xref: /linux/drivers/mtd/nand/raw/nandsim.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NAND flash simulator.
4  *
5  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6  *
7  * Copyright (C) 2004 Nokia Corporation
8  *
9  * Note: NS means "NAND Simulator".
10  * Note: Input means input TO flash chip, output means output FROM chip.
11  */
12 
13 #define pr_fmt(fmt)  "[nandsim]" fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/vmalloc.h>
20 #include <linux/math64.h>
21 #include <linux/slab.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/delay.h>
28 #include <linux/list.h>
29 #include <linux/random.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/fs.h>
33 #include <linux/pagemap.h>
34 #include <linux/seq_file.h>
35 #include <linux/debugfs.h>
36 
37 /* Default simulator parameters values */
38 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
39     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
40     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
41     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
42 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
43 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
44 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
45 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
46 #endif
47 
48 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
49 #define CONFIG_NANDSIM_ACCESS_DELAY 25
50 #endif
51 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
52 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
53 #endif
54 #ifndef CONFIG_NANDSIM_ERASE_DELAY
55 #define CONFIG_NANDSIM_ERASE_DELAY 2
56 #endif
57 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
58 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
59 #endif
60 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
61 #define CONFIG_NANDSIM_INPUT_CYCLE  50
62 #endif
63 #ifndef CONFIG_NANDSIM_BUS_WIDTH
64 #define CONFIG_NANDSIM_BUS_WIDTH  8
65 #endif
66 #ifndef CONFIG_NANDSIM_DO_DELAYS
67 #define CONFIG_NANDSIM_DO_DELAYS  0
68 #endif
69 #ifndef CONFIG_NANDSIM_LOG
70 #define CONFIG_NANDSIM_LOG        0
71 #endif
72 #ifndef CONFIG_NANDSIM_DBG
73 #define CONFIG_NANDSIM_DBG        0
74 #endif
75 #ifndef CONFIG_NANDSIM_MAX_PARTS
76 #define CONFIG_NANDSIM_MAX_PARTS  32
77 #endif
78 
79 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
80 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
81 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
82 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
83 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
84 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
85 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
86 static uint log            = CONFIG_NANDSIM_LOG;
87 static uint dbg            = CONFIG_NANDSIM_DBG;
88 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
89 static unsigned int parts_num;
90 static char *badblocks = NULL;
91 static char *weakblocks = NULL;
92 static char *weakpages = NULL;
93 static unsigned int bitflips = 0;
94 static char *gravepages = NULL;
95 static unsigned int overridesize = 0;
96 static char *cache_file = NULL;
97 static unsigned int bbt;
98 static unsigned int bch;
99 static u_char id_bytes[8] = {
100 	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
101 	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
102 	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
103 	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
104 	[4 ... 7] = 0xFF,
105 };
106 
107 module_param_array(id_bytes, byte, NULL, 0400);
108 module_param_named(first_id_byte, id_bytes[0], byte, 0400);
109 module_param_named(second_id_byte, id_bytes[1], byte, 0400);
110 module_param_named(third_id_byte, id_bytes[2], byte, 0400);
111 module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
112 module_param(access_delay,   uint, 0400);
113 module_param(programm_delay, uint, 0400);
114 module_param(erase_delay,    uint, 0400);
115 module_param(output_cycle,   uint, 0400);
116 module_param(input_cycle,    uint, 0400);
117 module_param(bus_width,      uint, 0400);
118 module_param(do_delays,      uint, 0400);
119 module_param(log,            uint, 0400);
120 module_param(dbg,            uint, 0400);
121 module_param_array(parts, ulong, &parts_num, 0400);
122 module_param(badblocks,      charp, 0400);
123 module_param(weakblocks,     charp, 0400);
124 module_param(weakpages,      charp, 0400);
125 module_param(bitflips,       uint, 0400);
126 module_param(gravepages,     charp, 0400);
127 module_param(overridesize,   uint, 0400);
128 module_param(cache_file,     charp, 0400);
129 module_param(bbt,	     uint, 0400);
130 module_param(bch,	     uint, 0400);
131 
132 MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
133 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
134 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
135 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
136 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
137 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
138 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
139 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
140 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
141 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
142 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
143 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
144 MODULE_PARM_DESC(log,            "Perform logging if not zero");
145 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
146 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
147 /* Page and erase block positions for the following parameters are independent of any partitions */
148 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
149 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
150 				 " separated by commas e.g. 113:2 means eb 113"
151 				 " can be erased only twice before failing");
152 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
153 				 " separated by commas e.g. 1401:2 means page 1401"
154 				 " can be written only twice before failing");
155 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
156 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
157 				 " separated by commas e.g. 1401:2 means page 1401"
158 				 " can be read only twice before failing");
159 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
160 				 "The size is specified in erase blocks and as the exponent of a power of two"
161 				 " e.g. 5 means a size of 32 erase blocks");
162 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
163 MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
164 MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
165 				 "be correctable in 512-byte blocks");
166 
167 /* The largest possible page size */
168 #define NS_LARGEST_PAGE_SIZE	4096
169 
170 /* Simulator's output macros (logging, debugging, warning, error) */
171 #define NS_LOG(args...) \
172 	do { if (log) pr_debug(" log: " args); } while(0)
173 #define NS_DBG(args...) \
174 	do { if (dbg) pr_debug(" debug: " args); } while(0)
175 #define NS_WARN(args...) \
176 	do { pr_warn(" warning: " args); } while(0)
177 #define NS_ERR(args...) \
178 	do { pr_err(" error: " args); } while(0)
179 #define NS_INFO(args...) \
180 	do { pr_info(" " args); } while(0)
181 
182 /* Busy-wait delay macros (microseconds, milliseconds) */
183 #define NS_UDELAY(us) \
184         do { if (do_delays) udelay(us); } while(0)
185 #define NS_MDELAY(us) \
186         do { if (do_delays) mdelay(us); } while(0)
187 
188 /* Is the nandsim structure initialized ? */
189 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
190 
191 /* Good operation completion status */
192 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
193 
194 /* Operation failed completion status */
195 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
196 
197 /* Calculate the page offset in flash RAM image by (row, column) address */
198 #define NS_RAW_OFFSET(ns) \
199 	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
200 
201 /* Calculate the OOB offset in flash RAM image by (row, column) address */
202 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
203 
204 /* Calculate the byte shift in the next page to access */
205 #define NS_PAGE_BYTE_SHIFT(ns) ((ns)->regs.column + (ns)->regs.off)
206 
207 /* After a command is input, the simulator goes to one of the following states */
208 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
209 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
210 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
211 #define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
212 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
213 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
214 #define STATE_CMD_STATUS       0x00000007 /* read status */
215 #define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
216 #define STATE_CMD_READID       0x0000000A /* read ID */
217 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
218 #define STATE_CMD_RESET        0x0000000C /* reset */
219 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
220 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
221 #define STATE_CMD_MASK         0x0000000F /* command states mask */
222 
223 /* After an address is input, the simulator goes to one of these states */
224 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
225 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
226 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
227 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
228 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
229 
230 /* During data input/output the simulator is in these states */
231 #define STATE_DATAIN           0x00000100 /* waiting for data input */
232 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
233 
234 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
235 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
236 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
237 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
238 
239 /* Previous operation is done, ready to accept new requests */
240 #define STATE_READY            0x00000000
241 
242 /* This state is used to mark that the next state isn't known yet */
243 #define STATE_UNKNOWN          0x10000000
244 
245 /* Simulator's actions bit masks */
246 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
247 #define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
248 #define ACTION_SECERASE  0x00300000 /* erase sector */
249 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
250 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
251 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
252 #define ACTION_MASK      0x00700000 /* action mask */
253 
254 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
255 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
256 
257 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
258 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
259 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
260 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
261 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
262 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
263 #define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
264 
265 /* Remove action bits from state */
266 #define NS_STATE(x) ((x) & ~ACTION_MASK)
267 
268 /*
269  * Maximum previous states which need to be saved. Currently saving is
270  * only needed for page program operation with preceded read command
271  * (which is only valid for 512-byte pages).
272  */
273 #define NS_MAX_PREVSTATES 1
274 
275 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
276 #define NS_MAX_HELD_PAGES 16
277 
278 /*
279  * A union to represent flash memory contents and flash buffer.
280  */
281 union ns_mem {
282 	u_char *byte;    /* for byte access */
283 	uint16_t *word;  /* for 16-bit word access */
284 };
285 
286 /*
287  * The structure which describes all the internal simulator data.
288  */
289 struct nandsim {
290 	struct nand_chip chip;
291 	struct nand_controller base;
292 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
293 	unsigned int nbparts;
294 
295 	uint busw;              /* flash chip bus width (8 or 16) */
296 	u_char ids[8];          /* chip's ID bytes */
297 	uint32_t options;       /* chip's characteristic bits */
298 	uint32_t state;         /* current chip state */
299 	uint32_t nxstate;       /* next expected state */
300 
301 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
302 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
303 	uint16_t npstates;      /* number of previous states saved */
304 	uint16_t stateidx;      /* current state index */
305 
306 	/* The simulated NAND flash pages array */
307 	union ns_mem *pages;
308 
309 	/* Slab allocator for nand pages */
310 	struct kmem_cache *nand_pages_slab;
311 
312 	/* Internal buffer of page + OOB size bytes */
313 	union ns_mem buf;
314 
315 	/* NAND flash "geometry" */
316 	struct {
317 		uint64_t totsz;     /* total flash size, bytes */
318 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
319 		uint pgsz;          /* NAND flash page size, bytes */
320 		uint oobsz;         /* page OOB area size, bytes */
321 		uint64_t totszoob;  /* total flash size including OOB, bytes */
322 		uint pgszoob;       /* page size including OOB , bytes*/
323 		uint secszoob;      /* sector size including OOB, bytes */
324 		uint pgnum;         /* total number of pages */
325 		uint pgsec;         /* number of pages per sector */
326 		uint secshift;      /* bits number in sector size */
327 		uint pgshift;       /* bits number in page size */
328 		uint pgaddrbytes;   /* bytes per page address */
329 		uint secaddrbytes;  /* bytes per sector address */
330 		uint idbytes;       /* the number ID bytes that this chip outputs */
331 	} geom;
332 
333 	/* NAND flash internal registers */
334 	struct {
335 		unsigned command; /* the command register */
336 		u_char   status;  /* the status register */
337 		uint     row;     /* the page number */
338 		uint     column;  /* the offset within page */
339 		uint     count;   /* internal counter */
340 		uint     num;     /* number of bytes which must be processed */
341 		uint     off;     /* fixed page offset */
342 	} regs;
343 
344 	/* NAND flash lines state */
345         struct {
346                 int ce;  /* chip Enable */
347                 int cle; /* command Latch Enable */
348                 int ale; /* address Latch Enable */
349                 int wp;  /* write Protect */
350         } lines;
351 
352 	/* Fields needed when using a cache file */
353 	struct file *cfile; /* Open file */
354 	unsigned long *pages_written; /* Which pages have been written */
355 	void *file_buf;
356 	struct page *held_pages[NS_MAX_HELD_PAGES];
357 	int held_cnt;
358 
359 	/* debugfs entry */
360 	struct dentry *dent;
361 };
362 
363 /*
364  * Operations array. To perform any operation the simulator must pass
365  * through the correspondent states chain.
366  */
367 static struct nandsim_operations {
368 	uint32_t reqopts;  /* options which are required to perform the operation */
369 	uint32_t states[NS_OPER_STATES]; /* operation's states */
370 } ops[NS_OPER_NUM] = {
371 	/* Read page + OOB from the beginning */
372 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
373 			STATE_DATAOUT, STATE_READY}},
374 	/* Read page + OOB from the second half */
375 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
376 			STATE_DATAOUT, STATE_READY}},
377 	/* Read OOB */
378 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
379 			STATE_DATAOUT, STATE_READY}},
380 	/* Program page starting from the beginning */
381 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
382 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383 	/* Program page starting from the beginning */
384 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
385 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386 	/* Program page starting from the second half */
387 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
388 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389 	/* Program OOB */
390 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
391 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392 	/* Erase sector */
393 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
394 	/* Read status */
395 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
396 	/* Read ID */
397 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
398 	/* Large page devices read page */
399 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
400 			       STATE_DATAOUT, STATE_READY}},
401 	/* Large page devices random page read */
402 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
403 			       STATE_DATAOUT, STATE_READY}},
404 };
405 
406 struct weak_block {
407 	struct list_head list;
408 	unsigned int erase_block_no;
409 	unsigned int max_erases;
410 	unsigned int erases_done;
411 };
412 
413 static LIST_HEAD(weak_blocks);
414 
415 struct weak_page {
416 	struct list_head list;
417 	unsigned int page_no;
418 	unsigned int max_writes;
419 	unsigned int writes_done;
420 };
421 
422 static LIST_HEAD(weak_pages);
423 
424 struct grave_page {
425 	struct list_head list;
426 	unsigned int page_no;
427 	unsigned int max_reads;
428 	unsigned int reads_done;
429 };
430 
431 static LIST_HEAD(grave_pages);
432 
433 static unsigned long *erase_block_wear = NULL;
434 static unsigned int wear_eb_count = 0;
435 static unsigned long total_wear = 0;
436 
437 /* MTD structure for NAND controller */
438 static struct mtd_info *nsmtd;
439 
440 static int ns_show(struct seq_file *m, void *private)
441 {
442 	unsigned long wmin = -1, wmax = 0, avg;
443 	unsigned long deciles[10], decile_max[10], tot = 0;
444 	unsigned int i;
445 
446 	/* Calc wear stats */
447 	for (i = 0; i < wear_eb_count; ++i) {
448 		unsigned long wear = erase_block_wear[i];
449 		if (wear < wmin)
450 			wmin = wear;
451 		if (wear > wmax)
452 			wmax = wear;
453 		tot += wear;
454 	}
455 
456 	for (i = 0; i < 9; ++i) {
457 		deciles[i] = 0;
458 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
459 	}
460 	deciles[9] = 0;
461 	decile_max[9] = wmax;
462 	for (i = 0; i < wear_eb_count; ++i) {
463 		int d;
464 		unsigned long wear = erase_block_wear[i];
465 		for (d = 0; d < 10; ++d)
466 			if (wear <= decile_max[d]) {
467 				deciles[d] += 1;
468 				break;
469 			}
470 	}
471 	avg = tot / wear_eb_count;
472 
473 	/* Output wear report */
474 	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
475 	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
476 	seq_printf(m, "Average number of erases: %lu\n", avg);
477 	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
478 	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
479 	for (i = 0; i < 10; ++i) {
480 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
481 		if (from > decile_max[i])
482 			continue;
483 		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
484 			from,
485 			decile_max[i],
486 			deciles[i]);
487 	}
488 
489 	return 0;
490 }
491 DEFINE_SHOW_ATTRIBUTE(ns);
492 
493 /**
494  * ns_debugfs_create - initialize debugfs
495  * @ns: nandsim device description object
496  *
497  * This function creates all debugfs files for UBI device @ubi. Returns zero in
498  * case of success and a negative error code in case of failure.
499  */
500 static int ns_debugfs_create(struct nandsim *ns)
501 {
502 	struct dentry *root = nsmtd->dbg.dfs_dir;
503 
504 	/*
505 	 * Just skip debugfs initialization when the debugfs directory is
506 	 * missing.
507 	 */
508 	if (IS_ERR_OR_NULL(root)) {
509 		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
510 		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
511 			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
512 		return 0;
513 	}
514 
515 	ns->dent = debugfs_create_file("nandsim_wear_report", 0400, root, ns,
516 				       &ns_fops);
517 	if (IS_ERR_OR_NULL(ns->dent)) {
518 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
519 		return -1;
520 	}
521 
522 	return 0;
523 }
524 
525 static void ns_debugfs_remove(struct nandsim *ns)
526 {
527 	debugfs_remove_recursive(ns->dent);
528 }
529 
530 /*
531  * Allocate array of page pointers, create slab allocation for an array
532  * and initialize the array by NULL pointers.
533  *
534  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
535  */
536 static int __init ns_alloc_device(struct nandsim *ns)
537 {
538 	struct file *cfile;
539 	int i, err;
540 
541 	if (cache_file) {
542 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
543 		if (IS_ERR(cfile))
544 			return PTR_ERR(cfile);
545 		if (!(cfile->f_mode & FMODE_CAN_READ)) {
546 			NS_ERR("alloc_device: cache file not readable\n");
547 			err = -EINVAL;
548 			goto err_close_filp;
549 		}
550 		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
551 			NS_ERR("alloc_device: cache file not writeable\n");
552 			err = -EINVAL;
553 			goto err_close_filp;
554 		}
555 		ns->pages_written = vcalloc(BITS_TO_LONGS(ns->geom.pgnum),
556 					    sizeof(unsigned long));
557 		if (!ns->pages_written) {
558 			NS_ERR("alloc_device: unable to allocate pages written array\n");
559 			err = -ENOMEM;
560 			goto err_close_filp;
561 		}
562 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
563 		if (!ns->file_buf) {
564 			NS_ERR("alloc_device: unable to allocate file buf\n");
565 			err = -ENOMEM;
566 			goto err_free_pw;
567 		}
568 		ns->cfile = cfile;
569 
570 		return 0;
571 
572 err_free_pw:
573 		vfree(ns->pages_written);
574 err_close_filp:
575 		filp_close(cfile, NULL);
576 
577 		return err;
578 	}
579 
580 	ns->pages = vmalloc_array(ns->geom.pgnum, sizeof(union ns_mem));
581 	if (!ns->pages) {
582 		NS_ERR("alloc_device: unable to allocate page array\n");
583 		return -ENOMEM;
584 	}
585 	for (i = 0; i < ns->geom.pgnum; i++) {
586 		ns->pages[i].byte = NULL;
587 	}
588 	ns->nand_pages_slab = kmem_cache_create("nandsim",
589 						ns->geom.pgszoob, 0, 0, NULL);
590 	if (!ns->nand_pages_slab) {
591 		NS_ERR("cache_create: unable to create kmem_cache\n");
592 		err = -ENOMEM;
593 		goto err_free_pg;
594 	}
595 
596 	return 0;
597 
598 err_free_pg:
599 	vfree(ns->pages);
600 
601 	return err;
602 }
603 
604 /*
605  * Free any allocated pages, and free the array of page pointers.
606  */
607 static void ns_free_device(struct nandsim *ns)
608 {
609 	int i;
610 
611 	if (ns->cfile) {
612 		kfree(ns->file_buf);
613 		vfree(ns->pages_written);
614 		filp_close(ns->cfile, NULL);
615 		return;
616 	}
617 
618 	if (ns->pages) {
619 		for (i = 0; i < ns->geom.pgnum; i++) {
620 			if (ns->pages[i].byte)
621 				kmem_cache_free(ns->nand_pages_slab,
622 						ns->pages[i].byte);
623 		}
624 		kmem_cache_destroy(ns->nand_pages_slab);
625 		vfree(ns->pages);
626 	}
627 }
628 
629 static char __init *ns_get_partition_name(int i)
630 {
631 	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
632 }
633 
634 /*
635  * Initialize the nandsim structure.
636  *
637  * RETURNS: 0 if success, -ERRNO if failure.
638  */
639 static int __init ns_init(struct mtd_info *mtd)
640 {
641 	struct nand_chip *chip = mtd_to_nand(mtd);
642 	struct nandsim   *ns   = nand_get_controller_data(chip);
643 	int i, ret = 0;
644 	uint64_t remains;
645 	uint64_t next_offset;
646 
647 	if (NS_IS_INITIALIZED(ns)) {
648 		NS_ERR("init_nandsim: nandsim is already initialized\n");
649 		return -EIO;
650 	}
651 
652 	/* Initialize the NAND flash parameters */
653 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
654 	ns->geom.totsz    = mtd->size;
655 	ns->geom.pgsz     = mtd->writesize;
656 	ns->geom.oobsz    = mtd->oobsize;
657 	ns->geom.secsz    = mtd->erasesize;
658 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
659 	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
660 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
661 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
662 	ns->geom.pgshift  = chip->page_shift;
663 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
664 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
665 	ns->options = 0;
666 
667 	if (ns->geom.pgsz == 512) {
668 		ns->options |= OPT_PAGE512;
669 		if (ns->busw == 8)
670 			ns->options |= OPT_PAGE512_8BIT;
671 	} else if (ns->geom.pgsz == 2048) {
672 		ns->options |= OPT_PAGE2048;
673 	} else if (ns->geom.pgsz == 4096) {
674 		ns->options |= OPT_PAGE4096;
675 	} else {
676 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
677 		return -EIO;
678 	}
679 
680 	if (ns->options & OPT_SMALLPAGE) {
681 		if (ns->geom.totsz <= (32 << 20)) {
682 			ns->geom.pgaddrbytes  = 3;
683 			ns->geom.secaddrbytes = 2;
684 		} else {
685 			ns->geom.pgaddrbytes  = 4;
686 			ns->geom.secaddrbytes = 3;
687 		}
688 	} else {
689 		if (ns->geom.totsz <= (128 << 20)) {
690 			ns->geom.pgaddrbytes  = 4;
691 			ns->geom.secaddrbytes = 2;
692 		} else {
693 			ns->geom.pgaddrbytes  = 5;
694 			ns->geom.secaddrbytes = 3;
695 		}
696 	}
697 
698 	/* Fill the partition_info structure */
699 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
700 		NS_ERR("too many partitions.\n");
701 		return -EINVAL;
702 	}
703 	remains = ns->geom.totsz;
704 	next_offset = 0;
705 	for (i = 0; i < parts_num; ++i) {
706 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
707 
708 		if (!part_sz || part_sz > remains) {
709 			NS_ERR("bad partition size.\n");
710 			return -EINVAL;
711 		}
712 		ns->partitions[i].name = ns_get_partition_name(i);
713 		if (!ns->partitions[i].name) {
714 			NS_ERR("unable to allocate memory.\n");
715 			return -ENOMEM;
716 		}
717 		ns->partitions[i].offset = next_offset;
718 		ns->partitions[i].size   = part_sz;
719 		next_offset += ns->partitions[i].size;
720 		remains -= ns->partitions[i].size;
721 	}
722 	ns->nbparts = parts_num;
723 	if (remains) {
724 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
725 			NS_ERR("too many partitions.\n");
726 			ret = -EINVAL;
727 			goto free_partition_names;
728 		}
729 		ns->partitions[i].name = ns_get_partition_name(i);
730 		if (!ns->partitions[i].name) {
731 			NS_ERR("unable to allocate memory.\n");
732 			ret = -ENOMEM;
733 			goto free_partition_names;
734 		}
735 		ns->partitions[i].offset = next_offset;
736 		ns->partitions[i].size   = remains;
737 		ns->nbparts += 1;
738 	}
739 
740 	if (ns->busw == 16)
741 		NS_WARN("16-bit flashes support wasn't tested\n");
742 
743 	printk("flash size: %llu MiB\n",
744 			(unsigned long long)ns->geom.totsz >> 20);
745 	printk("page size: %u bytes\n",         ns->geom.pgsz);
746 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
747 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
748 	printk("pages number: %u\n",            ns->geom.pgnum);
749 	printk("pages per sector: %u\n",        ns->geom.pgsec);
750 	printk("bus width: %u\n",               ns->busw);
751 	printk("bits in sector size: %u\n",     ns->geom.secshift);
752 	printk("bits in page size: %u\n",       ns->geom.pgshift);
753 	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
754 	printk("flash size with OOB: %llu KiB\n",
755 			(unsigned long long)ns->geom.totszoob >> 10);
756 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
757 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
758 	printk("options: %#x\n",                ns->options);
759 
760 	ret = ns_alloc_device(ns);
761 	if (ret)
762 		goto free_partition_names;
763 
764 	/* Allocate / initialize the internal buffer */
765 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
766 	if (!ns->buf.byte) {
767 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
768 			ns->geom.pgszoob);
769 		ret = -ENOMEM;
770 		goto free_device;
771 	}
772 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
773 
774 	return 0;
775 
776 free_device:
777 	ns_free_device(ns);
778 free_partition_names:
779 	for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
780 		kfree(ns->partitions[i].name);
781 
782 	return ret;
783 }
784 
785 /*
786  * Free the nandsim structure.
787  */
788 static void ns_free(struct nandsim *ns)
789 {
790 	int i;
791 
792 	for (i = 0; i < ARRAY_SIZE(ns->partitions); ++i)
793 		kfree(ns->partitions[i].name);
794 
795 	kfree(ns->buf.byte);
796 	ns_free_device(ns);
797 
798 	return;
799 }
800 
801 static int ns_parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
802 {
803 	char *w;
804 	int zero_ok;
805 	unsigned int erase_block_no;
806 	loff_t offset;
807 
808 	if (!badblocks)
809 		return 0;
810 	w = badblocks;
811 	do {
812 		zero_ok = (*w == '0' ? 1 : 0);
813 		erase_block_no = simple_strtoul(w, &w, 0);
814 		if (!zero_ok && !erase_block_no) {
815 			NS_ERR("invalid badblocks.\n");
816 			return -EINVAL;
817 		}
818 		offset = (loff_t)erase_block_no * ns->geom.secsz;
819 		if (mtd_block_markbad(mtd, offset)) {
820 			NS_ERR("invalid badblocks.\n");
821 			return -EINVAL;
822 		}
823 		if (*w == ',')
824 			w += 1;
825 	} while (*w);
826 	return 0;
827 }
828 
829 static int ns_parse_weakblocks(void)
830 {
831 	char *w;
832 	int zero_ok;
833 	unsigned int erase_block_no;
834 	unsigned int max_erases;
835 	struct weak_block *wb;
836 
837 	if (!weakblocks)
838 		return 0;
839 	w = weakblocks;
840 	do {
841 		zero_ok = (*w == '0' ? 1 : 0);
842 		erase_block_no = simple_strtoul(w, &w, 0);
843 		if (!zero_ok && !erase_block_no) {
844 			NS_ERR("invalid weakblocks.\n");
845 			return -EINVAL;
846 		}
847 		max_erases = 3;
848 		if (*w == ':') {
849 			w += 1;
850 			max_erases = simple_strtoul(w, &w, 0);
851 		}
852 		if (*w == ',')
853 			w += 1;
854 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
855 		if (!wb) {
856 			NS_ERR("unable to allocate memory.\n");
857 			return -ENOMEM;
858 		}
859 		wb->erase_block_no = erase_block_no;
860 		wb->max_erases = max_erases;
861 		list_add(&wb->list, &weak_blocks);
862 	} while (*w);
863 	return 0;
864 }
865 
866 static int ns_erase_error(unsigned int erase_block_no)
867 {
868 	struct weak_block *wb;
869 
870 	list_for_each_entry(wb, &weak_blocks, list)
871 		if (wb->erase_block_no == erase_block_no) {
872 			if (wb->erases_done >= wb->max_erases)
873 				return 1;
874 			wb->erases_done += 1;
875 			return 0;
876 		}
877 	return 0;
878 }
879 
880 static int ns_parse_weakpages(void)
881 {
882 	char *w;
883 	int zero_ok;
884 	unsigned int page_no;
885 	unsigned int max_writes;
886 	struct weak_page *wp;
887 
888 	if (!weakpages)
889 		return 0;
890 	w = weakpages;
891 	do {
892 		zero_ok = (*w == '0' ? 1 : 0);
893 		page_no = simple_strtoul(w, &w, 0);
894 		if (!zero_ok && !page_no) {
895 			NS_ERR("invalid weakpages.\n");
896 			return -EINVAL;
897 		}
898 		max_writes = 3;
899 		if (*w == ':') {
900 			w += 1;
901 			max_writes = simple_strtoul(w, &w, 0);
902 		}
903 		if (*w == ',')
904 			w += 1;
905 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
906 		if (!wp) {
907 			NS_ERR("unable to allocate memory.\n");
908 			return -ENOMEM;
909 		}
910 		wp->page_no = page_no;
911 		wp->max_writes = max_writes;
912 		list_add(&wp->list, &weak_pages);
913 	} while (*w);
914 	return 0;
915 }
916 
917 static int ns_write_error(unsigned int page_no)
918 {
919 	struct weak_page *wp;
920 
921 	list_for_each_entry(wp, &weak_pages, list)
922 		if (wp->page_no == page_no) {
923 			if (wp->writes_done >= wp->max_writes)
924 				return 1;
925 			wp->writes_done += 1;
926 			return 0;
927 		}
928 	return 0;
929 }
930 
931 static int ns_parse_gravepages(void)
932 {
933 	char *g;
934 	int zero_ok;
935 	unsigned int page_no;
936 	unsigned int max_reads;
937 	struct grave_page *gp;
938 
939 	if (!gravepages)
940 		return 0;
941 	g = gravepages;
942 	do {
943 		zero_ok = (*g == '0' ? 1 : 0);
944 		page_no = simple_strtoul(g, &g, 0);
945 		if (!zero_ok && !page_no) {
946 			NS_ERR("invalid gravepagess.\n");
947 			return -EINVAL;
948 		}
949 		max_reads = 3;
950 		if (*g == ':') {
951 			g += 1;
952 			max_reads = simple_strtoul(g, &g, 0);
953 		}
954 		if (*g == ',')
955 			g += 1;
956 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
957 		if (!gp) {
958 			NS_ERR("unable to allocate memory.\n");
959 			return -ENOMEM;
960 		}
961 		gp->page_no = page_no;
962 		gp->max_reads = max_reads;
963 		list_add(&gp->list, &grave_pages);
964 	} while (*g);
965 	return 0;
966 }
967 
968 static int ns_read_error(unsigned int page_no)
969 {
970 	struct grave_page *gp;
971 
972 	list_for_each_entry(gp, &grave_pages, list)
973 		if (gp->page_no == page_no) {
974 			if (gp->reads_done >= gp->max_reads)
975 				return 1;
976 			gp->reads_done += 1;
977 			return 0;
978 		}
979 	return 0;
980 }
981 
982 static int ns_setup_wear_reporting(struct mtd_info *mtd)
983 {
984 	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
985 	erase_block_wear = kcalloc(wear_eb_count, sizeof(unsigned long), GFP_KERNEL);
986 	if (!erase_block_wear) {
987 		NS_ERR("Too many erase blocks for wear reporting\n");
988 		return -ENOMEM;
989 	}
990 	return 0;
991 }
992 
993 static void ns_update_wear(unsigned int erase_block_no)
994 {
995 	if (!erase_block_wear)
996 		return;
997 	total_wear += 1;
998 	/*
999 	 * TODO: Notify this through a debugfs entry,
1000 	 * instead of showing an error message.
1001 	 */
1002 	if (total_wear == 0)
1003 		NS_ERR("Erase counter total overflow\n");
1004 	erase_block_wear[erase_block_no] += 1;
1005 	if (erase_block_wear[erase_block_no] == 0)
1006 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1007 }
1008 
1009 /*
1010  * Returns the string representation of 'state' state.
1011  */
1012 static char *ns_get_state_name(uint32_t state)
1013 {
1014 	switch (NS_STATE(state)) {
1015 		case STATE_CMD_READ0:
1016 			return "STATE_CMD_READ0";
1017 		case STATE_CMD_READ1:
1018 			return "STATE_CMD_READ1";
1019 		case STATE_CMD_PAGEPROG:
1020 			return "STATE_CMD_PAGEPROG";
1021 		case STATE_CMD_READOOB:
1022 			return "STATE_CMD_READOOB";
1023 		case STATE_CMD_READSTART:
1024 			return "STATE_CMD_READSTART";
1025 		case STATE_CMD_ERASE1:
1026 			return "STATE_CMD_ERASE1";
1027 		case STATE_CMD_STATUS:
1028 			return "STATE_CMD_STATUS";
1029 		case STATE_CMD_SEQIN:
1030 			return "STATE_CMD_SEQIN";
1031 		case STATE_CMD_READID:
1032 			return "STATE_CMD_READID";
1033 		case STATE_CMD_ERASE2:
1034 			return "STATE_CMD_ERASE2";
1035 		case STATE_CMD_RESET:
1036 			return "STATE_CMD_RESET";
1037 		case STATE_CMD_RNDOUT:
1038 			return "STATE_CMD_RNDOUT";
1039 		case STATE_CMD_RNDOUTSTART:
1040 			return "STATE_CMD_RNDOUTSTART";
1041 		case STATE_ADDR_PAGE:
1042 			return "STATE_ADDR_PAGE";
1043 		case STATE_ADDR_SEC:
1044 			return "STATE_ADDR_SEC";
1045 		case STATE_ADDR_ZERO:
1046 			return "STATE_ADDR_ZERO";
1047 		case STATE_ADDR_COLUMN:
1048 			return "STATE_ADDR_COLUMN";
1049 		case STATE_DATAIN:
1050 			return "STATE_DATAIN";
1051 		case STATE_DATAOUT:
1052 			return "STATE_DATAOUT";
1053 		case STATE_DATAOUT_ID:
1054 			return "STATE_DATAOUT_ID";
1055 		case STATE_DATAOUT_STATUS:
1056 			return "STATE_DATAOUT_STATUS";
1057 		case STATE_READY:
1058 			return "STATE_READY";
1059 		case STATE_UNKNOWN:
1060 			return "STATE_UNKNOWN";
1061 	}
1062 
1063 	NS_ERR("get_state_name: unknown state, BUG\n");
1064 	return NULL;
1065 }
1066 
1067 /*
1068  * Check if command is valid.
1069  *
1070  * RETURNS: 1 if wrong command, 0 if right.
1071  */
1072 static int ns_check_command(int cmd)
1073 {
1074 	switch (cmd) {
1075 
1076 	case NAND_CMD_READ0:
1077 	case NAND_CMD_READ1:
1078 	case NAND_CMD_READSTART:
1079 	case NAND_CMD_PAGEPROG:
1080 	case NAND_CMD_READOOB:
1081 	case NAND_CMD_ERASE1:
1082 	case NAND_CMD_STATUS:
1083 	case NAND_CMD_SEQIN:
1084 	case NAND_CMD_READID:
1085 	case NAND_CMD_ERASE2:
1086 	case NAND_CMD_RESET:
1087 	case NAND_CMD_RNDOUT:
1088 	case NAND_CMD_RNDOUTSTART:
1089 		return 0;
1090 
1091 	default:
1092 		return 1;
1093 	}
1094 }
1095 
1096 /*
1097  * Returns state after command is accepted by command number.
1098  */
1099 static uint32_t ns_get_state_by_command(unsigned command)
1100 {
1101 	switch (command) {
1102 		case NAND_CMD_READ0:
1103 			return STATE_CMD_READ0;
1104 		case NAND_CMD_READ1:
1105 			return STATE_CMD_READ1;
1106 		case NAND_CMD_PAGEPROG:
1107 			return STATE_CMD_PAGEPROG;
1108 		case NAND_CMD_READSTART:
1109 			return STATE_CMD_READSTART;
1110 		case NAND_CMD_READOOB:
1111 			return STATE_CMD_READOOB;
1112 		case NAND_CMD_ERASE1:
1113 			return STATE_CMD_ERASE1;
1114 		case NAND_CMD_STATUS:
1115 			return STATE_CMD_STATUS;
1116 		case NAND_CMD_SEQIN:
1117 			return STATE_CMD_SEQIN;
1118 		case NAND_CMD_READID:
1119 			return STATE_CMD_READID;
1120 		case NAND_CMD_ERASE2:
1121 			return STATE_CMD_ERASE2;
1122 		case NAND_CMD_RESET:
1123 			return STATE_CMD_RESET;
1124 		case NAND_CMD_RNDOUT:
1125 			return STATE_CMD_RNDOUT;
1126 		case NAND_CMD_RNDOUTSTART:
1127 			return STATE_CMD_RNDOUTSTART;
1128 	}
1129 
1130 	NS_ERR("get_state_by_command: unknown command, BUG\n");
1131 	return 0;
1132 }
1133 
1134 /*
1135  * Move an address byte to the correspondent internal register.
1136  */
1137 static inline void ns_accept_addr_byte(struct nandsim *ns, u_char bt)
1138 {
1139 	uint byte = (uint)bt;
1140 
1141 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1142 		ns->regs.column |= (byte << 8 * ns->regs.count);
1143 	else {
1144 		ns->regs.row |= (byte << 8 * (ns->regs.count -
1145 						ns->geom.pgaddrbytes +
1146 						ns->geom.secaddrbytes));
1147 	}
1148 
1149 	return;
1150 }
1151 
1152 /*
1153  * Switch to STATE_READY state.
1154  */
1155 static inline void ns_switch_to_ready_state(struct nandsim *ns, u_char status)
1156 {
1157 	NS_DBG("switch_to_ready_state: switch to %s state\n",
1158 	       ns_get_state_name(STATE_READY));
1159 
1160 	ns->state       = STATE_READY;
1161 	ns->nxstate     = STATE_UNKNOWN;
1162 	ns->op          = NULL;
1163 	ns->npstates    = 0;
1164 	ns->stateidx    = 0;
1165 	ns->regs.num    = 0;
1166 	ns->regs.count  = 0;
1167 	ns->regs.off    = 0;
1168 	ns->regs.row    = 0;
1169 	ns->regs.column = 0;
1170 	ns->regs.status = status;
1171 }
1172 
1173 /*
1174  * If the operation isn't known yet, try to find it in the global array
1175  * of supported operations.
1176  *
1177  * Operation can be unknown because of the following.
1178  *   1. New command was accepted and this is the first call to find the
1179  *      correspondent states chain. In this case ns->npstates = 0;
1180  *   2. There are several operations which begin with the same command(s)
1181  *      (for example program from the second half and read from the
1182  *      second half operations both begin with the READ1 command). In this
1183  *      case the ns->pstates[] array contains previous states.
1184  *
1185  * Thus, the function tries to find operation containing the following
1186  * states (if the 'flag' parameter is 0):
1187  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1188  *
1189  * If (one and only one) matching operation is found, it is accepted (
1190  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1191  * zeroed).
1192  *
1193  * If there are several matches, the current state is pushed to the
1194  * ns->pstates.
1195  *
1196  * The operation can be unknown only while commands are input to the chip.
1197  * As soon as address command is accepted, the operation must be known.
1198  * In such situation the function is called with 'flag' != 0, and the
1199  * operation is searched using the following pattern:
1200  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1201  *
1202  * It is supposed that this pattern must either match one operation or
1203  * none. There can't be ambiguity in that case.
1204  *
1205  * If no matches found, the function does the following:
1206  *   1. if there are saved states present, try to ignore them and search
1207  *      again only using the last command. If nothing was found, switch
1208  *      to the STATE_READY state.
1209  *   2. if there are no saved states, switch to the STATE_READY state.
1210  *
1211  * RETURNS: -2 - no matched operations found.
1212  *          -1 - several matches.
1213  *           0 - operation is found.
1214  */
1215 static int ns_find_operation(struct nandsim *ns, uint32_t flag)
1216 {
1217 	int opsfound = 0;
1218 	int i, j, idx = 0;
1219 
1220 	for (i = 0; i < NS_OPER_NUM; i++) {
1221 
1222 		int found = 1;
1223 
1224 		if (!(ns->options & ops[i].reqopts))
1225 			/* Ignore operations we can't perform */
1226 			continue;
1227 
1228 		if (flag) {
1229 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1230 				continue;
1231 		} else {
1232 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1233 				continue;
1234 		}
1235 
1236 		for (j = 0; j < ns->npstates; j++)
1237 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1238 				&& (ns->options & ops[idx].reqopts)) {
1239 				found = 0;
1240 				break;
1241 			}
1242 
1243 		if (found) {
1244 			idx = i;
1245 			opsfound += 1;
1246 		}
1247 	}
1248 
1249 	if (opsfound == 1) {
1250 		/* Exact match */
1251 		ns->op = &ops[idx].states[0];
1252 		if (flag) {
1253 			/*
1254 			 * In this case the find_operation function was
1255 			 * called when address has just began input. But it isn't
1256 			 * yet fully input and the current state must
1257 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1258 			 * state must be the next state (ns->nxstate).
1259 			 */
1260 			ns->stateidx = ns->npstates - 1;
1261 		} else {
1262 			ns->stateidx = ns->npstates;
1263 		}
1264 		ns->npstates = 0;
1265 		ns->state = ns->op[ns->stateidx];
1266 		ns->nxstate = ns->op[ns->stateidx + 1];
1267 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1268 		       idx, ns_get_state_name(ns->state),
1269 		       ns_get_state_name(ns->nxstate));
1270 		return 0;
1271 	}
1272 
1273 	if (opsfound == 0) {
1274 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1275 		if (ns->npstates != 0) {
1276 			NS_DBG("find_operation: no operation found, try again with state %s\n",
1277 			       ns_get_state_name(ns->state));
1278 			ns->npstates = 0;
1279 			return ns_find_operation(ns, 0);
1280 
1281 		}
1282 		NS_DBG("find_operation: no operations found\n");
1283 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1284 		return -2;
1285 	}
1286 
1287 	if (flag) {
1288 		/* This shouldn't happen */
1289 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1290 		return -2;
1291 	}
1292 
1293 	NS_DBG("find_operation: there is still ambiguity\n");
1294 
1295 	ns->pstates[ns->npstates++] = ns->state;
1296 
1297 	return -1;
1298 }
1299 
1300 static void ns_put_pages(struct nandsim *ns)
1301 {
1302 	int i;
1303 
1304 	for (i = 0; i < ns->held_cnt; i++)
1305 		put_page(ns->held_pages[i]);
1306 }
1307 
1308 /* Get page cache pages in advance to provide NOFS memory allocation */
1309 static int ns_get_pages(struct nandsim *ns, struct file *file, size_t count,
1310 			loff_t pos)
1311 {
1312 	pgoff_t index, start_index, end_index;
1313 	struct page *page;
1314 	struct address_space *mapping = file->f_mapping;
1315 
1316 	start_index = pos >> PAGE_SHIFT;
1317 	end_index = (pos + count - 1) >> PAGE_SHIFT;
1318 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1319 		return -EINVAL;
1320 	ns->held_cnt = 0;
1321 	for (index = start_index; index <= end_index; index++) {
1322 		page = find_get_page(mapping, index);
1323 		if (page == NULL) {
1324 			page = find_or_create_page(mapping, index, GFP_NOFS);
1325 			if (page == NULL) {
1326 				write_inode_now(mapping->host, 1);
1327 				page = find_or_create_page(mapping, index, GFP_NOFS);
1328 			}
1329 			if (page == NULL) {
1330 				ns_put_pages(ns);
1331 				return -ENOMEM;
1332 			}
1333 			unlock_page(page);
1334 		}
1335 		ns->held_pages[ns->held_cnt++] = page;
1336 	}
1337 	return 0;
1338 }
1339 
1340 static ssize_t ns_read_file(struct nandsim *ns, struct file *file, void *buf,
1341 			    size_t count, loff_t pos)
1342 {
1343 	ssize_t tx;
1344 	int err;
1345 	unsigned int noreclaim_flag;
1346 
1347 	err = ns_get_pages(ns, file, count, pos);
1348 	if (err)
1349 		return err;
1350 	noreclaim_flag = memalloc_noreclaim_save();
1351 	tx = kernel_read(file, buf, count, &pos);
1352 	memalloc_noreclaim_restore(noreclaim_flag);
1353 	ns_put_pages(ns);
1354 	return tx;
1355 }
1356 
1357 static ssize_t ns_write_file(struct nandsim *ns, struct file *file, void *buf,
1358 			     size_t count, loff_t pos)
1359 {
1360 	ssize_t tx;
1361 	int err;
1362 	unsigned int noreclaim_flag;
1363 
1364 	err = ns_get_pages(ns, file, count, pos);
1365 	if (err)
1366 		return err;
1367 	noreclaim_flag = memalloc_noreclaim_save();
1368 	tx = kernel_write(file, buf, count, &pos);
1369 	memalloc_noreclaim_restore(noreclaim_flag);
1370 	ns_put_pages(ns);
1371 	return tx;
1372 }
1373 
1374 /*
1375  * Returns a pointer to the current page.
1376  */
1377 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1378 {
1379 	return &(ns->pages[ns->regs.row]);
1380 }
1381 
1382 /*
1383  * Returns a pointer to the current byte, within the current page.
1384  */
1385 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1386 {
1387 	return NS_GET_PAGE(ns)->byte + NS_PAGE_BYTE_SHIFT(ns);
1388 }
1389 
1390 static int ns_do_read_error(struct nandsim *ns, int num)
1391 {
1392 	unsigned int page_no = ns->regs.row;
1393 
1394 	if (ns_read_error(page_no)) {
1395 		get_random_bytes(ns->buf.byte, num);
1396 		NS_WARN("simulating read error in page %u\n", page_no);
1397 		return 1;
1398 	}
1399 	return 0;
1400 }
1401 
1402 static void ns_do_bit_flips(struct nandsim *ns, int num)
1403 {
1404 	if (bitflips && get_random_u16() < (1 << 6)) {
1405 		int flips = 1;
1406 		if (bitflips > 1)
1407 			flips = get_random_u32_inclusive(1, bitflips);
1408 		while (flips--) {
1409 			int pos = get_random_u32_below(num * 8);
1410 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1411 			NS_WARN("read_page: flipping bit %d in page %d "
1412 				"reading from %d ecc: corrected=%u failed=%u\n",
1413 				pos, ns->regs.row, NS_PAGE_BYTE_SHIFT(ns),
1414 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1415 		}
1416 	}
1417 }
1418 
1419 /*
1420  * Fill the NAND buffer with data read from the specified page.
1421  */
1422 static void ns_read_page(struct nandsim *ns, int num)
1423 {
1424 	union ns_mem *mypage;
1425 
1426 	if (ns->cfile) {
1427 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1428 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1429 			memset(ns->buf.byte, 0xFF, num);
1430 		} else {
1431 			loff_t pos;
1432 			ssize_t tx;
1433 
1434 			NS_DBG("read_page: page %d written, reading from %d\n",
1435 				ns->regs.row, NS_PAGE_BYTE_SHIFT(ns));
1436 			if (ns_do_read_error(ns, num))
1437 				return;
1438 			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1439 			tx = ns_read_file(ns, ns->cfile, ns->buf.byte, num,
1440 					  pos);
1441 			if (tx != num) {
1442 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1443 				return;
1444 			}
1445 			ns_do_bit_flips(ns, num);
1446 		}
1447 		return;
1448 	}
1449 
1450 	mypage = NS_GET_PAGE(ns);
1451 	if (mypage->byte == NULL) {
1452 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1453 		memset(ns->buf.byte, 0xFF, num);
1454 	} else {
1455 		NS_DBG("read_page: page %d allocated, reading from %d\n",
1456 			ns->regs.row, NS_PAGE_BYTE_SHIFT(ns));
1457 		if (ns_do_read_error(ns, num))
1458 			return;
1459 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1460 		ns_do_bit_flips(ns, num);
1461 	}
1462 }
1463 
1464 /*
1465  * Erase all pages in the specified sector.
1466  */
1467 static void ns_erase_sector(struct nandsim *ns)
1468 {
1469 	union ns_mem *mypage;
1470 	int i;
1471 
1472 	if (ns->cfile) {
1473 		for (i = 0; i < ns->geom.pgsec; i++)
1474 			if (__test_and_clear_bit(ns->regs.row + i,
1475 						 ns->pages_written)) {
1476 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1477 			}
1478 		return;
1479 	}
1480 
1481 	mypage = NS_GET_PAGE(ns);
1482 	for (i = 0; i < ns->geom.pgsec; i++) {
1483 		if (mypage->byte != NULL) {
1484 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1485 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1486 			mypage->byte = NULL;
1487 		}
1488 		mypage++;
1489 	}
1490 }
1491 
1492 /*
1493  * Program the specified page with the contents from the NAND buffer.
1494  */
1495 static int ns_prog_page(struct nandsim *ns, int num)
1496 {
1497 	int i;
1498 	union ns_mem *mypage;
1499 	u_char *pg_off;
1500 
1501 	if (ns->cfile) {
1502 		loff_t off;
1503 		ssize_t tx;
1504 		int all;
1505 
1506 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1507 		pg_off = ns->file_buf + NS_PAGE_BYTE_SHIFT(ns);
1508 		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1509 		if (!test_bit(ns->regs.row, ns->pages_written)) {
1510 			all = 1;
1511 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1512 		} else {
1513 			all = 0;
1514 			tx = ns_read_file(ns, ns->cfile, pg_off, num, off);
1515 			if (tx != num) {
1516 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1517 				return -1;
1518 			}
1519 		}
1520 		for (i = 0; i < num; i++)
1521 			pg_off[i] &= ns->buf.byte[i];
1522 		if (all) {
1523 			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1524 			tx = ns_write_file(ns, ns->cfile, ns->file_buf,
1525 					   ns->geom.pgszoob, pos);
1526 			if (tx != ns->geom.pgszoob) {
1527 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1528 				return -1;
1529 			}
1530 			__set_bit(ns->regs.row, ns->pages_written);
1531 		} else {
1532 			tx = ns_write_file(ns, ns->cfile, pg_off, num, off);
1533 			if (tx != num) {
1534 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1535 				return -1;
1536 			}
1537 		}
1538 		return 0;
1539 	}
1540 
1541 	mypage = NS_GET_PAGE(ns);
1542 	if (mypage->byte == NULL) {
1543 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1544 		/*
1545 		 * We allocate memory with GFP_NOFS because a flash FS may
1546 		 * utilize this. If it is holding an FS lock, then gets here,
1547 		 * then kernel memory alloc runs writeback which goes to the FS
1548 		 * again and deadlocks. This was seen in practice.
1549 		 */
1550 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1551 		if (mypage->byte == NULL) {
1552 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1553 			return -1;
1554 		}
1555 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1556 	}
1557 
1558 	pg_off = NS_PAGE_BYTE_OFF(ns);
1559 	for (i = 0; i < num; i++)
1560 		pg_off[i] &= ns->buf.byte[i];
1561 
1562 	return 0;
1563 }
1564 
1565 /*
1566  * If state has any action bit, perform this action.
1567  *
1568  * RETURNS: 0 if success, -1 if error.
1569  */
1570 static int ns_do_state_action(struct nandsim *ns, uint32_t action)
1571 {
1572 	int num;
1573 	int busdiv = ns->busw == 8 ? 1 : 2;
1574 	unsigned int erase_block_no, page_no;
1575 
1576 	action &= ACTION_MASK;
1577 
1578 	/* Check that page address input is correct */
1579 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1580 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1581 		return -1;
1582 	}
1583 
1584 	switch (action) {
1585 
1586 	case ACTION_CPY:
1587 		/*
1588 		 * Copy page data to the internal buffer.
1589 		 */
1590 
1591 		/* Column shouldn't be very large */
1592 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1593 			NS_ERR("do_state_action: column number is too large\n");
1594 			break;
1595 		}
1596 		num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns);
1597 		ns_read_page(ns, num);
1598 
1599 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1600 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1601 
1602 		if (ns->regs.off == 0)
1603 			NS_LOG("read page %d\n", ns->regs.row);
1604 		else if (ns->regs.off < ns->geom.pgsz)
1605 			NS_LOG("read page %d (second half)\n", ns->regs.row);
1606 		else
1607 			NS_LOG("read OOB of page %d\n", ns->regs.row);
1608 
1609 		NS_UDELAY(access_delay);
1610 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1611 
1612 		break;
1613 
1614 	case ACTION_SECERASE:
1615 		/*
1616 		 * Erase sector.
1617 		 */
1618 
1619 		if (ns->lines.wp) {
1620 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1621 			return -1;
1622 		}
1623 
1624 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1625 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1626 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1627 			return -1;
1628 		}
1629 
1630 		ns->regs.row = (ns->regs.row <<
1631 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1632 		ns->regs.column = 0;
1633 
1634 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1635 
1636 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1637 				ns->regs.row, NS_RAW_OFFSET(ns));
1638 		NS_LOG("erase sector %u\n", erase_block_no);
1639 
1640 		ns_erase_sector(ns);
1641 
1642 		NS_MDELAY(erase_delay);
1643 
1644 		if (erase_block_wear)
1645 			ns_update_wear(erase_block_no);
1646 
1647 		if (ns_erase_error(erase_block_no)) {
1648 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1649 			return -1;
1650 		}
1651 
1652 		break;
1653 
1654 	case ACTION_PRGPAGE:
1655 		/*
1656 		 * Program page - move internal buffer data to the page.
1657 		 */
1658 
1659 		if (ns->lines.wp) {
1660 			NS_WARN("do_state_action: device is write-protected, programm\n");
1661 			return -1;
1662 		}
1663 
1664 		num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns);
1665 		if (num != ns->regs.count) {
1666 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1667 					ns->regs.count, num);
1668 			return -1;
1669 		}
1670 
1671 		if (ns_prog_page(ns, num) == -1)
1672 			return -1;
1673 
1674 		page_no = ns->regs.row;
1675 
1676 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1677 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1678 		NS_LOG("programm page %d\n", ns->regs.row);
1679 
1680 		NS_UDELAY(programm_delay);
1681 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1682 
1683 		if (ns_write_error(page_no)) {
1684 			NS_WARN("simulating write failure in page %u\n", page_no);
1685 			return -1;
1686 		}
1687 
1688 		break;
1689 
1690 	case ACTION_ZEROOFF:
1691 		NS_DBG("do_state_action: set internal offset to 0\n");
1692 		ns->regs.off = 0;
1693 		break;
1694 
1695 	case ACTION_HALFOFF:
1696 		if (!(ns->options & OPT_PAGE512_8BIT)) {
1697 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1698 				"byte page size 8x chips\n");
1699 			return -1;
1700 		}
1701 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1702 		ns->regs.off = ns->geom.pgsz/2;
1703 		break;
1704 
1705 	case ACTION_OOBOFF:
1706 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1707 		ns->regs.off = ns->geom.pgsz;
1708 		break;
1709 
1710 	default:
1711 		NS_DBG("do_state_action: BUG! unknown action\n");
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 /*
1718  * Switch simulator's state.
1719  */
1720 static void ns_switch_state(struct nandsim *ns)
1721 {
1722 	if (ns->op) {
1723 		/*
1724 		 * The current operation have already been identified.
1725 		 * Just follow the states chain.
1726 		 */
1727 
1728 		ns->stateidx += 1;
1729 		ns->state = ns->nxstate;
1730 		ns->nxstate = ns->op[ns->stateidx + 1];
1731 
1732 		NS_DBG("switch_state: operation is known, switch to the next state, "
1733 			"state: %s, nxstate: %s\n",
1734 		       ns_get_state_name(ns->state),
1735 		       ns_get_state_name(ns->nxstate));
1736 	} else {
1737 		/*
1738 		 * We don't yet know which operation we perform.
1739 		 * Try to identify it.
1740 		 */
1741 
1742 		/*
1743 		 *  The only event causing the switch_state function to
1744 		 *  be called with yet unknown operation is new command.
1745 		 */
1746 		ns->state = ns_get_state_by_command(ns->regs.command);
1747 
1748 		NS_DBG("switch_state: operation is unknown, try to find it\n");
1749 
1750 		if (ns_find_operation(ns, 0))
1751 			return;
1752 	}
1753 
1754 	/* See, whether we need to do some action */
1755 	if ((ns->state & ACTION_MASK) &&
1756 	    ns_do_state_action(ns, ns->state) < 0) {
1757 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1758 		return;
1759 	}
1760 
1761 	/* For 16x devices column means the page offset in words */
1762 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1763 		NS_DBG("switch_state: double the column number for 16x device\n");
1764 		ns->regs.column <<= 1;
1765 	}
1766 
1767 	if (NS_STATE(ns->nxstate) == STATE_READY) {
1768 		/*
1769 		 * The current state is the last. Return to STATE_READY
1770 		 */
1771 
1772 		u_char status = NS_STATUS_OK(ns);
1773 
1774 		/* In case of data states, see if all bytes were input/output */
1775 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1776 			&& ns->regs.count != ns->regs.num) {
1777 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1778 					ns->regs.num - ns->regs.count);
1779 			status = NS_STATUS_FAILED(ns);
1780 		}
1781 
1782 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1783 
1784 		ns_switch_to_ready_state(ns, status);
1785 
1786 		return;
1787 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1788 		/*
1789 		 * If the next state is data input/output, switch to it now
1790 		 */
1791 
1792 		ns->state      = ns->nxstate;
1793 		ns->nxstate    = ns->op[++ns->stateidx + 1];
1794 		ns->regs.num   = ns->regs.count = 0;
1795 
1796 		NS_DBG("switch_state: the next state is data I/O, switch, "
1797 			"state: %s, nxstate: %s\n",
1798 		       ns_get_state_name(ns->state),
1799 		       ns_get_state_name(ns->nxstate));
1800 
1801 		/*
1802 		 * Set the internal register to the count of bytes which
1803 		 * are expected to be input or output
1804 		 */
1805 		switch (NS_STATE(ns->state)) {
1806 			case STATE_DATAIN:
1807 			case STATE_DATAOUT:
1808 				ns->regs.num = ns->geom.pgszoob - NS_PAGE_BYTE_SHIFT(ns);
1809 				break;
1810 
1811 			case STATE_DATAOUT_ID:
1812 				ns->regs.num = ns->geom.idbytes;
1813 				break;
1814 
1815 			case STATE_DATAOUT_STATUS:
1816 				ns->regs.count = ns->regs.num = 0;
1817 				break;
1818 
1819 			default:
1820 				NS_ERR("switch_state: BUG! unknown data state\n");
1821 		}
1822 
1823 	} else if (ns->nxstate & STATE_ADDR_MASK) {
1824 		/*
1825 		 * If the next state is address input, set the internal
1826 		 * register to the number of expected address bytes
1827 		 */
1828 
1829 		ns->regs.count = 0;
1830 
1831 		switch (NS_STATE(ns->nxstate)) {
1832 			case STATE_ADDR_PAGE:
1833 				ns->regs.num = ns->geom.pgaddrbytes;
1834 
1835 				break;
1836 			case STATE_ADDR_SEC:
1837 				ns->regs.num = ns->geom.secaddrbytes;
1838 				break;
1839 
1840 			case STATE_ADDR_ZERO:
1841 				ns->regs.num = 1;
1842 				break;
1843 
1844 			case STATE_ADDR_COLUMN:
1845 				/* Column address is always 2 bytes */
1846 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1847 				break;
1848 
1849 			default:
1850 				NS_ERR("switch_state: BUG! unknown address state\n");
1851 		}
1852 	} else {
1853 		/*
1854 		 * Just reset internal counters.
1855 		 */
1856 
1857 		ns->regs.num = 0;
1858 		ns->regs.count = 0;
1859 	}
1860 }
1861 
1862 static u_char ns_nand_read_byte(struct nand_chip *chip)
1863 {
1864 	struct nandsim *ns = nand_get_controller_data(chip);
1865 	u_char outb = 0x00;
1866 
1867 	/* Sanity and correctness checks */
1868 	if (!ns->lines.ce) {
1869 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1870 		return outb;
1871 	}
1872 	if (ns->lines.ale || ns->lines.cle) {
1873 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1874 		return outb;
1875 	}
1876 	if (!(ns->state & STATE_DATAOUT_MASK)) {
1877 		NS_WARN("read_byte: unexpected data output cycle, state is %s return %#x\n",
1878 			ns_get_state_name(ns->state), (uint)outb);
1879 		return outb;
1880 	}
1881 
1882 	/* Status register may be read as many times as it is wanted */
1883 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1884 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1885 		return ns->regs.status;
1886 	}
1887 
1888 	/* Check if there is any data in the internal buffer which may be read */
1889 	if (ns->regs.count == ns->regs.num) {
1890 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1891 		return outb;
1892 	}
1893 
1894 	switch (NS_STATE(ns->state)) {
1895 		case STATE_DATAOUT:
1896 			if (ns->busw == 8) {
1897 				outb = ns->buf.byte[ns->regs.count];
1898 				ns->regs.count += 1;
1899 			} else {
1900 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1901 				ns->regs.count += 2;
1902 			}
1903 			break;
1904 		case STATE_DATAOUT_ID:
1905 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1906 			outb = ns->ids[ns->regs.count];
1907 			ns->regs.count += 1;
1908 			break;
1909 		default:
1910 			BUG();
1911 	}
1912 
1913 	if (ns->regs.count == ns->regs.num) {
1914 		NS_DBG("read_byte: all bytes were read\n");
1915 
1916 		if (NS_STATE(ns->nxstate) == STATE_READY)
1917 			ns_switch_state(ns);
1918 	}
1919 
1920 	return outb;
1921 }
1922 
1923 static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
1924 {
1925 	struct nandsim *ns = nand_get_controller_data(chip);
1926 
1927 	/* Sanity and correctness checks */
1928 	if (!ns->lines.ce) {
1929 		NS_ERR("write_byte: chip is disabled, ignore write\n");
1930 		return;
1931 	}
1932 	if (ns->lines.ale && ns->lines.cle) {
1933 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1934 		return;
1935 	}
1936 
1937 	if (ns->lines.cle == 1) {
1938 		/*
1939 		 * The byte written is a command.
1940 		 */
1941 
1942 		if (byte == NAND_CMD_RESET) {
1943 			NS_LOG("reset chip\n");
1944 			ns_switch_to_ready_state(ns, NS_STATUS_OK(ns));
1945 			return;
1946 		}
1947 
1948 		/* Check that the command byte is correct */
1949 		if (ns_check_command(byte)) {
1950 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1951 			return;
1952 		}
1953 
1954 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1955 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
1956 			int row = ns->regs.row;
1957 
1958 			ns_switch_state(ns);
1959 			if (byte == NAND_CMD_RNDOUT)
1960 				ns->regs.row = row;
1961 		}
1962 
1963 		/* Check if chip is expecting command */
1964 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1965 			/* Do not warn if only 2 id bytes are read */
1966 			if (!(ns->regs.command == NAND_CMD_READID &&
1967 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1968 				/*
1969 				 * We are in situation when something else (not command)
1970 				 * was expected but command was input. In this case ignore
1971 				 * previous command(s)/state(s) and accept the last one.
1972 				 */
1973 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, ignore previous states\n",
1974 					(uint)byte,
1975 					ns_get_state_name(ns->nxstate));
1976 			}
1977 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1978 		}
1979 
1980 		NS_DBG("command byte corresponding to %s state accepted\n",
1981 			ns_get_state_name(ns_get_state_by_command(byte)));
1982 		ns->regs.command = byte;
1983 		ns_switch_state(ns);
1984 
1985 	} else if (ns->lines.ale == 1) {
1986 		/*
1987 		 * The byte written is an address.
1988 		 */
1989 
1990 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1991 
1992 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
1993 
1994 			if (ns_find_operation(ns, 1) < 0)
1995 				return;
1996 
1997 			if ((ns->state & ACTION_MASK) &&
1998 			    ns_do_state_action(ns, ns->state) < 0) {
1999 				ns_switch_to_ready_state(ns,
2000 							 NS_STATUS_FAILED(ns));
2001 				return;
2002 			}
2003 
2004 			ns->regs.count = 0;
2005 			switch (NS_STATE(ns->nxstate)) {
2006 				case STATE_ADDR_PAGE:
2007 					ns->regs.num = ns->geom.pgaddrbytes;
2008 					break;
2009 				case STATE_ADDR_SEC:
2010 					ns->regs.num = ns->geom.secaddrbytes;
2011 					break;
2012 				case STATE_ADDR_ZERO:
2013 					ns->regs.num = 1;
2014 					break;
2015 				default:
2016 					BUG();
2017 			}
2018 		}
2019 
2020 		/* Check that chip is expecting address */
2021 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2022 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, switch to STATE_READY\n",
2023 			       (uint)byte, ns_get_state_name(ns->nxstate));
2024 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2025 			return;
2026 		}
2027 
2028 		/* Check if this is expected byte */
2029 		if (ns->regs.count == ns->regs.num) {
2030 			NS_ERR("write_byte: no more address bytes expected\n");
2031 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2032 			return;
2033 		}
2034 
2035 		ns_accept_addr_byte(ns, byte);
2036 
2037 		ns->regs.count += 1;
2038 
2039 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2040 				(uint)byte, ns->regs.count, ns->regs.num);
2041 
2042 		if (ns->regs.count == ns->regs.num) {
2043 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2044 			ns_switch_state(ns);
2045 		}
2046 
2047 	} else {
2048 		/*
2049 		 * The byte written is an input data.
2050 		 */
2051 
2052 		/* Check that chip is expecting data input */
2053 		if (!(ns->state & STATE_DATAIN_MASK)) {
2054 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, switch to %s\n",
2055 			       (uint)byte, ns_get_state_name(ns->state),
2056 			       ns_get_state_name(STATE_READY));
2057 			ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2058 			return;
2059 		}
2060 
2061 		/* Check if this is expected byte */
2062 		if (ns->regs.count == ns->regs.num) {
2063 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2064 					ns->regs.num);
2065 			return;
2066 		}
2067 
2068 		if (ns->busw == 8) {
2069 			ns->buf.byte[ns->regs.count] = byte;
2070 			ns->regs.count += 1;
2071 		} else {
2072 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2073 			ns->regs.count += 2;
2074 		}
2075 	}
2076 
2077 	return;
2078 }
2079 
2080 static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
2081 			      int len)
2082 {
2083 	struct nandsim *ns = nand_get_controller_data(chip);
2084 
2085 	/* Check that chip is expecting data input */
2086 	if (!(ns->state & STATE_DATAIN_MASK)) {
2087 		NS_ERR("write_buf: data input isn't expected, state is %s, switch to STATE_READY\n",
2088 		       ns_get_state_name(ns->state));
2089 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2090 		return;
2091 	}
2092 
2093 	/* Check if these are expected bytes */
2094 	if (ns->regs.count + len > ns->regs.num) {
2095 		NS_ERR("write_buf: too many input bytes\n");
2096 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2097 		return;
2098 	}
2099 
2100 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2101 	ns->regs.count += len;
2102 
2103 	if (ns->regs.count == ns->regs.num) {
2104 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2105 	}
2106 }
2107 
2108 static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
2109 {
2110 	struct nandsim *ns = nand_get_controller_data(chip);
2111 
2112 	/* Sanity and correctness checks */
2113 	if (!ns->lines.ce) {
2114 		NS_ERR("read_buf: chip is disabled\n");
2115 		return;
2116 	}
2117 	if (ns->lines.ale || ns->lines.cle) {
2118 		NS_ERR("read_buf: ALE or CLE pin is high\n");
2119 		return;
2120 	}
2121 	if (!(ns->state & STATE_DATAOUT_MASK)) {
2122 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2123 			ns_get_state_name(ns->state));
2124 		return;
2125 	}
2126 
2127 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2128 		int i;
2129 
2130 		for (i = 0; i < len; i++)
2131 			buf[i] = ns_nand_read_byte(chip);
2132 
2133 		return;
2134 	}
2135 
2136 	/* Check if these are expected bytes */
2137 	if (ns->regs.count + len > ns->regs.num) {
2138 		NS_ERR("read_buf: too many bytes to read\n");
2139 		ns_switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2140 		return;
2141 	}
2142 
2143 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2144 	ns->regs.count += len;
2145 
2146 	if (ns->regs.count == ns->regs.num) {
2147 		if (NS_STATE(ns->nxstate) == STATE_READY)
2148 			ns_switch_state(ns);
2149 	}
2150 
2151 	return;
2152 }
2153 
2154 static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
2155 		      bool check_only)
2156 {
2157 	int i;
2158 	unsigned int op_id;
2159 	const struct nand_op_instr *instr = NULL;
2160 	struct nandsim *ns = nand_get_controller_data(chip);
2161 
2162 	if (check_only) {
2163 		/* The current implementation of nandsim needs to know the
2164 		 * ongoing operation when performing the address cycles. This
2165 		 * means it cannot make the difference between a regular read
2166 		 * and a continuous read. Hence, this hack to manually refuse
2167 		 * supporting sequential cached operations.
2168 		 */
2169 		for (op_id = 0; op_id < op->ninstrs; op_id++) {
2170 			instr = &op->instrs[op_id];
2171 			if (instr->type == NAND_OP_CMD_INSTR &&
2172 			    (instr->ctx.cmd.opcode == NAND_CMD_READCACHEEND ||
2173 			     instr->ctx.cmd.opcode == NAND_CMD_READCACHESEQ))
2174 				return -EOPNOTSUPP;
2175 		}
2176 
2177 		return 0;
2178 	}
2179 
2180 	ns->lines.ce = 1;
2181 
2182 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
2183 		instr = &op->instrs[op_id];
2184 		ns->lines.cle = 0;
2185 		ns->lines.ale = 0;
2186 
2187 		switch (instr->type) {
2188 		case NAND_OP_CMD_INSTR:
2189 			ns->lines.cle = 1;
2190 			ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
2191 			break;
2192 		case NAND_OP_ADDR_INSTR:
2193 			ns->lines.ale = 1;
2194 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
2195 				ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
2196 			break;
2197 		case NAND_OP_DATA_IN_INSTR:
2198 			ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
2199 			break;
2200 		case NAND_OP_DATA_OUT_INSTR:
2201 			ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
2202 			break;
2203 		case NAND_OP_WAITRDY_INSTR:
2204 			/* we are always ready */
2205 			break;
2206 		}
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static int ns_attach_chip(struct nand_chip *chip)
2213 {
2214 	unsigned int eccsteps, eccbytes;
2215 
2216 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
2217 	chip->ecc.algo = bch ? NAND_ECC_ALGO_BCH : NAND_ECC_ALGO_HAMMING;
2218 
2219 	if (!bch)
2220 		return 0;
2221 
2222 	if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
2223 		NS_ERR("BCH ECC support is disabled\n");
2224 		return -EINVAL;
2225 	}
2226 
2227 	/* Use 512-byte ecc blocks */
2228 	eccsteps = nsmtd->writesize / 512;
2229 	eccbytes = ((bch * 13) + 7) / 8;
2230 
2231 	/* Do not bother supporting small page devices */
2232 	if (nsmtd->oobsize < 64 || !eccsteps) {
2233 		NS_ERR("BCH not available on small page devices\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
2238 		NS_ERR("Invalid BCH value %u\n", bch);
2239 		return -EINVAL;
2240 	}
2241 
2242 	chip->ecc.size = 512;
2243 	chip->ecc.strength = bch;
2244 	chip->ecc.bytes = eccbytes;
2245 
2246 	NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2247 
2248 	return 0;
2249 }
2250 
2251 static const struct nand_controller_ops ns_controller_ops = {
2252 	.attach_chip = ns_attach_chip,
2253 	.exec_op = ns_exec_op,
2254 };
2255 
2256 /*
2257  * Module initialization function
2258  */
2259 static int __init ns_init_module(void)
2260 {
2261 	struct list_head *pos, *n;
2262 	struct nand_chip *chip;
2263 	struct nandsim *ns;
2264 	int ret;
2265 
2266 	if (bus_width != 8 && bus_width != 16) {
2267 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2268 		return -EINVAL;
2269 	}
2270 
2271 	ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
2272 	if (!ns) {
2273 		NS_ERR("unable to allocate core structures.\n");
2274 		return -ENOMEM;
2275 	}
2276 	chip	    = &ns->chip;
2277 	nsmtd       = nand_to_mtd(chip);
2278 	nand_set_controller_data(chip, (void *)ns);
2279 
2280 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2281 	/* and 'badblocks' parameters to work */
2282 	chip->options   |= NAND_SKIP_BBTSCAN;
2283 
2284 	switch (bbt) {
2285 	case 2:
2286 		chip->bbt_options |= NAND_BBT_NO_OOB;
2287 		fallthrough;
2288 	case 1:
2289 		chip->bbt_options |= NAND_BBT_USE_FLASH;
2290 		fallthrough;
2291 	case 0:
2292 		break;
2293 	default:
2294 		NS_ERR("bbt has to be 0..2\n");
2295 		ret = -EINVAL;
2296 		goto free_ns_struct;
2297 	}
2298 	/*
2299 	 * Perform minimum nandsim structure initialization to handle
2300 	 * the initial ID read command correctly
2301 	 */
2302 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2303 		ns->geom.idbytes = 8;
2304 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2305 		ns->geom.idbytes = 6;
2306 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2307 		ns->geom.idbytes = 4;
2308 	else
2309 		ns->geom.idbytes = 2;
2310 	ns->regs.status = NS_STATUS_OK(ns);
2311 	ns->nxstate = STATE_UNKNOWN;
2312 	ns->options |= OPT_PAGE512; /* temporary value */
2313 	memcpy(ns->ids, id_bytes, sizeof(ns->ids));
2314 	if (bus_width == 16) {
2315 		ns->busw = 16;
2316 		chip->options |= NAND_BUSWIDTH_16;
2317 	}
2318 
2319 	nsmtd->owner = THIS_MODULE;
2320 
2321 	ret = ns_parse_weakblocks();
2322 	if (ret)
2323 		goto free_ns_struct;
2324 
2325 	ret = ns_parse_weakpages();
2326 	if (ret)
2327 		goto free_wb_list;
2328 
2329 	ret = ns_parse_gravepages();
2330 	if (ret)
2331 		goto free_wp_list;
2332 
2333 	nand_controller_init(&ns->base);
2334 	ns->base.ops = &ns_controller_ops;
2335 	chip->controller = &ns->base;
2336 
2337 	ret = nand_scan(chip, 1);
2338 	if (ret) {
2339 		NS_ERR("Could not scan NAND Simulator device\n");
2340 		goto free_gp_list;
2341 	}
2342 
2343 	if (overridesize) {
2344 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2345 		struct nand_memory_organization *memorg;
2346 		u64 targetsize;
2347 
2348 		memorg = nanddev_get_memorg(&chip->base);
2349 
2350 		if (new_size >> overridesize != nsmtd->erasesize) {
2351 			NS_ERR("overridesize is too big\n");
2352 			ret = -EINVAL;
2353 			goto cleanup_nand;
2354 		}
2355 
2356 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2357 		nsmtd->size = new_size;
2358 		memorg->eraseblocks_per_lun = 1 << overridesize;
2359 		targetsize = nanddev_target_size(&chip->base);
2360 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2361 		chip->pagemask = (targetsize >> chip->page_shift) - 1;
2362 	}
2363 
2364 	ret = ns_setup_wear_reporting(nsmtd);
2365 	if (ret)
2366 		goto cleanup_nand;
2367 
2368 	ret = ns_init(nsmtd);
2369 	if (ret)
2370 		goto free_ebw;
2371 
2372 	ret = nand_create_bbt(chip);
2373 	if (ret)
2374 		goto free_ns_object;
2375 
2376 	ret = ns_parse_badblocks(ns, nsmtd);
2377 	if (ret)
2378 		goto free_ns_object;
2379 
2380 	/* Register NAND partitions */
2381 	ret = mtd_device_register(nsmtd, &ns->partitions[0], ns->nbparts);
2382 	if (ret)
2383 		goto free_ns_object;
2384 
2385 	ret = ns_debugfs_create(ns);
2386 	if (ret)
2387 		goto unregister_mtd;
2388 
2389         return 0;
2390 
2391 unregister_mtd:
2392 	WARN_ON(mtd_device_unregister(nsmtd));
2393 free_ns_object:
2394 	ns_free(ns);
2395 free_ebw:
2396 	kfree(erase_block_wear);
2397 cleanup_nand:
2398 	nand_cleanup(chip);
2399 free_gp_list:
2400 	list_for_each_safe(pos, n, &grave_pages) {
2401 		list_del(pos);
2402 		kfree(list_entry(pos, struct grave_page, list));
2403 	}
2404 free_wp_list:
2405 	list_for_each_safe(pos, n, &weak_pages) {
2406 		list_del(pos);
2407 		kfree(list_entry(pos, struct weak_page, list));
2408 	}
2409 free_wb_list:
2410 	list_for_each_safe(pos, n, &weak_blocks) {
2411 		list_del(pos);
2412 		kfree(list_entry(pos, struct weak_block, list));
2413 	}
2414 free_ns_struct:
2415 	kfree(ns);
2416 
2417 	return ret;
2418 }
2419 
2420 module_init(ns_init_module);
2421 
2422 /*
2423  * Module clean-up function
2424  */
2425 static void __exit ns_cleanup_module(void)
2426 {
2427 	struct nand_chip *chip = mtd_to_nand(nsmtd);
2428 	struct nandsim *ns = nand_get_controller_data(chip);
2429 	struct list_head *pos, *n;
2430 
2431 	ns_debugfs_remove(ns);
2432 	WARN_ON(mtd_device_unregister(nsmtd));
2433 	ns_free(ns);
2434 	kfree(erase_block_wear);
2435 	nand_cleanup(chip);
2436 
2437 	list_for_each_safe(pos, n, &grave_pages) {
2438 		list_del(pos);
2439 		kfree(list_entry(pos, struct grave_page, list));
2440 	}
2441 
2442 	list_for_each_safe(pos, n, &weak_pages) {
2443 		list_del(pos);
2444 		kfree(list_entry(pos, struct weak_page, list));
2445 	}
2446 
2447 	list_for_each_safe(pos, n, &weak_blocks) {
2448 		list_del(pos);
2449 		kfree(list_entry(pos, struct weak_block, list));
2450 	}
2451 
2452 	kfree(ns);
2453 }
2454 
2455 module_exit(ns_cleanup_module);
2456 
2457 MODULE_LICENSE ("GPL");
2458 MODULE_AUTHOR ("Artem B. Bityuckiy");
2459 MODULE_DESCRIPTION ("The NAND flash simulator");
2460