xref: /linux/drivers/mtd/mtdpart.c (revision e7bfb3fdbde3bfeeeb64e2d73ac6babe59519c9e)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /**
41  * struct mtd_part - our partition node structure
42  *
43  * @mtd: struct holding partition details
44  * @parent: parent mtd - flash device or another partition
45  * @offset: partition offset relative to the *flash device*
46  */
47 struct mtd_part {
48 	struct mtd_info mtd;
49 	struct mtd_info *parent;
50 	uint64_t offset;
51 	struct list_head list;
52 };
53 
54 /*
55  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56  * the pointer to that structure.
57  */
58 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59 {
60 	return container_of(mtd, struct mtd_part, mtd);
61 }
62 
63 
64 /*
65  * MTD methods which simply translate the effective address and pass through
66  * to the _real_ device.
67  */
68 
69 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 		size_t *retlen, u_char *buf)
71 {
72 	struct mtd_part *part = mtd_to_part(mtd);
73 	struct mtd_ecc_stats stats;
74 	int res;
75 
76 	stats = part->parent->ecc_stats;
77 	res = part->parent->_read(part->parent, from + part->offset, len,
78 				  retlen, buf);
79 	if (unlikely(mtd_is_eccerr(res)))
80 		mtd->ecc_stats.failed +=
81 			part->parent->ecc_stats.failed - stats.failed;
82 	else
83 		mtd->ecc_stats.corrected +=
84 			part->parent->ecc_stats.corrected - stats.corrected;
85 	return res;
86 }
87 
88 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 		size_t *retlen, void **virt, resource_size_t *phys)
90 {
91 	struct mtd_part *part = mtd_to_part(mtd);
92 
93 	return part->parent->_point(part->parent, from + part->offset, len,
94 				    retlen, virt, phys);
95 }
96 
97 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98 {
99 	struct mtd_part *part = mtd_to_part(mtd);
100 
101 	return part->parent->_unpoint(part->parent, from + part->offset, len);
102 }
103 
104 static int part_read_oob(struct mtd_info *mtd, loff_t from,
105 		struct mtd_oob_ops *ops)
106 {
107 	struct mtd_part *part = mtd_to_part(mtd);
108 	struct mtd_ecc_stats stats;
109 	int res;
110 
111 	stats = part->parent->ecc_stats;
112 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
113 	if (unlikely(mtd_is_eccerr(res)))
114 		mtd->ecc_stats.failed +=
115 			part->parent->ecc_stats.failed - stats.failed;
116 	else
117 		mtd->ecc_stats.corrected +=
118 			part->parent->ecc_stats.corrected - stats.corrected;
119 	return res;
120 }
121 
122 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
123 		size_t len, size_t *retlen, u_char *buf)
124 {
125 	struct mtd_part *part = mtd_to_part(mtd);
126 	return part->parent->_read_user_prot_reg(part->parent, from, len,
127 						 retlen, buf);
128 }
129 
130 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
131 				   size_t *retlen, struct otp_info *buf)
132 {
133 	struct mtd_part *part = mtd_to_part(mtd);
134 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
135 						 buf);
136 }
137 
138 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
139 		size_t len, size_t *retlen, u_char *buf)
140 {
141 	struct mtd_part *part = mtd_to_part(mtd);
142 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
143 						 retlen, buf);
144 }
145 
146 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
147 				   size_t *retlen, struct otp_info *buf)
148 {
149 	struct mtd_part *part = mtd_to_part(mtd);
150 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
151 						 buf);
152 }
153 
154 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
155 		size_t *retlen, const u_char *buf)
156 {
157 	struct mtd_part *part = mtd_to_part(mtd);
158 	return part->parent->_write(part->parent, to + part->offset, len,
159 				    retlen, buf);
160 }
161 
162 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
163 		size_t *retlen, const u_char *buf)
164 {
165 	struct mtd_part *part = mtd_to_part(mtd);
166 	return part->parent->_panic_write(part->parent, to + part->offset, len,
167 					  retlen, buf);
168 }
169 
170 static int part_write_oob(struct mtd_info *mtd, loff_t to,
171 		struct mtd_oob_ops *ops)
172 {
173 	struct mtd_part *part = mtd_to_part(mtd);
174 
175 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
176 }
177 
178 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
179 		size_t len, size_t *retlen, u_char *buf)
180 {
181 	struct mtd_part *part = mtd_to_part(mtd);
182 	return part->parent->_write_user_prot_reg(part->parent, from, len,
183 						  retlen, buf);
184 }
185 
186 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
187 		size_t len)
188 {
189 	struct mtd_part *part = mtd_to_part(mtd);
190 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
191 }
192 
193 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
194 		unsigned long count, loff_t to, size_t *retlen)
195 {
196 	struct mtd_part *part = mtd_to_part(mtd);
197 	return part->parent->_writev(part->parent, vecs, count,
198 				     to + part->offset, retlen);
199 }
200 
201 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
202 {
203 	struct mtd_part *part = mtd_to_part(mtd);
204 	int ret;
205 
206 	instr->addr += part->offset;
207 	ret = part->parent->_erase(part->parent, instr);
208 	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
209 		instr->fail_addr -= part->offset;
210 	instr->addr -= part->offset;
211 
212 	return ret;
213 }
214 
215 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
216 {
217 	struct mtd_part *part = mtd_to_part(mtd);
218 	return part->parent->_lock(part->parent, ofs + part->offset, len);
219 }
220 
221 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
222 {
223 	struct mtd_part *part = mtd_to_part(mtd);
224 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
225 }
226 
227 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
228 {
229 	struct mtd_part *part = mtd_to_part(mtd);
230 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
231 }
232 
233 static void part_sync(struct mtd_info *mtd)
234 {
235 	struct mtd_part *part = mtd_to_part(mtd);
236 	part->parent->_sync(part->parent);
237 }
238 
239 static int part_suspend(struct mtd_info *mtd)
240 {
241 	struct mtd_part *part = mtd_to_part(mtd);
242 	return part->parent->_suspend(part->parent);
243 }
244 
245 static void part_resume(struct mtd_info *mtd)
246 {
247 	struct mtd_part *part = mtd_to_part(mtd);
248 	part->parent->_resume(part->parent);
249 }
250 
251 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
252 {
253 	struct mtd_part *part = mtd_to_part(mtd);
254 	ofs += part->offset;
255 	return part->parent->_block_isreserved(part->parent, ofs);
256 }
257 
258 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
259 {
260 	struct mtd_part *part = mtd_to_part(mtd);
261 	ofs += part->offset;
262 	return part->parent->_block_isbad(part->parent, ofs);
263 }
264 
265 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
266 {
267 	struct mtd_part *part = mtd_to_part(mtd);
268 	int res;
269 
270 	ofs += part->offset;
271 	res = part->parent->_block_markbad(part->parent, ofs);
272 	if (!res)
273 		mtd->ecc_stats.badblocks++;
274 	return res;
275 }
276 
277 static int part_get_device(struct mtd_info *mtd)
278 {
279 	struct mtd_part *part = mtd_to_part(mtd);
280 	return part->parent->_get_device(part->parent);
281 }
282 
283 static void part_put_device(struct mtd_info *mtd)
284 {
285 	struct mtd_part *part = mtd_to_part(mtd);
286 	part->parent->_put_device(part->parent);
287 }
288 
289 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
290 			      struct mtd_oob_region *oobregion)
291 {
292 	struct mtd_part *part = mtd_to_part(mtd);
293 
294 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
295 }
296 
297 static int part_ooblayout_free(struct mtd_info *mtd, int section,
298 			       struct mtd_oob_region *oobregion)
299 {
300 	struct mtd_part *part = mtd_to_part(mtd);
301 
302 	return mtd_ooblayout_free(part->parent, section, oobregion);
303 }
304 
305 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
306 	.ecc = part_ooblayout_ecc,
307 	.free = part_ooblayout_free,
308 };
309 
310 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
311 {
312 	struct mtd_part *part = mtd_to_part(mtd);
313 
314 	return part->parent->_max_bad_blocks(part->parent,
315 					     ofs + part->offset, len);
316 }
317 
318 static inline void free_partition(struct mtd_part *p)
319 {
320 	kfree(p->mtd.name);
321 	kfree(p);
322 }
323 
324 /**
325  * mtd_parse_part - parse MTD partition looking for subpartitions
326  *
327  * @slave: part that is supposed to be a container and should be parsed
328  * @types: NULL-terminated array with names of partition parsers to try
329  *
330  * Some partitions are kind of containers with extra subpartitions (volumes).
331  * There can be various formats of such containers. This function tries to use
332  * specified parsers to analyze given partition and registers found
333  * subpartitions on success.
334  */
335 static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
336 {
337 	struct mtd_partitions parsed;
338 	int err;
339 
340 	err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
341 	if (err)
342 		return err;
343 	else if (!parsed.nr_parts)
344 		return -ENOENT;
345 
346 	err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
347 
348 	mtd_part_parser_cleanup(&parsed);
349 
350 	return err;
351 }
352 
353 static struct mtd_part *allocate_partition(struct mtd_info *parent,
354 			const struct mtd_partition *part, int partno,
355 			uint64_t cur_offset)
356 {
357 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
358 							    parent->erasesize;
359 	struct mtd_part *slave;
360 	u32 remainder;
361 	char *name;
362 	u64 tmp;
363 
364 	/* allocate the partition structure */
365 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
366 	name = kstrdup(part->name, GFP_KERNEL);
367 	if (!name || !slave) {
368 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
369 		       parent->name);
370 		kfree(name);
371 		kfree(slave);
372 		return ERR_PTR(-ENOMEM);
373 	}
374 
375 	/* set up the MTD object for this partition */
376 	slave->mtd.type = parent->type;
377 	slave->mtd.flags = parent->flags & ~part->mask_flags;
378 	slave->mtd.size = part->size;
379 	slave->mtd.writesize = parent->writesize;
380 	slave->mtd.writebufsize = parent->writebufsize;
381 	slave->mtd.oobsize = parent->oobsize;
382 	slave->mtd.oobavail = parent->oobavail;
383 	slave->mtd.subpage_sft = parent->subpage_sft;
384 	slave->mtd.pairing = parent->pairing;
385 
386 	slave->mtd.name = name;
387 	slave->mtd.owner = parent->owner;
388 
389 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
390 	 * concern for showing the same data in multiple partitions.
391 	 * However, it is very useful to have the master node present,
392 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
393 	 * will have device nodes etc only if this is set, so make the
394 	 * parent conditional on that option. Note, this is a way to
395 	 * distinguish between the master and the partition in sysfs.
396 	 */
397 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
398 				&parent->dev :
399 				parent->dev.parent;
400 	slave->mtd.dev.of_node = part->of_node;
401 
402 	if (parent->_read)
403 		slave->mtd._read = part_read;
404 	if (parent->_write)
405 		slave->mtd._write = part_write;
406 
407 	if (parent->_panic_write)
408 		slave->mtd._panic_write = part_panic_write;
409 
410 	if (parent->_point && parent->_unpoint) {
411 		slave->mtd._point = part_point;
412 		slave->mtd._unpoint = part_unpoint;
413 	}
414 
415 	if (parent->_read_oob)
416 		slave->mtd._read_oob = part_read_oob;
417 	if (parent->_write_oob)
418 		slave->mtd._write_oob = part_write_oob;
419 	if (parent->_read_user_prot_reg)
420 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
421 	if (parent->_read_fact_prot_reg)
422 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
423 	if (parent->_write_user_prot_reg)
424 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
425 	if (parent->_lock_user_prot_reg)
426 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
427 	if (parent->_get_user_prot_info)
428 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
429 	if (parent->_get_fact_prot_info)
430 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
431 	if (parent->_sync)
432 		slave->mtd._sync = part_sync;
433 	if (!partno && !parent->dev.class && parent->_suspend &&
434 	    parent->_resume) {
435 		slave->mtd._suspend = part_suspend;
436 		slave->mtd._resume = part_resume;
437 	}
438 	if (parent->_writev)
439 		slave->mtd._writev = part_writev;
440 	if (parent->_lock)
441 		slave->mtd._lock = part_lock;
442 	if (parent->_unlock)
443 		slave->mtd._unlock = part_unlock;
444 	if (parent->_is_locked)
445 		slave->mtd._is_locked = part_is_locked;
446 	if (parent->_block_isreserved)
447 		slave->mtd._block_isreserved = part_block_isreserved;
448 	if (parent->_block_isbad)
449 		slave->mtd._block_isbad = part_block_isbad;
450 	if (parent->_block_markbad)
451 		slave->mtd._block_markbad = part_block_markbad;
452 	if (parent->_max_bad_blocks)
453 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
454 
455 	if (parent->_get_device)
456 		slave->mtd._get_device = part_get_device;
457 	if (parent->_put_device)
458 		slave->mtd._put_device = part_put_device;
459 
460 	slave->mtd._erase = part_erase;
461 	slave->parent = parent;
462 	slave->offset = part->offset;
463 
464 	if (slave->offset == MTDPART_OFS_APPEND)
465 		slave->offset = cur_offset;
466 	if (slave->offset == MTDPART_OFS_NXTBLK) {
467 		tmp = cur_offset;
468 		slave->offset = cur_offset;
469 		remainder = do_div(tmp, wr_alignment);
470 		if (remainder) {
471 			slave->offset += wr_alignment - remainder;
472 			printk(KERN_NOTICE "Moving partition %d: "
473 			       "0x%012llx -> 0x%012llx\n", partno,
474 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
475 		}
476 	}
477 	if (slave->offset == MTDPART_OFS_RETAIN) {
478 		slave->offset = cur_offset;
479 		if (parent->size - slave->offset >= slave->mtd.size) {
480 			slave->mtd.size = parent->size - slave->offset
481 							- slave->mtd.size;
482 		} else {
483 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
484 				part->name, parent->size - slave->offset,
485 				slave->mtd.size);
486 			/* register to preserve ordering */
487 			goto out_register;
488 		}
489 	}
490 	if (slave->mtd.size == MTDPART_SIZ_FULL)
491 		slave->mtd.size = parent->size - slave->offset;
492 
493 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
494 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
495 
496 	/* let's do some sanity checks */
497 	if (slave->offset >= parent->size) {
498 		/* let's register it anyway to preserve ordering */
499 		slave->offset = 0;
500 		slave->mtd.size = 0;
501 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
502 			part->name);
503 		goto out_register;
504 	}
505 	if (slave->offset + slave->mtd.size > parent->size) {
506 		slave->mtd.size = parent->size - slave->offset;
507 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
508 			part->name, parent->name, (unsigned long long)slave->mtd.size);
509 	}
510 	if (parent->numeraseregions > 1) {
511 		/* Deal with variable erase size stuff */
512 		int i, max = parent->numeraseregions;
513 		u64 end = slave->offset + slave->mtd.size;
514 		struct mtd_erase_region_info *regions = parent->eraseregions;
515 
516 		/* Find the first erase regions which is part of this
517 		 * partition. */
518 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
519 			;
520 		/* The loop searched for the region _behind_ the first one */
521 		if (i > 0)
522 			i--;
523 
524 		/* Pick biggest erasesize */
525 		for (; i < max && regions[i].offset < end; i++) {
526 			if (slave->mtd.erasesize < regions[i].erasesize) {
527 				slave->mtd.erasesize = regions[i].erasesize;
528 			}
529 		}
530 		BUG_ON(slave->mtd.erasesize == 0);
531 	} else {
532 		/* Single erase size */
533 		slave->mtd.erasesize = parent->erasesize;
534 	}
535 
536 	/*
537 	 * Slave erasesize might differ from the master one if the master
538 	 * exposes several regions with different erasesize. Adjust
539 	 * wr_alignment accordingly.
540 	 */
541 	if (!(slave->mtd.flags & MTD_NO_ERASE))
542 		wr_alignment = slave->mtd.erasesize;
543 
544 	tmp = slave->offset;
545 	remainder = do_div(tmp, wr_alignment);
546 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
547 		/* Doesn't start on a boundary of major erase size */
548 		/* FIXME: Let it be writable if it is on a boundary of
549 		 * _minor_ erase size though */
550 		slave->mtd.flags &= ~MTD_WRITEABLE;
551 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
552 			part->name);
553 	}
554 
555 	tmp = slave->mtd.size;
556 	remainder = do_div(tmp, wr_alignment);
557 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
558 		slave->mtd.flags &= ~MTD_WRITEABLE;
559 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
560 			part->name);
561 	}
562 
563 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
564 	slave->mtd.ecc_step_size = parent->ecc_step_size;
565 	slave->mtd.ecc_strength = parent->ecc_strength;
566 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
567 
568 	if (parent->_block_isbad) {
569 		uint64_t offs = 0;
570 
571 		while (offs < slave->mtd.size) {
572 			if (mtd_block_isreserved(parent, offs + slave->offset))
573 				slave->mtd.ecc_stats.bbtblocks++;
574 			else if (mtd_block_isbad(parent, offs + slave->offset))
575 				slave->mtd.ecc_stats.badblocks++;
576 			offs += slave->mtd.erasesize;
577 		}
578 	}
579 
580 out_register:
581 	return slave;
582 }
583 
584 static ssize_t mtd_partition_offset_show(struct device *dev,
585 		struct device_attribute *attr, char *buf)
586 {
587 	struct mtd_info *mtd = dev_get_drvdata(dev);
588 	struct mtd_part *part = mtd_to_part(mtd);
589 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
590 }
591 
592 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
593 
594 static const struct attribute *mtd_partition_attrs[] = {
595 	&dev_attr_offset.attr,
596 	NULL
597 };
598 
599 static int mtd_add_partition_attrs(struct mtd_part *new)
600 {
601 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
602 	if (ret)
603 		printk(KERN_WARNING
604 		       "mtd: failed to create partition attrs, err=%d\n", ret);
605 	return ret;
606 }
607 
608 int mtd_add_partition(struct mtd_info *parent, const char *name,
609 		      long long offset, long long length)
610 {
611 	struct mtd_partition part;
612 	struct mtd_part *new;
613 	int ret = 0;
614 
615 	/* the direct offset is expected */
616 	if (offset == MTDPART_OFS_APPEND ||
617 	    offset == MTDPART_OFS_NXTBLK)
618 		return -EINVAL;
619 
620 	if (length == MTDPART_SIZ_FULL)
621 		length = parent->size - offset;
622 
623 	if (length <= 0)
624 		return -EINVAL;
625 
626 	memset(&part, 0, sizeof(part));
627 	part.name = name;
628 	part.size = length;
629 	part.offset = offset;
630 
631 	new = allocate_partition(parent, &part, -1, offset);
632 	if (IS_ERR(new))
633 		return PTR_ERR(new);
634 
635 	mutex_lock(&mtd_partitions_mutex);
636 	list_add(&new->list, &mtd_partitions);
637 	mutex_unlock(&mtd_partitions_mutex);
638 
639 	add_mtd_device(&new->mtd);
640 
641 	mtd_add_partition_attrs(new);
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL_GPL(mtd_add_partition);
646 
647 /**
648  * __mtd_del_partition - delete MTD partition
649  *
650  * @priv: internal MTD struct for partition to be deleted
651  *
652  * This function must be called with the partitions mutex locked.
653  */
654 static int __mtd_del_partition(struct mtd_part *priv)
655 {
656 	struct mtd_part *child, *next;
657 	int err;
658 
659 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
660 		if (child->parent == &priv->mtd) {
661 			err = __mtd_del_partition(child);
662 			if (err)
663 				return err;
664 		}
665 	}
666 
667 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
668 
669 	err = del_mtd_device(&priv->mtd);
670 	if (err)
671 		return err;
672 
673 	list_del(&priv->list);
674 	free_partition(priv);
675 
676 	return 0;
677 }
678 
679 /*
680  * This function unregisters and destroy all slave MTD objects which are
681  * attached to the given MTD object.
682  */
683 int del_mtd_partitions(struct mtd_info *mtd)
684 {
685 	struct mtd_part *slave, *next;
686 	int ret, err = 0;
687 
688 	mutex_lock(&mtd_partitions_mutex);
689 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
690 		if (slave->parent == mtd) {
691 			ret = __mtd_del_partition(slave);
692 			if (ret < 0)
693 				err = ret;
694 		}
695 	mutex_unlock(&mtd_partitions_mutex);
696 
697 	return err;
698 }
699 
700 int mtd_del_partition(struct mtd_info *mtd, int partno)
701 {
702 	struct mtd_part *slave, *next;
703 	int ret = -EINVAL;
704 
705 	mutex_lock(&mtd_partitions_mutex);
706 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
707 		if ((slave->parent == mtd) &&
708 		    (slave->mtd.index == partno)) {
709 			ret = __mtd_del_partition(slave);
710 			break;
711 		}
712 	mutex_unlock(&mtd_partitions_mutex);
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(mtd_del_partition);
717 
718 /*
719  * This function, given a master MTD object and a partition table, creates
720  * and registers slave MTD objects which are bound to the master according to
721  * the partition definitions.
722  *
723  * For historical reasons, this function's caller only registers the master
724  * if the MTD_PARTITIONED_MASTER config option is set.
725  */
726 
727 int add_mtd_partitions(struct mtd_info *master,
728 		       const struct mtd_partition *parts,
729 		       int nbparts)
730 {
731 	struct mtd_part *slave;
732 	uint64_t cur_offset = 0;
733 	int i;
734 
735 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
736 
737 	for (i = 0; i < nbparts; i++) {
738 		slave = allocate_partition(master, parts + i, i, cur_offset);
739 		if (IS_ERR(slave)) {
740 			del_mtd_partitions(master);
741 			return PTR_ERR(slave);
742 		}
743 
744 		mutex_lock(&mtd_partitions_mutex);
745 		list_add(&slave->list, &mtd_partitions);
746 		mutex_unlock(&mtd_partitions_mutex);
747 
748 		add_mtd_device(&slave->mtd);
749 		mtd_add_partition_attrs(slave);
750 		if (parts[i].types)
751 			mtd_parse_part(slave, parts[i].types);
752 
753 		cur_offset = slave->offset + slave->mtd.size;
754 	}
755 
756 	return 0;
757 }
758 
759 static DEFINE_SPINLOCK(part_parser_lock);
760 static LIST_HEAD(part_parsers);
761 
762 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
763 {
764 	struct mtd_part_parser *p, *ret = NULL;
765 
766 	spin_lock(&part_parser_lock);
767 
768 	list_for_each_entry(p, &part_parsers, list)
769 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
770 			ret = p;
771 			break;
772 		}
773 
774 	spin_unlock(&part_parser_lock);
775 
776 	return ret;
777 }
778 
779 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
780 {
781 	module_put(p->owner);
782 }
783 
784 /*
785  * Many partition parsers just expected the core to kfree() all their data in
786  * one chunk. Do that by default.
787  */
788 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
789 					    int nr_parts)
790 {
791 	kfree(pparts);
792 }
793 
794 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
795 {
796 	p->owner = owner;
797 
798 	if (!p->cleanup)
799 		p->cleanup = &mtd_part_parser_cleanup_default;
800 
801 	spin_lock(&part_parser_lock);
802 	list_add(&p->list, &part_parsers);
803 	spin_unlock(&part_parser_lock);
804 
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(__register_mtd_parser);
808 
809 void deregister_mtd_parser(struct mtd_part_parser *p)
810 {
811 	spin_lock(&part_parser_lock);
812 	list_del(&p->list);
813 	spin_unlock(&part_parser_lock);
814 }
815 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
816 
817 /*
818  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
819  * are changing this array!
820  */
821 static const char * const default_mtd_part_types[] = {
822 	"cmdlinepart",
823 	"ofpart",
824 	NULL
825 };
826 
827 static int mtd_part_do_parse(struct mtd_part_parser *parser,
828 			     struct mtd_info *master,
829 			     struct mtd_partitions *pparts,
830 			     struct mtd_part_parser_data *data)
831 {
832 	int ret;
833 
834 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
835 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
836 	if (ret <= 0)
837 		return ret;
838 
839 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
840 		  parser->name, master->name);
841 
842 	pparts->nr_parts = ret;
843 	pparts->parser = parser;
844 
845 	return ret;
846 }
847 
848 /**
849  * parse_mtd_partitions - parse MTD partitions
850  * @master: the master partition (describes whole MTD device)
851  * @types: names of partition parsers to try or %NULL
852  * @pparts: info about partitions found is returned here
853  * @data: MTD partition parser-specific data
854  *
855  * This function tries to find partition on MTD device @master. It uses MTD
856  * partition parsers, specified in @types. However, if @types is %NULL, then
857  * the default list of parsers is used. The default list contains only the
858  * "cmdlinepart" and "ofpart" parsers ATM.
859  * Note: If there are more then one parser in @types, the kernel only takes the
860  * partitions parsed out by the first parser.
861  *
862  * This function may return:
863  * o a negative error code in case of failure
864  * o zero otherwise, and @pparts will describe the partitions, number of
865  *   partitions, and the parser which parsed them. Caller must release
866  *   resources with mtd_part_parser_cleanup() when finished with the returned
867  *   data.
868  */
869 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
870 			 struct mtd_partitions *pparts,
871 			 struct mtd_part_parser_data *data)
872 {
873 	struct mtd_part_parser *parser;
874 	int ret, err = 0;
875 
876 	if (!types)
877 		types = default_mtd_part_types;
878 
879 	for ( ; *types; types++) {
880 		pr_debug("%s: parsing partitions %s\n", master->name, *types);
881 		parser = mtd_part_parser_get(*types);
882 		if (!parser && !request_module("%s", *types))
883 			parser = mtd_part_parser_get(*types);
884 		pr_debug("%s: got parser %s\n", master->name,
885 			 parser ? parser->name : NULL);
886 		if (!parser)
887 			continue;
888 		ret = mtd_part_do_parse(parser, master, pparts, data);
889 		/* Found partitions! */
890 		if (ret > 0)
891 			return 0;
892 		mtd_part_parser_put(parser);
893 		/*
894 		 * Stash the first error we see; only report it if no parser
895 		 * succeeds
896 		 */
897 		if (ret < 0 && !err)
898 			err = ret;
899 	}
900 	return err;
901 }
902 
903 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
904 {
905 	const struct mtd_part_parser *parser;
906 
907 	if (!parts)
908 		return;
909 
910 	parser = parts->parser;
911 	if (parser) {
912 		if (parser->cleanup)
913 			parser->cleanup(parts->parts, parts->nr_parts);
914 
915 		mtd_part_parser_put(parser);
916 	}
917 }
918 
919 int mtd_is_partition(const struct mtd_info *mtd)
920 {
921 	struct mtd_part *part;
922 	int ispart = 0;
923 
924 	mutex_lock(&mtd_partitions_mutex);
925 	list_for_each_entry(part, &mtd_partitions, list)
926 		if (&part->mtd == mtd) {
927 			ispart = 1;
928 			break;
929 		}
930 	mutex_unlock(&mtd_partitions_mutex);
931 
932 	return ispart;
933 }
934 EXPORT_SYMBOL_GPL(mtd_is_partition);
935 
936 /* Returns the size of the entire flash chip */
937 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
938 {
939 	if (!mtd_is_partition(mtd))
940 		return mtd->size;
941 
942 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
943 }
944 EXPORT_SYMBOL_GPL(mtd_get_device_size);
945