xref: /linux/drivers/mtd/mtdcore.c (revision e6026eb080fa1c1ef6eec24567b733809a5e3018)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 #include <linux/root_dev.h>
32 
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/partitions.h>
35 
36 #include "mtdcore.h"
37 
38 struct backing_dev_info *mtd_bdi;
39 
40 #ifdef CONFIG_PM_SLEEP
41 
42 static int mtd_cls_suspend(struct device *dev)
43 {
44 	struct mtd_info *mtd = dev_get_drvdata(dev);
45 
46 	return mtd ? mtd_suspend(mtd) : 0;
47 }
48 
49 static int mtd_cls_resume(struct device *dev)
50 {
51 	struct mtd_info *mtd = dev_get_drvdata(dev);
52 
53 	if (mtd)
54 		mtd_resume(mtd);
55 	return 0;
56 }
57 
58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #else
61 #define MTD_CLS_PM_OPS NULL
62 #endif
63 
64 static struct class mtd_class = {
65 	.name = "mtd",
66 	.owner = THIS_MODULE,
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	/* remove /dev/mtdXro node */
97 	device_destroy(&mtd_class, index + 1);
98 }
99 
100 #define MTD_DEVICE_ATTR_RO(name) \
101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102 
103 #define MTD_DEVICE_ATTR_RW(name) \
104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105 
106 static ssize_t mtd_type_show(struct device *dev,
107 		struct device_attribute *attr, char *buf)
108 {
109 	struct mtd_info *mtd = dev_get_drvdata(dev);
110 	char *type;
111 
112 	switch (mtd->type) {
113 	case MTD_ABSENT:
114 		type = "absent";
115 		break;
116 	case MTD_RAM:
117 		type = "ram";
118 		break;
119 	case MTD_ROM:
120 		type = "rom";
121 		break;
122 	case MTD_NORFLASH:
123 		type = "nor";
124 		break;
125 	case MTD_NANDFLASH:
126 		type = "nand";
127 		break;
128 	case MTD_DATAFLASH:
129 		type = "dataflash";
130 		break;
131 	case MTD_UBIVOLUME:
132 		type = "ubi";
133 		break;
134 	case MTD_MLCNANDFLASH:
135 		type = "mlc-nand";
136 		break;
137 	default:
138 		type = "unknown";
139 	}
140 
141 	return sysfs_emit(buf, "%s\n", type);
142 }
143 MTD_DEVICE_ATTR_RO(type);
144 
145 static ssize_t mtd_flags_show(struct device *dev,
146 		struct device_attribute *attr, char *buf)
147 {
148 	struct mtd_info *mtd = dev_get_drvdata(dev);
149 
150 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151 }
152 MTD_DEVICE_ATTR_RO(flags);
153 
154 static ssize_t mtd_size_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	struct mtd_info *mtd = dev_get_drvdata(dev);
158 
159 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160 }
161 MTD_DEVICE_ATTR_RO(size);
162 
163 static ssize_t mtd_erasesize_show(struct device *dev,
164 		struct device_attribute *attr, char *buf)
165 {
166 	struct mtd_info *mtd = dev_get_drvdata(dev);
167 
168 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169 }
170 MTD_DEVICE_ATTR_RO(erasesize);
171 
172 static ssize_t mtd_writesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178 }
179 MTD_DEVICE_ATTR_RO(writesize);
180 
181 static ssize_t mtd_subpagesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186 
187 	return sysfs_emit(buf, "%u\n", subpagesize);
188 }
189 MTD_DEVICE_ATTR_RO(subpagesize);
190 
191 static ssize_t mtd_oobsize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197 }
198 MTD_DEVICE_ATTR_RO(oobsize);
199 
200 static ssize_t mtd_oobavail_show(struct device *dev,
201 				 struct device_attribute *attr, char *buf)
202 {
203 	struct mtd_info *mtd = dev_get_drvdata(dev);
204 
205 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
206 }
207 MTD_DEVICE_ATTR_RO(oobavail);
208 
209 static ssize_t mtd_numeraseregions_show(struct device *dev,
210 		struct device_attribute *attr, char *buf)
211 {
212 	struct mtd_info *mtd = dev_get_drvdata(dev);
213 
214 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215 }
216 MTD_DEVICE_ATTR_RO(numeraseregions);
217 
218 static ssize_t mtd_name_show(struct device *dev,
219 		struct device_attribute *attr, char *buf)
220 {
221 	struct mtd_info *mtd = dev_get_drvdata(dev);
222 
223 	return sysfs_emit(buf, "%s\n", mtd->name);
224 }
225 MTD_DEVICE_ATTR_RO(name);
226 
227 static ssize_t mtd_ecc_strength_show(struct device *dev,
228 				     struct device_attribute *attr, char *buf)
229 {
230 	struct mtd_info *mtd = dev_get_drvdata(dev);
231 
232 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233 }
234 MTD_DEVICE_ATTR_RO(ecc_strength);
235 
236 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
237 					  struct device_attribute *attr,
238 					  char *buf)
239 {
240 	struct mtd_info *mtd = dev_get_drvdata(dev);
241 
242 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
243 }
244 
245 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
246 					   struct device_attribute *attr,
247 					   const char *buf, size_t count)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 	unsigned int bitflip_threshold;
251 	int retval;
252 
253 	retval = kstrtouint(buf, 0, &bitflip_threshold);
254 	if (retval)
255 		return retval;
256 
257 	mtd->bitflip_threshold = bitflip_threshold;
258 	return count;
259 }
260 MTD_DEVICE_ATTR_RW(bitflip_threshold);
261 
262 static ssize_t mtd_ecc_step_size_show(struct device *dev,
263 		struct device_attribute *attr, char *buf)
264 {
265 	struct mtd_info *mtd = dev_get_drvdata(dev);
266 
267 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
268 
269 }
270 MTD_DEVICE_ATTR_RO(ecc_step_size);
271 
272 static ssize_t mtd_corrected_bits_show(struct device *dev,
273 		struct device_attribute *attr, char *buf)
274 {
275 	struct mtd_info *mtd = dev_get_drvdata(dev);
276 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277 
278 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279 }
280 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
281 
282 static ssize_t mtd_ecc_failures_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	struct mtd_info *mtd = dev_get_drvdata(dev);
286 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 
288 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289 }
290 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
291 
292 static ssize_t mtd_bad_blocks_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299 }
300 MTD_DEVICE_ATTR_RO(bad_blocks);
301 
302 static ssize_t mtd_bbt_blocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309 }
310 MTD_DEVICE_ATTR_RO(bbt_blocks);
311 
312 static struct attribute *mtd_attrs[] = {
313 	&dev_attr_type.attr,
314 	&dev_attr_flags.attr,
315 	&dev_attr_size.attr,
316 	&dev_attr_erasesize.attr,
317 	&dev_attr_writesize.attr,
318 	&dev_attr_subpagesize.attr,
319 	&dev_attr_oobsize.attr,
320 	&dev_attr_oobavail.attr,
321 	&dev_attr_numeraseregions.attr,
322 	&dev_attr_name.attr,
323 	&dev_attr_ecc_strength.attr,
324 	&dev_attr_ecc_step_size.attr,
325 	&dev_attr_corrected_bits.attr,
326 	&dev_attr_ecc_failures.attr,
327 	&dev_attr_bad_blocks.attr,
328 	&dev_attr_bbt_blocks.attr,
329 	&dev_attr_bitflip_threshold.attr,
330 	NULL,
331 };
332 ATTRIBUTE_GROUPS(mtd);
333 
334 static const struct device_type mtd_devtype = {
335 	.name		= "mtd",
336 	.groups		= mtd_groups,
337 	.release	= mtd_release,
338 };
339 
340 static bool mtd_expert_analysis_mode;
341 
342 #ifdef CONFIG_DEBUG_FS
343 bool mtd_check_expert_analysis_mode(void)
344 {
345 	const char *mtd_expert_analysis_warning =
346 		"Bad block checks have been entirely disabled.\n"
347 		"This is only reserved for post-mortem forensics and debug purposes.\n"
348 		"Never enable this mode if you do not know what you are doing!\n";
349 
350 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351 }
352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
353 #endif
354 
355 static struct dentry *dfs_dir_mtd;
356 
357 static void mtd_debugfs_populate(struct mtd_info *mtd)
358 {
359 	struct device *dev = &mtd->dev;
360 
361 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
362 		return;
363 
364 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
365 }
366 
367 #ifndef CONFIG_MMU
368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
369 {
370 	switch (mtd->type) {
371 	case MTD_RAM:
372 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
373 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 	case MTD_ROM:
375 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
376 			NOMMU_MAP_READ;
377 	default:
378 		return NOMMU_MAP_COPY;
379 	}
380 }
381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
382 #endif
383 
384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
385 			       void *cmd)
386 {
387 	struct mtd_info *mtd;
388 
389 	mtd = container_of(n, struct mtd_info, reboot_notifier);
390 	mtd->_reboot(mtd);
391 
392 	return NOTIFY_DONE;
393 }
394 
395 /**
396  * mtd_wunit_to_pairing_info - get pairing information of a wunit
397  * @mtd: pointer to new MTD device info structure
398  * @wunit: write unit we are interested in
399  * @info: returned pairing information
400  *
401  * Retrieve pairing information associated to the wunit.
402  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
403  * paired together, and where programming a page may influence the page it is
404  * paired with.
405  * The notion of page is replaced by the term wunit (write-unit) to stay
406  * consistent with the ->writesize field.
407  *
408  * The @wunit argument can be extracted from an absolute offset using
409  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
410  * to @wunit.
411  *
412  * From the pairing info the MTD user can find all the wunits paired with
413  * @wunit using the following loop:
414  *
415  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416  *	info.pair = i;
417  *	mtd_pairing_info_to_wunit(mtd, &info);
418  *	...
419  * }
420  */
421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
422 			      struct mtd_pairing_info *info)
423 {
424 	struct mtd_info *master = mtd_get_master(mtd);
425 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426 
427 	if (wunit < 0 || wunit >= npairs)
428 		return -EINVAL;
429 
430 	if (master->pairing && master->pairing->get_info)
431 		return master->pairing->get_info(master, wunit, info);
432 
433 	info->group = 0;
434 	info->pair = wunit;
435 
436 	return 0;
437 }
438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
439 
440 /**
441  * mtd_pairing_info_to_wunit - get wunit from pairing information
442  * @mtd: pointer to new MTD device info structure
443  * @info: pairing information struct
444  *
445  * Returns a positive number representing the wunit associated to the info
446  * struct, or a negative error code.
447  *
448  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
449  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
450  * doc).
451  *
452  * It can also be used to only program the first page of each pair (i.e.
453  * page attached to group 0), which allows one to use an MLC NAND in
454  * software-emulated SLC mode:
455  *
456  * info.group = 0;
457  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
458  * for (info.pair = 0; info.pair < npairs; info.pair++) {
459  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
460  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
461  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
462  * }
463  */
464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
465 			      const struct mtd_pairing_info *info)
466 {
467 	struct mtd_info *master = mtd_get_master(mtd);
468 	int ngroups = mtd_pairing_groups(master);
469 	int npairs = mtd_wunit_per_eb(master) / ngroups;
470 
471 	if (!info || info->pair < 0 || info->pair >= npairs ||
472 	    info->group < 0 || info->group >= ngroups)
473 		return -EINVAL;
474 
475 	if (master->pairing && master->pairing->get_wunit)
476 		return mtd->pairing->get_wunit(master, info);
477 
478 	return info->pair;
479 }
480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
481 
482 /**
483  * mtd_pairing_groups - get the number of pairing groups
484  * @mtd: pointer to new MTD device info structure
485  *
486  * Returns the number of pairing groups.
487  *
488  * This number is usually equal to the number of bits exposed by a single
489  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
490  * to iterate over all pages of a given pair.
491  */
492 int mtd_pairing_groups(struct mtd_info *mtd)
493 {
494 	struct mtd_info *master = mtd_get_master(mtd);
495 
496 	if (!master->pairing || !master->pairing->ngroups)
497 		return 1;
498 
499 	return master->pairing->ngroups;
500 }
501 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502 
503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
504 			      void *val, size_t bytes)
505 {
506 	struct mtd_info *mtd = priv;
507 	size_t retlen;
508 	int err;
509 
510 	err = mtd_read(mtd, offset, bytes, &retlen, val);
511 	if (err && err != -EUCLEAN)
512 		return err;
513 
514 	return retlen == bytes ? 0 : -EIO;
515 }
516 
517 static int mtd_nvmem_add(struct mtd_info *mtd)
518 {
519 	struct device_node *node = mtd_get_of_node(mtd);
520 	struct nvmem_config config = {};
521 
522 	config.id = NVMEM_DEVID_NONE;
523 	config.dev = &mtd->dev;
524 	config.name = dev_name(&mtd->dev);
525 	config.owner = THIS_MODULE;
526 	config.reg_read = mtd_nvmem_reg_read;
527 	config.size = mtd->size;
528 	config.word_size = 1;
529 	config.stride = 1;
530 	config.read_only = true;
531 	config.root_only = true;
532 	config.ignore_wp = true;
533 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
534 	config.priv = mtd;
535 
536 	mtd->nvmem = nvmem_register(&config);
537 	if (IS_ERR(mtd->nvmem)) {
538 		/* Just ignore if there is no NVMEM support in the kernel */
539 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
540 			mtd->nvmem = NULL;
541 		else
542 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
543 					     "Failed to register NVMEM device\n");
544 	}
545 
546 	return 0;
547 }
548 
549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 	const char *pname, *prefix = "partition-";
553 	int plen, mtd_name_len, offset, prefix_len;
554 
555 	/* Check if MTD already has a device node */
556 	if (mtd_get_of_node(mtd))
557 		return;
558 
559 	if (!mtd_is_partition(mtd))
560 		return;
561 
562 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
563 	if (!parent_dn)
564 		return;
565 
566 	if (mtd_is_partition(mtd->parent))
567 		partitions = of_node_get(parent_dn);
568 	else
569 		partitions = of_get_child_by_name(parent_dn, "partitions");
570 	if (!partitions)
571 		goto exit_parent;
572 
573 	prefix_len = strlen(prefix);
574 	mtd_name_len = strlen(mtd->name);
575 
576 	/* Search if a partition is defined with the same name */
577 	for_each_child_of_node(partitions, mtd_dn) {
578 		/* Skip partition with no/wrong prefix */
579 		if (!of_node_name_prefix(mtd_dn, prefix))
580 			continue;
581 
582 		/* Label have priority. Check that first */
583 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
584 			offset = 0;
585 		} else {
586 			pname = mtd_dn->name;
587 			offset = prefix_len;
588 		}
589 
590 		plen = strlen(pname) - offset;
591 		if (plen == mtd_name_len &&
592 		    !strncmp(mtd->name, pname + offset, plen)) {
593 			mtd_set_of_node(mtd, mtd_dn);
594 			break;
595 		}
596 	}
597 
598 	of_node_put(partitions);
599 exit_parent:
600 	of_node_put(parent_dn);
601 }
602 
603 /**
604  *	add_mtd_device - register an MTD device
605  *	@mtd: pointer to new MTD device info structure
606  *
607  *	Add a device to the list of MTD devices present in the system, and
608  *	notify each currently active MTD 'user' of its arrival. Returns
609  *	zero on success or non-zero on failure.
610  */
611 
612 int add_mtd_device(struct mtd_info *mtd)
613 {
614 	struct device_node *np = mtd_get_of_node(mtd);
615 	struct mtd_info *master = mtd_get_master(mtd);
616 	struct mtd_notifier *not;
617 	int i, error, ofidx;
618 
619 	/*
620 	 * May occur, for instance, on buggy drivers which call
621 	 * mtd_device_parse_register() multiple times on the same master MTD,
622 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
623 	 */
624 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
625 		return -EEXIST;
626 
627 	BUG_ON(mtd->writesize == 0);
628 
629 	/*
630 	 * MTD drivers should implement ->_{write,read}() or
631 	 * ->_{write,read}_oob(), but not both.
632 	 */
633 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
634 		    (mtd->_read && mtd->_read_oob)))
635 		return -EINVAL;
636 
637 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
638 		    !(mtd->flags & MTD_NO_ERASE)))
639 		return -EINVAL;
640 
641 	/*
642 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
643 	 * master is an MLC NAND and has a proper pairing scheme defined.
644 	 * We also reject masters that implement ->_writev() for now, because
645 	 * NAND controller drivers don't implement this hook, and adding the
646 	 * SLC -> MLC address/length conversion to this path is useless if we
647 	 * don't have a user.
648 	 */
649 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
650 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
651 	     !master->pairing || master->_writev))
652 		return -EINVAL;
653 
654 	mutex_lock(&mtd_table_mutex);
655 
656 	ofidx = -1;
657 	if (np)
658 		ofidx = of_alias_get_id(np, "mtd");
659 	if (ofidx >= 0)
660 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
661 	else
662 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
663 	if (i < 0) {
664 		error = i;
665 		goto fail_locked;
666 	}
667 
668 	mtd->index = i;
669 	mtd->usecount = 0;
670 
671 	/* default value if not set by driver */
672 	if (mtd->bitflip_threshold == 0)
673 		mtd->bitflip_threshold = mtd->ecc_strength;
674 
675 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
676 		int ngroups = mtd_pairing_groups(master);
677 
678 		mtd->erasesize /= ngroups;
679 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
680 			    mtd->erasesize;
681 	}
682 
683 	if (is_power_of_2(mtd->erasesize))
684 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
685 	else
686 		mtd->erasesize_shift = 0;
687 
688 	if (is_power_of_2(mtd->writesize))
689 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
690 	else
691 		mtd->writesize_shift = 0;
692 
693 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
694 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
695 
696 	/* Some chips always power up locked. Unlock them now */
697 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
698 		error = mtd_unlock(mtd, 0, mtd->size);
699 		if (error && error != -EOPNOTSUPP)
700 			printk(KERN_WARNING
701 			       "%s: unlock failed, writes may not work\n",
702 			       mtd->name);
703 		/* Ignore unlock failures? */
704 		error = 0;
705 	}
706 
707 	/* Caller should have set dev.parent to match the
708 	 * physical device, if appropriate.
709 	 */
710 	mtd->dev.type = &mtd_devtype;
711 	mtd->dev.class = &mtd_class;
712 	mtd->dev.devt = MTD_DEVT(i);
713 	dev_set_name(&mtd->dev, "mtd%d", i);
714 	dev_set_drvdata(&mtd->dev, mtd);
715 	mtd_check_of_node(mtd);
716 	of_node_get(mtd_get_of_node(mtd));
717 	error = device_register(&mtd->dev);
718 	if (error) {
719 		put_device(&mtd->dev);
720 		goto fail_added;
721 	}
722 
723 	/* Add the nvmem provider */
724 	error = mtd_nvmem_add(mtd);
725 	if (error)
726 		goto fail_nvmem_add;
727 
728 	mtd_debugfs_populate(mtd);
729 
730 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
731 		      "mtd%dro", i);
732 
733 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
734 	/* No need to get a refcount on the module containing
735 	   the notifier, since we hold the mtd_table_mutex */
736 	list_for_each_entry(not, &mtd_notifiers, list)
737 		not->add(mtd);
738 
739 	mutex_unlock(&mtd_table_mutex);
740 
741 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
742 		if (IS_BUILTIN(CONFIG_MTD)) {
743 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
744 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
745 		} else {
746 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
747 				mtd->index, mtd->name);
748 		}
749 	}
750 
751 	/* We _know_ we aren't being removed, because
752 	   our caller is still holding us here. So none
753 	   of this try_ nonsense, and no bitching about it
754 	   either. :) */
755 	__module_get(THIS_MODULE);
756 	return 0;
757 
758 fail_nvmem_add:
759 	device_unregister(&mtd->dev);
760 fail_added:
761 	of_node_put(mtd_get_of_node(mtd));
762 	idr_remove(&mtd_idr, i);
763 fail_locked:
764 	mutex_unlock(&mtd_table_mutex);
765 	return error;
766 }
767 
768 /**
769  *	del_mtd_device - unregister an MTD device
770  *	@mtd: pointer to MTD device info structure
771  *
772  *	Remove a device from the list of MTD devices present in the system,
773  *	and notify each currently active MTD 'user' of its departure.
774  *	Returns zero on success or 1 on failure, which currently will happen
775  *	if the requested device does not appear to be present in the list.
776  */
777 
778 int del_mtd_device(struct mtd_info *mtd)
779 {
780 	int ret;
781 	struct mtd_notifier *not;
782 	struct device_node *mtd_of_node;
783 
784 	mutex_lock(&mtd_table_mutex);
785 
786 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
787 		ret = -ENODEV;
788 		goto out_error;
789 	}
790 
791 	/* No need to get a refcount on the module containing
792 		the notifier, since we hold the mtd_table_mutex */
793 	list_for_each_entry(not, &mtd_notifiers, list)
794 		not->remove(mtd);
795 
796 	if (mtd->usecount) {
797 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
798 		       mtd->index, mtd->name, mtd->usecount);
799 		ret = -EBUSY;
800 	} else {
801 		mtd_of_node = mtd_get_of_node(mtd);
802 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
803 
804 		/* Try to remove the NVMEM provider */
805 		nvmem_unregister(mtd->nvmem);
806 
807 		device_unregister(&mtd->dev);
808 
809 		/* Clear dev so mtd can be safely re-registered later if desired */
810 		memset(&mtd->dev, 0, sizeof(mtd->dev));
811 
812 		idr_remove(&mtd_idr, mtd->index);
813 		of_node_put(mtd_of_node);
814 
815 		module_put(THIS_MODULE);
816 		ret = 0;
817 	}
818 
819 out_error:
820 	mutex_unlock(&mtd_table_mutex);
821 	return ret;
822 }
823 
824 /*
825  * Set a few defaults based on the parent devices, if not provided by the
826  * driver
827  */
828 static void mtd_set_dev_defaults(struct mtd_info *mtd)
829 {
830 	if (mtd->dev.parent) {
831 		if (!mtd->owner && mtd->dev.parent->driver)
832 			mtd->owner = mtd->dev.parent->driver->owner;
833 		if (!mtd->name)
834 			mtd->name = dev_name(mtd->dev.parent);
835 	} else {
836 		pr_debug("mtd device won't show a device symlink in sysfs\n");
837 	}
838 
839 	INIT_LIST_HEAD(&mtd->partitions);
840 	mutex_init(&mtd->master.partitions_lock);
841 	mutex_init(&mtd->master.chrdev_lock);
842 }
843 
844 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
845 {
846 	struct otp_info *info;
847 	ssize_t size = 0;
848 	unsigned int i;
849 	size_t retlen;
850 	int ret;
851 
852 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
853 	if (!info)
854 		return -ENOMEM;
855 
856 	if (is_user)
857 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
858 	else
859 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
860 	if (ret)
861 		goto err;
862 
863 	for (i = 0; i < retlen / sizeof(*info); i++)
864 		size += info[i].length;
865 
866 	kfree(info);
867 	return size;
868 
869 err:
870 	kfree(info);
871 
872 	/* ENODATA means there is no OTP region. */
873 	return ret == -ENODATA ? 0 : ret;
874 }
875 
876 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
877 						   const char *compatible,
878 						   int size,
879 						   nvmem_reg_read_t reg_read)
880 {
881 	struct nvmem_device *nvmem = NULL;
882 	struct nvmem_config config = {};
883 	struct device_node *np;
884 
885 	/* DT binding is optional */
886 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
887 
888 	/* OTP nvmem will be registered on the physical device */
889 	config.dev = mtd->dev.parent;
890 	config.name = compatible;
891 	config.id = NVMEM_DEVID_AUTO;
892 	config.owner = THIS_MODULE;
893 	config.type = NVMEM_TYPE_OTP;
894 	config.root_only = true;
895 	config.ignore_wp = true;
896 	config.reg_read = reg_read;
897 	config.size = size;
898 	config.of_node = np;
899 	config.priv = mtd;
900 
901 	nvmem = nvmem_register(&config);
902 	/* Just ignore if there is no NVMEM support in the kernel */
903 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
904 		nvmem = NULL;
905 
906 	of_node_put(np);
907 
908 	return nvmem;
909 }
910 
911 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
912 				       void *val, size_t bytes)
913 {
914 	struct mtd_info *mtd = priv;
915 	size_t retlen;
916 	int ret;
917 
918 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
919 	if (ret)
920 		return ret;
921 
922 	return retlen == bytes ? 0 : -EIO;
923 }
924 
925 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
926 				       void *val, size_t bytes)
927 {
928 	struct mtd_info *mtd = priv;
929 	size_t retlen;
930 	int ret;
931 
932 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
933 	if (ret)
934 		return ret;
935 
936 	return retlen == bytes ? 0 : -EIO;
937 }
938 
939 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
940 {
941 	struct device *dev = mtd->dev.parent;
942 	struct nvmem_device *nvmem;
943 	ssize_t size;
944 	int err;
945 
946 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
947 		size = mtd_otp_size(mtd, true);
948 		if (size < 0)
949 			return size;
950 
951 		if (size > 0) {
952 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
953 						       mtd_nvmem_user_otp_reg_read);
954 			if (IS_ERR(nvmem)) {
955 				err = PTR_ERR(nvmem);
956 				goto err;
957 			}
958 			mtd->otp_user_nvmem = nvmem;
959 		}
960 	}
961 
962 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
963 		size = mtd_otp_size(mtd, false);
964 		if (size < 0) {
965 			err = size;
966 			goto err;
967 		}
968 
969 		if (size > 0) {
970 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
971 						       mtd_nvmem_fact_otp_reg_read);
972 			if (IS_ERR(nvmem)) {
973 				err = PTR_ERR(nvmem);
974 				goto err;
975 			}
976 			mtd->otp_factory_nvmem = nvmem;
977 		}
978 	}
979 
980 	return 0;
981 
982 err:
983 	nvmem_unregister(mtd->otp_user_nvmem);
984 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
985 }
986 
987 /**
988  * mtd_device_parse_register - parse partitions and register an MTD device.
989  *
990  * @mtd: the MTD device to register
991  * @types: the list of MTD partition probes to try, see
992  *         'parse_mtd_partitions()' for more information
993  * @parser_data: MTD partition parser-specific data
994  * @parts: fallback partition information to register, if parsing fails;
995  *         only valid if %nr_parts > %0
996  * @nr_parts: the number of partitions in parts, if zero then the full
997  *            MTD device is registered if no partition info is found
998  *
999  * This function aggregates MTD partitions parsing (done by
1000  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1001  * basically follows the most common pattern found in many MTD drivers:
1002  *
1003  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1004  *   registered first.
1005  * * Then It tries to probe partitions on MTD device @mtd using parsers
1006  *   specified in @types (if @types is %NULL, then the default list of parsers
1007  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1008  *   found this functions tries to fallback to information specified in
1009  *   @parts/@nr_parts.
1010  * * If no partitions were found this function just registers the MTD device
1011  *   @mtd and exits.
1012  *
1013  * Returns zero in case of success and a negative error code in case of failure.
1014  */
1015 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1016 			      struct mtd_part_parser_data *parser_data,
1017 			      const struct mtd_partition *parts,
1018 			      int nr_parts)
1019 {
1020 	int ret;
1021 
1022 	mtd_set_dev_defaults(mtd);
1023 
1024 	ret = mtd_otp_nvmem_add(mtd);
1025 	if (ret)
1026 		goto out;
1027 
1028 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1029 		ret = add_mtd_device(mtd);
1030 		if (ret)
1031 			goto out;
1032 	}
1033 
1034 	/* Prefer parsed partitions over driver-provided fallback */
1035 	ret = parse_mtd_partitions(mtd, types, parser_data);
1036 	if (ret == -EPROBE_DEFER)
1037 		goto out;
1038 
1039 	if (ret > 0)
1040 		ret = 0;
1041 	else if (nr_parts)
1042 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1043 	else if (!device_is_registered(&mtd->dev))
1044 		ret = add_mtd_device(mtd);
1045 	else
1046 		ret = 0;
1047 
1048 	if (ret)
1049 		goto out;
1050 
1051 	/*
1052 	 * FIXME: some drivers unfortunately call this function more than once.
1053 	 * So we have to check if we've already assigned the reboot notifier.
1054 	 *
1055 	 * Generally, we can make multiple calls work for most cases, but it
1056 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1057 	 * cmdlineparts will register partitions more than once).
1058 	 */
1059 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1060 		  "MTD already registered\n");
1061 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1062 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1063 		register_reboot_notifier(&mtd->reboot_notifier);
1064 	}
1065 
1066 out:
1067 	if (ret) {
1068 		nvmem_unregister(mtd->otp_user_nvmem);
1069 		nvmem_unregister(mtd->otp_factory_nvmem);
1070 	}
1071 
1072 	if (ret && device_is_registered(&mtd->dev))
1073 		del_mtd_device(mtd);
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1078 
1079 /**
1080  * mtd_device_unregister - unregister an existing MTD device.
1081  *
1082  * @master: the MTD device to unregister.  This will unregister both the master
1083  *          and any partitions if registered.
1084  */
1085 int mtd_device_unregister(struct mtd_info *master)
1086 {
1087 	int err;
1088 
1089 	if (master->_reboot) {
1090 		unregister_reboot_notifier(&master->reboot_notifier);
1091 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1092 	}
1093 
1094 	nvmem_unregister(master->otp_user_nvmem);
1095 	nvmem_unregister(master->otp_factory_nvmem);
1096 
1097 	err = del_mtd_partitions(master);
1098 	if (err)
1099 		return err;
1100 
1101 	if (!device_is_registered(&master->dev))
1102 		return 0;
1103 
1104 	return del_mtd_device(master);
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1107 
1108 /**
1109  *	register_mtd_user - register a 'user' of MTD devices.
1110  *	@new: pointer to notifier info structure
1111  *
1112  *	Registers a pair of callbacks function to be called upon addition
1113  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1114  *	invoked for each MTD device currently present in the system.
1115  */
1116 void register_mtd_user (struct mtd_notifier *new)
1117 {
1118 	struct mtd_info *mtd;
1119 
1120 	mutex_lock(&mtd_table_mutex);
1121 
1122 	list_add(&new->list, &mtd_notifiers);
1123 
1124 	__module_get(THIS_MODULE);
1125 
1126 	mtd_for_each_device(mtd)
1127 		new->add(mtd);
1128 
1129 	mutex_unlock(&mtd_table_mutex);
1130 }
1131 EXPORT_SYMBOL_GPL(register_mtd_user);
1132 
1133 /**
1134  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1135  *	@old: pointer to notifier info structure
1136  *
1137  *	Removes a callback function pair from the list of 'users' to be
1138  *	notified upon addition or removal of MTD devices. Causes the
1139  *	'remove' callback to be immediately invoked for each MTD device
1140  *	currently present in the system.
1141  */
1142 int unregister_mtd_user (struct mtd_notifier *old)
1143 {
1144 	struct mtd_info *mtd;
1145 
1146 	mutex_lock(&mtd_table_mutex);
1147 
1148 	module_put(THIS_MODULE);
1149 
1150 	mtd_for_each_device(mtd)
1151 		old->remove(mtd);
1152 
1153 	list_del(&old->list);
1154 	mutex_unlock(&mtd_table_mutex);
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1158 
1159 /**
1160  *	get_mtd_device - obtain a validated handle for an MTD device
1161  *	@mtd: last known address of the required MTD device
1162  *	@num: internal device number of the required MTD device
1163  *
1164  *	Given a number and NULL address, return the num'th entry in the device
1165  *	table, if any.	Given an address and num == -1, search the device table
1166  *	for a device with that address and return if it's still present. Given
1167  *	both, return the num'th driver only if its address matches. Return
1168  *	error code if not.
1169  */
1170 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1171 {
1172 	struct mtd_info *ret = NULL, *other;
1173 	int err = -ENODEV;
1174 
1175 	mutex_lock(&mtd_table_mutex);
1176 
1177 	if (num == -1) {
1178 		mtd_for_each_device(other) {
1179 			if (other == mtd) {
1180 				ret = mtd;
1181 				break;
1182 			}
1183 		}
1184 	} else if (num >= 0) {
1185 		ret = idr_find(&mtd_idr, num);
1186 		if (mtd && mtd != ret)
1187 			ret = NULL;
1188 	}
1189 
1190 	if (!ret) {
1191 		ret = ERR_PTR(err);
1192 		goto out;
1193 	}
1194 
1195 	err = __get_mtd_device(ret);
1196 	if (err)
1197 		ret = ERR_PTR(err);
1198 out:
1199 	mutex_unlock(&mtd_table_mutex);
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(get_mtd_device);
1203 
1204 
1205 int __get_mtd_device(struct mtd_info *mtd)
1206 {
1207 	struct mtd_info *master = mtd_get_master(mtd);
1208 	int err;
1209 
1210 	if (!try_module_get(master->owner))
1211 		return -ENODEV;
1212 
1213 	if (master->_get_device) {
1214 		err = master->_get_device(mtd);
1215 
1216 		if (err) {
1217 			module_put(master->owner);
1218 			return err;
1219 		}
1220 	}
1221 
1222 	master->usecount++;
1223 
1224 	while (mtd->parent) {
1225 		mtd->usecount++;
1226 		mtd = mtd->parent;
1227 	}
1228 
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(__get_mtd_device);
1232 
1233 /**
1234  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1235  *
1236  * @np: device tree node
1237  */
1238 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1239 {
1240 	struct mtd_info *mtd = NULL;
1241 	struct mtd_info *tmp;
1242 	int err;
1243 
1244 	mutex_lock(&mtd_table_mutex);
1245 
1246 	err = -EPROBE_DEFER;
1247 	mtd_for_each_device(tmp) {
1248 		if (mtd_get_of_node(tmp) == np) {
1249 			mtd = tmp;
1250 			err = __get_mtd_device(mtd);
1251 			break;
1252 		}
1253 	}
1254 
1255 	mutex_unlock(&mtd_table_mutex);
1256 
1257 	return err ? ERR_PTR(err) : mtd;
1258 }
1259 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1260 
1261 /**
1262  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1263  *	device name
1264  *	@name: MTD device name to open
1265  *
1266  * 	This function returns MTD device description structure in case of
1267  * 	success and an error code in case of failure.
1268  */
1269 struct mtd_info *get_mtd_device_nm(const char *name)
1270 {
1271 	int err = -ENODEV;
1272 	struct mtd_info *mtd = NULL, *other;
1273 
1274 	mutex_lock(&mtd_table_mutex);
1275 
1276 	mtd_for_each_device(other) {
1277 		if (!strcmp(name, other->name)) {
1278 			mtd = other;
1279 			break;
1280 		}
1281 	}
1282 
1283 	if (!mtd)
1284 		goto out_unlock;
1285 
1286 	err = __get_mtd_device(mtd);
1287 	if (err)
1288 		goto out_unlock;
1289 
1290 	mutex_unlock(&mtd_table_mutex);
1291 	return mtd;
1292 
1293 out_unlock:
1294 	mutex_unlock(&mtd_table_mutex);
1295 	return ERR_PTR(err);
1296 }
1297 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1298 
1299 void put_mtd_device(struct mtd_info *mtd)
1300 {
1301 	mutex_lock(&mtd_table_mutex);
1302 	__put_mtd_device(mtd);
1303 	mutex_unlock(&mtd_table_mutex);
1304 
1305 }
1306 EXPORT_SYMBOL_GPL(put_mtd_device);
1307 
1308 void __put_mtd_device(struct mtd_info *mtd)
1309 {
1310 	struct mtd_info *master = mtd_get_master(mtd);
1311 
1312 	while (mtd->parent) {
1313 		--mtd->usecount;
1314 		BUG_ON(mtd->usecount < 0);
1315 		mtd = mtd->parent;
1316 	}
1317 
1318 	master->usecount--;
1319 
1320 	if (master->_put_device)
1321 		master->_put_device(master);
1322 
1323 	module_put(master->owner);
1324 }
1325 EXPORT_SYMBOL_GPL(__put_mtd_device);
1326 
1327 /*
1328  * Erase is an synchronous operation. Device drivers are epected to return a
1329  * negative error code if the operation failed and update instr->fail_addr
1330  * to point the portion that was not properly erased.
1331  */
1332 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1333 {
1334 	struct mtd_info *master = mtd_get_master(mtd);
1335 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1336 	struct erase_info adjinstr;
1337 	int ret;
1338 
1339 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1340 	adjinstr = *instr;
1341 
1342 	if (!mtd->erasesize || !master->_erase)
1343 		return -ENOTSUPP;
1344 
1345 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1346 		return -EINVAL;
1347 	if (!(mtd->flags & MTD_WRITEABLE))
1348 		return -EROFS;
1349 
1350 	if (!instr->len)
1351 		return 0;
1352 
1353 	ledtrig_mtd_activity();
1354 
1355 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1356 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1357 				master->erasesize;
1358 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1359 				master->erasesize) -
1360 			       adjinstr.addr;
1361 	}
1362 
1363 	adjinstr.addr += mst_ofs;
1364 
1365 	ret = master->_erase(master, &adjinstr);
1366 
1367 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1368 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1369 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1370 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1371 							 master);
1372 			instr->fail_addr *= mtd->erasesize;
1373 		}
1374 	}
1375 
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(mtd_erase);
1379 
1380 /*
1381  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1382  */
1383 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1384 	      void **virt, resource_size_t *phys)
1385 {
1386 	struct mtd_info *master = mtd_get_master(mtd);
1387 
1388 	*retlen = 0;
1389 	*virt = NULL;
1390 	if (phys)
1391 		*phys = 0;
1392 	if (!master->_point)
1393 		return -EOPNOTSUPP;
1394 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1395 		return -EINVAL;
1396 	if (!len)
1397 		return 0;
1398 
1399 	from = mtd_get_master_ofs(mtd, from);
1400 	return master->_point(master, from, len, retlen, virt, phys);
1401 }
1402 EXPORT_SYMBOL_GPL(mtd_point);
1403 
1404 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1405 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1406 {
1407 	struct mtd_info *master = mtd_get_master(mtd);
1408 
1409 	if (!master->_unpoint)
1410 		return -EOPNOTSUPP;
1411 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1412 		return -EINVAL;
1413 	if (!len)
1414 		return 0;
1415 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1416 }
1417 EXPORT_SYMBOL_GPL(mtd_unpoint);
1418 
1419 /*
1420  * Allow NOMMU mmap() to directly map the device (if not NULL)
1421  * - return the address to which the offset maps
1422  * - return -ENOSYS to indicate refusal to do the mapping
1423  */
1424 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1425 				    unsigned long offset, unsigned long flags)
1426 {
1427 	size_t retlen;
1428 	void *virt;
1429 	int ret;
1430 
1431 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1432 	if (ret)
1433 		return ret;
1434 	if (retlen != len) {
1435 		mtd_unpoint(mtd, offset, retlen);
1436 		return -ENOSYS;
1437 	}
1438 	return (unsigned long)virt;
1439 }
1440 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1441 
1442 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1443 				 const struct mtd_ecc_stats *old_stats)
1444 {
1445 	struct mtd_ecc_stats diff;
1446 
1447 	if (master == mtd)
1448 		return;
1449 
1450 	diff = master->ecc_stats;
1451 	diff.failed -= old_stats->failed;
1452 	diff.corrected -= old_stats->corrected;
1453 
1454 	while (mtd->parent) {
1455 		mtd->ecc_stats.failed += diff.failed;
1456 		mtd->ecc_stats.corrected += diff.corrected;
1457 		mtd = mtd->parent;
1458 	}
1459 }
1460 
1461 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1462 	     u_char *buf)
1463 {
1464 	struct mtd_oob_ops ops = {
1465 		.len = len,
1466 		.datbuf = buf,
1467 	};
1468 	int ret;
1469 
1470 	ret = mtd_read_oob(mtd, from, &ops);
1471 	*retlen = ops.retlen;
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(mtd_read);
1476 
1477 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1478 	      const u_char *buf)
1479 {
1480 	struct mtd_oob_ops ops = {
1481 		.len = len,
1482 		.datbuf = (u8 *)buf,
1483 	};
1484 	int ret;
1485 
1486 	ret = mtd_write_oob(mtd, to, &ops);
1487 	*retlen = ops.retlen;
1488 
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL_GPL(mtd_write);
1492 
1493 /*
1494  * In blackbox flight recorder like scenarios we want to make successful writes
1495  * in interrupt context. panic_write() is only intended to be called when its
1496  * known the kernel is about to panic and we need the write to succeed. Since
1497  * the kernel is not going to be running for much longer, this function can
1498  * break locks and delay to ensure the write succeeds (but not sleep).
1499  */
1500 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1501 		    const u_char *buf)
1502 {
1503 	struct mtd_info *master = mtd_get_master(mtd);
1504 
1505 	*retlen = 0;
1506 	if (!master->_panic_write)
1507 		return -EOPNOTSUPP;
1508 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1509 		return -EINVAL;
1510 	if (!(mtd->flags & MTD_WRITEABLE))
1511 		return -EROFS;
1512 	if (!len)
1513 		return 0;
1514 	if (!master->oops_panic_write)
1515 		master->oops_panic_write = true;
1516 
1517 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1518 				    retlen, buf);
1519 }
1520 EXPORT_SYMBOL_GPL(mtd_panic_write);
1521 
1522 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1523 			     struct mtd_oob_ops *ops)
1524 {
1525 	/*
1526 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1527 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1528 	 *  this case.
1529 	 */
1530 	if (!ops->datbuf)
1531 		ops->len = 0;
1532 
1533 	if (!ops->oobbuf)
1534 		ops->ooblen = 0;
1535 
1536 	if (offs < 0 || offs + ops->len > mtd->size)
1537 		return -EINVAL;
1538 
1539 	if (ops->ooblen) {
1540 		size_t maxooblen;
1541 
1542 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1543 			return -EINVAL;
1544 
1545 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1546 				      mtd_div_by_ws(offs, mtd)) *
1547 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1548 		if (ops->ooblen > maxooblen)
1549 			return -EINVAL;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1556 			    struct mtd_oob_ops *ops)
1557 {
1558 	struct mtd_info *master = mtd_get_master(mtd);
1559 	int ret;
1560 
1561 	from = mtd_get_master_ofs(mtd, from);
1562 	if (master->_read_oob)
1563 		ret = master->_read_oob(master, from, ops);
1564 	else
1565 		ret = master->_read(master, from, ops->len, &ops->retlen,
1566 				    ops->datbuf);
1567 
1568 	return ret;
1569 }
1570 
1571 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1572 			     struct mtd_oob_ops *ops)
1573 {
1574 	struct mtd_info *master = mtd_get_master(mtd);
1575 	int ret;
1576 
1577 	to = mtd_get_master_ofs(mtd, to);
1578 	if (master->_write_oob)
1579 		ret = master->_write_oob(master, to, ops);
1580 	else
1581 		ret = master->_write(master, to, ops->len, &ops->retlen,
1582 				     ops->datbuf);
1583 
1584 	return ret;
1585 }
1586 
1587 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1588 			       struct mtd_oob_ops *ops)
1589 {
1590 	struct mtd_info *master = mtd_get_master(mtd);
1591 	int ngroups = mtd_pairing_groups(master);
1592 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1593 	struct mtd_oob_ops adjops = *ops;
1594 	unsigned int wunit, oobavail;
1595 	struct mtd_pairing_info info;
1596 	int max_bitflips = 0;
1597 	u32 ebofs, pageofs;
1598 	loff_t base, pos;
1599 
1600 	ebofs = mtd_mod_by_eb(start, mtd);
1601 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1602 	info.group = 0;
1603 	info.pair = mtd_div_by_ws(ebofs, mtd);
1604 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1605 	oobavail = mtd_oobavail(mtd, ops);
1606 
1607 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1608 		int ret;
1609 
1610 		if (info.pair >= npairs) {
1611 			info.pair = 0;
1612 			base += master->erasesize;
1613 		}
1614 
1615 		wunit = mtd_pairing_info_to_wunit(master, &info);
1616 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1617 
1618 		adjops.len = ops->len - ops->retlen;
1619 		if (adjops.len > mtd->writesize - pageofs)
1620 			adjops.len = mtd->writesize - pageofs;
1621 
1622 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1623 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1624 			adjops.ooblen = oobavail - adjops.ooboffs;
1625 
1626 		if (read) {
1627 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1628 			if (ret > 0)
1629 				max_bitflips = max(max_bitflips, ret);
1630 		} else {
1631 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1632 		}
1633 
1634 		if (ret < 0)
1635 			return ret;
1636 
1637 		max_bitflips = max(max_bitflips, ret);
1638 		ops->retlen += adjops.retlen;
1639 		ops->oobretlen += adjops.oobretlen;
1640 		adjops.datbuf += adjops.retlen;
1641 		adjops.oobbuf += adjops.oobretlen;
1642 		adjops.ooboffs = 0;
1643 		pageofs = 0;
1644 		info.pair++;
1645 	}
1646 
1647 	return max_bitflips;
1648 }
1649 
1650 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1651 {
1652 	struct mtd_info *master = mtd_get_master(mtd);
1653 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1654 	int ret_code;
1655 
1656 	ops->retlen = ops->oobretlen = 0;
1657 
1658 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1659 	if (ret_code)
1660 		return ret_code;
1661 
1662 	ledtrig_mtd_activity();
1663 
1664 	/* Check the validity of a potential fallback on mtd->_read */
1665 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1666 		return -EOPNOTSUPP;
1667 
1668 	if (ops->stats)
1669 		memset(ops->stats, 0, sizeof(*ops->stats));
1670 
1671 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1672 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1673 	else
1674 		ret_code = mtd_read_oob_std(mtd, from, ops);
1675 
1676 	mtd_update_ecc_stats(mtd, master, &old_stats);
1677 
1678 	/*
1679 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1680 	 * similar to mtd->_read(), returning a non-negative integer
1681 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1682 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1683 	 */
1684 	if (unlikely(ret_code < 0))
1685 		return ret_code;
1686 	if (mtd->ecc_strength == 0)
1687 		return 0;	/* device lacks ecc */
1688 	if (ops->stats)
1689 		ops->stats->max_bitflips = ret_code;
1690 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1691 }
1692 EXPORT_SYMBOL_GPL(mtd_read_oob);
1693 
1694 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1695 				struct mtd_oob_ops *ops)
1696 {
1697 	struct mtd_info *master = mtd_get_master(mtd);
1698 	int ret;
1699 
1700 	ops->retlen = ops->oobretlen = 0;
1701 
1702 	if (!(mtd->flags & MTD_WRITEABLE))
1703 		return -EROFS;
1704 
1705 	ret = mtd_check_oob_ops(mtd, to, ops);
1706 	if (ret)
1707 		return ret;
1708 
1709 	ledtrig_mtd_activity();
1710 
1711 	/* Check the validity of a potential fallback on mtd->_write */
1712 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1713 		return -EOPNOTSUPP;
1714 
1715 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1716 		return mtd_io_emulated_slc(mtd, to, false, ops);
1717 
1718 	return mtd_write_oob_std(mtd, to, ops);
1719 }
1720 EXPORT_SYMBOL_GPL(mtd_write_oob);
1721 
1722 /**
1723  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1724  * @mtd: MTD device structure
1725  * @section: ECC section. Depending on the layout you may have all the ECC
1726  *	     bytes stored in a single contiguous section, or one section
1727  *	     per ECC chunk (and sometime several sections for a single ECC
1728  *	     ECC chunk)
1729  * @oobecc: OOB region struct filled with the appropriate ECC position
1730  *	    information
1731  *
1732  * This function returns ECC section information in the OOB area. If you want
1733  * to get all the ECC bytes information, then you should call
1734  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1735  *
1736  * Returns zero on success, a negative error code otherwise.
1737  */
1738 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1739 		      struct mtd_oob_region *oobecc)
1740 {
1741 	struct mtd_info *master = mtd_get_master(mtd);
1742 
1743 	memset(oobecc, 0, sizeof(*oobecc));
1744 
1745 	if (!master || section < 0)
1746 		return -EINVAL;
1747 
1748 	if (!master->ooblayout || !master->ooblayout->ecc)
1749 		return -ENOTSUPP;
1750 
1751 	return master->ooblayout->ecc(master, section, oobecc);
1752 }
1753 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1754 
1755 /**
1756  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1757  *			section
1758  * @mtd: MTD device structure
1759  * @section: Free section you are interested in. Depending on the layout
1760  *	     you may have all the free bytes stored in a single contiguous
1761  *	     section, or one section per ECC chunk plus an extra section
1762  *	     for the remaining bytes (or other funky layout).
1763  * @oobfree: OOB region struct filled with the appropriate free position
1764  *	     information
1765  *
1766  * This function returns free bytes position in the OOB area. If you want
1767  * to get all the free bytes information, then you should call
1768  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1769  *
1770  * Returns zero on success, a negative error code otherwise.
1771  */
1772 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1773 		       struct mtd_oob_region *oobfree)
1774 {
1775 	struct mtd_info *master = mtd_get_master(mtd);
1776 
1777 	memset(oobfree, 0, sizeof(*oobfree));
1778 
1779 	if (!master || section < 0)
1780 		return -EINVAL;
1781 
1782 	if (!master->ooblayout || !master->ooblayout->free)
1783 		return -ENOTSUPP;
1784 
1785 	return master->ooblayout->free(master, section, oobfree);
1786 }
1787 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1788 
1789 /**
1790  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1791  * @mtd: mtd info structure
1792  * @byte: the byte we are searching for
1793  * @sectionp: pointer where the section id will be stored
1794  * @oobregion: used to retrieve the ECC position
1795  * @iter: iterator function. Should be either mtd_ooblayout_free or
1796  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1797  *
1798  * This function returns the section id and oobregion information of a
1799  * specific byte. For example, say you want to know where the 4th ECC byte is
1800  * stored, you'll use:
1801  *
1802  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1803  *
1804  * Returns zero on success, a negative error code otherwise.
1805  */
1806 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1807 				int *sectionp, struct mtd_oob_region *oobregion,
1808 				int (*iter)(struct mtd_info *,
1809 					    int section,
1810 					    struct mtd_oob_region *oobregion))
1811 {
1812 	int pos = 0, ret, section = 0;
1813 
1814 	memset(oobregion, 0, sizeof(*oobregion));
1815 
1816 	while (1) {
1817 		ret = iter(mtd, section, oobregion);
1818 		if (ret)
1819 			return ret;
1820 
1821 		if (pos + oobregion->length > byte)
1822 			break;
1823 
1824 		pos += oobregion->length;
1825 		section++;
1826 	}
1827 
1828 	/*
1829 	 * Adjust region info to make it start at the beginning at the
1830 	 * 'start' ECC byte.
1831 	 */
1832 	oobregion->offset += byte - pos;
1833 	oobregion->length -= byte - pos;
1834 	*sectionp = section;
1835 
1836 	return 0;
1837 }
1838 
1839 /**
1840  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1841  *				  ECC byte
1842  * @mtd: mtd info structure
1843  * @eccbyte: the byte we are searching for
1844  * @section: pointer where the section id will be stored
1845  * @oobregion: OOB region information
1846  *
1847  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1848  * byte.
1849  *
1850  * Returns zero on success, a negative error code otherwise.
1851  */
1852 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1853 				 int *section,
1854 				 struct mtd_oob_region *oobregion)
1855 {
1856 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1857 					 mtd_ooblayout_ecc);
1858 }
1859 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1860 
1861 /**
1862  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1863  * @mtd: mtd info structure
1864  * @buf: destination buffer to store OOB bytes
1865  * @oobbuf: OOB buffer
1866  * @start: first byte to retrieve
1867  * @nbytes: number of bytes to retrieve
1868  * @iter: section iterator
1869  *
1870  * Extract bytes attached to a specific category (ECC or free)
1871  * from the OOB buffer and copy them into buf.
1872  *
1873  * Returns zero on success, a negative error code otherwise.
1874  */
1875 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1876 				const u8 *oobbuf, int start, int nbytes,
1877 				int (*iter)(struct mtd_info *,
1878 					    int section,
1879 					    struct mtd_oob_region *oobregion))
1880 {
1881 	struct mtd_oob_region oobregion;
1882 	int section, ret;
1883 
1884 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1885 					&oobregion, iter);
1886 
1887 	while (!ret) {
1888 		int cnt;
1889 
1890 		cnt = min_t(int, nbytes, oobregion.length);
1891 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1892 		buf += cnt;
1893 		nbytes -= cnt;
1894 
1895 		if (!nbytes)
1896 			break;
1897 
1898 		ret = iter(mtd, ++section, &oobregion);
1899 	}
1900 
1901 	return ret;
1902 }
1903 
1904 /**
1905  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1906  * @mtd: mtd info structure
1907  * @buf: source buffer to get OOB bytes from
1908  * @oobbuf: OOB buffer
1909  * @start: first OOB byte to set
1910  * @nbytes: number of OOB bytes to set
1911  * @iter: section iterator
1912  *
1913  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1914  * is selected by passing the appropriate iterator.
1915  *
1916  * Returns zero on success, a negative error code otherwise.
1917  */
1918 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1919 				u8 *oobbuf, int start, int nbytes,
1920 				int (*iter)(struct mtd_info *,
1921 					    int section,
1922 					    struct mtd_oob_region *oobregion))
1923 {
1924 	struct mtd_oob_region oobregion;
1925 	int section, ret;
1926 
1927 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1928 					&oobregion, iter);
1929 
1930 	while (!ret) {
1931 		int cnt;
1932 
1933 		cnt = min_t(int, nbytes, oobregion.length);
1934 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1935 		buf += cnt;
1936 		nbytes -= cnt;
1937 
1938 		if (!nbytes)
1939 			break;
1940 
1941 		ret = iter(mtd, ++section, &oobregion);
1942 	}
1943 
1944 	return ret;
1945 }
1946 
1947 /**
1948  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1949  * @mtd: mtd info structure
1950  * @iter: category iterator
1951  *
1952  * Count the number of bytes in a given category.
1953  *
1954  * Returns a positive value on success, a negative error code otherwise.
1955  */
1956 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1957 				int (*iter)(struct mtd_info *,
1958 					    int section,
1959 					    struct mtd_oob_region *oobregion))
1960 {
1961 	struct mtd_oob_region oobregion;
1962 	int section = 0, ret, nbytes = 0;
1963 
1964 	while (1) {
1965 		ret = iter(mtd, section++, &oobregion);
1966 		if (ret) {
1967 			if (ret == -ERANGE)
1968 				ret = nbytes;
1969 			break;
1970 		}
1971 
1972 		nbytes += oobregion.length;
1973 	}
1974 
1975 	return ret;
1976 }
1977 
1978 /**
1979  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1980  * @mtd: mtd info structure
1981  * @eccbuf: destination buffer to store ECC bytes
1982  * @oobbuf: OOB buffer
1983  * @start: first ECC byte to retrieve
1984  * @nbytes: number of ECC bytes to retrieve
1985  *
1986  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1987  *
1988  * Returns zero on success, a negative error code otherwise.
1989  */
1990 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1991 			       const u8 *oobbuf, int start, int nbytes)
1992 {
1993 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1994 				       mtd_ooblayout_ecc);
1995 }
1996 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1997 
1998 /**
1999  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2000  * @mtd: mtd info structure
2001  * @eccbuf: source buffer to get ECC bytes from
2002  * @oobbuf: OOB buffer
2003  * @start: first ECC byte to set
2004  * @nbytes: number of ECC bytes to set
2005  *
2006  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2007  *
2008  * Returns zero on success, a negative error code otherwise.
2009  */
2010 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2011 			       u8 *oobbuf, int start, int nbytes)
2012 {
2013 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2014 				       mtd_ooblayout_ecc);
2015 }
2016 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2017 
2018 /**
2019  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2020  * @mtd: mtd info structure
2021  * @databuf: destination buffer to store ECC bytes
2022  * @oobbuf: OOB buffer
2023  * @start: first ECC byte to retrieve
2024  * @nbytes: number of ECC bytes to retrieve
2025  *
2026  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2027  *
2028  * Returns zero on success, a negative error code otherwise.
2029  */
2030 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2031 				const u8 *oobbuf, int start, int nbytes)
2032 {
2033 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2034 				       mtd_ooblayout_free);
2035 }
2036 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2037 
2038 /**
2039  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2040  * @mtd: mtd info structure
2041  * @databuf: source buffer to get data bytes from
2042  * @oobbuf: OOB buffer
2043  * @start: first ECC byte to set
2044  * @nbytes: number of ECC bytes to set
2045  *
2046  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2047  *
2048  * Returns zero on success, a negative error code otherwise.
2049  */
2050 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2051 				u8 *oobbuf, int start, int nbytes)
2052 {
2053 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2054 				       mtd_ooblayout_free);
2055 }
2056 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2057 
2058 /**
2059  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2060  * @mtd: mtd info structure
2061  *
2062  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2063  *
2064  * Returns zero on success, a negative error code otherwise.
2065  */
2066 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2067 {
2068 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2069 }
2070 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2071 
2072 /**
2073  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2074  * @mtd: mtd info structure
2075  *
2076  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2077  *
2078  * Returns zero on success, a negative error code otherwise.
2079  */
2080 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2081 {
2082 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2083 }
2084 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2085 
2086 /*
2087  * Method to access the protection register area, present in some flash
2088  * devices. The user data is one time programmable but the factory data is read
2089  * only.
2090  */
2091 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2092 			   struct otp_info *buf)
2093 {
2094 	struct mtd_info *master = mtd_get_master(mtd);
2095 
2096 	if (!master->_get_fact_prot_info)
2097 		return -EOPNOTSUPP;
2098 	if (!len)
2099 		return 0;
2100 	return master->_get_fact_prot_info(master, len, retlen, buf);
2101 }
2102 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2103 
2104 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2105 			   size_t *retlen, u_char *buf)
2106 {
2107 	struct mtd_info *master = mtd_get_master(mtd);
2108 
2109 	*retlen = 0;
2110 	if (!master->_read_fact_prot_reg)
2111 		return -EOPNOTSUPP;
2112 	if (!len)
2113 		return 0;
2114 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2115 }
2116 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2117 
2118 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2119 			   struct otp_info *buf)
2120 {
2121 	struct mtd_info *master = mtd_get_master(mtd);
2122 
2123 	if (!master->_get_user_prot_info)
2124 		return -EOPNOTSUPP;
2125 	if (!len)
2126 		return 0;
2127 	return master->_get_user_prot_info(master, len, retlen, buf);
2128 }
2129 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2130 
2131 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2132 			   size_t *retlen, u_char *buf)
2133 {
2134 	struct mtd_info *master = mtd_get_master(mtd);
2135 
2136 	*retlen = 0;
2137 	if (!master->_read_user_prot_reg)
2138 		return -EOPNOTSUPP;
2139 	if (!len)
2140 		return 0;
2141 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2142 }
2143 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2144 
2145 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2146 			    size_t *retlen, const u_char *buf)
2147 {
2148 	struct mtd_info *master = mtd_get_master(mtd);
2149 	int ret;
2150 
2151 	*retlen = 0;
2152 	if (!master->_write_user_prot_reg)
2153 		return -EOPNOTSUPP;
2154 	if (!len)
2155 		return 0;
2156 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2157 	if (ret)
2158 		return ret;
2159 
2160 	/*
2161 	 * If no data could be written at all, we are out of memory and
2162 	 * must return -ENOSPC.
2163 	 */
2164 	return (*retlen) ? 0 : -ENOSPC;
2165 }
2166 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2167 
2168 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2169 {
2170 	struct mtd_info *master = mtd_get_master(mtd);
2171 
2172 	if (!master->_lock_user_prot_reg)
2173 		return -EOPNOTSUPP;
2174 	if (!len)
2175 		return 0;
2176 	return master->_lock_user_prot_reg(master, from, len);
2177 }
2178 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2179 
2180 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2181 {
2182 	struct mtd_info *master = mtd_get_master(mtd);
2183 
2184 	if (!master->_erase_user_prot_reg)
2185 		return -EOPNOTSUPP;
2186 	if (!len)
2187 		return 0;
2188 	return master->_erase_user_prot_reg(master, from, len);
2189 }
2190 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2191 
2192 /* Chip-supported device locking */
2193 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2194 {
2195 	struct mtd_info *master = mtd_get_master(mtd);
2196 
2197 	if (!master->_lock)
2198 		return -EOPNOTSUPP;
2199 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2200 		return -EINVAL;
2201 	if (!len)
2202 		return 0;
2203 
2204 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2205 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2206 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2207 	}
2208 
2209 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2210 }
2211 EXPORT_SYMBOL_GPL(mtd_lock);
2212 
2213 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2214 {
2215 	struct mtd_info *master = mtd_get_master(mtd);
2216 
2217 	if (!master->_unlock)
2218 		return -EOPNOTSUPP;
2219 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2220 		return -EINVAL;
2221 	if (!len)
2222 		return 0;
2223 
2224 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2225 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2226 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2227 	}
2228 
2229 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2230 }
2231 EXPORT_SYMBOL_GPL(mtd_unlock);
2232 
2233 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2234 {
2235 	struct mtd_info *master = mtd_get_master(mtd);
2236 
2237 	if (!master->_is_locked)
2238 		return -EOPNOTSUPP;
2239 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2240 		return -EINVAL;
2241 	if (!len)
2242 		return 0;
2243 
2244 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2245 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2246 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2247 	}
2248 
2249 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2250 }
2251 EXPORT_SYMBOL_GPL(mtd_is_locked);
2252 
2253 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2254 {
2255 	struct mtd_info *master = mtd_get_master(mtd);
2256 
2257 	if (ofs < 0 || ofs >= mtd->size)
2258 		return -EINVAL;
2259 	if (!master->_block_isreserved)
2260 		return 0;
2261 
2262 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2263 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2264 
2265 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2266 }
2267 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2268 
2269 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2270 {
2271 	struct mtd_info *master = mtd_get_master(mtd);
2272 
2273 	if (ofs < 0 || ofs >= mtd->size)
2274 		return -EINVAL;
2275 	if (!master->_block_isbad)
2276 		return 0;
2277 
2278 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2279 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2280 
2281 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2282 }
2283 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2284 
2285 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2286 {
2287 	struct mtd_info *master = mtd_get_master(mtd);
2288 	int ret;
2289 
2290 	if (!master->_block_markbad)
2291 		return -EOPNOTSUPP;
2292 	if (ofs < 0 || ofs >= mtd->size)
2293 		return -EINVAL;
2294 	if (!(mtd->flags & MTD_WRITEABLE))
2295 		return -EROFS;
2296 
2297 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2298 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2299 
2300 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2301 	if (ret)
2302 		return ret;
2303 
2304 	while (mtd->parent) {
2305 		mtd->ecc_stats.badblocks++;
2306 		mtd = mtd->parent;
2307 	}
2308 
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2312 
2313 /*
2314  * default_mtd_writev - the default writev method
2315  * @mtd: mtd device description object pointer
2316  * @vecs: the vectors to write
2317  * @count: count of vectors in @vecs
2318  * @to: the MTD device offset to write to
2319  * @retlen: on exit contains the count of bytes written to the MTD device.
2320  *
2321  * This function returns zero in case of success and a negative error code in
2322  * case of failure.
2323  */
2324 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2325 			      unsigned long count, loff_t to, size_t *retlen)
2326 {
2327 	unsigned long i;
2328 	size_t totlen = 0, thislen;
2329 	int ret = 0;
2330 
2331 	for (i = 0; i < count; i++) {
2332 		if (!vecs[i].iov_len)
2333 			continue;
2334 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2335 				vecs[i].iov_base);
2336 		totlen += thislen;
2337 		if (ret || thislen != vecs[i].iov_len)
2338 			break;
2339 		to += vecs[i].iov_len;
2340 	}
2341 	*retlen = totlen;
2342 	return ret;
2343 }
2344 
2345 /*
2346  * mtd_writev - the vector-based MTD write method
2347  * @mtd: mtd device description object pointer
2348  * @vecs: the vectors to write
2349  * @count: count of vectors in @vecs
2350  * @to: the MTD device offset to write to
2351  * @retlen: on exit contains the count of bytes written to the MTD device.
2352  *
2353  * This function returns zero in case of success and a negative error code in
2354  * case of failure.
2355  */
2356 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2357 	       unsigned long count, loff_t to, size_t *retlen)
2358 {
2359 	struct mtd_info *master = mtd_get_master(mtd);
2360 
2361 	*retlen = 0;
2362 	if (!(mtd->flags & MTD_WRITEABLE))
2363 		return -EROFS;
2364 
2365 	if (!master->_writev)
2366 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2367 
2368 	return master->_writev(master, vecs, count,
2369 			       mtd_get_master_ofs(mtd, to), retlen);
2370 }
2371 EXPORT_SYMBOL_GPL(mtd_writev);
2372 
2373 /**
2374  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2375  * @mtd: mtd device description object pointer
2376  * @size: a pointer to the ideal or maximum size of the allocation, points
2377  *        to the actual allocation size on success.
2378  *
2379  * This routine attempts to allocate a contiguous kernel buffer up to
2380  * the specified size, backing off the size of the request exponentially
2381  * until the request succeeds or until the allocation size falls below
2382  * the system page size. This attempts to make sure it does not adversely
2383  * impact system performance, so when allocating more than one page, we
2384  * ask the memory allocator to avoid re-trying, swapping, writing back
2385  * or performing I/O.
2386  *
2387  * Note, this function also makes sure that the allocated buffer is aligned to
2388  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2389  *
2390  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2391  * to handle smaller (i.e. degraded) buffer allocations under low- or
2392  * fragmented-memory situations where such reduced allocations, from a
2393  * requested ideal, are allowed.
2394  *
2395  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2396  */
2397 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2398 {
2399 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2400 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2401 	void *kbuf;
2402 
2403 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2404 
2405 	while (*size > min_alloc) {
2406 		kbuf = kmalloc(*size, flags);
2407 		if (kbuf)
2408 			return kbuf;
2409 
2410 		*size >>= 1;
2411 		*size = ALIGN(*size, mtd->writesize);
2412 	}
2413 
2414 	/*
2415 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2416 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2417 	 */
2418 	return kmalloc(*size, GFP_KERNEL);
2419 }
2420 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2421 
2422 #ifdef CONFIG_PROC_FS
2423 
2424 /*====================================================================*/
2425 /* Support for /proc/mtd */
2426 
2427 static int mtd_proc_show(struct seq_file *m, void *v)
2428 {
2429 	struct mtd_info *mtd;
2430 
2431 	seq_puts(m, "dev:    size   erasesize  name\n");
2432 	mutex_lock(&mtd_table_mutex);
2433 	mtd_for_each_device(mtd) {
2434 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2435 			   mtd->index, (unsigned long long)mtd->size,
2436 			   mtd->erasesize, mtd->name);
2437 	}
2438 	mutex_unlock(&mtd_table_mutex);
2439 	return 0;
2440 }
2441 #endif /* CONFIG_PROC_FS */
2442 
2443 /*====================================================================*/
2444 /* Init code */
2445 
2446 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2447 {
2448 	struct backing_dev_info *bdi;
2449 	int ret;
2450 
2451 	bdi = bdi_alloc(NUMA_NO_NODE);
2452 	if (!bdi)
2453 		return ERR_PTR(-ENOMEM);
2454 	bdi->ra_pages = 0;
2455 	bdi->io_pages = 0;
2456 
2457 	/*
2458 	 * We put '-0' suffix to the name to get the same name format as we
2459 	 * used to get. Since this is called only once, we get a unique name.
2460 	 */
2461 	ret = bdi_register(bdi, "%.28s-0", name);
2462 	if (ret)
2463 		bdi_put(bdi);
2464 
2465 	return ret ? ERR_PTR(ret) : bdi;
2466 }
2467 
2468 static struct proc_dir_entry *proc_mtd;
2469 
2470 static int __init init_mtd(void)
2471 {
2472 	int ret;
2473 
2474 	ret = class_register(&mtd_class);
2475 	if (ret)
2476 		goto err_reg;
2477 
2478 	mtd_bdi = mtd_bdi_init("mtd");
2479 	if (IS_ERR(mtd_bdi)) {
2480 		ret = PTR_ERR(mtd_bdi);
2481 		goto err_bdi;
2482 	}
2483 
2484 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2485 
2486 	ret = init_mtdchar();
2487 	if (ret)
2488 		goto out_procfs;
2489 
2490 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2491 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2492 			    &mtd_expert_analysis_mode);
2493 
2494 	return 0;
2495 
2496 out_procfs:
2497 	if (proc_mtd)
2498 		remove_proc_entry("mtd", NULL);
2499 	bdi_unregister(mtd_bdi);
2500 	bdi_put(mtd_bdi);
2501 err_bdi:
2502 	class_unregister(&mtd_class);
2503 err_reg:
2504 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2505 	return ret;
2506 }
2507 
2508 static void __exit cleanup_mtd(void)
2509 {
2510 	debugfs_remove_recursive(dfs_dir_mtd);
2511 	cleanup_mtdchar();
2512 	if (proc_mtd)
2513 		remove_proc_entry("mtd", NULL);
2514 	class_unregister(&mtd_class);
2515 	bdi_unregister(mtd_bdi);
2516 	bdi_put(mtd_bdi);
2517 	idr_destroy(&mtd_idr);
2518 }
2519 
2520 module_init(init_mtd);
2521 module_exit(cleanup_mtd);
2522 
2523 MODULE_LICENSE("GPL");
2524 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2525 MODULE_DESCRIPTION("Core MTD registration and access routines");
2526