xref: /linux/drivers/mtd/mtdcore.c (revision a29f696aa96f94ced1655b183c9694920d8bbfe2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 struct backing_dev_info *mtd_bdi;
40 
41 #ifdef CONFIG_PM_SLEEP
42 
43 static int mtd_cls_suspend(struct device *dev)
44 {
45 	struct mtd_info *mtd = dev_get_drvdata(dev);
46 
47 	return mtd ? mtd_suspend(mtd) : 0;
48 }
49 
50 static int mtd_cls_resume(struct device *dev)
51 {
52 	struct mtd_info *mtd = dev_get_drvdata(dev);
53 
54 	if (mtd)
55 		mtd_resume(mtd);
56 	return 0;
57 }
58 
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64 
65 static struct class mtd_class = {
66 	.name = "mtd",
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	if (mtd_is_partition(mtd))
97 		release_mtd_partition(mtd);
98 
99 	/* remove /dev/mtdXro node */
100 	device_destroy(&mtd_class, index + 1);
101 }
102 
103 static void mtd_device_release(struct kref *kref)
104 {
105 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
106 
107 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
108 
109 	/* Try to remove the NVMEM provider */
110 	nvmem_unregister(mtd->nvmem);
111 
112 	device_unregister(&mtd->dev);
113 
114 	/* Clear dev so mtd can be safely re-registered later if desired */
115 	memset(&mtd->dev, 0, sizeof(mtd->dev));
116 
117 	idr_remove(&mtd_idr, mtd->index);
118 	of_node_put(mtd_get_of_node(mtd));
119 
120 	module_put(THIS_MODULE);
121 }
122 
123 #define MTD_DEVICE_ATTR_RO(name) \
124 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
125 
126 #define MTD_DEVICE_ATTR_RW(name) \
127 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
128 
129 static ssize_t mtd_type_show(struct device *dev,
130 		struct device_attribute *attr, char *buf)
131 {
132 	struct mtd_info *mtd = dev_get_drvdata(dev);
133 	char *type;
134 
135 	switch (mtd->type) {
136 	case MTD_ABSENT:
137 		type = "absent";
138 		break;
139 	case MTD_RAM:
140 		type = "ram";
141 		break;
142 	case MTD_ROM:
143 		type = "rom";
144 		break;
145 	case MTD_NORFLASH:
146 		type = "nor";
147 		break;
148 	case MTD_NANDFLASH:
149 		type = "nand";
150 		break;
151 	case MTD_DATAFLASH:
152 		type = "dataflash";
153 		break;
154 	case MTD_UBIVOLUME:
155 		type = "ubi";
156 		break;
157 	case MTD_MLCNANDFLASH:
158 		type = "mlc-nand";
159 		break;
160 	default:
161 		type = "unknown";
162 	}
163 
164 	return sysfs_emit(buf, "%s\n", type);
165 }
166 MTD_DEVICE_ATTR_RO(type);
167 
168 static ssize_t mtd_flags_show(struct device *dev,
169 		struct device_attribute *attr, char *buf)
170 {
171 	struct mtd_info *mtd = dev_get_drvdata(dev);
172 
173 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
174 }
175 MTD_DEVICE_ATTR_RO(flags);
176 
177 static ssize_t mtd_size_show(struct device *dev,
178 		struct device_attribute *attr, char *buf)
179 {
180 	struct mtd_info *mtd = dev_get_drvdata(dev);
181 
182 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
183 }
184 MTD_DEVICE_ATTR_RO(size);
185 
186 static ssize_t mtd_erasesize_show(struct device *dev,
187 		struct device_attribute *attr, char *buf)
188 {
189 	struct mtd_info *mtd = dev_get_drvdata(dev);
190 
191 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
192 }
193 MTD_DEVICE_ATTR_RO(erasesize);
194 
195 static ssize_t mtd_writesize_show(struct device *dev,
196 		struct device_attribute *attr, char *buf)
197 {
198 	struct mtd_info *mtd = dev_get_drvdata(dev);
199 
200 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
201 }
202 MTD_DEVICE_ATTR_RO(writesize);
203 
204 static ssize_t mtd_subpagesize_show(struct device *dev,
205 		struct device_attribute *attr, char *buf)
206 {
207 	struct mtd_info *mtd = dev_get_drvdata(dev);
208 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
209 
210 	return sysfs_emit(buf, "%u\n", subpagesize);
211 }
212 MTD_DEVICE_ATTR_RO(subpagesize);
213 
214 static ssize_t mtd_oobsize_show(struct device *dev,
215 		struct device_attribute *attr, char *buf)
216 {
217 	struct mtd_info *mtd = dev_get_drvdata(dev);
218 
219 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
220 }
221 MTD_DEVICE_ATTR_RO(oobsize);
222 
223 static ssize_t mtd_oobavail_show(struct device *dev,
224 				 struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
229 }
230 MTD_DEVICE_ATTR_RO(oobavail);
231 
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 		struct device_attribute *attr, char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
238 }
239 MTD_DEVICE_ATTR_RO(numeraseregions);
240 
241 static ssize_t mtd_name_show(struct device *dev,
242 		struct device_attribute *attr, char *buf)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 
246 	return sysfs_emit(buf, "%s\n", mtd->name);
247 }
248 MTD_DEVICE_ATTR_RO(name);
249 
250 static ssize_t mtd_ecc_strength_show(struct device *dev,
251 				     struct device_attribute *attr, char *buf)
252 {
253 	struct mtd_info *mtd = dev_get_drvdata(dev);
254 
255 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
256 }
257 MTD_DEVICE_ATTR_RO(ecc_strength);
258 
259 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
260 					  struct device_attribute *attr,
261 					  char *buf)
262 {
263 	struct mtd_info *mtd = dev_get_drvdata(dev);
264 
265 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
266 }
267 
268 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
269 					   struct device_attribute *attr,
270 					   const char *buf, size_t count)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	unsigned int bitflip_threshold;
274 	int retval;
275 
276 	retval = kstrtouint(buf, 0, &bitflip_threshold);
277 	if (retval)
278 		return retval;
279 
280 	mtd->bitflip_threshold = bitflip_threshold;
281 	return count;
282 }
283 MTD_DEVICE_ATTR_RW(bitflip_threshold);
284 
285 static ssize_t mtd_ecc_step_size_show(struct device *dev,
286 		struct device_attribute *attr, char *buf)
287 {
288 	struct mtd_info *mtd = dev_get_drvdata(dev);
289 
290 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
291 
292 }
293 MTD_DEVICE_ATTR_RO(ecc_step_size);
294 
295 static ssize_t mtd_corrected_bits_show(struct device *dev,
296 		struct device_attribute *attr, char *buf)
297 {
298 	struct mtd_info *mtd = dev_get_drvdata(dev);
299 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
300 
301 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
302 }
303 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
304 
305 static ssize_t mtd_ecc_failures_show(struct device *dev,
306 		struct device_attribute *attr, char *buf)
307 {
308 	struct mtd_info *mtd = dev_get_drvdata(dev);
309 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
310 
311 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
312 }
313 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
314 
315 static ssize_t mtd_bad_blocks_show(struct device *dev,
316 		struct device_attribute *attr, char *buf)
317 {
318 	struct mtd_info *mtd = dev_get_drvdata(dev);
319 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
320 
321 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
322 }
323 MTD_DEVICE_ATTR_RO(bad_blocks);
324 
325 static ssize_t mtd_bbt_blocks_show(struct device *dev,
326 		struct device_attribute *attr, char *buf)
327 {
328 	struct mtd_info *mtd = dev_get_drvdata(dev);
329 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
330 
331 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
332 }
333 MTD_DEVICE_ATTR_RO(bbt_blocks);
334 
335 static struct attribute *mtd_attrs[] = {
336 	&dev_attr_type.attr,
337 	&dev_attr_flags.attr,
338 	&dev_attr_size.attr,
339 	&dev_attr_erasesize.attr,
340 	&dev_attr_writesize.attr,
341 	&dev_attr_subpagesize.attr,
342 	&dev_attr_oobsize.attr,
343 	&dev_attr_oobavail.attr,
344 	&dev_attr_numeraseregions.attr,
345 	&dev_attr_name.attr,
346 	&dev_attr_ecc_strength.attr,
347 	&dev_attr_ecc_step_size.attr,
348 	&dev_attr_corrected_bits.attr,
349 	&dev_attr_ecc_failures.attr,
350 	&dev_attr_bad_blocks.attr,
351 	&dev_attr_bbt_blocks.attr,
352 	&dev_attr_bitflip_threshold.attr,
353 	NULL,
354 };
355 ATTRIBUTE_GROUPS(mtd);
356 
357 static const struct device_type mtd_devtype = {
358 	.name		= "mtd",
359 	.groups		= mtd_groups,
360 	.release	= mtd_release,
361 };
362 
363 static bool mtd_expert_analysis_mode;
364 
365 #ifdef CONFIG_DEBUG_FS
366 bool mtd_check_expert_analysis_mode(void)
367 {
368 	const char *mtd_expert_analysis_warning =
369 		"Bad block checks have been entirely disabled.\n"
370 		"This is only reserved for post-mortem forensics and debug purposes.\n"
371 		"Never enable this mode if you do not know what you are doing!\n";
372 
373 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
374 }
375 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
376 #endif
377 
378 static struct dentry *dfs_dir_mtd;
379 
380 static void mtd_debugfs_populate(struct mtd_info *mtd)
381 {
382 	struct device *dev = &mtd->dev;
383 
384 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
385 		return;
386 
387 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
388 }
389 
390 #ifndef CONFIG_MMU
391 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
392 {
393 	switch (mtd->type) {
394 	case MTD_RAM:
395 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
396 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
397 	case MTD_ROM:
398 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
399 			NOMMU_MAP_READ;
400 	default:
401 		return NOMMU_MAP_COPY;
402 	}
403 }
404 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
405 #endif
406 
407 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
408 			       void *cmd)
409 {
410 	struct mtd_info *mtd;
411 
412 	mtd = container_of(n, struct mtd_info, reboot_notifier);
413 	mtd->_reboot(mtd);
414 
415 	return NOTIFY_DONE;
416 }
417 
418 /**
419  * mtd_wunit_to_pairing_info - get pairing information of a wunit
420  * @mtd: pointer to new MTD device info structure
421  * @wunit: write unit we are interested in
422  * @info: returned pairing information
423  *
424  * Retrieve pairing information associated to the wunit.
425  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
426  * paired together, and where programming a page may influence the page it is
427  * paired with.
428  * The notion of page is replaced by the term wunit (write-unit) to stay
429  * consistent with the ->writesize field.
430  *
431  * The @wunit argument can be extracted from an absolute offset using
432  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
433  * to @wunit.
434  *
435  * From the pairing info the MTD user can find all the wunits paired with
436  * @wunit using the following loop:
437  *
438  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
439  *	info.pair = i;
440  *	mtd_pairing_info_to_wunit(mtd, &info);
441  *	...
442  * }
443  */
444 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
445 			      struct mtd_pairing_info *info)
446 {
447 	struct mtd_info *master = mtd_get_master(mtd);
448 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
449 
450 	if (wunit < 0 || wunit >= npairs)
451 		return -EINVAL;
452 
453 	if (master->pairing && master->pairing->get_info)
454 		return master->pairing->get_info(master, wunit, info);
455 
456 	info->group = 0;
457 	info->pair = wunit;
458 
459 	return 0;
460 }
461 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
462 
463 /**
464  * mtd_pairing_info_to_wunit - get wunit from pairing information
465  * @mtd: pointer to new MTD device info structure
466  * @info: pairing information struct
467  *
468  * Returns a positive number representing the wunit associated to the info
469  * struct, or a negative error code.
470  *
471  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
472  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
473  * doc).
474  *
475  * It can also be used to only program the first page of each pair (i.e.
476  * page attached to group 0), which allows one to use an MLC NAND in
477  * software-emulated SLC mode:
478  *
479  * info.group = 0;
480  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
481  * for (info.pair = 0; info.pair < npairs; info.pair++) {
482  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
483  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
484  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
485  * }
486  */
487 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
488 			      const struct mtd_pairing_info *info)
489 {
490 	struct mtd_info *master = mtd_get_master(mtd);
491 	int ngroups = mtd_pairing_groups(master);
492 	int npairs = mtd_wunit_per_eb(master) / ngroups;
493 
494 	if (!info || info->pair < 0 || info->pair >= npairs ||
495 	    info->group < 0 || info->group >= ngroups)
496 		return -EINVAL;
497 
498 	if (master->pairing && master->pairing->get_wunit)
499 		return mtd->pairing->get_wunit(master, info);
500 
501 	return info->pair;
502 }
503 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
504 
505 /**
506  * mtd_pairing_groups - get the number of pairing groups
507  * @mtd: pointer to new MTD device info structure
508  *
509  * Returns the number of pairing groups.
510  *
511  * This number is usually equal to the number of bits exposed by a single
512  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
513  * to iterate over all pages of a given pair.
514  */
515 int mtd_pairing_groups(struct mtd_info *mtd)
516 {
517 	struct mtd_info *master = mtd_get_master(mtd);
518 
519 	if (!master->pairing || !master->pairing->ngroups)
520 		return 1;
521 
522 	return master->pairing->ngroups;
523 }
524 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
525 
526 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
527 			      void *val, size_t bytes)
528 {
529 	struct mtd_info *mtd = priv;
530 	size_t retlen;
531 	int err;
532 
533 	err = mtd_read(mtd, offset, bytes, &retlen, val);
534 	if (err && err != -EUCLEAN)
535 		return err;
536 
537 	return retlen == bytes ? 0 : -EIO;
538 }
539 
540 static int mtd_nvmem_add(struct mtd_info *mtd)
541 {
542 	struct device_node *node = mtd_get_of_node(mtd);
543 	struct nvmem_config config = {};
544 
545 	config.id = NVMEM_DEVID_NONE;
546 	config.dev = &mtd->dev;
547 	config.name = dev_name(&mtd->dev);
548 	config.owner = THIS_MODULE;
549 	config.reg_read = mtd_nvmem_reg_read;
550 	config.size = mtd->size;
551 	config.word_size = 1;
552 	config.stride = 1;
553 	config.read_only = true;
554 	config.root_only = true;
555 	config.ignore_wp = true;
556 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
557 	config.priv = mtd;
558 
559 	mtd->nvmem = nvmem_register(&config);
560 	if (IS_ERR(mtd->nvmem)) {
561 		/* Just ignore if there is no NVMEM support in the kernel */
562 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
563 			mtd->nvmem = NULL;
564 		else
565 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
566 					     "Failed to register NVMEM device\n");
567 	}
568 
569 	return 0;
570 }
571 
572 static void mtd_check_of_node(struct mtd_info *mtd)
573 {
574 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
575 	const char *pname, *prefix = "partition-";
576 	int plen, mtd_name_len, offset, prefix_len;
577 
578 	/* Check if MTD already has a device node */
579 	if (mtd_get_of_node(mtd))
580 		return;
581 
582 	if (!mtd_is_partition(mtd))
583 		return;
584 
585 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
586 	if (!parent_dn)
587 		return;
588 
589 	if (mtd_is_partition(mtd->parent))
590 		partitions = of_node_get(parent_dn);
591 	else
592 		partitions = of_get_child_by_name(parent_dn, "partitions");
593 	if (!partitions)
594 		goto exit_parent;
595 
596 	prefix_len = strlen(prefix);
597 	mtd_name_len = strlen(mtd->name);
598 
599 	/* Search if a partition is defined with the same name */
600 	for_each_child_of_node(partitions, mtd_dn) {
601 		/* Skip partition with no/wrong prefix */
602 		if (!of_node_name_prefix(mtd_dn, prefix))
603 			continue;
604 
605 		/* Label have priority. Check that first */
606 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
607 			offset = 0;
608 		} else {
609 			pname = mtd_dn->name;
610 			offset = prefix_len;
611 		}
612 
613 		plen = strlen(pname) - offset;
614 		if (plen == mtd_name_len &&
615 		    !strncmp(mtd->name, pname + offset, plen)) {
616 			mtd_set_of_node(mtd, mtd_dn);
617 			break;
618 		}
619 	}
620 
621 	of_node_put(partitions);
622 exit_parent:
623 	of_node_put(parent_dn);
624 }
625 
626 /**
627  *	add_mtd_device - register an MTD device
628  *	@mtd: pointer to new MTD device info structure
629  *
630  *	Add a device to the list of MTD devices present in the system, and
631  *	notify each currently active MTD 'user' of its arrival. Returns
632  *	zero on success or non-zero on failure.
633  */
634 
635 int add_mtd_device(struct mtd_info *mtd)
636 {
637 	struct device_node *np = mtd_get_of_node(mtd);
638 	struct mtd_info *master = mtd_get_master(mtd);
639 	struct mtd_notifier *not;
640 	int i, error, ofidx;
641 
642 	/*
643 	 * May occur, for instance, on buggy drivers which call
644 	 * mtd_device_parse_register() multiple times on the same master MTD,
645 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
646 	 */
647 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
648 		return -EEXIST;
649 
650 	BUG_ON(mtd->writesize == 0);
651 
652 	/*
653 	 * MTD drivers should implement ->_{write,read}() or
654 	 * ->_{write,read}_oob(), but not both.
655 	 */
656 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
657 		    (mtd->_read && mtd->_read_oob)))
658 		return -EINVAL;
659 
660 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
661 		    !(mtd->flags & MTD_NO_ERASE)))
662 		return -EINVAL;
663 
664 	/*
665 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
666 	 * master is an MLC NAND and has a proper pairing scheme defined.
667 	 * We also reject masters that implement ->_writev() for now, because
668 	 * NAND controller drivers don't implement this hook, and adding the
669 	 * SLC -> MLC address/length conversion to this path is useless if we
670 	 * don't have a user.
671 	 */
672 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
673 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
674 	     !master->pairing || master->_writev))
675 		return -EINVAL;
676 
677 	mutex_lock(&mtd_table_mutex);
678 
679 	ofidx = -1;
680 	if (np)
681 		ofidx = of_alias_get_id(np, "mtd");
682 	if (ofidx >= 0)
683 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
684 	else
685 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
686 	if (i < 0) {
687 		error = i;
688 		goto fail_locked;
689 	}
690 
691 	mtd->index = i;
692 	kref_init(&mtd->refcnt);
693 
694 	/* default value if not set by driver */
695 	if (mtd->bitflip_threshold == 0)
696 		mtd->bitflip_threshold = mtd->ecc_strength;
697 
698 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
699 		int ngroups = mtd_pairing_groups(master);
700 
701 		mtd->erasesize /= ngroups;
702 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
703 			    mtd->erasesize;
704 	}
705 
706 	if (is_power_of_2(mtd->erasesize))
707 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
708 	else
709 		mtd->erasesize_shift = 0;
710 
711 	if (is_power_of_2(mtd->writesize))
712 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
713 	else
714 		mtd->writesize_shift = 0;
715 
716 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
717 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
718 
719 	/* Some chips always power up locked. Unlock them now */
720 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
721 		error = mtd_unlock(mtd, 0, mtd->size);
722 		if (error && error != -EOPNOTSUPP)
723 			printk(KERN_WARNING
724 			       "%s: unlock failed, writes may not work\n",
725 			       mtd->name);
726 		/* Ignore unlock failures? */
727 		error = 0;
728 	}
729 
730 	/* Caller should have set dev.parent to match the
731 	 * physical device, if appropriate.
732 	 */
733 	mtd->dev.type = &mtd_devtype;
734 	mtd->dev.class = &mtd_class;
735 	mtd->dev.devt = MTD_DEVT(i);
736 	dev_set_name(&mtd->dev, "mtd%d", i);
737 	dev_set_drvdata(&mtd->dev, mtd);
738 	mtd_check_of_node(mtd);
739 	of_node_get(mtd_get_of_node(mtd));
740 	error = device_register(&mtd->dev);
741 	if (error) {
742 		put_device(&mtd->dev);
743 		goto fail_added;
744 	}
745 
746 	/* Add the nvmem provider */
747 	error = mtd_nvmem_add(mtd);
748 	if (error)
749 		goto fail_nvmem_add;
750 
751 	mtd_debugfs_populate(mtd);
752 
753 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
754 		      "mtd%dro", i);
755 
756 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
757 	/* No need to get a refcount on the module containing
758 	   the notifier, since we hold the mtd_table_mutex */
759 	list_for_each_entry(not, &mtd_notifiers, list)
760 		not->add(mtd);
761 
762 	mutex_unlock(&mtd_table_mutex);
763 
764 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
765 		if (IS_BUILTIN(CONFIG_MTD)) {
766 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
767 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
768 		} else {
769 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
770 				mtd->index, mtd->name);
771 		}
772 	}
773 
774 	/* We _know_ we aren't being removed, because
775 	   our caller is still holding us here. So none
776 	   of this try_ nonsense, and no bitching about it
777 	   either. :) */
778 	__module_get(THIS_MODULE);
779 	return 0;
780 
781 fail_nvmem_add:
782 	device_unregister(&mtd->dev);
783 fail_added:
784 	of_node_put(mtd_get_of_node(mtd));
785 	idr_remove(&mtd_idr, i);
786 fail_locked:
787 	mutex_unlock(&mtd_table_mutex);
788 	return error;
789 }
790 
791 /**
792  *	del_mtd_device - unregister an MTD device
793  *	@mtd: pointer to MTD device info structure
794  *
795  *	Remove a device from the list of MTD devices present in the system,
796  *	and notify each currently active MTD 'user' of its departure.
797  *	Returns zero on success or 1 on failure, which currently will happen
798  *	if the requested device does not appear to be present in the list.
799  */
800 
801 int del_mtd_device(struct mtd_info *mtd)
802 {
803 	int ret;
804 	struct mtd_notifier *not;
805 
806 	mutex_lock(&mtd_table_mutex);
807 
808 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
809 		ret = -ENODEV;
810 		goto out_error;
811 	}
812 
813 	/* No need to get a refcount on the module containing
814 		the notifier, since we hold the mtd_table_mutex */
815 	list_for_each_entry(not, &mtd_notifiers, list)
816 		not->remove(mtd);
817 
818 	kref_put(&mtd->refcnt, mtd_device_release);
819 	ret = 0;
820 
821 out_error:
822 	mutex_unlock(&mtd_table_mutex);
823 	return ret;
824 }
825 
826 /*
827  * Set a few defaults based on the parent devices, if not provided by the
828  * driver
829  */
830 static void mtd_set_dev_defaults(struct mtd_info *mtd)
831 {
832 	if (mtd->dev.parent) {
833 		if (!mtd->owner && mtd->dev.parent->driver)
834 			mtd->owner = mtd->dev.parent->driver->owner;
835 		if (!mtd->name)
836 			mtd->name = dev_name(mtd->dev.parent);
837 	} else {
838 		pr_debug("mtd device won't show a device symlink in sysfs\n");
839 	}
840 
841 	INIT_LIST_HEAD(&mtd->partitions);
842 	mutex_init(&mtd->master.partitions_lock);
843 	mutex_init(&mtd->master.chrdev_lock);
844 }
845 
846 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
847 {
848 	struct otp_info *info;
849 	ssize_t size = 0;
850 	unsigned int i;
851 	size_t retlen;
852 	int ret;
853 
854 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
855 	if (!info)
856 		return -ENOMEM;
857 
858 	if (is_user)
859 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
860 	else
861 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
862 	if (ret)
863 		goto err;
864 
865 	for (i = 0; i < retlen / sizeof(*info); i++)
866 		size += info[i].length;
867 
868 	kfree(info);
869 	return size;
870 
871 err:
872 	kfree(info);
873 
874 	/* ENODATA means there is no OTP region. */
875 	return ret == -ENODATA ? 0 : ret;
876 }
877 
878 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
879 						   const char *compatible,
880 						   int size,
881 						   nvmem_reg_read_t reg_read)
882 {
883 	struct nvmem_device *nvmem = NULL;
884 	struct nvmem_config config = {};
885 	struct device_node *np;
886 
887 	/* DT binding is optional */
888 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
889 
890 	/* OTP nvmem will be registered on the physical device */
891 	config.dev = mtd->dev.parent;
892 	config.name = compatible;
893 	config.id = NVMEM_DEVID_AUTO;
894 	config.owner = THIS_MODULE;
895 	config.type = NVMEM_TYPE_OTP;
896 	config.root_only = true;
897 	config.ignore_wp = true;
898 	config.reg_read = reg_read;
899 	config.size = size;
900 	config.of_node = np;
901 	config.priv = mtd;
902 
903 	nvmem = nvmem_register(&config);
904 	/* Just ignore if there is no NVMEM support in the kernel */
905 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
906 		nvmem = NULL;
907 
908 	of_node_put(np);
909 
910 	return nvmem;
911 }
912 
913 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
914 				       void *val, size_t bytes)
915 {
916 	struct mtd_info *mtd = priv;
917 	size_t retlen;
918 	int ret;
919 
920 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
921 	if (ret)
922 		return ret;
923 
924 	return retlen == bytes ? 0 : -EIO;
925 }
926 
927 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
928 				       void *val, size_t bytes)
929 {
930 	struct mtd_info *mtd = priv;
931 	size_t retlen;
932 	int ret;
933 
934 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
935 	if (ret)
936 		return ret;
937 
938 	return retlen == bytes ? 0 : -EIO;
939 }
940 
941 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
942 {
943 	struct device *dev = mtd->dev.parent;
944 	struct nvmem_device *nvmem;
945 	ssize_t size;
946 	int err;
947 
948 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
949 		size = mtd_otp_size(mtd, true);
950 		if (size < 0)
951 			return size;
952 
953 		if (size > 0) {
954 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
955 						       mtd_nvmem_user_otp_reg_read);
956 			if (IS_ERR(nvmem)) {
957 				err = PTR_ERR(nvmem);
958 				goto err;
959 			}
960 			mtd->otp_user_nvmem = nvmem;
961 		}
962 	}
963 
964 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
965 		size = mtd_otp_size(mtd, false);
966 		if (size < 0) {
967 			err = size;
968 			goto err;
969 		}
970 
971 		if (size > 0) {
972 			/*
973 			 * The factory OTP contains thing such as a unique serial
974 			 * number and is small, so let's read it out and put it
975 			 * into the entropy pool.
976 			 */
977 			void *otp;
978 
979 			otp = kmalloc(size, GFP_KERNEL);
980 			if (!otp) {
981 				err = -ENOMEM;
982 				goto err;
983 			}
984 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
985 			if (err < 0) {
986 				kfree(otp);
987 				goto err;
988 			}
989 			add_device_randomness(otp, err);
990 			kfree(otp);
991 
992 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
993 						       mtd_nvmem_fact_otp_reg_read);
994 			if (IS_ERR(nvmem)) {
995 				err = PTR_ERR(nvmem);
996 				goto err;
997 			}
998 			mtd->otp_factory_nvmem = nvmem;
999 		}
1000 	}
1001 
1002 	return 0;
1003 
1004 err:
1005 	nvmem_unregister(mtd->otp_user_nvmem);
1006 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1007 }
1008 
1009 /**
1010  * mtd_device_parse_register - parse partitions and register an MTD device.
1011  *
1012  * @mtd: the MTD device to register
1013  * @types: the list of MTD partition probes to try, see
1014  *         'parse_mtd_partitions()' for more information
1015  * @parser_data: MTD partition parser-specific data
1016  * @parts: fallback partition information to register, if parsing fails;
1017  *         only valid if %nr_parts > %0
1018  * @nr_parts: the number of partitions in parts, if zero then the full
1019  *            MTD device is registered if no partition info is found
1020  *
1021  * This function aggregates MTD partitions parsing (done by
1022  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1023  * basically follows the most common pattern found in many MTD drivers:
1024  *
1025  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1026  *   registered first.
1027  * * Then It tries to probe partitions on MTD device @mtd using parsers
1028  *   specified in @types (if @types is %NULL, then the default list of parsers
1029  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1030  *   found this functions tries to fallback to information specified in
1031  *   @parts/@nr_parts.
1032  * * If no partitions were found this function just registers the MTD device
1033  *   @mtd and exits.
1034  *
1035  * Returns zero in case of success and a negative error code in case of failure.
1036  */
1037 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1038 			      struct mtd_part_parser_data *parser_data,
1039 			      const struct mtd_partition *parts,
1040 			      int nr_parts)
1041 {
1042 	int ret;
1043 
1044 	mtd_set_dev_defaults(mtd);
1045 
1046 	ret = mtd_otp_nvmem_add(mtd);
1047 	if (ret)
1048 		goto out;
1049 
1050 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1051 		ret = add_mtd_device(mtd);
1052 		if (ret)
1053 			goto out;
1054 	}
1055 
1056 	/* Prefer parsed partitions over driver-provided fallback */
1057 	ret = parse_mtd_partitions(mtd, types, parser_data);
1058 	if (ret == -EPROBE_DEFER)
1059 		goto out;
1060 
1061 	if (ret > 0)
1062 		ret = 0;
1063 	else if (nr_parts)
1064 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1065 	else if (!device_is_registered(&mtd->dev))
1066 		ret = add_mtd_device(mtd);
1067 	else
1068 		ret = 0;
1069 
1070 	if (ret)
1071 		goto out;
1072 
1073 	/*
1074 	 * FIXME: some drivers unfortunately call this function more than once.
1075 	 * So we have to check if we've already assigned the reboot notifier.
1076 	 *
1077 	 * Generally, we can make multiple calls work for most cases, but it
1078 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1079 	 * cmdlineparts will register partitions more than once).
1080 	 */
1081 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1082 		  "MTD already registered\n");
1083 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1084 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1085 		register_reboot_notifier(&mtd->reboot_notifier);
1086 	}
1087 
1088 out:
1089 	if (ret) {
1090 		nvmem_unregister(mtd->otp_user_nvmem);
1091 		nvmem_unregister(mtd->otp_factory_nvmem);
1092 	}
1093 
1094 	if (ret && device_is_registered(&mtd->dev))
1095 		del_mtd_device(mtd);
1096 
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1100 
1101 /**
1102  * mtd_device_unregister - unregister an existing MTD device.
1103  *
1104  * @master: the MTD device to unregister.  This will unregister both the master
1105  *          and any partitions if registered.
1106  */
1107 int mtd_device_unregister(struct mtd_info *master)
1108 {
1109 	int err;
1110 
1111 	if (master->_reboot) {
1112 		unregister_reboot_notifier(&master->reboot_notifier);
1113 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1114 	}
1115 
1116 	nvmem_unregister(master->otp_user_nvmem);
1117 	nvmem_unregister(master->otp_factory_nvmem);
1118 
1119 	err = del_mtd_partitions(master);
1120 	if (err)
1121 		return err;
1122 
1123 	if (!device_is_registered(&master->dev))
1124 		return 0;
1125 
1126 	return del_mtd_device(master);
1127 }
1128 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1129 
1130 /**
1131  *	register_mtd_user - register a 'user' of MTD devices.
1132  *	@new: pointer to notifier info structure
1133  *
1134  *	Registers a pair of callbacks function to be called upon addition
1135  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1136  *	invoked for each MTD device currently present in the system.
1137  */
1138 void register_mtd_user (struct mtd_notifier *new)
1139 {
1140 	struct mtd_info *mtd;
1141 
1142 	mutex_lock(&mtd_table_mutex);
1143 
1144 	list_add(&new->list, &mtd_notifiers);
1145 
1146 	__module_get(THIS_MODULE);
1147 
1148 	mtd_for_each_device(mtd)
1149 		new->add(mtd);
1150 
1151 	mutex_unlock(&mtd_table_mutex);
1152 }
1153 EXPORT_SYMBOL_GPL(register_mtd_user);
1154 
1155 /**
1156  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1157  *	@old: pointer to notifier info structure
1158  *
1159  *	Removes a callback function pair from the list of 'users' to be
1160  *	notified upon addition or removal of MTD devices. Causes the
1161  *	'remove' callback to be immediately invoked for each MTD device
1162  *	currently present in the system.
1163  */
1164 int unregister_mtd_user (struct mtd_notifier *old)
1165 {
1166 	struct mtd_info *mtd;
1167 
1168 	mutex_lock(&mtd_table_mutex);
1169 
1170 	module_put(THIS_MODULE);
1171 
1172 	mtd_for_each_device(mtd)
1173 		old->remove(mtd);
1174 
1175 	list_del(&old->list);
1176 	mutex_unlock(&mtd_table_mutex);
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1180 
1181 /**
1182  *	get_mtd_device - obtain a validated handle for an MTD device
1183  *	@mtd: last known address of the required MTD device
1184  *	@num: internal device number of the required MTD device
1185  *
1186  *	Given a number and NULL address, return the num'th entry in the device
1187  *	table, if any.	Given an address and num == -1, search the device table
1188  *	for a device with that address and return if it's still present. Given
1189  *	both, return the num'th driver only if its address matches. Return
1190  *	error code if not.
1191  */
1192 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1193 {
1194 	struct mtd_info *ret = NULL, *other;
1195 	int err = -ENODEV;
1196 
1197 	mutex_lock(&mtd_table_mutex);
1198 
1199 	if (num == -1) {
1200 		mtd_for_each_device(other) {
1201 			if (other == mtd) {
1202 				ret = mtd;
1203 				break;
1204 			}
1205 		}
1206 	} else if (num >= 0) {
1207 		ret = idr_find(&mtd_idr, num);
1208 		if (mtd && mtd != ret)
1209 			ret = NULL;
1210 	}
1211 
1212 	if (!ret) {
1213 		ret = ERR_PTR(err);
1214 		goto out;
1215 	}
1216 
1217 	err = __get_mtd_device(ret);
1218 	if (err)
1219 		ret = ERR_PTR(err);
1220 out:
1221 	mutex_unlock(&mtd_table_mutex);
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL_GPL(get_mtd_device);
1225 
1226 
1227 int __get_mtd_device(struct mtd_info *mtd)
1228 {
1229 	struct mtd_info *master = mtd_get_master(mtd);
1230 	int err;
1231 
1232 	if (master->_get_device) {
1233 		err = master->_get_device(mtd);
1234 		if (err)
1235 			return err;
1236 	}
1237 
1238 	if (!try_module_get(master->owner)) {
1239 		if (master->_put_device)
1240 			master->_put_device(master);
1241 		return -ENODEV;
1242 	}
1243 
1244 	kref_get(&mtd->refcnt);
1245 
1246 	while (mtd->parent) {
1247 		if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd->parent != master)
1248 			kref_get(&mtd->parent->refcnt);
1249 		mtd = mtd->parent;
1250 	}
1251 
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(__get_mtd_device);
1255 
1256 /**
1257  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1258  *
1259  * @np: device tree node
1260  */
1261 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1262 {
1263 	struct mtd_info *mtd = NULL;
1264 	struct mtd_info *tmp;
1265 	int err;
1266 
1267 	mutex_lock(&mtd_table_mutex);
1268 
1269 	err = -EPROBE_DEFER;
1270 	mtd_for_each_device(tmp) {
1271 		if (mtd_get_of_node(tmp) == np) {
1272 			mtd = tmp;
1273 			err = __get_mtd_device(mtd);
1274 			break;
1275 		}
1276 	}
1277 
1278 	mutex_unlock(&mtd_table_mutex);
1279 
1280 	return err ? ERR_PTR(err) : mtd;
1281 }
1282 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1283 
1284 /**
1285  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1286  *	device name
1287  *	@name: MTD device name to open
1288  *
1289  * 	This function returns MTD device description structure in case of
1290  * 	success and an error code in case of failure.
1291  */
1292 struct mtd_info *get_mtd_device_nm(const char *name)
1293 {
1294 	int err = -ENODEV;
1295 	struct mtd_info *mtd = NULL, *other;
1296 
1297 	mutex_lock(&mtd_table_mutex);
1298 
1299 	mtd_for_each_device(other) {
1300 		if (!strcmp(name, other->name)) {
1301 			mtd = other;
1302 			break;
1303 		}
1304 	}
1305 
1306 	if (!mtd)
1307 		goto out_unlock;
1308 
1309 	err = __get_mtd_device(mtd);
1310 	if (err)
1311 		goto out_unlock;
1312 
1313 	mutex_unlock(&mtd_table_mutex);
1314 	return mtd;
1315 
1316 out_unlock:
1317 	mutex_unlock(&mtd_table_mutex);
1318 	return ERR_PTR(err);
1319 }
1320 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1321 
1322 void put_mtd_device(struct mtd_info *mtd)
1323 {
1324 	mutex_lock(&mtd_table_mutex);
1325 	__put_mtd_device(mtd);
1326 	mutex_unlock(&mtd_table_mutex);
1327 
1328 }
1329 EXPORT_SYMBOL_GPL(put_mtd_device);
1330 
1331 void __put_mtd_device(struct mtd_info *mtd)
1332 {
1333 	struct mtd_info *master = mtd_get_master(mtd);
1334 
1335 	while (mtd != master) {
1336 		struct mtd_info *parent = mtd->parent;
1337 
1338 		kref_put(&mtd->refcnt, mtd_device_release);
1339 		mtd = parent;
1340 	}
1341 
1342 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1343 		kref_put(&master->refcnt, mtd_device_release);
1344 
1345 	module_put(master->owner);
1346 
1347 	/* must be the last as master can be freed in the _put_device */
1348 	if (master->_put_device)
1349 		master->_put_device(master);
1350 }
1351 EXPORT_SYMBOL_GPL(__put_mtd_device);
1352 
1353 /*
1354  * Erase is an synchronous operation. Device drivers are epected to return a
1355  * negative error code if the operation failed and update instr->fail_addr
1356  * to point the portion that was not properly erased.
1357  */
1358 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1359 {
1360 	struct mtd_info *master = mtd_get_master(mtd);
1361 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1362 	struct erase_info adjinstr;
1363 	int ret;
1364 
1365 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1366 	adjinstr = *instr;
1367 
1368 	if (!mtd->erasesize || !master->_erase)
1369 		return -ENOTSUPP;
1370 
1371 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1372 		return -EINVAL;
1373 	if (!(mtd->flags & MTD_WRITEABLE))
1374 		return -EROFS;
1375 
1376 	if (!instr->len)
1377 		return 0;
1378 
1379 	ledtrig_mtd_activity();
1380 
1381 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1382 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1383 				master->erasesize;
1384 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1385 				master->erasesize) -
1386 			       adjinstr.addr;
1387 	}
1388 
1389 	adjinstr.addr += mst_ofs;
1390 
1391 	ret = master->_erase(master, &adjinstr);
1392 
1393 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1394 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1395 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1396 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1397 							 master);
1398 			instr->fail_addr *= mtd->erasesize;
1399 		}
1400 	}
1401 
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(mtd_erase);
1405 
1406 /*
1407  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1408  */
1409 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1410 	      void **virt, resource_size_t *phys)
1411 {
1412 	struct mtd_info *master = mtd_get_master(mtd);
1413 
1414 	*retlen = 0;
1415 	*virt = NULL;
1416 	if (phys)
1417 		*phys = 0;
1418 	if (!master->_point)
1419 		return -EOPNOTSUPP;
1420 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1421 		return -EINVAL;
1422 	if (!len)
1423 		return 0;
1424 
1425 	from = mtd_get_master_ofs(mtd, from);
1426 	return master->_point(master, from, len, retlen, virt, phys);
1427 }
1428 EXPORT_SYMBOL_GPL(mtd_point);
1429 
1430 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1431 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1432 {
1433 	struct mtd_info *master = mtd_get_master(mtd);
1434 
1435 	if (!master->_unpoint)
1436 		return -EOPNOTSUPP;
1437 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1438 		return -EINVAL;
1439 	if (!len)
1440 		return 0;
1441 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1442 }
1443 EXPORT_SYMBOL_GPL(mtd_unpoint);
1444 
1445 /*
1446  * Allow NOMMU mmap() to directly map the device (if not NULL)
1447  * - return the address to which the offset maps
1448  * - return -ENOSYS to indicate refusal to do the mapping
1449  */
1450 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1451 				    unsigned long offset, unsigned long flags)
1452 {
1453 	size_t retlen;
1454 	void *virt;
1455 	int ret;
1456 
1457 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1458 	if (ret)
1459 		return ret;
1460 	if (retlen != len) {
1461 		mtd_unpoint(mtd, offset, retlen);
1462 		return -ENOSYS;
1463 	}
1464 	return (unsigned long)virt;
1465 }
1466 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1467 
1468 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1469 				 const struct mtd_ecc_stats *old_stats)
1470 {
1471 	struct mtd_ecc_stats diff;
1472 
1473 	if (master == mtd)
1474 		return;
1475 
1476 	diff = master->ecc_stats;
1477 	diff.failed -= old_stats->failed;
1478 	diff.corrected -= old_stats->corrected;
1479 
1480 	while (mtd->parent) {
1481 		mtd->ecc_stats.failed += diff.failed;
1482 		mtd->ecc_stats.corrected += diff.corrected;
1483 		mtd = mtd->parent;
1484 	}
1485 }
1486 
1487 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1488 	     u_char *buf)
1489 {
1490 	struct mtd_oob_ops ops = {
1491 		.len = len,
1492 		.datbuf = buf,
1493 	};
1494 	int ret;
1495 
1496 	ret = mtd_read_oob(mtd, from, &ops);
1497 	*retlen = ops.retlen;
1498 
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL_GPL(mtd_read);
1502 
1503 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1504 	      const u_char *buf)
1505 {
1506 	struct mtd_oob_ops ops = {
1507 		.len = len,
1508 		.datbuf = (u8 *)buf,
1509 	};
1510 	int ret;
1511 
1512 	ret = mtd_write_oob(mtd, to, &ops);
1513 	*retlen = ops.retlen;
1514 
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL_GPL(mtd_write);
1518 
1519 /*
1520  * In blackbox flight recorder like scenarios we want to make successful writes
1521  * in interrupt context. panic_write() is only intended to be called when its
1522  * known the kernel is about to panic and we need the write to succeed. Since
1523  * the kernel is not going to be running for much longer, this function can
1524  * break locks and delay to ensure the write succeeds (but not sleep).
1525  */
1526 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1527 		    const u_char *buf)
1528 {
1529 	struct mtd_info *master = mtd_get_master(mtd);
1530 
1531 	*retlen = 0;
1532 	if (!master->_panic_write)
1533 		return -EOPNOTSUPP;
1534 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1535 		return -EINVAL;
1536 	if (!(mtd->flags & MTD_WRITEABLE))
1537 		return -EROFS;
1538 	if (!len)
1539 		return 0;
1540 	if (!master->oops_panic_write)
1541 		master->oops_panic_write = true;
1542 
1543 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1544 				    retlen, buf);
1545 }
1546 EXPORT_SYMBOL_GPL(mtd_panic_write);
1547 
1548 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1549 			     struct mtd_oob_ops *ops)
1550 {
1551 	/*
1552 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1553 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1554 	 *  this case.
1555 	 */
1556 	if (!ops->datbuf)
1557 		ops->len = 0;
1558 
1559 	if (!ops->oobbuf)
1560 		ops->ooblen = 0;
1561 
1562 	if (offs < 0 || offs + ops->len > mtd->size)
1563 		return -EINVAL;
1564 
1565 	if (ops->ooblen) {
1566 		size_t maxooblen;
1567 
1568 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1569 			return -EINVAL;
1570 
1571 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1572 				      mtd_div_by_ws(offs, mtd)) *
1573 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1574 		if (ops->ooblen > maxooblen)
1575 			return -EINVAL;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1582 			    struct mtd_oob_ops *ops)
1583 {
1584 	struct mtd_info *master = mtd_get_master(mtd);
1585 	int ret;
1586 
1587 	from = mtd_get_master_ofs(mtd, from);
1588 	if (master->_read_oob)
1589 		ret = master->_read_oob(master, from, ops);
1590 	else
1591 		ret = master->_read(master, from, ops->len, &ops->retlen,
1592 				    ops->datbuf);
1593 
1594 	return ret;
1595 }
1596 
1597 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1598 			     struct mtd_oob_ops *ops)
1599 {
1600 	struct mtd_info *master = mtd_get_master(mtd);
1601 	int ret;
1602 
1603 	to = mtd_get_master_ofs(mtd, to);
1604 	if (master->_write_oob)
1605 		ret = master->_write_oob(master, to, ops);
1606 	else
1607 		ret = master->_write(master, to, ops->len, &ops->retlen,
1608 				     ops->datbuf);
1609 
1610 	return ret;
1611 }
1612 
1613 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1614 			       struct mtd_oob_ops *ops)
1615 {
1616 	struct mtd_info *master = mtd_get_master(mtd);
1617 	int ngroups = mtd_pairing_groups(master);
1618 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1619 	struct mtd_oob_ops adjops = *ops;
1620 	unsigned int wunit, oobavail;
1621 	struct mtd_pairing_info info;
1622 	int max_bitflips = 0;
1623 	u32 ebofs, pageofs;
1624 	loff_t base, pos;
1625 
1626 	ebofs = mtd_mod_by_eb(start, mtd);
1627 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1628 	info.group = 0;
1629 	info.pair = mtd_div_by_ws(ebofs, mtd);
1630 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1631 	oobavail = mtd_oobavail(mtd, ops);
1632 
1633 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1634 		int ret;
1635 
1636 		if (info.pair >= npairs) {
1637 			info.pair = 0;
1638 			base += master->erasesize;
1639 		}
1640 
1641 		wunit = mtd_pairing_info_to_wunit(master, &info);
1642 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1643 
1644 		adjops.len = ops->len - ops->retlen;
1645 		if (adjops.len > mtd->writesize - pageofs)
1646 			adjops.len = mtd->writesize - pageofs;
1647 
1648 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1649 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1650 			adjops.ooblen = oobavail - adjops.ooboffs;
1651 
1652 		if (read) {
1653 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1654 			if (ret > 0)
1655 				max_bitflips = max(max_bitflips, ret);
1656 		} else {
1657 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1658 		}
1659 
1660 		if (ret < 0)
1661 			return ret;
1662 
1663 		max_bitflips = max(max_bitflips, ret);
1664 		ops->retlen += adjops.retlen;
1665 		ops->oobretlen += adjops.oobretlen;
1666 		adjops.datbuf += adjops.retlen;
1667 		adjops.oobbuf += adjops.oobretlen;
1668 		adjops.ooboffs = 0;
1669 		pageofs = 0;
1670 		info.pair++;
1671 	}
1672 
1673 	return max_bitflips;
1674 }
1675 
1676 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1677 {
1678 	struct mtd_info *master = mtd_get_master(mtd);
1679 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1680 	int ret_code;
1681 
1682 	ops->retlen = ops->oobretlen = 0;
1683 
1684 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1685 	if (ret_code)
1686 		return ret_code;
1687 
1688 	ledtrig_mtd_activity();
1689 
1690 	/* Check the validity of a potential fallback on mtd->_read */
1691 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1692 		return -EOPNOTSUPP;
1693 
1694 	if (ops->stats)
1695 		memset(ops->stats, 0, sizeof(*ops->stats));
1696 
1697 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1698 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1699 	else
1700 		ret_code = mtd_read_oob_std(mtd, from, ops);
1701 
1702 	mtd_update_ecc_stats(mtd, master, &old_stats);
1703 
1704 	/*
1705 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1706 	 * similar to mtd->_read(), returning a non-negative integer
1707 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1708 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1709 	 */
1710 	if (unlikely(ret_code < 0))
1711 		return ret_code;
1712 	if (mtd->ecc_strength == 0)
1713 		return 0;	/* device lacks ecc */
1714 	if (ops->stats)
1715 		ops->stats->max_bitflips = ret_code;
1716 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1717 }
1718 EXPORT_SYMBOL_GPL(mtd_read_oob);
1719 
1720 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1721 				struct mtd_oob_ops *ops)
1722 {
1723 	struct mtd_info *master = mtd_get_master(mtd);
1724 	int ret;
1725 
1726 	ops->retlen = ops->oobretlen = 0;
1727 
1728 	if (!(mtd->flags & MTD_WRITEABLE))
1729 		return -EROFS;
1730 
1731 	ret = mtd_check_oob_ops(mtd, to, ops);
1732 	if (ret)
1733 		return ret;
1734 
1735 	ledtrig_mtd_activity();
1736 
1737 	/* Check the validity of a potential fallback on mtd->_write */
1738 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1739 		return -EOPNOTSUPP;
1740 
1741 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1742 		return mtd_io_emulated_slc(mtd, to, false, ops);
1743 
1744 	return mtd_write_oob_std(mtd, to, ops);
1745 }
1746 EXPORT_SYMBOL_GPL(mtd_write_oob);
1747 
1748 /**
1749  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1750  * @mtd: MTD device structure
1751  * @section: ECC section. Depending on the layout you may have all the ECC
1752  *	     bytes stored in a single contiguous section, or one section
1753  *	     per ECC chunk (and sometime several sections for a single ECC
1754  *	     ECC chunk)
1755  * @oobecc: OOB region struct filled with the appropriate ECC position
1756  *	    information
1757  *
1758  * This function returns ECC section information in the OOB area. If you want
1759  * to get all the ECC bytes information, then you should call
1760  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1761  *
1762  * Returns zero on success, a negative error code otherwise.
1763  */
1764 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1765 		      struct mtd_oob_region *oobecc)
1766 {
1767 	struct mtd_info *master = mtd_get_master(mtd);
1768 
1769 	memset(oobecc, 0, sizeof(*oobecc));
1770 
1771 	if (!master || section < 0)
1772 		return -EINVAL;
1773 
1774 	if (!master->ooblayout || !master->ooblayout->ecc)
1775 		return -ENOTSUPP;
1776 
1777 	return master->ooblayout->ecc(master, section, oobecc);
1778 }
1779 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1780 
1781 /**
1782  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1783  *			section
1784  * @mtd: MTD device structure
1785  * @section: Free section you are interested in. Depending on the layout
1786  *	     you may have all the free bytes stored in a single contiguous
1787  *	     section, or one section per ECC chunk plus an extra section
1788  *	     for the remaining bytes (or other funky layout).
1789  * @oobfree: OOB region struct filled with the appropriate free position
1790  *	     information
1791  *
1792  * This function returns free bytes position in the OOB area. If you want
1793  * to get all the free bytes information, then you should call
1794  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1795  *
1796  * Returns zero on success, a negative error code otherwise.
1797  */
1798 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1799 		       struct mtd_oob_region *oobfree)
1800 {
1801 	struct mtd_info *master = mtd_get_master(mtd);
1802 
1803 	memset(oobfree, 0, sizeof(*oobfree));
1804 
1805 	if (!master || section < 0)
1806 		return -EINVAL;
1807 
1808 	if (!master->ooblayout || !master->ooblayout->free)
1809 		return -ENOTSUPP;
1810 
1811 	return master->ooblayout->free(master, section, oobfree);
1812 }
1813 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1814 
1815 /**
1816  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1817  * @mtd: mtd info structure
1818  * @byte: the byte we are searching for
1819  * @sectionp: pointer where the section id will be stored
1820  * @oobregion: used to retrieve the ECC position
1821  * @iter: iterator function. Should be either mtd_ooblayout_free or
1822  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1823  *
1824  * This function returns the section id and oobregion information of a
1825  * specific byte. For example, say you want to know where the 4th ECC byte is
1826  * stored, you'll use:
1827  *
1828  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1829  *
1830  * Returns zero on success, a negative error code otherwise.
1831  */
1832 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1833 				int *sectionp, struct mtd_oob_region *oobregion,
1834 				int (*iter)(struct mtd_info *,
1835 					    int section,
1836 					    struct mtd_oob_region *oobregion))
1837 {
1838 	int pos = 0, ret, section = 0;
1839 
1840 	memset(oobregion, 0, sizeof(*oobregion));
1841 
1842 	while (1) {
1843 		ret = iter(mtd, section, oobregion);
1844 		if (ret)
1845 			return ret;
1846 
1847 		if (pos + oobregion->length > byte)
1848 			break;
1849 
1850 		pos += oobregion->length;
1851 		section++;
1852 	}
1853 
1854 	/*
1855 	 * Adjust region info to make it start at the beginning at the
1856 	 * 'start' ECC byte.
1857 	 */
1858 	oobregion->offset += byte - pos;
1859 	oobregion->length -= byte - pos;
1860 	*sectionp = section;
1861 
1862 	return 0;
1863 }
1864 
1865 /**
1866  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1867  *				  ECC byte
1868  * @mtd: mtd info structure
1869  * @eccbyte: the byte we are searching for
1870  * @section: pointer where the section id will be stored
1871  * @oobregion: OOB region information
1872  *
1873  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1874  * byte.
1875  *
1876  * Returns zero on success, a negative error code otherwise.
1877  */
1878 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1879 				 int *section,
1880 				 struct mtd_oob_region *oobregion)
1881 {
1882 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1883 					 mtd_ooblayout_ecc);
1884 }
1885 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1886 
1887 /**
1888  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1889  * @mtd: mtd info structure
1890  * @buf: destination buffer to store OOB bytes
1891  * @oobbuf: OOB buffer
1892  * @start: first byte to retrieve
1893  * @nbytes: number of bytes to retrieve
1894  * @iter: section iterator
1895  *
1896  * Extract bytes attached to a specific category (ECC or free)
1897  * from the OOB buffer and copy them into buf.
1898  *
1899  * Returns zero on success, a negative error code otherwise.
1900  */
1901 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1902 				const u8 *oobbuf, int start, int nbytes,
1903 				int (*iter)(struct mtd_info *,
1904 					    int section,
1905 					    struct mtd_oob_region *oobregion))
1906 {
1907 	struct mtd_oob_region oobregion;
1908 	int section, ret;
1909 
1910 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1911 					&oobregion, iter);
1912 
1913 	while (!ret) {
1914 		int cnt;
1915 
1916 		cnt = min_t(int, nbytes, oobregion.length);
1917 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1918 		buf += cnt;
1919 		nbytes -= cnt;
1920 
1921 		if (!nbytes)
1922 			break;
1923 
1924 		ret = iter(mtd, ++section, &oobregion);
1925 	}
1926 
1927 	return ret;
1928 }
1929 
1930 /**
1931  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1932  * @mtd: mtd info structure
1933  * @buf: source buffer to get OOB bytes from
1934  * @oobbuf: OOB buffer
1935  * @start: first OOB byte to set
1936  * @nbytes: number of OOB bytes to set
1937  * @iter: section iterator
1938  *
1939  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1940  * is selected by passing the appropriate iterator.
1941  *
1942  * Returns zero on success, a negative error code otherwise.
1943  */
1944 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1945 				u8 *oobbuf, int start, int nbytes,
1946 				int (*iter)(struct mtd_info *,
1947 					    int section,
1948 					    struct mtd_oob_region *oobregion))
1949 {
1950 	struct mtd_oob_region oobregion;
1951 	int section, ret;
1952 
1953 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1954 					&oobregion, iter);
1955 
1956 	while (!ret) {
1957 		int cnt;
1958 
1959 		cnt = min_t(int, nbytes, oobregion.length);
1960 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1961 		buf += cnt;
1962 		nbytes -= cnt;
1963 
1964 		if (!nbytes)
1965 			break;
1966 
1967 		ret = iter(mtd, ++section, &oobregion);
1968 	}
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1975  * @mtd: mtd info structure
1976  * @iter: category iterator
1977  *
1978  * Count the number of bytes in a given category.
1979  *
1980  * Returns a positive value on success, a negative error code otherwise.
1981  */
1982 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1983 				int (*iter)(struct mtd_info *,
1984 					    int section,
1985 					    struct mtd_oob_region *oobregion))
1986 {
1987 	struct mtd_oob_region oobregion;
1988 	int section = 0, ret, nbytes = 0;
1989 
1990 	while (1) {
1991 		ret = iter(mtd, section++, &oobregion);
1992 		if (ret) {
1993 			if (ret == -ERANGE)
1994 				ret = nbytes;
1995 			break;
1996 		}
1997 
1998 		nbytes += oobregion.length;
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 /**
2005  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2006  * @mtd: mtd info structure
2007  * @eccbuf: destination buffer to store ECC bytes
2008  * @oobbuf: OOB buffer
2009  * @start: first ECC byte to retrieve
2010  * @nbytes: number of ECC bytes to retrieve
2011  *
2012  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2013  *
2014  * Returns zero on success, a negative error code otherwise.
2015  */
2016 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2017 			       const u8 *oobbuf, int start, int nbytes)
2018 {
2019 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2020 				       mtd_ooblayout_ecc);
2021 }
2022 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2023 
2024 /**
2025  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2026  * @mtd: mtd info structure
2027  * @eccbuf: source buffer to get ECC bytes from
2028  * @oobbuf: OOB buffer
2029  * @start: first ECC byte to set
2030  * @nbytes: number of ECC bytes to set
2031  *
2032  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2033  *
2034  * Returns zero on success, a negative error code otherwise.
2035  */
2036 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2037 			       u8 *oobbuf, int start, int nbytes)
2038 {
2039 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2040 				       mtd_ooblayout_ecc);
2041 }
2042 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2043 
2044 /**
2045  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2046  * @mtd: mtd info structure
2047  * @databuf: destination buffer to store ECC bytes
2048  * @oobbuf: OOB buffer
2049  * @start: first ECC byte to retrieve
2050  * @nbytes: number of ECC bytes to retrieve
2051  *
2052  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2053  *
2054  * Returns zero on success, a negative error code otherwise.
2055  */
2056 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2057 				const u8 *oobbuf, int start, int nbytes)
2058 {
2059 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2060 				       mtd_ooblayout_free);
2061 }
2062 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2063 
2064 /**
2065  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2066  * @mtd: mtd info structure
2067  * @databuf: source buffer to get data bytes from
2068  * @oobbuf: OOB buffer
2069  * @start: first ECC byte to set
2070  * @nbytes: number of ECC bytes to set
2071  *
2072  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2073  *
2074  * Returns zero on success, a negative error code otherwise.
2075  */
2076 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2077 				u8 *oobbuf, int start, int nbytes)
2078 {
2079 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2080 				       mtd_ooblayout_free);
2081 }
2082 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2083 
2084 /**
2085  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2086  * @mtd: mtd info structure
2087  *
2088  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2089  *
2090  * Returns zero on success, a negative error code otherwise.
2091  */
2092 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2093 {
2094 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2095 }
2096 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2097 
2098 /**
2099  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2100  * @mtd: mtd info structure
2101  *
2102  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2103  *
2104  * Returns zero on success, a negative error code otherwise.
2105  */
2106 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2107 {
2108 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2109 }
2110 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2111 
2112 /*
2113  * Method to access the protection register area, present in some flash
2114  * devices. The user data is one time programmable but the factory data is read
2115  * only.
2116  */
2117 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2118 			   struct otp_info *buf)
2119 {
2120 	struct mtd_info *master = mtd_get_master(mtd);
2121 
2122 	if (!master->_get_fact_prot_info)
2123 		return -EOPNOTSUPP;
2124 	if (!len)
2125 		return 0;
2126 	return master->_get_fact_prot_info(master, len, retlen, buf);
2127 }
2128 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2129 
2130 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2131 			   size_t *retlen, u_char *buf)
2132 {
2133 	struct mtd_info *master = mtd_get_master(mtd);
2134 
2135 	*retlen = 0;
2136 	if (!master->_read_fact_prot_reg)
2137 		return -EOPNOTSUPP;
2138 	if (!len)
2139 		return 0;
2140 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2141 }
2142 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2143 
2144 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2145 			   struct otp_info *buf)
2146 {
2147 	struct mtd_info *master = mtd_get_master(mtd);
2148 
2149 	if (!master->_get_user_prot_info)
2150 		return -EOPNOTSUPP;
2151 	if (!len)
2152 		return 0;
2153 	return master->_get_user_prot_info(master, len, retlen, buf);
2154 }
2155 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2156 
2157 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2158 			   size_t *retlen, u_char *buf)
2159 {
2160 	struct mtd_info *master = mtd_get_master(mtd);
2161 
2162 	*retlen = 0;
2163 	if (!master->_read_user_prot_reg)
2164 		return -EOPNOTSUPP;
2165 	if (!len)
2166 		return 0;
2167 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2168 }
2169 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2170 
2171 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2172 			    size_t *retlen, const u_char *buf)
2173 {
2174 	struct mtd_info *master = mtd_get_master(mtd);
2175 	int ret;
2176 
2177 	*retlen = 0;
2178 	if (!master->_write_user_prot_reg)
2179 		return -EOPNOTSUPP;
2180 	if (!len)
2181 		return 0;
2182 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2183 	if (ret)
2184 		return ret;
2185 
2186 	/*
2187 	 * If no data could be written at all, we are out of memory and
2188 	 * must return -ENOSPC.
2189 	 */
2190 	return (*retlen) ? 0 : -ENOSPC;
2191 }
2192 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2193 
2194 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2195 {
2196 	struct mtd_info *master = mtd_get_master(mtd);
2197 
2198 	if (!master->_lock_user_prot_reg)
2199 		return -EOPNOTSUPP;
2200 	if (!len)
2201 		return 0;
2202 	return master->_lock_user_prot_reg(master, from, len);
2203 }
2204 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2205 
2206 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2207 {
2208 	struct mtd_info *master = mtd_get_master(mtd);
2209 
2210 	if (!master->_erase_user_prot_reg)
2211 		return -EOPNOTSUPP;
2212 	if (!len)
2213 		return 0;
2214 	return master->_erase_user_prot_reg(master, from, len);
2215 }
2216 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2217 
2218 /* Chip-supported device locking */
2219 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2220 {
2221 	struct mtd_info *master = mtd_get_master(mtd);
2222 
2223 	if (!master->_lock)
2224 		return -EOPNOTSUPP;
2225 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2226 		return -EINVAL;
2227 	if (!len)
2228 		return 0;
2229 
2230 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2231 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2232 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2233 	}
2234 
2235 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2236 }
2237 EXPORT_SYMBOL_GPL(mtd_lock);
2238 
2239 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2240 {
2241 	struct mtd_info *master = mtd_get_master(mtd);
2242 
2243 	if (!master->_unlock)
2244 		return -EOPNOTSUPP;
2245 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2246 		return -EINVAL;
2247 	if (!len)
2248 		return 0;
2249 
2250 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2251 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2252 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2253 	}
2254 
2255 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2256 }
2257 EXPORT_SYMBOL_GPL(mtd_unlock);
2258 
2259 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2260 {
2261 	struct mtd_info *master = mtd_get_master(mtd);
2262 
2263 	if (!master->_is_locked)
2264 		return -EOPNOTSUPP;
2265 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2266 		return -EINVAL;
2267 	if (!len)
2268 		return 0;
2269 
2270 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2271 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2272 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2273 	}
2274 
2275 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2276 }
2277 EXPORT_SYMBOL_GPL(mtd_is_locked);
2278 
2279 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2280 {
2281 	struct mtd_info *master = mtd_get_master(mtd);
2282 
2283 	if (ofs < 0 || ofs >= mtd->size)
2284 		return -EINVAL;
2285 	if (!master->_block_isreserved)
2286 		return 0;
2287 
2288 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2289 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2290 
2291 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2292 }
2293 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2294 
2295 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2296 {
2297 	struct mtd_info *master = mtd_get_master(mtd);
2298 
2299 	if (ofs < 0 || ofs >= mtd->size)
2300 		return -EINVAL;
2301 	if (!master->_block_isbad)
2302 		return 0;
2303 
2304 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2305 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2306 
2307 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2308 }
2309 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2310 
2311 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2312 {
2313 	struct mtd_info *master = mtd_get_master(mtd);
2314 	int ret;
2315 
2316 	if (!master->_block_markbad)
2317 		return -EOPNOTSUPP;
2318 	if (ofs < 0 || ofs >= mtd->size)
2319 		return -EINVAL;
2320 	if (!(mtd->flags & MTD_WRITEABLE))
2321 		return -EROFS;
2322 
2323 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2324 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2325 
2326 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2327 	if (ret)
2328 		return ret;
2329 
2330 	while (mtd->parent) {
2331 		mtd->ecc_stats.badblocks++;
2332 		mtd = mtd->parent;
2333 	}
2334 
2335 	return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2338 
2339 /*
2340  * default_mtd_writev - the default writev method
2341  * @mtd: mtd device description object pointer
2342  * @vecs: the vectors to write
2343  * @count: count of vectors in @vecs
2344  * @to: the MTD device offset to write to
2345  * @retlen: on exit contains the count of bytes written to the MTD device.
2346  *
2347  * This function returns zero in case of success and a negative error code in
2348  * case of failure.
2349  */
2350 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2351 			      unsigned long count, loff_t to, size_t *retlen)
2352 {
2353 	unsigned long i;
2354 	size_t totlen = 0, thislen;
2355 	int ret = 0;
2356 
2357 	for (i = 0; i < count; i++) {
2358 		if (!vecs[i].iov_len)
2359 			continue;
2360 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2361 				vecs[i].iov_base);
2362 		totlen += thislen;
2363 		if (ret || thislen != vecs[i].iov_len)
2364 			break;
2365 		to += vecs[i].iov_len;
2366 	}
2367 	*retlen = totlen;
2368 	return ret;
2369 }
2370 
2371 /*
2372  * mtd_writev - the vector-based MTD write method
2373  * @mtd: mtd device description object pointer
2374  * @vecs: the vectors to write
2375  * @count: count of vectors in @vecs
2376  * @to: the MTD device offset to write to
2377  * @retlen: on exit contains the count of bytes written to the MTD device.
2378  *
2379  * This function returns zero in case of success and a negative error code in
2380  * case of failure.
2381  */
2382 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2383 	       unsigned long count, loff_t to, size_t *retlen)
2384 {
2385 	struct mtd_info *master = mtd_get_master(mtd);
2386 
2387 	*retlen = 0;
2388 	if (!(mtd->flags & MTD_WRITEABLE))
2389 		return -EROFS;
2390 
2391 	if (!master->_writev)
2392 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2393 
2394 	return master->_writev(master, vecs, count,
2395 			       mtd_get_master_ofs(mtd, to), retlen);
2396 }
2397 EXPORT_SYMBOL_GPL(mtd_writev);
2398 
2399 /**
2400  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2401  * @mtd: mtd device description object pointer
2402  * @size: a pointer to the ideal or maximum size of the allocation, points
2403  *        to the actual allocation size on success.
2404  *
2405  * This routine attempts to allocate a contiguous kernel buffer up to
2406  * the specified size, backing off the size of the request exponentially
2407  * until the request succeeds or until the allocation size falls below
2408  * the system page size. This attempts to make sure it does not adversely
2409  * impact system performance, so when allocating more than one page, we
2410  * ask the memory allocator to avoid re-trying, swapping, writing back
2411  * or performing I/O.
2412  *
2413  * Note, this function also makes sure that the allocated buffer is aligned to
2414  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2415  *
2416  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2417  * to handle smaller (i.e. degraded) buffer allocations under low- or
2418  * fragmented-memory situations where such reduced allocations, from a
2419  * requested ideal, are allowed.
2420  *
2421  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2422  */
2423 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2424 {
2425 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2426 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2427 	void *kbuf;
2428 
2429 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2430 
2431 	while (*size > min_alloc) {
2432 		kbuf = kmalloc(*size, flags);
2433 		if (kbuf)
2434 			return kbuf;
2435 
2436 		*size >>= 1;
2437 		*size = ALIGN(*size, mtd->writesize);
2438 	}
2439 
2440 	/*
2441 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2442 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2443 	 */
2444 	return kmalloc(*size, GFP_KERNEL);
2445 }
2446 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2447 
2448 #ifdef CONFIG_PROC_FS
2449 
2450 /*====================================================================*/
2451 /* Support for /proc/mtd */
2452 
2453 static int mtd_proc_show(struct seq_file *m, void *v)
2454 {
2455 	struct mtd_info *mtd;
2456 
2457 	seq_puts(m, "dev:    size   erasesize  name\n");
2458 	mutex_lock(&mtd_table_mutex);
2459 	mtd_for_each_device(mtd) {
2460 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2461 			   mtd->index, (unsigned long long)mtd->size,
2462 			   mtd->erasesize, mtd->name);
2463 	}
2464 	mutex_unlock(&mtd_table_mutex);
2465 	return 0;
2466 }
2467 #endif /* CONFIG_PROC_FS */
2468 
2469 /*====================================================================*/
2470 /* Init code */
2471 
2472 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2473 {
2474 	struct backing_dev_info *bdi;
2475 	int ret;
2476 
2477 	bdi = bdi_alloc(NUMA_NO_NODE);
2478 	if (!bdi)
2479 		return ERR_PTR(-ENOMEM);
2480 	bdi->ra_pages = 0;
2481 	bdi->io_pages = 0;
2482 
2483 	/*
2484 	 * We put '-0' suffix to the name to get the same name format as we
2485 	 * used to get. Since this is called only once, we get a unique name.
2486 	 */
2487 	ret = bdi_register(bdi, "%.28s-0", name);
2488 	if (ret)
2489 		bdi_put(bdi);
2490 
2491 	return ret ? ERR_PTR(ret) : bdi;
2492 }
2493 
2494 static struct proc_dir_entry *proc_mtd;
2495 
2496 static int __init init_mtd(void)
2497 {
2498 	int ret;
2499 
2500 	ret = class_register(&mtd_class);
2501 	if (ret)
2502 		goto err_reg;
2503 
2504 	mtd_bdi = mtd_bdi_init("mtd");
2505 	if (IS_ERR(mtd_bdi)) {
2506 		ret = PTR_ERR(mtd_bdi);
2507 		goto err_bdi;
2508 	}
2509 
2510 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2511 
2512 	ret = init_mtdchar();
2513 	if (ret)
2514 		goto out_procfs;
2515 
2516 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2517 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2518 			    &mtd_expert_analysis_mode);
2519 
2520 	return 0;
2521 
2522 out_procfs:
2523 	if (proc_mtd)
2524 		remove_proc_entry("mtd", NULL);
2525 	bdi_unregister(mtd_bdi);
2526 	bdi_put(mtd_bdi);
2527 err_bdi:
2528 	class_unregister(&mtd_class);
2529 err_reg:
2530 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2531 	return ret;
2532 }
2533 
2534 static void __exit cleanup_mtd(void)
2535 {
2536 	debugfs_remove_recursive(dfs_dir_mtd);
2537 	cleanup_mtdchar();
2538 	if (proc_mtd)
2539 		remove_proc_entry("mtd", NULL);
2540 	class_unregister(&mtd_class);
2541 	bdi_unregister(mtd_bdi);
2542 	bdi_put(mtd_bdi);
2543 	idr_destroy(&mtd_idr);
2544 }
2545 
2546 module_init(init_mtd);
2547 module_exit(cleanup_mtd);
2548 
2549 MODULE_LICENSE("GPL");
2550 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2551 MODULE_DESCRIPTION("Core MTD registration and access routines");
2552