Link */ 2998 2999 /* slow path */ 3000 3001 /* 3002 * General service functions 3003 */ 3004 3005 /* send the MCP a request, block until there is a reply */ 3006 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param) 3007 { 3008 int mb_idx = BP_FW_MB_IDX(bp); 3009 u32 seq; 3010 u32 rc = 0; 3011 u32 cnt = 1; 3012 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; 3013 3014 mutex_lock(&bp->fw_mb_mutex); 3015 seq = ++bp->fw_seq; 3016 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); 3017 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); 3018 3019 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", 3020 (command | seq), param); 3021 3022 do { 3023 /* let the FW do it's magic ... */ 3024 msleep(delay); 3025 3026 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); 3027 3028 /* Give the FW up to 5 second (500*10ms) */ 3029 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 3030 3031 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", 3032 cnt*delay, rc, seq); 3033 3034 /* is this a reply to our command? */ 3035 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) 3036 rc &= FW_MSG_CODE_MASK; 3037 else { 3038 /* FW BUG! */ 3039 BNX2X_ERR("FW failed to respond!\n"); 3040 bnx2x_fw_dump(bp); 3041 rc = 0; 3042 } 3043 mutex_unlock(&bp->fw_mb_mutex); 3044 3045 return rc; 3046 } 3047 3048 static void storm_memset_func_cfg(struct bnx2x *bp, 3049 struct tstorm_eth_function_common_config *tcfg, 3050 u16 abs_fid) 3051 { 3052 size_t size = sizeof(struct tstorm_eth_function_common_config); 3053 3054 u32 addr = BAR_TSTRORM_INTMEM + 3055 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); 3056 3057 __storm_memset_struct(bp, addr, size, (u32 *)tcfg); 3058 } 3059 3060 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) 3061 { 3062 if (CHIP_IS_E1x(bp)) { 3063 struct tstorm_eth_function_common_config tcfg = {0}; 3064 3065 storm_memset_func_cfg(bp, &tcfg, p->func_id); 3066 } 3067 3068 /* Enable the function in the FW */ 3069 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); 3070 storm_memset_func_en(bp, p->func_id, 1); 3071 3072 /* spq */ 3073 if (p->spq_active) { 3074 storm_memset_spq_addr(bp, p->spq_map, p->func_id); 3075 REG_WR(bp, XSEM_REG_FAST_MEMORY + 3076 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); 3077 } 3078 } 3079 3080 /** 3081 * bnx2x_get_common_flags - Return common flags 3082 * 3083 * @bp device handle 3084 * @fp queue handle 3085 * @zero_stats TRUE if statistics zeroing is needed 3086 * 3087 * Return the flags that are common for the Tx-only and not normal connections. 3088 */ 3089 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, 3090 struct bnx2x_fastpath *fp, 3091 bool zero_stats) 3092 { 3093 unsigned long flags = 0; 3094 3095 /* PF driver will always initialize the Queue to an ACTIVE state */ 3096 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); 3097 3098 /* tx only connections collect statistics (on the same index as the 3099 * parent connection). The statistics are zeroed when the parent 3100 * connection is initialized. 3101 */ 3102 3103 __set_bit(BNX2X_Q_FLG_STATS, &flags); 3104 if (zero_stats) 3105 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); 3106 3107 if (bp->flags & TX_SWITCHING) 3108 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); 3109 3110 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); 3111 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); 3112 3113 #ifdef BNX2X_STOP_ON_ERROR 3114 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); 3115 #endif 3116 3117 return flags; 3118 } 3119 3120 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, 3121 struct bnx2x_fastpath *fp, 3122 bool leading) 3123 { 3124 unsigned long flags = 0; 3125 3126 /* calculate other queue flags */ 3127 if (IS_MF_SD(bp)) 3128 __set_bit(BNX2X_Q_FLG_OV, &flags); 3129 3130 if (IS_FCOE_FP(fp)) { 3131 __set_bit(BNX2X_Q_FLG_FCOE, &flags); 3132 /* For FCoE - force usage of default priority (for afex) */ 3133 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); 3134 } 3135 3136 if (fp->mode != TPA_MODE_DISABLED) { 3137 __set_bit(BNX2X_Q_FLG_TPA, &flags); 3138 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); 3139 if (fp->mode == TPA_MODE_GRO) 3140 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); 3141 } 3142 3143 if (leading) { 3144 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); 3145 __set_bit(BNX2X_Q_FLG_MCAST, &flags); 3146 } 3147 3148 /* Always set HW VLAN stripping */ 3149 __set_bit(BNX2X_Q_FLG_VLAN, &flags); 3150 3151 /* configure silent vlan removal */ 3152 if (IS_MF_AFEX(bp)) 3153 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); 3154 3155 return flags | bnx2x_get_common_flags(bp, fp, true); 3156 } 3157 3158 static void bnx2x_pf_q_prep_general(struct bnx2x *bp, 3159 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, 3160 u8 cos) 3161 { 3162 gen_init->stat_id = bnx2x_stats_id(fp); 3163 gen_init->spcl_id = fp->cl_id; 3164 3165 /* Always use mini-jumbo MTU for FCoE L2 ring */ 3166 if (IS_FCOE_FP(fp)) 3167 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 3168 else 3169 gen_init->mtu = bp->dev->mtu; 3170 3171 gen_init->cos = cos; 3172 3173 gen_init->fp_hsi = ETH_FP_HSI_VERSION; 3174 } 3175 3176 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, 3177 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, 3178 struct bnx2x_rxq_setup_params *rxq_init) 3179 { 3180 u8 max_sge = 0; 3181 u16 sge_sz = 0; 3182 u16 tpa_agg_size = 0; 3183 3184 if (fp->mode != TPA_MODE_DISABLED) { 3185 pause->sge_th_lo = SGE_TH_LO(bp); 3186 pause->sge_th_hi = SGE_TH_HI(bp); 3187 3188 /* validate SGE ring has enough to cross high threshold */ 3189 WARN_ON(bp->dropless_fc && 3190 pause->sge_th_hi + FW_PREFETCH_CNT > 3191 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); 3192 3193 tpa_agg_size = TPA_AGG_SIZE; 3194 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> 3195 SGE_PAGE_SHIFT; 3196 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 3197 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; 3198 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff); 3199 } 3200 3201 /* pause - not for e1 */ 3202 if (!CHIP_IS_E1(bp)) { 3203 pause->bd_th_lo = BD_TH_LO(bp); 3204 pause->bd_th_hi = BD_TH_HI(bp); 3205 3206 pause->rcq_th_lo = RCQ_TH_LO(bp); 3207 pause->rcq_th_hi = RCQ_TH_HI(bp); 3208 /* 3209 * validate that rings have enough entries to cross 3210 * high thresholds 3211 */ 3212 WARN_ON(bp->dropless_fc && 3213 pause->bd_th_hi + FW_PREFETCH_CNT > 3214 bp->rx_ring_size); 3215 WARN_ON(bp->dropless_fc && 3216 pause->rcq_th_hi + FW_PREFETCH_CNT > 3217 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); 3218 3219 pause->pri_map = 1; 3220 } 3221 3222 /* rxq setup */ 3223 rxq_init->dscr_map = fp->rx_desc_mapping; 3224 rxq_init->sge_map = fp->rx_sge_mapping; 3225 rxq_init->rcq_map = fp->rx_comp_mapping; 3226 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; 3227 3228 /* This should be a maximum number of data bytes that may be 3229 * placed on the BD (not including paddings). 3230 */ 3231 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - 3232 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; 3233 3234 rxq_init->cl_qzone_id = fp->cl_qzone_id; 3235 rxq_init->tpa_agg_sz = tpa_agg_size; 3236 rxq_init->sge_buf_sz = sge_sz; 3237 rxq_init->max_sges_pkt = max_sge; 3238 rxq_init->rss_engine_id = BP_FUNC(bp); 3239 rxq_init->mcast_engine_id = BP_FUNC(bp); 3240 3241 /* Maximum number or simultaneous TPA aggregation for this Queue. 3242 * 3243 * For PF Clients it should be the maximum available number. 3244 * VF driver(s) may want to define it to a smaller value. 3245 */ 3246 rxq_init->max_tpa_queues = MAX_AGG_QS(bp); 3247 3248 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; 3249 rxq_init->fw_sb_id = fp->fw_sb_id; 3250 3251 if (IS_FCOE_FP(fp)) 3252 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; 3253 else 3254 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 3255 /* configure silent vlan removal 3256 * if multi function mode is afex, then mask default vlan 3257 */ 3258 if (IS_MF_AFEX(bp)) { 3259 rxq_init->silent_removal_value = bp->afex_def_vlan_tag; 3260 rxq_init->silent_removal_mask = VLAN_VID_MASK; 3261 } 3262 } 3263 3264 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, 3265 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, 3266 u8 cos) 3267 { 3268 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; 3269 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 3270 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 3271 txq_init->fw_sb_id = fp->fw_sb_id; 3272 3273 /* 3274 * set the tss leading client id for TX classification == 3275 * leading RSS client id 3276 */ 3277 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); 3278 3279 if (IS_FCOE_FP(fp)) { 3280 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; 3281 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; 3282 } 3283 } 3284 3285 static void bnx2x_pf_init(struct bnx2x *bp) 3286 { 3287 struct bnx2x_func_init_params func_init = {0}; 3288 struct event_ring_data eq_data = { {0} }; 3289 3290 if (!CHIP_IS_E1x(bp)) { 3291 /* reset IGU PF statistics: MSIX + ATTN */ 3292 /* PF */ 3293 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3294 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3295 (CHIP_MODE_IS_4_PORT(bp) ? 3296 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3297 /* ATTN */ 3298 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 3299 BNX2X_IGU_STAS_MSG_VF_CNT*4 + 3300 BNX2X_IGU_STAS_MSG_PF_CNT*4 + 3301 (CHIP_MODE_IS_4_PORT(bp) ? 3302 BP_FUNC(bp) : BP_VN(bp))*4, 0); 3303 } 3304 3305 func_init.spq_active = true; 3306 func_init.pf_id = BP_FUNC(bp); 3307 func_init.func_id = BP_FUNC(bp); 3308 func_init.spq_map = bp->spq_mapping; 3309 func_init.spq_prod = bp->spq_prod_idx; 3310 3311 bnx2x_func_init(bp, &func_init); 3312 3313 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); 3314 3315 /* 3316 * Congestion management values depend on the link rate 3317 * There is no active link so initial link rate is set to 10 Gbps. 3318 * When the link comes up The congestion management values are 3319 * re-calculated according to the actual link rate. 3320 */ 3321 bp->link_vars.line_speed = SPEED_10000; 3322 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); 3323 3324 /* Only the PMF sets the HW */ 3325 if (bp->port.pmf) 3326 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3327 3328 /* init Event Queue - PCI bus guarantees correct endianity*/ 3329 eq_data.base_addr.hi = U64_HI(bp->eq_mapping); 3330 eq_data.base_addr.lo = U64_LO(bp->eq_mapping); 3331 eq_data.producer = bp->eq_prod; 3332 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 3333 eq_data.sb_id = DEF_SB_ID; 3334 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); 3335 } 3336 3337 static void bnx2x_e1h_disable(struct bnx2x *bp) 3338 { 3339 int port = BP_PORT(bp); 3340 3341 bnx2x_tx_disable(bp); 3342 3343 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 3344 } 3345 3346 static void bnx2x_e1h_enable(struct bnx2x *bp) 3347 { 3348 int port = BP_PORT(bp); 3349 3350 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) 3351 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 3352 3353 /* Tx queue should be only re-enabled */ 3354 netif_tx_wake_all_queues(bp->dev); 3355 3356 /* 3357 * Should not call netif_carrier_on since it will be called if the link 3358 * is up when checking for link state 3359 */ 3360 } 3361 3362 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 3363 3364 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) 3365 { 3366 struct eth_stats_info *ether_stat = 3367 &bp->slowpath->drv_info_to_mcp.ether_stat; 3368 struct bnx2x_vlan_mac_obj *mac_obj = 3369 &bp->sp_objs->mac_obj; 3370 int i; 3371 3372 strlcpy(ether_stat->version, DRV_MODULE_VERSION, 3373 ETH_STAT_INFO_VERSION_LEN); 3374 3375 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the 3376 * mac_local field in ether_stat struct. The base address is offset by 2 3377 * bytes to account for the field being 8 bytes but a mac address is 3378 * only 6 bytes. Likewise, the stride for the get_n_elements function is 3379 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes 3380 * allocated by the ether_stat struct, so the macs will land in their 3381 * proper positions. 3382 */ 3383 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) 3384 memset(ether_stat->mac_local + i, 0, 3385 sizeof(ether_stat->mac_local[0])); 3386 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, 3387 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 3388 ether_stat->mac_local + MAC_PAD, MAC_PAD, 3389 ETH_ALEN); 3390 ether_stat->mtu_size = bp->dev->mtu; 3391 if (bp->dev->features & NETIF_F_RXCSUM) 3392 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 3393 if (bp->dev->features & NETIF_F_TSO) 3394 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 3395 ether_stat->feature_flags |= bp->common.boot_mode; 3396 3397 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; 3398 3399 ether_stat->txq_size = bp->tx_ring_size; 3400 ether_stat->rxq_size = bp->rx_ring_size; 3401 3402 #ifdef CONFIG_BNX2X_SRIOV 3403 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; 3404 #endif 3405 } 3406 3407 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) 3408 { 3409 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3410 struct fcoe_stats_info *fcoe_stat = 3411 &bp->slowpath->drv_info_to_mcp.fcoe_stat; 3412 3413 if (!CNIC_LOADED(bp)) 3414 return; 3415 3416 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN); 3417 3418 fcoe_stat->qos_priority = 3419 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; 3420 3421 /* insert FCoE stats from ramrod response */ 3422 if (!NO_FCOE(bp)) { 3423 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = 3424 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3425 tstorm_queue_statistics; 3426 3427 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = 3428 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. 3429 xstorm_queue_statistics; 3430 3431 struct fcoe_statistics_params *fw_fcoe_stat = 3432 &bp->fw_stats_data->fcoe; 3433 3434 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, 3435 fcoe_stat->rx_bytes_lo, 3436 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); 3437 3438 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3439 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, 3440 fcoe_stat->rx_bytes_lo, 3441 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); 3442 3443 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3444 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, 3445 fcoe_stat->rx_bytes_lo, 3446 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); 3447 3448 ADD_64_LE(fcoe_stat->rx_bytes_hi, 3449 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, 3450 fcoe_stat->rx_bytes_lo, 3451 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); 3452 3453 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3454 fcoe_stat->rx_frames_lo, 3455 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); 3456 3457 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3458 fcoe_stat->rx_frames_lo, 3459 fcoe_q_tstorm_stats->rcv_ucast_pkts); 3460 3461 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3462 fcoe_stat->rx_frames_lo, 3463 fcoe_q_tstorm_stats->rcv_bcast_pkts); 3464 3465 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, 3466 fcoe_stat->rx_frames_lo, 3467 fcoe_q_tstorm_stats->rcv_mcast_pkts); 3468 3469 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, 3470 fcoe_stat->tx_bytes_lo, 3471 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); 3472 3473 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3474 fcoe_q_xstorm_stats->ucast_bytes_sent.hi, 3475 fcoe_stat->tx_bytes_lo, 3476 fcoe_q_xstorm_stats->ucast_bytes_sent.lo); 3477 3478 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3479 fcoe_q_xstorm_stats->bcast_bytes_sent.hi, 3480 fcoe_stat->tx_bytes_lo, 3481 fcoe_q_xstorm_stats->bcast_bytes_sent.lo); 3482 3483 ADD_64_LE(fcoe_stat->tx_bytes_hi, 3484 fcoe_q_xstorm_stats->mcast_bytes_sent.hi, 3485 fcoe_stat->tx_bytes_lo, 3486 fcoe_q_xstorm_stats->mcast_bytes_sent.lo); 3487 3488 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3489 fcoe_stat->tx_frames_lo, 3490 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); 3491 3492 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3493 fcoe_stat->tx_frames_lo, 3494 fcoe_q_xstorm_stats->ucast_pkts_sent); 3495 3496 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3497 fcoe_stat->tx_frames_lo, 3498 fcoe_q_xstorm_stats->bcast_pkts_sent); 3499 3500 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, 3501 fcoe_stat->tx_frames_lo, 3502 fcoe_q_xstorm_stats->mcast_pkts_sent); 3503 } 3504 3505 /* ask L5 driver to add data to the struct */ 3506 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); 3507 } 3508 3509 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) 3510 { 3511 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; 3512 struct iscsi_stats_info *iscsi_stat = 3513 &bp->slowpath->drv_info_to_mcp.iscsi_stat; 3514 3515 if (!CNIC_LOADED(bp)) 3516 return; 3517 3518 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, 3519 ETH_ALEN); 3520 3521 iscsi_stat->qos_priority = 3522 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; 3523 3524 /* ask L5 driver to add data to the struct */ 3525 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); 3526 } 3527 3528 /* called due to MCP event (on pmf): 3529 * reread new bandwidth configuration 3530 * configure FW 3531 * notify others function about the change 3532 */ 3533 static void bnx2x_config_mf_bw(struct bnx2x *bp) 3534 { 3535 if (bp->link_vars.link_up) { 3536 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); 3537 bnx2x_link_sync_notify(bp); 3538 } 3539 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); 3540 } 3541 3542 static void bnx2x_set_mf_bw(struct bnx2x *bp) 3543 { 3544 bnx2x_config_mf_bw(bp); 3545 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 3546 } 3547 3548 static void bnx2x_handle_eee_event(struct bnx2x *bp) 3549 { 3550 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); 3551 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 3552 } 3553 3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20) 3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25) 3556 3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp) 3558 { 3559 enum drv_info_opcode op_code; 3560 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control); 3561 bool release = false; 3562 int wait; 3563 3564 /* if drv_info version supported by MFW doesn't match - send NACK */ 3565 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 3566 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3567 return; 3568 } 3569 3570 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 3571 DRV_INFO_CONTROL_OP_CODE_SHIFT; 3572 3573 /* Must prevent other flows from accessing drv_info_to_mcp */ 3574 mutex_lock(&bp->drv_info_mutex); 3575 3576 memset(&bp->slowpath->drv_info_to_mcp, 0, 3577 sizeof(union drv_info_to_mcp)); 3578 3579 switch (op_code) { 3580 case ETH_STATS_OPCODE: 3581 bnx2x_drv_info_ether_stat(bp); 3582 break; 3583 case FCOE_STATS_OPCODE: 3584 bnx2x_drv_info_fcoe_stat(bp); 3585 break; 3586 case ISCSI_STATS_OPCODE: 3587 bnx2x_drv_info_iscsi_stat(bp); 3588 break; 3589 default: 3590 /* if op code isn't supported - send NACK */ 3591 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); 3592 goto out; 3593 } 3594 3595 /* if we got drv_info attn from MFW then these fields are defined in 3596 * shmem2 for sure 3597 */ 3598 SHMEM2_WR(bp, drv_info_host_addr_lo, 3599 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3600 SHMEM2_WR(bp, drv_info_host_addr_hi, 3601 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); 3602 3603 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); 3604 3605 /* Since possible management wants both this and get_driver_version 3606 * need to wait until management notifies us it finished utilizing 3607 * the buffer. 3608 */ 3609 if (!SHMEM2_HAS(bp, mfw_drv_indication)) { 3610 DP(BNX2X_MSG_MCP, "Management does not support indication\n"); 3611 } else if (!bp->drv_info_mng_owner) { 3612 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); 3613 3614 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { 3615 u32 indication = SHMEM2_RD(bp, mfw_drv_indication); 3616 3617 /* Management is done; need to clear indication */ 3618 if (indication & bit) { 3619 SHMEM2_WR(bp, mfw_drv_indication, 3620 indication & ~bit); 3621 release = true; 3622 break; 3623 } 3624 3625 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH); 3626 } 3627 } 3628 if (!release) { 3629 DP(BNX2X_MSG_MCP, "Management did not release indication\n"); 3630 bp->drv_info_mng_owner = true; 3631 } 3632 3633 out: 3634 mutex_unlock(&bp->drv_info_mutex); 3635 } 3636 3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format) 3638 { 3639 u8 vals[4]; 3640 int i = 0; 3641 3642 if (bnx2x_format) { 3643 i = sscanf(version, "1.%c%hhd.%hhd.%hhd", 3644 &vals[0], &vals[1], &vals[2], &vals[3]); 3645 if (i > 0) 3646 vals[0] -= '0'; 3647 } else { 3648 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", 3649 &vals[0], &vals[1], &vals[2], &vals[3]); 3650 } 3651 3652 while (i < 4) 3653 vals[i++] = 0; 3654 3655 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; 3656 } 3657 3658 void bnx2x_update_mng_version(struct bnx2x *bp) 3659 { 3660 u32 iscsiver = DRV_VER_NOT_LOADED; 3661 u32 fcoever = DRV_VER_NOT_LOADED; 3662 u32 ethver = DRV_VER_NOT_LOADED; 3663 int idx = BP_FW_MB_IDX(bp); 3664 u8 *version; 3665 3666 if (!SHMEM2_HAS(bp, func_os_drv_ver)) 3667 return; 3668 3669 mutex_lock(&bp->drv_info_mutex); 3670 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ 3671 if (bp->drv_info_mng_owner) 3672 goto out; 3673 3674 if (bp->state != BNX2X_STATE_OPEN) 3675 goto out; 3676 3677 /* Parse ethernet driver version */ 3678 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3679 if (!CNIC_LOADED(bp)) 3680 goto out; 3681 3682 /* Try getting storage driver version via cnic */ 3683 memset(&bp->slowpath->drv_info_to_mcp, 0, 3684 sizeof(union drv_info_to_mcp)); 3685 bnx2x_drv_info_iscsi_stat(bp); 3686 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version; 3687 iscsiver = bnx2x_update_mng_version_utility(version, false); 3688 3689 memset(&bp->slowpath->drv_info_to_mcp, 0, 3690 sizeof(union drv_info_to_mcp)); 3691 bnx2x_drv_info_fcoe_stat(bp); 3692 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version; 3693 fcoever = bnx2x_update_mng_version_utility(version, false); 3694 3695 out: 3696 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); 3697 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); 3698 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); 3699 3700 mutex_unlock(&bp->drv_info_mutex); 3701 3702 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", 3703 ethver, iscsiver, fcoever); 3704 } 3705 3706 void bnx2x_update_mfw_dump(struct bnx2x *bp) 3707 { 3708 u32 drv_ver; 3709 u32 valid_dump; 3710 3711 if (!SHMEM2_HAS(bp, drv_info)) 3712 return; 3713 3714 /* Update Driver load time, possibly broken in y2038 */ 3715 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds()); 3716 3717 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); 3718 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver); 3719 3720 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 3721 3722 /* Check & notify On-Chip dump. */ 3723 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump); 3724 3725 if (valid_dump & FIRST_DUMP_VALID) 3726 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n"); 3727 3728 if (valid_dump & SECOND_DUMP_VALID) 3729 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n"); 3730 } 3731 3732 static void bnx2x_oem_event(struct bnx2x *bp, u32 event) 3733 { 3734 u32 cmd_ok, cmd_fail; 3735 3736 /* sanity */ 3737 if (event & DRV_STATUS_DCC_EVENT_MASK && 3738 event & DRV_STATUS_OEM_EVENT_MASK) { 3739 BNX2X_ERR("Received simultaneous events %08x\n", event); 3740 return; 3741 } 3742 3743 if (event & DRV_STATUS_DCC_EVENT_MASK) { 3744 cmd_fail = DRV_MSG_CODE_DCC_FAILURE; 3745 cmd_ok = DRV_MSG_CODE_DCC_OK; 3746 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { 3747 cmd_fail = DRV_MSG_CODE_OEM_FAILURE; 3748 cmd_ok = DRV_MSG_CODE_OEM_OK; 3749 } 3750 3751 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); 3752 3753 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3754 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { 3755 /* This is the only place besides the function initialization 3756 * where the bp->flags can change so it is done without any 3757 * locks 3758 */ 3759 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { 3760 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); 3761 bp->flags |= MF_FUNC_DIS; 3762 3763 bnx2x_e1h_disable(bp); 3764 } else { 3765 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); 3766 bp->flags &= ~MF_FUNC_DIS; 3767 3768 bnx2x_e1h_enable(bp); 3769 } 3770 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | 3771 DRV_STATUS_OEM_DISABLE_ENABLE_PF); 3772 } 3773 3774 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3775 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { 3776 bnx2x_config_mf_bw(bp); 3777 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | 3778 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); 3779 } 3780 3781 /* Report results to MCP */ 3782 if (event) 3783 bnx2x_fw_command(bp, cmd_fail, 0); 3784 else 3785 bnx2x_fw_command(bp, cmd_ok, 0); 3786 } 3787 3788 /* must be called under the spq lock */ 3789 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) 3790 { 3791 struct eth_spe *next_spe = bp->spq_prod_bd; 3792 3793 if (bp->spq_prod_bd == bp->spq_last_bd) { 3794 bp->spq_prod_bd = bp->spq; 3795 bp->spq_prod_idx = 0; 3796 DP(BNX2X_MSG_SP, "end of spq\n"); 3797 } else { 3798 bp->spq_prod_bd++; 3799 bp->spq_prod_idx++; 3800 } 3801 return next_spe; 3802 } 3803 3804 /* must be called under the spq lock */ 3805 static void bnx2x_sp_prod_update(struct bnx2x *bp) 3806 { 3807 int func = BP_FUNC(bp); 3808 3809 /* 3810 * Make sure that BD data is updated before writing the producer: 3811 * BD data is written to the memory, the producer is read from the 3812 * memory, thus we need a full memory barrier to ensure the ordering. 3813 */ 3814 mb(); 3815 3816 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), 3817 bp->spq_prod_idx); 3818 mmiowb(); 3819 } 3820 3821 /** 3822 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ 3823 * 3824 * @cmd: command to check 3825 * @cmd_type: command type 3826 */ 3827 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) 3828 { 3829 if ((cmd_type == NONE_CONNECTION_TYPE) || 3830 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 3831 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 3832 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 3833 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 3834 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 3835 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) 3836 return true; 3837 else 3838 return false; 3839 } 3840 3841 /** 3842 * bnx2x_sp_post - place a single command on an SP ring 3843 * 3844 * @bp: driver handle 3845 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 3846 * @cid: SW CID the command is related to 3847 * @data_hi: command private data address (high 32 bits) 3848 * @data_lo: command private data address (low 32 bits) 3849 * @cmd_type: command type (e.g. NONE, ETH) 3850 * 3851 * SP data is handled as if it's always an address pair, thus data fields are 3852 * not swapped to little endian in upper functions. Instead this function swaps 3853 * data as if it's two u32 fields. 3854 */ 3855 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, 3856 u32 data_hi, u32 data_lo, int cmd_type) 3857 { 3858 struct eth_spe *spe; 3859 u16 type; 3860 bool common = bnx2x_is_contextless_ramrod(command, cmd_type); 3861 3862 #ifdef BNX2X_STOP_ON_ERROR 3863 if (unlikely(bp->panic)) { 3864 BNX2X_ERR("Can't post SP when there is panic\n"); 3865 return -EIO; 3866 } 3867 #endif 3868 3869 spin_lock_bh(&bp->spq_lock); 3870 3871 if (common) { 3872 if (!atomic_read(&bp->eq_spq_left)) { 3873 BNX2X_ERR("BUG! EQ ring full!\n"); 3874 spin_unlock_bh(&bp->spq_lock); 3875 bnx2x_panic(); 3876 return -EBUSY; 3877 } 3878 } else if (!atomic_read(&bp->cq_spq_left)) { 3879 BNX2X_ERR("BUG! SPQ ring full!\n"); 3880 spin_unlock_bh(&bp->spq_lock); 3881 bnx2x_panic(); 3882 return -EBUSY; 3883 } 3884 3885 spe = bnx2x_sp_get_next(bp); 3886 3887 /* CID needs port number to be encoded int it */ 3888 spe->hdr.conn_and_cmd_data = 3889 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | 3890 HW_CID(bp, cid)); 3891 3892 /* In some cases, type may already contain the func-id 3893 * mainly in SRIOV related use cases, so we add it here only 3894 * if it's not already set. 3895 */ 3896 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { 3897 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & 3898 SPE_HDR_CONN_TYPE; 3899 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & 3900 SPE_HDR_FUNCTION_ID); 3901 } else { 3902 type = cmd_type; 3903 } 3904 3905 spe->hdr.type = cpu_to_le16(type); 3906 3907 spe->data.update_data_addr.hi = cpu_to_le32(data_hi); 3908 spe->data.update_data_addr.lo = cpu_to_le32(data_lo); 3909 3910 /* 3911 * It's ok if the actual decrement is issued towards the memory 3912 * somewhere between the spin_lock and spin_unlock. Thus no 3913 * more explicit memory barrier is needed. 3914 */ 3915 if (common) 3916 atomic_dec(&bp->eq_spq_left); 3917 else 3918 atomic_dec(&bp->cq_spq_left); 3919 3920 DP(BNX2X_MSG_SP, 3921 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", 3922 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping), 3923 (u32)(U64_LO(bp->spq_mapping) + 3924 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, 3925 HW_CID(bp, cid), data_hi, data_lo, type, 3926 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); 3927 3928 bnx2x_sp_prod_update(bp); 3929 spin_unlock_bh(&bp->spq_lock); 3930 return 0; 3931 } 3932 3933 /* acquire split MCP access lock register */ 3934 static int bnx2x_acquire_alr(struct bnx2x *bp) 3935 { 3936 u32 j, val; 3937 int rc = 0; 3938 3939 might_sleep(); 3940 for (j = 0; j < 1000; j++) { 3941 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); 3942 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); 3943 if (val & MCPR_ACCESS_LOCK_LOCK) 3944 break; 3945 3946 usleep_range(5000, 10000); 3947 } 3948 if (!(val & MCPR_ACCESS_LOCK_LOCK)) { 3949 BNX2X_ERR("Cannot acquire MCP access lock register\n"); 3950 rc = -EBUSY; 3951 } 3952 3953 return rc; 3954 } 3955 3956 /* release split MCP access lock register */ 3957 static void bnx2x_release_alr(struct bnx2x *bp) 3958 { 3959 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); 3960 } 3961 3962 #define BNX2X_DEF_SB_ATT_IDX 0x0001 3963 #define BNX2X_DEF_SB_IDX 0x0002 3964 3965 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp) 3966 { 3967 struct host_sp_status_block *def_sb = bp->def_status_blk; 3968 u16 rc = 0; 3969 3970 barrier(); /* status block is written to by the chip */ 3971 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 3972 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; 3973 rc |= BNX2X_DEF_SB_ATT_IDX; 3974 } 3975 3976 if (bp->def_idx != def_sb->sp_sb.running_index) { 3977 bp->def_idx = def_sb->sp_sb.running_index; 3978 rc |= BNX2X_DEF_SB_IDX; 3979 } 3980 3981 /* Do not reorder: indices reading should complete before handling */ 3982 barrier(); 3983 return rc; 3984 } 3985 3986 /* 3987 * slow path service functions 3988 */ 3989 3990 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted) 3991 { 3992 int port = BP_PORT(bp); 3993 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 3994 MISC_REG_AEU_MASK_ATTN_FUNC_0; 3995 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 3996 NIG_REG_MASK_INTERRUPT_PORT0; 3997 u32 aeu_mask; 3998 u32 nig_mask = 0; 3999 u32 reg_addr; 4000 4001 if (bp->attn_state & asserted) 4002 BNX2X_ERR("IGU ERROR\n"); 4003 4004 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4005 aeu_mask = REG_RD(bp, aeu_addr); 4006 4007 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n", 4008 aeu_mask, asserted); 4009 aeu_mask &= ~(asserted & 0x3ff); 4010 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 4011 4012 REG_WR(bp, aeu_addr, aeu_mask); 4013 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 4014 4015 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 4016 bp->attn_state |= asserted; 4017 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 4018 4019 if (asserted & ATTN_HARD_WIRED_MASK) { 4020 if (asserted & ATTN_NIG_FOR_FUNC) { 4021 4022 bnx2x_acquire_phy_lock(bp); 4023 4024 /* save nig interrupt mask */ 4025 nig_mask = REG_RD(bp, nig_int_mask_addr); 4026 4027 /* If nig_mask is not set, no need to call the update 4028 * function. 4029 */ 4030 if (nig_mask) { 4031 REG_WR(bp, nig_int_mask_addr, 0); 4032 4033 bnx2x_link_attn(bp); 4034 } 4035 4036 /* handle unicore attn? */ 4037 } 4038 if (asserted & ATTN_SW_TIMER_4_FUNC) 4039 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); 4040 4041 if (asserted & GPIO_2_FUNC) 4042 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); 4043 4044 if (asserted & GPIO_3_FUNC) 4045 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); 4046 4047 if (asserted & GPIO_4_FUNC) 4048 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); 4049 4050 if (port == 0) { 4051 if (asserted & ATTN_GENERAL_ATTN_1) { 4052 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); 4053 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 4054 } 4055 if (asserted & ATTN_GENERAL_ATTN_2) { 4056 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); 4057 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 4058 } 4059 if (asserted & ATTN_GENERAL_ATTN_3) { 4060 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); 4061 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 4062 } 4063 } else { 4064 if (asserted & ATTN_GENERAL_ATTN_4) { 4065 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); 4066 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 4067 } 4068 if (asserted & ATTN_GENERAL_ATTN_5) { 4069 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); 4070 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 4071 } 4072 if (asserted & ATTN_GENERAL_ATTN_6) { 4073 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); 4074 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 4075 } 4076 } 4077 4078 } /* if hardwired */ 4079 4080 if (bp->common.int_block == INT_BLOCK_HC) 4081 reg_addr = (HC_REG_COMMAND_REG + port*32 + 4082 COMMAND_REG_ATTN_BITS_SET); 4083 else 4084 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 4085 4086 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, 4087 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 4088 REG_WR(bp, reg_addr, asserted); 4089 4090 /* now set back the mask */ 4091 if (asserted & ATTN_NIG_FOR_FUNC) { 4092 /* Verify that IGU ack through BAR was written before restoring 4093 * NIG mask. This loop should exit after 2-3 iterations max. 4094 */ 4095 if (bp->common.int_block != INT_BLOCK_HC) { 4096 u32 cnt = 0, igu_acked; 4097 do { 4098 igu_acked = REG_RD(bp, 4099 IGU_REG_ATTENTION_ACK_BITS); 4100 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 4101 (++cnt < MAX_IGU_ATTN_ACK_TO)); 4102 if (!igu_acked) 4103 DP(NETIF_MSG_HW, 4104 "Failed to verify IGU ack on time\n"); 4105 barrier(); 4106 } 4107 REG_WR(bp, nig_int_mask_addr, nig_mask); 4108 bnx2x_release_phy_lock(bp); 4109 } 4110 } 4111 4112 static void bnx2x_fan_failure(struct bnx2x *bp) 4113 { 4114 int port = BP_PORT(bp); 4115 u32 ext_phy_config; 4116 /* mark the failure */ 4117 ext_phy_config = 4118 SHMEM_RD(bp, 4119 dev_info.port_hw_config[port].external_phy_config); 4120 4121 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 4122 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 4123 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, 4124 ext_phy_config); 4125 4126 /* log the failure */ 4127 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" 4128 "Please contact OEM Support for assistance\n"); 4129 4130 /* Schedule device reset (unload) 4131 * This is due to some boards consuming sufficient power when driver is 4132 * up to overheat if fan fails. 4133 */ 4134 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); 4135 } 4136 4137 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn) 4138 { 4139 int port = BP_PORT(bp); 4140 int reg_offset; 4141 u32 val; 4142 4143 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 4144 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 4145 4146 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 4147 4148 val = REG_RD(bp, reg_offset); 4149 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 4150 REG_WR(bp, reg_offset, val); 4151 4152 BNX2X_ERR("SPIO5 hw attention\n"); 4153 4154 /* Fan failure attention */ 4155 bnx2x_hw_reset_phy(&bp->link_params); 4156 bnx2x_fan_failure(bp); 4157 } 4158 4159 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { 4160 bnx2x_acquire_phy_lock(bp); 4161 bnx2x_handle_module_detect_int(&bp->link_params); 4162 bnx2x_release_phy_lock(bp); 4163 } 4164 4165 if (attn & HW_INTERRUT_ASSERT_SET_0) { 4166 4167 val = REG_RD(bp, reg_offset); 4168 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 4169 REG_WR(bp, reg_offset, val); 4170 4171 BNX2X_ERR("FATAL HW block attention set0 0x%x\n", 4172 (u32)(attn & HW_INTERRUT_ASSERT_SET_0)); 4173 bnx2x_panic(); 4174 } 4175 } 4176 4177 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn) 4178 { 4179 u32 val; 4180 4181 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 4182 4183 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); 4184 BNX2X_ERR("DB hw attention 0x%x\n", val); 4185 /* DORQ discard attention */ 4186 if (val & 0x2) 4187 BNX2X_ERR("FATAL error from DORQ\n"); 4188 } 4189 4190 if (attn & HW_INTERRUT_ASSERT_SET_1) { 4191 4192 int port = BP_PORT(bp); 4193 int reg_offset; 4194 4195 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 4196 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 4197 4198 val = REG_RD(bp, reg_offset); 4199 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 4200 REG_WR(bp, reg_offset, val); 4201 4202 BNX2X_ERR("FATAL HW block attention set1 0x%x\n", 4203 (u32)(attn & HW_INTERRUT_ASSERT_SET_1)); 4204 bnx2x_panic(); 4205 } 4206 } 4207 4208 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn) 4209 { 4210 u32 val; 4211 4212 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 4213 4214 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); 4215 BNX2X_ERR("CFC hw attention 0x%x\n", val); 4216 /* CFC error attention */ 4217 if (val & 0x2) 4218 BNX2X_ERR("FATAL error from CFC\n"); 4219 } 4220 4221 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 4222 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); 4223 BNX2X_ERR("PXP hw attention-0 0x%x\n", val); 4224 /* RQ_USDMDP_FIFO_OVERFLOW */ 4225 if (val & 0x18000) 4226 BNX2X_ERR("FATAL error from PXP\n"); 4227 4228 if (!CHIP_IS_E1x(bp)) { 4229 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); 4230 BNX2X_ERR("PXP hw attention-1 0x%x\n", val); 4231 } 4232 } 4233 4234 if (attn & HW_INTERRUT_ASSERT_SET_2) { 4235 4236 int port = BP_PORT(bp); 4237 int reg_offset; 4238 4239 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 4240 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 4241 4242 val = REG_RD(bp, reg_offset); 4243 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 4244 REG_WR(bp, reg_offset, val); 4245 4246 BNX2X_ERR("FATAL HW block attention set2 0x%x\n", 4247 (u32)(attn & HW_INTERRUT_ASSERT_SET_2)); 4248 bnx2x_panic(); 4249 } 4250 } 4251 4252 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn) 4253 { 4254 u32 val; 4255 4256 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 4257 4258 if (attn & BNX2X_PMF_LINK_ASSERT) { 4259 int func = BP_FUNC(bp); 4260 4261 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 4262 bnx2x_read_mf_cfg(bp); 4263 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, 4264 func_mf_config[BP_ABS_FUNC(bp)].config); 4265 val = SHMEM_RD(bp, 4266 func_mb[BP_FW_MB_IDX(bp)].drv_status); 4267 4268 if (val & (DRV_STATUS_DCC_EVENT_MASK | 4269 DRV_STATUS_OEM_EVENT_MASK)) 4270 bnx2x_oem_event(bp, 4271 (val & (DRV_STATUS_DCC_EVENT_MASK | 4272 DRV_STATUS_OEM_EVENT_MASK))); 4273 4274 if (val & DRV_STATUS_SET_MF_BW) 4275 bnx2x_set_mf_bw(bp); 4276 4277 if (val & DRV_STATUS_DRV_INFO_REQ) 4278 bnx2x_handle_drv_info_req(bp); 4279 4280 if (val & DRV_STATUS_VF_DISABLED) 4281 bnx2x_schedule_iov_task(bp, 4282 BNX2X_IOV_HANDLE_FLR); 4283 4284 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) 4285 bnx2x_pmf_update(bp); 4286 4287 if (bp->port.pmf && 4288 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && 4289 bp->dcbx_enabled > 0) 4290 /* start dcbx state machine */ 4291 bnx2x_dcbx_set_params(bp, 4292 BNX2X_DCBX_STATE_NEG_RECEIVED); 4293 if (val & DRV_STATUS_AFEX_EVENT_MASK) 4294 bnx2x_handle_afex_cmd(bp, 4295 val & DRV_STATUS_AFEX_EVENT_MASK); 4296 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 4297 bnx2x_handle_eee_event(bp); 4298 4299 if (val & DRV_STATUS_OEM_UPDATE_SVID) 4300 bnx2x_handle_update_svid_cmd(bp); 4301 4302 if (bp->link_vars.periodic_flags & 4303 PERIODIC_FLAGS_LINK_EVENT) { 4304 /* sync with link */ 4305 bnx2x_acquire_phy_lock(bp); 4306 bp->link_vars.periodic_flags &= 4307 ~PERIODIC_FLAGS_LINK_EVENT; 4308 bnx2x_release_phy_lock(bp); 4309 if (IS_MF(bp)) 4310 bnx2x_link_sync_notify(bp); 4311 bnx2x_link_report(bp); 4312 } 4313 /* Always call it here: bnx2x_link_report() will 4314 * prevent the link indication duplication. 4315 */ 4316 bnx2x__link_status_update(bp); 4317 } else if (attn & BNX2X_MC_ASSERT_BITS) { 4318 4319 BNX2X_ERR("MC assert!\n"); 4320 bnx2x_mc_assert(bp); 4321 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); 4322 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); 4323 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); 4324 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); 4325 bnx2x_panic(); 4326 4327 } else if (attn & BNX2X_MCP_ASSERT) { 4328 4329 BNX2X_ERR("MCP assert!\n"); 4330 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); 4331 bnx2x_fw_dump(bp); 4332 4333 } else 4334 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); 4335 } 4336 4337 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 4338 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); 4339 if (attn & BNX2X_GRC_TIMEOUT) { 4340 val = CHIP_IS_E1(bp) ? 0 : 4341 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); 4342 BNX2X_ERR("GRC time-out 0x%08x\n", val); 4343 } 4344 if (attn & BNX2X_GRC_RSV) { 4345 val = CHIP_IS_E1(bp) ? 0 : 4346 REG_RD(bp, MISC_REG_GRC_RSV_ATTN); 4347 BNX2X_ERR("GRC reserved 0x%08x\n", val); 4348 } 4349 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 4350 } 4351 } 4352 4353 /* 4354 * Bits map: 4355 * 0-7 - Engine0 load counter. 4356 * 8-15 - Engine1 load counter. 4357 * 16 - Engine0 RESET_IN_PROGRESS bit. 4358 * 17 - Engine1 RESET_IN_PROGRESS bit. 4359 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function 4360 * on the engine 4361 * 19 - Engine1 ONE_IS_LOADED. 4362 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 4363 * leader to complete (check for both RESET_IN_PROGRESS bits and not for 4364 * just the one belonging to its engine). 4365 * 4366 */ 4367 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 4368 4369 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff 4370 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0 4371 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00 4372 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8 4373 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000 4374 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000 4375 #define BNX2X_GLOBAL_RESET_BIT 0x00040000 4376 4377 /* 4378 * Set the GLOBAL_RESET bit. 4379 * 4380 * Should be run under rtnl lock 4381 */ 4382 void bnx2x_set_reset_global(struct bnx2x *bp) 4383 { 4384 u32 val; 4385 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4386 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4387 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); 4388 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4389 } 4390 4391 /* 4392 * Clear the GLOBAL_RESET bit. 4393 * 4394 * Should be run under rtnl lock 4395 */ 4396 static void bnx2x_clear_reset_global(struct bnx2x *bp) 4397 { 4398 u32 val; 4399 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4400 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4401 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); 4402 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4403 } 4404 4405 /* 4406 * Checks the GLOBAL_RESET bit. 4407 * 4408 * should be run under rtnl lock 4409 */ 4410 static bool bnx2x_reset_is_global(struct bnx2x *bp) 4411 { 4412 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4413 4414 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); 4415 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; 4416 } 4417 4418 /* 4419 * Clear RESET_IN_PROGRESS bit for the current engine. 4420 * 4421 * Should be run under rtnl lock 4422 */ 4423 static void bnx2x_set_reset_done(struct bnx2x *bp) 4424 { 4425 u32 val; 4426 u32 bit = BP_PATH(bp) ? 4427 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4428 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4429 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4430 4431 /* Clear the bit */ 4432 val &= ~bit; 4433 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4434 4435 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4436 } 4437 4438 /* 4439 * Set RESET_IN_PROGRESS for the current engine. 4440 * 4441 * should be run under rtnl lock 4442 */ 4443 void bnx2x_set_reset_in_progress(struct bnx2x *bp) 4444 { 4445 u32 val; 4446 u32 bit = BP_PATH(bp) ? 4447 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4448 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4449 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4450 4451 /* Set the bit */ 4452 val |= bit; 4453 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4454 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4455 } 4456 4457 /* 4458 * Checks the RESET_IN_PROGRESS bit for the given engine. 4459 * should be run under rtnl lock 4460 */ 4461 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) 4462 { 4463 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4464 u32 bit = engine ? 4465 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; 4466 4467 /* return false if bit is set */ 4468 return (val & bit) ? false : true; 4469 } 4470 4471 /* 4472 * set pf load for the current pf. 4473 * 4474 * should be run under rtnl lock 4475 */ 4476 void bnx2x_set_pf_load(struct bnx2x *bp) 4477 { 4478 u32 val1, val; 4479 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4480 BNX2X_PATH0_LOAD_CNT_MASK; 4481 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4482 BNX2X_PATH0_LOAD_CNT_SHIFT; 4483 4484 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4485 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4486 4487 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); 4488 4489 /* get the current counter value */ 4490 val1 = (val & mask) >> shift; 4491 4492 /* set bit of that PF */ 4493 val1 |= (1 << bp->pf_num); 4494 4495 /* clear the old value */ 4496 val &= ~mask; 4497 4498 /* set the new one */ 4499 val |= ((val1 << shift) & mask); 4500 4501 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4502 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4503 } 4504 4505 /** 4506 * bnx2x_clear_pf_load - clear pf load mark 4507 * 4508 * @bp: driver handle 4509 * 4510 * Should be run under rtnl lock. 4511 * Decrements the load counter for the current engine. Returns 4512 * whether other functions are still loaded 4513 */ 4514 bool bnx2x_clear_pf_load(struct bnx2x *bp) 4515 { 4516 u32 val1, val; 4517 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : 4518 BNX2X_PATH0_LOAD_CNT_MASK; 4519 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4520 BNX2X_PATH0_LOAD_CNT_SHIFT; 4521 4522 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4523 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4524 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); 4525 4526 /* get the current counter value */ 4527 val1 = (val & mask) >> shift; 4528 4529 /* clear bit of that PF */ 4530 val1 &= ~(1 << bp->pf_num); 4531 4532 /* clear the old value */ 4533 val &= ~mask; 4534 4535 /* set the new one */ 4536 val |= ((val1 << shift) & mask); 4537 4538 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); 4539 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); 4540 return val1 != 0; 4541 } 4542 4543 /* 4544 * Read the load status for the current engine. 4545 * 4546 * should be run under rtnl lock 4547 */ 4548 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) 4549 { 4550 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : 4551 BNX2X_PATH0_LOAD_CNT_MASK); 4552 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : 4553 BNX2X_PATH0_LOAD_CNT_SHIFT); 4554 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); 4555 4556 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); 4557 4558 val = (val & mask) >> shift; 4559 4560 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", 4561 engine, val); 4562 4563 return val != 0; 4564 } 4565 4566 static void _print_parity(struct bnx2x *bp, u32 reg) 4567 { 4568 pr_cont(" [0x%08x] ", REG_RD(bp, reg)); 4569 } 4570 4571 static void _print_next_block(int idx, const char *blk) 4572 { 4573 pr_cont("%s%s", idx ? ", " : "", blk); 4574 } 4575 4576 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig, 4577 int *par_num, bool print) 4578 { 4579 u32 cur_bit; 4580 bool res; 4581 int i; 4582 4583 res = false; 4584 4585 for (i = 0; sig; i++) { 4586 cur_bit = (0x1UL << i); 4587 if (sig & cur_bit) { 4588 res |= true; /* Each bit is real error! */ 4589 4590 if (print) { 4591 switch (cur_bit) { 4592 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 4593 _print_next_block((*par_num)++, "BRB"); 4594 _print_parity(bp, 4595 BRB1_REG_BRB1_PRTY_STS); 4596 break; 4597 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 4598 _print_next_block((*par_num)++, 4599 "PARSER"); 4600 _print_parity(bp, PRS_REG_PRS_PRTY_STS); 4601 break; 4602 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 4603 _print_next_block((*par_num)++, "TSDM"); 4604 _print_parity(bp, 4605 TSDM_REG_TSDM_PRTY_STS); 4606 break; 4607 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 4608 _print_next_block((*par_num)++, 4609 "SEARCHER"); 4610 _print_parity(bp, SRC_REG_SRC_PRTY_STS); 4611 break; 4612 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 4613 _print_next_block((*par_num)++, "TCM"); 4614 _print_parity(bp, TCM_REG_TCM_PRTY_STS); 4615 break; 4616 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 4617 _print_next_block((*par_num)++, 4618 "TSEMI"); 4619 _print_parity(bp, 4620 TSEM_REG_TSEM_PRTY_STS_0); 4621 _print_parity(bp, 4622 TSEM_REG_TSEM_PRTY_STS_1); 4623 break; 4624 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 4625 _print_next_block((*par_num)++, "XPB"); 4626 _print_parity(bp, GRCBASE_XPB + 4627 PB_REG_PB_PRTY_STS); 4628 break; 4629 } 4630 } 4631 4632 /* Clear the bit */ 4633 sig &= ~cur_bit; 4634 } 4635 } 4636 4637 return res; 4638 } 4639 4640 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig, 4641 int *par_num, bool *global, 4642 bool print) 4643 { 4644 u32 cur_bit; 4645 bool res; 4646 int i; 4647 4648 res = false; 4649 4650 for (i = 0; sig; i++) { 4651 cur_bit = (0x1UL << i); 4652 if (sig & cur_bit) { 4653 res |= true; /* Each bit is real error! */ 4654 switch (cur_bit) { 4655 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 4656 if (print) { 4657 _print_next_block((*par_num)++, "PBF"); 4658 _print_parity(bp, PBF_REG_PBF_PRTY_STS); 4659 } 4660 break; 4661 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 4662 if (print) { 4663 _print_next_block((*par_num)++, "QM"); 4664 _print_parity(bp, QM_REG_QM_PRTY_STS); 4665 } 4666 break; 4667 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 4668 if (print) { 4669 _print_next_block((*par_num)++, "TM"); 4670 _print_parity(bp, TM_REG_TM_PRTY_STS); 4671 } 4672 break; 4673 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 4674 if (print) { 4675 _print_next_block((*par_num)++, "XSDM"); 4676 _print_parity(bp, 4677 XSDM_REG_XSDM_PRTY_STS); 4678 } 4679 break; 4680 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 4681 if (print) { 4682 _print_next_block((*par_num)++, "XCM"); 4683 _print_parity(bp, XCM_REG_XCM_PRTY_STS); 4684 } 4685 break; 4686 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 4687 if (print) { 4688 _print_next_block((*par_num)++, 4689 "XSEMI"); 4690 _print_parity(bp, 4691 XSEM_REG_XSEM_PRTY_STS_0); 4692 _print_parity(bp, 4693 XSEM_REG_XSEM_PRTY_STS_1); 4694 } 4695 break; 4696 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 4697 if (print) { 4698 _print_next_block((*par_num)++, 4699 "DOORBELLQ"); 4700 _print_parity(bp, 4701 DORQ_REG_DORQ_PRTY_STS); 4702 } 4703 break; 4704 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 4705 if (print) { 4706 _print_next_block((*par_num)++, "NIG"); 4707 if (CHIP_IS_E1x(bp)) { 4708 _print_parity(bp, 4709 NIG_REG_NIG_PRTY_STS); 4710 } else { 4711 _print_parity(bp, 4712 NIG_REG_NIG_PRTY_STS_0); 4713 _print_parity(bp, 4714 NIG_REG_NIG_PRTY_STS_1); 4715 } 4716 } 4717 break; 4718 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 4719 if (print) 4720 _print_next_block((*par_num)++, 4721 "VAUX PCI CORE"); 4722 *global = true; 4723 break; 4724 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 4725 if (print) { 4726 _print_next_block((*par_num)++, 4727 "DEBUG"); 4728 _print_parity(bp, DBG_REG_DBG_PRTY_STS); 4729 } 4730 break; 4731 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 4732 if (print) { 4733 _print_next_block((*par_num)++, "USDM"); 4734 _print_parity(bp, 4735 USDM_REG_USDM_PRTY_STS); 4736 } 4737 break; 4738 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 4739 if (print) { 4740 _print_next_block((*par_num)++, "UCM"); 4741 _print_parity(bp, UCM_REG_UCM_PRTY_STS); 4742 } 4743 break; 4744 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 4745 if (print) { 4746 _print_next_block((*par_num)++, 4747 "USEMI"); 4748 _print_parity(bp, 4749 USEM_REG_USEM_PRTY_STS_0); 4750 _print_parity(bp, 4751 USEM_REG_USEM_PRTY_STS_1); 4752 } 4753 break; 4754 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 4755 if (print) { 4756 _print_next_block((*par_num)++, "UPB"); 4757 _print_parity(bp, GRCBASE_UPB + 4758 PB_REG_PB_PRTY_STS); 4759 } 4760 break; 4761 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 4762 if (print) { 4763 _print_next_block((*par_num)++, "CSDM"); 4764 _print_parity(bp, 4765 CSDM_REG_CSDM_PRTY_STS); 4766 } 4767 break; 4768 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 4769 if (print) { 4770 _print_next_block((*par_num)++, "CCM"); 4771 _print_parity(bp, CCM_REG_CCM_PRTY_STS); 4772 } 4773 break; 4774 } 4775 4776 /* Clear the bit */ 4777 sig &= ~cur_bit; 4778 } 4779 } 4780 4781 return res; 4782 } 4783 4784 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig, 4785 int *par_num, bool print) 4786 { 4787 u32 cur_bit; 4788 bool res; 4789 int i; 4790 4791 res = false; 4792 4793 for (i = 0; sig; i++) { 4794 cur_bit = (0x1UL << i); 4795 if (sig & cur_bit) { 4796 res = true; /* Each bit is real error! */ 4797 if (print) { 4798 switch (cur_bit) { 4799 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 4800 _print_next_block((*par_num)++, 4801 "CSEMI"); 4802 _print_parity(bp, 4803 CSEM_REG_CSEM_PRTY_STS_0); 4804 _print_parity(bp, 4805 CSEM_REG_CSEM_PRTY_STS_1); 4806 break; 4807 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 4808 _print_next_block((*par_num)++, "PXP"); 4809 _print_parity(bp, PXP_REG_PXP_PRTY_STS); 4810 _print_parity(bp, 4811 PXP2_REG_PXP2_PRTY_STS_0); 4812 _print_parity(bp, 4813 PXP2_REG_PXP2_PRTY_STS_1); 4814 break; 4815 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 4816 _print_next_block((*par_num)++, 4817 "PXPPCICLOCKCLIENT"); 4818 break; 4819 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 4820 _print_next_block((*par_num)++, "CFC"); 4821 _print_parity(bp, 4822 CFC_REG_CFC_PRTY_STS); 4823 break; 4824 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 4825 _print_next_block((*par_num)++, "CDU"); 4826 _print_parity(bp, CDU_REG_CDU_PRTY_STS); 4827 break; 4828 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 4829 _print_next_block((*par_num)++, "DMAE"); 4830 _print_parity(bp, 4831 DMAE_REG_DMAE_PRTY_STS); 4832 break; 4833 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 4834 _print_next_block((*par_num)++, "IGU"); 4835 if (CHIP_IS_E1x(bp)) 4836 _print_parity(bp, 4837 HC_REG_HC_PRTY_STS); 4838 else 4839 _print_parity(bp, 4840 IGU_REG_IGU_PRTY_STS); 4841 break; 4842 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 4843 _print_next_block((*par_num)++, "MISC"); 4844 _print_parity(bp, 4845 MISC_REG_MISC_PRTY_STS); 4846 break; 4847 } 4848 } 4849 4850 /* Clear the bit */ 4851 sig &= ~cur_bit; 4852 } 4853 } 4854 4855 return res; 4856 } 4857 4858 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig, 4859 int *par_num, bool *global, 4860 bool print) 4861 { 4862 bool res = false; 4863 u32 cur_bit; 4864 int i; 4865 4866 for (i = 0; sig; i++) { 4867 cur_bit = (0x1UL << i); 4868 if (sig & cur_bit) { 4869 switch (cur_bit) { 4870 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 4871 if (print) 4872 _print_next_block((*par_num)++, 4873 "MCP ROM"); 4874 *global = true; 4875 res = true; 4876 break; 4877 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 4878 if (print) 4879 _print_next_block((*par_num)++, 4880 "MCP UMP RX"); 4881 *global = true; 4882 res = true; 4883 break; 4884 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 4885 if (print) 4886 _print_next_block((*par_num)++, 4887 "MCP UMP TX"); 4888 *global = true; 4889 res = true; 4890 break; 4891 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 4892 (*par_num)++; 4893 /* clear latched SCPAD PATIRY from MCP */ 4894 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 4895 1UL << 10); 4896 break; 4897 } 4898 4899 /* Clear the bit */ 4900 sig &= ~cur_bit; 4901 } 4902 } 4903 4904 return res; 4905 } 4906 4907 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig, 4908 int *par_num, bool print) 4909 { 4910 u32 cur_bit; 4911 bool res; 4912 int i; 4913 4914 res = false; 4915 4916 for (i = 0; sig; i++) { 4917 cur_bit = (0x1UL << i); 4918 if (sig & cur_bit) { 4919 res = true; /* Each bit is real error! */ 4920 if (print) { 4921 switch (cur_bit) { 4922 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 4923 _print_next_block((*par_num)++, 4924 "PGLUE_B"); 4925 _print_parity(bp, 4926 PGLUE_B_REG_PGLUE_B_PRTY_STS); 4927 break; 4928 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 4929 _print_next_block((*par_num)++, "ATC"); 4930 _print_parity(bp, 4931 ATC_REG_ATC_PRTY_STS); 4932 break; 4933 } 4934 } 4935 /* Clear the bit */ 4936 sig &= ~cur_bit; 4937 } 4938 } 4939 4940 return res; 4941 } 4942 4943 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, 4944 u32 *sig) 4945 { 4946 bool res = false; 4947 4948 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 4949 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4950 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4951 (sig[3] & HW_PRTY_ASSERT_SET_3) || 4952 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 4953 int par_num = 0; 4954 4955 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" 4956 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 4957 sig[0] & HW_PRTY_ASSERT_SET_0, 4958 sig[1] & HW_PRTY_ASSERT_SET_1, 4959 sig[2] & HW_PRTY_ASSERT_SET_2, 4960 sig[3] & HW_PRTY_ASSERT_SET_3, 4961 sig[4] & HW_PRTY_ASSERT_SET_4); 4962 if (print) { 4963 if (((sig[0] & HW_PRTY_ASSERT_SET_0) || 4964 (sig[1] & HW_PRTY_ASSERT_SET_1) || 4965 (sig[2] & HW_PRTY_ASSERT_SET_2) || 4966 (sig[4] & HW_PRTY_ASSERT_SET_4)) || 4967 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) { 4968 netdev_err(bp->dev, 4969 "Parity errors detected in blocks: "); 4970 } else { 4971 print = false; 4972 } 4973 } 4974 res |= bnx2x_check_blocks_with_parity0(bp, 4975 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); 4976 res |= bnx2x_check_blocks_with_parity1(bp, 4977 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); 4978 res |= bnx2x_check_blocks_with_parity2(bp, 4979 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); 4980 res |= bnx2x_check_blocks_with_parity3(bp, 4981 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); 4982 res |= bnx2x_check_blocks_with_parity4(bp, 4983 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); 4984 4985 if (print) 4986 pr_cont("\n"); 4987 } 4988 4989 return res; 4990 } 4991 4992 /** 4993 * bnx2x_chk_parity_attn - checks for parity attentions. 4994 * 4995 * @bp: driver handle 4996 * @global: true if there was a global attention 4997 * @print: show parity attention in syslog 4998 */ 4999 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) 5000 { 5001 struct attn_route attn = { {0} }; 5002 int port = BP_PORT(bp); 5003 5004 attn.sig[0] = REG_RD(bp, 5005 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 5006 port*4); 5007 attn.sig[1] = REG_RD(bp, 5008 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + 5009 port*4); 5010 attn.sig[2] = REG_RD(bp, 5011 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + 5012 port*4); 5013 attn.sig[3] = REG_RD(bp, 5014 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + 5015 port*4); 5016 /* Since MCP attentions can't be disabled inside the block, we need to 5017 * read AEU registers to see whether they're currently disabled 5018 */ 5019 attn.sig[3] &= ((REG_RD(bp, 5020 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 5021 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & 5022 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 5023 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 5024 5025 if (!CHIP_IS_E1x(bp)) 5026 attn.sig[4] = REG_RD(bp, 5027 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + 5028 port*4); 5029 5030 return bnx2x_parity_attn(bp, global, print, attn.sig); 5031 } 5032 5033 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn) 5034 { 5035 u32 val; 5036 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 5037 5038 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 5039 BNX2X_ERR("PGLUE hw attention 0x%x\n", val); 5040 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 5041 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 5042 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 5043 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 5044 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 5045 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 5046 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 5047 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 5048 if (val & 5049 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 5050 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 5051 if (val & 5052 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 5053 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 5054 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 5060 } 5061 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 5062 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); 5063 BNX2X_ERR("ATC hw attention 0x%x\n", val); 5064 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 5065 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 5066 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 5067 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 5068 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 5069 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 5070 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 5071 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 5072 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 5073 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 5074 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 5075 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 5076 } 5077 5078 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5079 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 5080 BNX2X_ERR("FATAL parity attention set4 0x%x\n", 5081 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 5082 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 5083 } 5084 } 5085 5086 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted) 5087 { 5088 struct attn_route attn, *group_mask; 5089 int port = BP_PORT(bp); 5090 int index; 5091 u32 reg_addr; 5092 u32 val; 5093 u32 aeu_mask; 5094 bool global = false; 5095 5096 /* need to take HW lock because MCP or other port might also 5097 try to handle this event */ 5098 bnx2x_acquire_alr(bp); 5099 5100 if (bnx2x_chk_parity_attn(bp, &global, true)) { 5101 #ifndef BNX2X_STOP_ON_ERROR 5102 bp->recovery_state = BNX2X_RECOVERY_INIT; 5103 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5104 /* Disable HW interrupts */ 5105 bnx2x_int_disable(bp); 5106 /* In case of parity errors don't handle attentions so that 5107 * other function would "see" parity errors. 5108 */ 5109 #else 5110 bnx2x_panic(); 5111 #endif 5112 bnx2x_release_alr(bp); 5113 return; 5114 } 5115 5116 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 5117 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 5118 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 5119 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 5120 if (!CHIP_IS_E1x(bp)) 5121 attn.sig[4] = 5122 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 5123 else 5124 attn.sig[4] = 0; 5125 5126 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", 5127 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 5128 5129 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 5130 if (deasserted & (1 << index)) { 5131 group_mask = &bp->attn_group[index]; 5132 5133 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", 5134 index, 5135 group_mask->sig[0], group_mask->sig[1], 5136 group_mask->sig[2], group_mask->sig[3], 5137 group_mask->sig[4]); 5138 5139 bnx2x_attn_int_deasserted4(bp, 5140 attn.sig[4] & group_mask->sig[4]); 5141 bnx2x_attn_int_deasserted3(bp, 5142 attn.sig[3] & group_mask->sig[3]); 5143 bnx2x_attn_int_deasserted1(bp, 5144 attn.sig[1] & group_mask->sig[1]); 5145 bnx2x_attn_int_deasserted2(bp, 5146 attn.sig[2] & group_mask->sig[2]); 5147 bnx2x_attn_int_deasserted0(bp, 5148 attn.sig[0] & group_mask->sig[0]); 5149 } 5150 } 5151 5152 bnx2x_release_alr(bp); 5153 5154 if (bp->common.int_block == INT_BLOCK_HC) 5155 reg_addr = (HC_REG_COMMAND_REG + port*32 + 5156 COMMAND_REG_ATTN_BITS_CLR); 5157 else 5158 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 5159 5160 val = ~deasserted; 5161 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, 5162 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 5163 REG_WR(bp, reg_addr, val); 5164 5165 if (~bp->attn_state & deasserted) 5166 BNX2X_ERR("IGU ERROR\n"); 5167 5168 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 5169 MISC_REG_AEU_MASK_ATTN_FUNC_0; 5170 5171 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5172 aeu_mask = REG_RD(bp, reg_addr); 5173 5174 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n", 5175 aeu_mask, deasserted); 5176 aeu_mask |= (deasserted & 0x3ff); 5177 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); 5178 5179 REG_WR(bp, reg_addr, aeu_mask); 5180 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 5181 5182 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); 5183 bp->attn_state &= ~deasserted; 5184 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); 5185 } 5186 5187 static void bnx2x_attn_int(struct bnx2x *bp) 5188 { 5189 /* read local copy of bits */ 5190 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. 5191 attn_bits); 5192 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. 5193 attn_bits_ack); 5194 u32 attn_state = bp->attn_state; 5195 5196 /* look for changed bits */ 5197 u32 asserted = attn_bits & ~attn_ack & ~attn_state; 5198 u32 deasserted = ~attn_bits & attn_ack & attn_state; 5199 5200 DP(NETIF_MSG_HW, 5201 "attn_bits %x attn_ack %x asserted %x deasserted %x\n", 5202 attn_bits, attn_ack, asserted, deasserted); 5203 5204 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) 5205 BNX2X_ERR("BAD attention state\n"); 5206 5207 /* handle bits that were raised */ 5208 if (asserted) 5209 bnx2x_attn_int_asserted(bp, asserted); 5210 5211 if (deasserted) 5212 bnx2x_attn_int_deasserted(bp, deasserted); 5213 } 5214 5215 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, 5216 u16 index, u8 op, u8 update) 5217 { 5218 u32 igu_addr = bp->igu_base_addr; 5219 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 5220 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, 5221 igu_addr); 5222 } 5223 5224 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod) 5225 { 5226 /* No memory barriers */ 5227 storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); 5228 mmiowb(); /* keep prod updates ordered */ 5229 } 5230 5231 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid, 5232 union event_ring_elem *elem) 5233 { 5234 u8 err = elem->message.error; 5235 5236 if (!bp->cnic_eth_dev.starting_cid || 5237 (cid < bp->cnic_eth_dev.starting_cid && 5238 cid != bp->cnic_eth_dev.iscsi_l2_cid)) 5239 return 1; 5240 5241 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); 5242 5243 if (unlikely(err)) { 5244 5245 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", 5246 cid); 5247 bnx2x_panic_dump(bp, false); 5248 } 5249 bnx2x_cnic_cfc_comp(bp, cid, err); 5250 return 0; 5251 } 5252 5253 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) 5254 { 5255 struct bnx2x_mcast_ramrod_params rparam; 5256 int rc; 5257 5258 memset(&rparam, 0, sizeof(rparam)); 5259 5260 rparam.mcast_obj = &bp->mcast_obj; 5261 5262 netif_addr_lock_bh(bp->dev); 5263 5264 /* Clear pending state for the last command */ 5265 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); 5266 5267 /* If there are pending mcast commands - send them */ 5268 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { 5269 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 5270 if (rc < 0) 5271 BNX2X_ERR("Failed to send pending mcast commands: %d\n", 5272 rc); 5273 } 5274 5275 netif_addr_unlock_bh(bp->dev); 5276 } 5277 5278 static void bnx2x_handle_classification_eqe(struct bnx2x *bp, 5279 union event_ring_elem *elem) 5280 { 5281 unsigned long ramrod_flags = 0; 5282 int rc = 0; 5283 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo); 5284 u32 cid = echo & BNX2X_SWCID_MASK; 5285 struct bnx2x_vlan_mac_obj *vlan_mac_obj; 5286 5287 /* Always push next commands out, don't wait here */ 5288 __set_bit(RAMROD_CONT, &ramrod_flags); 5289 5290 switch (echo >> BNX2X_SWCID_SHIFT) { 5291 case BNX2X_FILTER_MAC_PENDING: 5292 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); 5293 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) 5294 vlan_mac_obj = &bp->iscsi_l2_mac_obj; 5295 else 5296 vlan_mac_obj = &bp->sp_objs[cid].mac_obj; 5297 5298 break; 5299 case BNX2X_FILTER_VLAN_PENDING: 5300 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n"); 5301 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj; 5302 break; 5303 case BNX2X_FILTER_MCAST_PENDING: 5304 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); 5305 /* This is only relevant for 57710 where multicast MACs are 5306 * configured as unicast MACs using the same ramrod. 5307 */ 5308 bnx2x_handle_mcast_eqe(bp); 5309 return; 5310 default: 5311 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo); 5312 return; 5313 } 5314 5315 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); 5316 5317 if (rc < 0) 5318 BNX2X_ERR("Failed to schedule new commands: %d\n", rc); 5319 else if (rc > 0) 5320 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); 5321 } 5322 5323 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); 5324 5325 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) 5326 { 5327 netif_addr_lock_bh(bp->dev); 5328 5329 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 5330 5331 /* Send rx_mode command again if was requested */ 5332 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) 5333 bnx2x_set_storm_rx_mode(bp); 5334 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, 5335 &bp->sp_state)) 5336 bnx2x_set_iscsi_eth_rx_mode(bp, true); 5337 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, 5338 &bp->sp_state)) 5339 bnx2x_set_iscsi_eth_rx_mode(bp, false); 5340 5341 netif_addr_unlock_bh(bp->dev); 5342 } 5343 5344 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, 5345 union event_ring_elem *elem) 5346 { 5347 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { 5348 DP(BNX2X_MSG_SP, 5349 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", 5350 elem->message.data.vif_list_event.func_bit_map); 5351 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, 5352 elem->message.data.vif_list_event.func_bit_map); 5353 } else if (elem->message.data.vif_list_event.echo == 5354 VIF_LIST_RULE_SET) { 5355 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); 5356 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); 5357 } 5358 } 5359 5360 /* called with rtnl_lock */ 5361 static void bnx2x_after_function_update(struct bnx2x *bp) 5362 { 5363 int q, rc; 5364 struct bnx2x_fastpath *fp; 5365 struct bnx2x_queue_state_params queue_params = {NULL}; 5366 struct bnx2x_queue_update_params *q_update_params = 5367 &queue_params.params.update; 5368 5369 /* Send Q update command with afex vlan removal values for all Qs */ 5370 queue_params.cmd = BNX2X_Q_CMD_UPDATE; 5371 5372 /* set silent vlan removal values according to vlan mode */ 5373 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, 5374 &q_update_params->update_flags); 5375 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, 5376 &q_update_params->update_flags); 5377 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5378 5379 /* in access mode mark mask and value are 0 to strip all vlans */ 5380 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { 5381 q_update_params->silent_removal_value = 0; 5382 q_update_params->silent_removal_mask = 0; 5383 } else { 5384 q_update_params->silent_removal_value = 5385 (bp->afex_def_vlan_tag & VLAN_VID_MASK); 5386 q_update_params->silent_removal_mask = VLAN_VID_MASK; 5387 } 5388 5389 for_each_eth_queue(bp, q) { 5390 /* Set the appropriate Queue object */ 5391 fp = &bp->fp[q]; 5392 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5393 5394 /* send the ramrod */ 5395 rc = bnx2x_queue_state_change(bp, &queue_params); 5396 if (rc < 0) 5397 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5398 q); 5399 } 5400 5401 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { 5402 fp = &bp->fp[FCOE_IDX(bp)]; 5403 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 5404 5405 /* clear pending completion bit */ 5406 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); 5407 5408 /* mark latest Q bit */ 5409 smp_mb__before_atomic(); 5410 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); 5411 smp_mb__after_atomic(); 5412 5413 /* send Q update ramrod for FCoE Q */ 5414 rc = bnx2x_queue_state_change(bp, &queue_params); 5415 if (rc < 0) 5416 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", 5417 q); 5418 } else { 5419 /* If no FCoE ring - ACK MCP now */ 5420 bnx2x_link_report(bp); 5421 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5422 } 5423 } 5424 5425 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( 5426 struct bnx2x *bp, u32 cid) 5427 { 5428 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); 5429 5430 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) 5431 return &bnx2x_fcoe_sp_obj(bp, q_obj); 5432 else 5433 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; 5434 } 5435 5436 static void bnx2x_eq_int(struct bnx2x *bp) 5437 { 5438 u16 hw_cons, sw_cons, sw_prod; 5439 union event_ring_elem *elem; 5440 u8 echo; 5441 u32 cid; 5442 u8 opcode; 5443 int rc, spqe_cnt = 0; 5444 struct bnx2x_queue_sp_obj *q_obj; 5445 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; 5446 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; 5447 5448 hw_cons = le16_to_cpu(*bp->eq_cons_sb); 5449 5450 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. 5451 * when we get the next-page we need to adjust so the loop 5452 * condition below will be met. The next element is the size of a 5453 * regular element and hence incrementing by 1 5454 */ 5455 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) 5456 hw_cons++; 5457 5458 /* This function may never run in parallel with itself for a 5459 * specific bp, thus there is no need in "paired" read memory 5460 * barrier here. 5461 */ 5462 sw_cons = bp->eq_cons; 5463 sw_prod = bp->eq_prod; 5464 5465 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n", 5466 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); 5467 5468 for (; sw_cons != hw_cons; 5469 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 5470 5471 elem = &bp->eq_ring[EQ_DESC(sw_cons)]; 5472 5473 rc = bnx2x_iov_eq_sp_event(bp, elem); 5474 if (!rc) { 5475 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", 5476 rc); 5477 goto next_spqe; 5478 } 5479 5480 opcode = elem->message.opcode; 5481 5482 /* handle eq element */ 5483 switch (opcode) { 5484 case EVENT_RING_OPCODE_VF_PF_CHANNEL: 5485 bnx2x_vf_mbx_schedule(bp, 5486 &elem->message.data.vf_pf_event); 5487 continue; 5488 5489 case EVENT_RING_OPCODE_STAT_QUERY: 5490 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), 5491 "got statistics comp event %d\n", 5492 bp->stats_comp++); 5493 /* nothing to do with stats comp */ 5494 goto next_spqe; 5495 5496 case EVENT_RING_OPCODE_CFC_DEL: 5497 /* handle according to cid range */ 5498 /* 5499 * we may want to verify here that the bp state is 5500 * HALTING 5501 */ 5502 5503 /* elem CID originates from FW; actually LE */ 5504 cid = SW_CID(elem->message.data.cfc_del_event.cid); 5505 5506 DP(BNX2X_MSG_SP, 5507 "got delete ramrod for MULTI[%d]\n", cid); 5508 5509 if (CNIC_LOADED(bp) && 5510 !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) 5511 goto next_spqe; 5512 5513 q_obj = bnx2x_cid_to_q_obj(bp, cid); 5514 5515 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) 5516 break; 5517 5518 goto next_spqe; 5519 5520 case EVENT_RING_OPCODE_STOP_TRAFFIC: 5521 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); 5522 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); 5523 if (f_obj->complete_cmd(bp, f_obj, 5524 BNX2X_F_CMD_TX_STOP)) 5525 break; 5526 goto next_spqe; 5527 5528 case EVENT_RING_OPCODE_START_TRAFFIC: 5529 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); 5530 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); 5531 if (f_obj->complete_cmd(bp, f_obj, 5532 BNX2X_F_CMD_TX_START)) 5533 break; 5534 goto next_spqe; 5535 5536 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 5537 echo = elem->message.data.function_update_event.echo; 5538 if (echo == SWITCH_UPDATE) { 5539 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5540 "got FUNC_SWITCH_UPDATE ramrod\n"); 5541 if (f_obj->complete_cmd( 5542 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) 5543 break; 5544 5545 } else { 5546 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; 5547 5548 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, 5549 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 5550 f_obj->complete_cmd(bp, f_obj, 5551 BNX2X_F_CMD_AFEX_UPDATE); 5552 5553 /* We will perform the Queues update from 5554 * sp_rtnl task as all Queue SP operations 5555 * should run under rtnl_lock. 5556 */ 5557 bnx2x_schedule_sp_rtnl(bp, cmd, 0); 5558 } 5559 5560 goto next_spqe; 5561 5562 case EVENT_RING_OPCODE_AFEX_VIF_LISTS: 5563 f_obj->complete_cmd(bp, f_obj, 5564 BNX2X_F_CMD_AFEX_VIFLISTS); 5565 bnx2x_after_afex_vif_lists(bp, elem); 5566 goto next_spqe; 5567 case EVENT_RING_OPCODE_FUNCTION_START: 5568 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5569 "got FUNC_START ramrod\n"); 5570 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) 5571 break; 5572 5573 goto next_spqe; 5574 5575 case EVENT_RING_OPCODE_FUNCTION_STOP: 5576 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 5577 "got FUNC_STOP ramrod\n"); 5578 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) 5579 break; 5580 5581 goto next_spqe; 5582 5583 case EVENT_RING_OPCODE_SET_TIMESYNC: 5584 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, 5585 "got set_timesync ramrod completion\n"); 5586 if (f_obj->complete_cmd(bp, f_obj, 5587 BNX2X_F_CMD_SET_TIMESYNC)) 5588 break; 5589 goto next_spqe; 5590 } 5591 5592 switch (opcode | bp->state) { 5593 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5594 BNX2X_STATE_OPEN): 5595 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5596 BNX2X_STATE_OPENING_WAIT4_PORT): 5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | 5598 BNX2X_STATE_CLOSING_WAIT4_HALT): 5599 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", 5600 SW_CID(elem->message.data.eth_event.echo)); 5601 rss_raw->clear_pending(rss_raw); 5602 break; 5603 5604 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): 5605 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): 5606 case (EVENT_RING_OPCODE_SET_MAC | 5607 BNX2X_STATE_CLOSING_WAIT4_HALT): 5608 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5609 BNX2X_STATE_OPEN): 5610 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5611 BNX2X_STATE_DIAG): 5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | 5613 BNX2X_STATE_CLOSING_WAIT4_HALT): 5614 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n"); 5615 bnx2x_handle_classification_eqe(bp, elem); 5616 break; 5617 5618 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5619 BNX2X_STATE_OPEN): 5620 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5621 BNX2X_STATE_DIAG): 5622 case (EVENT_RING_OPCODE_MULTICAST_RULES | 5623 BNX2X_STATE_CLOSING_WAIT4_HALT): 5624 DP(BNX2X_MSG_SP, "got mcast ramrod\n"); 5625 bnx2x_handle_mcast_eqe(bp); 5626 break; 5627 5628 case (EVENT_RING_OPCODE_FILTERS_RULES | 5629 BNX2X_STATE_OPEN): 5630 case (EVENT_RING_OPCODE_FILTERS_RULES | 5631 BNX2X_STATE_DIAG): 5632 case (EVENT_RING_OPCODE_FILTERS_RULES | 5633 BNX2X_STATE_CLOSING_WAIT4_HALT): 5634 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); 5635 bnx2x_handle_rx_mode_eqe(bp); 5636 break; 5637 default: 5638 /* unknown event log error and continue */ 5639 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", 5640 elem->message.opcode, bp->state); 5641 } 5642 next_spqe: 5643 spqe_cnt++; 5644 } /* for */ 5645 5646 smp_mb__before_atomic(); 5647 atomic_add(spqe_cnt, &bp->eq_spq_left); 5648 5649 bp->eq_cons = sw_cons; 5650 bp->eq_prod = sw_prod; 5651 /* Make sure that above mem writes were issued towards the memory */ 5652 smp_wmb(); 5653 5654 /* update producer */ 5655 bnx2x_update_eq_prod(bp, bp->eq_prod); 5656 } 5657 5658 static void bnx2x_sp_task(struct work_struct *work) 5659 { 5660 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); 5661 5662 DP(BNX2X_MSG_SP, "sp task invoked\n"); 5663 5664 /* make sure the atomic interrupt_occurred has been written */ 5665 smp_rmb(); 5666 if (atomic_read(&bp->interrupt_occurred)) { 5667 5668 /* what work needs to be performed? */ 5669 u16 status = bnx2x_update_dsb_idx(bp); 5670 5671 DP(BNX2X_MSG_SP, "status %x\n", status); 5672 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); 5673 atomic_set(&bp->interrupt_occurred, 0); 5674 5675 /* HW attentions */ 5676 if (status & BNX2X_DEF_SB_ATT_IDX) { 5677 bnx2x_attn_int(bp); 5678 status &= ~BNX2X_DEF_SB_ATT_IDX; 5679 } 5680 5681 /* SP events: STAT_QUERY and others */ 5682 if (status & BNX2X_DEF_SB_IDX) { 5683 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 5684 5685 if (FCOE_INIT(bp) && 5686 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 5687 /* Prevent local bottom-halves from running as 5688 * we are going to change the local NAPI list. 5689 */ 5690 local_bh_disable(); 5691 napi_schedule(&bnx2x_fcoe(bp, napi)); 5692 local_bh_enable(); 5693 } 5694 5695 /* Handle EQ completions */ 5696 bnx2x_eq_int(bp); 5697 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 5698 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); 5699 5700 status &= ~BNX2X_DEF_SB_IDX; 5701 } 5702 5703 /* if status is non zero then perhaps something went wrong */ 5704 if (unlikely(status)) 5705 DP(BNX2X_MSG_SP, 5706 "got an unknown interrupt! (status 0x%x)\n", status); 5707 5708 /* ack status block only if something was actually handled */ 5709 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, 5710 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); 5711 } 5712 5713 /* afex - poll to check if VIFSET_ACK should be sent to MFW */ 5714 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, 5715 &bp->sp_state)) { 5716 bnx2x_link_report(bp); 5717 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); 5718 } 5719 } 5720 5721 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance) 5722 { 5723 struct net_device *dev = dev_instance; 5724 struct bnx2x *bp = netdev_priv(dev); 5725 5726 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, 5727 IGU_INT_DISABLE, 0); 5728 5729 #ifdef BNX2X_STOP_ON_ERROR 5730 if (unlikely(bp->panic)) 5731 return IRQ_HANDLED; 5732 #endif 5733 5734 if (CNIC_LOADED(bp)) { 5735 struct cnic_ops *c_ops; 5736 5737 rcu_read_lock(); 5738 c_ops = rcu_dereference(bp->cnic_ops); 5739 if (c_ops) 5740 c_ops->cnic_handler(bp->cnic_data, NULL); 5741 rcu_read_unlock(); 5742 } 5743 5744 /* schedule sp task to perform default status block work, ack 5745 * attentions and enable interrupts. 5746 */ 5747 bnx2x_schedule_sp_task(bp); 5748 5749 return IRQ_HANDLED; 5750 } 5751 5752 /* end of slow path */ 5753 5754 void bnx2x_drv_pulse(struct bnx2x *bp) 5755 { 5756 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, 5757 bp->fw_drv_pulse_wr_seq); 5758 } 5759 5760 static void bnx2x_timer(unsigned long data) 5761 { 5762 struct bnx2x *bp = (struct bnx2x *) data; 5763 5764 if (!netif_running(bp->dev)) 5765 return; 5766 5767 if (IS_PF(bp) && 5768 !BP_NOMCP(bp)) { 5769 int mb_idx = BP_FW_MB_IDX(bp); 5770 u16 drv_pulse; 5771 u16 mcp_pulse; 5772 5773 ++bp->fw_drv_pulse_wr_seq; 5774 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 5775 drv_pulse = bp->fw_drv_pulse_wr_seq; 5776 bnx2x_drv_pulse(bp); 5777 5778 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & 5779 MCP_PULSE_SEQ_MASK); 5780 /* The delta between driver pulse and mcp response 5781 * should not get too big. If the MFW is more than 5 pulses 5782 * behind, we should worry about it enough to generate an error 5783 * log. 5784 */ 5785 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) 5786 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 5787 drv_pulse, mcp_pulse); 5788 } 5789 5790 if (bp->state == BNX2X_STATE_OPEN) 5791 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); 5792 5793 /* sample pf vf bulletin board for new posts from pf */ 5794 if (IS_VF(bp)) 5795 bnx2x_timer_sriov(bp); 5796 5797 mod_timer(&bp->timer, jiffies + bp->current_interval); 5798 } 5799 5800 /* end of Statistics */ 5801 5802 /* nic init */ 5803 5804 /* 5805 * nic init service functions 5806 */ 5807 5808 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) 5809 { 5810 u32 i; 5811 if (!(len%4) && !(addr%4)) 5812 for (i = 0; i < len; i += 4) 5813 REG_WR(bp, addr + i, fill); 5814 else 5815 for (i = 0; i < len; i++) 5816 REG_WR8(bp, addr + i, fill); 5817 } 5818 5819 /* helper: writes FP SP data to FW - data_size in dwords */ 5820 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, 5821 int fw_sb_id, 5822 u32 *sb_data_p, 5823 u32 data_size) 5824 { 5825 int index; 5826 for (index = 0; index < data_size; index++) 5827 REG_WR(bp, BAR_CSTRORM_INTMEM + 5828 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 5829 sizeof(u32)*index, 5830 *(sb_data_p + index)); 5831 } 5832 5833 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) 5834 { 5835 u32 *sb_data_p; 5836 u32 data_size = 0; 5837 struct hc_status_block_data_e2 sb_data_e2; 5838 struct hc_status_block_data_e1x sb_data_e1x; 5839 5840 /* disable the function first */ 5841 if (!CHIP_IS_E1x(bp)) { 5842 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5843 sb_data_e2.common.state = SB_DISABLED; 5844 sb_data_e2.common.p_func.vf_valid = false; 5845 sb_data_p = (u32 *)&sb_data_e2; 5846 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5847 } else { 5848 memset(&sb_data_e1x, 0, 5849 sizeof(struct hc_status_block_data_e1x)); 5850 sb_data_e1x.common.state = SB_DISABLED; 5851 sb_data_e1x.common.p_func.vf_valid = false; 5852 sb_data_p = (u32 *)&sb_data_e1x; 5853 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5854 } 5855 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5856 5857 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5858 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, 5859 CSTORM_STATUS_BLOCK_SIZE); 5860 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5861 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, 5862 CSTORM_SYNC_BLOCK_SIZE); 5863 } 5864 5865 /* helper: writes SP SB data to FW */ 5866 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, 5867 struct hc_sp_status_block_data *sp_sb_data) 5868 { 5869 int func = BP_FUNC(bp); 5870 int i; 5871 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++) 5872 REG_WR(bp, BAR_CSTRORM_INTMEM + 5873 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + 5874 i*sizeof(u32), 5875 *((u32 *)sp_sb_data + i)); 5876 } 5877 5878 static void bnx2x_zero_sp_sb(struct bnx2x *bp) 5879 { 5880 int func = BP_FUNC(bp); 5881 struct hc_sp_status_block_data sp_sb_data; 5882 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 5883 5884 sp_sb_data.state = SB_DISABLED; 5885 sp_sb_data.p_func.vf_valid = false; 5886 5887 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 5888 5889 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5890 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, 5891 CSTORM_SP_STATUS_BLOCK_SIZE); 5892 bnx2x_fill(bp, BAR_CSTRORM_INTMEM + 5893 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, 5894 CSTORM_SP_SYNC_BLOCK_SIZE); 5895 } 5896 5897 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 5898 int igu_sb_id, int igu_seg_id) 5899 { 5900 hc_sm->igu_sb_id = igu_sb_id; 5901 hc_sm->igu_seg_id = igu_seg_id; 5902 hc_sm->timer_value = 0xFF; 5903 hc_sm->time_to_expire = 0xFFFFFFFF; 5904 } 5905 5906 /* allocates state machine ids. */ 5907 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) 5908 { 5909 /* zero out state machine indices */ 5910 /* rx indices */ 5911 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5912 5913 /* tx indices */ 5914 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 5915 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 5916 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 5917 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 5918 5919 /* map indices */ 5920 /* rx indices */ 5921 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 5922 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5923 5924 /* tx indices */ 5925 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 5926 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5927 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 5928 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5929 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; 5933 } 5934 5935 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, 5936 u8 vf_valid, int fw_sb_id, int igu_sb_id) 5937 { 5938 int igu_seg_id; 5939 5940 struct hc_status_block_data_e2 sb_data_e2; 5941 struct hc_status_block_data_e1x sb_data_e1x; 5942 struct hc_status_block_sm *hc_sm_p; 5943 int data_size; 5944 u32 *sb_data_p; 5945 5946 if (CHIP_INT_MODE_IS_BC(bp)) 5947 igu_seg_id = HC_SEG_ACCESS_NORM; 5948 else 5949 igu_seg_id = IGU_SEG_ACCESS_NORM; 5950 5951 bnx2x_zero_fp_sb(bp, fw_sb_id); 5952 5953 if (!CHIP_IS_E1x(bp)) { 5954 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 5955 sb_data_e2.common.state = SB_ENABLED; 5956 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); 5957 sb_data_e2.common.p_func.vf_id = vfid; 5958 sb_data_e2.common.p_func.vf_valid = vf_valid; 5959 sb_data_e2.common.p_func.vnic_id = BP_VN(bp); 5960 sb_data_e2.common.same_igu_sb_1b = true; 5961 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); 5962 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); 5963 hc_sm_p = sb_data_e2.common.state_machine; 5964 sb_data_p = (u32 *)&sb_data_e2; 5965 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32); 5966 bnx2x_map_sb_state_machines(sb_data_e2.index_data); 5967 } else { 5968 memset(&sb_data_e1x, 0, 5969 sizeof(struct hc_status_block_data_e1x)); 5970 sb_data_e1x.common.state = SB_ENABLED; 5971 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); 5972 sb_data_e1x.common.p_func.vf_id = 0xff; 5973 sb_data_e1x.common.p_func.vf_valid = false; 5974 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); 5975 sb_data_e1x.common.same_igu_sb_1b = true; 5976 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); 5977 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); 5978 hc_sm_p = sb_data_e1x.common.state_machine; 5979 sb_data_p = (u32 *)&sb_data_e1x; 5980 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32); 5981 bnx2x_map_sb_state_machines(sb_data_e1x.index_data); 5982 } 5983 5984 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], 5985 igu_sb_id, igu_seg_id); 5986 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], 5987 igu_sb_id, igu_seg_id); 5988 5989 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); 5990 5991 /* write indices to HW - PCI guarantees endianity of regpairs */ 5992 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); 5993 } 5994 5995 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id, 5996 u16 tx_usec, u16 rx_usec) 5997 { 5998 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, 5999 false, rx_usec); 6000 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6001 HC_INDEX_ETH_TX_CQ_CONS_COS0, false, 6002 tx_usec); 6003 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6004 HC_INDEX_ETH_TX_CQ_CONS_COS1, false, 6005 tx_usec); 6006 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, 6007 HC_INDEX_ETH_TX_CQ_CONS_COS2, false, 6008 tx_usec); 6009 } 6010 6011 static void bnx2x_init_def_sb(struct bnx2x *bp) 6012 { 6013 struct host_sp_status_block *def_sb = bp->def_status_blk; 6014 dma_addr_t mapping = bp->def_status_blk_mapping; 6015 int igu_sp_sb_index; 6016 int igu_seg_id; 6017 int port = BP_PORT(bp); 6018 int func = BP_FUNC(bp); 6019 int reg_offset, reg_offset_en5; 6020 u64 section; 6021 int index; 6022 struct hc_sp_status_block_data sp_sb_data; 6023 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 6024 6025 if (CHIP_INT_MODE_IS_BC(bp)) { 6026 igu_sp_sb_index = DEF_SB_IGU_ID; 6027 igu_seg_id = HC_SEG_ACCESS_DEF; 6028 } else { 6029 igu_sp_sb_index = bp->igu_dsb_id; 6030 igu_seg_id = IGU_SEG_ACCESS_DEF; 6031 } 6032 6033 /* ATTN */ 6034 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6035 atten_status_block); 6036 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 6037 6038 bp->attn_state = 0; 6039 6040 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 6041 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 6042 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 6043 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); 6044 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 6045 int sindex; 6046 /* take care of sig[0]..sig[4] */ 6047 for (sindex = 0; sindex < 4; sindex++) 6048 bp->attn_group[index].sig[sindex] = 6049 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); 6050 6051 if (!CHIP_IS_E1x(bp)) 6052 /* 6053 * enable5 is separate from the rest of the registers, 6054 * and therefore the address skip is 4 6055 * and not 16 between the different groups 6056 */ 6057 bp->attn_group[index].sig[4] = REG_RD(bp, 6058 reg_offset_en5 + 0x4*index); 6059 else 6060 bp->attn_group[index].sig[4] = 0; 6061 } 6062 6063 if (bp->common.int_block == INT_BLOCK_HC) { 6064 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : 6065 HC_REG_ATTN_MSG0_ADDR_L); 6066 6067 REG_WR(bp, reg_offset, U64_LO(section)); 6068 REG_WR(bp, reg_offset + 4, U64_HI(section)); 6069 } else if (!CHIP_IS_E1x(bp)) { 6070 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 6071 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 6072 } 6073 6074 section = ((u64)mapping) + offsetof(struct host_sp_status_block, 6075 sp_sb); 6076 6077 bnx2x_zero_sp_sb(bp); 6078 6079 /* PCI guarantees endianity of regpairs */ 6080 sp_sb_data.state = SB_ENABLED; 6081 sp_sb_data.host_sb_addr.lo = U64_LO(section); 6082 sp_sb_data.host_sb_addr.hi = U64_HI(section); 6083 sp_sb_data.igu_sb_id = igu_sp_sb_index; 6084 sp_sb_data.igu_seg_id = igu_seg_id; 6085 sp_sb_data.p_func.pf_id = func; 6086 sp_sb_data.p_func.vnic_id = BP_VN(bp); 6087 sp_sb_data.p_func.vf_id = 0xff; 6088 6089 bnx2x_wr_sp_sb_data(bp, &sp_sb_data); 6090 6091 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 6092 } 6093 6094 void bnx2x_update_coalesce(struct bnx2x *bp) 6095 { 6096 int i; 6097 6098 for_each_eth_queue(bp, i) 6099 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, 6100 bp->tx_ticks, bp->rx_ticks); 6101 } 6102 6103 static void bnx2x_init_sp_ring(struct bnx2x *bp) 6104 { 6105 spin_lock_init(&bp->spq_lock); 6106 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); 6107 6108 bp->spq_prod_idx = 0; 6109 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; 6110 bp->spq_prod_bd = bp->spq; 6111 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; 6112 } 6113 6114 static void bnx2x_init_eq_ring(struct bnx2x *bp) 6115 { 6116 int i; 6117 for (i = 1; i <= NUM_EQ_PAGES; i++) { 6118 union event_ring_elem *elem = 6119 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; 6120 6121 elem->next_page.addr.hi = 6122 cpu_to_le32(U64_HI(bp->eq_mapping + 6123 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); 6124 elem->next_page.addr.lo = 6125 cpu_to_le32(U64_LO(bp->eq_mapping + 6126 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); 6127 } 6128 bp->eq_cons = 0; 6129 bp->eq_prod = NUM_EQ_DESC; 6130 bp->eq_cons_sb = BNX2X_EQ_INDEX; 6131 /* we want a warning message before it gets wrought... */ 6132 atomic_set(&bp->eq_spq_left, 6133 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); 6134 } 6135 6136 /* called with netif_addr_lock_bh() */ 6137 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, 6138 unsigned long rx_mode_flags, 6139 unsigned long rx_accept_flags, 6140 unsigned long tx_accept_flags, 6141 unsigned long ramrod_flags) 6142 { 6143 struct bnx2x_rx_mode_ramrod_params ramrod_param; 6144 int rc; 6145 6146 memset(&ramrod_param, 0, sizeof(ramrod_param)); 6147 6148 /* Prepare ramrod parameters */ 6149 ramrod_param.cid = 0; 6150 ramrod_param.cl_id = cl_id; 6151 ramrod_param.rx_mode_obj = &bp->rx_mode_obj; 6152 ramrod_param.func_id = BP_FUNC(bp); 6153 6154 ramrod_param.pstate = &bp->sp_state; 6155 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; 6156 6157 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); 6158 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); 6159 6160 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); 6161 6162 ramrod_param.ramrod_flags = ramrod_flags; 6163 ramrod_param.rx_mode_flags = rx_mode_flags; 6164 6165 ramrod_param.rx_accept_flags = rx_accept_flags; 6166 ramrod_param.tx_accept_flags = tx_accept_flags; 6167 6168 rc = bnx2x_config_rx_mode(bp, &ramrod_param); 6169 if (rc < 0) { 6170 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); 6171 return rc; 6172 } 6173 6174 return 0; 6175 } 6176 6177 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode, 6178 unsigned long *rx_accept_flags, 6179 unsigned long *tx_accept_flags) 6180 { 6181 /* Clear the flags first */ 6182 *rx_accept_flags = 0; 6183 *tx_accept_flags = 0; 6184 6185 switch (rx_mode) { 6186 case BNX2X_RX_MODE_NONE: 6187 /* 6188 * 'drop all' supersedes any accept flags that may have been 6189 * passed to the function. 6190 */ 6191 break; 6192 case BNX2X_RX_MODE_NORMAL: 6193 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6194 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); 6195 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6196 6197 /* internal switching mode */ 6198 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6199 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); 6200 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6201 6202 if (bp->accept_any_vlan) { 6203 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6204 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6205 } 6206 6207 break; 6208 case BNX2X_RX_MODE_ALLMULTI: 6209 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6210 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6211 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6212 6213 /* internal switching mode */ 6214 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6215 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6216 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6217 6218 if (bp->accept_any_vlan) { 6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6220 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6221 } 6222 6223 break; 6224 case BNX2X_RX_MODE_PROMISC: 6225 /* According to definition of SI mode, iface in promisc mode 6226 * should receive matched and unmatched (in resolution of port) 6227 * unicast packets. 6228 */ 6229 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); 6230 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); 6231 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); 6232 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); 6233 6234 /* internal switching mode */ 6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); 6236 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); 6237 6238 if (IS_MF_SI(bp)) 6239 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); 6240 else 6241 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); 6242 6243 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); 6244 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); 6245 6246 break; 6247 default: 6248 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); 6249 return -EINVAL; 6250 } 6251 6252 return 0; 6253 } 6254 6255 /* called with netif_addr_lock_bh() */ 6256 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) 6257 { 6258 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 6259 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 6260 int rc; 6261 6262 if (!NO_FCOE(bp)) 6263 /* Configure rx_mode of FCoE Queue */ 6264 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); 6265 6266 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, 6267 &tx_accept_flags); 6268 if (rc) 6269 return rc; 6270 6271 __set_bit(RAMROD_RX, &ramrod_flags); 6272 __set_bit(RAMROD_TX, &ramrod_flags); 6273 6274 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, 6275 rx_accept_flags, tx_accept_flags, 6276 ramrod_flags); 6277 } 6278 6279 static void bnx2x_init_internal_common(struct bnx2x *bp) 6280 { 6281 int i; 6282 6283 /* Zero this manually as its initialization is 6284 currently missing in the initTool */ 6285 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) 6286 REG_WR(bp, BAR_USTRORM_INTMEM + 6287 USTORM_AGG_DATA_OFFSET + i * 4, 0); 6288 if (!CHIP_IS_E1x(bp)) { 6289 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, 6290 CHIP_INT_MODE_IS_BC(bp) ? 6291 HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 6292 } 6293 } 6294 6295 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code) 6296 { 6297 switch (load_code) { 6298 case FW_MSG_CODE_DRV_LOAD_COMMON: 6299 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 6300 bnx2x_init_internal_common(bp); 6301 /* no break */ 6302 6303 case FW_MSG_CODE_DRV_LOAD_PORT: 6304 /* nothing to do */ 6305 /* no break */ 6306 6307 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 6308 /* internal memory per function is 6309 initialized inside bnx2x_pf_init */ 6310 break; 6311 6312 default: 6313 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); 6314 break; 6315 } 6316 } 6317 6318 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) 6319 { 6320 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); 6321 } 6322 6323 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) 6324 { 6325 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); 6326 } 6327 6328 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) 6329 { 6330 if (CHIP_IS_E1x(fp->bp)) 6331 return BP_L_ID(fp->bp) + fp->index; 6332 else /* We want Client ID to be the same as IGU SB ID for 57712 */ 6333 return bnx2x_fp_igu_sb_id(fp); 6334 } 6335 6336 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) 6337 { 6338 struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; 6339 u8 cos; 6340 unsigned long q_type = 0; 6341 u32 cids[BNX2X_MULTI_TX_COS] = { 0 }; 6342 fp->rx_queue = fp_idx; 6343 fp->cid = fp_idx; 6344 fp->cl_id = bnx2x_fp_cl_id(fp); 6345 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); 6346 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); 6347 /* qZone id equals to FW (per path) client id */ 6348 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp); 6349 6350 /* init shortcut */ 6351 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); 6352 6353 /* Setup SB indices */ 6354 fp->rx_cons_sb = BNX2X_RX_SB_INDEX; 6355 6356 /* Configure Queue State object */ 6357 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6358 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6359 6360 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS); 6361 6362 /* init tx data */ 6363 for_each_cos_in_tx_queue(fp, cos) { 6364 bnx2x_init_txdata(bp, fp->txdata_ptr[cos], 6365 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), 6366 FP_COS_TO_TXQ(fp, cos, bp), 6367 BNX2X_TX_SB_INDEX_BASE + cos, fp); 6368 cids[cos] = fp->txdata_ptr[cos]->cid; 6369 } 6370 6371 /* nothing more for vf to do here */ 6372 if (IS_VF(bp)) 6373 return; 6374 6375 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, 6376 fp->fw_sb_id, fp->igu_sb_id); 6377 bnx2x_update_fpsb_idx(fp); 6378 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, 6379 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6380 bnx2x_sp_mapping(bp, q_rdata), q_type); 6381 6382 /** 6383 * Configure classification DBs: Always enable Tx switching 6384 */ 6385 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); 6386 6387 DP(NETIF_MSG_IFUP, 6388 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6389 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6390 fp->igu_sb_id); 6391 } 6392 6393 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) 6394 { 6395 int i; 6396 6397 for (i = 1; i <= NUM_TX_RINGS; i++) { 6398 struct eth_tx_next_bd *tx_next_bd = 6399 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; 6400 6401 tx_next_bd->addr_hi = 6402 cpu_to_le32(U64_HI(txdata->tx_desc_mapping + 6403 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6404 tx_next_bd->addr_lo = 6405 cpu_to_le32(U64_LO(txdata->tx_desc_mapping + 6406 BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); 6407 } 6408 6409 *txdata->tx_cons_sb = cpu_to_le16(0); 6410 6411 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); 6412 txdata->tx_db.data.zero_fill1 = 0; 6413 txdata->tx_db.data.prod = 0; 6414 6415 txdata->tx_pkt_prod = 0; 6416 txdata->tx_pkt_cons = 0; 6417 txdata->tx_bd_prod = 0; 6418 txdata->tx_bd_cons = 0; 6419 txdata->tx_pkt = 0; 6420 } 6421 6422 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) 6423 { 6424 int i; 6425 6426 for_each_tx_queue_cnic(bp, i) 6427 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); 6428 } 6429 6430 static void bnx2x_init_tx_rings(struct bnx2x *bp) 6431 { 6432 int i; 6433 u8 cos; 6434 6435 for_each_eth_queue(bp, i) 6436 for_each_cos_in_tx_queue(&bp->fp[i], cos) 6437 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); 6438 } 6439 6440 static void bnx2x_init_fcoe_fp(struct bnx2x *bp) 6441 { 6442 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); 6443 unsigned long q_type = 0; 6444 6445 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); 6446 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, 6447 BNX2X_FCOE_ETH_CL_ID_IDX); 6448 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); 6449 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; 6450 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; 6451 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; 6452 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), 6453 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, 6454 fp); 6455 6456 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); 6457 6458 /* qZone id equals to FW (per path) client id */ 6459 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); 6460 /* init shortcut */ 6461 bnx2x_fcoe(bp, ustorm_rx_prods_offset) = 6462 bnx2x_rx_ustorm_prods_offset(fp); 6463 6464 /* Configure Queue State object */ 6465 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); 6466 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); 6467 6468 /* No multi-CoS for FCoE L2 client */ 6469 BUG_ON(fp->max_cos != 1); 6470 6471 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, 6472 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), 6473 bnx2x_sp_mapping(bp, q_rdata), q_type); 6474 6475 DP(NETIF_MSG_IFUP, 6476 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", 6477 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, 6478 fp->igu_sb_id); 6479 } 6480 6481 void bnx2x_nic_init_cnic(struct bnx2x *bp) 6482 { 6483 if (!NO_FCOE(bp)) 6484 bnx2x_init_fcoe_fp(bp); 6485 6486 bnx2x_init_sb(bp, bp->cnic_sb_mapping, 6487 BNX2X_VF_ID_INVALID, false, 6488 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); 6489 6490 /* ensure status block indices were read */ 6491 rmb(); 6492 bnx2x_init_rx_rings_cnic(bp); 6493 bnx2x_init_tx_rings_cnic(bp); 6494 6495 /* flush all */ 6496 mb(); 6497 mmiowb(); 6498 } 6499 6500 void bnx2x_pre_irq_nic_init(struct bnx2x *bp) 6501 { 6502 int i; 6503 6504 /* Setup NIC internals and enable interrupts */ 6505 for_each_eth_queue(bp, i) 6506 bnx2x_init_eth_fp(bp, i); 6507 6508 /* ensure status block indices were read */ 6509 rmb(); 6510 bnx2x_init_rx_rings(bp); 6511 bnx2x_init_tx_rings(bp); 6512 6513 if (IS_PF(bp)) { 6514 /* Initialize MOD_ABS interrupts */ 6515 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, 6516 bp->common.shmem_base, 6517 bp->common.shmem2_base, BP_PORT(bp)); 6518 6519 /* initialize the default status block and sp ring */ 6520 bnx2x_init_def_sb(bp); 6521 bnx2x_update_dsb_idx(bp); 6522 bnx2x_init_sp_ring(bp); 6523 } else { 6524 bnx2x_memset_stats(bp); 6525 } 6526 } 6527 6528 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code) 6529 { 6530 bnx2x_init_eq_ring(bp); 6531 bnx2x_init_internal(bp, load_code); 6532 bnx2x_pf_init(bp); 6533 bnx2x_stats_init(bp); 6534 6535 /* flush all before enabling interrupts */ 6536 mb(); 6537 mmiowb(); 6538 6539 bnx2x_int_enable(bp); 6540 6541 /* Check for SPIO5 */ 6542 bnx2x_attn_int_deasserted0(bp, 6543 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & 6544 AEU_INPUTS_ATTN_BITS_SPIO5); 6545 } 6546 6547 /* gzip service functions */ 6548 static int bnx2x_gunzip_init(struct bnx2x *bp) 6549 { 6550 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, 6551 &bp->gunzip_mapping, GFP_KERNEL); 6552 if (bp->gunzip_buf == NULL) 6553 goto gunzip_nomem1; 6554 6555 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL); 6556 if (bp->strm == NULL) 6557 goto gunzip_nomem2; 6558 6559 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); 6560 if (bp->strm->workspace == NULL) 6561 goto gunzip_nomem3; 6562 6563 return 0; 6564 6565 gunzip_nomem3: 6566 kfree(bp->strm); 6567 bp->strm = NULL; 6568 6569 gunzip_nomem2: 6570 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6571 bp->gunzip_mapping); 6572 bp->gunzip_buf = NULL; 6573 6574 gunzip_nomem1: 6575 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); 6576 return -ENOMEM; 6577 } 6578 6579 static void bnx2x_gunzip_end(struct bnx2x *bp) 6580 { 6581 if (bp->strm) { 6582 vfree(bp->strm->workspace); 6583 kfree(bp->strm); 6584 bp->strm = NULL; 6585 } 6586 6587 if (bp->gunzip_buf) { 6588 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, 6589 bp->gunzip_mapping); 6590 bp->gunzip_buf = NULL; 6591 } 6592 } 6593 6594 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len) 6595 { 6596 int n, rc; 6597 6598 /* check gzip header */ 6599 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { 6600 BNX2X_ERR("Bad gzip header\n"); 6601 return -EINVAL; 6602 } 6603 6604 n = 10; 6605 6606 #define FNAME 0x8 6607 6608 if (zbuf[3] & FNAME) 6609 while ((zbuf[n++] != 0) && (n < len)); 6610 6611 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; 6612 bp->strm->avail_in = len - n; 6613 bp->strm->next_out = bp->gunzip_buf; 6614 bp->strm->avail_out = FW_BUF_SIZE; 6615 6616 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); 6617 if (rc != Z_OK) 6618 return rc; 6619 6620 rc = zlib_inflate(bp->strm, Z_FINISH); 6621 if ((rc != Z_OK) && (rc != Z_STREAM_END)) 6622 netdev_err(bp->dev, "Firmware decompression error: %s\n", 6623 bp->strm->msg); 6624 6625 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); 6626 if (bp->gunzip_outlen & 0x3) 6627 netdev_err(bp->dev, 6628 "Firmware decompression error: gunzip_outlen (%d) not aligned\n", 6629 bp->gunzip_outlen); 6630 bp->gunzip_outlen >>= 2; 6631 6632 zlib_inflateEnd(bp->strm); 6633 6634 if (rc == Z_STREAM_END) 6635 return 0; 6636 6637 return rc; 6638 } 6639 6640 /* nic load/unload */ 6641 6642 /* 6643 * General service functions 6644 */ 6645 6646 /* send a NIG loopback debug packet */ 6647 static void bnx2x_lb_pckt(struct bnx2x *bp) 6648 { 6649 u32 wb_write[3]; 6650 6651 /* Ethernet source and destination addresses */ 6652 wb_write[0] = 0x55555555; 6653 wb_write[1] = 0x55555555; 6654 wb_write[2] = 0x20; /* SOP */ 6655 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6656 6657 /* NON-IP protocol */ 6658 wb_write[0] = 0x09000000; 6659 wb_write[1] = 0x55555555; 6660 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 6661 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 6662 } 6663 6664 /* some of the internal memories 6665 * are not directly readable from the driver 6666 * to test them we send debug packets 6667 */ 6668 static int bnx2x_int_mem_test(struct bnx2x *bp) 6669 { 6670 int factor; 6671 int count, i; 6672 u32 val = 0; 6673 6674 if (CHIP_REV_IS_FPGA(bp)) 6675 factor = 120; 6676 else if (CHIP_REV_IS_EMUL(bp)) 6677 factor = 200; 6678 else 6679 factor = 1; 6680 6681 /* Disable inputs of parser neighbor blocks */ 6682 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6683 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6684 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6685 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6686 6687 /* Write 0 to parser credits for CFC search request */ 6688 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6689 6690 /* send Ethernet packet */ 6691 bnx2x_lb_pckt(bp); 6692 6693 /* TODO do i reset NIG statistic? */ 6694 /* Wait until NIG register shows 1 packet of size 0x10 */ 6695 count = 1000 * factor; 6696 while (count) { 6697 6698 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6699 val = *bnx2x_sp(bp, wb_data[0]); 6700 if (val == 0x10) 6701 break; 6702 6703 usleep_range(10000, 20000); 6704 count--; 6705 } 6706 if (val != 0x10) { 6707 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6708 return -1; 6709 } 6710 6711 /* Wait until PRS register shows 1 packet */ 6712 count = 1000 * factor; 6713 while (count) { 6714 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6715 if (val == 1) 6716 break; 6717 6718 usleep_range(10000, 20000); 6719 count--; 6720 } 6721 if (val != 0x1) { 6722 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6723 return -2; 6724 } 6725 6726 /* Reset and init BRB, PRS */ 6727 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6728 msleep(50); 6729 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6730 msleep(50); 6731 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6732 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6733 6734 DP(NETIF_MSG_HW, "part2\n"); 6735 6736 /* Disable inputs of parser neighbor blocks */ 6737 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); 6738 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); 6739 REG_WR(bp, CFC_REG_DEBUG0, 0x1); 6740 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); 6741 6742 /* Write 0 to parser credits for CFC search request */ 6743 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 6744 6745 /* send 10 Ethernet packets */ 6746 for (i = 0; i < 10; i++) 6747 bnx2x_lb_pckt(bp); 6748 6749 /* Wait until NIG register shows 10 + 1 6750 packets of size 11*0x10 = 0xb0 */ 6751 count = 1000 * factor; 6752 while (count) { 6753 6754 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 6755 val = *bnx2x_sp(bp, wb_data[0]); 6756 if (val == 0xb0) 6757 break; 6758 6759 usleep_range(10000, 20000); 6760 count--; 6761 } 6762 if (val != 0xb0) { 6763 BNX2X_ERR("NIG timeout val = 0x%x\n", val); 6764 return -3; 6765 } 6766 6767 /* Wait until PRS register shows 2 packets */ 6768 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6769 if (val != 2) 6770 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6771 6772 /* Write 1 to parser credits for CFC search request */ 6773 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 6774 6775 /* Wait until PRS register shows 3 packets */ 6776 msleep(10 * factor); 6777 /* Wait until NIG register shows 1 packet of size 0x10 */ 6778 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); 6779 if (val != 3) 6780 BNX2X_ERR("PRS timeout val = 0x%x\n", val); 6781 6782 /* clear NIG EOP FIFO */ 6783 for (i = 0; i < 11; i++) 6784 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); 6785 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); 6786 if (val != 1) { 6787 BNX2X_ERR("clear of NIG failed\n"); 6788 return -4; 6789 } 6790 6791 /* Reset and init BRB, PRS, NIG */ 6792 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 6793 msleep(50); 6794 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 6795 msleep(50); 6796 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 6797 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 6798 if (!CNIC_SUPPORT(bp)) 6799 /* set NIC mode */ 6800 REG_WR(bp, PRS_REG_NIC_MODE, 1); 6801 6802 /* Enable inputs of parser neighbor blocks */ 6803 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); 6804 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); 6805 REG_WR(bp, CFC_REG_DEBUG0, 0x0); 6806 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); 6807 6808 DP(NETIF_MSG_HW, "done\n"); 6809 6810 return 0; /* OK */ 6811 } 6812 6813 static void bnx2x_enable_blocks_attention(struct bnx2x *bp) 6814 { 6815 u32 val; 6816 6817 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 6818 if (!CHIP_IS_E1x(bp)) 6819 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); 6820 else 6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); 6822 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 6823 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 6824 /* 6825 * mask read length error interrupts in brb for parser 6826 * (parsing unit and 'checksum and crc' unit) 6827 * these errors are legal (PU reads fixed length and CAC can cause 6828 * read length error on truncated packets) 6829 */ 6830 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); 6831 REG_WR(bp, QM_REG_QM_INT_MASK, 0); 6832 REG_WR(bp, TM_REG_TM_INT_MASK, 0); 6833 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); 6834 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); 6835 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); 6836 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ 6837 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ 6838 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); 6839 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); 6840 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); 6841 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ 6842 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ 6843 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 6844 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); 6845 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); 6846 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); 6847 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ 6848 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ 6849 6850 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 6851 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 6852 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; 6853 if (!CHIP_IS_E1x(bp)) 6854 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 6855 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; 6856 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); 6857 6858 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); 6859 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); 6860 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); 6861 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ 6862 6863 if (!CHIP_IS_E1x(bp)) 6864 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 6865 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 6866 6867 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); 6868 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); 6869 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ 6870 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 6871 } 6872 6873 static void bnx2x_reset_common(struct bnx2x *bp) 6874 { 6875 u32 val = 0x1400; 6876 6877 /* reset_common */ 6878 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 6879 0xd3ffff7f); 6880 6881 if (CHIP_IS_E3(bp)) { 6882 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 6883 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 6884 } 6885 6886 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); 6887 } 6888 6889 static void bnx2x_setup_dmae(struct bnx2x *bp) 6890 { 6891 bp->dmae_ready = 0; 6892 spin_lock_init(&bp->dmae_lock); 6893 } 6894 6895 static void bnx2x_init_pxp(struct bnx2x *bp) 6896 { 6897 u16 devctl; 6898 int r_order, w_order; 6899 6900 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); 6901 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); 6902 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6903 if (bp->mrrs == -1) 6904 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6905 else { 6906 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); 6907 r_order = bp->mrrs; 6908 } 6909 6910 bnx2x_init_pxp_arb(bp, r_order, w_order); 6911 } 6912 6913 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) 6914 { 6915 int is_required; 6916 u32 val; 6917 int port; 6918 6919 if (BP_NOMCP(bp)) 6920 return; 6921 6922 is_required = 0; 6923 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & 6924 SHARED_HW_CFG_FAN_FAILURE_MASK; 6925 6926 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) 6927 is_required = 1; 6928 6929 /* 6930 * The fan failure mechanism is usually related to the PHY type since 6931 * the power consumption of the board is affected by the PHY. Currently, 6932 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 6933 */ 6934 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) 6935 for (port = PORT_0; port < PORT_MAX; port++) { 6936 is_required |= 6937 bnx2x_fan_failure_det_req( 6938 bp, 6939 bp->common.shmem_base, 6940 bp->common.shmem2_base, 6941 port); 6942 } 6943 6944 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); 6945 6946 if (is_required == 0) 6947 return; 6948 6949 /* Fan failure is indicated by SPIO 5 */ 6950 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 6951 6952 /* set to active low mode */ 6953 val = REG_RD(bp, MISC_REG_SPIO_INT); 6954 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 6955 REG_WR(bp, MISC_REG_SPIO_INT, val); 6956 6957 /* enable interrupt to signal the IGU */ 6958 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 6959 val |= MISC_SPIO_SPIO5; 6960 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); 6961 } 6962 6963 void bnx2x_pf_disable(struct bnx2x *bp) 6964 { 6965 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); 6966 val &= ~IGU_PF_CONF_FUNC_EN; 6967 6968 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); 6969 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 6970 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); 6971 } 6972 6973 static void bnx2x__common_init_phy(struct bnx2x *bp) 6974 { 6975 u32 shmem_base[2], shmem2_base[2]; 6976 /* Avoid common init in case MFW supports LFA */ 6977 if (SHMEM2_RD(bp, size) > 6978 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 6979 return; 6980 shmem_base[0] = bp->common.shmem_base; 6981 shmem2_base[0] = bp->common.shmem2_base; 6982 if (!CHIP_IS_E1x(bp)) { 6983 shmem_base[1] = 6984 SHMEM2_RD(bp, other_shmem_base_addr); 6985 shmem2_base[1] = 6986 SHMEM2_RD(bp, other_shmem2_base_addr); 6987 } 6988 bnx2x_acquire_phy_lock(bp); 6989 bnx2x_common_init_phy(bp, shmem_base, shmem2_base, 6990 bp->common.chip_id); 6991 bnx2x_release_phy_lock(bp); 6992 } 6993 6994 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val) 6995 { 6996 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); 6997 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); 6998 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); 6999 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); 7000 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); 7001 7002 /* make sure this value is 0 */ 7003 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); 7004 7005 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); 7006 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); 7007 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); 7008 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); 7009 } 7010 7011 static void bnx2x_set_endianity(struct bnx2x *bp) 7012 { 7013 #ifdef __BIG_ENDIAN 7014 bnx2x_config_endianity(bp, 1); 7015 #else 7016 bnx2x_config_endianity(bp, 0); 7017 #endif 7018 } 7019 7020 static void bnx2x_reset_endianity(struct bnx2x *bp) 7021 { 7022 bnx2x_config_endianity(bp, 0); 7023 } 7024 7025 /** 7026 * bnx2x_init_hw_common - initialize the HW at the COMMON phase. 7027 * 7028 * @bp: driver handle 7029 */ 7030 static int bnx2x_init_hw_common(struct bnx2x *bp) 7031 { 7032 u32 val; 7033 7034 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp)); 7035 7036 /* 7037 * take the RESET lock to protect undi_unload flow from accessing 7038 * registers while we're resetting the chip 7039 */ 7040 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7041 7042 bnx2x_reset_common(bp); 7043 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); 7044 7045 val = 0xfffc; 7046 if (CHIP_IS_E3(bp)) { 7047 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 7048 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 7049 } 7050 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); 7051 7052 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 7053 7054 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); 7055 7056 if (!CHIP_IS_E1x(bp)) { 7057 u8 abs_func_id; 7058 7059 /** 7060 * 4-port mode or 2-port mode we need to turn of master-enable 7061 * for everyone, after that, turn it back on for self. 7062 * so, we disregard multi-function or not, and always disable 7063 * for all functions on the given path, this means 0,2,4,6 for 7064 * path 0 and 1,3,5,7 for path 1 7065 */ 7066 for (abs_func_id = BP_PATH(bp); 7067 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { 7068 if (abs_func_id == BP_ABS_FUNC(bp)) { 7069 REG_WR(bp, 7070 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 7071 1); 7072 continue; 7073 } 7074 7075 bnx2x_pretend_func(bp, abs_func_id); 7076 /* clear pf enable */ 7077 bnx2x_pf_disable(bp); 7078 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7079 } 7080 } 7081 7082 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); 7083 if (CHIP_IS_E1(bp)) { 7084 /* enable HW interrupt from PXP on USDM overflow 7085 bit 16 on INT_MASK_0 */ 7086 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); 7087 } 7088 7089 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); 7090 bnx2x_init_pxp(bp); 7091 bnx2x_set_endianity(bp); 7092 bnx2x_ilt_init_page_size(bp, INITOP_SET); 7093 7094 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) 7095 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 7096 7097 /* let the HW do it's magic ... */ 7098 msleep(100); 7099 /* finish PXP init */ 7100 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); 7101 if (val != 1) { 7102 BNX2X_ERR("PXP2 CFG failed\n"); 7103 return -EBUSY; 7104 } 7105 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); 7106 if (val != 1) { 7107 BNX2X_ERR("PXP2 RD_INIT failed\n"); 7108 return -EBUSY; 7109 } 7110 7111 /* Timers bug workaround E2 only. We need to set the entire ILT to 7112 * have entries with value "0" and valid bit on. 7113 * This needs to be done by the first PF that is loaded in a path 7114 * (i.e. common phase) 7115 */ 7116 if (!CHIP_IS_E1x(bp)) { 7117 /* In E2 there is a bug in the timers block that can cause function 6 / 7 7118 * (i.e. vnic3) to start even if it is marked as "scan-off". 7119 * This occurs when a different function (func2,3) is being marked 7120 * as "scan-off". Real-life scenario for example: if a driver is being 7121 * load-unloaded while func6,7 are down. This will cause the timer to access 7122 * the ilt, translate to a logical address and send a request to read/write. 7123 * Since the ilt for the function that is down is not valid, this will cause 7124 * a translation error which is unrecoverable. 7125 * The Workaround is intended to make sure that when this happens nothing fatal 7126 * will occur. The workaround: 7127 * 1. First PF driver which loads on a path will: 7128 * a. After taking the chip out of reset, by using pretend, 7129 * it will write "0" to the following registers of 7130 * the other vnics. 7131 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 7132 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 7133 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 7134 * And for itself it will write '1' to 7135 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 7136 * dmae-operations (writing to pram for example.) 7137 * note: can be done for only function 6,7 but cleaner this 7138 * way. 7139 * b. Write zero+valid to the entire ILT. 7140 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 7141 * VNIC3 (of that port). The range allocated will be the 7142 * entire ILT. This is needed to prevent ILT range error. 7143 * 2. Any PF driver load flow: 7144 * a. ILT update with the physical addresses of the allocated 7145 * logical pages. 7146 * b. Wait 20msec. - note that this timeout is needed to make 7147 * sure there are no requests in one of the PXP internal 7148 * queues with "old" ILT addresses. 7149 * c. PF enable in the PGLC. 7150 * d. Clear the was_error of the PF in the PGLC. (could have 7151 * occurred while driver was down) 7152 * e. PF enable in the CFC (WEAK + STRONG) 7153 * f. Timers scan enable 7154 * 3. PF driver unload flow: 7155 * a. Clear the Timers scan_en. 7156 * b. Polling for scan_on=0 for that PF. 7157 * c. Clear the PF enable bit in the PXP. 7158 * d. Clear the PF enable in the CFC (WEAK + STRONG) 7159 * e. Write zero+valid to all ILT entries (The valid bit must 7160 * stay set) 7161 * f. If this is VNIC 3 of a port then also init 7162 * first_timers_ilt_entry to zero and last_timers_ilt_entry 7163 * to the last entry in the ILT. 7164 * 7165 * Notes: 7166 * Currently the PF error in the PGLC is non recoverable. 7167 * In the future the there will be a recovery routine for this error. 7168 * Currently attention is masked. 7169 * Having an MCP lock on the load/unload process does not guarantee that 7170 * there is no Timer disable during Func6/7 enable. This is because the 7171 * Timers scan is currently being cleared by the MCP on FLR. 7172 * Step 2.d can be done only for PF6/7 and the driver can also check if 7173 * there is error before clearing it. But the flow above is simpler and 7174 * more general. 7175 * All ILT entries are written by zero+valid and not just PF6/7 7176 * ILT entries since in the future the ILT entries allocation for 7177 * PF-s might be dynamic. 7178 */ 7179 struct ilt_client_info ilt_cli; 7180 struct bnx2x_ilt ilt; 7181 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 7182 memset(&ilt, 0, sizeof(struct bnx2x_ilt)); 7183 7184 /* initialize dummy TM client */ 7185 ilt_cli.start = 0; 7186 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 7187 ilt_cli.client_num = ILT_CLIENT_TM; 7188 7189 /* Step 1: set zeroes to all ilt page entries with valid bit on 7190 * Step 2: set the timers first/last ilt entry to point 7191 * to the entire range to prevent ILT range error for 3rd/4th 7192 * vnic (this code assumes existence of the vnic) 7193 * 7194 * both steps performed by call to bnx2x_ilt_client_init_op() 7195 * with dummy TM client 7196 * 7197 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 7198 * and his brother are split registers 7199 */ 7200 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); 7201 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); 7202 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); 7203 7204 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); 7205 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); 7206 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 7207 } 7208 7209 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); 7210 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); 7211 7212 if (!CHIP_IS_E1x(bp)) { 7213 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : 7214 (CHIP_REV_IS_FPGA(bp) ? 400 : 0); 7215 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); 7216 7217 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); 7218 7219 /* let the HW do it's magic ... */ 7220 do { 7221 msleep(200); 7222 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); 7223 } while (factor-- && (val != 1)); 7224 7225 if (val != 1) { 7226 BNX2X_ERR("ATC_INIT failed\n"); 7227 return -EBUSY; 7228 } 7229 } 7230 7231 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); 7232 7233 bnx2x_iov_init_dmae(bp); 7234 7235 /* clean the DMAE memory */ 7236 bp->dmae_ready = 1; 7237 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); 7238 7239 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); 7240 7241 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); 7242 7243 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); 7244 7245 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); 7246 7247 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); 7248 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); 7249 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); 7250 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); 7251 7252 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); 7253 7254 /* QM queues pointers table */ 7255 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); 7256 7257 /* soft reset pulse */ 7258 REG_WR(bp, QM_REG_SOFT_RESET, 1); 7259 REG_WR(bp, QM_REG_SOFT_RESET, 0); 7260 7261 if (CNIC_SUPPORT(bp)) 7262 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); 7263 7264 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); 7265 7266 if (!CHIP_REV_IS_SLOW(bp)) 7267 /* enable hw interrupt from doorbell Q */ 7268 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); 7269 7270 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); 7271 7272 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); 7273 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); 7274 7275 if (!CHIP_IS_E1(bp)) 7276 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); 7277 7278 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { 7279 if (IS_MF_AFEX(bp)) { 7280 /* configure that VNTag and VLAN headers must be 7281 * received in afex mode 7282 */ 7283 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); 7284 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); 7285 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 7286 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 7287 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); 7288 } else { 7289 /* Bit-map indicating which L2 hdrs may appear 7290 * after the basic Ethernet header 7291 */ 7292 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 7293 bp->path_has_ovlan ? 7 : 6); 7294 } 7295 } 7296 7297 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); 7298 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); 7299 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); 7300 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); 7301 7302 if (!CHIP_IS_E1x(bp)) { 7303 /* reset VFC memories */ 7304 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7305 VFC_MEMORIES_RST_REG_CAM_RST | 7306 VFC_MEMORIES_RST_REG_RAM_RST); 7307 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 7308 VFC_MEMORIES_RST_REG_CAM_RST | 7309 VFC_MEMORIES_RST_REG_RAM_RST); 7310 7311 msleep(20); 7312 } 7313 7314 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); 7315 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); 7316 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); 7317 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); 7318 7319 /* sync semi rtc */ 7320 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 7321 0x80000000); 7322 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 7323 0x80000000); 7324 7325 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); 7326 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); 7327 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); 7328 7329 if (!CHIP_IS_E1x(bp)) { 7330 if (IS_MF_AFEX(bp)) { 7331 /* configure that VNTag and VLAN headers must be 7332 * sent in afex mode 7333 */ 7334 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); 7335 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); 7336 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 7337 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 7338 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); 7339 } else { 7340 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 7341 bp->path_has_ovlan ? 7 : 6); 7342 } 7343 } 7344 7345 REG_WR(bp, SRC_REG_SOFT_RST, 1); 7346 7347 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); 7348 7349 if (CNIC_SUPPORT(bp)) { 7350 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); 7351 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 7352 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); 7353 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); 7354 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); 7355 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 7356 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); 7357 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 7358 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); 7359 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); 7360 } 7361 REG_WR(bp, SRC_REG_SOFT_RST, 0); 7362 7363 if (sizeof(union cdu_context) != 1024) 7364 /* we currently assume that a context is 1024 bytes */ 7365 dev_alert(&bp->pdev->dev, 7366 "please adjust the size of cdu_context(%ld)\n", 7367 (long)sizeof(union cdu_context)); 7368 7369 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); 7370 val = (4 << 24) + (0 << 12) + 1024; 7371 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); 7372 7373 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); 7374 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); 7375 /* enable context validation interrupt from CFC */ 7376 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); 7377 7378 /* set the thresholds to prevent CFC/CDU race */ 7379 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); 7380 7381 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); 7382 7383 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) 7384 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); 7385 7386 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); 7387 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); 7388 7389 /* Reset PCIE errors for debug */ 7390 REG_WR(bp, 0x2814, 0xffffffff); 7391 REG_WR(bp, 0x3820, 0xffffffff); 7392 7393 if (!CHIP_IS_E1x(bp)) { 7394 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 7395 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 7396 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 7397 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 7398 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 7399 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 7400 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 7401 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 7402 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 7403 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 7404 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 7405 } 7406 7407 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); 7408 if (!CHIP_IS_E1(bp)) { 7409 /* in E3 this done in per-port section */ 7410 if (!CHIP_IS_E3(bp)) 7411 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7412 } 7413 if (CHIP_IS_E1H(bp)) 7414 /* not applicable for E2 (and above ...) */ 7415 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); 7416 7417 if (CHIP_REV_IS_SLOW(bp)) 7418 msleep(200); 7419 7420 /* finish CFC init */ 7421 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); 7422 if (val != 1) { 7423 BNX2X_ERR("CFC LL_INIT failed\n"); 7424 return -EBUSY; 7425 } 7426 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); 7427 if (val != 1) { 7428 BNX2X_ERR("CFC AC_INIT failed\n"); 7429 return -EBUSY; 7430 } 7431 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 7432 if (val != 1) { 7433 BNX2X_ERR("CFC CAM_INIT failed\n"); 7434 return -EBUSY; 7435 } 7436 REG_WR(bp, CFC_REG_DEBUG0, 0); 7437 7438 if (CHIP_IS_E1(bp)) { 7439 /* read NIG statistic 7440 to see if this is our first up since powerup */ 7441 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); 7442 val = *bnx2x_sp(bp, wb_data[0]); 7443 7444 /* do internal memory self test */ 7445 if ((val == 0) && bnx2x_int_mem_test(bp)) { 7446 BNX2X_ERR("internal mem self test failed\n"); 7447 return -EBUSY; 7448 } 7449 } 7450 7451 bnx2x_setup_fan_failure_detection(bp); 7452 7453 /* clear PXP2 attentions */ 7454 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); 7455 7456 bnx2x_enable_blocks_attention(bp); 7457 bnx2x_enable_blocks_parity(bp); 7458 7459 if (!BP_NOMCP(bp)) { 7460 if (CHIP_IS_E1x(bp)) 7461 bnx2x__common_init_phy(bp); 7462 } else 7463 BNX2X_ERR("Bootcode is missing - can not initialize link\n"); 7464 7465 if (SHMEM2_HAS(bp, netproc_fw_ver)) 7466 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM)); 7467 7468 return 0; 7469 } 7470 7471 /** 7472 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. 7473 * 7474 * @bp: driver handle 7475 */ 7476 static int bnx2x_init_hw_common_chip(struct bnx2x *bp) 7477 { 7478 int rc = bnx2x_init_hw_common(bp); 7479 7480 if (rc) 7481 return rc; 7482 7483 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 7484 if (!BP_NOMCP(bp)) 7485 bnx2x__common_init_phy(bp); 7486 7487 return 0; 7488 } 7489 7490 static int bnx2x_init_hw_port(struct bnx2x *bp) 7491 { 7492 int port = BP_PORT(bp); 7493 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 7494 u32 low, high; 7495 u32 val, reg; 7496 7497 DP(NETIF_MSG_HW, "starting port init port %d\n", port); 7498 7499 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 7500 7501 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 7502 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7503 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7504 7505 /* Timers bug workaround: disables the pf_master bit in pglue at 7506 * common phase, we need to enable it here before any dmae access are 7507 * attempted. Therefore we manually added the enable-master to the 7508 * port phase (it also happens in the function phase) 7509 */ 7510 if (!CHIP_IS_E1x(bp)) 7511 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 7512 7513 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 7514 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 7515 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 7516 bnx2x_init_block(bp, BLOCK_QM, init_phase); 7517 7518 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 7519 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 7520 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 7521 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 7522 7523 /* QM cid (connection) count */ 7524 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); 7525 7526 if (CNIC_SUPPORT(bp)) { 7527 bnx2x_init_block(bp, BLOCK_TM, init_phase); 7528 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); 7529 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 7530 } 7531 7532 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 7533 7534 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 7535 7536 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { 7537 7538 if (IS_MF(bp)) 7539 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); 7540 else if (bp->dev->mtu > 4096) { 7541 if (bp->flags & ONE_PORT_FLAG) 7542 low = 160; 7543 else { 7544 val = bp->dev->mtu; 7545 /* (24*1024 + val*4)/256 */ 7546 low = 96 + (val/64) + 7547 ((val % 64) ? 1 : 0); 7548 } 7549 } else 7550 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); 7551 high = low + 56; /* 14*1024/256 */ 7552 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 7553 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 7554 } 7555 7556 if (CHIP_MODE_IS_4_PORT(bp)) 7557 REG_WR(bp, (BP_PORT(bp) ? 7558 BRB1_REG_MAC_GUARANTIED_1 : 7559 BRB1_REG_MAC_GUARANTIED_0), 40); 7560 7561 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 7562 if (CHIP_IS_E3B0(bp)) { 7563 if (IS_MF_AFEX(bp)) { 7564 /* configure headers for AFEX mode */ 7565 REG_WR(bp, BP_PORT(bp) ? 7566 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7567 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 7568 REG_WR(bp, BP_PORT(bp) ? 7569 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 7570 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 7571 REG_WR(bp, BP_PORT(bp) ? 7572 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 7573 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 7574 } else { 7575 /* Ovlan exists only if we are in multi-function + 7576 * switch-dependent mode, in switch-independent there 7577 * is no ovlan headers 7578 */ 7579 REG_WR(bp, BP_PORT(bp) ? 7580 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 7581 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 7582 (bp->path_has_ovlan ? 7 : 6)); 7583 } 7584 } 7585 7586 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 7587 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 7588 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 7589 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 7590 7591 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 7592 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 7593 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 7594 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 7595 7596 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 7597 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 7598 7599 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 7600 7601 if (CHIP_IS_E1x(bp)) { 7602 /* configure PBF to work without PAUSE mtu 9000 */ 7603 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 7604 7605 /* update threshold */ 7606 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 7607 /* update init credit */ 7608 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 7609 7610 /* probe changes */ 7611 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); 7612 udelay(50); 7613 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); 7614 } 7615 7616 if (CNIC_SUPPORT(bp)) 7617 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 7618 7619 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 7620 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 7621 7622 if (CHIP_IS_E1(bp)) { 7623 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 7624 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 7625 } 7626 bnx2x_init_block(bp, BLOCK_HC, init_phase); 7627 7628 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 7629 7630 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 7631 /* init aeu_mask_attn_func_0/1: 7632 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use 7633 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF 7634 * bits 4-7 are used for "per vn group attention" */ 7635 val = IS_MF(bp) ? 0xF7 : 0x7; 7636 /* Enable DCBX attention for all but E1 */ 7637 val |= CHIP_IS_E1(bp) ? 0 : 0x10; 7638 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 7639 7640 /* SCPAD_PARITY should NOT trigger close the gates */ 7641 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; 7642 REG_WR(bp, reg, 7643 REG_RD(bp, reg) & 7644 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7645 7646 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; 7647 REG_WR(bp, reg, 7648 REG_RD(bp, reg) & 7649 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); 7650 7651 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 7652 7653 if (!CHIP_IS_E1x(bp)) { 7654 /* Bit-map indicating which L2 hdrs may appear after the 7655 * basic Ethernet header 7656 */ 7657 if (IS_MF_AFEX(bp)) 7658 REG_WR(bp, BP_PORT(bp) ? 7659 NIG_REG_P1_HDRS_AFTER_BASIC : 7660 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 7661 else 7662 REG_WR(bp, BP_PORT(bp) ? 7663 NIG_REG_P1_HDRS_AFTER_BASIC : 7664 NIG_REG_P0_HDRS_AFTER_BASIC, 7665 IS_MF_SD(bp) ? 7 : 6); 7666 7667 if (CHIP_IS_E3(bp)) 7668 REG_WR(bp, BP_PORT(bp) ? 7669 NIG_REG_LLH1_MF_MODE : 7670 NIG_REG_LLH_MF_MODE, IS_MF(bp)); 7671 } 7672 if (!CHIP_IS_E3(bp)) 7673 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 7674 7675 if (!CHIP_IS_E1(bp)) { 7676 /* 0x2 disable mf_ov, 0x1 enable */ 7677 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 7678 (IS_MF_SD(bp) ? 0x1 : 0x2)); 7679 7680 if (!CHIP_IS_E1x(bp)) { 7681 val = 0; 7682 switch (bp->mf_mode) { 7683 case MULTI_FUNCTION_SD: 7684 val = 1; 7685 break; 7686 case MULTI_FUNCTION_SI: 7687 case MULTI_FUNCTION_AFEX: 7688 val = 2; 7689 break; 7690 } 7691 7692 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : 7693 NIG_REG_LLH0_CLS_TYPE), val); 7694 } 7695 { 7696 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 7697 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 7698 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 7699 } 7700 } 7701 7702 /* If SPIO5 is set to generate interrupts, enable it for this port */ 7703 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); 7704 if (val & MISC_SPIO_SPIO5) { 7705 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 7706 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 7707 val = REG_RD(bp, reg_addr); 7708 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 7709 REG_WR(bp, reg_addr, val); 7710 } 7711 7712 return 0; 7713 } 7714 7715 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr) 7716 { 7717 int reg; 7718 u32 wb_write[2]; 7719 7720 if (CHIP_IS_E1(bp)) 7721 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 7722 else 7723 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 7724 7725 wb_write[0] = ONCHIP_ADDR1(addr); 7726 wb_write[1] = ONCHIP_ADDR2(addr); 7727 REG_WR_DMAE(bp, reg, wb_write, 2); 7728 } 7729 7730 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf) 7731 { 7732 u32 data, ctl, cnt = 100; 7733 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 7734 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 7735 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 7736 u32 sb_bit = 1 << (idu_sb_id%32); 7737 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 7738 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 7739 7740 /* Not supported in BC mode */ 7741 if (CHIP_INT_MODE_IS_BC(bp)) 7742 return; 7743 7744 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup 7745 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 7746 IGU_REGULAR_CLEANUP_SET | 7747 IGU_REGULAR_BCLEANUP; 7748 7749 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | 7750 func_encode << IGU_CTRL_REG_FID_SHIFT | 7751 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; 7752 7753 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7754 data, igu_addr_data); 7755 REG_WR(bp, igu_addr_data, data); 7756 mmiowb(); 7757 barrier(); 7758 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 7759 ctl, igu_addr_ctl); 7760 REG_WR(bp, igu_addr_ctl, ctl); 7761 mmiowb(); 7762 barrier(); 7763 7764 /* wait for clean up to finish */ 7765 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) 7766 msleep(20); 7767 7768 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { 7769 DP(NETIF_MSG_HW, 7770 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", 7771 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 7772 } 7773 } 7774 7775 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id) 7776 { 7777 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); 7778 } 7779 7780 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func) 7781 { 7782 u32 i, base = FUNC_ILT_BASE(func); 7783 for (i = base; i < base + ILT_PER_FUNC; i++) 7784 bnx2x_ilt_wr(bp, i, 0); 7785 } 7786 7787 static void bnx2x_init_searcher(struct bnx2x *bp) 7788 { 7789 int port = BP_PORT(bp); 7790 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); 7791 /* T1 hash bits value determines the T1 number of entries */ 7792 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); 7793 } 7794 7795 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) 7796 { 7797 int rc; 7798 struct bnx2x_func_state_params func_params = {NULL}; 7799 struct bnx2x_func_switch_update_params *switch_update_params = 7800 &func_params.params.switch_update; 7801 7802 /* Prepare parameters for function state transitions */ 7803 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 7804 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 7805 7806 func_params.f_obj = &bp->func_obj; 7807 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 7808 7809 /* Function parameters */ 7810 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, 7811 &switch_update_params->changes); 7812 if (suspend) 7813 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, 7814 &switch_update_params->changes); 7815 7816 rc = bnx2x_func_state_change(bp, &func_params); 7817 7818 return rc; 7819 } 7820 7821 static int bnx2x_reset_nic_mode(struct bnx2x *bp) 7822 { 7823 int rc, i, port = BP_PORT(bp); 7824 int vlan_en = 0, mac_en[NUM_MACS]; 7825 7826 /* Close input from network */ 7827 if (bp->mf_mode == SINGLE_FUNCTION) { 7828 bnx2x_set_rx_filter(&bp->link_params, 0); 7829 } else { 7830 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : 7831 NIG_REG_LLH0_FUNC_EN); 7832 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7833 NIG_REG_LLH0_FUNC_EN, 0); 7834 for (i = 0; i < NUM_MACS; i++) { 7835 mac_en[i] = REG_RD(bp, port ? 7836 (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7837 4 * i) : 7838 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 7839 4 * i)); 7840 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7841 4 * i) : 7842 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); 7843 } 7844 } 7845 7846 /* Close BMC to host */ 7847 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7848 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); 7849 7850 /* Suspend Tx switching to the PF. Completion of this ramrod 7851 * further guarantees that all the packets of that PF / child 7852 * VFs in BRB were processed by the Parser, so it is safe to 7853 * change the NIC_MODE register. 7854 */ 7855 rc = bnx2x_func_switch_update(bp, 1); 7856 if (rc) { 7857 BNX2X_ERR("Can't suspend tx-switching!\n"); 7858 return rc; 7859 } 7860 7861 /* Change NIC_MODE register */ 7862 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7863 7864 /* Open input from network */ 7865 if (bp->mf_mode == SINGLE_FUNCTION) { 7866 bnx2x_set_rx_filter(&bp->link_params, 1); 7867 } else { 7868 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : 7869 NIG_REG_LLH0_FUNC_EN, vlan_en); 7870 for (i = 0; i < NUM_MACS; i++) { 7871 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + 7872 4 * i) : 7873 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 7874 mac_en[i]); 7875 } 7876 } 7877 7878 /* Enable BMC to host */ 7879 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : 7880 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); 7881 7882 /* Resume Tx switching to the PF */ 7883 rc = bnx2x_func_switch_update(bp, 0); 7884 if (rc) { 7885 BNX2X_ERR("Can't resume tx-switching!\n"); 7886 return rc; 7887 } 7888 7889 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7890 return 0; 7891 } 7892 7893 int bnx2x_init_hw_func_cnic(struct bnx2x *bp) 7894 { 7895 int rc; 7896 7897 bnx2x_ilt_init_op_cnic(bp, INITOP_SET); 7898 7899 if (CONFIGURE_NIC_MODE(bp)) { 7900 /* Configure searcher as part of function hw init */ 7901 bnx2x_init_searcher(bp); 7902 7903 /* Reset NIC mode */ 7904 rc = bnx2x_reset_nic_mode(bp); 7905 if (rc) 7906 BNX2X_ERR("Can't change NIC mode!\n"); 7907 return rc; 7908 } 7909 7910 return 0; 7911 } 7912 7913 /* previous driver DMAE transaction may have occurred when pre-boot stage ended 7914 * and boot began, or when kdump kernel was loaded. Either case would invalidate 7915 * the addresses of the transaction, resulting in was-error bit set in the pci 7916 * causing all hw-to-host pcie transactions to timeout. If this happened we want 7917 * to clear the interrupt which detected this from the pglueb and the was done 7918 * bit 7919 */ 7920 static void bnx2x_clean_pglue_errors(struct bnx2x *bp) 7921 { 7922 if (!CHIP_IS_E1x(bp)) 7923 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 7924 1 << BP_ABS_FUNC(bp)); 7925 } 7926 7927 static int bnx2x_init_hw_func(struct bnx2x *bp) 7928 { 7929 int port = BP_PORT(bp); 7930 int func = BP_FUNC(bp); 7931 int init_phase = PHASE_PF0 + func; 7932 struct bnx2x_ilt *ilt = BP_ILT(bp); 7933 u16 cdu_ilt_start; 7934 u32 addr, val; 7935 u32 main_mem_base, main_mem_size, main_mem_prty_clr; 7936 int i, main_mem_width, rc; 7937 7938 DP(NETIF_MSG_HW, "starting func init func %d\n", func); 7939 7940 /* FLR cleanup - hmmm */ 7941 if (!CHIP_IS_E1x(bp)) { 7942 rc = bnx2x_pf_flr_clnup(bp); 7943 if (rc) { 7944 bnx2x_fw_dump(bp); 7945 return rc; 7946 } 7947 } 7948 7949 /* set MSI reconfigure capability */ 7950 if (bp->common.int_block == INT_BLOCK_HC) { 7951 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 7952 val = REG_RD(bp, addr); 7953 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 7954 REG_WR(bp, addr, val); 7955 } 7956 7957 bnx2x_init_block(bp, BLOCK_PXP, init_phase); 7958 bnx2x_init_block(bp, BLOCK_PXP2, init_phase); 7959 7960 ilt = BP_ILT(bp); 7961 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7962 7963 if (IS_SRIOV(bp)) 7964 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; 7965 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); 7966 7967 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes 7968 * those of the VFs, so start line should be reset 7969 */ 7970 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 7971 for (i = 0; i < L2_ILT_LINES(bp); i++) { 7972 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; 7973 ilt->lines[cdu_ilt_start + i].page_mapping = 7974 bp->context[i].cxt_mapping; 7975 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; 7976 } 7977 7978 bnx2x_ilt_init_op(bp, INITOP_SET); 7979 7980 if (!CONFIGURE_NIC_MODE(bp)) { 7981 bnx2x_init_searcher(bp); 7982 REG_WR(bp, PRS_REG_NIC_MODE, 0); 7983 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); 7984 } else { 7985 /* Set NIC mode */ 7986 REG_WR(bp, PRS_REG_NIC_MODE, 1); 7987 DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); 7988 } 7989 7990 if (!CHIP_IS_E1x(bp)) { 7991 u32 pf_conf = IGU_PF_CONF_FUNC_EN; 7992 7993 /* Turn on a single ISR mode in IGU if driver is going to use 7994 * INT#x or MSI 7995 */ 7996 if (!(bp->flags & USING_MSIX_FLAG)) 7997 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 7998 /* 7999 * Timers workaround bug: function init part. 8000 * Need to wait 20msec after initializing ILT, 8001 * needed to make sure there are no requests in 8002 * one of the PXP internal queues with "old" ILT addresses 8003 */ 8004 msleep(20); 8005 /* 8006 * Master enable - Due to WB DMAE writes performed before this 8007 * register is re-initialized as part of the regular function 8008 * init 8009 */ 8010 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 8011 /* Enable the function in IGU */ 8012 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); 8013 } 8014 8015 bp->dmae_ready = 1; 8016 8017 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); 8018 8019 bnx2x_clean_pglue_errors(bp); 8020 8021 bnx2x_init_block(bp, BLOCK_ATC, init_phase); 8022 bnx2x_init_block(bp, BLOCK_DMAE, init_phase); 8023 bnx2x_init_block(bp, BLOCK_NIG, init_phase); 8024 bnx2x_init_block(bp, BLOCK_SRC, init_phase); 8025 bnx2x_init_block(bp, BLOCK_MISC, init_phase); 8026 bnx2x_init_block(bp, BLOCK_TCM, init_phase); 8027 bnx2x_init_block(bp, BLOCK_UCM, init_phase); 8028 bnx2x_init_block(bp, BLOCK_CCM, init_phase); 8029 bnx2x_init_block(bp, BLOCK_XCM, init_phase); 8030 bnx2x_init_block(bp, BLOCK_TSEM, init_phase); 8031 bnx2x_init_block(bp, BLOCK_USEM, init_phase); 8032 bnx2x_init_block(bp, BLOCK_CSEM, init_phase); 8033 bnx2x_init_block(bp, BLOCK_XSEM, init_phase); 8034 8035 if (!CHIP_IS_E1x(bp)) 8036 REG_WR(bp, QM_REG_PF_EN, 1); 8037 8038 if (!CHIP_IS_E1x(bp)) { 8039 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8040 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8041 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8042 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); 8043 } 8044 bnx2x_init_block(bp, BLOCK_QM, init_phase); 8045 8046 bnx2x_init_block(bp, BLOCK_TM, init_phase); 8047 bnx2x_init_block(bp, BLOCK_DORQ, init_phase); 8048 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ 8049 8050 bnx2x_iov_init_dq(bp); 8051 8052 bnx2x_init_block(bp, BLOCK_BRB1, init_phase); 8053 bnx2x_init_block(bp, BLOCK_PRS, init_phase); 8054 bnx2x_init_block(bp, BLOCK_TSDM, init_phase); 8055 bnx2x_init_block(bp, BLOCK_CSDM, init_phase); 8056 bnx2x_init_block(bp, BLOCK_USDM, init_phase); 8057 bnx2x_init_block(bp, BLOCK_XSDM, init_phase); 8058 bnx2x_init_block(bp, BLOCK_UPB, init_phase); 8059 bnx2x_init_block(bp, BLOCK_XPB, init_phase); 8060 bnx2x_init_block(bp, BLOCK_PBF, init_phase); 8061 if (!CHIP_IS_E1x(bp)) 8062 REG_WR(bp, PBF_REG_DISABLE_PF, 0); 8063 8064 bnx2x_init_block(bp, BLOCK_CDU, init_phase); 8065 8066 bnx2x_init_block(bp, BLOCK_CFC, init_phase); 8067 8068 if (!CHIP_IS_E1x(bp)) 8069 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); 8070 8071 if (IS_MF(bp)) { 8072 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { 8073 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); 8074 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, 8075 bp->mf_ov); 8076 } 8077 } 8078 8079 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); 8080 8081 /* HC init per function */ 8082 if (bp->common.int_block == INT_BLOCK_HC) { 8083 if (CHIP_IS_E1H(bp)) { 8084 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8085 8086 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8087 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8088 } 8089 bnx2x_init_block(bp, BLOCK_HC, init_phase); 8090 8091 } else { 8092 int num_segs, sb_idx, prod_offset; 8093 8094 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 8095 8096 if (!CHIP_IS_E1x(bp)) { 8097 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8098 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8099 } 8100 8101 bnx2x_init_block(bp, BLOCK_IGU, init_phase); 8102 8103 if (!CHIP_IS_E1x(bp)) { 8104 int dsb_idx = 0; 8105 /** 8106 * Producer memory: 8107 * E2 mode: address 0-135 match to the mapping memory; 8108 * 136 - PF0 default prod; 137 - PF1 default prod; 8109 * 138 - PF2 default prod; 139 - PF3 default prod; 8110 * 140 - PF0 attn prod; 141 - PF1 attn prod; 8111 * 142 - PF2 attn prod; 143 - PF3 attn prod; 8112 * 144-147 reserved. 8113 * 8114 * E1.5 mode - In backward compatible mode; 8115 * for non default SB; each even line in the memory 8116 * holds the U producer and each odd line hold 8117 * the C producer. The first 128 producers are for 8118 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 8119 * producers are for the DSB for each PF. 8120 * Each PF has five segments: (the order inside each 8121 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 8122 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 8123 * 144-147 attn prods; 8124 */ 8125 /* non-default-status-blocks */ 8126 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8127 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 8128 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { 8129 prod_offset = (bp->igu_base_sb + sb_idx) * 8130 num_segs; 8131 8132 for (i = 0; i < num_segs; i++) { 8133 addr = IGU_REG_PROD_CONS_MEMORY + 8134 (prod_offset + i) * 4; 8135 REG_WR(bp, addr, 0); 8136 } 8137 /* send consumer update with value 0 */ 8138 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, 8139 USTORM_ID, 0, IGU_INT_NOP, 1); 8140 bnx2x_igu_clear_sb(bp, 8141 bp->igu_base_sb + sb_idx); 8142 } 8143 8144 /* default-status-blocks */ 8145 num_segs = CHIP_INT_MODE_IS_BC(bp) ? 8146 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 8147 8148 if (CHIP_MODE_IS_4_PORT(bp)) 8149 dsb_idx = BP_FUNC(bp); 8150 else 8151 dsb_idx = BP_VN(bp); 8152 8153 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? 8154 IGU_BC_BASE_DSB_PROD + dsb_idx : 8155 IGU_NORM_BASE_DSB_PROD + dsb_idx); 8156 8157 /* 8158 * igu prods come in chunks of E1HVN_MAX (4) - 8159 * does not matters what is the current chip mode 8160 */ 8161 for (i = 0; i < (num_segs * E1HVN_MAX); 8162 i += E1HVN_MAX) { 8163 addr = IGU_REG_PROD_CONS_MEMORY + 8164 (prod_offset + i)*4; 8165 REG_WR(bp, addr, 0); 8166 } 8167 /* send consumer update with 0 */ 8168 if (CHIP_INT_MODE_IS_BC(bp)) { 8169 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8170 USTORM_ID, 0, IGU_INT_NOP, 1); 8171 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8172 CSTORM_ID, 0, IGU_INT_NOP, 1); 8173 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8174 XSTORM_ID, 0, IGU_INT_NOP, 1); 8175 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8176 TSTORM_ID, 0, IGU_INT_NOP, 1); 8177 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8178 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8179 } else { 8180 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8181 USTORM_ID, 0, IGU_INT_NOP, 1); 8182 bnx2x_ack_sb(bp, bp->igu_dsb_id, 8183 ATTENTION_ID, 0, IGU_INT_NOP, 1); 8184 } 8185 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); 8186 8187 /* !!! These should become driver const once 8188 rf-tool supports split-68 const */ 8189 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 8190 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 8191 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); 8192 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); 8193 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); 8194 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); 8195 } 8196 } 8197 8198 /* Reset PCIE errors for debug */ 8199 REG_WR(bp, 0x2114, 0xffffffff); 8200 REG_WR(bp, 0x2120, 0xffffffff); 8201 8202 if (CHIP_IS_E1x(bp)) { 8203 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 8204 main_mem_base = HC_REG_MAIN_MEMORY + 8205 BP_PORT(bp) * (main_mem_size * 4); 8206 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 8207 main_mem_width = 8; 8208 8209 val = REG_RD(bp, main_mem_prty_clr); 8210 if (val) 8211 DP(NETIF_MSG_HW, 8212 "Hmmm... Parity errors in HC block during function init (0x%x)!\n", 8213 val); 8214 8215 /* Clear "false" parity errors in MSI-X table */ 8216 for (i = main_mem_base; 8217 i < main_mem_base + main_mem_size * 4; 8218 i += main_mem_width) { 8219 bnx2x_read_dmae(bp, i, main_mem_width / 4); 8220 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), 8221 i, main_mem_width / 4); 8222 } 8223 /* Clear HC parity attention */ 8224 REG_RD(bp, main_mem_prty_clr); 8225 } 8226 8227 #ifdef BNX2X_STOP_ON_ERROR 8228 /* Enable STORMs SP logging */ 8229 REG_WR8(bp, BAR_USTRORM_INTMEM + 8230 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8231 REG_WR8(bp, BAR_TSTRORM_INTMEM + 8232 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8233 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8234 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8235 REG_WR8(bp, BAR_XSTRORM_INTMEM + 8236 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); 8237 #endif 8238 8239 bnx2x_phy_probe(&bp->link_params); 8240 8241 return 0; 8242 } 8243 8244 void bnx2x_free_mem_cnic(struct bnx2x *bp) 8245 { 8246 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); 8247 8248 if (!CHIP_IS_E1x(bp)) 8249 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, 8250 sizeof(struct host_hc_status_block_e2)); 8251 else 8252 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, 8253 sizeof(struct host_hc_status_block_e1x)); 8254 8255 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8256 } 8257 8258 void bnx2x_free_mem(struct bnx2x *bp) 8259 { 8260 int i; 8261 8262 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 8263 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 8264 8265 if (IS_VF(bp)) 8266 return; 8267 8268 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, 8269 sizeof(struct host_sp_status_block)); 8270 8271 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, 8272 sizeof(struct bnx2x_slowpath)); 8273 8274 for (i = 0; i < L2_ILT_LINES(bp); i++) 8275 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, 8276 bp->context[i].size); 8277 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); 8278 8279 BNX2X_FREE(bp->ilt->lines); 8280 8281 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); 8282 8283 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, 8284 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8285 8286 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); 8287 8288 bnx2x_iov_free_mem(bp); 8289 } 8290 8291 int bnx2x_alloc_mem_cnic(struct bnx2x *bp) 8292 { 8293 if (!CHIP_IS_E1x(bp)) { 8294 /* size = the status block + ramrod buffers */ 8295 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8296 sizeof(struct host_hc_status_block_e2)); 8297 if (!bp->cnic_sb.e2_sb) 8298 goto alloc_mem_err; 8299 } else { 8300 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, 8301 sizeof(struct host_hc_status_block_e1x)); 8302 if (!bp->cnic_sb.e1x_sb) 8303 goto alloc_mem_err; 8304 } 8305 8306 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8307 /* allocate searcher T2 table, as it wasn't allocated before */ 8308 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8309 if (!bp->t2) 8310 goto alloc_mem_err; 8311 } 8312 8313 /* write address to which L5 should insert its values */ 8314 bp->cnic_eth_dev.addr_drv_info_to_mcp = 8315 &bp->slowpath->drv_info_to_mcp; 8316 8317 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) 8318 goto alloc_mem_err; 8319 8320 return 0; 8321 8322 alloc_mem_err: 8323 bnx2x_free_mem_cnic(bp); 8324 BNX2X_ERR("Can't allocate memory\n"); 8325 return -ENOMEM; 8326 } 8327 8328 int bnx2x_alloc_mem(struct bnx2x *bp) 8329 { 8330 int i, allocated, context_size; 8331 8332 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { 8333 /* allocate searcher T2 table */ 8334 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); 8335 if (!bp->t2) 8336 goto alloc_mem_err; 8337 } 8338 8339 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, 8340 sizeof(struct host_sp_status_block)); 8341 if (!bp->def_status_blk) 8342 goto alloc_mem_err; 8343 8344 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, 8345 sizeof(struct bnx2x_slowpath)); 8346 if (!bp->slowpath) 8347 goto alloc_mem_err; 8348 8349 /* Allocate memory for CDU context: 8350 * This memory is allocated separately and not in the generic ILT 8351 * functions because CDU differs in few aspects: 8352 * 1. There are multiple entities allocating memory for context - 8353 * 'regular' driver, CNIC and SRIOV driver. Each separately controls 8354 * its own ILT lines. 8355 * 2. Since CDU page-size is not a single 4KB page (which is the case 8356 * for the other ILT clients), to be efficient we want to support 8357 * allocation of sub-page-size in the last entry. 8358 * 3. Context pointers are used by the driver to pass to FW / update 8359 * the context (for the other ILT clients the pointers are used just to 8360 * free the memory during unload). 8361 */ 8362 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); 8363 8364 for (i = 0, allocated = 0; allocated < context_size; i++) { 8365 bp->context[i].size = min(CDU_ILT_PAGE_SZ, 8366 (context_size - allocated)); 8367 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, 8368 bp->context[i].size); 8369 if (!bp->context[i].vcxt) 8370 goto alloc_mem_err; 8371 allocated += bp->context[i].size; 8372 } 8373 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line), 8374 GFP_KERNEL); 8375 if (!bp->ilt->lines) 8376 goto alloc_mem_err; 8377 8378 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) 8379 goto alloc_mem_err; 8380 8381 if (bnx2x_iov_alloc_mem(bp)) 8382 goto alloc_mem_err; 8383 8384 /* Slow path ring */ 8385 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); 8386 if (!bp->spq) 8387 goto alloc_mem_err; 8388 8389 /* EQ */ 8390 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, 8391 BCM_PAGE_SIZE * NUM_EQ_PAGES); 8392 if (!bp->eq_ring) 8393 goto alloc_mem_err; 8394 8395 return 0; 8396 8397 alloc_mem_err: 8398 bnx2x_free_mem(bp); 8399 BNX2X_ERR("Can't allocate memory\n"); 8400 return -ENOMEM; 8401 } 8402 8403 /* 8404 * Init service functions 8405 */ 8406 8407 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac, 8408 struct bnx2x_vlan_mac_obj *obj, bool set, 8409 int mac_type, unsigned long *ramrod_flags) 8410 { 8411 int rc; 8412 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8413 8414 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8415 8416 /* Fill general parameters */ 8417 ramrod_param.vlan_mac_obj = obj; 8418 ramrod_param.ramrod_flags = *ramrod_flags; 8419 8420 /* Fill a user request section if needed */ 8421 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8422 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 8423 8424 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 8425 8426 /* Set the command: ADD or DEL */ 8427 if (set) 8428 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8429 else 8430 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8431 } 8432 8433 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8434 8435 if (rc == -EEXIST) { 8436 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8437 /* do not treat adding same MAC as error */ 8438 rc = 0; 8439 } else if (rc < 0) 8440 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); 8441 8442 return rc; 8443 } 8444 8445 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan, 8446 struct bnx2x_vlan_mac_obj *obj, bool set, 8447 unsigned long *ramrod_flags) 8448 { 8449 int rc; 8450 struct bnx2x_vlan_mac_ramrod_params ramrod_param; 8451 8452 memset(&ramrod_param, 0, sizeof(ramrod_param)); 8453 8454 /* Fill general parameters */ 8455 ramrod_param.vlan_mac_obj = obj; 8456 ramrod_param.ramrod_flags = *ramrod_flags; 8457 8458 /* Fill a user request section if needed */ 8459 if (!test_bit(RAMROD_CONT, ramrod_flags)) { 8460 ramrod_param.user_req.u.vlan.vlan = vlan; 8461 /* Set the command: ADD or DEL */ 8462 if (set) 8463 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; 8464 else 8465 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; 8466 } 8467 8468 rc = bnx2x_config_vlan_mac(bp, &ramrod_param); 8469 8470 if (rc == -EEXIST) { 8471 /* Do not treat adding same vlan as error. */ 8472 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); 8473 rc = 0; 8474 } else if (rc < 0) { 8475 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del")); 8476 } 8477 8478 return rc; 8479 } 8480 8481 int bnx2x_del_all_macs(struct bnx2x *bp, 8482 struct bnx2x_vlan_mac_obj *mac_obj, 8483 int mac_type, bool wait_for_comp) 8484 { 8485 int rc; 8486 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 8487 8488 /* Wait for completion of requested */ 8489 if (wait_for_comp) 8490 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8491 8492 /* Set the mac type of addresses we want to clear */ 8493 __set_bit(mac_type, &vlan_mac_flags); 8494 8495 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); 8496 if (rc < 0) 8497 BNX2X_ERR("Failed to delete MACs: %d\n", rc); 8498 8499 return rc; 8500 } 8501 8502 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) 8503 { 8504 if (IS_PF(bp)) { 8505 unsigned long ramrod_flags = 0; 8506 8507 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); 8508 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 8509 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, 8510 &bp->sp_objs->mac_obj, set, 8511 BNX2X_ETH_MAC, &ramrod_flags); 8512 } else { /* vf */ 8513 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, 8514 bp->fp->index, set); 8515 } 8516 } 8517 8518 int bnx2x_setup_leading(struct bnx2x *bp) 8519 { 8520 if (IS_PF(bp)) 8521 return bnx2x_setup_queue(bp, &bp->fp[0], true); 8522 else /* VF */ 8523 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); 8524 } 8525 8526 /** 8527 * bnx2x_set_int_mode - configure interrupt mode 8528 * 8529 * @bp: driver handle 8530 * 8531 * In case of MSI-X it will also try to enable MSI-X. 8532 */ 8533 int bnx2x_set_int_mode(struct bnx2x *bp) 8534 { 8535 int rc = 0; 8536 8537 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { 8538 BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); 8539 return -EINVAL; 8540 } 8541 8542 switch (int_mode) { 8543 case BNX2X_INT_MODE_MSIX: 8544 /* attempt to enable msix */ 8545 rc = bnx2x_enable_msix(bp); 8546 8547 /* msix attained */ 8548 if (!rc) 8549 return 0; 8550 8551 /* vfs use only msix */ 8552 if (rc && IS_VF(bp)) 8553 return rc; 8554 8555 /* failed to enable multiple MSI-X */ 8556 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", 8557 bp->num_queues, 8558 1 + bp->num_cnic_queues); 8559 8560 /* falling through... */ 8561 case BNX2X_INT_MODE_MSI: 8562 bnx2x_enable_msi(bp); 8563 8564 /* falling through... */ 8565 case BNX2X_INT_MODE_INTX: 8566 bp->num_ethernet_queues = 1; 8567 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 8568 BNX2X_DEV_INFO("set number of queues to 1\n"); 8569 break; 8570 default: 8571 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); 8572 return -EINVAL; 8573 } 8574 return 0; 8575 } 8576 8577 /* must be called prior to any HW initializations */ 8578 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp) 8579 { 8580 if (IS_SRIOV(bp)) 8581 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; 8582 return L2_ILT_LINES(bp); 8583 } 8584 8585 void bnx2x_ilt_set_info(struct bnx2x *bp) 8586 { 8587 struct ilt_client_info *ilt_client; 8588 struct bnx2x_ilt *ilt = BP_ILT(bp); 8589 u16 line = 0; 8590 8591 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); 8592 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); 8593 8594 /* CDU */ 8595 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 8596 ilt_client->client_num = ILT_CLIENT_CDU; 8597 ilt_client->page_size = CDU_ILT_PAGE_SZ; 8598 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 8599 ilt_client->start = line; 8600 line += bnx2x_cid_ilt_lines(bp); 8601 8602 if (CNIC_SUPPORT(bp)) 8603 line += CNIC_ILT_LINES; 8604 ilt_client->end = line - 1; 8605 8606 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8607 ilt_client->start, 8608 ilt_client->end, 8609 ilt_client->page_size, 8610 ilt_client->flags, 8611 ilog2(ilt_client->page_size >> 12)); 8612 8613 /* QM */ 8614 if (QM_INIT(bp->qm_cid_count)) { 8615 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 8616 ilt_client->client_num = ILT_CLIENT_QM; 8617 ilt_client->page_size = QM_ILT_PAGE_SZ; 8618 ilt_client->flags = 0; 8619 ilt_client->start = line; 8620 8621 /* 4 bytes for each cid */ 8622 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 8623 QM_ILT_PAGE_SZ); 8624 8625 ilt_client->end = line - 1; 8626 8627 DP(NETIF_MSG_IFUP, 8628 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8629 ilt_client->start, 8630 ilt_client->end, 8631 ilt_client->page_size, 8632 ilt_client->flags, 8633 ilog2(ilt_client->page_size >> 12)); 8634 } 8635 8636 if (CNIC_SUPPORT(bp)) { 8637 /* SRC */ 8638 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 8639 ilt_client->client_num = ILT_CLIENT_SRC; 8640 ilt_client->page_size = SRC_ILT_PAGE_SZ; 8641 ilt_client->flags = 0; 8642 ilt_client->start = line; 8643 line += SRC_ILT_LINES; 8644 ilt_client->end = line - 1; 8645 8646 DP(NETIF_MSG_IFUP, 8647 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8648 ilt_client->start, 8649 ilt_client->end, 8650 ilt_client->page_size, 8651 ilt_client->flags, 8652 ilog2(ilt_client->page_size >> 12)); 8653 8654 /* TM */ 8655 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 8656 ilt_client->client_num = ILT_CLIENT_TM; 8657 ilt_client->page_size = TM_ILT_PAGE_SZ; 8658 ilt_client->flags = 0; 8659 ilt_client->start = line; 8660 line += TM_ILT_LINES; 8661 ilt_client->end = line - 1; 8662 8663 DP(NETIF_MSG_IFUP, 8664 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", 8665 ilt_client->start, 8666 ilt_client->end, 8667 ilt_client->page_size, 8668 ilt_client->flags, 8669 ilog2(ilt_client->page_size >> 12)); 8670 } 8671 8672 BUG_ON(line > ILT_MAX_LINES); 8673 } 8674 8675 /** 8676 * bnx2x_pf_q_prep_init - prepare INIT transition parameters 8677 * 8678 * @bp: driver handle 8679 * @fp: pointer to fastpath 8680 * @init_params: pointer to parameters structure 8681 * 8682 * parameters configured: 8683 * - HC configuration 8684 * - Queue's CDU context 8685 */ 8686 static void bnx2x_pf_q_prep_init(struct bnx2x *bp, 8687 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) 8688 { 8689 u8 cos; 8690 int cxt_index, cxt_offset; 8691 8692 /* FCoE Queue uses Default SB, thus has no HC capabilities */ 8693 if (!IS_FCOE_FP(fp)) { 8694 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); 8695 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); 8696 8697 /* If HC is supported, enable host coalescing in the transition 8698 * to INIT state. 8699 */ 8700 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); 8701 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); 8702 8703 /* HC rate */ 8704 init_params->rx.hc_rate = bp->rx_ticks ? 8705 (1000000 / bp->rx_ticks) : 0; 8706 init_params->tx.hc_rate = bp->tx_ticks ? 8707 (1000000 / bp->tx_ticks) : 0; 8708 8709 /* FW SB ID */ 8710 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = 8711 fp->fw_sb_id; 8712 8713 /* 8714 * CQ index among the SB indices: FCoE clients uses the default 8715 * SB, therefore it's different. 8716 */ 8717 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 8718 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 8719 } 8720 8721 /* set maximum number of COSs supported by this queue */ 8722 init_params->max_cos = fp->max_cos; 8723 8724 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", 8725 fp->index, init_params->max_cos); 8726 8727 /* set the context pointers queue object */ 8728 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 8729 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; 8730 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * 8731 ILT_PAGE_CIDS); 8732 init_params->cxts[cos] = 8733 &bp->context[cxt_index].vcxt[cxt_offset].eth; 8734 } 8735 } 8736 8737 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8738 struct bnx2x_queue_state_params *q_params, 8739 struct bnx2x_queue_setup_tx_only_params *tx_only_params, 8740 int tx_index, bool leading) 8741 { 8742 memset(tx_only_params, 0, sizeof(*tx_only_params)); 8743 8744 /* Set the command */ 8745 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; 8746 8747 /* Set tx-only QUEUE flags: don't zero statistics */ 8748 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); 8749 8750 /* choose the index of the cid to send the slow path on */ 8751 tx_only_params->cid_index = tx_index; 8752 8753 /* Set general TX_ONLY_SETUP parameters */ 8754 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); 8755 8756 /* Set Tx TX_ONLY_SETUP parameters */ 8757 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); 8758 8759 DP(NETIF_MSG_IFUP, 8760 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", 8761 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], 8762 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, 8763 tx_only_params->gen_params.spcl_id, tx_only_params->flags); 8764 8765 /* send the ramrod */ 8766 return bnx2x_queue_state_change(bp, q_params); 8767 } 8768 8769 /** 8770 * bnx2x_setup_queue - setup queue 8771 * 8772 * @bp: driver handle 8773 * @fp: pointer to fastpath 8774 * @leading: is leading 8775 * 8776 * This function performs 2 steps in a Queue state machine 8777 * actually: 1) RESET->INIT 2) INIT->SETUP 8778 */ 8779 8780 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, 8781 bool leading) 8782 { 8783 struct bnx2x_queue_state_params q_params = {NULL}; 8784 struct bnx2x_queue_setup_params *setup_params = 8785 &q_params.params.setup; 8786 struct bnx2x_queue_setup_tx_only_params *tx_only_params = 8787 &q_params.params.tx_only; 8788 int rc; 8789 u8 tx_index; 8790 8791 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); 8792 8793 /* reset IGU state skip FCoE L2 queue */ 8794 if (!IS_FCOE_FP(fp)) 8795 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, 8796 IGU_INT_ENABLE, 0); 8797 8798 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8799 /* We want to wait for completion in this context */ 8800 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8801 8802 /* Prepare the INIT parameters */ 8803 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); 8804 8805 /* Set the command */ 8806 q_params.cmd = BNX2X_Q_CMD_INIT; 8807 8808 /* Change the state to INIT */ 8809 rc = bnx2x_queue_state_change(bp, &q_params); 8810 if (rc) { 8811 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); 8812 return rc; 8813 } 8814 8815 DP(NETIF_MSG_IFUP, "init complete\n"); 8816 8817 /* Now move the Queue to the SETUP state... */ 8818 memset(setup_params, 0, sizeof(*setup_params)); 8819 8820 /* Set QUEUE flags */ 8821 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); 8822 8823 /* Set general SETUP parameters */ 8824 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, 8825 FIRST_TX_COS_INDEX); 8826 8827 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, 8828 &setup_params->rxq_params); 8829 8830 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, 8831 FIRST_TX_COS_INDEX); 8832 8833 /* Set the command */ 8834 q_params.cmd = BNX2X_Q_CMD_SETUP; 8835 8836 if (IS_FCOE_FP(fp)) 8837 bp->fcoe_init = true; 8838 8839 /* Change the state to SETUP */ 8840 rc = bnx2x_queue_state_change(bp, &q_params); 8841 if (rc) { 8842 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); 8843 return rc; 8844 } 8845 8846 /* loop through the relevant tx-only indices */ 8847 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8848 tx_index < fp->max_cos; 8849 tx_index++) { 8850 8851 /* prepare and send tx-only ramrod*/ 8852 rc = bnx2x_setup_tx_only(bp, fp, &q_params, 8853 tx_only_params, tx_index, leading); 8854 if (rc) { 8855 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", 8856 fp->index, tx_index); 8857 return rc; 8858 } 8859 } 8860 8861 return rc; 8862 } 8863 8864 static int bnx2x_stop_queue(struct bnx2x *bp, int index) 8865 { 8866 struct bnx2x_fastpath *fp = &bp->fp[index]; 8867 struct bnx2x_fp_txdata *txdata; 8868 struct bnx2x_queue_state_params q_params = {NULL}; 8869 int rc, tx_index; 8870 8871 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); 8872 8873 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 8874 /* We want to wait for completion in this context */ 8875 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 8876 8877 /* close tx-only connections */ 8878 for (tx_index = FIRST_TX_ONLY_COS_INDEX; 8879 tx_index < fp->max_cos; 8880 tx_index++){ 8881 8882 /* ascertain this is a normal queue*/ 8883 txdata = fp->txdata_ptr[tx_index]; 8884 8885 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", 8886 txdata->txq_index); 8887 8888 /* send halt terminate on tx-only connection */ 8889 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8890 memset(&q_params.params.terminate, 0, 8891 sizeof(q_params.params.terminate)); 8892 q_params.params.terminate.cid_index = tx_index; 8893 8894 rc = bnx2x_queue_state_change(bp, &q_params); 8895 if (rc) 8896 return rc; 8897 8898 /* send halt terminate on tx-only connection */ 8899 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8900 memset(&q_params.params.cfc_del, 0, 8901 sizeof(q_params.params.cfc_del)); 8902 q_params.params.cfc_del.cid_index = tx_index; 8903 rc = bnx2x_queue_state_change(bp, &q_params); 8904 if (rc) 8905 return rc; 8906 } 8907 /* Stop the primary connection: */ 8908 /* ...halt the connection */ 8909 q_params.cmd = BNX2X_Q_CMD_HALT; 8910 rc = bnx2x_queue_state_change(bp, &q_params); 8911 if (rc) 8912 return rc; 8913 8914 /* ...terminate the connection */ 8915 q_params.cmd = BNX2X_Q_CMD_TERMINATE; 8916 memset(&q_params.params.terminate, 0, 8917 sizeof(q_params.params.terminate)); 8918 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 8919 rc = bnx2x_queue_state_change(bp, &q_params); 8920 if (rc) 8921 return rc; 8922 /* ...delete cfc entry */ 8923 q_params.cmd = BNX2X_Q_CMD_CFC_DEL; 8924 memset(&q_params.params.cfc_del, 0, 8925 sizeof(q_params.params.cfc_del)); 8926 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 8927 return bnx2x_queue_state_change(bp, &q_params); 8928 } 8929 8930 static void bnx2x_reset_func(struct bnx2x *bp) 8931 { 8932 int port = BP_PORT(bp); 8933 int func = BP_FUNC(bp); 8934 int i; 8935 8936 /* Disable the function in the FW */ 8937 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 8938 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 8939 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 8940 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 8941 8942 /* FP SBs */ 8943 for_each_eth_queue(bp, i) { 8944 struct bnx2x_fastpath *fp = &bp->fp[i]; 8945 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8946 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 8947 SB_DISABLED); 8948 } 8949 8950 if (CNIC_LOADED(bp)) 8951 /* CNIC SB */ 8952 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8953 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET 8954 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); 8955 8956 /* SP SB */ 8957 REG_WR8(bp, BAR_CSTRORM_INTMEM + 8958 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 8959 SB_DISABLED); 8960 8961 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) 8962 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 8963 0); 8964 8965 /* Configure IGU */ 8966 if (bp->common.int_block == INT_BLOCK_HC) { 8967 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); 8968 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); 8969 } else { 8970 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); 8971 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); 8972 } 8973 8974 if (CNIC_LOADED(bp)) { 8975 /* Disable Timer scan */ 8976 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 8977 /* 8978 * Wait for at least 10ms and up to 2 second for the timers 8979 * scan to complete 8980 */ 8981 for (i = 0; i < 200; i++) { 8982 usleep_range(10000, 20000); 8983 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) 8984 break; 8985 } 8986 } 8987 /* Clear ILT */ 8988 bnx2x_clear_func_ilt(bp, func); 8989 8990 /* Timers workaround bug for E2: if this is vnic-3, 8991 * we need to set the entire ilt range for this timers. 8992 */ 8993 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { 8994 struct ilt_client_info ilt_cli; 8995 /* use dummy TM client */ 8996 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 8997 ilt_cli.start = 0; 8998 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 8999 ilt_cli.client_num = ILT_CLIENT_TM; 9000 9001 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); 9002 } 9003 9004 /* this assumes that reset_port() called before reset_func()*/ 9005 if (!CHIP_IS_E1x(bp)) 9006 bnx2x_pf_disable(bp); 9007 9008 bp->dmae_ready = 0; 9009 } 9010 9011 static void bnx2x_reset_port(struct bnx2x *bp) 9012 { 9013 int port = BP_PORT(bp); 9014 u32 val; 9015 9016 /* Reset physical Link */ 9017 bnx2x__link_reset(bp); 9018 9019 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 9020 9021 /* Do not rcv packets to BRB */ 9022 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 9023 /* Do not direct rcv packets that are not for MCP to the BRB */ 9024 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 9025 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 9026 9027 /* Configure AEU */ 9028 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 9029 9030 msleep(100); 9031 /* Check for BRB port occupancy */ 9032 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 9033 if (val) 9034 DP(NETIF_MSG_IFDOWN, 9035 "BRB1 is not empty %d blocks are occupied\n", val); 9036 9037 /* TODO: Close Doorbell port? */ 9038 } 9039 9040 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code) 9041 { 9042 struct bnx2x_func_state_params func_params = {NULL}; 9043 9044 /* Prepare parameters for function state transitions */ 9045 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9046 9047 func_params.f_obj = &bp->func_obj; 9048 func_params.cmd = BNX2X_F_CMD_HW_RESET; 9049 9050 func_params.params.hw_init.load_phase = load_code; 9051 9052 return bnx2x_func_state_change(bp, &func_params); 9053 } 9054 9055 static int bnx2x_func_stop(struct bnx2x *bp) 9056 { 9057 struct bnx2x_func_state_params func_params = {NULL}; 9058 int rc; 9059 9060 /* Prepare parameters for function state transitions */ 9061 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 9062 func_params.f_obj = &bp->func_obj; 9063 func_params.cmd = BNX2X_F_CMD_STOP; 9064 9065 /* 9066 * Try to stop the function the 'good way'. If fails (in case 9067 * of a parity error during bnx2x_chip_cleanup()) and we are 9068 * not in a debug mode, perform a state transaction in order to 9069 * enable further HW_RESET transaction. 9070 */ 9071 rc = bnx2x_func_state_change(bp, &func_params); 9072 if (rc) { 9073 #ifdef BNX2X_STOP_ON_ERROR 9074 return rc; 9075 #else 9076 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); 9077 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 9078 return bnx2x_func_state_change(bp, &func_params); 9079 #endif 9080 } 9081 9082 return 0; 9083 } 9084 9085 /** 9086 * bnx2x_send_unload_req - request unload mode from the MCP. 9087 * 9088 * @bp: driver handle 9089 * @unload_mode: requested function's unload mode 9090 * 9091 * Return unload mode returned by the MCP: COMMON, PORT or FUNC. 9092 */ 9093 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) 9094 { 9095 u32 reset_code = 0; 9096 int port = BP_PORT(bp); 9097 9098 /* Select the UNLOAD request mode */ 9099 if (unload_mode == UNLOAD_NORMAL) 9100 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9101 9102 else if (bp->flags & NO_WOL_FLAG) 9103 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; 9104 9105 else if (bp->wol) { 9106 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; 9107 u8 *mac_addr = bp->dev->dev_addr; 9108 struct pci_dev *pdev = bp->pdev; 9109 u32 val; 9110 u16 pmc; 9111 9112 /* The mac address is written to entries 1-4 to 9113 * preserve entry 0 which is used by the PMF 9114 */ 9115 u8 entry = (BP_VN(bp) + 1)*8; 9116 9117 val = (mac_addr[0] << 8) | mac_addr[1]; 9118 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); 9119 9120 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 9121 (mac_addr[4] << 8) | mac_addr[5]; 9122 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); 9123 9124 /* Enable the PME and clear the status */ 9125 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); 9126 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; 9127 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); 9128 9129 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; 9130 9131 } else 9132 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 9133 9134 /* Send the request to the MCP */ 9135 if (!BP_NOMCP(bp)) 9136 reset_code = bnx2x_fw_command(bp, reset_code, 0); 9137 else { 9138 int path = BP_PATH(bp); 9139 9140 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n", 9141 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9142 bnx2x_load_count[path][2]); 9143 bnx2x_load_count[path][0]--; 9144 bnx2x_load_count[path][1 + port]--; 9145 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n", 9146 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 9147 bnx2x_load_count[path][2]); 9148 if (bnx2x_load_count[path][0] == 0) 9149 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; 9150 else if (bnx2x_load_count[path][1 + port] == 0) 9151 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; 9152 else 9153 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; 9154 } 9155 9156 return reset_code; 9157 } 9158 9159 /** 9160 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. 9161 * 9162 * @bp: driver handle 9163 * @keep_link: true iff link should be kept up 9164 */ 9165 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) 9166 { 9167 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 9168 9169 /* Report UNLOAD_DONE to MCP */ 9170 if (!BP_NOMCP(bp)) 9171 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 9172 } 9173 9174 static int bnx2x_func_wait_started(struct bnx2x *bp) 9175 { 9176 int tout = 50; 9177 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; 9178 9179 if (!bp->port.pmf) 9180 return 0; 9181 9182 /* 9183 * (assumption: No Attention from MCP at this stage) 9184 * PMF probably in the middle of TX disable/enable transaction 9185 * 1. Sync IRS for default SB 9186 * 2. Sync SP queue - this guarantees us that attention handling started 9187 * 3. Wait, that TX disable/enable transaction completes 9188 * 9189 * 1+2 guarantee that if DCBx attention was scheduled it already changed 9190 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 9191 * received completion for the transaction the state is TX_STOPPED. 9192 * State will return to STARTED after completion of TX_STOPPED-->STARTED 9193 * transaction. 9194 */ 9195 9196 /* make sure default SB ISR is done */ 9197 if (msix) 9198 synchronize_irq(bp->msix_table[0].vector); 9199 else 9200 synchronize_irq(bp->pdev->irq); 9201 9202 flush_workqueue(bnx2x_wq); 9203 flush_workqueue(bnx2x_iov_wq); 9204 9205 while (bnx2x_func_get_state(bp, &bp->func_obj) != 9206 BNX2X_F_STATE_STARTED && tout--) 9207 msleep(20); 9208 9209 if (bnx2x_func_get_state(bp, &bp->func_obj) != 9210 BNX2X_F_STATE_STARTED) { 9211 #ifdef BNX2X_STOP_ON_ERROR 9212 BNX2X_ERR("Wrong function state\n"); 9213 return -EBUSY; 9214 #else 9215 /* 9216 * Failed to complete the transaction in a "good way" 9217 * Force both transactions with CLR bit 9218 */ 9219 struct bnx2x_func_state_params func_params = {NULL}; 9220 9221 DP(NETIF_MSG_IFDOWN, 9222 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); 9223 9224 func_params.f_obj = &bp->func_obj; 9225 __set_bit(RAMROD_DRV_CLR_ONLY, 9226 &func_params.ramrod_flags); 9227 9228 /* STARTED-->TX_ST0PPED */ 9229 func_params.cmd = BNX2X_F_CMD_TX_STOP; 9230 bnx2x_func_state_change(bp, &func_params); 9231 9232 /* TX_ST0PPED-->STARTED */ 9233 func_params.cmd = BNX2X_F_CMD_TX_START; 9234 return bnx2x_func_state_change(bp, &func_params); 9235 #endif 9236 } 9237 9238 return 0; 9239 } 9240 9241 static void bnx2x_disable_ptp(struct bnx2x *bp) 9242 { 9243 int port = BP_PORT(bp); 9244 9245 /* Disable sending PTP packets to host */ 9246 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 9247 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 9248 9249 /* Reset PTP event detection rules */ 9250 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 9251 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 9252 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 9253 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 9254 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 9255 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 9256 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 9257 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 9258 9259 /* Disable the PTP feature */ 9260 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 9261 NIG_REG_P0_PTP_EN, 0x0); 9262 } 9263 9264 /* Called during unload, to stop PTP-related stuff */ 9265 static void bnx2x_stop_ptp(struct bnx2x *bp) 9266 { 9267 /* Cancel PTP work queue. Should be done after the Tx queues are 9268 * drained to prevent additional scheduling. 9269 */ 9270 cancel_work_sync(&bp->ptp_task); 9271 9272 if (bp->ptp_tx_skb) { 9273 dev_kfree_skb_any(bp->ptp_tx_skb); 9274 bp->ptp_tx_skb = NULL; 9275 } 9276 9277 /* Disable PTP in HW */ 9278 bnx2x_disable_ptp(bp); 9279 9280 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n"); 9281 } 9282 9283 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) 9284 { 9285 int port = BP_PORT(bp); 9286 int i, rc = 0; 9287 u8 cos; 9288 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 9289 u32 reset_code; 9290 9291 /* Wait until tx fastpath tasks complete */ 9292 for_each_tx_queue(bp, i) { 9293 struct bnx2x_fastpath *fp = &bp->fp[i]; 9294 9295 for_each_cos_in_tx_queue(fp, cos) 9296 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 9297 #ifdef BNX2X_STOP_ON_ERROR 9298 if (rc) 9299 return; 9300 #endif 9301 } 9302 9303 /* Give HW time to discard old tx messages */ 9304 usleep_range(1000, 2000); 9305 9306 /* Clean all ETH MACs */ 9307 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, 9308 false); 9309 if (rc < 0) 9310 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); 9311 9312 /* Clean up UC list */ 9313 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, 9314 true); 9315 if (rc < 0) 9316 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", 9317 rc); 9318 9319 /* Disable LLH */ 9320 if (!CHIP_IS_E1(bp)) 9321 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); 9322 9323 /* Set "drop all" (stop Rx). 9324 * We need to take a netif_addr_lock() here in order to prevent 9325 * a race between the completion code and this code. 9326 */ 9327 netif_addr_lock_bh(bp->dev); 9328 /* Schedule the rx_mode command */ 9329 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 9330 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 9331 else 9332 bnx2x_set_storm_rx_mode(bp); 9333 9334 /* Cleanup multicast configuration */ 9335 rparam.mcast_obj = &bp->mcast_obj; 9336 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 9337 if (rc < 0) 9338 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); 9339 9340 netif_addr_unlock_bh(bp->dev); 9341 9342 bnx2x_iov_chip_cleanup(bp); 9343 9344 /* 9345 * Send the UNLOAD_REQUEST to the MCP. This will return if 9346 * this function should perform FUNC, PORT or COMMON HW 9347 * reset. 9348 */ 9349 reset_code = bnx2x_send_unload_req(bp, unload_mode); 9350 9351 /* 9352 * (assumption: No Attention from MCP at this stage) 9353 * PMF probably in the middle of TX disable/enable transaction 9354 */ 9355 rc = bnx2x_func_wait_started(bp); 9356 if (rc) { 9357 BNX2X_ERR("bnx2x_func_wait_started failed\n"); 9358 #ifdef BNX2X_STOP_ON_ERROR 9359 return; 9360 #endif 9361 } 9362 9363 /* Close multi and leading connections 9364 * Completions for ramrods are collected in a synchronous way 9365 */ 9366 for_each_eth_queue(bp, i) 9367 if (bnx2x_stop_queue(bp, i)) 9368 #ifdef BNX2X_STOP_ON_ERROR 9369 return; 9370 #else 9371 goto unload_error; 9372 #endif 9373 9374 if (CNIC_LOADED(bp)) { 9375 for_each_cnic_queue(bp, i) 9376 if (bnx2x_stop_queue(bp, i)) 9377 #ifdef BNX2X_STOP_ON_ERROR 9378 return; 9379 #else 9380 goto unload_error; 9381 #endif 9382 } 9383 9384 /* If SP settings didn't get completed so far - something 9385 * very wrong has happen. 9386 */ 9387 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) 9388 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); 9389 9390 #ifndef BNX2X_STOP_ON_ERROR 9391 unload_error: 9392 #endif 9393 rc = bnx2x_func_stop(bp); 9394 if (rc) { 9395 BNX2X_ERR("Function stop failed!\n"); 9396 #ifdef BNX2X_STOP_ON_ERROR 9397 return; 9398 #endif 9399 } 9400 9401 /* stop_ptp should be after the Tx queues are drained to prevent 9402 * scheduling to the cancelled PTP work queue. It should also be after 9403 * function stop ramrod is sent, since as part of this ramrod FW access 9404 * PTP registers. 9405 */ 9406 if (bp->flags & PTP_SUPPORTED) 9407 bnx2x_stop_ptp(bp); 9408 9409 /* Disable HW interrupts, NAPI */ 9410 bnx2x_netif_stop(bp, 1); 9411 /* Delete all NAPI objects */ 9412 bnx2x_del_all_napi(bp); 9413 if (CNIC_LOADED(bp)) 9414 bnx2x_del_all_napi_cnic(bp); 9415 9416 /* Release IRQs */ 9417 bnx2x_free_irq(bp); 9418 9419 /* Reset the chip */ 9420 rc = bnx2x_reset_hw(bp, reset_code); 9421 if (rc) 9422 BNX2X_ERR("HW_RESET failed\n"); 9423 9424 /* Report UNLOAD_DONE to MCP */ 9425 bnx2x_send_unload_done(bp, keep_link); 9426 } 9427 9428 void bnx2x_disable_close_the_gate(struct bnx2x *bp) 9429 { 9430 u32 val; 9431 9432 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); 9433 9434 if (CHIP_IS_E1(bp)) { 9435 int port = BP_PORT(bp); 9436 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 9437 MISC_REG_AEU_MASK_ATTN_FUNC_0; 9438 9439 val = REG_RD(bp, addr); 9440 val &= ~(0x300); 9441 REG_WR(bp, addr, val); 9442 } else { 9443 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); 9444 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 9445 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 9446 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); 9447 } 9448 } 9449 9450 /* Close gates #2, #3 and #4: */ 9451 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) 9452 { 9453 u32 val; 9454 9455 /* Gates #2 and #4a are closed/opened for "not E1" only */ 9456 if (!CHIP_IS_E1(bp)) { 9457 /* #4 */ 9458 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 9459 /* #2 */ 9460 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 9461 } 9462 9463 /* #3 */ 9464 if (CHIP_IS_E1x(bp)) { 9465 /* Prevent interrupts from HC on both ports */ 9466 val = REG_RD(bp, HC_REG_CONFIG_1); 9467 REG_WR(bp, HC_REG_CONFIG_1, 9468 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 9469 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 9470 9471 val = REG_RD(bp, HC_REG_CONFIG_0); 9472 REG_WR(bp, HC_REG_CONFIG_0, 9473 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 9474 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 9475 } else { 9476 /* Prevent incoming interrupts in IGU */ 9477 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 9478 9479 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, 9480 (!close) ? 9481 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 9482 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 9483 } 9484 9485 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", 9486 close ? "closing" : "opening"); 9487 mmiowb(); 9488 } 9489 9490 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */ 9491 9492 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val) 9493 { 9494 /* Do some magic... */ 9495 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9496 *magic_val = val & SHARED_MF_CLP_MAGIC; 9497 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 9498 } 9499 9500 /** 9501 * bnx2x_clp_reset_done - restore the value of the `magic' bit. 9502 * 9503 * @bp: driver handle 9504 * @magic_val: old value of the `magic' bit. 9505 */ 9506 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val) 9507 { 9508 /* Restore the `magic' bit value... */ 9509 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb); 9510 MF_CFG_WR(bp, shared_mf_config.clp_mb, 9511 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 9512 } 9513 9514 /** 9515 * bnx2x_reset_mcp_prep - prepare for MCP reset. 9516 * 9517 * @bp: driver handle 9518 * @magic_val: old value of 'magic' bit. 9519 * 9520 * Takes care of CLP configurations. 9521 */ 9522 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val) 9523 { 9524 u32 shmem; 9525 u32 validity_offset; 9526 9527 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); 9528 9529 /* Set `magic' bit in order to save MF config */ 9530 if (!CHIP_IS_E1(bp)) 9531 bnx2x_clp_reset_prep(bp, magic_val); 9532 9533 /* Get shmem offset */ 9534 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9535 validity_offset = 9536 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); 9537 9538 /* Clear validity map flags */ 9539 if (shmem > 0) 9540 REG_WR(bp, shmem + validity_offset, 0); 9541 } 9542 9543 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 9544 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 9545 9546 /** 9547 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT 9548 * 9549 * @bp: driver handle 9550 */ 9551 static void bnx2x_mcp_wait_one(struct bnx2x *bp) 9552 { 9553 /* special handling for emulation and FPGA, 9554 wait 10 times longer */ 9555 if (CHIP_REV_IS_SLOW(bp)) 9556 msleep(MCP_ONE_TIMEOUT*10); 9557 else 9558 msleep(MCP_ONE_TIMEOUT); 9559 } 9560 9561 /* 9562 * initializes bp->common.shmem_base and waits for validity signature to appear 9563 */ 9564 static int bnx2x_init_shmem(struct bnx2x *bp) 9565 { 9566 int cnt = 0; 9567 u32 val = 0; 9568 9569 do { 9570 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); 9571 if (bp->common.shmem_base) { 9572 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); 9573 if (val & SHR_MEM_VALIDITY_MB) 9574 return 0; 9575 } 9576 9577 bnx2x_mcp_wait_one(bp); 9578 9579 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 9580 9581 BNX2X_ERR("BAD MCP validity signature\n"); 9582 9583 return -ENODEV; 9584 } 9585 9586 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val) 9587 { 9588 int rc = bnx2x_init_shmem(bp); 9589 9590 /* Restore the `magic' bit value */ 9591 if (!CHIP_IS_E1(bp)) 9592 bnx2x_clp_reset_done(bp, magic_val); 9593 9594 return rc; 9595 } 9596 9597 static void bnx2x_pxp_prep(struct bnx2x *bp) 9598 { 9599 if (!CHIP_IS_E1(bp)) { 9600 REG_WR(bp, PXP2_REG_RD_START_INIT, 0); 9601 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); 9602 mmiowb(); 9603 } 9604 } 9605 9606 /* 9607 * Reset the whole chip except for: 9608 * - PCIE core 9609 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by 9610 * one reset bit) 9611 * - IGU 9612 * - MISC (including AEU) 9613 * - GRC 9614 * - RBCN, RBCP 9615 */ 9616 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) 9617 { 9618 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 9619 u32 global_bits2, stay_reset2; 9620 9621 /* 9622 * Bits that have to be set in reset_mask2 if we want to reset 'global' 9623 * (per chip) blocks. 9624 */ 9625 global_bits2 = 9626 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 9627 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 9628 9629 /* Don't reset the following blocks. 9630 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 9631 * reset, as in 4 port device they might still be owned 9632 * by the MCP (there is only one leader per path). 9633 */ 9634 not_reset_mask1 = 9635 MISC_REGISTERS_RESET_REG_1_RST_HC | 9636 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 9637 MISC_REGISTERS_RESET_REG_1_RST_PXP; 9638 9639 not_reset_mask2 = 9640 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 9641 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 9642 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 9643 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 9644 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 9645 MISC_REGISTERS_RESET_REG_2_RST_GRC | 9646 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 9647 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 9648 MISC_REGISTERS_RESET_REG_2_RST_ATC | 9649 MISC_REGISTERS_RESET_REG_2_PGLC | 9650 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 9651 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 9652 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 9653 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 9654 MISC_REGISTERS_RESET_REG_2_UMAC0 | 9655 MISC_REGISTERS_RESET_REG_2_UMAC1; 9656 9657 /* 9658 * Keep the following blocks in reset: 9659 * - all xxMACs are handled by the bnx2x_link code. 9660 */ 9661 stay_reset2 = 9662 MISC_REGISTERS_RESET_REG_2_XMAC | 9663 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 9664 9665 /* Full reset masks according to the chip */ 9666 reset_mask1 = 0xffffffff; 9667 9668 if (CHIP_IS_E1(bp)) 9669 reset_mask2 = 0xffff; 9670 else if (CHIP_IS_E1H(bp)) 9671 reset_mask2 = 0x1ffff; 9672 else if (CHIP_IS_E2(bp)) 9673 reset_mask2 = 0xfffff; 9674 else /* CHIP_IS_E3 */ 9675 reset_mask2 = 0x3ffffff; 9676 9677 /* Don't reset global blocks unless we need to */ 9678 if (!global) 9679 reset_mask2 &= ~global_bits2; 9680 9681 /* 9682 * In case of attention in the QM, we need to reset PXP 9683 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 9684 * because otherwise QM reset would release 'close the gates' shortly 9685 * before resetting the PXP, then the PSWRQ would send a write 9686 * request to PGLUE. Then when PXP is reset, PGLUE would try to 9687 * read the payload data from PSWWR, but PSWWR would not 9688 * respond. The write queue in PGLUE would stuck, dmae commands 9689 * would not return. Therefore it's important to reset the second 9690 * reset register (containing the 9691 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 9692 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 9693 * bit). 9694 */ 9695 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 9696 reset_mask2 & (~not_reset_mask2)); 9697 9698 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 9699 reset_mask1 & (~not_reset_mask1)); 9700 9701 barrier(); 9702 mmiowb(); 9703 9704 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 9705 reset_mask2 & (~stay_reset2)); 9706 9707 barrier(); 9708 mmiowb(); 9709 9710 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 9711 mmiowb(); 9712 } 9713 9714 /** 9715 * bnx2x_er_poll_igu_vq - poll for pending writes bit. 9716 * It should get cleared in no more than 1s. 9717 * 9718 * @bp: driver handle 9719 * 9720 * It should get cleared in no more than 1s. Returns 0 if 9721 * pending writes bit gets cleared. 9722 */ 9723 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) 9724 { 9725 u32 cnt = 1000; 9726 u32 pend_bits = 0; 9727 9728 do { 9729 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); 9730 9731 if (pend_bits == 0) 9732 break; 9733 9734 usleep_range(1000, 2000); 9735 } while (cnt-- > 0); 9736 9737 if (cnt <= 0) { 9738 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", 9739 pend_bits); 9740 return -EBUSY; 9741 } 9742 9743 return 0; 9744 } 9745 9746 static int bnx2x_process_kill(struct bnx2x *bp, bool global) 9747 { 9748 int cnt = 1000; 9749 u32 val = 0; 9750 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 9751 u32 tags_63_32 = 0; 9752 9753 /* Empty the Tetris buffer, wait for 1s */ 9754 do { 9755 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT); 9756 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); 9757 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); 9758 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); 9759 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); 9760 if (CHIP_IS_E3(bp)) 9761 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); 9762 9763 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 9764 ((port_is_idle_0 & 0x1) == 0x1) && 9765 ((port_is_idle_1 & 0x1) == 0x1) && 9766 (pgl_exp_rom2 == 0xffffffff) && 9767 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) 9768 break; 9769 usleep_range(1000, 2000); 9770 } while (cnt-- > 0); 9771 9772 if (cnt <= 0) { 9773 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); 9774 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 9775 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, 9776 pgl_exp_rom2); 9777 return -EAGAIN; 9778 } 9779 9780 barrier(); 9781 9782 /* Close gates #2, #3 and #4 */ 9783 bnx2x_set_234_gates(bp, true); 9784 9785 /* Poll for IGU VQs for 57712 and newer chips */ 9786 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) 9787 return -EAGAIN; 9788 9789 /* TBD: Indicate that "process kill" is in progress to MCP */ 9790 9791 /* Clear "unprepared" bit */ 9792 REG_WR(bp, MISC_REG_UNPREPARED, 0); 9793 barrier(); 9794 9795 /* Make sure all is written to the chip before the reset */ 9796 mmiowb(); 9797 9798 /* Wait for 1ms to empty GLUE and PCI-E core queues, 9799 * PSWHST, GRC and PSWRD Tetris buffer. 9800 */ 9801 usleep_range(1000, 2000); 9802 9803 /* Prepare to chip reset: */ 9804 /* MCP */ 9805 if (global) 9806 bnx2x_reset_mcp_prep(bp, &val); 9807 9808 /* PXP */ 9809 bnx2x_pxp_prep(bp); 9810 barrier(); 9811 9812 /* reset the chip */ 9813 bnx2x_process_kill_chip_reset(bp, global); 9814 barrier(); 9815 9816 /* clear errors in PGB */ 9817 if (!CHIP_IS_E1x(bp)) 9818 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 9819 9820 /* Recover after reset: */ 9821 /* MCP */ 9822 if (global && bnx2x_reset_mcp_comp(bp, val)) 9823 return -EAGAIN; 9824 9825 /* TBD: Add resetting the NO_MCP mode DB here */ 9826 9827 /* Open the gates #2, #3 and #4 */ 9828 bnx2x_set_234_gates(bp, false); 9829 9830 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a 9831 * reset state, re-enable attentions. */ 9832 9833 return 0; 9834 } 9835 9836 static int bnx2x_leader_reset(struct bnx2x *bp) 9837 { 9838 int rc = 0; 9839 bool global = bnx2x_reset_is_global(bp); 9840 u32 load_code; 9841 9842 /* if not going to reset MCP - load "fake" driver to reset HW while 9843 * driver is owner of the HW 9844 */ 9845 if (!global && !BP_NOMCP(bp)) { 9846 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 9847 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 9848 if (!load_code) { 9849 BNX2X_ERR("MCP response failure, aborting\n"); 9850 rc = -EAGAIN; 9851 goto exit_leader_reset; 9852 } 9853 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 9854 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 9855 BNX2X_ERR("MCP unexpected resp, aborting\n"); 9856 rc = -EAGAIN; 9857 goto exit_leader_reset2; 9858 } 9859 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 9860 if (!load_code) { 9861 BNX2X_ERR("MCP response failure, aborting\n"); 9862 rc = -EAGAIN; 9863 goto exit_leader_reset2; 9864 } 9865 } 9866 9867 /* Try to recover after the failure */ 9868 if (bnx2x_process_kill(bp, global)) { 9869 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", 9870 BP_PATH(bp)); 9871 rc = -EAGAIN; 9872 goto exit_leader_reset2; 9873 } 9874 9875 /* 9876 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver 9877 * state. 9878 */ 9879 bnx2x_set_reset_done(bp); 9880 if (global) 9881 bnx2x_clear_reset_global(bp); 9882 9883 exit_leader_reset2: 9884 /* unload "fake driver" if it was loaded */ 9885 if (!global && !BP_NOMCP(bp)) { 9886 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 9887 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 9888 } 9889 exit_leader_reset: 9890 bp->is_leader = 0; 9891 bnx2x_release_leader_lock(bp); 9892 smp_mb(); 9893 return rc; 9894 } 9895 9896 static void bnx2x_recovery_failed(struct bnx2x *bp) 9897 { 9898 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); 9899 9900 /* Disconnect this device */ 9901 netif_device_detach(bp->dev); 9902 9903 /* 9904 * Block ifup for all function on this engine until "process kill" 9905 * or power cycle. 9906 */ 9907 bnx2x_set_reset_in_progress(bp); 9908 9909 /* Shut down the power */ 9910 bnx2x_set_power_state(bp, PCI_D3hot); 9911 9912 bp->recovery_state = BNX2X_RECOVERY_FAILED; 9913 9914 smp_mb(); 9915 } 9916 9917 /* 9918 * Assumption: runs under rtnl lock. This together with the fact 9919 * that it's called only from bnx2x_sp_rtnl() ensure that it 9920 * will never be called when netif_running(bp->dev) is false. 9921 */ 9922 static void bnx2x_parity_recover(struct bnx2x *bp) 9923 { 9924 bool global = false; 9925 u32 error_recovered, error_unrecovered; 9926 bool is_parity; 9927 9928 DP(NETIF_MSG_HW, "Handling parity\n"); 9929 while (1) { 9930 switch (bp->recovery_state) { 9931 case BNX2X_RECOVERY_INIT: 9932 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); 9933 is_parity = bnx2x_chk_parity_attn(bp, &global, false); 9934 WARN_ON(!is_parity); 9935 9936 /* Try to get a LEADER_LOCK HW lock */ 9937 if (bnx2x_trylock_leader_lock(bp)) { 9938 bnx2x_set_reset_in_progress(bp); 9939 /* 9940 * Check if there is a global attention and if 9941 * there was a global attention, set the global 9942 * reset bit. 9943 */ 9944 9945 if (global) 9946 bnx2x_set_reset_global(bp); 9947 9948 bp->is_leader = 1; 9949 } 9950 9951 /* Stop the driver */ 9952 /* If interface has been removed - break */ 9953 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) 9954 return; 9955 9956 bp->recovery_state = BNX2X_RECOVERY_WAIT; 9957 9958 /* Ensure "is_leader", MCP command sequence and 9959 * "recovery_state" update values are seen on other 9960 * CPUs. 9961 */ 9962 smp_mb(); 9963 break; 9964 9965 case BNX2X_RECOVERY_WAIT: 9966 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); 9967 if (bp->is_leader) { 9968 int other_engine = BP_PATH(bp) ? 0 : 1; 9969 bool other_load_status = 9970 bnx2x_get_load_status(bp, other_engine); 9971 bool load_status = 9972 bnx2x_get_load_status(bp, BP_PATH(bp)); 9973 global = bnx2x_reset_is_global(bp); 9974 9975 /* 9976 * In case of a parity in a global block, let 9977 * the first leader that performs a 9978 * leader_reset() reset the global blocks in 9979 * order to clear global attentions. Otherwise 9980 * the gates will remain closed for that 9981 * engine. 9982 */ 9983 if (load_status || 9984 (global && other_load_status)) { 9985 /* Wait until all other functions get 9986 * down. 9987 */ 9988 schedule_delayed_work(&bp->sp_rtnl_task, 9989 HZ/10); 9990 return; 9991 } else { 9992 /* If all other functions got down - 9993 * try to bring the chip back to 9994 * normal. In any case it's an exit 9995 * point for a leader. 9996 */ 9997 if (bnx2x_leader_reset(bp)) { 9998 bnx2x_recovery_failed(bp); 9999 return; 10000 } 10001 10002 /* If we are here, means that the 10003 * leader has succeeded and doesn't 10004 * want to be a leader any more. Try 10005 * to continue as a none-leader. 10006 */ 10007 break; 10008 } 10009 } else { /* non-leader */ 10010 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { 10011 /* Try to get a LEADER_LOCK HW lock as 10012 * long as a former leader may have 10013 * been unloaded by the user or 10014 * released a leadership by another 10015 * reason. 10016 */ 10017 if (bnx2x_trylock_leader_lock(bp)) { 10018 /* I'm a leader now! Restart a 10019 * switch case. 10020 */ 10021 bp->is_leader = 1; 10022 break; 10023 } 10024 10025 schedule_delayed_work(&bp->sp_rtnl_task, 10026 HZ/10); 10027 return; 10028 10029 } else { 10030 /* 10031 * If there was a global attention, wait 10032 * for it to be cleared. 10033 */ 10034 if (bnx2x_reset_is_global(bp)) { 10035 schedule_delayed_work( 10036 &bp->sp_rtnl_task, 10037 HZ/10); 10038 return; 10039 } 10040 10041 error_recovered = 10042 bp->eth_stats.recoverable_error; 10043 error_unrecovered = 10044 bp->eth_stats.unrecoverable_error; 10045 bp->recovery_state = 10046 BNX2X_RECOVERY_NIC_LOADING; 10047 if (bnx2x_nic_load(bp, LOAD_NORMAL)) { 10048 error_unrecovered++; 10049 netdev_err(bp->dev, 10050 "Recovery failed. Power cycle needed\n"); 10051 /* Disconnect this device */ 10052 netif_device_detach(bp->dev); 10053 /* Shut down the power */ 10054 bnx2x_set_power_state( 10055 bp, PCI_D3hot); 10056 smp_mb(); 10057 } else { 10058 bp->recovery_state = 10059 BNX2X_RECOVERY_DONE; 10060 error_recovered++; 10061 smp_mb(); 10062 } 10063 bp->eth_stats.recoverable_error = 10064 error_recovered; 10065 bp->eth_stats.unrecoverable_error = 10066 error_unrecovered; 10067 10068 return; 10069 } 10070 } 10071 default: 10072 return; 10073 } 10074 } 10075 } 10076 10077 #ifdef CONFIG_BNX2X_VXLAN 10078 static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port) 10079 { 10080 struct bnx2x_func_switch_update_params *switch_update_params; 10081 struct bnx2x_func_state_params func_params = {NULL}; 10082 int rc; 10083 10084 switch_update_params = &func_params.params.switch_update; 10085 10086 /* Prepare parameters for function state transitions */ 10087 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 10088 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 10089 10090 func_params.f_obj = &bp->func_obj; 10091 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; 10092 10093 /* Function parameters */ 10094 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG, 10095 &switch_update_params->changes); 10096 switch_update_params->vxlan_dst_port = port; 10097 rc = bnx2x_func_state_change(bp, &func_params); 10098 if (rc) 10099 BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n", 10100 port, rc); 10101 return rc; 10102 } 10103 10104 static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port) 10105 { 10106 if (!netif_running(bp->dev)) 10107 return; 10108 10109 if (bp->vxlan_dst_port_count && bp->vxlan_dst_port == port) { 10110 bp->vxlan_dst_port_count++; 10111 return; 10112 } 10113 10114 if (bp->vxlan_dst_port_count || !IS_PF(bp)) { 10115 DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n"); 10116 return; 10117 } 10118 10119 bp->vxlan_dst_port = port; 10120 bp->vxlan_dst_port_count = 1; 10121 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0); 10122 } 10123 10124 static void bnx2x_add_vxlan_port(struct net_device *netdev, 10125 sa_family_t sa_family, __be16 port) 10126 { 10127 struct bnx2x *bp = netdev_priv(netdev); 10128 u16 t_port = ntohs(port); 10129 10130 __bnx2x_add_vxlan_port(bp, t_port); 10131 } 10132 10133 static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port) 10134 { 10135 if (!bp->vxlan_dst_port_count || bp->vxlan_dst_port != port || 10136 !IS_PF(bp)) { 10137 DP(BNX2X_MSG_SP, "Invalid vxlan port\n"); 10138 return; 10139 } 10140 bp->vxlan_dst_port_count--; 10141 if (bp->vxlan_dst_port_count) 10142 return; 10143 10144 if (netif_running(bp->dev)) { 10145 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0); 10146 } else { 10147 bp->vxlan_dst_port = 0; 10148 netdev_info(bp->dev, "Deleted vxlan dest port %d", port); 10149 } 10150 } 10151 10152 static void bnx2x_del_vxlan_port(struct net_device *netdev, 10153 sa_family_t sa_family, __be16 port) 10154 { 10155 struct bnx2x *bp = netdev_priv(netdev); 10156 u16 t_port = ntohs(port); 10157 10158 __bnx2x_del_vxlan_port(bp, t_port); 10159 } 10160 #endif 10161 10162 static int bnx2x_close(struct net_device *dev); 10163 10164 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is 10165 * scheduled on a general queue in order to prevent a dead lock. 10166 */ 10167 static void bnx2x_sp_rtnl_task(struct work_struct *work) 10168 { 10169 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); 10170 #ifdef CONFIG_BNX2X_VXLAN 10171 u16 port; 10172 #endif 10173 10174 rtnl_lock(); 10175 10176 if (!netif_running(bp->dev)) { 10177 rtnl_unlock(); 10178 return; 10179 } 10180 10181 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { 10182 #ifdef BNX2X_STOP_ON_ERROR 10183 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10184 "you will need to reboot when done\n"); 10185 goto sp_rtnl_not_reset; 10186 #endif 10187 /* 10188 * Clear all pending SP commands as we are going to reset the 10189 * function anyway. 10190 */ 10191 bp->sp_rtnl_state = 0; 10192 smp_mb(); 10193 10194 bnx2x_parity_recover(bp); 10195 10196 rtnl_unlock(); 10197 return; 10198 } 10199 10200 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { 10201 #ifdef BNX2X_STOP_ON_ERROR 10202 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" 10203 "you will need to reboot when done\n"); 10204 goto sp_rtnl_not_reset; 10205 #endif 10206 10207 /* 10208 * Clear all pending SP commands as we are going to reset the 10209 * function anyway. 10210 */ 10211 bp->sp_rtnl_state = 0; 10212 smp_mb(); 10213 10214 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 10215 bnx2x_nic_load(bp, LOAD_NORMAL); 10216 10217 rtnl_unlock(); 10218 return; 10219 } 10220 #ifdef BNX2X_STOP_ON_ERROR 10221 sp_rtnl_not_reset: 10222 #endif 10223 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) 10224 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); 10225 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) 10226 bnx2x_after_function_update(bp); 10227 /* 10228 * in case of fan failure we need to reset id if the "stop on error" 10229 * debug flag is set, since we trying to prevent permanent overheating 10230 * damage 10231 */ 10232 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { 10233 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); 10234 netif_device_detach(bp->dev); 10235 bnx2x_close(bp->dev); 10236 rtnl_unlock(); 10237 return; 10238 } 10239 10240 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { 10241 DP(BNX2X_MSG_SP, 10242 "sending set mcast vf pf channel message from rtnl sp-task\n"); 10243 bnx2x_vfpf_set_mcast(bp->dev); 10244 } 10245 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, 10246 &bp->sp_rtnl_state)){ 10247 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { 10248 bnx2x_tx_disable(bp); 10249 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); 10250 } 10251 } 10252 10253 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { 10254 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); 10255 bnx2x_set_rx_mode_inner(bp); 10256 } 10257 10258 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, 10259 &bp->sp_rtnl_state)) 10260 bnx2x_pf_set_vfs_vlan(bp); 10261 10262 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { 10263 bnx2x_dcbx_stop_hw_tx(bp); 10264 bnx2x_dcbx_resume_hw_tx(bp); 10265 } 10266 10267 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, 10268 &bp->sp_rtnl_state)) 10269 bnx2x_update_mng_version(bp); 10270 10271 #ifdef CONFIG_BNX2X_VXLAN 10272 port = bp->vxlan_dst_port; 10273 if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT, 10274 &bp->sp_rtnl_state)) { 10275 if (!bnx2x_vxlan_port_update(bp, port)) 10276 netdev_info(bp->dev, "Added vxlan dest port %d", port); 10277 else 10278 bp->vxlan_dst_port = 0; 10279 } 10280 10281 if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT, 10282 &bp->sp_rtnl_state)) { 10283 if (!bnx2x_vxlan_port_update(bp, 0)) { 10284 netdev_info(bp->dev, 10285 "Deleted vxlan dest port %d", port); 10286 bp->vxlan_dst_port = 0; 10287 vxlan_get_rx_port(bp->dev); 10288 } 10289 } 10290 #endif 10291 10292 /* work which needs rtnl lock not-taken (as it takes the lock itself and 10293 * can be called from other contexts as well) 10294 */ 10295 rtnl_unlock(); 10296 10297 /* enable SR-IOV if applicable */ 10298 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, 10299 &bp->sp_rtnl_state)) { 10300 bnx2x_disable_sriov(bp); 10301 bnx2x_enable_sriov(bp); 10302 } 10303 } 10304 10305 static void bnx2x_period_task(struct work_struct *work) 10306 { 10307 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); 10308 10309 if (!netif_running(bp->dev)) 10310 goto period_task_exit; 10311 10312 if (CHIP_REV_IS_SLOW(bp)) { 10313 BNX2X_ERR("period task called on emulation, ignoring\n"); 10314 goto period_task_exit; 10315 } 10316 10317 bnx2x_acquire_phy_lock(bp); 10318 /* 10319 * The barrier is needed to ensure the ordering between the writing to 10320 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and 10321 * the reading here. 10322 */ 10323 smp_mb(); 10324 if (bp->port.pmf) { 10325 bnx2x_period_func(&bp->link_params, &bp->link_vars); 10326 10327 /* Re-queue task in 1 sec */ 10328 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); 10329 } 10330 10331 bnx2x_release_phy_lock(bp); 10332 period_task_exit: 10333 return; 10334 } 10335 10336 /* 10337 * Init service functions 10338 */ 10339 10340 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp) 10341 { 10342 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0; 10343 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; 10344 return base + (BP_ABS_FUNC(bp)) * stride; 10345 } 10346 10347 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp, 10348 u8 port, u32 reset_reg, 10349 struct bnx2x_mac_vals *vals) 10350 { 10351 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 10352 u32 base_addr; 10353 10354 if (!(mask & reset_reg)) 10355 return false; 10356 10357 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port); 10358 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 10359 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG; 10360 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]); 10361 REG_WR(bp, vals->umac_addr[port], 0); 10362 10363 return true; 10364 } 10365 10366 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, 10367 struct bnx2x_mac_vals *vals) 10368 { 10369 u32 val, base_addr, offset, mask, reset_reg; 10370 bool mac_stopped = false; 10371 u8 port = BP_PORT(bp); 10372 10373 /* reset addresses as they also mark which values were changed */ 10374 memset(vals, 0, sizeof(*vals)); 10375 10376 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); 10377 10378 if (!CHIP_IS_E3(bp)) { 10379 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 10380 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 10381 if ((mask & reset_reg) && val) { 10382 u32 wb_data[2]; 10383 BNX2X_DEV_INFO("Disable bmac Rx\n"); 10384 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM 10385 : NIG_REG_INGRESS_BMAC0_MEM; 10386 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL 10387 : BIGMAC_REGISTER_BMAC_CONTROL; 10388 10389 /* 10390 * use rd/wr since we cannot use dmae. This is safe 10391 * since MCP won't access the bus due to the request 10392 * to unload, and no function on the path can be 10393 * loaded at this time. 10394 */ 10395 wb_data[0] = REG_RD(bp, base_addr + offset); 10396 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); 10397 vals->bmac_addr = base_addr + offset; 10398 vals->bmac_val[0] = wb_data[0]; 10399 vals->bmac_val[1] = wb_data[1]; 10400 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; 10401 REG_WR(bp, vals->bmac_addr, wb_data[0]); 10402 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); 10403 } 10404 BNX2X_DEV_INFO("Disable emac Rx\n"); 10405 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; 10406 vals->emac_val = REG_RD(bp, vals->emac_addr); 10407 REG_WR(bp, vals->emac_addr, 0); 10408 mac_stopped = true; 10409 } else { 10410 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 10411 BNX2X_DEV_INFO("Disable xmac Rx\n"); 10412 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 10413 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); 10414 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10415 val & ~(1 << 1)); 10416 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, 10417 val | (1 << 1)); 10418 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 10419 vals->xmac_val = REG_RD(bp, vals->xmac_addr); 10420 REG_WR(bp, vals->xmac_addr, 0); 10421 mac_stopped = true; 10422 } 10423 10424 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0, 10425 reset_reg, vals); 10426 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1, 10427 reset_reg, vals); 10428 } 10429 10430 if (mac_stopped) 10431 msleep(20); 10432 } 10433 10434 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 10435 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ 10436 0x1848 + ((f) << 4)) 10437 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff) 10438 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 10439 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 10440 10441 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07) 10442 #define BCM_5710_UNDI_FW_MF_MINOR (0x08) 10443 #define BCM_5710_UNDI_FW_MF_VERS (0x05) 10444 10445 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) 10446 { 10447 /* UNDI marks its presence in DORQ - 10448 * it initializes CID offset for normal bell to 0x7 10449 */ 10450 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & 10451 MISC_REGISTERS_RESET_REG_1_RST_DORQ)) 10452 return false; 10453 10454 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { 10455 BNX2X_DEV_INFO("UNDI previously loaded\n"); 10456 return true; 10457 } 10458 10459 return false; 10460 } 10461 10462 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc) 10463 { 10464 u16 rcq, bd; 10465 u32 addr, tmp_reg; 10466 10467 if (BP_FUNC(bp) < 2) 10468 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); 10469 else 10470 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); 10471 10472 tmp_reg = REG_RD(bp, addr); 10473 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; 10474 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; 10475 10476 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); 10477 REG_WR(bp, addr, tmp_reg); 10478 10479 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", 10480 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); 10481 } 10482 10483 static int bnx2x_prev_mcp_done(struct bnx2x *bp) 10484 { 10485 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 10486 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 10487 if (!rc) { 10488 BNX2X_ERR("MCP response failure, aborting\n"); 10489 return -EBUSY; 10490 } 10491 10492 return 0; 10493 } 10494 10495 static struct bnx2x_prev_path_list * 10496 bnx2x_prev_path_get_entry(struct bnx2x *bp) 10497 { 10498 struct bnx2x_prev_path_list *tmp_list; 10499 10500 list_for_each_entry(tmp_list, &bnx2x_prev_list, list) 10501 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot && 10502 bp->pdev->bus->number == tmp_list->bus && 10503 BP_PATH(bp) == tmp_list->path) 10504 return tmp_list; 10505 10506 return NULL; 10507 } 10508 10509 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) 10510 { 10511 struct bnx2x_prev_path_list *tmp_list; 10512 int rc; 10513 10514 rc = down_interruptible(&bnx2x_prev_sem); 10515 if (rc) { 10516 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10517 return rc; 10518 } 10519 10520 tmp_list = bnx2x_prev_path_get_entry(bp); 10521 if (tmp_list) { 10522 tmp_list->aer = 1; 10523 rc = 0; 10524 } else { 10525 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", 10526 BP_PATH(bp)); 10527 } 10528 10529 up(&bnx2x_prev_sem); 10530 10531 return rc; 10532 } 10533 10534 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) 10535 { 10536 struct bnx2x_prev_path_list *tmp_list; 10537 bool rc = false; 10538 10539 if (down_trylock(&bnx2x_prev_sem)) 10540 return false; 10541 10542 tmp_list = bnx2x_prev_path_get_entry(bp); 10543 if (tmp_list) { 10544 if (tmp_list->aer) { 10545 DP(NETIF_MSG_HW, "Path %d was marked by AER\n", 10546 BP_PATH(bp)); 10547 } else { 10548 rc = true; 10549 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", 10550 BP_PATH(bp)); 10551 } 10552 } 10553 10554 up(&bnx2x_prev_sem); 10555 10556 return rc; 10557 } 10558 10559 bool bnx2x_port_after_undi(struct bnx2x *bp) 10560 { 10561 struct bnx2x_prev_path_list *entry; 10562 bool val; 10563 10564 down(&bnx2x_prev_sem); 10565 10566 entry = bnx2x_prev_path_get_entry(bp); 10567 val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); 10568 10569 up(&bnx2x_prev_sem); 10570 10571 return val; 10572 } 10573 10574 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) 10575 { 10576 struct bnx2x_prev_path_list *tmp_list; 10577 int rc; 10578 10579 rc = down_interruptible(&bnx2x_prev_sem); 10580 if (rc) { 10581 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10582 return rc; 10583 } 10584 10585 /* Check whether the entry for this path already exists */ 10586 tmp_list = bnx2x_prev_path_get_entry(bp); 10587 if (tmp_list) { 10588 if (!tmp_list->aer) { 10589 BNX2X_ERR("Re-Marking the path.\n"); 10590 } else { 10591 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", 10592 BP_PATH(bp)); 10593 tmp_list->aer = 0; 10594 } 10595 up(&bnx2x_prev_sem); 10596 return 0; 10597 } 10598 up(&bnx2x_prev_sem); 10599 10600 /* Create an entry for this path and add it */ 10601 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL); 10602 if (!tmp_list) { 10603 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); 10604 return -ENOMEM; 10605 } 10606 10607 tmp_list->bus = bp->pdev->bus->number; 10608 tmp_list->slot = PCI_SLOT(bp->pdev->devfn); 10609 tmp_list->path = BP_PATH(bp); 10610 tmp_list->aer = 0; 10611 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; 10612 10613 rc = down_interruptible(&bnx2x_prev_sem); 10614 if (rc) { 10615 BNX2X_ERR("Received %d when tried to take lock\n", rc); 10616 kfree(tmp_list); 10617 } else { 10618 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", 10619 BP_PATH(bp)); 10620 list_add(&tmp_list->list, &bnx2x_prev_list); 10621 up(&bnx2x_prev_sem); 10622 } 10623 10624 return rc; 10625 } 10626 10627 static int bnx2x_do_flr(struct bnx2x *bp) 10628 { 10629 struct pci_dev *dev = bp->pdev; 10630 10631 if (CHIP_IS_E1x(bp)) { 10632 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); 10633 return -EINVAL; 10634 } 10635 10636 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 10637 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 10638 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", 10639 bp->common.bc_ver); 10640 return -EINVAL; 10641 } 10642 10643 if (!pci_wait_for_pending_transaction(dev)) 10644 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 10645 10646 BNX2X_DEV_INFO("Initiating FLR\n"); 10647 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); 10648 10649 return 0; 10650 } 10651 10652 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) 10653 { 10654 int rc; 10655 10656 BNX2X_DEV_INFO("Uncommon unload Flow\n"); 10657 10658 /* Test if previous unload process was already finished for this path */ 10659 if (bnx2x_prev_is_path_marked(bp)) 10660 return bnx2x_prev_mcp_done(bp); 10661 10662 BNX2X_DEV_INFO("Path is unmarked\n"); 10663 10664 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ 10665 if (bnx2x_prev_is_after_undi(bp)) 10666 goto out; 10667 10668 /* If function has FLR capabilities, and existing FW version matches 10669 * the one required, then FLR will be sufficient to clean any residue 10670 * left by previous driver 10671 */ 10672 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); 10673 10674 if (!rc) { 10675 /* fw version is good */ 10676 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); 10677 rc = bnx2x_do_flr(bp); 10678 } 10679 10680 if (!rc) { 10681 /* FLR was performed */ 10682 BNX2X_DEV_INFO("FLR successful\n"); 10683 return 0; 10684 } 10685 10686 BNX2X_DEV_INFO("Could not FLR\n"); 10687 10688 out: 10689 /* Close the MCP request, return failure*/ 10690 rc = bnx2x_prev_mcp_done(bp); 10691 if (!rc) 10692 rc = BNX2X_PREV_WAIT_NEEDED; 10693 10694 return rc; 10695 } 10696 10697 static int bnx2x_prev_unload_common(struct bnx2x *bp) 10698 { 10699 u32 reset_reg, tmp_reg = 0, rc; 10700 bool prev_undi = false; 10701 struct bnx2x_mac_vals mac_vals; 10702 10703 /* It is possible a previous function received 'common' answer, 10704 * but hasn't loaded yet, therefore creating a scenario of 10705 * multiple functions receiving 'common' on the same path. 10706 */ 10707 BNX2X_DEV_INFO("Common unload Flow\n"); 10708 10709 memset(&mac_vals, 0, sizeof(mac_vals)); 10710 10711 if (bnx2x_prev_is_path_marked(bp)) 10712 return bnx2x_prev_mcp_done(bp); 10713 10714 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); 10715 10716 /* Reset should be performed after BRB is emptied */ 10717 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 10718 u32 timer_count = 1000; 10719 10720 /* Close the MAC Rx to prevent BRB from filling up */ 10721 bnx2x_prev_unload_close_mac(bp, &mac_vals); 10722 10723 /* close LLH filters for both ports towards the BRB */ 10724 bnx2x_set_rx_filter(&bp->link_params, 0); 10725 bp->link_params.port ^= 1; 10726 bnx2x_set_rx_filter(&bp->link_params, 0); 10727 bp->link_params.port ^= 1; 10728 10729 /* Check if the UNDI driver was previously loaded */ 10730 if (bnx2x_prev_is_after_undi(bp)) { 10731 prev_undi = true; 10732 /* clear the UNDI indication */ 10733 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); 10734 /* clear possible idle check errors */ 10735 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); 10736 } 10737 if (!CHIP_IS_E1x(bp)) 10738 /* block FW from writing to host */ 10739 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 10740 10741 /* wait until BRB is empty */ 10742 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10743 while (timer_count) { 10744 u32 prev_brb = tmp_reg; 10745 10746 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); 10747 if (!tmp_reg) 10748 break; 10749 10750 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); 10751 10752 /* reset timer as long as BRB actually gets emptied */ 10753 if (prev_brb > tmp_reg) 10754 timer_count = 1000; 10755 else 10756 timer_count--; 10757 10758 /* If UNDI resides in memory, manually increment it */ 10759 if (prev_undi) 10760 bnx2x_prev_unload_undi_inc(bp, 1); 10761 10762 udelay(10); 10763 } 10764 10765 if (!timer_count) 10766 BNX2X_ERR("Failed to empty BRB, hope for the best\n"); 10767 } 10768 10769 /* No packets are in the pipeline, path is ready for reset */ 10770 bnx2x_reset_common(bp); 10771 10772 if (mac_vals.xmac_addr) 10773 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); 10774 if (mac_vals.umac_addr[0]) 10775 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]); 10776 if (mac_vals.umac_addr[1]) 10777 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]); 10778 if (mac_vals.emac_addr) 10779 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); 10780 if (mac_vals.bmac_addr) { 10781 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 10782 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 10783 } 10784 10785 rc = bnx2x_prev_mark_path(bp, prev_undi); 10786 if (rc) { 10787 bnx2x_prev_mcp_done(bp); 10788 return rc; 10789 } 10790 10791 return bnx2x_prev_mcp_done(bp); 10792 } 10793 10794 static int bnx2x_prev_unload(struct bnx2x *bp) 10795 { 10796 int time_counter = 10; 10797 u32 rc, fw, hw_lock_reg, hw_lock_val; 10798 BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); 10799 10800 /* clear hw from errors which may have resulted from an interrupted 10801 * dmae transaction. 10802 */ 10803 bnx2x_clean_pglue_errors(bp); 10804 10805 /* Release previously held locks */ 10806 hw_lock_reg = (BP_FUNC(bp) <= 5) ? 10807 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : 10808 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); 10809 10810 hw_lock_val = REG_RD(bp, hw_lock_reg); 10811 if (hw_lock_val) { 10812 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 10813 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); 10814 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, 10815 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); 10816 } 10817 10818 BNX2X_DEV_INFO("Release Previously held hw lock\n"); 10819 REG_WR(bp, hw_lock_reg, 0xffffffff); 10820 } else 10821 BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); 10822 10823 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { 10824 BNX2X_DEV_INFO("Release previously held alr\n"); 10825 bnx2x_release_alr(bp); 10826 } 10827 10828 do { 10829 int aer = 0; 10830 /* Lock MCP using an unload request */ 10831 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 10832 if (!fw) { 10833 BNX2X_ERR("MCP response failure, aborting\n"); 10834 rc = -EBUSY; 10835 break; 10836 } 10837 10838 rc = down_interruptible(&bnx2x_prev_sem); 10839 if (rc) { 10840 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", 10841 rc); 10842 } else { 10843 /* If Path is marked by EEH, ignore unload status */ 10844 aer = !!(bnx2x_prev_path_get_entry(bp) && 10845 bnx2x_prev_path_get_entry(bp)->aer); 10846 up(&bnx2x_prev_sem); 10847 } 10848 10849 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { 10850 rc = bnx2x_prev_unload_common(bp); 10851 break; 10852 } 10853 10854 /* non-common reply from MCP might require looping */ 10855 rc = bnx2x_prev_unload_uncommon(bp); 10856 if (rc != BNX2X_PREV_WAIT_NEEDED) 10857 break; 10858 10859 msleep(20); 10860 } while (--time_counter); 10861 10862 if (!time_counter || rc) { 10863 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); 10864 rc = -EPROBE_DEFER; 10865 } 10866 10867 /* Mark function if its port was used to boot from SAN */ 10868 if (bnx2x_port_after_undi(bp)) 10869 bp->link_params.feature_config_flags |= 10870 FEATURE_CONFIG_BOOT_FROM_SAN; 10871 10872 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); 10873 10874 return rc; 10875 } 10876 10877 static void bnx2x_get_common_hwinfo(struct bnx2x *bp) 10878 { 10879 u32 val, val2, val3, val4, id, boot_mode; 10880 u16 pmc; 10881 10882 /* Get the chip revision id and number. */ 10883 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ 10884 val = REG_RD(bp, MISC_REG_CHIP_NUM); 10885 id = ((val & 0xffff) << 16); 10886 val = REG_RD(bp, MISC_REG_CHIP_REV); 10887 id |= ((val & 0xf) << 12); 10888 10889 /* Metal is read from PCI regs, but we can't access >=0x400 from 10890 * the configuration space (so we need to reg_rd) 10891 */ 10892 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); 10893 id |= (((val >> 24) & 0xf) << 4); 10894 val = REG_RD(bp, MISC_REG_BOND_ID); 10895 id |= (val & 0xf); 10896 bp->common.chip_id = id; 10897 10898 /* force 57811 according to MISC register */ 10899 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 10900 if (CHIP_IS_57810(bp)) 10901 bp->common.chip_id = (CHIP_NUM_57811 << 16) | 10902 (bp->common.chip_id & 0x0000FFFF); 10903 else if (CHIP_IS_57810_MF(bp)) 10904 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | 10905 (bp->common.chip_id & 0x0000FFFF); 10906 bp->common.chip_id |= 0x1; 10907 } 10908 10909 /* Set doorbell size */ 10910 bp->db_size = (1 << BNX2X_DB_SHIFT); 10911 10912 if (!CHIP_IS_E1x(bp)) { 10913 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); 10914 if ((val & 1) == 0) 10915 val = REG_RD(bp, MISC_REG_PORT4MODE_EN); 10916 else 10917 val = (val >> 1) & 1; 10918 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : 10919 "2_PORT_MODE"); 10920 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : 10921 CHIP_2_PORT_MODE; 10922 10923 if (CHIP_MODE_IS_4_PORT(bp)) 10924 bp->pfid = (bp->pf_num >> 1); /* 0..3 */ 10925 else 10926 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */ 10927 } else { 10928 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ 10929 bp->pfid = bp->pf_num; /* 0..7 */ 10930 } 10931 10932 BNX2X_DEV_INFO("pf_id: %x", bp->pfid); 10933 10934 bp->link_params.chip_id = bp->common.chip_id; 10935 BNX2X_DEV_INFO("chip ID is 0x%x\n", id); 10936 10937 val = (REG_RD(bp, 0x2874) & 0x55); 10938 if ((bp->common.chip_id & 0x1) || 10939 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { 10940 bp->flags |= ONE_PORT_FLAG; 10941 BNX2X_DEV_INFO("single port device\n"); 10942 } 10943 10944 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); 10945 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << 10946 (val & MCPR_NVM_CFG4_FLASH_SIZE)); 10947 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", 10948 bp->common.flash_size, bp->common.flash_size); 10949 10950 bnx2x_init_shmem(bp); 10951 10952 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? 10953 MISC_REG_GENERIC_CR_1 : 10954 MISC_REG_GENERIC_CR_0)); 10955 10956 bp->link_params.shmem_base = bp->common.shmem_base; 10957 bp->link_params.shmem2_base = bp->common.shmem2_base; 10958 if (SHMEM2_RD(bp, size) > 10959 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) 10960 bp->link_params.lfa_base = 10961 REG_RD(bp, bp->common.shmem2_base + 10962 (u32)offsetof(struct shmem2_region, 10963 lfa_host_addr[BP_PORT(bp)])); 10964 else 10965 bp->link_params.lfa_base = 0; 10966 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n", 10967 bp->common.shmem_base, bp->common.shmem2_base); 10968 10969 if (!bp->common.shmem_base) { 10970 BNX2X_DEV_INFO("MCP not active\n"); 10971 bp->flags |= NO_MCP_FLAG; 10972 return; 10973 } 10974 10975 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); 10976 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); 10977 10978 bp->link_params.hw_led_mode = ((bp->common.hw_config & 10979 SHARED_HW_CFG_LED_MODE_MASK) >> 10980 SHARED_HW_CFG_LED_MODE_SHIFT); 10981 10982 bp->link_params.feature_config_flags = 0; 10983 val = SHMEM_RD(bp, dev_info.shared_feature_config.config); 10984 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) 10985 bp->link_params.feature_config_flags |= 10986 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10987 else 10988 bp->link_params.feature_config_flags &= 10989 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 10990 10991 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; 10992 bp->common.bc_ver = val; 10993 BNX2X_DEV_INFO("bc_ver %X\n", val); 10994 if (val < BNX2X_BC_VER) { 10995 /* for now only warn 10996 * later we might need to enforce this */ 10997 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", 10998 BNX2X_BC_VER, val); 10999 } 11000 bp->link_params.feature_config_flags |= 11001 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? 11002 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; 11003 11004 bp->link_params.feature_config_flags |= 11005 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? 11006 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; 11007 bp->link_params.feature_config_flags |= 11008 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? 11009 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; 11010 bp->link_params.feature_config_flags |= 11011 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? 11012 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; 11013 11014 bp->link_params.feature_config_flags |= 11015 (val >= REQ_BC_VER_4_MT_SUPPORTED) ? 11016 FEATURE_CONFIG_MT_SUPPORT : 0; 11017 11018 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? 11019 BC_SUPPORTS_PFC_STATS : 0; 11020 11021 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? 11022 BC_SUPPORTS_FCOE_FEATURES : 0; 11023 11024 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? 11025 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; 11026 11027 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? 11028 BC_SUPPORTS_RMMOD_CMD : 0; 11029 11030 boot_mode = SHMEM_RD(bp, 11031 dev_info.port_feature_config[BP_PORT(bp)].mba_config) & 11032 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; 11033 switch (boot_mode) { 11034 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: 11035 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; 11036 break; 11037 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: 11038 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; 11039 break; 11040 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: 11041 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; 11042 break; 11043 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: 11044 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; 11045 break; 11046 } 11047 11048 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); 11049 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; 11050 11051 BNX2X_DEV_INFO("%sWoL capable\n", 11052 (bp->flags & NO_WOL_FLAG) ? "not " : ""); 11053 11054 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); 11055 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); 11056 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); 11057 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); 11058 11059 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n", 11060 val, val2, val3, val4); 11061 } 11062 11063 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 11064 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 11065 11066 static int bnx2x_get_igu_cam_info(struct bnx2x *bp) 11067 { 11068 int pfid = BP_FUNC(bp); 11069 int igu_sb_id; 11070 u32 val; 11071 u8 fid, igu_sb_cnt = 0; 11072 11073 bp->igu_base_sb = 0xff; 11074 if (CHIP_INT_MODE_IS_BC(bp)) { 11075 int vn = BP_VN(bp); 11076 igu_sb_cnt = bp->igu_sb_cnt; 11077 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * 11078 FP_SB_MAX_E1x; 11079 11080 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x + 11081 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); 11082 11083 return 0; 11084 } 11085 11086 /* IGU in normal mode - read CAM */ 11087 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 11088 igu_sb_id++) { 11089 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 11090 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) 11091 continue; 11092 fid = IGU_FID(val); 11093 if ((fid & IGU_FID_ENCODE_IS_PF)) { 11094 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) 11095 continue; 11096 if (IGU_VEC(val) == 0) 11097 /* default status block */ 11098 bp->igu_dsb_id = igu_sb_id; 11099 else { 11100 if (bp->igu_base_sb == 0xff) 11101 bp->igu_base_sb = igu_sb_id; 11102 igu_sb_cnt++; 11103 } 11104 } 11105 } 11106 11107 #ifdef CONFIG_PCI_MSI 11108 /* Due to new PF resource allocation by MFW T7.4 and above, it's 11109 * optional that number of CAM entries will not be equal to the value 11110 * advertised in PCI. 11111 * Driver should use the minimal value of both as the actual status 11112 * block count 11113 */ 11114 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt); 11115 #endif 11116 11117 if (igu_sb_cnt == 0) { 11118 BNX2X_ERR("CAM configuration error\n"); 11119 return -EINVAL; 11120 } 11121 11122 return 0; 11123 } 11124 11125 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg) 11126 { 11127 int cfg_size = 0, idx, port = BP_PORT(bp); 11128 11129 /* Aggregation of supported attributes of all external phys */ 11130 bp->port.supported[0] = 0; 11131 bp->port.supported[1] = 0; 11132 switch (bp->link_params.num_phys) { 11133 case 1: 11134 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; 11135 cfg_size = 1; 11136 break; 11137 case 2: 11138 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; 11139 cfg_size = 1; 11140 break; 11141 case 3: 11142 if (bp->link_params.multi_phy_config & 11143 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11144 bp->port.supported[1] = 11145 bp->link_params.phy[EXT_PHY1].supported; 11146 bp->port.supported[0] = 11147 bp->link_params.phy[EXT_PHY2].supported; 11148 } else { 11149 bp->port.supported[0] = 11150 bp->link_params.phy[EXT_PHY1].supported; 11151 bp->port.supported[1] = 11152 bp->link_params.phy[EXT_PHY2].supported; 11153 } 11154 cfg_size = 2; 11155 break; 11156 } 11157 11158 if (!(bp->port.supported[0] || bp->port.supported[1])) { 11159 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", 11160 SHMEM_RD(bp, 11161 dev_info.port_hw_config[port].external_phy_config), 11162 SHMEM_RD(bp, 11163 dev_info.port_hw_config[port].external_phy_config2)); 11164 return; 11165 } 11166 11167 if (CHIP_IS_E3(bp)) 11168 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); 11169 else { 11170 switch (switch_cfg) { 11171 case SWITCH_CFG_1G: 11172 bp->port.phy_addr = REG_RD( 11173 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 11174 break; 11175 case SWITCH_CFG_10G: 11176 bp->port.phy_addr = REG_RD( 11177 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 11178 break; 11179 default: 11180 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", 11181 bp->port.link_config[0]); 11182 return; 11183 } 11184 } 11185 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); 11186 /* mask what we support according to speed_cap_mask per configuration */ 11187 for (idx = 0; idx < cfg_size; idx++) { 11188 if (!(bp->link_params.speed_cap_mask[idx] & 11189 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) 11190 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; 11191 11192 if (!(bp->link_params.speed_cap_mask[idx] & 11193 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) 11194 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; 11195 11196 if (!(bp->link_params.speed_cap_mask[idx] & 11197 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) 11198 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; 11199 11200 if (!(bp->link_params.speed_cap_mask[idx] & 11201 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) 11202 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; 11203 11204 if (!(bp->link_params.speed_cap_mask[idx] & 11205 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) 11206 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | 11207 SUPPORTED_1000baseT_Full); 11208 11209 if (!(bp->link_params.speed_cap_mask[idx] & 11210 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) 11211 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; 11212 11213 if (!(bp->link_params.speed_cap_mask[idx] & 11214 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) 11215 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; 11216 11217 if (!(bp->link_params.speed_cap_mask[idx] & 11218 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) 11219 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; 11220 } 11221 11222 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], 11223 bp->port.supported[1]); 11224 } 11225 11226 static void bnx2x_link_settings_requested(struct bnx2x *bp) 11227 { 11228 u32 link_config, idx, cfg_size = 0; 11229 bp->port.advertising[0] = 0; 11230 bp->port.advertising[1] = 0; 11231 switch (bp->link_params.num_phys) { 11232 case 1: 11233 case 2: 11234 cfg_size = 1; 11235 break; 11236 case 3: 11237 cfg_size = 2; 11238 break; 11239 } 11240 for (idx = 0; idx < cfg_size; idx++) { 11241 bp->link_params.req_duplex[idx] = DUPLEX_FULL; 11242 link_config = bp->port.link_config[idx]; 11243 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 11244 case PORT_FEATURE_LINK_SPEED_AUTO: 11245 if (bp->port.supported[idx] & SUPPORTED_Autoneg) { 11246 bp->link_params.req_line_speed[idx] = 11247 SPEED_AUTO_NEG; 11248 bp->port.advertising[idx] |= 11249 bp->port.supported[idx]; 11250 if (bp->link_params.phy[EXT_PHY1].type == 11251 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 11252 bp->port.advertising[idx] |= 11253 (SUPPORTED_100baseT_Half | 11254 SUPPORTED_100baseT_Full); 11255 } else { 11256 /* force 10G, no AN */ 11257 bp->link_params.req_line_speed[idx] = 11258 SPEED_10000; 11259 bp->port.advertising[idx] |= 11260 (ADVERTISED_10000baseT_Full | 11261 ADVERTISED_FIBRE); 11262 continue; 11263 } 11264 break; 11265 11266 case PORT_FEATURE_LINK_SPEED_10M_FULL: 11267 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { 11268 bp->link_params.req_line_speed[idx] = 11269 SPEED_10; 11270 bp->port.advertising[idx] |= 11271 (ADVERTISED_10baseT_Full | 11272 ADVERTISED_TP); 11273 } else { 11274 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11275 link_config, 11276 bp->link_params.speed_cap_mask[idx]); 11277 return; 11278 } 11279 break; 11280 11281 case PORT_FEATURE_LINK_SPEED_10M_HALF: 11282 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { 11283 bp->link_params.req_line_speed[idx] = 11284 SPEED_10; 11285 bp->link_params.req_duplex[idx] = 11286 DUPLEX_HALF; 11287 bp->port.advertising[idx] |= 11288 (ADVERTISED_10baseT_Half | 11289 ADVERTISED_TP); 11290 } else { 11291 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11292 link_config, 11293 bp->link_params.speed_cap_mask[idx]); 11294 return; 11295 } 11296 break; 11297 11298 case PORT_FEATURE_LINK_SPEED_100M_FULL: 11299 if (bp->port.supported[idx] & 11300 SUPPORTED_100baseT_Full) { 11301 bp->link_params.req_line_speed[idx] = 11302 SPEED_100; 11303 bp->port.advertising[idx] |= 11304 (ADVERTISED_100baseT_Full | 11305 ADVERTISED_TP); 11306 } else { 11307 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11308 link_config, 11309 bp->link_params.speed_cap_mask[idx]); 11310 return; 11311 } 11312 break; 11313 11314 case PORT_FEATURE_LINK_SPEED_100M_HALF: 11315 if (bp->port.supported[idx] & 11316 SUPPORTED_100baseT_Half) { 11317 bp->link_params.req_line_speed[idx] = 11318 SPEED_100; 11319 bp->link_params.req_duplex[idx] = 11320 DUPLEX_HALF; 11321 bp->port.advertising[idx] |= 11322 (ADVERTISED_100baseT_Half | 11323 ADVERTISED_TP); 11324 } else { 11325 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11326 link_config, 11327 bp->link_params.speed_cap_mask[idx]); 11328 return; 11329 } 11330 break; 11331 11332 case PORT_FEATURE_LINK_SPEED_1G: 11333 if (bp->port.supported[idx] & 11334 SUPPORTED_1000baseT_Full) { 11335 bp->link_params.req_line_speed[idx] = 11336 SPEED_1000; 11337 bp->port.advertising[idx] |= 11338 (ADVERTISED_1000baseT_Full | 11339 ADVERTISED_TP); 11340 } else if (bp->port.supported[idx] & 11341 SUPPORTED_1000baseKX_Full) { 11342 bp->link_params.req_line_speed[idx] = 11343 SPEED_1000; 11344 bp->port.advertising[idx] |= 11345 ADVERTISED_1000baseKX_Full; 11346 } else { 11347 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11348 link_config, 11349 bp->link_params.speed_cap_mask[idx]); 11350 return; 11351 } 11352 break; 11353 11354 case PORT_FEATURE_LINK_SPEED_2_5G: 11355 if (bp->port.supported[idx] & 11356 SUPPORTED_2500baseX_Full) { 11357 bp->link_params.req_line_speed[idx] = 11358 SPEED_2500; 11359 bp->port.advertising[idx] |= 11360 (ADVERTISED_2500baseX_Full | 11361 ADVERTISED_TP); 11362 } else { 11363 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11364 link_config, 11365 bp->link_params.speed_cap_mask[idx]); 11366 return; 11367 } 11368 break; 11369 11370 case PORT_FEATURE_LINK_SPEED_10G_CX4: 11371 if (bp->port.supported[idx] & 11372 SUPPORTED_10000baseT_Full) { 11373 bp->link_params.req_line_speed[idx] = 11374 SPEED_10000; 11375 bp->port.advertising[idx] |= 11376 (ADVERTISED_10000baseT_Full | 11377 ADVERTISED_FIBRE); 11378 } else if (bp->port.supported[idx] & 11379 SUPPORTED_10000baseKR_Full) { 11380 bp->link_params.req_line_speed[idx] = 11381 SPEED_10000; 11382 bp->port.advertising[idx] |= 11383 (ADVERTISED_10000baseKR_Full | 11384 ADVERTISED_FIBRE); 11385 } else { 11386 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n", 11387 link_config, 11388 bp->link_params.speed_cap_mask[idx]); 11389 return; 11390 } 11391 break; 11392 case PORT_FEATURE_LINK_SPEED_20G: 11393 bp->link_params.req_line_speed[idx] = SPEED_20000; 11394 11395 break; 11396 default: 11397 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", 11398 link_config); 11399 bp->link_params.req_line_speed[idx] = 11400 SPEED_AUTO_NEG; 11401 bp->port.advertising[idx] = 11402 bp->port.supported[idx]; 11403 break; 11404 } 11405 11406 bp->link_params.req_flow_ctrl[idx] = (link_config & 11407 PORT_FEATURE_FLOW_CONTROL_MASK); 11408 if (bp->link_params.req_flow_ctrl[idx] == 11409 BNX2X_FLOW_CTRL_AUTO) { 11410 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) 11411 bp->link_params.req_flow_ctrl[idx] = 11412 BNX2X_FLOW_CTRL_NONE; 11413 else 11414 bnx2x_set_requested_fc(bp); 11415 } 11416 11417 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", 11418 bp->link_params.req_line_speed[idx], 11419 bp->link_params.req_duplex[idx], 11420 bp->link_params.req_flow_ctrl[idx], 11421 bp->port.advertising[idx]); 11422 } 11423 } 11424 11425 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi) 11426 { 11427 __be16 mac_hi_be = cpu_to_be16(mac_hi); 11428 __be32 mac_lo_be = cpu_to_be32(mac_lo); 11429 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); 11430 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); 11431 } 11432 11433 static void bnx2x_get_port_hwinfo(struct bnx2x *bp) 11434 { 11435 int port = BP_PORT(bp); 11436 u32 config; 11437 u32 ext_phy_type, ext_phy_config, eee_mode; 11438 11439 bp->link_params.bp = bp; 11440 bp->link_params.port = port; 11441 11442 bp->link_params.lane_config = 11443 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); 11444 11445 bp->link_params.speed_cap_mask[0] = 11446 SHMEM_RD(bp, 11447 dev_info.port_hw_config[port].speed_capability_mask) & 11448 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11449 bp->link_params.speed_cap_mask[1] = 11450 SHMEM_RD(bp, 11451 dev_info.port_hw_config[port].speed_capability_mask2) & 11452 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; 11453 bp->port.link_config[0] = 11454 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); 11455 11456 bp->port.link_config[1] = 11457 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); 11458 11459 bp->link_params.multi_phy_config = 11460 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); 11461 /* If the device is capable of WoL, set the default state according 11462 * to the HW 11463 */ 11464 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); 11465 bp->wol = (!(bp->flags & NO_WOL_FLAG) && 11466 (config & PORT_FEATURE_WOL_ENABLED)); 11467 11468 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11469 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) 11470 bp->flags |= NO_ISCSI_FLAG; 11471 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == 11472 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) 11473 bp->flags |= NO_FCOE_FLAG; 11474 11475 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n", 11476 bp->link_params.lane_config, 11477 bp->link_params.speed_cap_mask[0], 11478 bp->port.link_config[0]); 11479 11480 bp->link_params.switch_cfg = (bp->port.link_config[0] & 11481 PORT_FEATURE_CONNECTED_SWITCH_MASK); 11482 bnx2x_phy_probe(&bp->link_params); 11483 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); 11484 11485 bnx2x_link_settings_requested(bp); 11486 11487 /* 11488 * If connected directly, work with the internal PHY, otherwise, work 11489 * with the external PHY 11490 */ 11491 ext_phy_config = 11492 SHMEM_RD(bp, 11493 dev_info.port_hw_config[port].external_phy_config); 11494 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); 11495 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 11496 bp->mdio.prtad = bp->port.phy_addr; 11497 11498 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 11499 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 11500 bp->mdio.prtad = 11501 XGXS_EXT_PHY_ADDR(ext_phy_config); 11502 11503 /* Configure link feature according to nvram value */ 11504 eee_mode = (((SHMEM_RD(bp, dev_info. 11505 port_feature_config[port].eee_power_mode)) & 11506 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 11507 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 11508 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 11509 bp->link_params.eee_mode = EEE_MODE_ADV_LPI | 11510 EEE_MODE_ENABLE_LPI | 11511 EEE_MODE_OUTPUT_TIME; 11512 } else { 11513 bp->link_params.eee_mode = 0; 11514 } 11515 } 11516 11517 void bnx2x_get_iscsi_info(struct bnx2x *bp) 11518 { 11519 u32 no_flags = NO_ISCSI_FLAG; 11520 int port = BP_PORT(bp); 11521 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11522 drv_lic_key[port].max_iscsi_conn); 11523 11524 if (!CNIC_SUPPORT(bp)) { 11525 bp->flags |= no_flags; 11526 return; 11527 } 11528 11529 /* Get the number of maximum allowed iSCSI connections */ 11530 bp->cnic_eth_dev.max_iscsi_conn = 11531 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> 11532 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; 11533 11534 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", 11535 bp->cnic_eth_dev.max_iscsi_conn); 11536 11537 /* 11538 * If maximum allowed number of connections is zero - 11539 * disable the feature. 11540 */ 11541 if (!bp->cnic_eth_dev.max_iscsi_conn) 11542 bp->flags |= no_flags; 11543 } 11544 11545 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) 11546 { 11547 /* Port info */ 11548 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11549 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); 11550 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11551 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); 11552 11553 /* Node info */ 11554 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11555 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); 11556 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11557 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); 11558 } 11559 11560 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) 11561 { 11562 u8 count = 0; 11563 11564 if (IS_MF(bp)) { 11565 u8 fid; 11566 11567 /* iterate over absolute function ids for this path: */ 11568 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { 11569 if (IS_MF_SD(bp)) { 11570 u32 cfg = MF_CFG_RD(bp, 11571 func_mf_config[fid].config); 11572 11573 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && 11574 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == 11575 FUNC_MF_CFG_PROTOCOL_FCOE)) 11576 count++; 11577 } else { 11578 u32 cfg = MF_CFG_RD(bp, 11579 func_ext_config[fid]. 11580 func_cfg); 11581 11582 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && 11583 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) 11584 count++; 11585 } 11586 } 11587 } else { /* SF */ 11588 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; 11589 11590 for (port = 0; port < port_cnt; port++) { 11591 u32 lic = SHMEM_RD(bp, 11592 drv_lic_key[port].max_fcoe_conn) ^ 11593 FW_ENCODE_32BIT_PATTERN; 11594 if (lic) 11595 count++; 11596 } 11597 } 11598 11599 return count; 11600 } 11601 11602 static void bnx2x_get_fcoe_info(struct bnx2x *bp) 11603 { 11604 int port = BP_PORT(bp); 11605 int func = BP_ABS_FUNC(bp); 11606 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, 11607 drv_lic_key[port].max_fcoe_conn); 11608 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); 11609 11610 if (!CNIC_SUPPORT(bp)) { 11611 bp->flags |= NO_FCOE_FLAG; 11612 return; 11613 } 11614 11615 /* Get the number of maximum allowed FCoE connections */ 11616 bp->cnic_eth_dev.max_fcoe_conn = 11617 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> 11618 BNX2X_MAX_FCOE_INIT_CONN_SHIFT; 11619 11620 /* Calculate the number of maximum allowed FCoE tasks */ 11621 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; 11622 11623 /* check if FCoE resources must be shared between different functions */ 11624 if (num_fcoe_func) 11625 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; 11626 11627 /* Read the WWN: */ 11628 if (!IS_MF(bp)) { 11629 /* Port info */ 11630 bp->cnic_eth_dev.fcoe_wwn_port_name_hi = 11631 SHMEM_RD(bp, 11632 dev_info.port_hw_config[port]. 11633 fcoe_wwn_port_name_upper); 11634 bp->cnic_eth_dev.fcoe_wwn_port_name_lo = 11635 SHMEM_RD(bp, 11636 dev_info.port_hw_config[port]. 11637 fcoe_wwn_port_name_lower); 11638 11639 /* Node info */ 11640 bp->cnic_eth_dev.fcoe_wwn_node_name_hi = 11641 SHMEM_RD(bp, 11642 dev_info.port_hw_config[port]. 11643 fcoe_wwn_node_name_upper); 11644 bp->cnic_eth_dev.fcoe_wwn_node_name_lo = 11645 SHMEM_RD(bp, 11646 dev_info.port_hw_config[port]. 11647 fcoe_wwn_node_name_lower); 11648 } else if (!IS_MF_SD(bp)) { 11649 /* Read the WWN info only if the FCoE feature is enabled for 11650 * this function. 11651 */ 11652 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) 11653 bnx2x_get_ext_wwn_info(bp, func); 11654 } else { 11655 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) 11656 bnx2x_get_ext_wwn_info(bp, func); 11657 } 11658 11659 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); 11660 11661 /* 11662 * If maximum allowed number of connections is zero - 11663 * disable the feature. 11664 */ 11665 if (!bp->cnic_eth_dev.max_fcoe_conn) 11666 bp->flags |= NO_FCOE_FLAG; 11667 } 11668 11669 static void bnx2x_get_cnic_info(struct bnx2x *bp) 11670 { 11671 /* 11672 * iSCSI may be dynamically disabled but reading 11673 * info here we will decrease memory usage by driver 11674 * if the feature is disabled for good 11675 */ 11676 bnx2x_get_iscsi_info(bp); 11677 bnx2x_get_fcoe_info(bp); 11678 } 11679 11680 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) 11681 { 11682 u32 val, val2; 11683 int func = BP_ABS_FUNC(bp); 11684 int port = BP_PORT(bp); 11685 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; 11686 u8 *fip_mac = bp->fip_mac; 11687 11688 if (IS_MF(bp)) { 11689 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or 11690 * FCoE MAC then the appropriate feature should be disabled. 11691 * In non SD mode features configuration comes from struct 11692 * func_ext_config. 11693 */ 11694 if (!IS_MF_SD(bp)) { 11695 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); 11696 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 11697 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11698 iscsi_mac_addr_upper); 11699 val = MF_CFG_RD(bp, func_ext_config[func]. 11700 iscsi_mac_addr_lower); 11701 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11702 BNX2X_DEV_INFO 11703 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11704 } else { 11705 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11706 } 11707 11708 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 11709 val2 = MF_CFG_RD(bp, func_ext_config[func]. 11710 fcoe_mac_addr_upper); 11711 val = MF_CFG_RD(bp, func_ext_config[func]. 11712 fcoe_mac_addr_lower); 11713 bnx2x_set_mac_buf(fip_mac, val, val2); 11714 BNX2X_DEV_INFO 11715 ("Read FCoE L2 MAC: %pM\n", fip_mac); 11716 } else { 11717 bp->flags |= NO_FCOE_FLAG; 11718 } 11719 11720 bp->mf_ext_config = cfg; 11721 11722 } else { /* SD MODE */ 11723 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { 11724 /* use primary mac as iscsi mac */ 11725 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN); 11726 11727 BNX2X_DEV_INFO("SD ISCSI MODE\n"); 11728 BNX2X_DEV_INFO 11729 ("Read iSCSI MAC: %pM\n", iscsi_mac); 11730 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { 11731 /* use primary mac as fip mac */ 11732 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN); 11733 BNX2X_DEV_INFO("SD FCoE MODE\n"); 11734 BNX2X_DEV_INFO 11735 ("Read FIP MAC: %pM\n", fip_mac); 11736 } 11737 } 11738 11739 /* If this is a storage-only interface, use SAN mac as 11740 * primary MAC. Notice that for SD this is already the case, 11741 * as the SAN mac was copied from the primary MAC. 11742 */ 11743 if (IS_MF_FCOE_AFEX(bp)) 11744 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN); 11745 } else { 11746 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11747 iscsi_mac_upper); 11748 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11749 iscsi_mac_lower); 11750 bnx2x_set_mac_buf(iscsi_mac, val, val2); 11751 11752 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11753 fcoe_fip_mac_upper); 11754 val = SHMEM_RD(bp, dev_info.port_hw_config[port]. 11755 fcoe_fip_mac_lower); 11756 bnx2x_set_mac_buf(fip_mac, val, val2); 11757 } 11758 11759 /* Disable iSCSI OOO if MAC configuration is invalid. */ 11760 if (!is_valid_ether_addr(iscsi_mac)) { 11761 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; 11762 eth_zero_addr(iscsi_mac); 11763 } 11764 11765 /* Disable FCoE if MAC configuration is invalid. */ 11766 if (!is_valid_ether_addr(fip_mac)) { 11767 bp->flags |= NO_FCOE_FLAG; 11768 eth_zero_addr(bp->fip_mac); 11769 } 11770 } 11771 11772 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) 11773 { 11774 u32 val, val2; 11775 int func = BP_ABS_FUNC(bp); 11776 int port = BP_PORT(bp); 11777 11778 /* Zero primary MAC configuration */ 11779 eth_zero_addr(bp->dev->dev_addr); 11780 11781 if (BP_NOMCP(bp)) { 11782 BNX2X_ERROR("warning: random MAC workaround active\n"); 11783 eth_hw_addr_random(bp->dev); 11784 } else if (IS_MF(bp)) { 11785 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11786 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); 11787 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && 11788 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) 11789 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11790 11791 if (CNIC_SUPPORT(bp)) 11792 bnx2x_get_cnic_mac_hwinfo(bp); 11793 } else { 11794 /* in SF read MACs from port configuration */ 11795 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11796 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11797 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2); 11798 11799 if (CNIC_SUPPORT(bp)) 11800 bnx2x_get_cnic_mac_hwinfo(bp); 11801 } 11802 11803 if (!BP_NOMCP(bp)) { 11804 /* Read physical port identifier from shmem */ 11805 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); 11806 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); 11807 bnx2x_set_mac_buf(bp->phys_port_id, val, val2); 11808 bp->flags |= HAS_PHYS_PORT_ID; 11809 } 11810 11811 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN); 11812 11813 if (!is_valid_ether_addr(bp->dev->dev_addr)) 11814 dev_err(&bp->pdev->dev, 11815 "bad Ethernet MAC address configuration: %pM\n" 11816 "change it manually before bringing up the appropriate network interface\n", 11817 bp->dev->dev_addr); 11818 } 11819 11820 static bool bnx2x_get_dropless_info(struct bnx2x *bp) 11821 { 11822 int tmp; 11823 u32 cfg; 11824 11825 if (IS_VF(bp)) 11826 return false; 11827 11828 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { 11829 /* Take function: tmp = func */ 11830 tmp = BP_ABS_FUNC(bp); 11831 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); 11832 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); 11833 } else { 11834 /* Take port: tmp = port */ 11835 tmp = BP_PORT(bp); 11836 cfg = SHMEM_RD(bp, 11837 dev_info.port_hw_config[tmp].generic_features); 11838 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); 11839 } 11840 return cfg; 11841 } 11842 11843 static void validate_set_si_mode(struct bnx2x *bp) 11844 { 11845 u8 func = BP_ABS_FUNC(bp); 11846 u32 val; 11847 11848 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); 11849 11850 /* check for legal mac (upper bytes) */ 11851 if (val != 0xffff) { 11852 bp->mf_mode = MULTI_FUNCTION_SI; 11853 bp->mf_config[BP_VN(bp)] = 11854 MF_CFG_RD(bp, func_mf_config[func].config); 11855 } else 11856 BNX2X_DEV_INFO("illegal MAC address for SI\n"); 11857 } 11858 11859 static int bnx2x_get_hwinfo(struct bnx2x *bp) 11860 { 11861 int /*abs*/func = BP_ABS_FUNC(bp); 11862 int vn, mfw_vn; 11863 u32 val = 0, val2 = 0; 11864 int rc = 0; 11865 11866 /* Validate that chip access is feasible */ 11867 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) { 11868 dev_err(&bp->pdev->dev, 11869 "Chip read returns all Fs. Preventing probe from continuing\n"); 11870 return -EINVAL; 11871 } 11872 11873 bnx2x_get_common_hwinfo(bp); 11874 11875 /* 11876 * initialize IGU parameters 11877 */ 11878 if (CHIP_IS_E1x(bp)) { 11879 bp->common.int_block = INT_BLOCK_HC; 11880 11881 bp->igu_dsb_id = DEF_SB_IGU_ID; 11882 bp->igu_base_sb = 0; 11883 } else { 11884 bp->common.int_block = INT_BLOCK_IGU; 11885 11886 /* do not allow device reset during IGU info processing */ 11887 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11888 11889 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); 11890 11891 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11892 int tout = 5000; 11893 11894 BNX2X_DEV_INFO("FORCING Normal Mode\n"); 11895 11896 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 11897 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); 11898 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); 11899 11900 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11901 tout--; 11902 usleep_range(1000, 2000); 11903 } 11904 11905 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { 11906 dev_err(&bp->pdev->dev, 11907 "FORCING Normal Mode failed!!!\n"); 11908 bnx2x_release_hw_lock(bp, 11909 HW_LOCK_RESOURCE_RESET); 11910 return -EPERM; 11911 } 11912 } 11913 11914 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 11915 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); 11916 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; 11917 } else 11918 BNX2X_DEV_INFO("IGU Normal Mode\n"); 11919 11920 rc = bnx2x_get_igu_cam_info(bp); 11921 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); 11922 if (rc) 11923 return rc; 11924 } 11925 11926 /* 11927 * set base FW non-default (fast path) status block id, this value is 11928 * used to initialize the fw_sb_id saved on the fp/queue structure to 11929 * determine the id used by the FW. 11930 */ 11931 if (CHIP_IS_E1x(bp)) 11932 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); 11933 else /* 11934 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of 11935 * the same queue are indicated on the same IGU SB). So we prefer 11936 * FW and IGU SBs to be the same value. 11937 */ 11938 bp->base_fw_ndsb = bp->igu_base_sb; 11939 11940 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n" 11941 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, 11942 bp->igu_sb_cnt, bp->base_fw_ndsb); 11943 11944 /* 11945 * Initialize MF configuration 11946 */ 11947 11948 bp->mf_ov = 0; 11949 bp->mf_mode = 0; 11950 bp->mf_sub_mode = 0; 11951 vn = BP_VN(bp); 11952 mfw_vn = BP_FW_MB_IDX(bp); 11953 11954 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { 11955 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", 11956 bp->common.shmem2_base, SHMEM2_RD(bp, size), 11957 (u32)offsetof(struct shmem2_region, mf_cfg_addr)); 11958 11959 if (SHMEM2_HAS(bp, mf_cfg_addr)) 11960 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); 11961 else 11962 bp->common.mf_cfg_base = bp->common.shmem_base + 11963 offsetof(struct shmem_region, func_mb) + 11964 E1H_FUNC_MAX * sizeof(struct drv_func_mb); 11965 /* 11966 * get mf configuration: 11967 * 1. Existence of MF configuration 11968 * 2. MAC address must be legal (check only upper bytes) 11969 * for Switch-Independent mode; 11970 * OVLAN must be legal for Switch-Dependent mode 11971 * 3. SF_MODE configures specific MF mode 11972 */ 11973 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 11974 /* get mf configuration */ 11975 val = SHMEM_RD(bp, 11976 dev_info.shared_feature_config.config); 11977 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; 11978 11979 switch (val) { 11980 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 11981 validate_set_si_mode(bp); 11982 break; 11983 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 11984 if ((!CHIP_IS_E1x(bp)) && 11985 (MF_CFG_RD(bp, func_mf_config[func]. 11986 mac_upper) != 0xffff) && 11987 (SHMEM2_HAS(bp, 11988 afex_driver_support))) { 11989 bp->mf_mode = MULTI_FUNCTION_AFEX; 11990 bp->mf_config[vn] = MF_CFG_RD(bp, 11991 func_mf_config[func].config); 11992 } else { 11993 BNX2X_DEV_INFO("can not configure afex mode\n"); 11994 } 11995 break; 11996 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 11997 /* get OV configuration */ 11998 val = MF_CFG_RD(bp, 11999 func_mf_config[FUNC_0].e1hov_tag); 12000 val &= FUNC_MF_CFG_E1HOV_TAG_MASK; 12001 12002 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12003 bp->mf_mode = MULTI_FUNCTION_SD; 12004 bp->mf_config[vn] = MF_CFG_RD(bp, 12005 func_mf_config[func].config); 12006 } else 12007 BNX2X_DEV_INFO("illegal OV for SD\n"); 12008 break; 12009 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE: 12010 bp->mf_mode = MULTI_FUNCTION_SD; 12011 bp->mf_sub_mode = SUB_MF_MODE_BD; 12012 bp->mf_config[vn] = 12013 MF_CFG_RD(bp, 12014 func_mf_config[func].config); 12015 12016 if (SHMEM2_HAS(bp, mtu_size)) { 12017 int mtu_idx = BP_FW_MB_IDX(bp); 12018 u16 mtu_size; 12019 u32 mtu; 12020 12021 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]); 12022 mtu_size = (u16)mtu; 12023 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n", 12024 mtu_size, mtu); 12025 12026 /* if valid: update device mtu */ 12027 if (((mtu_size + ETH_HLEN) >= 12028 ETH_MIN_PACKET_SIZE) && 12029 (mtu_size <= 12030 ETH_MAX_JUMBO_PACKET_SIZE)) 12031 bp->dev->mtu = mtu_size; 12032 } 12033 break; 12034 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: 12035 bp->mf_mode = MULTI_FUNCTION_SD; 12036 bp->mf_sub_mode = SUB_MF_MODE_UFP; 12037 bp->mf_config[vn] = 12038 MF_CFG_RD(bp, 12039 func_mf_config[func].config); 12040 break; 12041 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 12042 bp->mf_config[vn] = 0; 12043 break; 12044 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: 12045 val2 = SHMEM_RD(bp, 12046 dev_info.shared_hw_config.config_3); 12047 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; 12048 switch (val2) { 12049 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: 12050 validate_set_si_mode(bp); 12051 bp->mf_sub_mode = 12052 SUB_MF_MODE_NPAR1_DOT_5; 12053 break; 12054 default: 12055 /* Unknown configuration */ 12056 bp->mf_config[vn] = 0; 12057 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", 12058 val); 12059 } 12060 break; 12061 default: 12062 /* Unknown configuration: reset mf_config */ 12063 bp->mf_config[vn] = 0; 12064 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); 12065 } 12066 } 12067 12068 BNX2X_DEV_INFO("%s function mode\n", 12069 IS_MF(bp) ? "multi" : "single"); 12070 12071 switch (bp->mf_mode) { 12072 case MULTI_FUNCTION_SD: 12073 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & 12074 FUNC_MF_CFG_E1HOV_TAG_MASK; 12075 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 12076 bp->mf_ov = val; 12077 bp->path_has_ovlan = true; 12078 12079 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", 12080 func, bp->mf_ov, bp->mf_ov); 12081 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) || 12082 (bp->mf_sub_mode == SUB_MF_MODE_BD)) { 12083 dev_err(&bp->pdev->dev, 12084 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n", 12085 func); 12086 bp->path_has_ovlan = true; 12087 } else { 12088 dev_err(&bp->pdev->dev, 12089 "No valid MF OV for func %d, aborting\n", 12090 func); 12091 return -EPERM; 12092 } 12093 break; 12094 case MULTI_FUNCTION_AFEX: 12095 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); 12096 break; 12097 case MULTI_FUNCTION_SI: 12098 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", 12099 func); 12100 break; 12101 default: 12102 if (vn) { 12103 dev_err(&bp->pdev->dev, 12104 "VN %d is in a single function mode, aborting\n", 12105 vn); 12106 return -EPERM; 12107 } 12108 break; 12109 } 12110 12111 /* check if other port on the path needs ovlan: 12112 * Since MF configuration is shared between ports 12113 * Possible mixed modes are only 12114 * {SF, SI} {SF, SD} {SD, SF} {SI, SF} 12115 */ 12116 if (CHIP_MODE_IS_4_PORT(bp) && 12117 !bp->path_has_ovlan && 12118 !IS_MF(bp) && 12119 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { 12120 u8 other_port = !BP_PORT(bp); 12121 u8 other_func = BP_PATH(bp) + 2*other_port; 12122 val = MF_CFG_RD(bp, 12123 func_mf_config[other_func].e1hov_tag); 12124 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) 12125 bp->path_has_ovlan = true; 12126 } 12127 } 12128 12129 /* adjust igu_sb_cnt to MF for E1H */ 12130 if (CHIP_IS_E1H(bp) && IS_MF(bp)) 12131 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT); 12132 12133 /* port info */ 12134 bnx2x_get_port_hwinfo(bp); 12135 12136 /* Get MAC addresses */ 12137 bnx2x_get_mac_hwinfo(bp); 12138 12139 bnx2x_get_cnic_info(bp); 12140 12141 return rc; 12142 } 12143 12144 static void bnx2x_read_fwinfo(struct bnx2x *bp) 12145 { 12146 int cnt, i, block_end, rodi; 12147 char vpd_start[BNX2X_VPD_LEN+1]; 12148 char str_id_reg[VENDOR_ID_LEN+1]; 12149 char str_id_cap[VENDOR_ID_LEN+1]; 12150 char *vpd_data; 12151 char *vpd_extended_data = NULL; 12152 u8 len; 12153 12154 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); 12155 memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); 12156 12157 if (cnt < BNX2X_VPD_LEN) 12158 goto out_not_found; 12159 12160 /* VPD RO tag should be first tag after identifier string, hence 12161 * we should be able to find it in first BNX2X_VPD_LEN chars 12162 */ 12163 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, 12164 PCI_VPD_LRDT_RO_DATA); 12165 if (i < 0) 12166 goto out_not_found; 12167 12168 block_end = i + PCI_VPD_LRDT_TAG_SIZE + 12169 pci_vpd_lrdt_size(&vpd_start[i]); 12170 12171 i += PCI_VPD_LRDT_TAG_SIZE; 12172 12173 if (block_end > BNX2X_VPD_LEN) { 12174 vpd_extended_data = kmalloc(block_end, GFP_KERNEL); 12175 if (vpd_extended_data == NULL) 12176 goto out_not_found; 12177 12178 /* read rest of vpd image into vpd_extended_data */ 12179 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); 12180 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, 12181 block_end - BNX2X_VPD_LEN, 12182 vpd_extended_data + BNX2X_VPD_LEN); 12183 if (cnt < (block_end - BNX2X_VPD_LEN)) 12184 goto out_not_found; 12185 vpd_data = vpd_extended_data; 12186 } else 12187 vpd_data = vpd_start; 12188 12189 /* now vpd_data holds full vpd content in both cases */ 12190 12191 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12192 PCI_VPD_RO_KEYWORD_MFR_ID); 12193 if (rodi < 0) 12194 goto out_not_found; 12195 12196 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12197 12198 if (len != VENDOR_ID_LEN) 12199 goto out_not_found; 12200 12201 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12202 12203 /* vendor specific info */ 12204 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); 12205 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); 12206 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || 12207 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { 12208 12209 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, 12210 PCI_VPD_RO_KEYWORD_VENDOR0); 12211 if (rodi >= 0) { 12212 len = pci_vpd_info_field_size(&vpd_data[rodi]); 12213 12214 rodi += PCI_VPD_INFO_FLD_HDR_SIZE; 12215 12216 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { 12217 memcpy(bp->fw_ver, &vpd_data[rodi], len); 12218 bp->fw_ver[len] = ' '; 12219 } 12220 } 12221 kfree(vpd_extended_data); 12222 return; 12223 } 12224 out_not_found: 12225 kfree(vpd_extended_data); 12226 return; 12227 } 12228 12229 static void bnx2x_set_modes_bitmap(struct bnx2x *bp) 12230 { 12231 u32 flags = 0; 12232 12233 if (CHIP_REV_IS_FPGA(bp)) 12234 SET_FLAGS(flags, MODE_FPGA); 12235 else if (CHIP_REV_IS_EMUL(bp)) 12236 SET_FLAGS(flags, MODE_EMUL); 12237 else 12238 SET_FLAGS(flags, MODE_ASIC); 12239 12240 if (CHIP_MODE_IS_4_PORT(bp)) 12241 SET_FLAGS(flags, MODE_PORT4); 12242 else 12243 SET_FLAGS(flags, MODE_PORT2); 12244 12245 if (CHIP_IS_E2(bp)) 12246 SET_FLAGS(flags, MODE_E2); 12247 else if (CHIP_IS_E3(bp)) { 12248 SET_FLAGS(flags, MODE_E3); 12249 if (CHIP_REV(bp) == CHIP_REV_Ax) 12250 SET_FLAGS(flags, MODE_E3_A0); 12251 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ 12252 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 12253 } 12254 12255 if (IS_MF(bp)) { 12256 SET_FLAGS(flags, MODE_MF); 12257 switch (bp->mf_mode) { 12258 case MULTI_FUNCTION_SD: 12259 SET_FLAGS(flags, MODE_MF_SD); 12260 break; 12261 case MULTI_FUNCTION_SI: 12262 SET_FLAGS(flags, MODE_MF_SI); 12263 break; 12264 case MULTI_FUNCTION_AFEX: 12265 SET_FLAGS(flags, MODE_MF_AFEX); 12266 break; 12267 } 12268 } else 12269 SET_FLAGS(flags, MODE_SF); 12270 12271 #if defined(__LITTLE_ENDIAN) 12272 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 12273 #else /*(__BIG_ENDIAN)*/ 12274 SET_FLAGS(flags, MODE_BIG_ENDIAN); 12275 #endif 12276 INIT_MODE_FLAGS(bp) = flags; 12277 } 12278 12279 static int bnx2x_init_bp(struct bnx2x *bp) 12280 { 12281 int func; 12282 int rc; 12283 12284 mutex_init(&bp->port.phy_mutex); 12285 mutex_init(&bp->fw_mb_mutex); 12286 mutex_init(&bp->drv_info_mutex); 12287 sema_init(&bp->stats_lock, 1); 12288 bp->drv_info_mng_owner = false; 12289 INIT_LIST_HEAD(&bp->vlan_reg); 12290 12291 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); 12292 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); 12293 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); 12294 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); 12295 if (IS_PF(bp)) { 12296 rc = bnx2x_get_hwinfo(bp); 12297 if (rc) 12298 return rc; 12299 } else { 12300 eth_zero_addr(bp->dev->dev_addr); 12301 } 12302 12303 bnx2x_set_modes_bitmap(bp); 12304 12305 rc = bnx2x_alloc_mem_bp(bp); 12306 if (rc) 12307 return rc; 12308 12309 bnx2x_read_fwinfo(bp); 12310 12311 func = BP_FUNC(bp); 12312 12313 /* need to reset chip if undi was active */ 12314 if (IS_PF(bp) && !BP_NOMCP(bp)) { 12315 /* init fw_seq */ 12316 bp->fw_seq = 12317 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 12318 DRV_MSG_SEQ_NUMBER_MASK; 12319 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 12320 12321 rc = bnx2x_prev_unload(bp); 12322 if (rc) { 12323 bnx2x_free_mem_bp(bp); 12324 return rc; 12325 } 12326 } 12327 12328 if (CHIP_REV_IS_FPGA(bp)) 12329 dev_err(&bp->pdev->dev, "FPGA detected\n"); 12330 12331 if (BP_NOMCP(bp) && (func == 0)) 12332 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); 12333 12334 bp->disable_tpa = disable_tpa; 12335 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); 12336 /* Reduce memory usage in kdump environment by disabling TPA */ 12337 bp->disable_tpa |= is_kdump_kernel(); 12338 12339 /* Set TPA flags */ 12340 if (bp->disable_tpa) { 12341 bp->dev->hw_features &= ~NETIF_F_LRO; 12342 bp->dev->features &= ~NETIF_F_LRO; 12343 } 12344 12345 if (CHIP_IS_E1(bp)) 12346 bp->dropless_fc = 0; 12347 else 12348 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); 12349 12350 bp->mrrs = mrrs; 12351 12352 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; 12353 if (IS_VF(bp)) 12354 bp->rx_ring_size = MAX_RX_AVAIL; 12355 12356 /* make sure that the numbers are in the right granularity */ 12357 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; 12358 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; 12359 12360 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; 12361 12362 init_timer(&bp->timer); 12363 bp->timer.expires = jiffies + bp->current_interval; 12364 bp->timer.data = (unsigned long) bp; 12365 bp->timer.function = bnx2x_timer; 12366 12367 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && 12368 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && 12369 SHMEM2_RD(bp, dcbx_lldp_params_offset) && 12370 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { 12371 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); 12372 bnx2x_dcbx_init_params(bp); 12373 } else { 12374 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); 12375 } 12376 12377 if (CHIP_IS_E1x(bp)) 12378 bp->cnic_base_cl_id = FP_SB_MAX_E1x; 12379 else 12380 bp->cnic_base_cl_id = FP_SB_MAX_E2; 12381 12382 /* multiple tx priority */ 12383 if (IS_VF(bp)) 12384 bp->max_cos = 1; 12385 else if (CHIP_IS_E1x(bp)) 12386 bp->max_cos = BNX2X_MULTI_TX_COS_E1X; 12387 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) 12388 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; 12389 else if (CHIP_IS_E3B0(bp)) 12390 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; 12391 else 12392 BNX2X_ERR("unknown chip %x revision %x\n", 12393 CHIP_NUM(bp), CHIP_REV(bp)); 12394 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); 12395 12396 /* We need at least one default status block for slow-path events, 12397 * second status block for the L2 queue, and a third status block for 12398 * CNIC if supported. 12399 */ 12400 if (IS_VF(bp)) 12401 bp->min_msix_vec_cnt = 1; 12402 else if (CNIC_SUPPORT(bp)) 12403 bp->min_msix_vec_cnt = 3; 12404 else /* PF w/o cnic */ 12405 bp->min_msix_vec_cnt = 2; 12406 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); 12407 12408 bp->dump_preset_idx = 1; 12409 12410 if (CHIP_IS_E3B0(bp)) 12411 bp->flags |= PTP_SUPPORTED; 12412 12413 return rc; 12414 } 12415 12416 /**************************************************************************** 12417 * General service functions 12418 ****************************************************************************/ 12419 12420 /* 12421 * net_device service functions 12422 */ 12423 12424 /* called with rtnl_lock */ 12425 static int bnx2x_open(struct net_device *dev) 12426 { 12427 struct bnx2x *bp = netdev_priv(dev); 12428 int rc; 12429 12430 bp->stats_init = true; 12431 12432 netif_carrier_off(dev); 12433 12434 bnx2x_set_power_state(bp, PCI_D0); 12435 12436 /* If parity had happen during the unload, then attentions 12437 * and/or RECOVERY_IN_PROGRES may still be set. In this case we 12438 * want the first function loaded on the current engine to 12439 * complete the recovery. 12440 * Parity recovery is only relevant for PF driver. 12441 */ 12442 if (IS_PF(bp)) { 12443 int other_engine = BP_PATH(bp) ? 0 : 1; 12444 bool other_load_status, load_status; 12445 bool global = false; 12446 12447 other_load_status = bnx2x_get_load_status(bp, other_engine); 12448 load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); 12449 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || 12450 bnx2x_chk_parity_attn(bp, &global, true)) { 12451 do { 12452 /* If there are attentions and they are in a 12453 * global blocks, set the GLOBAL_RESET bit 12454 * regardless whether it will be this function 12455 * that will complete the recovery or not. 12456 */ 12457 if (global) 12458 bnx2x_set_reset_global(bp); 12459 12460 /* Only the first function on the current 12461 * engine should try to recover in open. In case 12462 * of attentions in global blocks only the first 12463 * in the chip should try to recover. 12464 */ 12465 if ((!load_status && 12466 (!global || !other_load_status)) && 12467 bnx2x_trylock_leader_lock(bp) && 12468 !bnx2x_leader_reset(bp)) { 12469 netdev_info(bp->dev, 12470 "Recovered in open\n"); 12471 break; 12472 } 12473 12474 /* recovery has failed... */ 12475 bnx2x_set_power_state(bp, PCI_D3hot); 12476 bp->recovery_state = BNX2X_RECOVERY_FAILED; 12477 12478 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" 12479 "If you still see this message after a few retries then power cycle is required.\n"); 12480 12481 return -EAGAIN; 12482 } while (0); 12483 } 12484 } 12485 12486 bp->recovery_state = BNX2X_RECOVERY_DONE; 12487 rc = bnx2x_nic_load(bp, LOAD_OPEN); 12488 if (rc) 12489 return rc; 12490 12491 #ifdef CONFIG_BNX2X_VXLAN 12492 if (IS_PF(bp)) 12493 vxlan_get_rx_port(dev); 12494 #endif 12495 12496 return 0; 12497 } 12498 12499 /* called with rtnl_lock */ 12500 static int bnx2x_close(struct net_device *dev) 12501 { 12502 struct bnx2x *bp = netdev_priv(dev); 12503 12504 /* Unload the driver, release IRQs */ 12505 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 12506 12507 return 0; 12508 } 12509 12510 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, 12511 struct bnx2x_mcast_ramrod_params *p) 12512 { 12513 int mc_count = netdev_mc_count(bp->dev); 12514 struct bnx2x_mcast_list_elem *mc_mac = 12515 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC); 12516 struct netdev_hw_addr *ha; 12517 12518 if (!mc_mac) 12519 return -ENOMEM; 12520 12521 INIT_LIST_HEAD(&p->mcast_list); 12522 12523 netdev_for_each_mc_addr(ha, bp->dev) { 12524 mc_mac->mac = bnx2x_mc_addr(ha); 12525 list_add_tail(&mc_mac->link, &p->mcast_list); 12526 mc_mac++; 12527 } 12528 12529 p->mcast_list_len = mc_count; 12530 12531 return 0; 12532 } 12533 12534 static void bnx2x_free_mcast_macs_list( 12535 struct bnx2x_mcast_ramrod_params *p) 12536 { 12537 struct bnx2x_mcast_list_elem *mc_mac = 12538 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, 12539 link); 12540 12541 WARN_ON(!mc_mac); 12542 kfree(mc_mac); 12543 } 12544 12545 /** 12546 * bnx2x_set_uc_list - configure a new unicast MACs list. 12547 * 12548 * @bp: driver handle 12549 * 12550 * We will use zero (0) as a MAC type for these MACs. 12551 */ 12552 static int bnx2x_set_uc_list(struct bnx2x *bp) 12553 { 12554 int rc; 12555 struct net_device *dev = bp->dev; 12556 struct netdev_hw_addr *ha; 12557 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 12558 unsigned long ramrod_flags = 0; 12559 12560 /* First schedule a cleanup up of old configuration */ 12561 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); 12562 if (rc < 0) { 12563 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); 12564 return rc; 12565 } 12566 12567 netdev_for_each_uc_addr(ha, dev) { 12568 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, 12569 BNX2X_UC_LIST_MAC, &ramrod_flags); 12570 if (rc == -EEXIST) { 12571 DP(BNX2X_MSG_SP, 12572 "Failed to schedule ADD operations: %d\n", rc); 12573 /* do not treat adding same MAC as error */ 12574 rc = 0; 12575 12576 } else if (rc < 0) { 12577 12578 BNX2X_ERR("Failed to schedule ADD operations: %d\n", 12579 rc); 12580 return rc; 12581 } 12582 } 12583 12584 /* Execute the pending commands */ 12585 __set_bit(RAMROD_CONT, &ramrod_flags); 12586 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, 12587 BNX2X_UC_LIST_MAC, &ramrod_flags); 12588 } 12589 12590 static int bnx2x_set_mc_list(struct bnx2x *bp) 12591 { 12592 struct net_device *dev = bp->dev; 12593 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 12594 int rc = 0; 12595 12596 rparam.mcast_obj = &bp->mcast_obj; 12597 12598 /* first, clear all configured multicast MACs */ 12599 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 12600 if (rc < 0) { 12601 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); 12602 return rc; 12603 } 12604 12605 /* then, configure a new MACs list */ 12606 if (netdev_mc_count(dev)) { 12607 rc = bnx2x_init_mcast_macs_list(bp, &rparam); 12608 if (rc) { 12609 BNX2X_ERR("Failed to create multicast MACs list: %d\n", 12610 rc); 12611 return rc; 12612 } 12613 12614 /* Now add the new MACs */ 12615 rc = bnx2x_config_mcast(bp, &rparam, 12616 BNX2X_MCAST_CMD_ADD); 12617 if (rc < 0) 12618 BNX2X_ERR("Failed to set a new multicast configuration: %d\n", 12619 rc); 12620 12621 bnx2x_free_mcast_macs_list(&rparam); 12622 } 12623 12624 return rc; 12625 } 12626 12627 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ 12628 static void bnx2x_set_rx_mode(struct net_device *dev) 12629 { 12630 struct bnx2x *bp = netdev_priv(dev); 12631 12632 if (bp->state != BNX2X_STATE_OPEN) { 12633 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); 12634 return; 12635 } else { 12636 /* Schedule an SP task to handle rest of change */ 12637 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, 12638 NETIF_MSG_IFUP); 12639 } 12640 } 12641 12642 void bnx2x_set_rx_mode_inner(struct bnx2x *bp) 12643 { 12644 u32 rx_mode = BNX2X_RX_MODE_NORMAL; 12645 12646 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); 12647 12648 netif_addr_lock_bh(bp->dev); 12649 12650 if (bp->dev->flags & IFF_PROMISC) { 12651 rx_mode = BNX2X_RX_MODE_PROMISC; 12652 } else if ((bp->dev->flags & IFF_ALLMULTI) || 12653 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && 12654 CHIP_IS_E1(bp))) { 12655 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12656 } else { 12657 if (IS_PF(bp)) { 12658 /* some multicasts */ 12659 if (bnx2x_set_mc_list(bp) < 0) 12660 rx_mode = BNX2X_RX_MODE_ALLMULTI; 12661 12662 /* release bh lock, as bnx2x_set_uc_list might sleep */ 12663 netif_addr_unlock_bh(bp->dev); 12664 if (bnx2x_set_uc_list(bp) < 0) 12665 rx_mode = BNX2X_RX_MODE_PROMISC; 12666 netif_addr_lock_bh(bp->dev); 12667 } else { 12668 /* configuring mcast to a vf involves sleeping (when we 12669 * wait for the pf's response). 12670 */ 12671 bnx2x_schedule_sp_rtnl(bp, 12672 BNX2X_SP_RTNL_VFPF_MCAST, 0); 12673 } 12674 } 12675 12676 bp->rx_mode = rx_mode; 12677 /* handle ISCSI SD mode */ 12678 if (IS_MF_ISCSI_ONLY(bp)) 12679 bp->rx_mode = BNX2X_RX_MODE_NONE; 12680 12681 /* Schedule the rx_mode command */ 12682 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { 12683 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); 12684 netif_addr_unlock_bh(bp->dev); 12685 return; 12686 } 12687 12688 if (IS_PF(bp)) { 12689 bnx2x_set_storm_rx_mode(bp); 12690 netif_addr_unlock_bh(bp->dev); 12691 } else { 12692 /* VF will need to request the PF to make this change, and so 12693 * the VF needs to release the bottom-half lock prior to the 12694 * request (as it will likely require sleep on the VF side) 12695 */ 12696 netif_addr_unlock_bh(bp->dev); 12697 bnx2x_vfpf_storm_rx_mode(bp); 12698 } 12699 } 12700 12701 /* called with rtnl_lock */ 12702 static int bnx2x_mdio_read(struct net_device *netdev, int prtad, 12703 int devad, u16 addr) 12704 { 12705 struct bnx2x *bp = netdev_priv(netdev); 12706 u16 value; 12707 int rc; 12708 12709 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", 12710 prtad, devad, addr); 12711 12712 /* The HW expects different devad if CL22 is used */ 12713 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12714 12715 bnx2x_acquire_phy_lock(bp); 12716 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); 12717 bnx2x_release_phy_lock(bp); 12718 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); 12719 12720 if (!rc) 12721 rc = value; 12722 return rc; 12723 } 12724 12725 /* called with rtnl_lock */ 12726 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad, 12727 u16 addr, u16 value) 12728 { 12729 struct bnx2x *bp = netdev_priv(netdev); 12730 int rc; 12731 12732 DP(NETIF_MSG_LINK, 12733 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", 12734 prtad, devad, addr, value); 12735 12736 /* The HW expects different devad if CL22 is used */ 12737 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; 12738 12739 bnx2x_acquire_phy_lock(bp); 12740 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); 12741 bnx2x_release_phy_lock(bp); 12742 return rc; 12743 } 12744 12745 /* called with rtnl_lock */ 12746 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12747 { 12748 struct bnx2x *bp = netdev_priv(dev); 12749 struct mii_ioctl_data *mdio = if_mii(ifr); 12750 12751 if (!netif_running(dev)) 12752 return -EAGAIN; 12753 12754 switch (cmd) { 12755 case SIOCSHWTSTAMP: 12756 return bnx2x_hwtstamp_ioctl(bp, ifr); 12757 default: 12758 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", 12759 mdio->phy_id, mdio->reg_num, mdio->val_in); 12760 return mdio_mii_ioctl(&bp->mdio, mdio, cmd); 12761 } 12762 } 12763 12764 #ifdef CONFIG_NET_POLL_CONTROLLER 12765 static void poll_bnx2x(struct net_device *dev) 12766 { 12767 struct bnx2x *bp = netdev_priv(dev); 12768 int i; 12769 12770 for_each_eth_queue(bp, i) { 12771 struct bnx2x_fastpath *fp = &bp->fp[i]; 12772 napi_schedule(&bnx2x_fp(bp, fp->index, napi)); 12773 } 12774 } 12775 #endif 12776 12777 static int bnx2x_validate_addr(struct net_device *dev) 12778 { 12779 struct bnx2x *bp = netdev_priv(dev); 12780 12781 /* query the bulletin board for mac address configured by the PF */ 12782 if (IS_VF(bp)) 12783 bnx2x_sample_bulletin(bp); 12784 12785 if (!is_valid_ether_addr(dev->dev_addr)) { 12786 BNX2X_ERR("Non-valid Ethernet address\n"); 12787 return -EADDRNOTAVAIL; 12788 } 12789 return 0; 12790 } 12791 12792 static int bnx2x_get_phys_port_id(struct net_device *netdev, 12793 struct netdev_phys_item_id *ppid) 12794 { 12795 struct bnx2x *bp = netdev_priv(netdev); 12796 12797 if (!(bp->flags & HAS_PHYS_PORT_ID)) 12798 return -EOPNOTSUPP; 12799 12800 ppid->id_len = sizeof(bp->phys_port_id); 12801 memcpy(ppid->id, bp->phys_port_id, ppid->id_len); 12802 12803 return 0; 12804 } 12805 12806 static netdev_features_t bnx2x_features_check(struct sk_buff *skb, 12807 struct net_device *dev, 12808 netdev_features_t features) 12809 { 12810 features = vlan_features_check(skb, features); 12811 return vxlan_features_check(skb, features); 12812 } 12813 12814 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add) 12815 { 12816 int rc; 12817 12818 if (IS_PF(bp)) { 12819 unsigned long ramrod_flags = 0; 12820 12821 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 12822 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj, 12823 add, &ramrod_flags); 12824 } else { 12825 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add); 12826 } 12827 12828 return rc; 12829 } 12830 12831 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp) 12832 { 12833 struct bnx2x_vlan_entry *vlan; 12834 int rc = 0; 12835 12836 if (!bp->vlan_cnt) { 12837 DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n"); 12838 return 0; 12839 } 12840 12841 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12842 /* Prepare for cleanup in case of errors */ 12843 if (rc) { 12844 vlan->hw = false; 12845 continue; 12846 } 12847 12848 if (!vlan->hw) 12849 continue; 12850 12851 DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid); 12852 12853 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12854 if (rc) { 12855 BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid); 12856 vlan->hw = false; 12857 rc = -EINVAL; 12858 continue; 12859 } 12860 } 12861 12862 return rc; 12863 } 12864 12865 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 12866 { 12867 struct bnx2x *bp = netdev_priv(dev); 12868 struct bnx2x_vlan_entry *vlan; 12869 bool hw = false; 12870 int rc = 0; 12871 12872 if (!netif_running(bp->dev)) { 12873 DP(NETIF_MSG_IFUP, 12874 "Ignoring VLAN configuration the interface is down\n"); 12875 return -EFAULT; 12876 } 12877 12878 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid); 12879 12880 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL); 12881 if (!vlan) 12882 return -ENOMEM; 12883 12884 bp->vlan_cnt++; 12885 if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) { 12886 DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n"); 12887 bp->accept_any_vlan = true; 12888 if (IS_PF(bp)) 12889 bnx2x_set_rx_mode_inner(bp); 12890 else 12891 bnx2x_vfpf_storm_rx_mode(bp); 12892 } else if (bp->vlan_cnt <= bp->vlan_credit) { 12893 rc = __bnx2x_vlan_configure_vid(bp, vid, true); 12894 hw = true; 12895 } 12896 12897 vlan->vid = vid; 12898 vlan->hw = hw; 12899 12900 if (!rc) { 12901 list_add(&vlan->link, &bp->vlan_reg); 12902 } else { 12903 bp->vlan_cnt--; 12904 kfree(vlan); 12905 } 12906 12907 DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc); 12908 12909 return rc; 12910 } 12911 12912 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 12913 { 12914 struct bnx2x *bp = netdev_priv(dev); 12915 struct bnx2x_vlan_entry *vlan; 12916 int rc = 0; 12917 12918 if (!netif_running(bp->dev)) { 12919 DP(NETIF_MSG_IFUP, 12920 "Ignoring VLAN configuration the interface is down\n"); 12921 return -EFAULT; 12922 } 12923 12924 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid); 12925 12926 if (!bp->vlan_cnt) { 12927 BNX2X_ERR("Unable to kill VLAN %d\n", vid); 12928 return -EINVAL; 12929 } 12930 12931 list_for_each_entry(vlan, &bp->vlan_reg, link) 12932 if (vlan->vid == vid) 12933 break; 12934 12935 if (vlan->vid != vid) { 12936 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid); 12937 return -EINVAL; 12938 } 12939 12940 if (vlan->hw) 12941 rc = __bnx2x_vlan_configure_vid(bp, vid, false); 12942 12943 list_del(&vlan->link); 12944 kfree(vlan); 12945 12946 bp->vlan_cnt--; 12947 12948 if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) { 12949 /* Configure all non-configured entries */ 12950 list_for_each_entry(vlan, &bp->vlan_reg, link) { 12951 if (vlan->hw) 12952 continue; 12953 12954 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true); 12955 if (rc) { 12956 BNX2X_ERR("Unable to config VLAN %d\n", 12957 vlan->vid); 12958 continue; 12959 } 12960 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", 12961 vlan->vid); 12962 vlan->hw = true; 12963 } 12964 DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n"); 12965 bp->accept_any_vlan = false; 12966 if (IS_PF(bp)) 12967 bnx2x_set_rx_mode_inner(bp); 12968 else 12969 bnx2x_vfpf_storm_rx_mode(bp); 12970 } 12971 12972 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc); 12973 12974 return rc; 12975 } 12976 12977 static const struct net_device_ops bnx2x_netdev_ops = { 12978 .ndo_open = bnx2x_open, 12979 .ndo_stop = bnx2x_close, 12980 .ndo_start_xmit = bnx2x_start_xmit, 12981 .ndo_select_queue = bnx2x_select_queue, 12982 .ndo_set_rx_mode = bnx2x_set_rx_mode, 12983 .ndo_set_mac_address = bnx2x_change_mac_addr, 12984 .ndo_validate_addr = bnx2x_validate_addr, 12985 .ndo_do_ioctl = bnx2x_ioctl, 12986 .ndo_change_mtu = bnx2x_change_mtu, 12987 .ndo_fix_features = bnx2x_fix_features, 12988 .ndo_set_features = bnx2x_set_features, 12989 .ndo_tx_timeout = bnx2x_tx_timeout, 12990 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid, 12991 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid, 12992 #ifdef CONFIG_NET_POLL_CONTROLLER 12993 .ndo_poll_controller = poll_bnx2x, 12994 #endif 12995 .ndo_setup_tc = bnx2x_setup_tc, 12996 #ifdef CONFIG_BNX2X_SRIOV 12997 .ndo_set_vf_mac = bnx2x_set_vf_mac, 12998 .ndo_set_vf_vlan = bnx2x_set_vf_vlan, 12999 .ndo_get_vf_config = bnx2x_get_vf_config, 13000 #endif 13001 #ifdef NETDEV_FCOE_WWNN 13002 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn, 13003 #endif 13004 13005 .ndo_get_phys_port_id = bnx2x_get_phys_port_id, 13006 .ndo_set_vf_link_state = bnx2x_set_vf_link_state, 13007 .ndo_features_check = bnx2x_features_check, 13008 #ifdef CONFIG_BNX2X_VXLAN 13009 .ndo_add_vxlan_port = bnx2x_add_vxlan_port, 13010 .ndo_del_vxlan_port = bnx2x_del_vxlan_port, 13011 #endif 13012 }; 13013 13014 static int bnx2x_set_coherency_mask(struct bnx2x *bp) 13015 { 13016 struct device *dev = &bp->pdev->dev; 13017 13018 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && 13019 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { 13020 dev_err(dev, "System does not support DMA, aborting\n"); 13021 return -EIO; 13022 } 13023 13024 return 0; 13025 } 13026 13027 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) 13028 { 13029 if (bp->flags & AER_ENABLED) { 13030 pci_disable_pcie_error_reporting(bp->pdev); 13031 bp->flags &= ~AER_ENABLED; 13032 } 13033 } 13034 13035 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev, 13036 struct net_device *dev, unsigned long board_type) 13037 { 13038 int rc; 13039 u32 pci_cfg_dword; 13040 bool chip_is_e1x = (board_type == BCM57710 || 13041 board_type == BCM57711 || 13042 board_type == BCM57711E); 13043 13044 SET_NETDEV_DEV(dev, &pdev->dev); 13045 13046 bp->dev = dev; 13047 bp->pdev = pdev; 13048 13049 rc = pci_enable_device(pdev); 13050 if (rc) { 13051 dev_err(&bp->pdev->dev, 13052 "Cannot enable PCI device, aborting\n"); 13053 goto err_out; 13054 } 13055 13056 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 13057 dev_err(&bp->pdev->dev, 13058 "Cannot find PCI device base address, aborting\n"); 13059 rc = -ENODEV; 13060 goto err_out_disable; 13061 } 13062 13063 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { 13064 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); 13065 rc = -ENODEV; 13066 goto err_out_disable; 13067 } 13068 13069 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); 13070 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == 13071 PCICFG_REVESION_ID_ERROR_VAL) { 13072 pr_err("PCI device error, probably due to fan failure, aborting\n"); 13073 rc = -ENODEV; 13074 goto err_out_disable; 13075 } 13076 13077 if (atomic_read(&pdev->enable_cnt) == 1) { 13078 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 13079 if (rc) { 13080 dev_err(&bp->pdev->dev, 13081 "Cannot obtain PCI resources, aborting\n"); 13082 goto err_out_disable; 13083 } 13084 13085 pci_set_master(pdev); 13086 pci_save_state(pdev); 13087 } 13088 13089 if (IS_PF(bp)) { 13090 if (!pdev->pm_cap) { 13091 dev_err(&bp->pdev->dev, 13092 "Cannot find power management capability, aborting\n"); 13093 rc = -EIO; 13094 goto err_out_release; 13095 } 13096 } 13097 13098 if (!pci_is_pcie(pdev)) { 13099 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); 13100 rc = -EIO; 13101 goto err_out_release; 13102 } 13103 13104 rc = bnx2x_set_coherency_mask(bp); 13105 if (rc) 13106 goto err_out_release; 13107 13108 dev->mem_start = pci_resource_start(pdev, 0); 13109 dev->base_addr = dev->mem_start; 13110 dev->mem_end = pci_resource_end(pdev, 0); 13111 13112 dev->irq = pdev->irq; 13113 13114 bp->regview = pci_ioremap_bar(pdev, 0); 13115 if (!bp->regview) { 13116 dev_err(&bp->pdev->dev, 13117 "Cannot map register space, aborting\n"); 13118 rc = -ENOMEM; 13119 goto err_out_release; 13120 } 13121 13122 /* In E1/E1H use pci device function given by kernel. 13123 * In E2/E3 read physical function from ME register since these chips 13124 * support Physical Device Assignment where kernel BDF maybe arbitrary 13125 * (depending on hypervisor). 13126 */ 13127 if (chip_is_e1x) { 13128 bp->pf_num = PCI_FUNC(pdev->devfn); 13129 } else { 13130 /* chip is E2/3*/ 13131 pci_read_config_dword(bp->pdev, 13132 PCICFG_ME_REGISTER, &pci_cfg_dword); 13133 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> 13134 ME_REG_ABS_PF_NUM_SHIFT); 13135 } 13136 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); 13137 13138 /* clean indirect addresses */ 13139 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, 13140 PCICFG_VENDOR_ID_OFFSET); 13141 13142 /* Set PCIe reset type to fundamental for EEH recovery */ 13143 pdev->needs_freset = 1; 13144 13145 /* AER (Advanced Error reporting) configuration */ 13146 rc = pci_enable_pcie_error_reporting(pdev); 13147 if (!rc) 13148 bp->flags |= AER_ENABLED; 13149 else 13150 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); 13151 13152 /* 13153 * Clean the following indirect addresses for all functions since it 13154 * is not used by the driver. 13155 */ 13156 if (IS_PF(bp)) { 13157 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); 13158 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); 13159 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); 13160 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); 13161 13162 if (chip_is_e1x) { 13163 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); 13164 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); 13165 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); 13166 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); 13167 } 13168 13169 /* Enable internal target-read (in case we are probed after PF 13170 * FLR). Must be done prior to any BAR read access. Only for 13171 * 57712 and up 13172 */ 13173 if (!chip_is_e1x) 13174 REG_WR(bp, 13175 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 13176 } 13177 13178 dev->watchdog_timeo = TX_TIMEOUT; 13179 13180 dev->netdev_ops = &bnx2x_netdev_ops; 13181 bnx2x_set_ethtool_ops(bp, dev); 13182 13183 dev->priv_flags |= IFF_UNICAST_FLT; 13184 13185 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13186 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13187 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | 13188 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; 13189 if (!chip_is_e1x) { 13190 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | 13191 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; 13192 dev->hw_enc_features = 13193 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 13194 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | 13195 NETIF_F_GSO_IPIP | 13196 NETIF_F_GSO_SIT | 13197 NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; 13198 } 13199 13200 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 13201 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA; 13202 13203 /* VF with OLD Hypervisor or old PF do not support filtering */ 13204 if (IS_PF(bp)) { 13205 if (chip_is_e1x) 13206 bp->accept_any_vlan = true; 13207 else 13208 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13209 #ifdef CONFIG_BNX2X_SRIOV 13210 } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) { 13211 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 13212 #endif 13213 } 13214 13215 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; 13216 dev->features |= NETIF_F_HIGHDMA; 13217 13218 /* Add Loopback capability to the device */ 13219 dev->hw_features |= NETIF_F_LOOPBACK; 13220 13221 #ifdef BCM_DCBNL 13222 dev->dcbnl_ops = &bnx2x_dcbnl_ops; 13223 #endif 13224 13225 /* get_port_hwinfo() will set prtad and mmds properly */ 13226 bp->mdio.prtad = MDIO_PRTAD_NONE; 13227 bp->mdio.mmds = 0; 13228 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; 13229 bp->mdio.dev = dev; 13230 bp->mdio.mdio_read = bnx2x_mdio_read; 13231 bp->mdio.mdio_write = bnx2x_mdio_write; 13232 13233 return 0; 13234 13235 err_out_release: 13236 if (atomic_read(&pdev->enable_cnt) == 1) 13237 pci_release_regions(pdev); 13238 13239 err_out_disable: 13240 pci_disable_device(pdev); 13241 13242 err_out: 13243 return rc; 13244 } 13245 13246 static int bnx2x_check_firmware(struct bnx2x *bp) 13247 { 13248 const struct firmware *firmware = bp->firmware; 13249 struct bnx2x_fw_file_hdr *fw_hdr; 13250 struct bnx2x_fw_file_section *sections; 13251 u32 offset, len, num_ops; 13252 __be16 *ops_offsets; 13253 int i; 13254 const u8 *fw_ver; 13255 13256 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { 13257 BNX2X_ERR("Wrong FW size\n"); 13258 return -EINVAL; 13259 } 13260 13261 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; 13262 sections = (struct bnx2x_fw_file_section *)fw_hdr; 13263 13264 /* Make sure none of the offsets and sizes make us read beyond 13265 * the end of the firmware data */ 13266 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { 13267 offset = be32_to_cpu(sections[i].offset); 13268 len = be32_to_cpu(sections[i].len); 13269 if (offset + len > firmware->size) { 13270 BNX2X_ERR("Section %d length is out of bounds\n", i); 13271 return -EINVAL; 13272 } 13273 } 13274 13275 /* Likewise for the init_ops offsets */ 13276 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); 13277 ops_offsets = (__force __be16 *)(firmware->data + offset); 13278 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); 13279 13280 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { 13281 if (be16_to_cpu(ops_offsets[i]) > num_ops) { 13282 BNX2X_ERR("Section offset %d is out of bounds\n", i); 13283 return -EINVAL; 13284 } 13285 } 13286 13287 /* Check FW version */ 13288 offset = be32_to_cpu(fw_hdr->fw_version.offset); 13289 fw_ver = firmware->data + offset; 13290 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || 13291 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || 13292 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || 13293 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { 13294 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", 13295 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], 13296 BCM_5710_FW_MAJOR_VERSION, 13297 BCM_5710_FW_MINOR_VERSION, 13298 BCM_5710_FW_REVISION_VERSION, 13299 BCM_5710_FW_ENGINEERING_VERSION); 13300 return -EINVAL; 13301 } 13302 13303 return 0; 13304 } 13305 13306 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13307 { 13308 const __be32 *source = (const __be32 *)_source; 13309 u32 *target = (u32 *)_target; 13310 u32 i; 13311 13312 for (i = 0; i < n/4; i++) 13313 target[i] = be32_to_cpu(source[i]); 13314 } 13315 13316 /* 13317 Ops array is stored in the following format: 13318 {op(8bit), offset(24bit, big endian), data(32bit, big endian)} 13319 */ 13320 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n) 13321 { 13322 const __be32 *source = (const __be32 *)_source; 13323 struct raw_op *target = (struct raw_op *)_target; 13324 u32 i, j, tmp; 13325 13326 for (i = 0, j = 0; i < n/8; i++, j += 2) { 13327 tmp = be32_to_cpu(source[j]); 13328 target[i].op = (tmp >> 24) & 0xff; 13329 target[i].offset = tmp & 0xffffff; 13330 target[i].raw_data = be32_to_cpu(source[j + 1]); 13331 } 13332 } 13333 13334 /* IRO array is stored in the following format: 13335 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } 13336 */ 13337 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n) 13338 { 13339 const __be32 *source = (const __be32 *)_source; 13340 struct iro *target = (struct iro *)_target; 13341 u32 i, j, tmp; 13342 13343 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { 13344 target[i].base = be32_to_cpu(source[j]); 13345 j++; 13346 tmp = be32_to_cpu(source[j]); 13347 target[i].m1 = (tmp >> 16) & 0xffff; 13348 target[i].m2 = tmp & 0xffff; 13349 j++; 13350 tmp = be32_to_cpu(source[j]); 13351 target[i].m3 = (tmp >> 16) & 0xffff; 13352 target[i].size = tmp & 0xffff; 13353 j++; 13354 } 13355 } 13356 13357 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n) 13358 { 13359 const __be16 *source = (const __be16 *)_source; 13360 u16 *target = (u16 *)_target; 13361 u32 i; 13362 13363 for (i = 0; i < n/2; i++) 13364 target[i] = be16_to_cpu(source[i]); 13365 } 13366 13367 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \ 13368 do { \ 13369 u32 len = be32_to_cpu(fw_hdr->arr.len); \ 13370 bp->arr = kmalloc(len, GFP_KERNEL); \ 13371 if (!bp->arr) \ 13372 goto lbl; \ 13373 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \ 13374 (u8 *)bp->arr, len); \ 13375 } while (0) 13376 13377 static int bnx2x_init_firmware(struct bnx2x *bp) 13378 { 13379 const char *fw_file_name; 13380 struct bnx2x_fw_file_hdr *fw_hdr; 13381 int rc; 13382 13383 if (bp->firmware) 13384 return 0; 13385 13386 if (CHIP_IS_E1(bp)) 13387 fw_file_name = FW_FILE_NAME_E1; 13388 else if (CHIP_IS_E1H(bp)) 13389 fw_file_name = FW_FILE_NAME_E1H; 13390 else if (!CHIP_IS_E1x(bp)) 13391 fw_file_name = FW_FILE_NAME_E2; 13392 else { 13393 BNX2X_ERR("Unsupported chip revision\n"); 13394 return -EINVAL; 13395 } 13396 BNX2X_DEV_INFO("Loading %s\n", fw_file_name); 13397 13398 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev); 13399 if (rc) { 13400 BNX2X_ERR("Can't load firmware file %s\n", 13401 fw_file_name); 13402 goto request_firmware_exit; 13403 } 13404 13405 rc = bnx2x_check_firmware(bp); 13406 if (rc) { 13407 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); 13408 goto request_firmware_exit; 13409 } 13410 13411 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; 13412 13413 /* Initialize the pointers to the init arrays */ 13414 /* Blob */ 13415 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); 13416 13417 /* Opcodes */ 13418 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); 13419 13420 /* Offsets */ 13421 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, 13422 be16_to_cpu_n); 13423 13424 /* STORMs firmware */ 13425 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13426 be32_to_cpu(fw_hdr->tsem_int_table_data.offset); 13427 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data + 13428 be32_to_cpu(fw_hdr->tsem_pram_data.offset); 13429 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13430 be32_to_cpu(fw_hdr->usem_int_table_data.offset); 13431 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data + 13432 be32_to_cpu(fw_hdr->usem_pram_data.offset); 13433 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13434 be32_to_cpu(fw_hdr->xsem_int_table_data.offset); 13435 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data + 13436 be32_to_cpu(fw_hdr->xsem_pram_data.offset); 13437 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + 13438 be32_to_cpu(fw_hdr->csem_int_table_data.offset); 13439 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data + 13440 be32_to_cpu(fw_hdr->csem_pram_data.offset); 13441 /* IRO */ 13442 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); 13443 13444 return 0; 13445 13446 iro_alloc_err: 13447 kfree(bp->init_ops_offsets); 13448 init_offsets_alloc_err: 13449 kfree(bp->init_ops); 13450 init_ops_alloc_err: 13451 kfree(bp->init_data); 13452 request_firmware_exit: 13453 release_firmware(bp->firmware); 13454 bp->firmware = NULL; 13455 13456 return rc; 13457 } 13458 13459 static void bnx2x_release_firmware(struct bnx2x *bp) 13460 { 13461 kfree(bp->init_ops_offsets); 13462 kfree(bp->init_ops); 13463 kfree(bp->init_data); 13464 release_firmware(bp->firmware); 13465 bp->firmware = NULL; 13466 } 13467 13468 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { 13469 .init_hw_cmn_chip = bnx2x_init_hw_common_chip, 13470 .init_hw_cmn = bnx2x_init_hw_common, 13471 .init_hw_port = bnx2x_init_hw_port, 13472 .init_hw_func = bnx2x_init_hw_func, 13473 13474 .reset_hw_cmn = bnx2x_reset_common, 13475 .reset_hw_port = bnx2x_reset_port, 13476 .reset_hw_func = bnx2x_reset_func, 13477 13478 .gunzip_init = bnx2x_gunzip_init, 13479 .gunzip_end = bnx2x_gunzip_end, 13480 13481 .init_fw = bnx2x_init_firmware, 13482 .release_fw = bnx2x_release_firmware, 13483 }; 13484 13485 void bnx2x__init_func_obj(struct bnx2x *bp) 13486 { 13487 /* Prepare DMAE related driver resources */ 13488 bnx2x_setup_dmae(bp); 13489 13490 bnx2x_init_func_obj(bp, &bp->func_obj, 13491 bnx2x_sp(bp, func_rdata), 13492 bnx2x_sp_mapping(bp, func_rdata), 13493 bnx2x_sp(bp, func_afex_rdata), 13494 bnx2x_sp_mapping(bp, func_afex_rdata), 13495 &bnx2x_func_sp_drv); 13496 } 13497 13498 /* must be called after sriov-enable */ 13499 static int bnx2x_set_qm_cid_count(struct bnx2x *bp) 13500 { 13501 int cid_count = BNX2X_L2_MAX_CID(bp); 13502 13503 if (IS_SRIOV(bp)) 13504 cid_count += BNX2X_VF_CIDS; 13505 13506 if (CNIC_SUPPORT(bp)) 13507 cid_count += CNIC_CID_MAX; 13508 13509 return roundup(cid_count, QM_CID_ROUND); 13510 } 13511 13512 /** 13513 * bnx2x_get_num_none_def_sbs - return the number of none default SBs 13514 * 13515 * @dev: pci device 13516 * 13517 */ 13518 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt) 13519 { 13520 int index; 13521 u16 control = 0; 13522 13523 /* 13524 * If MSI-X is not supported - return number of SBs needed to support 13525 * one fast path queue: one FP queue + SB for CNIC 13526 */ 13527 if (!pdev->msix_cap) { 13528 dev_info(&pdev->dev, "no msix capability found\n"); 13529 return 1 + cnic_cnt; 13530 } 13531 dev_info(&pdev->dev, "msix capability found\n"); 13532 13533 /* 13534 * The value in the PCI configuration space is the index of the last 13535 * entry, namely one less than the actual size of the table, which is 13536 * exactly what we want to return from this function: number of all SBs 13537 * without the default SB. 13538 * For VFs there is no default SB, then we return (index+1). 13539 */ 13540 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control); 13541 13542 index = control & PCI_MSIX_FLAGS_QSIZE; 13543 13544 return index; 13545 } 13546 13547 static int set_max_cos_est(int chip_id) 13548 { 13549 switch (chip_id) { 13550 case BCM57710: 13551 case BCM57711: 13552 case BCM57711E: 13553 return BNX2X_MULTI_TX_COS_E1X; 13554 case BCM57712: 13555 case BCM57712_MF: 13556 return BNX2X_MULTI_TX_COS_E2_E3A0; 13557 case BCM57800: 13558 case BCM57800_MF: 13559 case BCM57810: 13560 case BCM57810_MF: 13561 case BCM57840_4_10: 13562 case BCM57840_2_20: 13563 case BCM57840_O: 13564 case BCM57840_MFO: 13565 case BCM57840_MF: 13566 case BCM57811: 13567 case BCM57811_MF: 13568 return BNX2X_MULTI_TX_COS_E3B0; 13569 case BCM57712_VF: 13570 case BCM57800_VF: 13571 case BCM57810_VF: 13572 case BCM57840_VF: 13573 case BCM57811_VF: 13574 return 1; 13575 default: 13576 pr_err("Unknown board_type (%d), aborting\n", chip_id); 13577 return -ENODEV; 13578 } 13579 } 13580 13581 static int set_is_vf(int chip_id) 13582 { 13583 switch (chip_id) { 13584 case BCM57712_VF: 13585 case BCM57800_VF: 13586 case BCM57810_VF: 13587 case BCM57840_VF: 13588 case BCM57811_VF: 13589 return true; 13590 default: 13591 return false; 13592 } 13593 } 13594 13595 /* nig_tsgen registers relative address */ 13596 #define tsgen_ctrl 0x0 13597 #define tsgen_freecount 0x10 13598 #define tsgen_synctime_t0 0x20 13599 #define tsgen_offset_t0 0x28 13600 #define tsgen_drift_t0 0x30 13601 #define tsgen_synctime_t1 0x58 13602 #define tsgen_offset_t1 0x60 13603 #define tsgen_drift_t1 0x68 13604 13605 /* FW workaround for setting drift */ 13606 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, 13607 int best_val, int best_period) 13608 { 13609 struct bnx2x_func_state_params func_params = {NULL}; 13610 struct bnx2x_func_set_timesync_params *set_timesync_params = 13611 &func_params.params.set_timesync; 13612 13613 /* Prepare parameters for function state transitions */ 13614 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 13615 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 13616 13617 func_params.f_obj = &bp->func_obj; 13618 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 13619 13620 /* Function parameters */ 13621 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; 13622 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 13623 set_timesync_params->add_sub_drift_adjust_value = 13624 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; 13625 set_timesync_params->drift_adjust_value = best_val; 13626 set_timesync_params->drift_adjust_period = best_period; 13627 13628 return bnx2x_func_state_change(bp, &func_params); 13629 } 13630 13631 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 13632 { 13633 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13634 int rc; 13635 int drift_dir = 1; 13636 int val, period, period1, period2, dif, dif1, dif2; 13637 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0; 13638 13639 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb); 13640 13641 if (!netif_running(bp->dev)) { 13642 DP(BNX2X_MSG_PTP, 13643 "PTP adjfreq called while the interface is down\n"); 13644 return -EFAULT; 13645 } 13646 13647 if (ppb < 0) { 13648 ppb = -ppb; 13649 drift_dir = 0; 13650 } 13651 13652 if (ppb == 0) { 13653 best_val = 1; 13654 best_period = 0x1FFFFFF; 13655 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) { 13656 best_val = 31; 13657 best_period = 1; 13658 } else { 13659 /* Changed not to allow val = 8, 16, 24 as these values 13660 * are not supported in workaround. 13661 */ 13662 for (val = 0; val <= 31; val++) { 13663 if ((val & 0x7) == 0) 13664 continue; 13665 period1 = val * 1000000 / ppb; 13666 period2 = period1 + 1; 13667 if (period1 != 0) 13668 dif1 = ppb - (val * 1000000 / period1); 13669 else 13670 dif1 = BNX2X_MAX_PHC_DRIFT; 13671 if (dif1 < 0) 13672 dif1 = -dif1; 13673 dif2 = ppb - (val * 1000000 / period2); 13674 if (dif2 < 0) 13675 dif2 = -dif2; 13676 dif = (dif1 < dif2) ? dif1 : dif2; 13677 period = (dif1 < dif2) ? period1 : period2; 13678 if (dif < best_dif) { 13679 best_dif = dif; 13680 best_val = val; 13681 best_period = period; 13682 } 13683 } 13684 } 13685 13686 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val, 13687 best_period); 13688 if (rc) { 13689 BNX2X_ERR("Failed to set drift\n"); 13690 return -EFAULT; 13691 } 13692 13693 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val, 13694 best_period); 13695 13696 return 0; 13697 } 13698 13699 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 13700 { 13701 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13702 13703 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta); 13704 13705 timecounter_adjtime(&bp->timecounter, delta); 13706 13707 return 0; 13708 } 13709 13710 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 13711 { 13712 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13713 u64 ns; 13714 13715 ns = timecounter_read(&bp->timecounter); 13716 13717 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns); 13718 13719 *ts = ns_to_timespec64(ns); 13720 13721 return 0; 13722 } 13723 13724 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp, 13725 const struct timespec64 *ts) 13726 { 13727 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13728 u64 ns; 13729 13730 ns = timespec64_to_ns(ts); 13731 13732 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns); 13733 13734 /* Re-init the timecounter */ 13735 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns); 13736 13737 return 0; 13738 } 13739 13740 /* Enable (or disable) ancillary features of the phc subsystem */ 13741 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp, 13742 struct ptp_clock_request *rq, int on) 13743 { 13744 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info); 13745 13746 BNX2X_ERR("PHC ancillary features are not supported\n"); 13747 return -ENOTSUPP; 13748 } 13749 13750 static void bnx2x_register_phc(struct bnx2x *bp) 13751 { 13752 /* Fill the ptp_clock_info struct and register PTP clock*/ 13753 bp->ptp_clock_info.owner = THIS_MODULE; 13754 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name); 13755 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */ 13756 bp->ptp_clock_info.n_alarm = 0; 13757 bp->ptp_clock_info.n_ext_ts = 0; 13758 bp->ptp_clock_info.n_per_out = 0; 13759 bp->ptp_clock_info.pps = 0; 13760 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq; 13761 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime; 13762 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime; 13763 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime; 13764 bp->ptp_clock_info.enable = bnx2x_ptp_enable; 13765 13766 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev); 13767 if (IS_ERR(bp->ptp_clock)) { 13768 bp->ptp_clock = NULL; 13769 BNX2X_ERR("PTP clock registeration failed\n"); 13770 } 13771 } 13772 13773 static int bnx2x_init_one(struct pci_dev *pdev, 13774 const struct pci_device_id *ent) 13775 { 13776 struct net_device *dev = NULL; 13777 struct bnx2x *bp; 13778 enum pcie_link_width pcie_width; 13779 enum pci_bus_speed pcie_speed; 13780 int rc, max_non_def_sbs; 13781 int rx_count, tx_count, rss_count, doorbell_size; 13782 int max_cos_est; 13783 bool is_vf; 13784 int cnic_cnt; 13785 13786 /* Management FW 'remembers' living interfaces. Allow it some time 13787 * to forget previously living interfaces, allowing a proper re-load. 13788 */ 13789 if (is_kdump_kernel()) { 13790 ktime_t now = ktime_get_boottime(); 13791 ktime_t fw_ready_time = ktime_set(5, 0); 13792 13793 if (ktime_before(now, fw_ready_time)) 13794 msleep(ktime_ms_delta(fw_ready_time, now)); 13795 } 13796 13797 /* An estimated maximum supported CoS number according to the chip 13798 * version. 13799 * We will try to roughly estimate the maximum number of CoSes this chip 13800 * may support in order to minimize the memory allocated for Tx 13801 * netdev_queue's. This number will be accurately calculated during the 13802 * initialization of bp->max_cos based on the chip versions AND chip 13803 * revision in the bnx2x_init_bp(). 13804 */ 13805 max_cos_est = set_max_cos_est(ent->driver_data); 13806 if (max_cos_est < 0) 13807 return max_cos_est; 13808 is_vf = set_is_vf(ent->driver_data); 13809 cnic_cnt = is_vf ? 0 : 1; 13810 13811 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); 13812 13813 /* add another SB for VF as it has no default SB */ 13814 max_non_def_sbs += is_vf ? 1 : 0; 13815 13816 /* Maximum number of RSS queues: one IGU SB goes to CNIC */ 13817 rss_count = max_non_def_sbs - cnic_cnt; 13818 13819 if (rss_count < 1) 13820 return -EINVAL; 13821 13822 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ 13823 rx_count = rss_count + cnic_cnt; 13824 13825 /* Maximum number of netdev Tx queues: 13826 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2 13827 */ 13828 tx_count = rss_count * max_cos_est + cnic_cnt; 13829 13830 /* dev zeroed in init_etherdev */ 13831 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); 13832 if (!dev) 13833 return -ENOMEM; 13834 13835 bp = netdev_priv(dev); 13836 13837 bp->flags = 0; 13838 if (is_vf) 13839 bp->flags |= IS_VF_FLAG; 13840 13841 bp->igu_sb_cnt = max_non_def_sbs; 13842 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; 13843 bp->msg_enable = debug; 13844 bp->cnic_support = cnic_cnt; 13845 bp->cnic_probe = bnx2x_cnic_probe; 13846 13847 pci_set_drvdata(pdev, dev); 13848 13849 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); 13850 if (rc < 0) { 13851 free_netdev(dev); 13852 return rc; 13853 } 13854 13855 BNX2X_DEV_INFO("This is a %s function\n", 13856 IS_PF(bp) ? "physical" : "virtual"); 13857 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); 13858 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); 13859 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", 13860 tx_count, rx_count); 13861 13862 rc = bnx2x_init_bp(bp); 13863 if (rc) 13864 goto init_one_exit; 13865 13866 /* Map doorbells here as we need the real value of bp->max_cos which 13867 * is initialized in bnx2x_init_bp() to determine the number of 13868 * l2 connections. 13869 */ 13870 if (IS_VF(bp)) { 13871 bp->doorbells = bnx2x_vf_doorbells(bp); 13872 rc = bnx2x_vf_pci_alloc(bp); 13873 if (rc) 13874 goto init_one_exit; 13875 } else { 13876 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); 13877 if (doorbell_size > pci_resource_len(pdev, 2)) { 13878 dev_err(&bp->pdev->dev, 13879 "Cannot map doorbells, bar size too small, aborting\n"); 13880 rc = -ENOMEM; 13881 goto init_one_exit; 13882 } 13883 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), 13884 doorbell_size); 13885 } 13886 if (!bp->doorbells) { 13887 dev_err(&bp->pdev->dev, 13888 "Cannot map doorbell space, aborting\n"); 13889 rc = -ENOMEM; 13890 goto init_one_exit; 13891 } 13892 13893 if (IS_VF(bp)) { 13894 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); 13895 if (rc) 13896 goto init_one_exit; 13897 } 13898 13899 /* Enable SRIOV if capability found in configuration space */ 13900 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); 13901 if (rc) 13902 goto init_one_exit; 13903 13904 /* calc qm_cid_count */ 13905 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); 13906 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); 13907 13908 /* disable FCOE L2 queue for E1x*/ 13909 if (CHIP_IS_E1x(bp)) 13910 bp->flags |= NO_FCOE_FLAG; 13911 13912 /* Set bp->num_queues for MSI-X mode*/ 13913 bnx2x_set_num_queues(bp); 13914 13915 /* Configure interrupt mode: try to enable MSI-X/MSI if 13916 * needed. 13917 */ 13918 rc = bnx2x_set_int_mode(bp); 13919 if (rc) { 13920 dev_err(&pdev->dev, "Cannot set interrupts\n"); 13921 goto init_one_exit; 13922 } 13923 BNX2X_DEV_INFO("set interrupts successfully\n"); 13924 13925 /* register the net device */ 13926 rc = register_netdev(dev); 13927 if (rc) { 13928 dev_err(&pdev->dev, "Cannot register net device\n"); 13929 goto init_one_exit; 13930 } 13931 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); 13932 13933 if (!NO_FCOE(bp)) { 13934 /* Add storage MAC address */ 13935 rtnl_lock(); 13936 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13937 rtnl_unlock(); 13938 } 13939 if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) || 13940 pcie_speed == PCI_SPEED_UNKNOWN || 13941 pcie_width == PCIE_LNK_WIDTH_UNKNOWN) 13942 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n"); 13943 else 13944 BNX2X_DEV_INFO( 13945 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", 13946 board_info[ent->driver_data].name, 13947 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), 13948 pcie_width, 13949 pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" : 13950 pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" : 13951 pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" : 13952 "Unknown", 13953 dev->base_addr, bp->pdev->irq, dev->dev_addr); 13954 13955 bnx2x_register_phc(bp); 13956 13957 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 13958 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 13959 13960 return 0; 13961 13962 init_one_exit: 13963 bnx2x_disable_pcie_error_reporting(bp); 13964 13965 if (bp->regview) 13966 iounmap(bp->regview); 13967 13968 if (IS_PF(bp) && bp->doorbells) 13969 iounmap(bp->doorbells); 13970 13971 free_netdev(dev); 13972 13973 if (atomic_read(&pdev->enable_cnt) == 1) 13974 pci_release_regions(pdev); 13975 13976 pci_disable_device(pdev); 13977 13978 return rc; 13979 } 13980 13981 static void __bnx2x_remove(struct pci_dev *pdev, 13982 struct net_device *dev, 13983 struct bnx2x *bp, 13984 bool remove_netdev) 13985 { 13986 if (bp->ptp_clock) { 13987 ptp_clock_unregister(bp->ptp_clock); 13988 bp->ptp_clock = NULL; 13989 } 13990 13991 /* Delete storage MAC address */ 13992 if (!NO_FCOE(bp)) { 13993 rtnl_lock(); 13994 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); 13995 rtnl_unlock(); 13996 } 13997 13998 #ifdef BCM_DCBNL 13999 /* Delete app tlvs from dcbnl */ 14000 bnx2x_dcbnl_update_applist(bp, true); 14001 #endif 14002 14003 if (IS_PF(bp) && 14004 !BP_NOMCP(bp) && 14005 (bp->flags & BC_SUPPORTS_RMMOD_CMD)) 14006 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); 14007 14008 /* Close the interface - either directly or implicitly */ 14009 if (remove_netdev) { 14010 unregister_netdev(dev); 14011 } else { 14012 rtnl_lock(); 14013 dev_close(dev); 14014 rtnl_unlock(); 14015 } 14016 14017 bnx2x_iov_remove_one(bp); 14018 14019 /* Power on: we can't let PCI layer write to us while we are in D3 */ 14020 if (IS_PF(bp)) { 14021 bnx2x_set_power_state(bp, PCI_D0); 14022 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED); 14023 14024 /* Set endianity registers to reset values in case next driver 14025 * boots in different endianty environment. 14026 */ 14027 bnx2x_reset_endianity(bp); 14028 } 14029 14030 /* Disable MSI/MSI-X */ 14031 bnx2x_disable_msi(bp); 14032 14033 /* Power off */ 14034 if (IS_PF(bp)) 14035 bnx2x_set_power_state(bp, PCI_D3hot); 14036 14037 /* Make sure RESET task is not scheduled before continuing */ 14038 cancel_delayed_work_sync(&bp->sp_rtnl_task); 14039 14040 /* send message via vfpf channel to release the resources of this vf */ 14041 if (IS_VF(bp)) 14042 bnx2x_vfpf_release(bp); 14043 14044 /* Assumes no further PCIe PM changes will occur */ 14045 if (system_state == SYSTEM_POWER_OFF) { 14046 pci_wake_from_d3(pdev, bp->wol); 14047 pci_set_power_state(pdev, PCI_D3hot); 14048 } 14049 14050 bnx2x_disable_pcie_error_reporting(bp); 14051 if (remove_netdev) { 14052 if (bp->regview) 14053 iounmap(bp->regview); 14054 14055 /* For vfs, doorbells are part of the regview and were unmapped 14056 * along with it. FW is only loaded by PF. 14057 */ 14058 if (IS_PF(bp)) { 14059 if (bp->doorbells) 14060 iounmap(bp->doorbells); 14061 14062 bnx2x_release_firmware(bp); 14063 } else { 14064 bnx2x_vf_pci_dealloc(bp); 14065 } 14066 bnx2x_free_mem_bp(bp); 14067 14068 free_netdev(dev); 14069 14070 if (atomic_read(&pdev->enable_cnt) == 1) 14071 pci_release_regions(pdev); 14072 14073 pci_disable_device(pdev); 14074 } 14075 } 14076 14077 static void bnx2x_remove_one(struct pci_dev *pdev) 14078 { 14079 struct net_device *dev = pci_get_drvdata(pdev); 14080 struct bnx2x *bp; 14081 14082 if (!dev) { 14083 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 14084 return; 14085 } 14086 bp = netdev_priv(dev); 14087 14088 __bnx2x_remove(pdev, dev, bp, true); 14089 } 14090 14091 static int bnx2x_eeh_nic_unload(struct bnx2x *bp) 14092 { 14093 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 14094 14095 bp->rx_mode = BNX2X_RX_MODE_NONE; 14096 14097 if (CNIC_LOADED(bp)) 14098 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 14099 14100 /* Stop Tx */ 14101 bnx2x_tx_disable(bp); 14102 /* Delete all NAPI objects */ 14103 bnx2x_del_all_napi(bp); 14104 if (CNIC_LOADED(bp)) 14105 bnx2x_del_all_napi_cnic(bp); 14106 netdev_reset_tc(bp->dev); 14107 14108 del_timer_sync(&bp->timer); 14109 cancel_delayed_work_sync(&bp->sp_task); 14110 cancel_delayed_work_sync(&bp->period_task); 14111 14112 if (!down_timeout(&bp->stats_lock, HZ / 10)) { 14113 bp->stats_state = STATS_STATE_DISABLED; 14114 up(&bp->stats_lock); 14115 } 14116 14117 bnx2x_save_statistics(bp); 14118 14119 netif_carrier_off(bp->dev); 14120 14121 return 0; 14122 } 14123 14124 /** 14125 * bnx2x_io_error_detected - called when PCI error is detected 14126 * @pdev: Pointer to PCI device 14127 * @state: The current pci connection state 14128 * 14129 * This function is called after a PCI bus error affecting 14130 * this device has been detected. 14131 */ 14132 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev, 14133 pci_channel_state_t state) 14134 { 14135 struct net_device *dev = pci_get_drvdata(pdev); 14136 struct bnx2x *bp = netdev_priv(dev); 14137 14138 rtnl_lock(); 14139 14140 BNX2X_ERR("IO error detected\n"); 14141 14142 netif_device_detach(dev); 14143 14144 if (state == pci_channel_io_perm_failure) { 14145 rtnl_unlock(); 14146 return PCI_ERS_RESULT_DISCONNECT; 14147 } 14148 14149 if (netif_running(dev)) 14150 bnx2x_eeh_nic_unload(bp); 14151 14152 bnx2x_prev_path_mark_eeh(bp); 14153 14154 pci_disable_device(pdev); 14155 14156 rtnl_unlock(); 14157 14158 /* Request a slot reset */ 14159 return PCI_ERS_RESULT_NEED_RESET; 14160 } 14161 14162 /** 14163 * bnx2x_io_slot_reset - called after the PCI bus has been reset 14164 * @pdev: Pointer to PCI device 14165 * 14166 * Restart the card from scratch, as if from a cold-boot. 14167 */ 14168 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev) 14169 { 14170 struct net_device *dev = pci_get_drvdata(pdev); 14171 struct bnx2x *bp = netdev_priv(dev); 14172 int i; 14173 14174 rtnl_lock(); 14175 BNX2X_ERR("IO slot reset initializing...\n"); 14176 if (pci_enable_device(pdev)) { 14177 dev_err(&pdev->dev, 14178 "Cannot re-enable PCI device after reset\n"); 14179 rtnl_unlock(); 14180 return PCI_ERS_RESULT_DISCONNECT; 14181 } 14182 14183 pci_set_master(pdev); 14184 pci_restore_state(pdev); 14185 pci_save_state(pdev); 14186 14187 if (netif_running(dev)) 14188 bnx2x_set_power_state(bp, PCI_D0); 14189 14190 if (netif_running(dev)) { 14191 BNX2X_ERR("IO slot reset --> driver unload\n"); 14192 14193 /* MCP should have been reset; Need to wait for validity */ 14194 bnx2x_init_shmem(bp); 14195 14196 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 14197 u32 v; 14198 14199 v = SHMEM2_RD(bp, 14200 drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 14201 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 14202 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 14203 } 14204 bnx2x_drain_tx_queues(bp); 14205 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); 14206 bnx2x_netif_stop(bp, 1); 14207 bnx2x_free_irq(bp); 14208 14209 /* Report UNLOAD_DONE to MCP */ 14210 bnx2x_send_unload_done(bp, true); 14211 14212 bp->sp_state = 0; 14213 bp->port.pmf = 0; 14214 14215 bnx2x_prev_unload(bp); 14216 14217 /* We should have reseted the engine, so It's fair to 14218 * assume the FW will no longer write to the bnx2x driver. 14219 */ 14220 bnx2x_squeeze_objects(bp); 14221 bnx2x_free_skbs(bp); 14222 for_each_rx_queue(bp, i) 14223 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 14224 bnx2x_free_fp_mem(bp); 14225 bnx2x_free_mem(bp); 14226 14227 bp->state = BNX2X_STATE_CLOSED; 14228 } 14229 14230 rtnl_unlock(); 14231 14232 /* If AER, perform cleanup of the PCIe registers */ 14233 if (bp->flags & AER_ENABLED) { 14234 if (pci_cleanup_aer_uncorrect_error_status(pdev)) 14235 BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n"); 14236 else 14237 DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n"); 14238 } 14239 14240 return PCI_ERS_RESULT_RECOVERED; 14241 } 14242 14243 /** 14244 * bnx2x_io_resume - called when traffic can start flowing again 14245 * @pdev: Pointer to PCI device 14246 * 14247 * This callback is called when the error recovery driver tells us that 14248 * its OK to resume normal operation. 14249 */ 14250 static void bnx2x_io_resume(struct pci_dev *pdev) 14251 { 14252 struct net_device *dev = pci_get_drvdata(pdev); 14253 struct bnx2x *bp = netdev_priv(dev); 14254 14255 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 14256 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); 14257 return; 14258 } 14259 14260 rtnl_lock(); 14261 14262 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 14263 DRV_MSG_SEQ_NUMBER_MASK; 14264 14265 if (netif_running(dev)) 14266 bnx2x_nic_load(bp, LOAD_NORMAL); 14267 14268 netif_device_attach(dev); 14269 14270 rtnl_unlock(); 14271 } 14272 14273 static const struct pci_error_handlers bnx2x_err_handler = { 14274 .error_detected = bnx2x_io_error_detected, 14275 .slot_reset = bnx2x_io_slot_reset, 14276 .resume = bnx2x_io_resume, 14277 }; 14278 14279 static void bnx2x_shutdown(struct pci_dev *pdev) 14280 { 14281 struct net_device *dev = pci_get_drvdata(pdev); 14282 struct bnx2x *bp; 14283 14284 if (!dev) 14285 return; 14286 14287 bp = netdev_priv(dev); 14288 if (!bp) 14289 return; 14290 14291 rtnl_lock(); 14292 netif_device_detach(dev); 14293 rtnl_unlock(); 14294 14295 /* Don't remove the netdevice, as there are scenarios which will cause 14296 * the kernel to hang, e.g., when trying to remove bnx2i while the 14297 * rootfs is mounted from SAN. 14298 */ 14299 __bnx2x_remove(pdev, dev, bp, false); 14300 } 14301 14302 static struct pci_driver bnx2x_pci_driver = { 14303 .name = DRV_MODULE_NAME, 14304 .id_table = bnx2x_pci_tbl, 14305 .probe = bnx2x_init_one, 14306 .remove = bnx2x_remove_one, 14307 .suspend = bnx2x_suspend, 14308 .resume = bnx2x_resume, 14309 .err_handler = &bnx2x_err_handler, 14310 #ifdef CONFIG_BNX2X_SRIOV 14311 .sriov_configure = bnx2x_sriov_configure, 14312 #endif 14313 .shutdown = bnx2x_shutdown, 14314 }; 14315 14316 static int __init bnx2x_init(void) 14317 { 14318 int ret; 14319 14320 pr_info("%s", version); 14321 14322 bnx2x_wq = create_singlethread_workqueue("bnx2x"); 14323 if (bnx2x_wq == NULL) { 14324 pr_err("Cannot create workqueue\n"); 14325 return -ENOMEM; 14326 } 14327 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); 14328 if (!bnx2x_iov_wq) { 14329 pr_err("Cannot create iov workqueue\n"); 14330 destroy_workqueue(bnx2x_wq); 14331 return -ENOMEM; 14332 } 14333 14334 ret = pci_register_driver(&bnx2x_pci_driver); 14335 if (ret) { 14336 pr_err("Cannot register driver\n"); 14337 destroy_workqueue(bnx2x_wq); 14338 destroy_workqueue(bnx2x_iov_wq); 14339 } 14340 return ret; 14341 } 14342 14343 static void __exit bnx2x_cleanup(void) 14344 { 14345 struct list_head *pos, *q; 14346 14347 pci_unregister_driver(&bnx2x_pci_driver); 14348 14349 destroy_workqueue(bnx2x_wq); 14350 destroy_workqueue(bnx2x_iov_wq); 14351 14352 /* Free globally allocated resources */ 14353 list_for_each_safe(pos, q, &bnx2x_prev_list) { 14354 struct bnx2x_prev_path_list *tmp = 14355 list_entry(pos, struct bnx2x_prev_path_list, list); 14356 list_del(pos); 14357 kfree(tmp); 14358 } 14359 } 14360 14361 void bnx2x_notify_link_changed(struct bnx2x *bp) 14362 { 14363 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1); 14364 } 14365 14366 module_init(bnx2x_init); 14367 module_exit(bnx2x_cleanup); 14368 14369 /** 14370 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). 14371 * 14372 * @bp: driver handle 14373 * @set: set or clear the CAM entry 14374 * 14375 * This function will wait until the ramrod completion returns. 14376 * Return 0 if success, -ENODEV if ramrod doesn't return. 14377 */ 14378 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) 14379 { 14380 unsigned long ramrod_flags = 0; 14381 14382 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 14383 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, 14384 &bp->iscsi_l2_mac_obj, true, 14385 BNX2X_ISCSI_ETH_MAC, &ramrod_flags); 14386 } 14387 14388 /* count denotes the number of new completions we have seen */ 14389 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) 14390 { 14391 struct eth_spe *spe; 14392 int cxt_index, cxt_offset; 14393 14394 #ifdef BNX2X_STOP_ON_ERROR 14395 if (unlikely(bp->panic)) 14396 return; 14397 #endif 14398 14399 spin_lock_bh(&bp->spq_lock); 14400 BUG_ON(bp->cnic_spq_pending < count); 14401 bp->cnic_spq_pending -= count; 14402 14403 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { 14404 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) 14405 & SPE_HDR_CONN_TYPE) >> 14406 SPE_HDR_CONN_TYPE_SHIFT; 14407 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) 14408 >> SPE_HDR_CMD_ID_SHIFT) & 0xff; 14409 14410 /* Set validation for iSCSI L2 client before sending SETUP 14411 * ramrod 14412 */ 14413 if (type == ETH_CONNECTION_TYPE) { 14414 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { 14415 cxt_index = BNX2X_ISCSI_ETH_CID(bp) / 14416 ILT_PAGE_CIDS; 14417 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - 14418 (cxt_index * ILT_PAGE_CIDS); 14419 bnx2x_set_ctx_validation(bp, 14420 &bp->context[cxt_index]. 14421 vcxt[cxt_offset].eth, 14422 BNX2X_ISCSI_ETH_CID(bp)); 14423 } 14424 } 14425 14426 /* 14427 * There may be not more than 8 L2, not more than 8 L5 SPEs 14428 * and in the air. We also check that number of outstanding 14429 * COMMON ramrods is not more than the EQ and SPQ can 14430 * accommodate. 14431 */ 14432 if (type == ETH_CONNECTION_TYPE) { 14433 if (!atomic_read(&bp->cq_spq_left)) 14434 break; 14435 else 14436 atomic_dec(&bp->cq_spq_left); 14437 } else if (type == NONE_CONNECTION_TYPE) { 14438 if (!atomic_read(&bp->eq_spq_left)) 14439 break; 14440 else 14441 atomic_dec(&bp->eq_spq_left); 14442 } else if ((type == ISCSI_CONNECTION_TYPE) || 14443 (type == FCOE_CONNECTION_TYPE)) { 14444 if (bp->cnic_spq_pending >= 14445 bp->cnic_eth_dev.max_kwqe_pending) 14446 break; 14447 else 14448 bp->cnic_spq_pending++; 14449 } else { 14450 BNX2X_ERR("Unknown SPE type: %d\n", type); 14451 bnx2x_panic(); 14452 break; 14453 } 14454 14455 spe = bnx2x_sp_get_next(bp); 14456 *spe = *bp->cnic_kwq_cons; 14457 14458 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", 14459 bp->cnic_spq_pending, bp->cnic_kwq_pending, count); 14460 14461 if (bp->cnic_kwq_cons == bp->cnic_kwq_last) 14462 bp->cnic_kwq_cons = bp->cnic_kwq; 14463 else 14464 bp->cnic_kwq_cons++; 14465 } 14466 bnx2x_sp_prod_update(bp); 14467 spin_unlock_bh(&bp->spq_lock); 14468 } 14469 14470 static int bnx2x_cnic_sp_queue(struct net_device *dev, 14471 struct kwqe_16 *kwqes[], u32 count) 14472 { 14473 struct bnx2x *bp = netdev_priv(dev); 14474 int i; 14475 14476 #ifdef BNX2X_STOP_ON_ERROR 14477 if (unlikely(bp->panic)) { 14478 BNX2X_ERR("Can't post to SP queue while panic\n"); 14479 return -EIO; 14480 } 14481 #endif 14482 14483 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && 14484 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { 14485 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 14486 return -EAGAIN; 14487 } 14488 14489 spin_lock_bh(&bp->spq_lock); 14490 14491 for (i = 0; i < count; i++) { 14492 struct eth_spe *spe = (struct eth_spe *)kwqes[i]; 14493 14494 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) 14495 break; 14496 14497 *bp->cnic_kwq_prod = *spe; 14498 14499 bp->cnic_kwq_pending++; 14500 14501 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", 14502 spe->hdr.conn_and_cmd_data, spe->hdr.type, 14503 spe->data.update_data_addr.hi, 14504 spe->data.update_data_addr.lo, 14505 bp->cnic_kwq_pending); 14506 14507 if (bp->cnic_kwq_prod == bp->cnic_kwq_last) 14508 bp->cnic_kwq_prod = bp->cnic_kwq; 14509 else 14510 bp->cnic_kwq_prod++; 14511 } 14512 14513 spin_unlock_bh(&bp->spq_lock); 14514 14515 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) 14516 bnx2x_cnic_sp_post(bp, 0); 14517 14518 return i; 14519 } 14520 14521 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14522 { 14523 struct cnic_ops *c_ops; 14524 int rc = 0; 14525 14526 mutex_lock(&bp->cnic_mutex); 14527 c_ops = rcu_dereference_protected(bp->cnic_ops, 14528 lockdep_is_held(&bp->cnic_mutex)); 14529 if (c_ops) 14530 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14531 mutex_unlock(&bp->cnic_mutex); 14532 14533 return rc; 14534 } 14535 14536 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) 14537 { 14538 struct cnic_ops *c_ops; 14539 int rc = 0; 14540 14541 rcu_read_lock(); 14542 c_ops = rcu_dereference(bp->cnic_ops); 14543 if (c_ops) 14544 rc = c_ops->cnic_ctl(bp->cnic_data, ctl); 14545 rcu_read_unlock(); 14546 14547 return rc; 14548 } 14549 14550 /* 14551 * for commands that have no data 14552 */ 14553 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) 14554 { 14555 struct cnic_ctl_info ctl = {0}; 14556 14557 ctl.cmd = cmd; 14558 14559 return bnx2x_cnic_ctl_send(bp, &ctl); 14560 } 14561 14562 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err) 14563 { 14564 struct cnic_ctl_info ctl = {0}; 14565 14566 /* first we tell CNIC and only then we count this as a completion */ 14567 ctl.cmd = CNIC_CTL_COMPLETION_CMD; 14568 ctl.data.comp.cid = cid; 14569 ctl.data.comp.error = err; 14570 14571 bnx2x_cnic_ctl_send_bh(bp, &ctl); 14572 bnx2x_cnic_sp_post(bp, 0); 14573 } 14574 14575 /* Called with netif_addr_lock_bh() taken. 14576 * Sets an rx_mode config for an iSCSI ETH client. 14577 * Doesn't block. 14578 * Completion should be checked outside. 14579 */ 14580 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) 14581 { 14582 unsigned long accept_flags = 0, ramrod_flags = 0; 14583 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 14584 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; 14585 14586 if (start) { 14587 /* Start accepting on iSCSI L2 ring. Accept all multicasts 14588 * because it's the only way for UIO Queue to accept 14589 * multicasts (in non-promiscuous mode only one Queue per 14590 * function will receive multicast packets (leading in our 14591 * case). 14592 */ 14593 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); 14594 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); 14595 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); 14596 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); 14597 14598 /* Clear STOP_PENDING bit if START is requested */ 14599 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); 14600 14601 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; 14602 } else 14603 /* Clear START_PENDING bit if STOP is requested */ 14604 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); 14605 14606 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) 14607 set_bit(sched_state, &bp->sp_state); 14608 else { 14609 __set_bit(RAMROD_RX, &ramrod_flags); 14610 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, 14611 ramrod_flags); 14612 } 14613 } 14614 14615 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl) 14616 { 14617 struct bnx2x *bp = netdev_priv(dev); 14618 int rc = 0; 14619 14620 switch (ctl->cmd) { 14621 case DRV_CTL_CTXTBL_WR_CMD: { 14622 u32 index = ctl->data.io.offset; 14623 dma_addr_t addr = ctl->data.io.dma_addr; 14624 14625 bnx2x_ilt_wr(bp, index, addr); 14626 break; 14627 } 14628 14629 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { 14630 int count = ctl->data.credit.credit_count; 14631 14632 bnx2x_cnic_sp_post(bp, count); 14633 break; 14634 } 14635 14636 /* rtnl_lock is held. */ 14637 case DRV_CTL_START_L2_CMD: { 14638 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14639 unsigned long sp_bits = 0; 14640 14641 /* Configure the iSCSI classification object */ 14642 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, 14643 cp->iscsi_l2_client_id, 14644 cp->iscsi_l2_cid, BP_FUNC(bp), 14645 bnx2x_sp(bp, mac_rdata), 14646 bnx2x_sp_mapping(bp, mac_rdata), 14647 BNX2X_FILTER_MAC_PENDING, 14648 &bp->sp_state, BNX2X_OBJ_TYPE_RX, 14649 &bp->macs_pool); 14650 14651 /* Set iSCSI MAC address */ 14652 rc = bnx2x_set_iscsi_eth_mac_addr(bp); 14653 if (rc) 14654 break; 14655 14656 mmiowb(); 14657 barrier(); 14658 14659 /* Start accepting on iSCSI L2 ring */ 14660 14661 netif_addr_lock_bh(dev); 14662 bnx2x_set_iscsi_eth_rx_mode(bp, true); 14663 netif_addr_unlock_bh(dev); 14664 14665 /* bits to wait on */ 14666 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14667 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); 14668 14669 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14670 BNX2X_ERR("rx_mode completion timed out!\n"); 14671 14672 break; 14673 } 14674 14675 /* rtnl_lock is held. */ 14676 case DRV_CTL_STOP_L2_CMD: { 14677 unsigned long sp_bits = 0; 14678 14679 /* Stop accepting on iSCSI L2 ring */ 14680 netif_addr_lock_bh(dev); 14681 bnx2x_set_iscsi_eth_rx_mode(bp, false); 14682 netif_addr_unlock_bh(dev); 14683 14684 /* bits to wait on */ 14685 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); 14686 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); 14687 14688 if (!bnx2x_wait_sp_comp(bp, sp_bits)) 14689 BNX2X_ERR("rx_mode completion timed out!\n"); 14690 14691 mmiowb(); 14692 barrier(); 14693 14694 /* Unset iSCSI L2 MAC */ 14695 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, 14696 BNX2X_ISCSI_ETH_MAC, true); 14697 break; 14698 } 14699 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { 14700 int count = ctl->data.credit.credit_count; 14701 14702 smp_mb__before_atomic(); 14703 atomic_add(count, &bp->cq_spq_left); 14704 smp_mb__after_atomic(); 14705 break; 14706 } 14707 case DRV_CTL_ULP_REGISTER_CMD: { 14708 int ulp_type = ctl->data.register_data.ulp_type; 14709 14710 if (CHIP_IS_E3(bp)) { 14711 int idx = BP_FW_MB_IDX(bp); 14712 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14713 int path = BP_PATH(bp); 14714 int port = BP_PORT(bp); 14715 int i; 14716 u32 scratch_offset; 14717 u32 *host_addr; 14718 14719 /* first write capability to shmem2 */ 14720 if (ulp_type == CNIC_ULP_ISCSI) 14721 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14722 else if (ulp_type == CNIC_ULP_FCOE) 14723 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14724 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14725 14726 if ((ulp_type != CNIC_ULP_FCOE) || 14727 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || 14728 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES))) 14729 break; 14730 14731 /* if reached here - should write fcoe capabilities */ 14732 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); 14733 if (!scratch_offset) 14734 break; 14735 scratch_offset += offsetof(struct glob_ncsi_oem_data, 14736 fcoe_features[path][port]); 14737 host_addr = (u32 *) &(ctl->data.register_data. 14738 fcoe_features); 14739 for (i = 0; i < sizeof(struct fcoe_capabilities); 14740 i += 4) 14741 REG_WR(bp, scratch_offset + i, 14742 *(host_addr + i/4)); 14743 } 14744 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14745 break; 14746 } 14747 14748 case DRV_CTL_ULP_UNREGISTER_CMD: { 14749 int ulp_type = ctl->data.ulp_type; 14750 14751 if (CHIP_IS_E3(bp)) { 14752 int idx = BP_FW_MB_IDX(bp); 14753 u32 cap; 14754 14755 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); 14756 if (ulp_type == CNIC_ULP_ISCSI) 14757 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; 14758 else if (ulp_type == CNIC_ULP_FCOE) 14759 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; 14760 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); 14761 } 14762 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14763 break; 14764 } 14765 14766 default: 14767 BNX2X_ERR("unknown command %x\n", ctl->cmd); 14768 rc = -EINVAL; 14769 } 14770 14771 /* For storage-only interfaces, change driver state */ 14772 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) { 14773 switch (ctl->drv_state) { 14774 case DRV_NOP: 14775 break; 14776 case DRV_ACTIVE: 14777 bnx2x_set_os_driver_state(bp, 14778 OS_DRIVER_STATE_ACTIVE); 14779 break; 14780 case DRV_INACTIVE: 14781 bnx2x_set_os_driver_state(bp, 14782 OS_DRIVER_STATE_DISABLED); 14783 break; 14784 case DRV_UNLOADED: 14785 bnx2x_set_os_driver_state(bp, 14786 OS_DRIVER_STATE_NOT_LOADED); 14787 break; 14788 default: 14789 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state); 14790 } 14791 } 14792 14793 return rc; 14794 } 14795 14796 static int bnx2x_get_fc_npiv(struct net_device *dev, 14797 struct cnic_fc_npiv_tbl *cnic_tbl) 14798 { 14799 struct bnx2x *bp = netdev_priv(dev); 14800 struct bdn_fc_npiv_tbl *tbl = NULL; 14801 u32 offset, entries; 14802 int rc = -EINVAL; 14803 int i; 14804 14805 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0])) 14806 goto out; 14807 14808 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n"); 14809 14810 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL); 14811 if (!tbl) { 14812 BNX2X_ERR("Failed to allocate fc_npiv table\n"); 14813 goto out; 14814 } 14815 14816 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]); 14817 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset); 14818 14819 /* Read the table contents from nvram */ 14820 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) { 14821 BNX2X_ERR("Failed to read FC-NPIV table\n"); 14822 goto out; 14823 } 14824 14825 /* Since bnx2x_nvram_read() returns data in be32, we need to convert 14826 * the number of entries back to cpu endianness. 14827 */ 14828 entries = tbl->fc_npiv_cfg.num_of_npiv; 14829 entries = (__force u32)be32_to_cpu((__force __be32)entries); 14830 tbl->fc_npiv_cfg.num_of_npiv = entries; 14831 14832 if (!tbl->fc_npiv_cfg.num_of_npiv) { 14833 DP(BNX2X_MSG_MCP, 14834 "No FC-NPIV table [valid, simply not present]\n"); 14835 goto out; 14836 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) { 14837 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n", 14838 tbl->fc_npiv_cfg.num_of_npiv); 14839 goto out; 14840 } else { 14841 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n", 14842 tbl->fc_npiv_cfg.num_of_npiv); 14843 } 14844 14845 /* Copy the data into cnic-provided struct */ 14846 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv; 14847 for (i = 0; i < cnic_tbl->count; i++) { 14848 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8); 14849 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8); 14850 } 14851 14852 rc = 0; 14853 out: 14854 kfree(tbl); 14855 return rc; 14856 } 14857 14858 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) 14859 { 14860 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14861 14862 if (bp->flags & USING_MSIX_FLAG) { 14863 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; 14864 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; 14865 cp->irq_arr[0].vector = bp->msix_table[1].vector; 14866 } else { 14867 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; 14868 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; 14869 } 14870 if (!CHIP_IS_E1x(bp)) 14871 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; 14872 else 14873 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; 14874 14875 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp); 14876 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); 14877 cp->irq_arr[1].status_blk = bp->def_status_blk; 14878 cp->irq_arr[1].status_blk_num = DEF_SB_ID; 14879 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; 14880 14881 cp->num_irq = 2; 14882 } 14883 14884 void bnx2x_setup_cnic_info(struct bnx2x *bp) 14885 { 14886 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14887 14888 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14889 bnx2x_cid_ilt_lines(bp); 14890 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14891 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 14892 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 14893 14894 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", 14895 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, 14896 cp->iscsi_l2_cid); 14897 14898 if (NO_ISCSI_OOO(bp)) 14899 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 14900 } 14901 14902 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops, 14903 void *data) 14904 { 14905 struct bnx2x *bp = netdev_priv(dev); 14906 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14907 int rc; 14908 14909 DP(NETIF_MSG_IFUP, "Register_cnic called\n"); 14910 14911 if (ops == NULL) { 14912 BNX2X_ERR("NULL ops received\n"); 14913 return -EINVAL; 14914 } 14915 14916 if (!CNIC_SUPPORT(bp)) { 14917 BNX2X_ERR("Can't register CNIC when not supported\n"); 14918 return -EOPNOTSUPP; 14919 } 14920 14921 if (!CNIC_LOADED(bp)) { 14922 rc = bnx2x_load_cnic(bp); 14923 if (rc) { 14924 BNX2X_ERR("CNIC-related load failed\n"); 14925 return rc; 14926 } 14927 } 14928 14929 bp->cnic_enabled = true; 14930 14931 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL); 14932 if (!bp->cnic_kwq) 14933 return -ENOMEM; 14934 14935 bp->cnic_kwq_cons = bp->cnic_kwq; 14936 bp->cnic_kwq_prod = bp->cnic_kwq; 14937 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; 14938 14939 bp->cnic_spq_pending = 0; 14940 bp->cnic_kwq_pending = 0; 14941 14942 bp->cnic_data = data; 14943 14944 cp->num_irq = 0; 14945 cp->drv_state |= CNIC_DRV_STATE_REGD; 14946 cp->iro_arr = bp->iro_arr; 14947 14948 bnx2x_setup_cnic_irq_info(bp); 14949 14950 rcu_assign_pointer(bp->cnic_ops, ops); 14951 14952 /* Schedule driver to read CNIC driver versions */ 14953 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 14954 14955 return 0; 14956 } 14957 14958 static int bnx2x_unregister_cnic(struct net_device *dev) 14959 { 14960 struct bnx2x *bp = netdev_priv(dev); 14961 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14962 14963 mutex_lock(&bp->cnic_mutex); 14964 cp->drv_state = 0; 14965 RCU_INIT_POINTER(bp->cnic_ops, NULL); 14966 mutex_unlock(&bp->cnic_mutex); 14967 synchronize_rcu(); 14968 bp->cnic_enabled = false; 14969 kfree(bp->cnic_kwq); 14970 bp->cnic_kwq = NULL; 14971 14972 return 0; 14973 } 14974 14975 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev) 14976 { 14977 struct bnx2x *bp = netdev_priv(dev); 14978 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 14979 14980 /* If both iSCSI and FCoE are disabled - return NULL in 14981 * order to indicate CNIC that it should not try to work 14982 * with this device. 14983 */ 14984 if (NO_ISCSI(bp) && NO_FCOE(bp)) 14985 return NULL; 14986 14987 cp->drv_owner = THIS_MODULE; 14988 cp->chip_id = CHIP_ID(bp); 14989 cp->pdev = bp->pdev; 14990 cp->io_base = bp->regview; 14991 cp->io_base2 = bp->doorbells; 14992 cp->max_kwqe_pending = 8; 14993 cp->ctx_blk_size = CDU_ILT_PAGE_SZ; 14994 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + 14995 bnx2x_cid_ilt_lines(bp); 14996 cp->ctx_tbl_len = CNIC_ILT_LINES; 14997 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; 14998 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; 14999 cp->drv_ctl = bnx2x_drv_ctl; 15000 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv; 15001 cp->drv_register_cnic = bnx2x_register_cnic; 15002 cp->drv_unregister_cnic = bnx2x_unregister_cnic; 15003 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); 15004 cp->iscsi_l2_client_id = 15005 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); 15006 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); 15007 15008 if (NO_ISCSI_OOO(bp)) 15009 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; 15010 15011 if (NO_ISCSI(bp)) 15012 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; 15013 15014 if (NO_FCOE(bp)) 15015 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; 15016 15017 BNX2X_DEV_INFO( 15018 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", 15019 cp->ctx_blk_size, 15020 cp->ctx_tbl_offset, 15021 cp->ctx_tbl_len, 15022 cp->starting_cid); 15023 return cp; 15024 } 15025 15026 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) 15027 { 15028 struct bnx2x *bp = fp->bp; 15029 u32 offset = BAR_USTRORM_INTMEM; 15030 15031 if (IS_VF(bp)) 15032 return bnx2x_vf_ustorm_prods_offset(bp, fp); 15033 else if (!CHIP_IS_E1x(bp)) 15034 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 15035 else 15036 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); 15037 15038 return offset; 15039 } 15040 15041 /* called only on E1H or E2. 15042 * When pretending to be PF, the pretend value is the function number 0...7 15043 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 15044 * combination 15045 */ 15046 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val) 15047 { 15048 u32 pretend_reg; 15049 15050 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) 15051 return -1; 15052 15053 /* get my own pretend register */ 15054 pretend_reg = bnx2x_get_pretend_reg(bp); 15055 REG_WR(bp, pretend_reg, pretend_func_val); 15056 REG_RD(bp, pretend_reg); 15057 return 0; 15058 } 15059 15060 static void bnx2x_ptp_task(struct work_struct *work) 15061 { 15062 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task); 15063 int port = BP_PORT(bp); 15064 u32 val_seq; 15065 u64 timestamp, ns; 15066 struct skb_shared_hwtstamps shhwtstamps; 15067 15068 /* Read Tx timestamp registers */ 15069 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15070 NIG_REG_P0_TLLH_PTP_BUF_SEQID); 15071 if (val_seq & 0x10000) { 15072 /* There is a valid timestamp value */ 15073 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB : 15074 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB); 15075 timestamp <<= 32; 15076 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB : 15077 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB); 15078 /* Reset timestamp register to allow new timestamp */ 15079 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15080 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15081 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15082 15083 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 15084 shhwtstamps.hwtstamp = ns_to_ktime(ns); 15085 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps); 15086 dev_kfree_skb_any(bp->ptp_tx_skb); 15087 bp->ptp_tx_skb = NULL; 15088 15089 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n", 15090 timestamp, ns); 15091 } else { 15092 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n"); 15093 /* Reschedule to keep checking for a valid timestamp value */ 15094 schedule_work(&bp->ptp_task); 15095 } 15096 } 15097 15098 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb) 15099 { 15100 int port = BP_PORT(bp); 15101 u64 timestamp, ns; 15102 15103 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB : 15104 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB); 15105 timestamp <<= 32; 15106 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB : 15107 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB); 15108 15109 /* Reset timestamp register to allow new timestamp */ 15110 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15111 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15112 15113 ns = timecounter_cyc2time(&bp->timecounter, timestamp); 15114 15115 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 15116 15117 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n", 15118 timestamp, ns); 15119 } 15120 15121 /* Read the PHC */ 15122 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc) 15123 { 15124 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter); 15125 int port = BP_PORT(bp); 15126 u32 wb_data[2]; 15127 u64 phc_cycles; 15128 15129 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 : 15130 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2); 15131 phc_cycles = wb_data[1]; 15132 phc_cycles = (phc_cycles << 32) + wb_data[0]; 15133 15134 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles); 15135 15136 return phc_cycles; 15137 } 15138 15139 static void bnx2x_init_cyclecounter(struct bnx2x *bp) 15140 { 15141 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter)); 15142 bp->cyclecounter.read = bnx2x_cyclecounter_read; 15143 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64); 15144 bp->cyclecounter.shift = 1; 15145 bp->cyclecounter.mult = 1; 15146 } 15147 15148 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp) 15149 { 15150 struct bnx2x_func_state_params func_params = {NULL}; 15151 struct bnx2x_func_set_timesync_params *set_timesync_params = 15152 &func_params.params.set_timesync; 15153 15154 /* Prepare parameters for function state transitions */ 15155 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 15156 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); 15157 15158 func_params.f_obj = &bp->func_obj; 15159 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; 15160 15161 /* Function parameters */ 15162 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET; 15163 set_timesync_params->offset_cmd = TS_OFFSET_KEEP; 15164 15165 return bnx2x_func_state_change(bp, &func_params); 15166 } 15167 15168 static int bnx2x_enable_ptp_packets(struct bnx2x *bp) 15169 { 15170 struct bnx2x_queue_state_params q_params; 15171 int rc, i; 15172 15173 /* send queue update ramrod to enable PTP packets */ 15174 memset(&q_params, 0, sizeof(q_params)); 15175 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 15176 q_params.cmd = BNX2X_Q_CMD_UPDATE; 15177 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG, 15178 &q_params.params.update.update_flags); 15179 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS, 15180 &q_params.params.update.update_flags); 15181 15182 /* send the ramrod on all the queues of the PF */ 15183 for_each_eth_queue(bp, i) { 15184 struct bnx2x_fastpath *fp = &bp->fp[i]; 15185 15186 /* Set the appropriate Queue object */ 15187 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; 15188 15189 /* Update the Queue state */ 15190 rc = bnx2x_queue_state_change(bp, &q_params); 15191 if (rc) { 15192 BNX2X_ERR("Failed to enable PTP packets\n"); 15193 return rc; 15194 } 15195 } 15196 15197 return 0; 15198 } 15199 15200 int bnx2x_configure_ptp_filters(struct bnx2x *bp) 15201 { 15202 int port = BP_PORT(bp); 15203 int rc; 15204 15205 if (!bp->hwtstamp_ioctl_called) 15206 return 0; 15207 15208 switch (bp->tx_type) { 15209 case HWTSTAMP_TX_ON: 15210 bp->flags |= TX_TIMESTAMPING_EN; 15211 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15212 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA); 15213 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15214 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE); 15215 break; 15216 case HWTSTAMP_TX_ONESTEP_SYNC: 15217 BNX2X_ERR("One-step timestamping is not supported\n"); 15218 return -ERANGE; 15219 } 15220 15221 switch (bp->rx_filter) { 15222 case HWTSTAMP_FILTER_NONE: 15223 break; 15224 case HWTSTAMP_FILTER_ALL: 15225 case HWTSTAMP_FILTER_SOME: 15226 bp->rx_filter = HWTSTAMP_FILTER_NONE; 15227 break; 15228 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 15229 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 15230 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 15231 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 15232 /* Initialize PTP detection for UDP/IPv4 events */ 15233 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15234 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE); 15235 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15236 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE); 15237 break; 15238 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 15239 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 15240 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 15241 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 15242 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */ 15243 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15244 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA); 15245 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15246 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE); 15247 break; 15248 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 15249 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 15250 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 15251 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT; 15252 /* Initialize PTP detection L2 events */ 15253 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15254 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF); 15255 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15256 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF); 15257 15258 break; 15259 case HWTSTAMP_FILTER_PTP_V2_EVENT: 15260 case HWTSTAMP_FILTER_PTP_V2_SYNC: 15261 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 15262 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 15263 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */ 15264 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15265 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA); 15266 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15267 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE); 15268 break; 15269 } 15270 15271 /* Indicate to FW that this PF expects recorded PTP packets */ 15272 rc = bnx2x_enable_ptp_packets(bp); 15273 if (rc) 15274 return rc; 15275 15276 /* Enable sending PTP packets to host */ 15277 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15278 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1); 15279 15280 return 0; 15281 } 15282 15283 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr) 15284 { 15285 struct hwtstamp_config config; 15286 int rc; 15287 15288 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n"); 15289 15290 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 15291 return -EFAULT; 15292 15293 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n", 15294 config.tx_type, config.rx_filter); 15295 15296 if (config.flags) { 15297 BNX2X_ERR("config.flags is reserved for future use\n"); 15298 return -EINVAL; 15299 } 15300 15301 bp->hwtstamp_ioctl_called = 1; 15302 bp->tx_type = config.tx_type; 15303 bp->rx_filter = config.rx_filter; 15304 15305 rc = bnx2x_configure_ptp_filters(bp); 15306 if (rc) 15307 return rc; 15308 15309 config.rx_filter = bp->rx_filter; 15310 15311 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 15312 -EFAULT : 0; 15313 } 15314 15315 /* Configures HW for PTP */ 15316 static int bnx2x_configure_ptp(struct bnx2x *bp) 15317 { 15318 int rc, port = BP_PORT(bp); 15319 u32 wb_data[2]; 15320 15321 /* Reset PTP event detection rules - will be configured in the IOCTL */ 15322 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK : 15323 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF); 15324 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK : 15325 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF); 15326 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK : 15327 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF); 15328 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK : 15329 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF); 15330 15331 /* Disable PTP packets to host - will be configured in the IOCTL*/ 15332 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST : 15333 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0); 15334 15335 /* Enable the PTP feature */ 15336 REG_WR(bp, port ? NIG_REG_P1_PTP_EN : 15337 NIG_REG_P0_PTP_EN, 0x3F); 15338 15339 /* Enable the free-running counter */ 15340 wb_data[0] = 0; 15341 wb_data[1] = 0; 15342 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2); 15343 15344 /* Reset drift register (offset register is not reset) */ 15345 rc = bnx2x_send_reset_timesync_ramrod(bp); 15346 if (rc) { 15347 BNX2X_ERR("Failed to reset PHC drift register\n"); 15348 return -EFAULT; 15349 } 15350 15351 /* Reset possibly old timestamps */ 15352 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID : 15353 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000); 15354 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID : 15355 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000); 15356 15357 return 0; 15358 } 15359 15360 /* Called during load, to initialize PTP-related stuff */ 15361 void bnx2x_init_ptp(struct bnx2x *bp) 15362 { 15363 int rc; 15364 15365 /* Configure PTP in HW */ 15366 rc = bnx2x_configure_ptp(bp); 15367 if (rc) { 15368 BNX2X_ERR("Stopping PTP initialization\n"); 15369 return; 15370 } 15371 15372 /* Init work queue for Tx timestamping */ 15373 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task); 15374 15375 /* Init cyclecounter and timecounter. This is done only in the first 15376 * load. If done in every load, PTP application will fail when doing 15377 * unload / load (e.g. MTU change) while it is running. 15378 */ 15379 if (!bp->timecounter_init_done) { 15380 bnx2x_init_cyclecounter(bp); 15381 timecounter_init(&bp->timecounter, &bp->cyclecounter, 15382 ktime_to_ns(ktime_get_real())); 15383 bp->timecounter_init_done = 1; 15384 } 15385 15386 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n"); 15387 } 15388