1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 #include <linux/root_dev.h> 32 33 #include <linux/mtd/mtd.h> 34 #include <linux/mtd/partitions.h> 35 36 #include "mtdcore.h" 37 38 struct backing_dev_info *mtd_bdi; 39 40 #ifdef CONFIG_PM_SLEEP 41 42 static int mtd_cls_suspend(struct device *dev) 43 { 44 struct mtd_info *mtd = dev_get_drvdata(dev); 45 46 return mtd ? mtd_suspend(mtd) : 0; 47 } 48 49 static int mtd_cls_resume(struct device *dev) 50 { 51 struct mtd_info *mtd = dev_get_drvdata(dev); 52 53 if (mtd) 54 mtd_resume(mtd); 55 return 0; 56 } 57 58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 60 #else 61 #define MTD_CLS_PM_OPS NULL 62 #endif 63 64 static struct class mtd_class = { 65 .name = "mtd", 66 .owner = THIS_MODULE, 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 /* remove /dev/mtdXro node */ 97 device_destroy(&mtd_class, index + 1); 98 } 99 100 #define MTD_DEVICE_ATTR_RO(name) \ 101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 102 103 #define MTD_DEVICE_ATTR_RW(name) \ 104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 105 106 static ssize_t mtd_type_show(struct device *dev, 107 struct device_attribute *attr, char *buf) 108 { 109 struct mtd_info *mtd = dev_get_drvdata(dev); 110 char *type; 111 112 switch (mtd->type) { 113 case MTD_ABSENT: 114 type = "absent"; 115 break; 116 case MTD_RAM: 117 type = "ram"; 118 break; 119 case MTD_ROM: 120 type = "rom"; 121 break; 122 case MTD_NORFLASH: 123 type = "nor"; 124 break; 125 case MTD_NANDFLASH: 126 type = "nand"; 127 break; 128 case MTD_DATAFLASH: 129 type = "dataflash"; 130 break; 131 case MTD_UBIVOLUME: 132 type = "ubi"; 133 break; 134 case MTD_MLCNANDFLASH: 135 type = "mlc-nand"; 136 break; 137 default: 138 type = "unknown"; 139 } 140 141 return sysfs_emit(buf, "%s\n", type); 142 } 143 MTD_DEVICE_ATTR_RO(type); 144 145 static ssize_t mtd_flags_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct mtd_info *mtd = dev_get_drvdata(dev); 149 150 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 151 } 152 MTD_DEVICE_ATTR_RO(flags); 153 154 static ssize_t mtd_size_show(struct device *dev, 155 struct device_attribute *attr, char *buf) 156 { 157 struct mtd_info *mtd = dev_get_drvdata(dev); 158 159 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 160 } 161 MTD_DEVICE_ATTR_RO(size); 162 163 static ssize_t mtd_erasesize_show(struct device *dev, 164 struct device_attribute *attr, char *buf) 165 { 166 struct mtd_info *mtd = dev_get_drvdata(dev); 167 168 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 169 } 170 MTD_DEVICE_ATTR_RO(erasesize); 171 172 static ssize_t mtd_writesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 178 } 179 MTD_DEVICE_ATTR_RO(writesize); 180 181 static ssize_t mtd_subpagesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 186 187 return sysfs_emit(buf, "%u\n", subpagesize); 188 } 189 MTD_DEVICE_ATTR_RO(subpagesize); 190 191 static ssize_t mtd_oobsize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 196 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 197 } 198 MTD_DEVICE_ATTR_RO(oobsize); 199 200 static ssize_t mtd_oobavail_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct mtd_info *mtd = dev_get_drvdata(dev); 204 205 return sysfs_emit(buf, "%u\n", mtd->oobavail); 206 } 207 MTD_DEVICE_ATTR_RO(oobavail); 208 209 static ssize_t mtd_numeraseregions_show(struct device *dev, 210 struct device_attribute *attr, char *buf) 211 { 212 struct mtd_info *mtd = dev_get_drvdata(dev); 213 214 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 215 } 216 MTD_DEVICE_ATTR_RO(numeraseregions); 217 218 static ssize_t mtd_name_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct mtd_info *mtd = dev_get_drvdata(dev); 222 223 return sysfs_emit(buf, "%s\n", mtd->name); 224 } 225 MTD_DEVICE_ATTR_RO(name); 226 227 static ssize_t mtd_ecc_strength_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct mtd_info *mtd = dev_get_drvdata(dev); 231 232 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 233 } 234 MTD_DEVICE_ATTR_RO(ecc_strength); 235 236 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 237 struct device_attribute *attr, 238 char *buf) 239 { 240 struct mtd_info *mtd = dev_get_drvdata(dev); 241 242 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 243 } 244 245 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 246 struct device_attribute *attr, 247 const char *buf, size_t count) 248 { 249 struct mtd_info *mtd = dev_get_drvdata(dev); 250 unsigned int bitflip_threshold; 251 int retval; 252 253 retval = kstrtouint(buf, 0, &bitflip_threshold); 254 if (retval) 255 return retval; 256 257 mtd->bitflip_threshold = bitflip_threshold; 258 return count; 259 } 260 MTD_DEVICE_ATTR_RW(bitflip_threshold); 261 262 static ssize_t mtd_ecc_step_size_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct mtd_info *mtd = dev_get_drvdata(dev); 266 267 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 268 269 } 270 MTD_DEVICE_ATTR_RO(ecc_step_size); 271 272 static ssize_t mtd_corrected_bits_show(struct device *dev, 273 struct device_attribute *attr, char *buf) 274 { 275 struct mtd_info *mtd = dev_get_drvdata(dev); 276 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 277 278 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 279 } 280 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 281 282 static ssize_t mtd_ecc_failures_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct mtd_info *mtd = dev_get_drvdata(dev); 286 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 287 288 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 289 } 290 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 291 292 static ssize_t mtd_bad_blocks_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 299 } 300 MTD_DEVICE_ATTR_RO(bad_blocks); 301 302 static ssize_t mtd_bbt_blocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 309 } 310 MTD_DEVICE_ATTR_RO(bbt_blocks); 311 312 static struct attribute *mtd_attrs[] = { 313 &dev_attr_type.attr, 314 &dev_attr_flags.attr, 315 &dev_attr_size.attr, 316 &dev_attr_erasesize.attr, 317 &dev_attr_writesize.attr, 318 &dev_attr_subpagesize.attr, 319 &dev_attr_oobsize.attr, 320 &dev_attr_oobavail.attr, 321 &dev_attr_numeraseregions.attr, 322 &dev_attr_name.attr, 323 &dev_attr_ecc_strength.attr, 324 &dev_attr_ecc_step_size.attr, 325 &dev_attr_corrected_bits.attr, 326 &dev_attr_ecc_failures.attr, 327 &dev_attr_bad_blocks.attr, 328 &dev_attr_bbt_blocks.attr, 329 &dev_attr_bitflip_threshold.attr, 330 NULL, 331 }; 332 ATTRIBUTE_GROUPS(mtd); 333 334 static const struct device_type mtd_devtype = { 335 .name = "mtd", 336 .groups = mtd_groups, 337 .release = mtd_release, 338 }; 339 340 static bool mtd_expert_analysis_mode; 341 342 #ifdef CONFIG_DEBUG_FS 343 bool mtd_check_expert_analysis_mode(void) 344 { 345 const char *mtd_expert_analysis_warning = 346 "Bad block checks have been entirely disabled.\n" 347 "This is only reserved for post-mortem forensics and debug purposes.\n" 348 "Never enable this mode if you do not know what you are doing!\n"; 349 350 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 351 } 352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 353 #endif 354 355 static struct dentry *dfs_dir_mtd; 356 357 static void mtd_debugfs_populate(struct mtd_info *mtd) 358 { 359 struct device *dev = &mtd->dev; 360 361 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 362 return; 363 364 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 365 } 366 367 #ifndef CONFIG_MMU 368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 369 { 370 switch (mtd->type) { 371 case MTD_RAM: 372 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 373 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 374 case MTD_ROM: 375 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 376 NOMMU_MAP_READ; 377 default: 378 return NOMMU_MAP_COPY; 379 } 380 } 381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 382 #endif 383 384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 385 void *cmd) 386 { 387 struct mtd_info *mtd; 388 389 mtd = container_of(n, struct mtd_info, reboot_notifier); 390 mtd->_reboot(mtd); 391 392 return NOTIFY_DONE; 393 } 394 395 /** 396 * mtd_wunit_to_pairing_info - get pairing information of a wunit 397 * @mtd: pointer to new MTD device info structure 398 * @wunit: write unit we are interested in 399 * @info: returned pairing information 400 * 401 * Retrieve pairing information associated to the wunit. 402 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 403 * paired together, and where programming a page may influence the page it is 404 * paired with. 405 * The notion of page is replaced by the term wunit (write-unit) to stay 406 * consistent with the ->writesize field. 407 * 408 * The @wunit argument can be extracted from an absolute offset using 409 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 410 * to @wunit. 411 * 412 * From the pairing info the MTD user can find all the wunits paired with 413 * @wunit using the following loop: 414 * 415 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 416 * info.pair = i; 417 * mtd_pairing_info_to_wunit(mtd, &info); 418 * ... 419 * } 420 */ 421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 422 struct mtd_pairing_info *info) 423 { 424 struct mtd_info *master = mtd_get_master(mtd); 425 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 426 427 if (wunit < 0 || wunit >= npairs) 428 return -EINVAL; 429 430 if (master->pairing && master->pairing->get_info) 431 return master->pairing->get_info(master, wunit, info); 432 433 info->group = 0; 434 info->pair = wunit; 435 436 return 0; 437 } 438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 439 440 /** 441 * mtd_pairing_info_to_wunit - get wunit from pairing information 442 * @mtd: pointer to new MTD device info structure 443 * @info: pairing information struct 444 * 445 * Returns a positive number representing the wunit associated to the info 446 * struct, or a negative error code. 447 * 448 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 449 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 450 * doc). 451 * 452 * It can also be used to only program the first page of each pair (i.e. 453 * page attached to group 0), which allows one to use an MLC NAND in 454 * software-emulated SLC mode: 455 * 456 * info.group = 0; 457 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 458 * for (info.pair = 0; info.pair < npairs; info.pair++) { 459 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 460 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 461 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 462 * } 463 */ 464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 465 const struct mtd_pairing_info *info) 466 { 467 struct mtd_info *master = mtd_get_master(mtd); 468 int ngroups = mtd_pairing_groups(master); 469 int npairs = mtd_wunit_per_eb(master) / ngroups; 470 471 if (!info || info->pair < 0 || info->pair >= npairs || 472 info->group < 0 || info->group >= ngroups) 473 return -EINVAL; 474 475 if (master->pairing && master->pairing->get_wunit) 476 return mtd->pairing->get_wunit(master, info); 477 478 return info->pair; 479 } 480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 481 482 /** 483 * mtd_pairing_groups - get the number of pairing groups 484 * @mtd: pointer to new MTD device info structure 485 * 486 * Returns the number of pairing groups. 487 * 488 * This number is usually equal to the number of bits exposed by a single 489 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 490 * to iterate over all pages of a given pair. 491 */ 492 int mtd_pairing_groups(struct mtd_info *mtd) 493 { 494 struct mtd_info *master = mtd_get_master(mtd); 495 496 if (!master->pairing || !master->pairing->ngroups) 497 return 1; 498 499 return master->pairing->ngroups; 500 } 501 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 502 503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 504 void *val, size_t bytes) 505 { 506 struct mtd_info *mtd = priv; 507 size_t retlen; 508 int err; 509 510 err = mtd_read(mtd, offset, bytes, &retlen, val); 511 if (err && err != -EUCLEAN) 512 return err; 513 514 return retlen == bytes ? 0 : -EIO; 515 } 516 517 static int mtd_nvmem_add(struct mtd_info *mtd) 518 { 519 struct device_node *node = mtd_get_of_node(mtd); 520 struct nvmem_config config = {}; 521 522 config.id = -1; 523 config.dev = &mtd->dev; 524 config.name = dev_name(&mtd->dev); 525 config.owner = THIS_MODULE; 526 config.reg_read = mtd_nvmem_reg_read; 527 config.size = mtd->size; 528 config.word_size = 1; 529 config.stride = 1; 530 config.read_only = true; 531 config.root_only = true; 532 config.ignore_wp = true; 533 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 534 config.priv = mtd; 535 536 mtd->nvmem = nvmem_register(&config); 537 if (IS_ERR(mtd->nvmem)) { 538 /* Just ignore if there is no NVMEM support in the kernel */ 539 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 540 mtd->nvmem = NULL; 541 } else { 542 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 543 return PTR_ERR(mtd->nvmem); 544 } 545 } 546 547 return 0; 548 } 549 550 static void mtd_check_of_node(struct mtd_info *mtd) 551 { 552 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 553 const char *pname, *prefix = "partition-"; 554 int plen, mtd_name_len, offset, prefix_len; 555 556 /* Check if MTD already has a device node */ 557 if (mtd_get_of_node(mtd)) 558 return; 559 560 if (!mtd_is_partition(mtd)) 561 return; 562 563 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 564 if (!parent_dn) 565 return; 566 567 if (mtd_is_partition(mtd->parent)) 568 partitions = of_node_get(parent_dn); 569 else 570 partitions = of_get_child_by_name(parent_dn, "partitions"); 571 if (!partitions) 572 goto exit_parent; 573 574 prefix_len = strlen(prefix); 575 mtd_name_len = strlen(mtd->name); 576 577 /* Search if a partition is defined with the same name */ 578 for_each_child_of_node(partitions, mtd_dn) { 579 /* Skip partition with no/wrong prefix */ 580 if (!of_node_name_prefix(mtd_dn, prefix)) 581 continue; 582 583 /* Label have priority. Check that first */ 584 if (!of_property_read_string(mtd_dn, "label", &pname)) { 585 offset = 0; 586 } else { 587 pname = mtd_dn->name; 588 offset = prefix_len; 589 } 590 591 plen = strlen(pname) - offset; 592 if (plen == mtd_name_len && 593 !strncmp(mtd->name, pname + offset, plen)) { 594 mtd_set_of_node(mtd, mtd_dn); 595 break; 596 } 597 } 598 599 of_node_put(partitions); 600 exit_parent: 601 of_node_put(parent_dn); 602 } 603 604 /** 605 * add_mtd_device - register an MTD device 606 * @mtd: pointer to new MTD device info structure 607 * 608 * Add a device to the list of MTD devices present in the system, and 609 * notify each currently active MTD 'user' of its arrival. Returns 610 * zero on success or non-zero on failure. 611 */ 612 613 int add_mtd_device(struct mtd_info *mtd) 614 { 615 struct device_node *np = mtd_get_of_node(mtd); 616 struct mtd_info *master = mtd_get_master(mtd); 617 struct mtd_notifier *not; 618 int i, error, ofidx; 619 620 /* 621 * May occur, for instance, on buggy drivers which call 622 * mtd_device_parse_register() multiple times on the same master MTD, 623 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 624 */ 625 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 626 return -EEXIST; 627 628 BUG_ON(mtd->writesize == 0); 629 630 /* 631 * MTD drivers should implement ->_{write,read}() or 632 * ->_{write,read}_oob(), but not both. 633 */ 634 if (WARN_ON((mtd->_write && mtd->_write_oob) || 635 (mtd->_read && mtd->_read_oob))) 636 return -EINVAL; 637 638 if (WARN_ON((!mtd->erasesize || !master->_erase) && 639 !(mtd->flags & MTD_NO_ERASE))) 640 return -EINVAL; 641 642 /* 643 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 644 * master is an MLC NAND and has a proper pairing scheme defined. 645 * We also reject masters that implement ->_writev() for now, because 646 * NAND controller drivers don't implement this hook, and adding the 647 * SLC -> MLC address/length conversion to this path is useless if we 648 * don't have a user. 649 */ 650 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 651 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 652 !master->pairing || master->_writev)) 653 return -EINVAL; 654 655 mutex_lock(&mtd_table_mutex); 656 657 ofidx = -1; 658 if (np) 659 ofidx = of_alias_get_id(np, "mtd"); 660 if (ofidx >= 0) 661 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 662 else 663 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 664 if (i < 0) { 665 error = i; 666 goto fail_locked; 667 } 668 669 mtd->index = i; 670 mtd->usecount = 0; 671 672 /* default value if not set by driver */ 673 if (mtd->bitflip_threshold == 0) 674 mtd->bitflip_threshold = mtd->ecc_strength; 675 676 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 677 int ngroups = mtd_pairing_groups(master); 678 679 mtd->erasesize /= ngroups; 680 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 681 mtd->erasesize; 682 } 683 684 if (is_power_of_2(mtd->erasesize)) 685 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 686 else 687 mtd->erasesize_shift = 0; 688 689 if (is_power_of_2(mtd->writesize)) 690 mtd->writesize_shift = ffs(mtd->writesize) - 1; 691 else 692 mtd->writesize_shift = 0; 693 694 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 695 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 696 697 /* Some chips always power up locked. Unlock them now */ 698 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 699 error = mtd_unlock(mtd, 0, mtd->size); 700 if (error && error != -EOPNOTSUPP) 701 printk(KERN_WARNING 702 "%s: unlock failed, writes may not work\n", 703 mtd->name); 704 /* Ignore unlock failures? */ 705 error = 0; 706 } 707 708 /* Caller should have set dev.parent to match the 709 * physical device, if appropriate. 710 */ 711 mtd->dev.type = &mtd_devtype; 712 mtd->dev.class = &mtd_class; 713 mtd->dev.devt = MTD_DEVT(i); 714 dev_set_name(&mtd->dev, "mtd%d", i); 715 dev_set_drvdata(&mtd->dev, mtd); 716 mtd_check_of_node(mtd); 717 of_node_get(mtd_get_of_node(mtd)); 718 error = device_register(&mtd->dev); 719 if (error) { 720 put_device(&mtd->dev); 721 goto fail_added; 722 } 723 724 /* Add the nvmem provider */ 725 error = mtd_nvmem_add(mtd); 726 if (error) 727 goto fail_nvmem_add; 728 729 mtd_debugfs_populate(mtd); 730 731 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 732 "mtd%dro", i); 733 734 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 735 /* No need to get a refcount on the module containing 736 the notifier, since we hold the mtd_table_mutex */ 737 list_for_each_entry(not, &mtd_notifiers, list) 738 not->add(mtd); 739 740 mutex_unlock(&mtd_table_mutex); 741 742 if (of_find_property(mtd_get_of_node(mtd), "linux,rootfs", NULL)) { 743 if (IS_BUILTIN(CONFIG_MTD)) { 744 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 745 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 746 } else { 747 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 748 mtd->index, mtd->name); 749 } 750 } 751 752 /* We _know_ we aren't being removed, because 753 our caller is still holding us here. So none 754 of this try_ nonsense, and no bitching about it 755 either. :) */ 756 __module_get(THIS_MODULE); 757 return 0; 758 759 fail_nvmem_add: 760 device_unregister(&mtd->dev); 761 fail_added: 762 of_node_put(mtd_get_of_node(mtd)); 763 idr_remove(&mtd_idr, i); 764 fail_locked: 765 mutex_unlock(&mtd_table_mutex); 766 return error; 767 } 768 769 /** 770 * del_mtd_device - unregister an MTD device 771 * @mtd: pointer to MTD device info structure 772 * 773 * Remove a device from the list of MTD devices present in the system, 774 * and notify each currently active MTD 'user' of its departure. 775 * Returns zero on success or 1 on failure, which currently will happen 776 * if the requested device does not appear to be present in the list. 777 */ 778 779 int del_mtd_device(struct mtd_info *mtd) 780 { 781 int ret; 782 struct mtd_notifier *not; 783 784 mutex_lock(&mtd_table_mutex); 785 786 if (idr_find(&mtd_idr, mtd->index) != mtd) { 787 ret = -ENODEV; 788 goto out_error; 789 } 790 791 /* No need to get a refcount on the module containing 792 the notifier, since we hold the mtd_table_mutex */ 793 list_for_each_entry(not, &mtd_notifiers, list) 794 not->remove(mtd); 795 796 if (mtd->usecount) { 797 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 798 mtd->index, mtd->name, mtd->usecount); 799 ret = -EBUSY; 800 } else { 801 debugfs_remove_recursive(mtd->dbg.dfs_dir); 802 803 /* Try to remove the NVMEM provider */ 804 nvmem_unregister(mtd->nvmem); 805 806 device_unregister(&mtd->dev); 807 808 /* Clear dev so mtd can be safely re-registered later if desired */ 809 memset(&mtd->dev, 0, sizeof(mtd->dev)); 810 811 idr_remove(&mtd_idr, mtd->index); 812 of_node_put(mtd_get_of_node(mtd)); 813 814 module_put(THIS_MODULE); 815 ret = 0; 816 } 817 818 out_error: 819 mutex_unlock(&mtd_table_mutex); 820 return ret; 821 } 822 823 /* 824 * Set a few defaults based on the parent devices, if not provided by the 825 * driver 826 */ 827 static void mtd_set_dev_defaults(struct mtd_info *mtd) 828 { 829 if (mtd->dev.parent) { 830 if (!mtd->owner && mtd->dev.parent->driver) 831 mtd->owner = mtd->dev.parent->driver->owner; 832 if (!mtd->name) 833 mtd->name = dev_name(mtd->dev.parent); 834 } else { 835 pr_debug("mtd device won't show a device symlink in sysfs\n"); 836 } 837 838 INIT_LIST_HEAD(&mtd->partitions); 839 mutex_init(&mtd->master.partitions_lock); 840 mutex_init(&mtd->master.chrdev_lock); 841 } 842 843 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 844 { 845 struct otp_info *info; 846 ssize_t size = 0; 847 unsigned int i; 848 size_t retlen; 849 int ret; 850 851 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 852 if (!info) 853 return -ENOMEM; 854 855 if (is_user) 856 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 857 else 858 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 859 if (ret) 860 goto err; 861 862 for (i = 0; i < retlen / sizeof(*info); i++) 863 size += info[i].length; 864 865 kfree(info); 866 return size; 867 868 err: 869 kfree(info); 870 871 /* ENODATA means there is no OTP region. */ 872 return ret == -ENODATA ? 0 : ret; 873 } 874 875 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 876 const char *compatible, 877 int size, 878 nvmem_reg_read_t reg_read) 879 { 880 struct nvmem_device *nvmem = NULL; 881 struct nvmem_config config = {}; 882 struct device_node *np; 883 884 /* DT binding is optional */ 885 np = of_get_compatible_child(mtd->dev.of_node, compatible); 886 887 /* OTP nvmem will be registered on the physical device */ 888 config.dev = mtd->dev.parent; 889 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 890 config.id = NVMEM_DEVID_NONE; 891 config.owner = THIS_MODULE; 892 config.type = NVMEM_TYPE_OTP; 893 config.root_only = true; 894 config.ignore_wp = true; 895 config.reg_read = reg_read; 896 config.size = size; 897 config.of_node = np; 898 config.priv = mtd; 899 900 nvmem = nvmem_register(&config); 901 /* Just ignore if there is no NVMEM support in the kernel */ 902 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 903 nvmem = NULL; 904 905 of_node_put(np); 906 kfree(config.name); 907 908 return nvmem; 909 } 910 911 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 912 void *val, size_t bytes) 913 { 914 struct mtd_info *mtd = priv; 915 size_t retlen; 916 int ret; 917 918 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 919 if (ret) 920 return ret; 921 922 return retlen == bytes ? 0 : -EIO; 923 } 924 925 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 926 void *val, size_t bytes) 927 { 928 struct mtd_info *mtd = priv; 929 size_t retlen; 930 int ret; 931 932 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 933 if (ret) 934 return ret; 935 936 return retlen == bytes ? 0 : -EIO; 937 } 938 939 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 940 { 941 struct nvmem_device *nvmem; 942 ssize_t size; 943 int err; 944 945 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 946 size = mtd_otp_size(mtd, true); 947 if (size < 0) 948 return size; 949 950 if (size > 0) { 951 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 952 mtd_nvmem_user_otp_reg_read); 953 if (IS_ERR(nvmem)) { 954 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 955 return PTR_ERR(nvmem); 956 } 957 mtd->otp_user_nvmem = nvmem; 958 } 959 } 960 961 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 962 size = mtd_otp_size(mtd, false); 963 if (size < 0) { 964 err = size; 965 goto err; 966 } 967 968 if (size > 0) { 969 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 970 mtd_nvmem_fact_otp_reg_read); 971 if (IS_ERR(nvmem)) { 972 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 973 err = PTR_ERR(nvmem); 974 goto err; 975 } 976 mtd->otp_factory_nvmem = nvmem; 977 } 978 } 979 980 return 0; 981 982 err: 983 nvmem_unregister(mtd->otp_user_nvmem); 984 return err; 985 } 986 987 /** 988 * mtd_device_parse_register - parse partitions and register an MTD device. 989 * 990 * @mtd: the MTD device to register 991 * @types: the list of MTD partition probes to try, see 992 * 'parse_mtd_partitions()' for more information 993 * @parser_data: MTD partition parser-specific data 994 * @parts: fallback partition information to register, if parsing fails; 995 * only valid if %nr_parts > %0 996 * @nr_parts: the number of partitions in parts, if zero then the full 997 * MTD device is registered if no partition info is found 998 * 999 * This function aggregates MTD partitions parsing (done by 1000 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1001 * basically follows the most common pattern found in many MTD drivers: 1002 * 1003 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1004 * registered first. 1005 * * Then It tries to probe partitions on MTD device @mtd using parsers 1006 * specified in @types (if @types is %NULL, then the default list of parsers 1007 * is used, see 'parse_mtd_partitions()' for more information). If none are 1008 * found this functions tries to fallback to information specified in 1009 * @parts/@nr_parts. 1010 * * If no partitions were found this function just registers the MTD device 1011 * @mtd and exits. 1012 * 1013 * Returns zero in case of success and a negative error code in case of failure. 1014 */ 1015 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1016 struct mtd_part_parser_data *parser_data, 1017 const struct mtd_partition *parts, 1018 int nr_parts) 1019 { 1020 int ret; 1021 1022 mtd_set_dev_defaults(mtd); 1023 1024 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1025 ret = add_mtd_device(mtd); 1026 if (ret) 1027 return ret; 1028 } 1029 1030 /* Prefer parsed partitions over driver-provided fallback */ 1031 ret = parse_mtd_partitions(mtd, types, parser_data); 1032 if (ret == -EPROBE_DEFER) 1033 goto out; 1034 1035 if (ret > 0) 1036 ret = 0; 1037 else if (nr_parts) 1038 ret = add_mtd_partitions(mtd, parts, nr_parts); 1039 else if (!device_is_registered(&mtd->dev)) 1040 ret = add_mtd_device(mtd); 1041 else 1042 ret = 0; 1043 1044 if (ret) 1045 goto out; 1046 1047 /* 1048 * FIXME: some drivers unfortunately call this function more than once. 1049 * So we have to check if we've already assigned the reboot notifier. 1050 * 1051 * Generally, we can make multiple calls work for most cases, but it 1052 * does cause problems with parse_mtd_partitions() above (e.g., 1053 * cmdlineparts will register partitions more than once). 1054 */ 1055 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1056 "MTD already registered\n"); 1057 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1058 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1059 register_reboot_notifier(&mtd->reboot_notifier); 1060 } 1061 1062 ret = mtd_otp_nvmem_add(mtd); 1063 1064 out: 1065 if (ret && device_is_registered(&mtd->dev)) 1066 del_mtd_device(mtd); 1067 1068 return ret; 1069 } 1070 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1071 1072 /** 1073 * mtd_device_unregister - unregister an existing MTD device. 1074 * 1075 * @master: the MTD device to unregister. This will unregister both the master 1076 * and any partitions if registered. 1077 */ 1078 int mtd_device_unregister(struct mtd_info *master) 1079 { 1080 int err; 1081 1082 if (master->_reboot) { 1083 unregister_reboot_notifier(&master->reboot_notifier); 1084 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1085 } 1086 1087 nvmem_unregister(master->otp_user_nvmem); 1088 nvmem_unregister(master->otp_factory_nvmem); 1089 1090 err = del_mtd_partitions(master); 1091 if (err) 1092 return err; 1093 1094 if (!device_is_registered(&master->dev)) 1095 return 0; 1096 1097 return del_mtd_device(master); 1098 } 1099 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1100 1101 /** 1102 * register_mtd_user - register a 'user' of MTD devices. 1103 * @new: pointer to notifier info structure 1104 * 1105 * Registers a pair of callbacks function to be called upon addition 1106 * or removal of MTD devices. Causes the 'add' callback to be immediately 1107 * invoked for each MTD device currently present in the system. 1108 */ 1109 void register_mtd_user (struct mtd_notifier *new) 1110 { 1111 struct mtd_info *mtd; 1112 1113 mutex_lock(&mtd_table_mutex); 1114 1115 list_add(&new->list, &mtd_notifiers); 1116 1117 __module_get(THIS_MODULE); 1118 1119 mtd_for_each_device(mtd) 1120 new->add(mtd); 1121 1122 mutex_unlock(&mtd_table_mutex); 1123 } 1124 EXPORT_SYMBOL_GPL(register_mtd_user); 1125 1126 /** 1127 * unregister_mtd_user - unregister a 'user' of MTD devices. 1128 * @old: pointer to notifier info structure 1129 * 1130 * Removes a callback function pair from the list of 'users' to be 1131 * notified upon addition or removal of MTD devices. Causes the 1132 * 'remove' callback to be immediately invoked for each MTD device 1133 * currently present in the system. 1134 */ 1135 int unregister_mtd_user (struct mtd_notifier *old) 1136 { 1137 struct mtd_info *mtd; 1138 1139 mutex_lock(&mtd_table_mutex); 1140 1141 module_put(THIS_MODULE); 1142 1143 mtd_for_each_device(mtd) 1144 old->remove(mtd); 1145 1146 list_del(&old->list); 1147 mutex_unlock(&mtd_table_mutex); 1148 return 0; 1149 } 1150 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1151 1152 /** 1153 * get_mtd_device - obtain a validated handle for an MTD device 1154 * @mtd: last known address of the required MTD device 1155 * @num: internal device number of the required MTD device 1156 * 1157 * Given a number and NULL address, return the num'th entry in the device 1158 * table, if any. Given an address and num == -1, search the device table 1159 * for a device with that address and return if it's still present. Given 1160 * both, return the num'th driver only if its address matches. Return 1161 * error code if not. 1162 */ 1163 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1164 { 1165 struct mtd_info *ret = NULL, *other; 1166 int err = -ENODEV; 1167 1168 mutex_lock(&mtd_table_mutex); 1169 1170 if (num == -1) { 1171 mtd_for_each_device(other) { 1172 if (other == mtd) { 1173 ret = mtd; 1174 break; 1175 } 1176 } 1177 } else if (num >= 0) { 1178 ret = idr_find(&mtd_idr, num); 1179 if (mtd && mtd != ret) 1180 ret = NULL; 1181 } 1182 1183 if (!ret) { 1184 ret = ERR_PTR(err); 1185 goto out; 1186 } 1187 1188 err = __get_mtd_device(ret); 1189 if (err) 1190 ret = ERR_PTR(err); 1191 out: 1192 mutex_unlock(&mtd_table_mutex); 1193 return ret; 1194 } 1195 EXPORT_SYMBOL_GPL(get_mtd_device); 1196 1197 1198 int __get_mtd_device(struct mtd_info *mtd) 1199 { 1200 struct mtd_info *master = mtd_get_master(mtd); 1201 int err; 1202 1203 if (!try_module_get(master->owner)) 1204 return -ENODEV; 1205 1206 if (master->_get_device) { 1207 err = master->_get_device(mtd); 1208 1209 if (err) { 1210 module_put(master->owner); 1211 return err; 1212 } 1213 } 1214 1215 master->usecount++; 1216 1217 while (mtd->parent) { 1218 mtd->usecount++; 1219 mtd = mtd->parent; 1220 } 1221 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(__get_mtd_device); 1225 1226 /** 1227 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1228 * 1229 * @np: device tree node 1230 */ 1231 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1232 { 1233 struct mtd_info *mtd = NULL; 1234 struct mtd_info *tmp; 1235 int err; 1236 1237 mutex_lock(&mtd_table_mutex); 1238 1239 err = -EPROBE_DEFER; 1240 mtd_for_each_device(tmp) { 1241 if (mtd_get_of_node(tmp) == np) { 1242 mtd = tmp; 1243 err = __get_mtd_device(mtd); 1244 break; 1245 } 1246 } 1247 1248 mutex_unlock(&mtd_table_mutex); 1249 1250 return err ? ERR_PTR(err) : mtd; 1251 } 1252 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1253 1254 /** 1255 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1256 * device name 1257 * @name: MTD device name to open 1258 * 1259 * This function returns MTD device description structure in case of 1260 * success and an error code in case of failure. 1261 */ 1262 struct mtd_info *get_mtd_device_nm(const char *name) 1263 { 1264 int err = -ENODEV; 1265 struct mtd_info *mtd = NULL, *other; 1266 1267 mutex_lock(&mtd_table_mutex); 1268 1269 mtd_for_each_device(other) { 1270 if (!strcmp(name, other->name)) { 1271 mtd = other; 1272 break; 1273 } 1274 } 1275 1276 if (!mtd) 1277 goto out_unlock; 1278 1279 err = __get_mtd_device(mtd); 1280 if (err) 1281 goto out_unlock; 1282 1283 mutex_unlock(&mtd_table_mutex); 1284 return mtd; 1285 1286 out_unlock: 1287 mutex_unlock(&mtd_table_mutex); 1288 return ERR_PTR(err); 1289 } 1290 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1291 1292 void put_mtd_device(struct mtd_info *mtd) 1293 { 1294 mutex_lock(&mtd_table_mutex); 1295 __put_mtd_device(mtd); 1296 mutex_unlock(&mtd_table_mutex); 1297 1298 } 1299 EXPORT_SYMBOL_GPL(put_mtd_device); 1300 1301 void __put_mtd_device(struct mtd_info *mtd) 1302 { 1303 struct mtd_info *master = mtd_get_master(mtd); 1304 1305 while (mtd->parent) { 1306 --mtd->usecount; 1307 BUG_ON(mtd->usecount < 0); 1308 mtd = mtd->parent; 1309 } 1310 1311 master->usecount--; 1312 1313 if (master->_put_device) 1314 master->_put_device(master); 1315 1316 module_put(master->owner); 1317 } 1318 EXPORT_SYMBOL_GPL(__put_mtd_device); 1319 1320 /* 1321 * Erase is an synchronous operation. Device drivers are epected to return a 1322 * negative error code if the operation failed and update instr->fail_addr 1323 * to point the portion that was not properly erased. 1324 */ 1325 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1326 { 1327 struct mtd_info *master = mtd_get_master(mtd); 1328 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1329 struct erase_info adjinstr; 1330 int ret; 1331 1332 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1333 adjinstr = *instr; 1334 1335 if (!mtd->erasesize || !master->_erase) 1336 return -ENOTSUPP; 1337 1338 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1339 return -EINVAL; 1340 if (!(mtd->flags & MTD_WRITEABLE)) 1341 return -EROFS; 1342 1343 if (!instr->len) 1344 return 0; 1345 1346 ledtrig_mtd_activity(); 1347 1348 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1349 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1350 master->erasesize; 1351 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1352 master->erasesize) - 1353 adjinstr.addr; 1354 } 1355 1356 adjinstr.addr += mst_ofs; 1357 1358 ret = master->_erase(master, &adjinstr); 1359 1360 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1361 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1362 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1363 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1364 master); 1365 instr->fail_addr *= mtd->erasesize; 1366 } 1367 } 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL_GPL(mtd_erase); 1372 1373 /* 1374 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1375 */ 1376 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1377 void **virt, resource_size_t *phys) 1378 { 1379 struct mtd_info *master = mtd_get_master(mtd); 1380 1381 *retlen = 0; 1382 *virt = NULL; 1383 if (phys) 1384 *phys = 0; 1385 if (!master->_point) 1386 return -EOPNOTSUPP; 1387 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1388 return -EINVAL; 1389 if (!len) 1390 return 0; 1391 1392 from = mtd_get_master_ofs(mtd, from); 1393 return master->_point(master, from, len, retlen, virt, phys); 1394 } 1395 EXPORT_SYMBOL_GPL(mtd_point); 1396 1397 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1398 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1399 { 1400 struct mtd_info *master = mtd_get_master(mtd); 1401 1402 if (!master->_unpoint) 1403 return -EOPNOTSUPP; 1404 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1405 return -EINVAL; 1406 if (!len) 1407 return 0; 1408 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1409 } 1410 EXPORT_SYMBOL_GPL(mtd_unpoint); 1411 1412 /* 1413 * Allow NOMMU mmap() to directly map the device (if not NULL) 1414 * - return the address to which the offset maps 1415 * - return -ENOSYS to indicate refusal to do the mapping 1416 */ 1417 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1418 unsigned long offset, unsigned long flags) 1419 { 1420 size_t retlen; 1421 void *virt; 1422 int ret; 1423 1424 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1425 if (ret) 1426 return ret; 1427 if (retlen != len) { 1428 mtd_unpoint(mtd, offset, retlen); 1429 return -ENOSYS; 1430 } 1431 return (unsigned long)virt; 1432 } 1433 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1434 1435 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1436 const struct mtd_ecc_stats *old_stats) 1437 { 1438 struct mtd_ecc_stats diff; 1439 1440 if (master == mtd) 1441 return; 1442 1443 diff = master->ecc_stats; 1444 diff.failed -= old_stats->failed; 1445 diff.corrected -= old_stats->corrected; 1446 1447 while (mtd->parent) { 1448 mtd->ecc_stats.failed += diff.failed; 1449 mtd->ecc_stats.corrected += diff.corrected; 1450 mtd = mtd->parent; 1451 } 1452 } 1453 1454 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1455 u_char *buf) 1456 { 1457 struct mtd_oob_ops ops = { 1458 .len = len, 1459 .datbuf = buf, 1460 }; 1461 int ret; 1462 1463 ret = mtd_read_oob(mtd, from, &ops); 1464 *retlen = ops.retlen; 1465 1466 return ret; 1467 } 1468 EXPORT_SYMBOL_GPL(mtd_read); 1469 1470 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1471 const u_char *buf) 1472 { 1473 struct mtd_oob_ops ops = { 1474 .len = len, 1475 .datbuf = (u8 *)buf, 1476 }; 1477 int ret; 1478 1479 ret = mtd_write_oob(mtd, to, &ops); 1480 *retlen = ops.retlen; 1481 1482 return ret; 1483 } 1484 EXPORT_SYMBOL_GPL(mtd_write); 1485 1486 /* 1487 * In blackbox flight recorder like scenarios we want to make successful writes 1488 * in interrupt context. panic_write() is only intended to be called when its 1489 * known the kernel is about to panic and we need the write to succeed. Since 1490 * the kernel is not going to be running for much longer, this function can 1491 * break locks and delay to ensure the write succeeds (but not sleep). 1492 */ 1493 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1494 const u_char *buf) 1495 { 1496 struct mtd_info *master = mtd_get_master(mtd); 1497 1498 *retlen = 0; 1499 if (!master->_panic_write) 1500 return -EOPNOTSUPP; 1501 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1502 return -EINVAL; 1503 if (!(mtd->flags & MTD_WRITEABLE)) 1504 return -EROFS; 1505 if (!len) 1506 return 0; 1507 if (!master->oops_panic_write) 1508 master->oops_panic_write = true; 1509 1510 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1511 retlen, buf); 1512 } 1513 EXPORT_SYMBOL_GPL(mtd_panic_write); 1514 1515 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1516 struct mtd_oob_ops *ops) 1517 { 1518 /* 1519 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1520 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1521 * this case. 1522 */ 1523 if (!ops->datbuf) 1524 ops->len = 0; 1525 1526 if (!ops->oobbuf) 1527 ops->ooblen = 0; 1528 1529 if (offs < 0 || offs + ops->len > mtd->size) 1530 return -EINVAL; 1531 1532 if (ops->ooblen) { 1533 size_t maxooblen; 1534 1535 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1536 return -EINVAL; 1537 1538 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1539 mtd_div_by_ws(offs, mtd)) * 1540 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1541 if (ops->ooblen > maxooblen) 1542 return -EINVAL; 1543 } 1544 1545 return 0; 1546 } 1547 1548 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1549 struct mtd_oob_ops *ops) 1550 { 1551 struct mtd_info *master = mtd_get_master(mtd); 1552 int ret; 1553 1554 from = mtd_get_master_ofs(mtd, from); 1555 if (master->_read_oob) 1556 ret = master->_read_oob(master, from, ops); 1557 else 1558 ret = master->_read(master, from, ops->len, &ops->retlen, 1559 ops->datbuf); 1560 1561 return ret; 1562 } 1563 1564 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1565 struct mtd_oob_ops *ops) 1566 { 1567 struct mtd_info *master = mtd_get_master(mtd); 1568 int ret; 1569 1570 to = mtd_get_master_ofs(mtd, to); 1571 if (master->_write_oob) 1572 ret = master->_write_oob(master, to, ops); 1573 else 1574 ret = master->_write(master, to, ops->len, &ops->retlen, 1575 ops->datbuf); 1576 1577 return ret; 1578 } 1579 1580 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1581 struct mtd_oob_ops *ops) 1582 { 1583 struct mtd_info *master = mtd_get_master(mtd); 1584 int ngroups = mtd_pairing_groups(master); 1585 int npairs = mtd_wunit_per_eb(master) / ngroups; 1586 struct mtd_oob_ops adjops = *ops; 1587 unsigned int wunit, oobavail; 1588 struct mtd_pairing_info info; 1589 int max_bitflips = 0; 1590 u32 ebofs, pageofs; 1591 loff_t base, pos; 1592 1593 ebofs = mtd_mod_by_eb(start, mtd); 1594 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1595 info.group = 0; 1596 info.pair = mtd_div_by_ws(ebofs, mtd); 1597 pageofs = mtd_mod_by_ws(ebofs, mtd); 1598 oobavail = mtd_oobavail(mtd, ops); 1599 1600 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1601 int ret; 1602 1603 if (info.pair >= npairs) { 1604 info.pair = 0; 1605 base += master->erasesize; 1606 } 1607 1608 wunit = mtd_pairing_info_to_wunit(master, &info); 1609 pos = mtd_wunit_to_offset(mtd, base, wunit); 1610 1611 adjops.len = ops->len - ops->retlen; 1612 if (adjops.len > mtd->writesize - pageofs) 1613 adjops.len = mtd->writesize - pageofs; 1614 1615 adjops.ooblen = ops->ooblen - ops->oobretlen; 1616 if (adjops.ooblen > oobavail - adjops.ooboffs) 1617 adjops.ooblen = oobavail - adjops.ooboffs; 1618 1619 if (read) { 1620 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1621 if (ret > 0) 1622 max_bitflips = max(max_bitflips, ret); 1623 } else { 1624 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1625 } 1626 1627 if (ret < 0) 1628 return ret; 1629 1630 max_bitflips = max(max_bitflips, ret); 1631 ops->retlen += adjops.retlen; 1632 ops->oobretlen += adjops.oobretlen; 1633 adjops.datbuf += adjops.retlen; 1634 adjops.oobbuf += adjops.oobretlen; 1635 adjops.ooboffs = 0; 1636 pageofs = 0; 1637 info.pair++; 1638 } 1639 1640 return max_bitflips; 1641 } 1642 1643 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1644 { 1645 struct mtd_info *master = mtd_get_master(mtd); 1646 struct mtd_ecc_stats old_stats = master->ecc_stats; 1647 int ret_code; 1648 1649 ops->retlen = ops->oobretlen = 0; 1650 1651 ret_code = mtd_check_oob_ops(mtd, from, ops); 1652 if (ret_code) 1653 return ret_code; 1654 1655 ledtrig_mtd_activity(); 1656 1657 /* Check the validity of a potential fallback on mtd->_read */ 1658 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1659 return -EOPNOTSUPP; 1660 1661 if (ops->stats) 1662 memset(ops->stats, 0, sizeof(*ops->stats)); 1663 1664 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1665 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1666 else 1667 ret_code = mtd_read_oob_std(mtd, from, ops); 1668 1669 mtd_update_ecc_stats(mtd, master, &old_stats); 1670 1671 /* 1672 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1673 * similar to mtd->_read(), returning a non-negative integer 1674 * representing max bitflips. In other cases, mtd->_read_oob() may 1675 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1676 */ 1677 if (unlikely(ret_code < 0)) 1678 return ret_code; 1679 if (mtd->ecc_strength == 0) 1680 return 0; /* device lacks ecc */ 1681 if (ops->stats) 1682 ops->stats->max_bitflips = ret_code; 1683 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1684 } 1685 EXPORT_SYMBOL_GPL(mtd_read_oob); 1686 1687 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1688 struct mtd_oob_ops *ops) 1689 { 1690 struct mtd_info *master = mtd_get_master(mtd); 1691 int ret; 1692 1693 ops->retlen = ops->oobretlen = 0; 1694 1695 if (!(mtd->flags & MTD_WRITEABLE)) 1696 return -EROFS; 1697 1698 ret = mtd_check_oob_ops(mtd, to, ops); 1699 if (ret) 1700 return ret; 1701 1702 ledtrig_mtd_activity(); 1703 1704 /* Check the validity of a potential fallback on mtd->_write */ 1705 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1706 return -EOPNOTSUPP; 1707 1708 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1709 return mtd_io_emulated_slc(mtd, to, false, ops); 1710 1711 return mtd_write_oob_std(mtd, to, ops); 1712 } 1713 EXPORT_SYMBOL_GPL(mtd_write_oob); 1714 1715 /** 1716 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1717 * @mtd: MTD device structure 1718 * @section: ECC section. Depending on the layout you may have all the ECC 1719 * bytes stored in a single contiguous section, or one section 1720 * per ECC chunk (and sometime several sections for a single ECC 1721 * ECC chunk) 1722 * @oobecc: OOB region struct filled with the appropriate ECC position 1723 * information 1724 * 1725 * This function returns ECC section information in the OOB area. If you want 1726 * to get all the ECC bytes information, then you should call 1727 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1728 * 1729 * Returns zero on success, a negative error code otherwise. 1730 */ 1731 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1732 struct mtd_oob_region *oobecc) 1733 { 1734 struct mtd_info *master = mtd_get_master(mtd); 1735 1736 memset(oobecc, 0, sizeof(*oobecc)); 1737 1738 if (!master || section < 0) 1739 return -EINVAL; 1740 1741 if (!master->ooblayout || !master->ooblayout->ecc) 1742 return -ENOTSUPP; 1743 1744 return master->ooblayout->ecc(master, section, oobecc); 1745 } 1746 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1747 1748 /** 1749 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1750 * section 1751 * @mtd: MTD device structure 1752 * @section: Free section you are interested in. Depending on the layout 1753 * you may have all the free bytes stored in a single contiguous 1754 * section, or one section per ECC chunk plus an extra section 1755 * for the remaining bytes (or other funky layout). 1756 * @oobfree: OOB region struct filled with the appropriate free position 1757 * information 1758 * 1759 * This function returns free bytes position in the OOB area. If you want 1760 * to get all the free bytes information, then you should call 1761 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1762 * 1763 * Returns zero on success, a negative error code otherwise. 1764 */ 1765 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1766 struct mtd_oob_region *oobfree) 1767 { 1768 struct mtd_info *master = mtd_get_master(mtd); 1769 1770 memset(oobfree, 0, sizeof(*oobfree)); 1771 1772 if (!master || section < 0) 1773 return -EINVAL; 1774 1775 if (!master->ooblayout || !master->ooblayout->free) 1776 return -ENOTSUPP; 1777 1778 return master->ooblayout->free(master, section, oobfree); 1779 } 1780 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1781 1782 /** 1783 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1784 * @mtd: mtd info structure 1785 * @byte: the byte we are searching for 1786 * @sectionp: pointer where the section id will be stored 1787 * @oobregion: used to retrieve the ECC position 1788 * @iter: iterator function. Should be either mtd_ooblayout_free or 1789 * mtd_ooblayout_ecc depending on the region type you're searching for 1790 * 1791 * This function returns the section id and oobregion information of a 1792 * specific byte. For example, say you want to know where the 4th ECC byte is 1793 * stored, you'll use: 1794 * 1795 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1796 * 1797 * Returns zero on success, a negative error code otherwise. 1798 */ 1799 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1800 int *sectionp, struct mtd_oob_region *oobregion, 1801 int (*iter)(struct mtd_info *, 1802 int section, 1803 struct mtd_oob_region *oobregion)) 1804 { 1805 int pos = 0, ret, section = 0; 1806 1807 memset(oobregion, 0, sizeof(*oobregion)); 1808 1809 while (1) { 1810 ret = iter(mtd, section, oobregion); 1811 if (ret) 1812 return ret; 1813 1814 if (pos + oobregion->length > byte) 1815 break; 1816 1817 pos += oobregion->length; 1818 section++; 1819 } 1820 1821 /* 1822 * Adjust region info to make it start at the beginning at the 1823 * 'start' ECC byte. 1824 */ 1825 oobregion->offset += byte - pos; 1826 oobregion->length -= byte - pos; 1827 *sectionp = section; 1828 1829 return 0; 1830 } 1831 1832 /** 1833 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1834 * ECC byte 1835 * @mtd: mtd info structure 1836 * @eccbyte: the byte we are searching for 1837 * @section: pointer where the section id will be stored 1838 * @oobregion: OOB region information 1839 * 1840 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1841 * byte. 1842 * 1843 * Returns zero on success, a negative error code otherwise. 1844 */ 1845 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1846 int *section, 1847 struct mtd_oob_region *oobregion) 1848 { 1849 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1850 mtd_ooblayout_ecc); 1851 } 1852 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1853 1854 /** 1855 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1856 * @mtd: mtd info structure 1857 * @buf: destination buffer to store OOB bytes 1858 * @oobbuf: OOB buffer 1859 * @start: first byte to retrieve 1860 * @nbytes: number of bytes to retrieve 1861 * @iter: section iterator 1862 * 1863 * Extract bytes attached to a specific category (ECC or free) 1864 * from the OOB buffer and copy them into buf. 1865 * 1866 * Returns zero on success, a negative error code otherwise. 1867 */ 1868 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1869 const u8 *oobbuf, int start, int nbytes, 1870 int (*iter)(struct mtd_info *, 1871 int section, 1872 struct mtd_oob_region *oobregion)) 1873 { 1874 struct mtd_oob_region oobregion; 1875 int section, ret; 1876 1877 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1878 &oobregion, iter); 1879 1880 while (!ret) { 1881 int cnt; 1882 1883 cnt = min_t(int, nbytes, oobregion.length); 1884 memcpy(buf, oobbuf + oobregion.offset, cnt); 1885 buf += cnt; 1886 nbytes -= cnt; 1887 1888 if (!nbytes) 1889 break; 1890 1891 ret = iter(mtd, ++section, &oobregion); 1892 } 1893 1894 return ret; 1895 } 1896 1897 /** 1898 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1899 * @mtd: mtd info structure 1900 * @buf: source buffer to get OOB bytes from 1901 * @oobbuf: OOB buffer 1902 * @start: first OOB byte to set 1903 * @nbytes: number of OOB bytes to set 1904 * @iter: section iterator 1905 * 1906 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1907 * is selected by passing the appropriate iterator. 1908 * 1909 * Returns zero on success, a negative error code otherwise. 1910 */ 1911 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1912 u8 *oobbuf, int start, int nbytes, 1913 int (*iter)(struct mtd_info *, 1914 int section, 1915 struct mtd_oob_region *oobregion)) 1916 { 1917 struct mtd_oob_region oobregion; 1918 int section, ret; 1919 1920 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1921 &oobregion, iter); 1922 1923 while (!ret) { 1924 int cnt; 1925 1926 cnt = min_t(int, nbytes, oobregion.length); 1927 memcpy(oobbuf + oobregion.offset, buf, cnt); 1928 buf += cnt; 1929 nbytes -= cnt; 1930 1931 if (!nbytes) 1932 break; 1933 1934 ret = iter(mtd, ++section, &oobregion); 1935 } 1936 1937 return ret; 1938 } 1939 1940 /** 1941 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1942 * @mtd: mtd info structure 1943 * @iter: category iterator 1944 * 1945 * Count the number of bytes in a given category. 1946 * 1947 * Returns a positive value on success, a negative error code otherwise. 1948 */ 1949 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1950 int (*iter)(struct mtd_info *, 1951 int section, 1952 struct mtd_oob_region *oobregion)) 1953 { 1954 struct mtd_oob_region oobregion; 1955 int section = 0, ret, nbytes = 0; 1956 1957 while (1) { 1958 ret = iter(mtd, section++, &oobregion); 1959 if (ret) { 1960 if (ret == -ERANGE) 1961 ret = nbytes; 1962 break; 1963 } 1964 1965 nbytes += oobregion.length; 1966 } 1967 1968 return ret; 1969 } 1970 1971 /** 1972 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1973 * @mtd: mtd info structure 1974 * @eccbuf: destination buffer to store ECC bytes 1975 * @oobbuf: OOB buffer 1976 * @start: first ECC byte to retrieve 1977 * @nbytes: number of ECC bytes to retrieve 1978 * 1979 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1980 * 1981 * Returns zero on success, a negative error code otherwise. 1982 */ 1983 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1984 const u8 *oobbuf, int start, int nbytes) 1985 { 1986 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1987 mtd_ooblayout_ecc); 1988 } 1989 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1990 1991 /** 1992 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1993 * @mtd: mtd info structure 1994 * @eccbuf: source buffer to get ECC bytes from 1995 * @oobbuf: OOB buffer 1996 * @start: first ECC byte to set 1997 * @nbytes: number of ECC bytes to set 1998 * 1999 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2000 * 2001 * Returns zero on success, a negative error code otherwise. 2002 */ 2003 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2004 u8 *oobbuf, int start, int nbytes) 2005 { 2006 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2007 mtd_ooblayout_ecc); 2008 } 2009 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2010 2011 /** 2012 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2013 * @mtd: mtd info structure 2014 * @databuf: destination buffer to store ECC bytes 2015 * @oobbuf: OOB buffer 2016 * @start: first ECC byte to retrieve 2017 * @nbytes: number of ECC bytes to retrieve 2018 * 2019 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2020 * 2021 * Returns zero on success, a negative error code otherwise. 2022 */ 2023 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2024 const u8 *oobbuf, int start, int nbytes) 2025 { 2026 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2027 mtd_ooblayout_free); 2028 } 2029 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2030 2031 /** 2032 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2033 * @mtd: mtd info structure 2034 * @databuf: source buffer to get data bytes from 2035 * @oobbuf: OOB buffer 2036 * @start: first ECC byte to set 2037 * @nbytes: number of ECC bytes to set 2038 * 2039 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2040 * 2041 * Returns zero on success, a negative error code otherwise. 2042 */ 2043 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2044 u8 *oobbuf, int start, int nbytes) 2045 { 2046 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2047 mtd_ooblayout_free); 2048 } 2049 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2050 2051 /** 2052 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2053 * @mtd: mtd info structure 2054 * 2055 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2056 * 2057 * Returns zero on success, a negative error code otherwise. 2058 */ 2059 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2060 { 2061 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2062 } 2063 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2064 2065 /** 2066 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2067 * @mtd: mtd info structure 2068 * 2069 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2070 * 2071 * Returns zero on success, a negative error code otherwise. 2072 */ 2073 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2074 { 2075 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2076 } 2077 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2078 2079 /* 2080 * Method to access the protection register area, present in some flash 2081 * devices. The user data is one time programmable but the factory data is read 2082 * only. 2083 */ 2084 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2085 struct otp_info *buf) 2086 { 2087 struct mtd_info *master = mtd_get_master(mtd); 2088 2089 if (!master->_get_fact_prot_info) 2090 return -EOPNOTSUPP; 2091 if (!len) 2092 return 0; 2093 return master->_get_fact_prot_info(master, len, retlen, buf); 2094 } 2095 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2096 2097 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2098 size_t *retlen, u_char *buf) 2099 { 2100 struct mtd_info *master = mtd_get_master(mtd); 2101 2102 *retlen = 0; 2103 if (!master->_read_fact_prot_reg) 2104 return -EOPNOTSUPP; 2105 if (!len) 2106 return 0; 2107 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2108 } 2109 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2110 2111 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2112 struct otp_info *buf) 2113 { 2114 struct mtd_info *master = mtd_get_master(mtd); 2115 2116 if (!master->_get_user_prot_info) 2117 return -EOPNOTSUPP; 2118 if (!len) 2119 return 0; 2120 return master->_get_user_prot_info(master, len, retlen, buf); 2121 } 2122 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2123 2124 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2125 size_t *retlen, u_char *buf) 2126 { 2127 struct mtd_info *master = mtd_get_master(mtd); 2128 2129 *retlen = 0; 2130 if (!master->_read_user_prot_reg) 2131 return -EOPNOTSUPP; 2132 if (!len) 2133 return 0; 2134 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2135 } 2136 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2137 2138 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2139 size_t *retlen, const u_char *buf) 2140 { 2141 struct mtd_info *master = mtd_get_master(mtd); 2142 int ret; 2143 2144 *retlen = 0; 2145 if (!master->_write_user_prot_reg) 2146 return -EOPNOTSUPP; 2147 if (!len) 2148 return 0; 2149 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2150 if (ret) 2151 return ret; 2152 2153 /* 2154 * If no data could be written at all, we are out of memory and 2155 * must return -ENOSPC. 2156 */ 2157 return (*retlen) ? 0 : -ENOSPC; 2158 } 2159 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2160 2161 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2162 { 2163 struct mtd_info *master = mtd_get_master(mtd); 2164 2165 if (!master->_lock_user_prot_reg) 2166 return -EOPNOTSUPP; 2167 if (!len) 2168 return 0; 2169 return master->_lock_user_prot_reg(master, from, len); 2170 } 2171 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2172 2173 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2174 { 2175 struct mtd_info *master = mtd_get_master(mtd); 2176 2177 if (!master->_erase_user_prot_reg) 2178 return -EOPNOTSUPP; 2179 if (!len) 2180 return 0; 2181 return master->_erase_user_prot_reg(master, from, len); 2182 } 2183 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2184 2185 /* Chip-supported device locking */ 2186 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2187 { 2188 struct mtd_info *master = mtd_get_master(mtd); 2189 2190 if (!master->_lock) 2191 return -EOPNOTSUPP; 2192 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2193 return -EINVAL; 2194 if (!len) 2195 return 0; 2196 2197 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2198 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2199 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2200 } 2201 2202 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2203 } 2204 EXPORT_SYMBOL_GPL(mtd_lock); 2205 2206 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2207 { 2208 struct mtd_info *master = mtd_get_master(mtd); 2209 2210 if (!master->_unlock) 2211 return -EOPNOTSUPP; 2212 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2213 return -EINVAL; 2214 if (!len) 2215 return 0; 2216 2217 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2218 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2219 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2220 } 2221 2222 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2223 } 2224 EXPORT_SYMBOL_GPL(mtd_unlock); 2225 2226 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2227 { 2228 struct mtd_info *master = mtd_get_master(mtd); 2229 2230 if (!master->_is_locked) 2231 return -EOPNOTSUPP; 2232 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2233 return -EINVAL; 2234 if (!len) 2235 return 0; 2236 2237 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2238 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2239 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2240 } 2241 2242 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2243 } 2244 EXPORT_SYMBOL_GPL(mtd_is_locked); 2245 2246 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2247 { 2248 struct mtd_info *master = mtd_get_master(mtd); 2249 2250 if (ofs < 0 || ofs >= mtd->size) 2251 return -EINVAL; 2252 if (!master->_block_isreserved) 2253 return 0; 2254 2255 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2256 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2257 2258 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2259 } 2260 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2261 2262 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2263 { 2264 struct mtd_info *master = mtd_get_master(mtd); 2265 2266 if (ofs < 0 || ofs >= mtd->size) 2267 return -EINVAL; 2268 if (!master->_block_isbad) 2269 return 0; 2270 2271 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2272 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2273 2274 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2275 } 2276 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2277 2278 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2279 { 2280 struct mtd_info *master = mtd_get_master(mtd); 2281 int ret; 2282 2283 if (!master->_block_markbad) 2284 return -EOPNOTSUPP; 2285 if (ofs < 0 || ofs >= mtd->size) 2286 return -EINVAL; 2287 if (!(mtd->flags & MTD_WRITEABLE)) 2288 return -EROFS; 2289 2290 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2291 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2292 2293 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2294 if (ret) 2295 return ret; 2296 2297 while (mtd->parent) { 2298 mtd->ecc_stats.badblocks++; 2299 mtd = mtd->parent; 2300 } 2301 2302 return 0; 2303 } 2304 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2305 2306 /* 2307 * default_mtd_writev - the default writev method 2308 * @mtd: mtd device description object pointer 2309 * @vecs: the vectors to write 2310 * @count: count of vectors in @vecs 2311 * @to: the MTD device offset to write to 2312 * @retlen: on exit contains the count of bytes written to the MTD device. 2313 * 2314 * This function returns zero in case of success and a negative error code in 2315 * case of failure. 2316 */ 2317 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2318 unsigned long count, loff_t to, size_t *retlen) 2319 { 2320 unsigned long i; 2321 size_t totlen = 0, thislen; 2322 int ret = 0; 2323 2324 for (i = 0; i < count; i++) { 2325 if (!vecs[i].iov_len) 2326 continue; 2327 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2328 vecs[i].iov_base); 2329 totlen += thislen; 2330 if (ret || thislen != vecs[i].iov_len) 2331 break; 2332 to += vecs[i].iov_len; 2333 } 2334 *retlen = totlen; 2335 return ret; 2336 } 2337 2338 /* 2339 * mtd_writev - the vector-based MTD write method 2340 * @mtd: mtd device description object pointer 2341 * @vecs: the vectors to write 2342 * @count: count of vectors in @vecs 2343 * @to: the MTD device offset to write to 2344 * @retlen: on exit contains the count of bytes written to the MTD device. 2345 * 2346 * This function returns zero in case of success and a negative error code in 2347 * case of failure. 2348 */ 2349 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2350 unsigned long count, loff_t to, size_t *retlen) 2351 { 2352 struct mtd_info *master = mtd_get_master(mtd); 2353 2354 *retlen = 0; 2355 if (!(mtd->flags & MTD_WRITEABLE)) 2356 return -EROFS; 2357 2358 if (!master->_writev) 2359 return default_mtd_writev(mtd, vecs, count, to, retlen); 2360 2361 return master->_writev(master, vecs, count, 2362 mtd_get_master_ofs(mtd, to), retlen); 2363 } 2364 EXPORT_SYMBOL_GPL(mtd_writev); 2365 2366 /** 2367 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2368 * @mtd: mtd device description object pointer 2369 * @size: a pointer to the ideal or maximum size of the allocation, points 2370 * to the actual allocation size on success. 2371 * 2372 * This routine attempts to allocate a contiguous kernel buffer up to 2373 * the specified size, backing off the size of the request exponentially 2374 * until the request succeeds or until the allocation size falls below 2375 * the system page size. This attempts to make sure it does not adversely 2376 * impact system performance, so when allocating more than one page, we 2377 * ask the memory allocator to avoid re-trying, swapping, writing back 2378 * or performing I/O. 2379 * 2380 * Note, this function also makes sure that the allocated buffer is aligned to 2381 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2382 * 2383 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2384 * to handle smaller (i.e. degraded) buffer allocations under low- or 2385 * fragmented-memory situations where such reduced allocations, from a 2386 * requested ideal, are allowed. 2387 * 2388 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2389 */ 2390 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2391 { 2392 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2393 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2394 void *kbuf; 2395 2396 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2397 2398 while (*size > min_alloc) { 2399 kbuf = kmalloc(*size, flags); 2400 if (kbuf) 2401 return kbuf; 2402 2403 *size >>= 1; 2404 *size = ALIGN(*size, mtd->writesize); 2405 } 2406 2407 /* 2408 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2409 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2410 */ 2411 return kmalloc(*size, GFP_KERNEL); 2412 } 2413 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2414 2415 #ifdef CONFIG_PROC_FS 2416 2417 /*====================================================================*/ 2418 /* Support for /proc/mtd */ 2419 2420 static int mtd_proc_show(struct seq_file *m, void *v) 2421 { 2422 struct mtd_info *mtd; 2423 2424 seq_puts(m, "dev: size erasesize name\n"); 2425 mutex_lock(&mtd_table_mutex); 2426 mtd_for_each_device(mtd) { 2427 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2428 mtd->index, (unsigned long long)mtd->size, 2429 mtd->erasesize, mtd->name); 2430 } 2431 mutex_unlock(&mtd_table_mutex); 2432 return 0; 2433 } 2434 #endif /* CONFIG_PROC_FS */ 2435 2436 /*====================================================================*/ 2437 /* Init code */ 2438 2439 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2440 { 2441 struct backing_dev_info *bdi; 2442 int ret; 2443 2444 bdi = bdi_alloc(NUMA_NO_NODE); 2445 if (!bdi) 2446 return ERR_PTR(-ENOMEM); 2447 bdi->ra_pages = 0; 2448 bdi->io_pages = 0; 2449 2450 /* 2451 * We put '-0' suffix to the name to get the same name format as we 2452 * used to get. Since this is called only once, we get a unique name. 2453 */ 2454 ret = bdi_register(bdi, "%.28s-0", name); 2455 if (ret) 2456 bdi_put(bdi); 2457 2458 return ret ? ERR_PTR(ret) : bdi; 2459 } 2460 2461 static struct proc_dir_entry *proc_mtd; 2462 2463 static int __init init_mtd(void) 2464 { 2465 int ret; 2466 2467 ret = class_register(&mtd_class); 2468 if (ret) 2469 goto err_reg; 2470 2471 mtd_bdi = mtd_bdi_init("mtd"); 2472 if (IS_ERR(mtd_bdi)) { 2473 ret = PTR_ERR(mtd_bdi); 2474 goto err_bdi; 2475 } 2476 2477 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2478 2479 ret = init_mtdchar(); 2480 if (ret) 2481 goto out_procfs; 2482 2483 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2484 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2485 &mtd_expert_analysis_mode); 2486 2487 return 0; 2488 2489 out_procfs: 2490 if (proc_mtd) 2491 remove_proc_entry("mtd", NULL); 2492 bdi_unregister(mtd_bdi); 2493 bdi_put(mtd_bdi); 2494 err_bdi: 2495 class_unregister(&mtd_class); 2496 err_reg: 2497 pr_err("Error registering mtd class or bdi: %d\n", ret); 2498 return ret; 2499 } 2500 2501 static void __exit cleanup_mtd(void) 2502 { 2503 debugfs_remove_recursive(dfs_dir_mtd); 2504 cleanup_mtdchar(); 2505 if (proc_mtd) 2506 remove_proc_entry("mtd", NULL); 2507 class_unregister(&mtd_class); 2508 bdi_unregister(mtd_bdi); 2509 bdi_put(mtd_bdi); 2510 idr_destroy(&mtd_idr); 2511 } 2512 2513 module_init(init_mtd); 2514 module_exit(cleanup_mtd); 2515 2516 MODULE_LICENSE("GPL"); 2517 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2518 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2519