xref: /linux/drivers/mtd/ubi/kapi.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /* This file mostly implements UBI kernel API functions */
22 
23 #include <linux/module.h>
24 #include <linux/err.h>
25 #include <asm/div64.h>
26 #include "ubi.h"
27 
28 /**
29  * ubi_get_device_info - get information about UBI device.
30  * @ubi_num: UBI device number
31  * @di: the information is stored here
32  *
33  * This function returns %0 in case of success and a %-ENODEV if there is no
34  * such UBI device.
35  */
36 int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
37 {
38 	const struct ubi_device *ubi;
39 
40 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES ||
41 	    !ubi_devices[ubi_num])
42 		return -ENODEV;
43 
44 	ubi = ubi_devices[ubi_num];
45 	di->ubi_num = ubi->ubi_num;
46 	di->leb_size = ubi->leb_size;
47 	di->min_io_size = ubi->min_io_size;
48 	di->ro_mode = ubi->ro_mode;
49 	di->cdev = MKDEV(ubi->major, 0);
50 	return 0;
51 }
52 EXPORT_SYMBOL_GPL(ubi_get_device_info);
53 
54 /**
55  * ubi_get_volume_info - get information about UBI volume.
56  * @desc: volume descriptor
57  * @vi: the information is stored here
58  */
59 void ubi_get_volume_info(struct ubi_volume_desc *desc,
60 			 struct ubi_volume_info *vi)
61 {
62 	const struct ubi_volume *vol = desc->vol;
63 	const struct ubi_device *ubi = vol->ubi;
64 
65 	vi->vol_id = vol->vol_id;
66 	vi->ubi_num = ubi->ubi_num;
67 	vi->size = vol->reserved_pebs;
68 	vi->used_bytes = vol->used_bytes;
69 	vi->vol_type = vol->vol_type;
70 	vi->corrupted = vol->corrupted;
71 	vi->upd_marker = vol->upd_marker;
72 	vi->alignment = vol->alignment;
73 	vi->usable_leb_size = vol->usable_leb_size;
74 	vi->name_len = vol->name_len;
75 	vi->name = vol->name;
76 	vi->cdev = MKDEV(ubi->major, vi->vol_id + 1);
77 }
78 EXPORT_SYMBOL_GPL(ubi_get_volume_info);
79 
80 /**
81  * ubi_open_volume - open UBI volume.
82  * @ubi_num: UBI device number
83  * @vol_id: volume ID
84  * @mode: open mode
85  *
86  * The @mode parameter specifies if the volume should be opened in read-only
87  * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
88  * nobody else will be able to open this volume. UBI allows to have many volume
89  * readers and one writer at a time.
90  *
91  * If a static volume is being opened for the first time since boot, it will be
92  * checked by this function, which means it will be fully read and the CRC
93  * checksum of each logical eraseblock will be checked.
94  *
95  * This function returns volume descriptor in case of success and a negative
96  * error code in case of failure.
97  */
98 struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
99 {
100 	int err;
101 	struct ubi_volume_desc *desc;
102 	struct ubi_device *ubi = ubi_devices[ubi_num];
103 	struct ubi_volume *vol;
104 
105 	dbg_msg("open device %d volume %d, mode %d", ubi_num, vol_id, mode);
106 
107 	err = -ENODEV;
108 	if (!try_module_get(THIS_MODULE))
109 		return ERR_PTR(err);
110 
111 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi)
112 		goto out_put;
113 
114 	err = -EINVAL;
115 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
116 		goto out_put;
117 	if (mode != UBI_READONLY && mode != UBI_READWRITE &&
118 	    mode != UBI_EXCLUSIVE)
119 		goto out_put;
120 
121 	desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
122 	if (!desc) {
123 		err = -ENOMEM;
124 		goto out_put;
125 	}
126 
127 	spin_lock(&ubi->volumes_lock);
128 	vol = ubi->volumes[vol_id];
129 	if (!vol) {
130 		err = -ENODEV;
131 		goto out_unlock;
132 	}
133 
134 	err = -EBUSY;
135 	switch (mode) {
136 	case UBI_READONLY:
137 		if (vol->exclusive)
138 			goto out_unlock;
139 		vol->readers += 1;
140 		break;
141 
142 	case UBI_READWRITE:
143 		if (vol->exclusive || vol->writers > 0)
144 			goto out_unlock;
145 		vol->writers += 1;
146 		break;
147 
148 	case UBI_EXCLUSIVE:
149 		if (vol->exclusive || vol->writers || vol->readers)
150 			goto out_unlock;
151 		vol->exclusive = 1;
152 		break;
153 	}
154 	spin_unlock(&ubi->volumes_lock);
155 
156 	desc->vol = vol;
157 	desc->mode = mode;
158 
159 	/*
160 	 * To prevent simultaneous checks of the same volume we use @vtbl_mutex,
161 	 * although it is not the purpose it was introduced for.
162 	 */
163 	mutex_lock(&ubi->vtbl_mutex);
164 	if (!vol->checked) {
165 		/* This is the first open - check the volume */
166 		err = ubi_check_volume(ubi, vol_id);
167 		if (err < 0) {
168 			mutex_unlock(&ubi->vtbl_mutex);
169 			ubi_close_volume(desc);
170 			return ERR_PTR(err);
171 		}
172 		if (err == 1) {
173 			ubi_warn("volume %d on UBI device %d is corrupted",
174 				 vol_id, ubi->ubi_num);
175 			vol->corrupted = 1;
176 		}
177 		vol->checked = 1;
178 	}
179 	mutex_unlock(&ubi->vtbl_mutex);
180 	return desc;
181 
182 out_unlock:
183 	spin_unlock(&ubi->volumes_lock);
184 	kfree(desc);
185 out_put:
186 	module_put(THIS_MODULE);
187 	return ERR_PTR(err);
188 }
189 EXPORT_SYMBOL_GPL(ubi_open_volume);
190 
191 /**
192  * ubi_open_volume_nm - open UBI volume by name.
193  * @ubi_num: UBI device number
194  * @name: volume name
195  * @mode: open mode
196  *
197  * This function is similar to 'ubi_open_volume()', but opens a volume by name.
198  */
199 struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
200 					   int mode)
201 {
202 	int i, vol_id = -1, len;
203 	struct ubi_volume_desc *ret;
204 	struct ubi_device *ubi;
205 
206 	dbg_msg("open volume %s, mode %d", name, mode);
207 
208 	if (!name)
209 		return ERR_PTR(-EINVAL);
210 
211 	len = strnlen(name, UBI_VOL_NAME_MAX + 1);
212 	if (len > UBI_VOL_NAME_MAX)
213 		return ERR_PTR(-EINVAL);
214 
215 	ret = ERR_PTR(-ENODEV);
216 	if (!try_module_get(THIS_MODULE))
217 		return ret;
218 
219 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi_devices[ubi_num])
220 		goto out_put;
221 
222 	ubi = ubi_devices[ubi_num];
223 
224 	spin_lock(&ubi->volumes_lock);
225 	/* Walk all volumes of this UBI device */
226 	for (i = 0; i < ubi->vtbl_slots; i++) {
227 		struct ubi_volume *vol = ubi->volumes[i];
228 
229 		if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
230 			vol_id = i;
231 			break;
232 		}
233 	}
234 	spin_unlock(&ubi->volumes_lock);
235 
236 	if (vol_id < 0)
237 		goto out_put;
238 
239 	ret = ubi_open_volume(ubi_num, vol_id, mode);
240 
241 out_put:
242 	module_put(THIS_MODULE);
243 	return ret;
244 }
245 EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
246 
247 /**
248  * ubi_close_volume - close UBI volume.
249  * @desc: volume descriptor
250  */
251 void ubi_close_volume(struct ubi_volume_desc *desc)
252 {
253 	struct ubi_volume *vol = desc->vol;
254 
255 	dbg_msg("close volume %d, mode %d", vol->vol_id, desc->mode);
256 
257 	spin_lock(&vol->ubi->volumes_lock);
258 	switch (desc->mode) {
259 	case UBI_READONLY:
260 		vol->readers -= 1;
261 		break;
262 	case UBI_READWRITE:
263 		vol->writers -= 1;
264 		break;
265 	case UBI_EXCLUSIVE:
266 		vol->exclusive = 0;
267 	}
268 	spin_unlock(&vol->ubi->volumes_lock);
269 
270 	kfree(desc);
271 	module_put(THIS_MODULE);
272 }
273 EXPORT_SYMBOL_GPL(ubi_close_volume);
274 
275 /**
276  * ubi_leb_read - read data.
277  * @desc: volume descriptor
278  * @lnum: logical eraseblock number to read from
279  * @buf: buffer where to store the read data
280  * @offset: offset within the logical eraseblock to read from
281  * @len: how many bytes to read
282  * @check: whether UBI has to check the read data's CRC or not.
283  *
284  * This function reads data from offset @offset of logical eraseblock @lnum and
285  * stores the data at @buf. When reading from static volumes, @check specifies
286  * whether the data has to be checked or not. If yes, the whole logical
287  * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
288  * checksum is per-eraseblock). So checking may substantially slow down the
289  * read speed. The @check argument is ignored for dynamic volumes.
290  *
291  * In case of success, this function returns zero. In case of failure, this
292  * function returns a negative error code.
293  *
294  * %-EBADMSG error code is returned:
295  * o for both static and dynamic volumes if MTD driver has detected a data
296  *   integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
297  * o for static volumes in case of data CRC mismatch.
298  *
299  * If the volume is damaged because of an interrupted update this function just
300  * returns immediately with %-EBADF error code.
301  */
302 int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
303 		 int len, int check)
304 {
305 	struct ubi_volume *vol = desc->vol;
306 	struct ubi_device *ubi = vol->ubi;
307 	int err, vol_id = vol->vol_id;
308 
309 	dbg_msg("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
310 
311 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
312 	    lnum >= vol->used_ebs || offset < 0 || len < 0 ||
313 	    offset + len > vol->usable_leb_size)
314 		return -EINVAL;
315 
316 	if (vol->vol_type == UBI_STATIC_VOLUME) {
317 		if (vol->used_ebs == 0)
318 			/* Empty static UBI volume */
319 			return 0;
320 		if (lnum == vol->used_ebs - 1 &&
321 		    offset + len > vol->last_eb_bytes)
322 			return -EINVAL;
323 	}
324 
325 	if (vol->upd_marker)
326 		return -EBADF;
327 	if (len == 0)
328 		return 0;
329 
330 	err = ubi_eba_read_leb(ubi, vol_id, lnum, buf, offset, len, check);
331 	if (err && err == -EBADMSG && vol->vol_type == UBI_STATIC_VOLUME) {
332 		ubi_warn("mark volume %d as corrupted", vol_id);
333 		vol->corrupted = 1;
334 	}
335 
336 	return err;
337 }
338 EXPORT_SYMBOL_GPL(ubi_leb_read);
339 
340 /**
341  * ubi_leb_write - write data.
342  * @desc: volume descriptor
343  * @lnum: logical eraseblock number to write to
344  * @buf: data to write
345  * @offset: offset within the logical eraseblock where to write
346  * @len: how many bytes to write
347  * @dtype: expected data type
348  *
349  * This function writes @len bytes of data from @buf to offset @offset of
350  * logical eraseblock @lnum. The @dtype argument describes expected lifetime of
351  * the data.
352  *
353  * This function takes care of physical eraseblock write failures. If write to
354  * the physical eraseblock write operation fails, the logical eraseblock is
355  * re-mapped to another physical eraseblock, the data is recovered, and the
356  * write finishes. UBI has a pool of reserved physical eraseblocks for this.
357  *
358  * If all the data were successfully written, zero is returned. If an error
359  * occurred and UBI has not been able to recover from it, this function returns
360  * a negative error code. Note, in case of an error, it is possible that
361  * something was still written to the flash media, but that may be some
362  * garbage.
363  *
364  * If the volume is damaged because of an interrupted update this function just
365  * returns immediately with %-EBADF code.
366  */
367 int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
368 		  int offset, int len, int dtype)
369 {
370 	struct ubi_volume *vol = desc->vol;
371 	struct ubi_device *ubi = vol->ubi;
372 	int vol_id = vol->vol_id;
373 
374 	dbg_msg("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
375 
376 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
377 		return -EINVAL;
378 
379 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
380 		return -EROFS;
381 
382 	if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 ||
383 	    offset + len > vol->usable_leb_size || offset % ubi->min_io_size ||
384 	    len % ubi->min_io_size)
385 		return -EINVAL;
386 
387 	if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
388 	    dtype != UBI_UNKNOWN)
389 		return -EINVAL;
390 
391 	if (vol->upd_marker)
392 		return -EBADF;
393 
394 	if (len == 0)
395 		return 0;
396 
397 	return ubi_eba_write_leb(ubi, vol_id, lnum, buf, offset, len, dtype);
398 }
399 EXPORT_SYMBOL_GPL(ubi_leb_write);
400 
401 /*
402  * ubi_leb_change - change logical eraseblock atomically.
403  * @desc: volume descriptor
404  * @lnum: logical eraseblock number to change
405  * @buf: data to write
406  * @len: how many bytes to write
407  * @dtype: expected data type
408  *
409  * This function changes the contents of a logical eraseblock atomically. @buf
410  * has to contain new logical eraseblock data, and @len - the length of the
411  * data, which has to be aligned. The length may be shorter then the logical
412  * eraseblock size, ant the logical eraseblock may be appended to more times
413  * later on. This function guarantees that in case of an unclean reboot the old
414  * contents is preserved. Returns zero in case of success and a negative error
415  * code in case of failure.
416  */
417 int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
418 		   int len, int dtype)
419 {
420 	struct ubi_volume *vol = desc->vol;
421 	struct ubi_device *ubi = vol->ubi;
422 	int vol_id = vol->vol_id;
423 
424 	dbg_msg("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
425 
426 	if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
427 		return -EINVAL;
428 
429 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
430 		return -EROFS;
431 
432 	if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 ||
433 	    len > vol->usable_leb_size || len % ubi->min_io_size)
434 		return -EINVAL;
435 
436 	if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
437 	    dtype != UBI_UNKNOWN)
438 		return -EINVAL;
439 
440 	if (vol->upd_marker)
441 		return -EBADF;
442 
443 	if (len == 0)
444 		return 0;
445 
446 	return ubi_eba_atomic_leb_change(ubi, vol_id, lnum, buf, len, dtype);
447 }
448 EXPORT_SYMBOL_GPL(ubi_leb_change);
449 
450 /**
451  * ubi_leb_erase - erase logical eraseblock.
452  * @desc: volume descriptor
453  * @lnum: logical eraseblock number
454  *
455  * This function un-maps logical eraseblock @lnum and synchronously erases the
456  * correspondent physical eraseblock. Returns zero in case of success and a
457  * negative error code in case of failure.
458  *
459  * If the volume is damaged because of an interrupted update this function just
460  * returns immediately with %-EBADF code.
461  */
462 int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
463 {
464 	struct ubi_volume *vol = desc->vol;
465 	struct ubi_device *ubi = vol->ubi;
466 	int err, vol_id = vol->vol_id;
467 
468 	dbg_msg("erase LEB %d:%d", vol_id, lnum);
469 
470 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
471 		return -EROFS;
472 
473 	if (lnum < 0 || lnum >= vol->reserved_pebs)
474 		return -EINVAL;
475 
476 	if (vol->upd_marker)
477 		return -EBADF;
478 
479 	err = ubi_eba_unmap_leb(ubi, vol_id, lnum);
480 	if (err)
481 		return err;
482 
483 	return ubi_wl_flush(ubi);
484 }
485 EXPORT_SYMBOL_GPL(ubi_leb_erase);
486 
487 /**
488  * ubi_leb_unmap - un-map logical eraseblock.
489  * @desc: volume descriptor
490  * @lnum: logical eraseblock number
491  *
492  * This function un-maps logical eraseblock @lnum and schedules the
493  * corresponding physical eraseblock for erasure, so that it will eventually be
494  * physically erased in background. This operation is much faster then the
495  * erase operation.
496  *
497  * Unlike erase, the un-map operation does not guarantee that the logical
498  * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
499  * example, if several logical eraseblocks are un-mapped, and an unclean reboot
500  * happens after this, the logical eraseblocks will not necessarily be
501  * un-mapped again when this MTD device is attached. They may actually be
502  * mapped to the same physical eraseblocks again. So, this function has to be
503  * used with care.
504  *
505  * In other words, when un-mapping a logical eraseblock, UBI does not store
506  * any information about this on the flash media, it just marks the logical
507  * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
508  * eraseblock is physically erased, it will be mapped again to the same logical
509  * eraseblock when the MTD device is attached again.
510  *
511  * The main and obvious use-case of this function is when the contents of a
512  * logical eraseblock has to be re-written. Then it is much more efficient to
513  * first un-map it, then write new data, rather then first erase it, then write
514  * new data. Note, once new data has been written to the logical eraseblock,
515  * UBI guarantees that the old contents has gone forever. In other words, if an
516  * unclean reboot happens after the logical eraseblock has been un-mapped and
517  * then written to, it will contain the last written data.
518  *
519  * This function returns zero in case of success and a negative error code in
520  * case of failure. If the volume is damaged because of an interrupted update
521  * this function just returns immediately with %-EBADF code.
522  */
523 int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
524 {
525 	struct ubi_volume *vol = desc->vol;
526 	struct ubi_device *ubi = vol->ubi;
527 	int vol_id = vol->vol_id;
528 
529 	dbg_msg("unmap LEB %d:%d", vol_id, lnum);
530 
531 	if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
532 		return -EROFS;
533 
534 	if (lnum < 0 || lnum >= vol->reserved_pebs)
535 		return -EINVAL;
536 
537 	if (vol->upd_marker)
538 		return -EBADF;
539 
540 	return ubi_eba_unmap_leb(ubi, vol_id, lnum);
541 }
542 EXPORT_SYMBOL_GPL(ubi_leb_unmap);
543 
544 /**
545  * ubi_is_mapped - check if logical eraseblock is mapped.
546  * @desc: volume descriptor
547  * @lnum: logical eraseblock number
548  *
549  * This function checks if logical eraseblock @lnum is mapped to a physical
550  * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
551  * mean it will still be un-mapped after the UBI device is re-attached. The
552  * logical eraseblock may become mapped to the physical eraseblock it was last
553  * mapped to.
554  *
555  * This function returns %1 if the LEB is mapped, %0 if not, and a negative
556  * error code in case of failure. If the volume is damaged because of an
557  * interrupted update this function just returns immediately with %-EBADF error
558  * code.
559  */
560 int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
561 {
562 	struct ubi_volume *vol = desc->vol;
563 
564 	dbg_msg("test LEB %d:%d", vol->vol_id, lnum);
565 
566 	if (lnum < 0 || lnum >= vol->reserved_pebs)
567 		return -EINVAL;
568 
569 	if (vol->upd_marker)
570 		return -EBADF;
571 
572 	return vol->eba_tbl[lnum] >= 0;
573 }
574 EXPORT_SYMBOL_GPL(ubi_is_mapped);
575