1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 #include <linux/root_dev.h> 32 33 #include <linux/mtd/mtd.h> 34 #include <linux/mtd/partitions.h> 35 36 #include "mtdcore.h" 37 38 struct backing_dev_info *mtd_bdi; 39 40 #ifdef CONFIG_PM_SLEEP 41 42 static int mtd_cls_suspend(struct device *dev) 43 { 44 struct mtd_info *mtd = dev_get_drvdata(dev); 45 46 return mtd ? mtd_suspend(mtd) : 0; 47 } 48 49 static int mtd_cls_resume(struct device *dev) 50 { 51 struct mtd_info *mtd = dev_get_drvdata(dev); 52 53 if (mtd) 54 mtd_resume(mtd); 55 return 0; 56 } 57 58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 60 #else 61 #define MTD_CLS_PM_OPS NULL 62 #endif 63 64 static struct class mtd_class = { 65 .name = "mtd", 66 .owner = THIS_MODULE, 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 /* remove /dev/mtdXro node */ 97 device_destroy(&mtd_class, index + 1); 98 } 99 100 #define MTD_DEVICE_ATTR_RO(name) \ 101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 102 103 #define MTD_DEVICE_ATTR_RW(name) \ 104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 105 106 static ssize_t mtd_type_show(struct device *dev, 107 struct device_attribute *attr, char *buf) 108 { 109 struct mtd_info *mtd = dev_get_drvdata(dev); 110 char *type; 111 112 switch (mtd->type) { 113 case MTD_ABSENT: 114 type = "absent"; 115 break; 116 case MTD_RAM: 117 type = "ram"; 118 break; 119 case MTD_ROM: 120 type = "rom"; 121 break; 122 case MTD_NORFLASH: 123 type = "nor"; 124 break; 125 case MTD_NANDFLASH: 126 type = "nand"; 127 break; 128 case MTD_DATAFLASH: 129 type = "dataflash"; 130 break; 131 case MTD_UBIVOLUME: 132 type = "ubi"; 133 break; 134 case MTD_MLCNANDFLASH: 135 type = "mlc-nand"; 136 break; 137 default: 138 type = "unknown"; 139 } 140 141 return sysfs_emit(buf, "%s\n", type); 142 } 143 MTD_DEVICE_ATTR_RO(type); 144 145 static ssize_t mtd_flags_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct mtd_info *mtd = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 151 } 152 MTD_DEVICE_ATTR_RO(flags); 153 154 static ssize_t mtd_size_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 struct mtd_info *mtd = dev_get_drvdata(dev); 158 159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 160 } 161 MTD_DEVICE_ATTR_RO(size); 162 163 static ssize_t mtd_erasesize_show(struct device *dev, 164 struct device_attribute *attr, char *buf) 165 { 166 struct mtd_info *mtd = dev_get_drvdata(dev); 167 168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 169 } 170 MTD_DEVICE_ATTR_RO(erasesize); 171 172 static ssize_t mtd_writesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 178 } 179 MTD_DEVICE_ATTR_RO(writesize); 180 181 static ssize_t mtd_subpagesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 186 187 return sysfs_emit(buf, "%u\n", subpagesize); 188 } 189 MTD_DEVICE_ATTR_RO(subpagesize); 190 191 static ssize_t mtd_oobsize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 197 } 198 MTD_DEVICE_ATTR_RO(oobsize); 199 200 static ssize_t mtd_oobavail_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct mtd_info *mtd = dev_get_drvdata(dev); 204 205 return sysfs_emit(buf, "%u\n", mtd->oobavail); 206 } 207 MTD_DEVICE_ATTR_RO(oobavail); 208 209 static ssize_t mtd_numeraseregions_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 215 } 216 MTD_DEVICE_ATTR_RO(numeraseregions); 217 218 static ssize_t mtd_name_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct mtd_info *mtd = dev_get_drvdata(dev); 222 223 return sysfs_emit(buf, "%s\n", mtd->name); 224 } 225 MTD_DEVICE_ATTR_RO(name); 226 227 static ssize_t mtd_ecc_strength_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct mtd_info *mtd = dev_get_drvdata(dev); 231 232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 233 } 234 MTD_DEVICE_ATTR_RO(ecc_strength); 235 236 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 237 struct device_attribute *attr, 238 char *buf) 239 { 240 struct mtd_info *mtd = dev_get_drvdata(dev); 241 242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 243 } 244 245 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 246 struct device_attribute *attr, 247 const char *buf, size_t count) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 unsigned int bitflip_threshold; 251 int retval; 252 253 retval = kstrtouint(buf, 0, &bitflip_threshold); 254 if (retval) 255 return retval; 256 257 mtd->bitflip_threshold = bitflip_threshold; 258 return count; 259 } 260 MTD_DEVICE_ATTR_RW(bitflip_threshold); 261 262 static ssize_t mtd_ecc_step_size_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct mtd_info *mtd = dev_get_drvdata(dev); 266 267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 268 269 } 270 MTD_DEVICE_ATTR_RO(ecc_step_size); 271 272 static ssize_t mtd_corrected_bits_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct mtd_info *mtd = dev_get_drvdata(dev); 276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 277 278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 279 } 280 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 281 282 static ssize_t mtd_ecc_failures_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct mtd_info *mtd = dev_get_drvdata(dev); 286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 287 288 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 289 } 290 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 291 292 static ssize_t mtd_bad_blocks_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 299 } 300 MTD_DEVICE_ATTR_RO(bad_blocks); 301 302 static ssize_t mtd_bbt_blocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 309 } 310 MTD_DEVICE_ATTR_RO(bbt_blocks); 311 312 static struct attribute *mtd_attrs[] = { 313 &dev_attr_type.attr, 314 &dev_attr_flags.attr, 315 &dev_attr_size.attr, 316 &dev_attr_erasesize.attr, 317 &dev_attr_writesize.attr, 318 &dev_attr_subpagesize.attr, 319 &dev_attr_oobsize.attr, 320 &dev_attr_oobavail.attr, 321 &dev_attr_numeraseregions.attr, 322 &dev_attr_name.attr, 323 &dev_attr_ecc_strength.attr, 324 &dev_attr_ecc_step_size.attr, 325 &dev_attr_corrected_bits.attr, 326 &dev_attr_ecc_failures.attr, 327 &dev_attr_bad_blocks.attr, 328 &dev_attr_bbt_blocks.attr, 329 &dev_attr_bitflip_threshold.attr, 330 NULL, 331 }; 332 ATTRIBUTE_GROUPS(mtd); 333 334 static const struct device_type mtd_devtype = { 335 .name = "mtd", 336 .groups = mtd_groups, 337 .release = mtd_release, 338 }; 339 340 static bool mtd_expert_analysis_mode; 341 342 #ifdef CONFIG_DEBUG_FS 343 bool mtd_check_expert_analysis_mode(void) 344 { 345 const char *mtd_expert_analysis_warning = 346 "Bad block checks have been entirely disabled.\n" 347 "This is only reserved for post-mortem forensics and debug purposes.\n" 348 "Never enable this mode if you do not know what you are doing!\n"; 349 350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 351 } 352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 353 #endif 354 355 static struct dentry *dfs_dir_mtd; 356 357 static void mtd_debugfs_populate(struct mtd_info *mtd) 358 { 359 struct device *dev = &mtd->dev; 360 361 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 362 return; 363 364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 365 } 366 367 #ifndef CONFIG_MMU 368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 369 { 370 switch (mtd->type) { 371 case MTD_RAM: 372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 373 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 374 case MTD_ROM: 375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 376 NOMMU_MAP_READ; 377 default: 378 return NOMMU_MAP_COPY; 379 } 380 } 381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 382 #endif 383 384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 385 void *cmd) 386 { 387 struct mtd_info *mtd; 388 389 mtd = container_of(n, struct mtd_info, reboot_notifier); 390 mtd->_reboot(mtd); 391 392 return NOTIFY_DONE; 393 } 394 395 /** 396 * mtd_wunit_to_pairing_info - get pairing information of a wunit 397 * @mtd: pointer to new MTD device info structure 398 * @wunit: write unit we are interested in 399 * @info: returned pairing information 400 * 401 * Retrieve pairing information associated to the wunit. 402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 403 * paired together, and where programming a page may influence the page it is 404 * paired with. 405 * The notion of page is replaced by the term wunit (write-unit) to stay 406 * consistent with the ->writesize field. 407 * 408 * The @wunit argument can be extracted from an absolute offset using 409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 410 * to @wunit. 411 * 412 * From the pairing info the MTD user can find all the wunits paired with 413 * @wunit using the following loop: 414 * 415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 416 * info.pair = i; 417 * mtd_pairing_info_to_wunit(mtd, &info); 418 * ... 419 * } 420 */ 421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 422 struct mtd_pairing_info *info) 423 { 424 struct mtd_info *master = mtd_get_master(mtd); 425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 426 427 if (wunit < 0 || wunit >= npairs) 428 return -EINVAL; 429 430 if (master->pairing && master->pairing->get_info) 431 return master->pairing->get_info(master, wunit, info); 432 433 info->group = 0; 434 info->pair = wunit; 435 436 return 0; 437 } 438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 439 440 /** 441 * mtd_pairing_info_to_wunit - get wunit from pairing information 442 * @mtd: pointer to new MTD device info structure 443 * @info: pairing information struct 444 * 445 * Returns a positive number representing the wunit associated to the info 446 * struct, or a negative error code. 447 * 448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 450 * doc). 451 * 452 * It can also be used to only program the first page of each pair (i.e. 453 * page attached to group 0), which allows one to use an MLC NAND in 454 * software-emulated SLC mode: 455 * 456 * info.group = 0; 457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 458 * for (info.pair = 0; info.pair < npairs; info.pair++) { 459 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 461 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 462 * } 463 */ 464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 465 const struct mtd_pairing_info *info) 466 { 467 struct mtd_info *master = mtd_get_master(mtd); 468 int ngroups = mtd_pairing_groups(master); 469 int npairs = mtd_wunit_per_eb(master) / ngroups; 470 471 if (!info || info->pair < 0 || info->pair >= npairs || 472 info->group < 0 || info->group >= ngroups) 473 return -EINVAL; 474 475 if (master->pairing && master->pairing->get_wunit) 476 return mtd->pairing->get_wunit(master, info); 477 478 return info->pair; 479 } 480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 481 482 /** 483 * mtd_pairing_groups - get the number of pairing groups 484 * @mtd: pointer to new MTD device info structure 485 * 486 * Returns the number of pairing groups. 487 * 488 * This number is usually equal to the number of bits exposed by a single 489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 490 * to iterate over all pages of a given pair. 491 */ 492 int mtd_pairing_groups(struct mtd_info *mtd) 493 { 494 struct mtd_info *master = mtd_get_master(mtd); 495 496 if (!master->pairing || !master->pairing->ngroups) 497 return 1; 498 499 return master->pairing->ngroups; 500 } 501 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 502 503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 504 void *val, size_t bytes) 505 { 506 struct mtd_info *mtd = priv; 507 size_t retlen; 508 int err; 509 510 err = mtd_read(mtd, offset, bytes, &retlen, val); 511 if (err && err != -EUCLEAN) 512 return err; 513 514 return retlen == bytes ? 0 : -EIO; 515 } 516 517 static int mtd_nvmem_add(struct mtd_info *mtd) 518 { 519 struct device_node *node = mtd_get_of_node(mtd); 520 struct nvmem_config config = {}; 521 522 config.id = NVMEM_DEVID_NONE; 523 config.dev = &mtd->dev; 524 config.name = dev_name(&mtd->dev); 525 config.owner = THIS_MODULE; 526 config.reg_read = mtd_nvmem_reg_read; 527 config.size = mtd->size; 528 config.word_size = 1; 529 config.stride = 1; 530 config.read_only = true; 531 config.root_only = true; 532 config.ignore_wp = true; 533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 534 config.priv = mtd; 535 536 mtd->nvmem = nvmem_register(&config); 537 if (IS_ERR(mtd->nvmem)) { 538 /* Just ignore if there is no NVMEM support in the kernel */ 539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 540 mtd->nvmem = NULL; 541 else 542 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 543 "Failed to register NVMEM device\n"); 544 } 545 546 return 0; 547 } 548 549 static void mtd_check_of_node(struct mtd_info *mtd) 550 { 551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 552 const char *pname, *prefix = "partition-"; 553 int plen, mtd_name_len, offset, prefix_len; 554 555 /* Check if MTD already has a device node */ 556 if (mtd_get_of_node(mtd)) 557 return; 558 559 if (!mtd_is_partition(mtd)) 560 return; 561 562 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 563 if (!parent_dn) 564 return; 565 566 if (mtd_is_partition(mtd->parent)) 567 partitions = of_node_get(parent_dn); 568 else 569 partitions = of_get_child_by_name(parent_dn, "partitions"); 570 if (!partitions) 571 goto exit_parent; 572 573 prefix_len = strlen(prefix); 574 mtd_name_len = strlen(mtd->name); 575 576 /* Search if a partition is defined with the same name */ 577 for_each_child_of_node(partitions, mtd_dn) { 578 /* Skip partition with no/wrong prefix */ 579 if (!of_node_name_prefix(mtd_dn, prefix)) 580 continue; 581 582 /* Label have priority. Check that first */ 583 if (!of_property_read_string(mtd_dn, "label", &pname)) { 584 offset = 0; 585 } else { 586 pname = mtd_dn->name; 587 offset = prefix_len; 588 } 589 590 plen = strlen(pname) - offset; 591 if (plen == mtd_name_len && 592 !strncmp(mtd->name, pname + offset, plen)) { 593 mtd_set_of_node(mtd, mtd_dn); 594 break; 595 } 596 } 597 598 of_node_put(partitions); 599 exit_parent: 600 of_node_put(parent_dn); 601 } 602 603 /** 604 * add_mtd_device - register an MTD device 605 * @mtd: pointer to new MTD device info structure 606 * 607 * Add a device to the list of MTD devices present in the system, and 608 * notify each currently active MTD 'user' of its arrival. Returns 609 * zero on success or non-zero on failure. 610 */ 611 612 int add_mtd_device(struct mtd_info *mtd) 613 { 614 struct device_node *np = mtd_get_of_node(mtd); 615 struct mtd_info *master = mtd_get_master(mtd); 616 struct mtd_notifier *not; 617 int i, error, ofidx; 618 619 /* 620 * May occur, for instance, on buggy drivers which call 621 * mtd_device_parse_register() multiple times on the same master MTD, 622 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 623 */ 624 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 625 return -EEXIST; 626 627 BUG_ON(mtd->writesize == 0); 628 629 /* 630 * MTD drivers should implement ->_{write,read}() or 631 * ->_{write,read}_oob(), but not both. 632 */ 633 if (WARN_ON((mtd->_write && mtd->_write_oob) || 634 (mtd->_read && mtd->_read_oob))) 635 return -EINVAL; 636 637 if (WARN_ON((!mtd->erasesize || !master->_erase) && 638 !(mtd->flags & MTD_NO_ERASE))) 639 return -EINVAL; 640 641 /* 642 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 643 * master is an MLC NAND and has a proper pairing scheme defined. 644 * We also reject masters that implement ->_writev() for now, because 645 * NAND controller drivers don't implement this hook, and adding the 646 * SLC -> MLC address/length conversion to this path is useless if we 647 * don't have a user. 648 */ 649 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 650 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 651 !master->pairing || master->_writev)) 652 return -EINVAL; 653 654 mutex_lock(&mtd_table_mutex); 655 656 ofidx = -1; 657 if (np) 658 ofidx = of_alias_get_id(np, "mtd"); 659 if (ofidx >= 0) 660 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 661 else 662 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 663 if (i < 0) { 664 error = i; 665 goto fail_locked; 666 } 667 668 mtd->index = i; 669 mtd->usecount = 0; 670 671 /* default value if not set by driver */ 672 if (mtd->bitflip_threshold == 0) 673 mtd->bitflip_threshold = mtd->ecc_strength; 674 675 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 676 int ngroups = mtd_pairing_groups(master); 677 678 mtd->erasesize /= ngroups; 679 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 680 mtd->erasesize; 681 } 682 683 if (is_power_of_2(mtd->erasesize)) 684 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 685 else 686 mtd->erasesize_shift = 0; 687 688 if (is_power_of_2(mtd->writesize)) 689 mtd->writesize_shift = ffs(mtd->writesize) - 1; 690 else 691 mtd->writesize_shift = 0; 692 693 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 694 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 695 696 /* Some chips always power up locked. Unlock them now */ 697 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 698 error = mtd_unlock(mtd, 0, mtd->size); 699 if (error && error != -EOPNOTSUPP) 700 printk(KERN_WARNING 701 "%s: unlock failed, writes may not work\n", 702 mtd->name); 703 /* Ignore unlock failures? */ 704 error = 0; 705 } 706 707 /* Caller should have set dev.parent to match the 708 * physical device, if appropriate. 709 */ 710 mtd->dev.type = &mtd_devtype; 711 mtd->dev.class = &mtd_class; 712 mtd->dev.devt = MTD_DEVT(i); 713 dev_set_name(&mtd->dev, "mtd%d", i); 714 dev_set_drvdata(&mtd->dev, mtd); 715 mtd_check_of_node(mtd); 716 of_node_get(mtd_get_of_node(mtd)); 717 error = device_register(&mtd->dev); 718 if (error) { 719 put_device(&mtd->dev); 720 goto fail_added; 721 } 722 723 /* Add the nvmem provider */ 724 error = mtd_nvmem_add(mtd); 725 if (error) 726 goto fail_nvmem_add; 727 728 mtd_debugfs_populate(mtd); 729 730 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 731 "mtd%dro", i); 732 733 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 734 /* No need to get a refcount on the module containing 735 the notifier, since we hold the mtd_table_mutex */ 736 list_for_each_entry(not, &mtd_notifiers, list) 737 not->add(mtd); 738 739 mutex_unlock(&mtd_table_mutex); 740 741 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 742 if (IS_BUILTIN(CONFIG_MTD)) { 743 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 744 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 745 } else { 746 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 747 mtd->index, mtd->name); 748 } 749 } 750 751 /* We _know_ we aren't being removed, because 752 our caller is still holding us here. So none 753 of this try_ nonsense, and no bitching about it 754 either. :) */ 755 __module_get(THIS_MODULE); 756 return 0; 757 758 fail_nvmem_add: 759 device_unregister(&mtd->dev); 760 fail_added: 761 of_node_put(mtd_get_of_node(mtd)); 762 idr_remove(&mtd_idr, i); 763 fail_locked: 764 mutex_unlock(&mtd_table_mutex); 765 return error; 766 } 767 768 /** 769 * del_mtd_device - unregister an MTD device 770 * @mtd: pointer to MTD device info structure 771 * 772 * Remove a device from the list of MTD devices present in the system, 773 * and notify each currently active MTD 'user' of its departure. 774 * Returns zero on success or 1 on failure, which currently will happen 775 * if the requested device does not appear to be present in the list. 776 */ 777 778 int del_mtd_device(struct mtd_info *mtd) 779 { 780 int ret; 781 struct mtd_notifier *not; 782 struct device_node *mtd_of_node; 783 784 mutex_lock(&mtd_table_mutex); 785 786 if (idr_find(&mtd_idr, mtd->index) != mtd) { 787 ret = -ENODEV; 788 goto out_error; 789 } 790 791 /* No need to get a refcount on the module containing 792 the notifier, since we hold the mtd_table_mutex */ 793 list_for_each_entry(not, &mtd_notifiers, list) 794 not->remove(mtd); 795 796 if (mtd->usecount) { 797 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 798 mtd->index, mtd->name, mtd->usecount); 799 ret = -EBUSY; 800 } else { 801 mtd_of_node = mtd_get_of_node(mtd); 802 debugfs_remove_recursive(mtd->dbg.dfs_dir); 803 804 /* Try to remove the NVMEM provider */ 805 nvmem_unregister(mtd->nvmem); 806 807 device_unregister(&mtd->dev); 808 809 /* Clear dev so mtd can be safely re-registered later if desired */ 810 memset(&mtd->dev, 0, sizeof(mtd->dev)); 811 812 idr_remove(&mtd_idr, mtd->index); 813 of_node_put(mtd_of_node); 814 815 module_put(THIS_MODULE); 816 ret = 0; 817 } 818 819 out_error: 820 mutex_unlock(&mtd_table_mutex); 821 return ret; 822 } 823 824 /* 825 * Set a few defaults based on the parent devices, if not provided by the 826 * driver 827 */ 828 static void mtd_set_dev_defaults(struct mtd_info *mtd) 829 { 830 if (mtd->dev.parent) { 831 if (!mtd->owner && mtd->dev.parent->driver) 832 mtd->owner = mtd->dev.parent->driver->owner; 833 if (!mtd->name) 834 mtd->name = dev_name(mtd->dev.parent); 835 } else { 836 pr_debug("mtd device won't show a device symlink in sysfs\n"); 837 } 838 839 INIT_LIST_HEAD(&mtd->partitions); 840 mutex_init(&mtd->master.partitions_lock); 841 mutex_init(&mtd->master.chrdev_lock); 842 } 843 844 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 845 { 846 struct otp_info *info; 847 ssize_t size = 0; 848 unsigned int i; 849 size_t retlen; 850 int ret; 851 852 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 853 if (!info) 854 return -ENOMEM; 855 856 if (is_user) 857 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 858 else 859 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 860 if (ret) 861 goto err; 862 863 for (i = 0; i < retlen / sizeof(*info); i++) 864 size += info[i].length; 865 866 kfree(info); 867 return size; 868 869 err: 870 kfree(info); 871 872 /* ENODATA means there is no OTP region. */ 873 return ret == -ENODATA ? 0 : ret; 874 } 875 876 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 877 const char *compatible, 878 int size, 879 nvmem_reg_read_t reg_read) 880 { 881 struct nvmem_device *nvmem = NULL; 882 struct nvmem_config config = {}; 883 struct device_node *np; 884 885 /* DT binding is optional */ 886 np = of_get_compatible_child(mtd->dev.of_node, compatible); 887 888 /* OTP nvmem will be registered on the physical device */ 889 config.dev = mtd->dev.parent; 890 config.name = compatible; 891 config.id = NVMEM_DEVID_AUTO; 892 config.owner = THIS_MODULE; 893 config.type = NVMEM_TYPE_OTP; 894 config.root_only = true; 895 config.ignore_wp = true; 896 config.reg_read = reg_read; 897 config.size = size; 898 config.of_node = np; 899 config.priv = mtd; 900 901 nvmem = nvmem_register(&config); 902 /* Just ignore if there is no NVMEM support in the kernel */ 903 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 904 nvmem = NULL; 905 906 of_node_put(np); 907 908 return nvmem; 909 } 910 911 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 912 void *val, size_t bytes) 913 { 914 struct mtd_info *mtd = priv; 915 size_t retlen; 916 int ret; 917 918 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 919 if (ret) 920 return ret; 921 922 return retlen == bytes ? 0 : -EIO; 923 } 924 925 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 926 void *val, size_t bytes) 927 { 928 struct mtd_info *mtd = priv; 929 size_t retlen; 930 int ret; 931 932 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 933 if (ret) 934 return ret; 935 936 return retlen == bytes ? 0 : -EIO; 937 } 938 939 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 940 { 941 struct device *dev = mtd->dev.parent; 942 struct nvmem_device *nvmem; 943 ssize_t size; 944 int err; 945 946 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 947 size = mtd_otp_size(mtd, true); 948 if (size < 0) 949 return size; 950 951 if (size > 0) { 952 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 953 mtd_nvmem_user_otp_reg_read); 954 if (IS_ERR(nvmem)) { 955 err = PTR_ERR(nvmem); 956 goto err; 957 } 958 mtd->otp_user_nvmem = nvmem; 959 } 960 } 961 962 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 963 size = mtd_otp_size(mtd, false); 964 if (size < 0) { 965 err = size; 966 goto err; 967 } 968 969 if (size > 0) { 970 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 971 mtd_nvmem_fact_otp_reg_read); 972 if (IS_ERR(nvmem)) { 973 err = PTR_ERR(nvmem); 974 goto err; 975 } 976 mtd->otp_factory_nvmem = nvmem; 977 } 978 } 979 980 return 0; 981 982 err: 983 nvmem_unregister(mtd->otp_user_nvmem); 984 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 985 } 986 987 /** 988 * mtd_device_parse_register - parse partitions and register an MTD device. 989 * 990 * @mtd: the MTD device to register 991 * @types: the list of MTD partition probes to try, see 992 * 'parse_mtd_partitions()' for more information 993 * @parser_data: MTD partition parser-specific data 994 * @parts: fallback partition information to register, if parsing fails; 995 * only valid if %nr_parts > %0 996 * @nr_parts: the number of partitions in parts, if zero then the full 997 * MTD device is registered if no partition info is found 998 * 999 * This function aggregates MTD partitions parsing (done by 1000 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1001 * basically follows the most common pattern found in many MTD drivers: 1002 * 1003 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1004 * registered first. 1005 * * Then It tries to probe partitions on MTD device @mtd using parsers 1006 * specified in @types (if @types is %NULL, then the default list of parsers 1007 * is used, see 'parse_mtd_partitions()' for more information). If none are 1008 * found this functions tries to fallback to information specified in 1009 * @parts/@nr_parts. 1010 * * If no partitions were found this function just registers the MTD device 1011 * @mtd and exits. 1012 * 1013 * Returns zero in case of success and a negative error code in case of failure. 1014 */ 1015 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1016 struct mtd_part_parser_data *parser_data, 1017 const struct mtd_partition *parts, 1018 int nr_parts) 1019 { 1020 int ret; 1021 1022 mtd_set_dev_defaults(mtd); 1023 1024 ret = mtd_otp_nvmem_add(mtd); 1025 if (ret) 1026 goto out; 1027 1028 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1029 ret = add_mtd_device(mtd); 1030 if (ret) 1031 goto out; 1032 } 1033 1034 /* Prefer parsed partitions over driver-provided fallback */ 1035 ret = parse_mtd_partitions(mtd, types, parser_data); 1036 if (ret == -EPROBE_DEFER) 1037 goto out; 1038 1039 if (ret > 0) 1040 ret = 0; 1041 else if (nr_parts) 1042 ret = add_mtd_partitions(mtd, parts, nr_parts); 1043 else if (!device_is_registered(&mtd->dev)) 1044 ret = add_mtd_device(mtd); 1045 else 1046 ret = 0; 1047 1048 if (ret) 1049 goto out; 1050 1051 /* 1052 * FIXME: some drivers unfortunately call this function more than once. 1053 * So we have to check if we've already assigned the reboot notifier. 1054 * 1055 * Generally, we can make multiple calls work for most cases, but it 1056 * does cause problems with parse_mtd_partitions() above (e.g., 1057 * cmdlineparts will register partitions more than once). 1058 */ 1059 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1060 "MTD already registered\n"); 1061 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1062 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1063 register_reboot_notifier(&mtd->reboot_notifier); 1064 } 1065 1066 out: 1067 if (ret) { 1068 nvmem_unregister(mtd->otp_user_nvmem); 1069 nvmem_unregister(mtd->otp_factory_nvmem); 1070 } 1071 1072 if (ret && device_is_registered(&mtd->dev)) 1073 del_mtd_device(mtd); 1074 1075 return ret; 1076 } 1077 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1078 1079 /** 1080 * mtd_device_unregister - unregister an existing MTD device. 1081 * 1082 * @master: the MTD device to unregister. This will unregister both the master 1083 * and any partitions if registered. 1084 */ 1085 int mtd_device_unregister(struct mtd_info *master) 1086 { 1087 int err; 1088 1089 if (master->_reboot) { 1090 unregister_reboot_notifier(&master->reboot_notifier); 1091 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1092 } 1093 1094 nvmem_unregister(master->otp_user_nvmem); 1095 nvmem_unregister(master->otp_factory_nvmem); 1096 1097 err = del_mtd_partitions(master); 1098 if (err) 1099 return err; 1100 1101 if (!device_is_registered(&master->dev)) 1102 return 0; 1103 1104 return del_mtd_device(master); 1105 } 1106 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1107 1108 /** 1109 * register_mtd_user - register a 'user' of MTD devices. 1110 * @new: pointer to notifier info structure 1111 * 1112 * Registers a pair of callbacks function to be called upon addition 1113 * or removal of MTD devices. Causes the 'add' callback to be immediately 1114 * invoked for each MTD device currently present in the system. 1115 */ 1116 void register_mtd_user (struct mtd_notifier *new) 1117 { 1118 struct mtd_info *mtd; 1119 1120 mutex_lock(&mtd_table_mutex); 1121 1122 list_add(&new->list, &mtd_notifiers); 1123 1124 __module_get(THIS_MODULE); 1125 1126 mtd_for_each_device(mtd) 1127 new->add(mtd); 1128 1129 mutex_unlock(&mtd_table_mutex); 1130 } 1131 EXPORT_SYMBOL_GPL(register_mtd_user); 1132 1133 /** 1134 * unregister_mtd_user - unregister a 'user' of MTD devices. 1135 * @old: pointer to notifier info structure 1136 * 1137 * Removes a callback function pair from the list of 'users' to be 1138 * notified upon addition or removal of MTD devices. Causes the 1139 * 'remove' callback to be immediately invoked for each MTD device 1140 * currently present in the system. 1141 */ 1142 int unregister_mtd_user (struct mtd_notifier *old) 1143 { 1144 struct mtd_info *mtd; 1145 1146 mutex_lock(&mtd_table_mutex); 1147 1148 module_put(THIS_MODULE); 1149 1150 mtd_for_each_device(mtd) 1151 old->remove(mtd); 1152 1153 list_del(&old->list); 1154 mutex_unlock(&mtd_table_mutex); 1155 return 0; 1156 } 1157 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1158 1159 /** 1160 * get_mtd_device - obtain a validated handle for an MTD device 1161 * @mtd: last known address of the required MTD device 1162 * @num: internal device number of the required MTD device 1163 * 1164 * Given a number and NULL address, return the num'th entry in the device 1165 * table, if any. Given an address and num == -1, search the device table 1166 * for a device with that address and return if it's still present. Given 1167 * both, return the num'th driver only if its address matches. Return 1168 * error code if not. 1169 */ 1170 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1171 { 1172 struct mtd_info *ret = NULL, *other; 1173 int err = -ENODEV; 1174 1175 mutex_lock(&mtd_table_mutex); 1176 1177 if (num == -1) { 1178 mtd_for_each_device(other) { 1179 if (other == mtd) { 1180 ret = mtd; 1181 break; 1182 } 1183 } 1184 } else if (num >= 0) { 1185 ret = idr_find(&mtd_idr, num); 1186 if (mtd && mtd != ret) 1187 ret = NULL; 1188 } 1189 1190 if (!ret) { 1191 ret = ERR_PTR(err); 1192 goto out; 1193 } 1194 1195 err = __get_mtd_device(ret); 1196 if (err) 1197 ret = ERR_PTR(err); 1198 out: 1199 mutex_unlock(&mtd_table_mutex); 1200 return ret; 1201 } 1202 EXPORT_SYMBOL_GPL(get_mtd_device); 1203 1204 1205 int __get_mtd_device(struct mtd_info *mtd) 1206 { 1207 struct mtd_info *master = mtd_get_master(mtd); 1208 int err; 1209 1210 if (!try_module_get(master->owner)) 1211 return -ENODEV; 1212 1213 if (master->_get_device) { 1214 err = master->_get_device(mtd); 1215 1216 if (err) { 1217 module_put(master->owner); 1218 return err; 1219 } 1220 } 1221 1222 master->usecount++; 1223 1224 while (mtd->parent) { 1225 mtd->usecount++; 1226 mtd = mtd->parent; 1227 } 1228 1229 return 0; 1230 } 1231 EXPORT_SYMBOL_GPL(__get_mtd_device); 1232 1233 /** 1234 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1235 * 1236 * @np: device tree node 1237 */ 1238 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1239 { 1240 struct mtd_info *mtd = NULL; 1241 struct mtd_info *tmp; 1242 int err; 1243 1244 mutex_lock(&mtd_table_mutex); 1245 1246 err = -EPROBE_DEFER; 1247 mtd_for_each_device(tmp) { 1248 if (mtd_get_of_node(tmp) == np) { 1249 mtd = tmp; 1250 err = __get_mtd_device(mtd); 1251 break; 1252 } 1253 } 1254 1255 mutex_unlock(&mtd_table_mutex); 1256 1257 return err ? ERR_PTR(err) : mtd; 1258 } 1259 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1260 1261 /** 1262 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1263 * device name 1264 * @name: MTD device name to open 1265 * 1266 * This function returns MTD device description structure in case of 1267 * success and an error code in case of failure. 1268 */ 1269 struct mtd_info *get_mtd_device_nm(const char *name) 1270 { 1271 int err = -ENODEV; 1272 struct mtd_info *mtd = NULL, *other; 1273 1274 mutex_lock(&mtd_table_mutex); 1275 1276 mtd_for_each_device(other) { 1277 if (!strcmp(name, other->name)) { 1278 mtd = other; 1279 break; 1280 } 1281 } 1282 1283 if (!mtd) 1284 goto out_unlock; 1285 1286 err = __get_mtd_device(mtd); 1287 if (err) 1288 goto out_unlock; 1289 1290 mutex_unlock(&mtd_table_mutex); 1291 return mtd; 1292 1293 out_unlock: 1294 mutex_unlock(&mtd_table_mutex); 1295 return ERR_PTR(err); 1296 } 1297 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1298 1299 void put_mtd_device(struct mtd_info *mtd) 1300 { 1301 mutex_lock(&mtd_table_mutex); 1302 __put_mtd_device(mtd); 1303 mutex_unlock(&mtd_table_mutex); 1304 1305 } 1306 EXPORT_SYMBOL_GPL(put_mtd_device); 1307 1308 void __put_mtd_device(struct mtd_info *mtd) 1309 { 1310 struct mtd_info *master = mtd_get_master(mtd); 1311 1312 while (mtd->parent) { 1313 --mtd->usecount; 1314 BUG_ON(mtd->usecount < 0); 1315 mtd = mtd->parent; 1316 } 1317 1318 master->usecount--; 1319 1320 if (master->_put_device) 1321 master->_put_device(master); 1322 1323 module_put(master->owner); 1324 } 1325 EXPORT_SYMBOL_GPL(__put_mtd_device); 1326 1327 /* 1328 * Erase is an synchronous operation. Device drivers are epected to return a 1329 * negative error code if the operation failed and update instr->fail_addr 1330 * to point the portion that was not properly erased. 1331 */ 1332 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1333 { 1334 struct mtd_info *master = mtd_get_master(mtd); 1335 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1336 struct erase_info adjinstr; 1337 int ret; 1338 1339 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1340 adjinstr = *instr; 1341 1342 if (!mtd->erasesize || !master->_erase) 1343 return -ENOTSUPP; 1344 1345 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1346 return -EINVAL; 1347 if (!(mtd->flags & MTD_WRITEABLE)) 1348 return -EROFS; 1349 1350 if (!instr->len) 1351 return 0; 1352 1353 ledtrig_mtd_activity(); 1354 1355 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1356 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1357 master->erasesize; 1358 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1359 master->erasesize) - 1360 adjinstr.addr; 1361 } 1362 1363 adjinstr.addr += mst_ofs; 1364 1365 ret = master->_erase(master, &adjinstr); 1366 1367 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1368 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1369 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1370 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1371 master); 1372 instr->fail_addr *= mtd->erasesize; 1373 } 1374 } 1375 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(mtd_erase); 1379 1380 /* 1381 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1382 */ 1383 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1384 void **virt, resource_size_t *phys) 1385 { 1386 struct mtd_info *master = mtd_get_master(mtd); 1387 1388 *retlen = 0; 1389 *virt = NULL; 1390 if (phys) 1391 *phys = 0; 1392 if (!master->_point) 1393 return -EOPNOTSUPP; 1394 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1395 return -EINVAL; 1396 if (!len) 1397 return 0; 1398 1399 from = mtd_get_master_ofs(mtd, from); 1400 return master->_point(master, from, len, retlen, virt, phys); 1401 } 1402 EXPORT_SYMBOL_GPL(mtd_point); 1403 1404 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1405 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1406 { 1407 struct mtd_info *master = mtd_get_master(mtd); 1408 1409 if (!master->_unpoint) 1410 return -EOPNOTSUPP; 1411 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1412 return -EINVAL; 1413 if (!len) 1414 return 0; 1415 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1416 } 1417 EXPORT_SYMBOL_GPL(mtd_unpoint); 1418 1419 /* 1420 * Allow NOMMU mmap() to directly map the device (if not NULL) 1421 * - return the address to which the offset maps 1422 * - return -ENOSYS to indicate refusal to do the mapping 1423 */ 1424 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1425 unsigned long offset, unsigned long flags) 1426 { 1427 size_t retlen; 1428 void *virt; 1429 int ret; 1430 1431 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1432 if (ret) 1433 return ret; 1434 if (retlen != len) { 1435 mtd_unpoint(mtd, offset, retlen); 1436 return -ENOSYS; 1437 } 1438 return (unsigned long)virt; 1439 } 1440 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1441 1442 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1443 const struct mtd_ecc_stats *old_stats) 1444 { 1445 struct mtd_ecc_stats diff; 1446 1447 if (master == mtd) 1448 return; 1449 1450 diff = master->ecc_stats; 1451 diff.failed -= old_stats->failed; 1452 diff.corrected -= old_stats->corrected; 1453 1454 while (mtd->parent) { 1455 mtd->ecc_stats.failed += diff.failed; 1456 mtd->ecc_stats.corrected += diff.corrected; 1457 mtd = mtd->parent; 1458 } 1459 } 1460 1461 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1462 u_char *buf) 1463 { 1464 struct mtd_oob_ops ops = { 1465 .len = len, 1466 .datbuf = buf, 1467 }; 1468 int ret; 1469 1470 ret = mtd_read_oob(mtd, from, &ops); 1471 *retlen = ops.retlen; 1472 1473 return ret; 1474 } 1475 EXPORT_SYMBOL_GPL(mtd_read); 1476 1477 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1478 const u_char *buf) 1479 { 1480 struct mtd_oob_ops ops = { 1481 .len = len, 1482 .datbuf = (u8 *)buf, 1483 }; 1484 int ret; 1485 1486 ret = mtd_write_oob(mtd, to, &ops); 1487 *retlen = ops.retlen; 1488 1489 return ret; 1490 } 1491 EXPORT_SYMBOL_GPL(mtd_write); 1492 1493 /* 1494 * In blackbox flight recorder like scenarios we want to make successful writes 1495 * in interrupt context. panic_write() is only intended to be called when its 1496 * known the kernel is about to panic and we need the write to succeed. Since 1497 * the kernel is not going to be running for much longer, this function can 1498 * break locks and delay to ensure the write succeeds (but not sleep). 1499 */ 1500 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1501 const u_char *buf) 1502 { 1503 struct mtd_info *master = mtd_get_master(mtd); 1504 1505 *retlen = 0; 1506 if (!master->_panic_write) 1507 return -EOPNOTSUPP; 1508 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1509 return -EINVAL; 1510 if (!(mtd->flags & MTD_WRITEABLE)) 1511 return -EROFS; 1512 if (!len) 1513 return 0; 1514 if (!master->oops_panic_write) 1515 master->oops_panic_write = true; 1516 1517 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1518 retlen, buf); 1519 } 1520 EXPORT_SYMBOL_GPL(mtd_panic_write); 1521 1522 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1523 struct mtd_oob_ops *ops) 1524 { 1525 /* 1526 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1527 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1528 * this case. 1529 */ 1530 if (!ops->datbuf) 1531 ops->len = 0; 1532 1533 if (!ops->oobbuf) 1534 ops->ooblen = 0; 1535 1536 if (offs < 0 || offs + ops->len > mtd->size) 1537 return -EINVAL; 1538 1539 if (ops->ooblen) { 1540 size_t maxooblen; 1541 1542 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1543 return -EINVAL; 1544 1545 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1546 mtd_div_by_ws(offs, mtd)) * 1547 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1548 if (ops->ooblen > maxooblen) 1549 return -EINVAL; 1550 } 1551 1552 return 0; 1553 } 1554 1555 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1556 struct mtd_oob_ops *ops) 1557 { 1558 struct mtd_info *master = mtd_get_master(mtd); 1559 int ret; 1560 1561 from = mtd_get_master_ofs(mtd, from); 1562 if (master->_read_oob) 1563 ret = master->_read_oob(master, from, ops); 1564 else 1565 ret = master->_read(master, from, ops->len, &ops->retlen, 1566 ops->datbuf); 1567 1568 return ret; 1569 } 1570 1571 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1572 struct mtd_oob_ops *ops) 1573 { 1574 struct mtd_info *master = mtd_get_master(mtd); 1575 int ret; 1576 1577 to = mtd_get_master_ofs(mtd, to); 1578 if (master->_write_oob) 1579 ret = master->_write_oob(master, to, ops); 1580 else 1581 ret = master->_write(master, to, ops->len, &ops->retlen, 1582 ops->datbuf); 1583 1584 return ret; 1585 } 1586 1587 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1588 struct mtd_oob_ops *ops) 1589 { 1590 struct mtd_info *master = mtd_get_master(mtd); 1591 int ngroups = mtd_pairing_groups(master); 1592 int npairs = mtd_wunit_per_eb(master) / ngroups; 1593 struct mtd_oob_ops adjops = *ops; 1594 unsigned int wunit, oobavail; 1595 struct mtd_pairing_info info; 1596 int max_bitflips = 0; 1597 u32 ebofs, pageofs; 1598 loff_t base, pos; 1599 1600 ebofs = mtd_mod_by_eb(start, mtd); 1601 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1602 info.group = 0; 1603 info.pair = mtd_div_by_ws(ebofs, mtd); 1604 pageofs = mtd_mod_by_ws(ebofs, mtd); 1605 oobavail = mtd_oobavail(mtd, ops); 1606 1607 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1608 int ret; 1609 1610 if (info.pair >= npairs) { 1611 info.pair = 0; 1612 base += master->erasesize; 1613 } 1614 1615 wunit = mtd_pairing_info_to_wunit(master, &info); 1616 pos = mtd_wunit_to_offset(mtd, base, wunit); 1617 1618 adjops.len = ops->len - ops->retlen; 1619 if (adjops.len > mtd->writesize - pageofs) 1620 adjops.len = mtd->writesize - pageofs; 1621 1622 adjops.ooblen = ops->ooblen - ops->oobretlen; 1623 if (adjops.ooblen > oobavail - adjops.ooboffs) 1624 adjops.ooblen = oobavail - adjops.ooboffs; 1625 1626 if (read) { 1627 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1628 if (ret > 0) 1629 max_bitflips = max(max_bitflips, ret); 1630 } else { 1631 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1632 } 1633 1634 if (ret < 0) 1635 return ret; 1636 1637 max_bitflips = max(max_bitflips, ret); 1638 ops->retlen += adjops.retlen; 1639 ops->oobretlen += adjops.oobretlen; 1640 adjops.datbuf += adjops.retlen; 1641 adjops.oobbuf += adjops.oobretlen; 1642 adjops.ooboffs = 0; 1643 pageofs = 0; 1644 info.pair++; 1645 } 1646 1647 return max_bitflips; 1648 } 1649 1650 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1651 { 1652 struct mtd_info *master = mtd_get_master(mtd); 1653 struct mtd_ecc_stats old_stats = master->ecc_stats; 1654 int ret_code; 1655 1656 ops->retlen = ops->oobretlen = 0; 1657 1658 ret_code = mtd_check_oob_ops(mtd, from, ops); 1659 if (ret_code) 1660 return ret_code; 1661 1662 ledtrig_mtd_activity(); 1663 1664 /* Check the validity of a potential fallback on mtd->_read */ 1665 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1666 return -EOPNOTSUPP; 1667 1668 if (ops->stats) 1669 memset(ops->stats, 0, sizeof(*ops->stats)); 1670 1671 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1672 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1673 else 1674 ret_code = mtd_read_oob_std(mtd, from, ops); 1675 1676 mtd_update_ecc_stats(mtd, master, &old_stats); 1677 1678 /* 1679 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1680 * similar to mtd->_read(), returning a non-negative integer 1681 * representing max bitflips. In other cases, mtd->_read_oob() may 1682 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1683 */ 1684 if (unlikely(ret_code < 0)) 1685 return ret_code; 1686 if (mtd->ecc_strength == 0) 1687 return 0; /* device lacks ecc */ 1688 if (ops->stats) 1689 ops->stats->max_bitflips = ret_code; 1690 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1691 } 1692 EXPORT_SYMBOL_GPL(mtd_read_oob); 1693 1694 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1695 struct mtd_oob_ops *ops) 1696 { 1697 struct mtd_info *master = mtd_get_master(mtd); 1698 int ret; 1699 1700 ops->retlen = ops->oobretlen = 0; 1701 1702 if (!(mtd->flags & MTD_WRITEABLE)) 1703 return -EROFS; 1704 1705 ret = mtd_check_oob_ops(mtd, to, ops); 1706 if (ret) 1707 return ret; 1708 1709 ledtrig_mtd_activity(); 1710 1711 /* Check the validity of a potential fallback on mtd->_write */ 1712 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1713 return -EOPNOTSUPP; 1714 1715 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1716 return mtd_io_emulated_slc(mtd, to, false, ops); 1717 1718 return mtd_write_oob_std(mtd, to, ops); 1719 } 1720 EXPORT_SYMBOL_GPL(mtd_write_oob); 1721 1722 /** 1723 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1724 * @mtd: MTD device structure 1725 * @section: ECC section. Depending on the layout you may have all the ECC 1726 * bytes stored in a single contiguous section, or one section 1727 * per ECC chunk (and sometime several sections for a single ECC 1728 * ECC chunk) 1729 * @oobecc: OOB region struct filled with the appropriate ECC position 1730 * information 1731 * 1732 * This function returns ECC section information in the OOB area. If you want 1733 * to get all the ECC bytes information, then you should call 1734 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1735 * 1736 * Returns zero on success, a negative error code otherwise. 1737 */ 1738 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1739 struct mtd_oob_region *oobecc) 1740 { 1741 struct mtd_info *master = mtd_get_master(mtd); 1742 1743 memset(oobecc, 0, sizeof(*oobecc)); 1744 1745 if (!master || section < 0) 1746 return -EINVAL; 1747 1748 if (!master->ooblayout || !master->ooblayout->ecc) 1749 return -ENOTSUPP; 1750 1751 return master->ooblayout->ecc(master, section, oobecc); 1752 } 1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1754 1755 /** 1756 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1757 * section 1758 * @mtd: MTD device structure 1759 * @section: Free section you are interested in. Depending on the layout 1760 * you may have all the free bytes stored in a single contiguous 1761 * section, or one section per ECC chunk plus an extra section 1762 * for the remaining bytes (or other funky layout). 1763 * @oobfree: OOB region struct filled with the appropriate free position 1764 * information 1765 * 1766 * This function returns free bytes position in the OOB area. If you want 1767 * to get all the free bytes information, then you should call 1768 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1769 * 1770 * Returns zero on success, a negative error code otherwise. 1771 */ 1772 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1773 struct mtd_oob_region *oobfree) 1774 { 1775 struct mtd_info *master = mtd_get_master(mtd); 1776 1777 memset(oobfree, 0, sizeof(*oobfree)); 1778 1779 if (!master || section < 0) 1780 return -EINVAL; 1781 1782 if (!master->ooblayout || !master->ooblayout->free) 1783 return -ENOTSUPP; 1784 1785 return master->ooblayout->free(master, section, oobfree); 1786 } 1787 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1788 1789 /** 1790 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1791 * @mtd: mtd info structure 1792 * @byte: the byte we are searching for 1793 * @sectionp: pointer where the section id will be stored 1794 * @oobregion: used to retrieve the ECC position 1795 * @iter: iterator function. Should be either mtd_ooblayout_free or 1796 * mtd_ooblayout_ecc depending on the region type you're searching for 1797 * 1798 * This function returns the section id and oobregion information of a 1799 * specific byte. For example, say you want to know where the 4th ECC byte is 1800 * stored, you'll use: 1801 * 1802 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1803 * 1804 * Returns zero on success, a negative error code otherwise. 1805 */ 1806 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1807 int *sectionp, struct mtd_oob_region *oobregion, 1808 int (*iter)(struct mtd_info *, 1809 int section, 1810 struct mtd_oob_region *oobregion)) 1811 { 1812 int pos = 0, ret, section = 0; 1813 1814 memset(oobregion, 0, sizeof(*oobregion)); 1815 1816 while (1) { 1817 ret = iter(mtd, section, oobregion); 1818 if (ret) 1819 return ret; 1820 1821 if (pos + oobregion->length > byte) 1822 break; 1823 1824 pos += oobregion->length; 1825 section++; 1826 } 1827 1828 /* 1829 * Adjust region info to make it start at the beginning at the 1830 * 'start' ECC byte. 1831 */ 1832 oobregion->offset += byte - pos; 1833 oobregion->length -= byte - pos; 1834 *sectionp = section; 1835 1836 return 0; 1837 } 1838 1839 /** 1840 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1841 * ECC byte 1842 * @mtd: mtd info structure 1843 * @eccbyte: the byte we are searching for 1844 * @section: pointer where the section id will be stored 1845 * @oobregion: OOB region information 1846 * 1847 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1848 * byte. 1849 * 1850 * Returns zero on success, a negative error code otherwise. 1851 */ 1852 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1853 int *section, 1854 struct mtd_oob_region *oobregion) 1855 { 1856 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1857 mtd_ooblayout_ecc); 1858 } 1859 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1860 1861 /** 1862 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1863 * @mtd: mtd info structure 1864 * @buf: destination buffer to store OOB bytes 1865 * @oobbuf: OOB buffer 1866 * @start: first byte to retrieve 1867 * @nbytes: number of bytes to retrieve 1868 * @iter: section iterator 1869 * 1870 * Extract bytes attached to a specific category (ECC or free) 1871 * from the OOB buffer and copy them into buf. 1872 * 1873 * Returns zero on success, a negative error code otherwise. 1874 */ 1875 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1876 const u8 *oobbuf, int start, int nbytes, 1877 int (*iter)(struct mtd_info *, 1878 int section, 1879 struct mtd_oob_region *oobregion)) 1880 { 1881 struct mtd_oob_region oobregion; 1882 int section, ret; 1883 1884 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1885 &oobregion, iter); 1886 1887 while (!ret) { 1888 int cnt; 1889 1890 cnt = min_t(int, nbytes, oobregion.length); 1891 memcpy(buf, oobbuf + oobregion.offset, cnt); 1892 buf += cnt; 1893 nbytes -= cnt; 1894 1895 if (!nbytes) 1896 break; 1897 1898 ret = iter(mtd, ++section, &oobregion); 1899 } 1900 1901 return ret; 1902 } 1903 1904 /** 1905 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1906 * @mtd: mtd info structure 1907 * @buf: source buffer to get OOB bytes from 1908 * @oobbuf: OOB buffer 1909 * @start: first OOB byte to set 1910 * @nbytes: number of OOB bytes to set 1911 * @iter: section iterator 1912 * 1913 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1914 * is selected by passing the appropriate iterator. 1915 * 1916 * Returns zero on success, a negative error code otherwise. 1917 */ 1918 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1919 u8 *oobbuf, int start, int nbytes, 1920 int (*iter)(struct mtd_info *, 1921 int section, 1922 struct mtd_oob_region *oobregion)) 1923 { 1924 struct mtd_oob_region oobregion; 1925 int section, ret; 1926 1927 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1928 &oobregion, iter); 1929 1930 while (!ret) { 1931 int cnt; 1932 1933 cnt = min_t(int, nbytes, oobregion.length); 1934 memcpy(oobbuf + oobregion.offset, buf, cnt); 1935 buf += cnt; 1936 nbytes -= cnt; 1937 1938 if (!nbytes) 1939 break; 1940 1941 ret = iter(mtd, ++section, &oobregion); 1942 } 1943 1944 return ret; 1945 } 1946 1947 /** 1948 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1949 * @mtd: mtd info structure 1950 * @iter: category iterator 1951 * 1952 * Count the number of bytes in a given category. 1953 * 1954 * Returns a positive value on success, a negative error code otherwise. 1955 */ 1956 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1957 int (*iter)(struct mtd_info *, 1958 int section, 1959 struct mtd_oob_region *oobregion)) 1960 { 1961 struct mtd_oob_region oobregion; 1962 int section = 0, ret, nbytes = 0; 1963 1964 while (1) { 1965 ret = iter(mtd, section++, &oobregion); 1966 if (ret) { 1967 if (ret == -ERANGE) 1968 ret = nbytes; 1969 break; 1970 } 1971 1972 nbytes += oobregion.length; 1973 } 1974 1975 return ret; 1976 } 1977 1978 /** 1979 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1980 * @mtd: mtd info structure 1981 * @eccbuf: destination buffer to store ECC bytes 1982 * @oobbuf: OOB buffer 1983 * @start: first ECC byte to retrieve 1984 * @nbytes: number of ECC bytes to retrieve 1985 * 1986 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1987 * 1988 * Returns zero on success, a negative error code otherwise. 1989 */ 1990 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1991 const u8 *oobbuf, int start, int nbytes) 1992 { 1993 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1994 mtd_ooblayout_ecc); 1995 } 1996 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1997 1998 /** 1999 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2000 * @mtd: mtd info structure 2001 * @eccbuf: source buffer to get ECC bytes from 2002 * @oobbuf: OOB buffer 2003 * @start: first ECC byte to set 2004 * @nbytes: number of ECC bytes to set 2005 * 2006 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2007 * 2008 * Returns zero on success, a negative error code otherwise. 2009 */ 2010 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2011 u8 *oobbuf, int start, int nbytes) 2012 { 2013 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2014 mtd_ooblayout_ecc); 2015 } 2016 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2017 2018 /** 2019 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2020 * @mtd: mtd info structure 2021 * @databuf: destination buffer to store ECC bytes 2022 * @oobbuf: OOB buffer 2023 * @start: first ECC byte to retrieve 2024 * @nbytes: number of ECC bytes to retrieve 2025 * 2026 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2027 * 2028 * Returns zero on success, a negative error code otherwise. 2029 */ 2030 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2031 const u8 *oobbuf, int start, int nbytes) 2032 { 2033 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2034 mtd_ooblayout_free); 2035 } 2036 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2037 2038 /** 2039 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2040 * @mtd: mtd info structure 2041 * @databuf: source buffer to get data bytes from 2042 * @oobbuf: OOB buffer 2043 * @start: first ECC byte to set 2044 * @nbytes: number of ECC bytes to set 2045 * 2046 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2047 * 2048 * Returns zero on success, a negative error code otherwise. 2049 */ 2050 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2051 u8 *oobbuf, int start, int nbytes) 2052 { 2053 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2054 mtd_ooblayout_free); 2055 } 2056 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2057 2058 /** 2059 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2060 * @mtd: mtd info structure 2061 * 2062 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2063 * 2064 * Returns zero on success, a negative error code otherwise. 2065 */ 2066 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2067 { 2068 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2069 } 2070 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2071 2072 /** 2073 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2074 * @mtd: mtd info structure 2075 * 2076 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2077 * 2078 * Returns zero on success, a negative error code otherwise. 2079 */ 2080 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2081 { 2082 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2083 } 2084 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2085 2086 /* 2087 * Method to access the protection register area, present in some flash 2088 * devices. The user data is one time programmable but the factory data is read 2089 * only. 2090 */ 2091 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2092 struct otp_info *buf) 2093 { 2094 struct mtd_info *master = mtd_get_master(mtd); 2095 2096 if (!master->_get_fact_prot_info) 2097 return -EOPNOTSUPP; 2098 if (!len) 2099 return 0; 2100 return master->_get_fact_prot_info(master, len, retlen, buf); 2101 } 2102 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2103 2104 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2105 size_t *retlen, u_char *buf) 2106 { 2107 struct mtd_info *master = mtd_get_master(mtd); 2108 2109 *retlen = 0; 2110 if (!master->_read_fact_prot_reg) 2111 return -EOPNOTSUPP; 2112 if (!len) 2113 return 0; 2114 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2115 } 2116 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2117 2118 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2119 struct otp_info *buf) 2120 { 2121 struct mtd_info *master = mtd_get_master(mtd); 2122 2123 if (!master->_get_user_prot_info) 2124 return -EOPNOTSUPP; 2125 if (!len) 2126 return 0; 2127 return master->_get_user_prot_info(master, len, retlen, buf); 2128 } 2129 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2130 2131 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2132 size_t *retlen, u_char *buf) 2133 { 2134 struct mtd_info *master = mtd_get_master(mtd); 2135 2136 *retlen = 0; 2137 if (!master->_read_user_prot_reg) 2138 return -EOPNOTSUPP; 2139 if (!len) 2140 return 0; 2141 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2142 } 2143 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2144 2145 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2146 size_t *retlen, const u_char *buf) 2147 { 2148 struct mtd_info *master = mtd_get_master(mtd); 2149 int ret; 2150 2151 *retlen = 0; 2152 if (!master->_write_user_prot_reg) 2153 return -EOPNOTSUPP; 2154 if (!len) 2155 return 0; 2156 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2157 if (ret) 2158 return ret; 2159 2160 /* 2161 * If no data could be written at all, we are out of memory and 2162 * must return -ENOSPC. 2163 */ 2164 return (*retlen) ? 0 : -ENOSPC; 2165 } 2166 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2167 2168 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2169 { 2170 struct mtd_info *master = mtd_get_master(mtd); 2171 2172 if (!master->_lock_user_prot_reg) 2173 return -EOPNOTSUPP; 2174 if (!len) 2175 return 0; 2176 return master->_lock_user_prot_reg(master, from, len); 2177 } 2178 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2179 2180 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2181 { 2182 struct mtd_info *master = mtd_get_master(mtd); 2183 2184 if (!master->_erase_user_prot_reg) 2185 return -EOPNOTSUPP; 2186 if (!len) 2187 return 0; 2188 return master->_erase_user_prot_reg(master, from, len); 2189 } 2190 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2191 2192 /* Chip-supported device locking */ 2193 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2194 { 2195 struct mtd_info *master = mtd_get_master(mtd); 2196 2197 if (!master->_lock) 2198 return -EOPNOTSUPP; 2199 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2200 return -EINVAL; 2201 if (!len) 2202 return 0; 2203 2204 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2205 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2206 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2207 } 2208 2209 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2210 } 2211 EXPORT_SYMBOL_GPL(mtd_lock); 2212 2213 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2214 { 2215 struct mtd_info *master = mtd_get_master(mtd); 2216 2217 if (!master->_unlock) 2218 return -EOPNOTSUPP; 2219 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2220 return -EINVAL; 2221 if (!len) 2222 return 0; 2223 2224 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2225 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2226 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2227 } 2228 2229 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2230 } 2231 EXPORT_SYMBOL_GPL(mtd_unlock); 2232 2233 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2234 { 2235 struct mtd_info *master = mtd_get_master(mtd); 2236 2237 if (!master->_is_locked) 2238 return -EOPNOTSUPP; 2239 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2240 return -EINVAL; 2241 if (!len) 2242 return 0; 2243 2244 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2245 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2246 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2247 } 2248 2249 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2250 } 2251 EXPORT_SYMBOL_GPL(mtd_is_locked); 2252 2253 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2254 { 2255 struct mtd_info *master = mtd_get_master(mtd); 2256 2257 if (ofs < 0 || ofs >= mtd->size) 2258 return -EINVAL; 2259 if (!master->_block_isreserved) 2260 return 0; 2261 2262 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2263 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2264 2265 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2266 } 2267 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2268 2269 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2270 { 2271 struct mtd_info *master = mtd_get_master(mtd); 2272 2273 if (ofs < 0 || ofs >= mtd->size) 2274 return -EINVAL; 2275 if (!master->_block_isbad) 2276 return 0; 2277 2278 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2279 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2280 2281 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2282 } 2283 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2284 2285 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2286 { 2287 struct mtd_info *master = mtd_get_master(mtd); 2288 int ret; 2289 2290 if (!master->_block_markbad) 2291 return -EOPNOTSUPP; 2292 if (ofs < 0 || ofs >= mtd->size) 2293 return -EINVAL; 2294 if (!(mtd->flags & MTD_WRITEABLE)) 2295 return -EROFS; 2296 2297 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2298 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2299 2300 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2301 if (ret) 2302 return ret; 2303 2304 while (mtd->parent) { 2305 mtd->ecc_stats.badblocks++; 2306 mtd = mtd->parent; 2307 } 2308 2309 return 0; 2310 } 2311 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2312 2313 /* 2314 * default_mtd_writev - the default writev method 2315 * @mtd: mtd device description object pointer 2316 * @vecs: the vectors to write 2317 * @count: count of vectors in @vecs 2318 * @to: the MTD device offset to write to 2319 * @retlen: on exit contains the count of bytes written to the MTD device. 2320 * 2321 * This function returns zero in case of success and a negative error code in 2322 * case of failure. 2323 */ 2324 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2325 unsigned long count, loff_t to, size_t *retlen) 2326 { 2327 unsigned long i; 2328 size_t totlen = 0, thislen; 2329 int ret = 0; 2330 2331 for (i = 0; i < count; i++) { 2332 if (!vecs[i].iov_len) 2333 continue; 2334 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2335 vecs[i].iov_base); 2336 totlen += thislen; 2337 if (ret || thislen != vecs[i].iov_len) 2338 break; 2339 to += vecs[i].iov_len; 2340 } 2341 *retlen = totlen; 2342 return ret; 2343 } 2344 2345 /* 2346 * mtd_writev - the vector-based MTD write method 2347 * @mtd: mtd device description object pointer 2348 * @vecs: the vectors to write 2349 * @count: count of vectors in @vecs 2350 * @to: the MTD device offset to write to 2351 * @retlen: on exit contains the count of bytes written to the MTD device. 2352 * 2353 * This function returns zero in case of success and a negative error code in 2354 * case of failure. 2355 */ 2356 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2357 unsigned long count, loff_t to, size_t *retlen) 2358 { 2359 struct mtd_info *master = mtd_get_master(mtd); 2360 2361 *retlen = 0; 2362 if (!(mtd->flags & MTD_WRITEABLE)) 2363 return -EROFS; 2364 2365 if (!master->_writev) 2366 return default_mtd_writev(mtd, vecs, count, to, retlen); 2367 2368 return master->_writev(master, vecs, count, 2369 mtd_get_master_ofs(mtd, to), retlen); 2370 } 2371 EXPORT_SYMBOL_GPL(mtd_writev); 2372 2373 /** 2374 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2375 * @mtd: mtd device description object pointer 2376 * @size: a pointer to the ideal or maximum size of the allocation, points 2377 * to the actual allocation size on success. 2378 * 2379 * This routine attempts to allocate a contiguous kernel buffer up to 2380 * the specified size, backing off the size of the request exponentially 2381 * until the request succeeds or until the allocation size falls below 2382 * the system page size. This attempts to make sure it does not adversely 2383 * impact system performance, so when allocating more than one page, we 2384 * ask the memory allocator to avoid re-trying, swapping, writing back 2385 * or performing I/O. 2386 * 2387 * Note, this function also makes sure that the allocated buffer is aligned to 2388 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2389 * 2390 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2391 * to handle smaller (i.e. degraded) buffer allocations under low- or 2392 * fragmented-memory situations where such reduced allocations, from a 2393 * requested ideal, are allowed. 2394 * 2395 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2396 */ 2397 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2398 { 2399 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2400 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2401 void *kbuf; 2402 2403 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2404 2405 while (*size > min_alloc) { 2406 kbuf = kmalloc(*size, flags); 2407 if (kbuf) 2408 return kbuf; 2409 2410 *size >>= 1; 2411 *size = ALIGN(*size, mtd->writesize); 2412 } 2413 2414 /* 2415 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2416 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2417 */ 2418 return kmalloc(*size, GFP_KERNEL); 2419 } 2420 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2421 2422 #ifdef CONFIG_PROC_FS 2423 2424 /*====================================================================*/ 2425 /* Support for /proc/mtd */ 2426 2427 static int mtd_proc_show(struct seq_file *m, void *v) 2428 { 2429 struct mtd_info *mtd; 2430 2431 seq_puts(m, "dev: size erasesize name\n"); 2432 mutex_lock(&mtd_table_mutex); 2433 mtd_for_each_device(mtd) { 2434 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2435 mtd->index, (unsigned long long)mtd->size, 2436 mtd->erasesize, mtd->name); 2437 } 2438 mutex_unlock(&mtd_table_mutex); 2439 return 0; 2440 } 2441 #endif /* CONFIG_PROC_FS */ 2442 2443 /*====================================================================*/ 2444 /* Init code */ 2445 2446 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2447 { 2448 struct backing_dev_info *bdi; 2449 int ret; 2450 2451 bdi = bdi_alloc(NUMA_NO_NODE); 2452 if (!bdi) 2453 return ERR_PTR(-ENOMEM); 2454 bdi->ra_pages = 0; 2455 bdi->io_pages = 0; 2456 2457 /* 2458 * We put '-0' suffix to the name to get the same name format as we 2459 * used to get. Since this is called only once, we get a unique name. 2460 */ 2461 ret = bdi_register(bdi, "%.28s-0", name); 2462 if (ret) 2463 bdi_put(bdi); 2464 2465 return ret ? ERR_PTR(ret) : bdi; 2466 } 2467 2468 static struct proc_dir_entry *proc_mtd; 2469 2470 static int __init init_mtd(void) 2471 { 2472 int ret; 2473 2474 ret = class_register(&mtd_class); 2475 if (ret) 2476 goto err_reg; 2477 2478 mtd_bdi = mtd_bdi_init("mtd"); 2479 if (IS_ERR(mtd_bdi)) { 2480 ret = PTR_ERR(mtd_bdi); 2481 goto err_bdi; 2482 } 2483 2484 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2485 2486 ret = init_mtdchar(); 2487 if (ret) 2488 goto out_procfs; 2489 2490 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2491 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2492 &mtd_expert_analysis_mode); 2493 2494 return 0; 2495 2496 out_procfs: 2497 if (proc_mtd) 2498 remove_proc_entry("mtd", NULL); 2499 bdi_unregister(mtd_bdi); 2500 bdi_put(mtd_bdi); 2501 err_bdi: 2502 class_unregister(&mtd_class); 2503 err_reg: 2504 pr_err("Error registering mtd class or bdi: %d\n", ret); 2505 return ret; 2506 } 2507 2508 static void __exit cleanup_mtd(void) 2509 { 2510 debugfs_remove_recursive(dfs_dir_mtd); 2511 cleanup_mtdchar(); 2512 if (proc_mtd) 2513 remove_proc_entry("mtd", NULL); 2514 class_unregister(&mtd_class); 2515 bdi_unregister(mtd_bdi); 2516 bdi_put(mtd_bdi); 2517 idr_destroy(&mtd_idr); 2518 } 2519 2520 module_init(init_mtd); 2521 module_exit(cleanup_mtd); 2522 2523 MODULE_LICENSE("GPL"); 2524 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2525 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2526