1 /* 2 * Common Flash Interface support: 3 * Intel Extended Vendor Command Set (ID 0x0001) 4 * 5 * (C) 2000 Red Hat. GPL'd 6 * 7 * $Id: cfi_cmdset_0001.c,v 1.178 2005/05/19 17:05:43 nico Exp $ 8 * 9 * 10 * 10/10/2000 Nicolas Pitre <nico@cam.org> 11 * - completely revamped method functions so they are aware and 12 * independent of the flash geometry (buswidth, interleave, etc.) 13 * - scalability vs code size is completely set at compile-time 14 * (see include/linux/mtd/cfi.h for selection) 15 * - optimized write buffer method 16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> 17 * - reworked lock/unlock/erase support for var size flash 18 */ 19 20 #include <linux/module.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/sched.h> 24 #include <linux/init.h> 25 #include <asm/io.h> 26 #include <asm/byteorder.h> 27 28 #include <linux/errno.h> 29 #include <linux/slab.h> 30 #include <linux/delay.h> 31 #include <linux/interrupt.h> 32 #include <linux/reboot.h> 33 #include <linux/mtd/xip.h> 34 #include <linux/mtd/map.h> 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/compatmac.h> 37 #include <linux/mtd/cfi.h> 38 39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ 40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ 41 42 // debugging, turns off buffer write mode if set to 1 43 #define FORCE_WORD_WRITE 0 44 45 #define MANUFACTURER_INTEL 0x0089 46 #define I82802AB 0x00ad 47 #define I82802AC 0x00ac 48 #define MANUFACTURER_ST 0x0020 49 #define M50LPW080 0x002F 50 51 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 52 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 53 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); 54 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); 55 static void cfi_intelext_sync (struct mtd_info *); 56 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); 57 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); 58 #ifdef CONFIG_MTD_OTP 59 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 60 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 61 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); 62 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t); 63 static int cfi_intelext_get_fact_prot_info (struct mtd_info *, 64 struct otp_info *, size_t); 65 static int cfi_intelext_get_user_prot_info (struct mtd_info *, 66 struct otp_info *, size_t); 67 #endif 68 static int cfi_intelext_suspend (struct mtd_info *); 69 static void cfi_intelext_resume (struct mtd_info *); 70 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *); 71 72 static void cfi_intelext_destroy(struct mtd_info *); 73 74 struct mtd_info *cfi_cmdset_0001(struct map_info *, int); 75 76 static struct mtd_info *cfi_intelext_setup (struct mtd_info *); 77 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); 78 79 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, 80 size_t *retlen, u_char **mtdbuf); 81 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, 82 size_t len); 83 84 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); 85 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); 86 #include "fwh_lock.h" 87 88 89 90 /* 91 * *********** SETUP AND PROBE BITS *********** 92 */ 93 94 static struct mtd_chip_driver cfi_intelext_chipdrv = { 95 .probe = NULL, /* Not usable directly */ 96 .destroy = cfi_intelext_destroy, 97 .name = "cfi_cmdset_0001", 98 .module = THIS_MODULE 99 }; 100 101 /* #define DEBUG_LOCK_BITS */ 102 /* #define DEBUG_CFI_FEATURES */ 103 104 #ifdef DEBUG_CFI_FEATURES 105 static void cfi_tell_features(struct cfi_pri_intelext *extp) 106 { 107 int i; 108 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); 109 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); 110 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); 111 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); 112 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); 113 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); 114 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); 115 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); 116 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); 117 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); 118 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); 119 for (i=10; i<32; i++) { 120 if (extp->FeatureSupport & (1<<i)) 121 printk(" - Unknown Bit %X: supported\n", i); 122 } 123 124 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); 125 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); 126 for (i=1; i<8; i++) { 127 if (extp->SuspendCmdSupport & (1<<i)) 128 printk(" - Unknown Bit %X: supported\n", i); 129 } 130 131 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); 132 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); 133 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); 134 for (i=2; i<16; i++) { 135 if (extp->BlkStatusRegMask & (1<<i)) 136 printk(" - Unknown Bit %X Active: yes\n",i); 137 } 138 139 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 140 extp->VccOptimal >> 4, extp->VccOptimal & 0xf); 141 if (extp->VppOptimal) 142 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 143 extp->VppOptimal >> 4, extp->VppOptimal & 0xf); 144 } 145 #endif 146 147 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 148 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 149 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) 150 { 151 struct map_info *map = mtd->priv; 152 struct cfi_private *cfi = map->fldrv_priv; 153 struct cfi_pri_amdstd *extp = cfi->cmdset_priv; 154 155 printk(KERN_WARNING "cfi_cmdset_0001: Suspend " 156 "erase on write disabled.\n"); 157 extp->SuspendCmdSupport &= ~1; 158 } 159 #endif 160 161 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 162 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) 163 { 164 struct map_info *map = mtd->priv; 165 struct cfi_private *cfi = map->fldrv_priv; 166 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 167 168 if (cfip && (cfip->FeatureSupport&4)) { 169 cfip->FeatureSupport &= ~4; 170 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); 171 } 172 } 173 #endif 174 175 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) 176 { 177 struct map_info *map = mtd->priv; 178 struct cfi_private *cfi = map->fldrv_priv; 179 180 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ 181 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ 182 } 183 184 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) 185 { 186 struct map_info *map = mtd->priv; 187 struct cfi_private *cfi = map->fldrv_priv; 188 189 /* Note this is done after the region info is endian swapped */ 190 cfi->cfiq->EraseRegionInfo[1] = 191 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; 192 }; 193 194 static void fixup_use_point(struct mtd_info *mtd, void *param) 195 { 196 struct map_info *map = mtd->priv; 197 if (!mtd->point && map_is_linear(map)) { 198 mtd->point = cfi_intelext_point; 199 mtd->unpoint = cfi_intelext_unpoint; 200 } 201 } 202 203 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) 204 { 205 struct map_info *map = mtd->priv; 206 struct cfi_private *cfi = map->fldrv_priv; 207 if (cfi->cfiq->BufWriteTimeoutTyp) { 208 printk(KERN_INFO "Using buffer write method\n" ); 209 mtd->write = cfi_intelext_write_buffers; 210 } 211 } 212 213 static struct cfi_fixup cfi_fixup_table[] = { 214 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE 215 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, 216 #endif 217 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND 218 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, 219 #endif 220 #if !FORCE_WORD_WRITE 221 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, 222 #endif 223 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, 224 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, 225 { 0, 0, NULL, NULL } 226 }; 227 228 static struct cfi_fixup jedec_fixup_table[] = { 229 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, 230 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, 231 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, 232 { 0, 0, NULL, NULL } 233 }; 234 static struct cfi_fixup fixup_table[] = { 235 /* The CFI vendor ids and the JEDEC vendor IDs appear 236 * to be common. It is like the devices id's are as 237 * well. This table is to pick all cases where 238 * we know that is the case. 239 */ 240 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, 241 { 0, 0, NULL, NULL } 242 }; 243 244 static inline struct cfi_pri_intelext * 245 read_pri_intelext(struct map_info *map, __u16 adr) 246 { 247 struct cfi_pri_intelext *extp; 248 unsigned int extp_size = sizeof(*extp); 249 250 again: 251 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); 252 if (!extp) 253 return NULL; 254 255 /* Do some byteswapping if necessary */ 256 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); 257 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); 258 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); 259 260 if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { 261 unsigned int extra_size = 0; 262 int nb_parts, i; 263 264 /* Protection Register info */ 265 extra_size += (extp->NumProtectionFields - 1) * 266 sizeof(struct cfi_intelext_otpinfo); 267 268 /* Burst Read info */ 269 extra_size += 6; 270 271 /* Number of hardware-partitions */ 272 extra_size += 1; 273 if (extp_size < sizeof(*extp) + extra_size) 274 goto need_more; 275 nb_parts = extp->extra[extra_size - 1]; 276 277 for (i = 0; i < nb_parts; i++) { 278 struct cfi_intelext_regioninfo *rinfo; 279 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; 280 extra_size += sizeof(*rinfo); 281 if (extp_size < sizeof(*extp) + extra_size) 282 goto need_more; 283 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); 284 extra_size += (rinfo->NumBlockTypes - 1) 285 * sizeof(struct cfi_intelext_blockinfo); 286 } 287 288 if (extp_size < sizeof(*extp) + extra_size) { 289 need_more: 290 extp_size = sizeof(*extp) + extra_size; 291 kfree(extp); 292 if (extp_size > 4096) { 293 printk(KERN_ERR 294 "%s: cfi_pri_intelext is too fat\n", 295 __FUNCTION__); 296 return NULL; 297 } 298 goto again; 299 } 300 } 301 302 return extp; 303 } 304 305 /* This routine is made available to other mtd code via 306 * inter_module_register. It must only be accessed through 307 * inter_module_get which will bump the use count of this module. The 308 * addresses passed back in cfi are valid as long as the use count of 309 * this module is non-zero, i.e. between inter_module_get and 310 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. 311 */ 312 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) 313 { 314 struct cfi_private *cfi = map->fldrv_priv; 315 struct mtd_info *mtd; 316 int i; 317 318 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); 319 if (!mtd) { 320 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 321 return NULL; 322 } 323 memset(mtd, 0, sizeof(*mtd)); 324 mtd->priv = map; 325 mtd->type = MTD_NORFLASH; 326 327 /* Fill in the default mtd operations */ 328 mtd->erase = cfi_intelext_erase_varsize; 329 mtd->read = cfi_intelext_read; 330 mtd->write = cfi_intelext_write_words; 331 mtd->sync = cfi_intelext_sync; 332 mtd->lock = cfi_intelext_lock; 333 mtd->unlock = cfi_intelext_unlock; 334 mtd->suspend = cfi_intelext_suspend; 335 mtd->resume = cfi_intelext_resume; 336 mtd->flags = MTD_CAP_NORFLASH; 337 mtd->name = map->name; 338 339 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot; 340 341 if (cfi->cfi_mode == CFI_MODE_CFI) { 342 /* 343 * It's a real CFI chip, not one for which the probe 344 * routine faked a CFI structure. So we read the feature 345 * table from it. 346 */ 347 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; 348 struct cfi_pri_intelext *extp; 349 350 extp = read_pri_intelext(map, adr); 351 if (!extp) { 352 kfree(mtd); 353 return NULL; 354 } 355 356 /* Install our own private info structure */ 357 cfi->cmdset_priv = extp; 358 359 cfi_fixup(mtd, cfi_fixup_table); 360 361 #ifdef DEBUG_CFI_FEATURES 362 /* Tell the user about it in lots of lovely detail */ 363 cfi_tell_features(extp); 364 #endif 365 366 if(extp->SuspendCmdSupport & 1) { 367 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); 368 } 369 } 370 else if (cfi->cfi_mode == CFI_MODE_JEDEC) { 371 /* Apply jedec specific fixups */ 372 cfi_fixup(mtd, jedec_fixup_table); 373 } 374 /* Apply generic fixups */ 375 cfi_fixup(mtd, fixup_table); 376 377 for (i=0; i< cfi->numchips; i++) { 378 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; 379 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; 380 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; 381 cfi->chips[i].ref_point_counter = 0; 382 } 383 384 map->fldrv = &cfi_intelext_chipdrv; 385 386 return cfi_intelext_setup(mtd); 387 } 388 389 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) 390 { 391 struct map_info *map = mtd->priv; 392 struct cfi_private *cfi = map->fldrv_priv; 393 unsigned long offset = 0; 394 int i,j; 395 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; 396 397 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); 398 399 mtd->size = devsize * cfi->numchips; 400 401 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; 402 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 403 * mtd->numeraseregions, GFP_KERNEL); 404 if (!mtd->eraseregions) { 405 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); 406 goto setup_err; 407 } 408 409 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { 410 unsigned long ernum, ersize; 411 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; 412 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; 413 414 if (mtd->erasesize < ersize) { 415 mtd->erasesize = ersize; 416 } 417 for (j=0; j<cfi->numchips; j++) { 418 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; 419 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; 420 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; 421 } 422 offset += (ersize * ernum); 423 } 424 425 if (offset != devsize) { 426 /* Argh */ 427 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); 428 goto setup_err; 429 } 430 431 for (i=0; i<mtd->numeraseregions;i++){ 432 printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", 433 i,mtd->eraseregions[i].offset, 434 mtd->eraseregions[i].erasesize, 435 mtd->eraseregions[i].numblocks); 436 } 437 438 #ifdef CONFIG_MTD_OTP 439 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; 440 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; 441 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg; 442 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg; 443 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info; 444 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info; 445 #endif 446 447 /* This function has the potential to distort the reality 448 a bit and therefore should be called last. */ 449 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) 450 goto setup_err; 451 452 __module_get(THIS_MODULE); 453 register_reboot_notifier(&mtd->reboot_notifier); 454 return mtd; 455 456 setup_err: 457 if(mtd) { 458 if(mtd->eraseregions) 459 kfree(mtd->eraseregions); 460 kfree(mtd); 461 } 462 kfree(cfi->cmdset_priv); 463 return NULL; 464 } 465 466 static int cfi_intelext_partition_fixup(struct mtd_info *mtd, 467 struct cfi_private **pcfi) 468 { 469 struct map_info *map = mtd->priv; 470 struct cfi_private *cfi = *pcfi; 471 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 472 473 /* 474 * Probing of multi-partition flash ships. 475 * 476 * To support multiple partitions when available, we simply arrange 477 * for each of them to have their own flchip structure even if they 478 * are on the same physical chip. This means completely recreating 479 * a new cfi_private structure right here which is a blatent code 480 * layering violation, but this is still the least intrusive 481 * arrangement at this point. This can be rearranged in the future 482 * if someone feels motivated enough. --nico 483 */ 484 if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' 485 && extp->FeatureSupport & (1 << 9)) { 486 struct cfi_private *newcfi; 487 struct flchip *chip; 488 struct flchip_shared *shared; 489 int offs, numregions, numparts, partshift, numvirtchips, i, j; 490 491 /* Protection Register info */ 492 offs = (extp->NumProtectionFields - 1) * 493 sizeof(struct cfi_intelext_otpinfo); 494 495 /* Burst Read info */ 496 offs += 6; 497 498 /* Number of partition regions */ 499 numregions = extp->extra[offs]; 500 offs += 1; 501 502 /* Number of hardware partitions */ 503 numparts = 0; 504 for (i = 0; i < numregions; i++) { 505 struct cfi_intelext_regioninfo *rinfo; 506 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; 507 numparts += rinfo->NumIdentPartitions; 508 offs += sizeof(*rinfo) 509 + (rinfo->NumBlockTypes - 1) * 510 sizeof(struct cfi_intelext_blockinfo); 511 } 512 513 /* 514 * All functions below currently rely on all chips having 515 * the same geometry so we'll just assume that all hardware 516 * partitions are of the same size too. 517 */ 518 partshift = cfi->chipshift - __ffs(numparts); 519 520 if ((1 << partshift) < mtd->erasesize) { 521 printk( KERN_ERR 522 "%s: bad number of hw partitions (%d)\n", 523 __FUNCTION__, numparts); 524 return -EINVAL; 525 } 526 527 numvirtchips = cfi->numchips * numparts; 528 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); 529 if (!newcfi) 530 return -ENOMEM; 531 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); 532 if (!shared) { 533 kfree(newcfi); 534 return -ENOMEM; 535 } 536 memcpy(newcfi, cfi, sizeof(struct cfi_private)); 537 newcfi->numchips = numvirtchips; 538 newcfi->chipshift = partshift; 539 540 chip = &newcfi->chips[0]; 541 for (i = 0; i < cfi->numchips; i++) { 542 shared[i].writing = shared[i].erasing = NULL; 543 spin_lock_init(&shared[i].lock); 544 for (j = 0; j < numparts; j++) { 545 *chip = cfi->chips[i]; 546 chip->start += j << partshift; 547 chip->priv = &shared[i]; 548 /* those should be reset too since 549 they create memory references. */ 550 init_waitqueue_head(&chip->wq); 551 spin_lock_init(&chip->_spinlock); 552 chip->mutex = &chip->_spinlock; 553 chip++; 554 } 555 } 556 557 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " 558 "--> %d partitions of %d KiB\n", 559 map->name, cfi->numchips, cfi->interleave, 560 newcfi->numchips, 1<<(newcfi->chipshift-10)); 561 562 map->fldrv_priv = newcfi; 563 *pcfi = newcfi; 564 kfree(cfi); 565 } 566 567 return 0; 568 } 569 570 /* 571 * *********** CHIP ACCESS FUNCTIONS *********** 572 */ 573 574 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) 575 { 576 DECLARE_WAITQUEUE(wait, current); 577 struct cfi_private *cfi = map->fldrv_priv; 578 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); 579 unsigned long timeo; 580 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 581 582 resettime: 583 timeo = jiffies + HZ; 584 retry: 585 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) { 586 /* 587 * OK. We have possibility for contension on the write/erase 588 * operations which are global to the real chip and not per 589 * partition. So let's fight it over in the partition which 590 * currently has authority on the operation. 591 * 592 * The rules are as follows: 593 * 594 * - any write operation must own shared->writing. 595 * 596 * - any erase operation must own _both_ shared->writing and 597 * shared->erasing. 598 * 599 * - contension arbitration is handled in the owner's context. 600 * 601 * The 'shared' struct can be read when its lock is taken. 602 * However any writes to it can only be made when the current 603 * owner's lock is also held. 604 */ 605 struct flchip_shared *shared = chip->priv; 606 struct flchip *contender; 607 spin_lock(&shared->lock); 608 contender = shared->writing; 609 if (contender && contender != chip) { 610 /* 611 * The engine to perform desired operation on this 612 * partition is already in use by someone else. 613 * Let's fight over it in the context of the chip 614 * currently using it. If it is possible to suspend, 615 * that other partition will do just that, otherwise 616 * it'll happily send us to sleep. In any case, when 617 * get_chip returns success we're clear to go ahead. 618 */ 619 int ret = spin_trylock(contender->mutex); 620 spin_unlock(&shared->lock); 621 if (!ret) 622 goto retry; 623 spin_unlock(chip->mutex); 624 ret = get_chip(map, contender, contender->start, mode); 625 spin_lock(chip->mutex); 626 if (ret) { 627 spin_unlock(contender->mutex); 628 return ret; 629 } 630 timeo = jiffies + HZ; 631 spin_lock(&shared->lock); 632 } 633 634 /* We now own it */ 635 shared->writing = chip; 636 if (mode == FL_ERASING) 637 shared->erasing = chip; 638 if (contender && contender != chip) 639 spin_unlock(contender->mutex); 640 spin_unlock(&shared->lock); 641 } 642 643 switch (chip->state) { 644 645 case FL_STATUS: 646 for (;;) { 647 status = map_read(map, adr); 648 if (map_word_andequal(map, status, status_OK, status_OK)) 649 break; 650 651 /* At this point we're fine with write operations 652 in other partitions as they don't conflict. */ 653 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) 654 break; 655 656 if (time_after(jiffies, timeo)) { 657 printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", 658 status.x[0]); 659 return -EIO; 660 } 661 spin_unlock(chip->mutex); 662 cfi_udelay(1); 663 spin_lock(chip->mutex); 664 /* Someone else might have been playing with it. */ 665 goto retry; 666 } 667 668 case FL_READY: 669 case FL_CFI_QUERY: 670 case FL_JEDEC_QUERY: 671 return 0; 672 673 case FL_ERASING: 674 if (!cfip || 675 !(cfip->FeatureSupport & 2) || 676 !(mode == FL_READY || mode == FL_POINT || 677 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) 678 goto sleep; 679 680 681 /* Erase suspend */ 682 map_write(map, CMD(0xB0), adr); 683 684 /* If the flash has finished erasing, then 'erase suspend' 685 * appears to make some (28F320) flash devices switch to 686 * 'read' mode. Make sure that we switch to 'read status' 687 * mode so we get the right data. --rmk 688 */ 689 map_write(map, CMD(0x70), adr); 690 chip->oldstate = FL_ERASING; 691 chip->state = FL_ERASE_SUSPENDING; 692 chip->erase_suspended = 1; 693 for (;;) { 694 status = map_read(map, adr); 695 if (map_word_andequal(map, status, status_OK, status_OK)) 696 break; 697 698 if (time_after(jiffies, timeo)) { 699 /* Urgh. Resume and pretend we weren't here. */ 700 map_write(map, CMD(0xd0), adr); 701 /* Make sure we're in 'read status' mode if it had finished */ 702 map_write(map, CMD(0x70), adr); 703 chip->state = FL_ERASING; 704 chip->oldstate = FL_READY; 705 printk(KERN_ERR "Chip not ready after erase " 706 "suspended: status = 0x%lx\n", status.x[0]); 707 return -EIO; 708 } 709 710 spin_unlock(chip->mutex); 711 cfi_udelay(1); 712 spin_lock(chip->mutex); 713 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. 714 So we can just loop here. */ 715 } 716 chip->state = FL_STATUS; 717 return 0; 718 719 case FL_XIP_WHILE_ERASING: 720 if (mode != FL_READY && mode != FL_POINT && 721 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) 722 goto sleep; 723 chip->oldstate = chip->state; 724 chip->state = FL_READY; 725 return 0; 726 727 case FL_POINT: 728 /* Only if there's no operation suspended... */ 729 if (mode == FL_READY && chip->oldstate == FL_READY) 730 return 0; 731 732 default: 733 sleep: 734 set_current_state(TASK_UNINTERRUPTIBLE); 735 add_wait_queue(&chip->wq, &wait); 736 spin_unlock(chip->mutex); 737 schedule(); 738 remove_wait_queue(&chip->wq, &wait); 739 spin_lock(chip->mutex); 740 goto resettime; 741 } 742 } 743 744 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) 745 { 746 struct cfi_private *cfi = map->fldrv_priv; 747 748 if (chip->priv) { 749 struct flchip_shared *shared = chip->priv; 750 spin_lock(&shared->lock); 751 if (shared->writing == chip && chip->oldstate == FL_READY) { 752 /* We own the ability to write, but we're done */ 753 shared->writing = shared->erasing; 754 if (shared->writing && shared->writing != chip) { 755 /* give back ownership to who we loaned it from */ 756 struct flchip *loaner = shared->writing; 757 spin_lock(loaner->mutex); 758 spin_unlock(&shared->lock); 759 spin_unlock(chip->mutex); 760 put_chip(map, loaner, loaner->start); 761 spin_lock(chip->mutex); 762 spin_unlock(loaner->mutex); 763 wake_up(&chip->wq); 764 return; 765 } 766 shared->erasing = NULL; 767 shared->writing = NULL; 768 } else if (shared->erasing == chip && shared->writing != chip) { 769 /* 770 * We own the ability to erase without the ability 771 * to write, which means the erase was suspended 772 * and some other partition is currently writing. 773 * Don't let the switch below mess things up since 774 * we don't have ownership to resume anything. 775 */ 776 spin_unlock(&shared->lock); 777 wake_up(&chip->wq); 778 return; 779 } 780 spin_unlock(&shared->lock); 781 } 782 783 switch(chip->oldstate) { 784 case FL_ERASING: 785 chip->state = chip->oldstate; 786 /* What if one interleaved chip has finished and the 787 other hasn't? The old code would leave the finished 788 one in READY mode. That's bad, and caused -EROFS 789 errors to be returned from do_erase_oneblock because 790 that's the only bit it checked for at the time. 791 As the state machine appears to explicitly allow 792 sending the 0x70 (Read Status) command to an erasing 793 chip and expecting it to be ignored, that's what we 794 do. */ 795 map_write(map, CMD(0xd0), adr); 796 map_write(map, CMD(0x70), adr); 797 chip->oldstate = FL_READY; 798 chip->state = FL_ERASING; 799 break; 800 801 case FL_XIP_WHILE_ERASING: 802 chip->state = chip->oldstate; 803 chip->oldstate = FL_READY; 804 break; 805 806 case FL_READY: 807 case FL_STATUS: 808 case FL_JEDEC_QUERY: 809 /* We should really make set_vpp() count, rather than doing this */ 810 DISABLE_VPP(map); 811 break; 812 default: 813 printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); 814 } 815 wake_up(&chip->wq); 816 } 817 818 #ifdef CONFIG_MTD_XIP 819 820 /* 821 * No interrupt what so ever can be serviced while the flash isn't in array 822 * mode. This is ensured by the xip_disable() and xip_enable() functions 823 * enclosing any code path where the flash is known not to be in array mode. 824 * And within a XIP disabled code path, only functions marked with __xipram 825 * may be called and nothing else (it's a good thing to inspect generated 826 * assembly to make sure inline functions were actually inlined and that gcc 827 * didn't emit calls to its own support functions). Also configuring MTD CFI 828 * support to a single buswidth and a single interleave is also recommended. 829 */ 830 831 static void xip_disable(struct map_info *map, struct flchip *chip, 832 unsigned long adr) 833 { 834 /* TODO: chips with no XIP use should ignore and return */ 835 (void) map_read(map, adr); /* ensure mmu mapping is up to date */ 836 local_irq_disable(); 837 } 838 839 static void __xipram xip_enable(struct map_info *map, struct flchip *chip, 840 unsigned long adr) 841 { 842 struct cfi_private *cfi = map->fldrv_priv; 843 if (chip->state != FL_POINT && chip->state != FL_READY) { 844 map_write(map, CMD(0xff), adr); 845 chip->state = FL_READY; 846 } 847 (void) map_read(map, adr); 848 xip_iprefetch(); 849 local_irq_enable(); 850 } 851 852 /* 853 * When a delay is required for the flash operation to complete, the 854 * xip_udelay() function is polling for both the given timeout and pending 855 * (but still masked) hardware interrupts. Whenever there is an interrupt 856 * pending then the flash erase or write operation is suspended, array mode 857 * restored and interrupts unmasked. Task scheduling might also happen at that 858 * point. The CPU eventually returns from the interrupt or the call to 859 * schedule() and the suspended flash operation is resumed for the remaining 860 * of the delay period. 861 * 862 * Warning: this function _will_ fool interrupt latency tracing tools. 863 */ 864 865 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, 866 unsigned long adr, int usec) 867 { 868 struct cfi_private *cfi = map->fldrv_priv; 869 struct cfi_pri_intelext *cfip = cfi->cmdset_priv; 870 map_word status, OK = CMD(0x80); 871 unsigned long suspended, start = xip_currtime(); 872 flstate_t oldstate, newstate; 873 874 do { 875 cpu_relax(); 876 if (xip_irqpending() && cfip && 877 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || 878 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && 879 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { 880 /* 881 * Let's suspend the erase or write operation when 882 * supported. Note that we currently don't try to 883 * suspend interleaved chips if there is already 884 * another operation suspended (imagine what happens 885 * when one chip was already done with the current 886 * operation while another chip suspended it, then 887 * we resume the whole thing at once). Yes, it 888 * can happen! 889 */ 890 map_write(map, CMD(0xb0), adr); 891 map_write(map, CMD(0x70), adr); 892 usec -= xip_elapsed_since(start); 893 suspended = xip_currtime(); 894 do { 895 if (xip_elapsed_since(suspended) > 100000) { 896 /* 897 * The chip doesn't want to suspend 898 * after waiting for 100 msecs. 899 * This is a critical error but there 900 * is not much we can do here. 901 */ 902 return; 903 } 904 status = map_read(map, adr); 905 } while (!map_word_andequal(map, status, OK, OK)); 906 907 /* Suspend succeeded */ 908 oldstate = chip->state; 909 if (oldstate == FL_ERASING) { 910 if (!map_word_bitsset(map, status, CMD(0x40))) 911 break; 912 newstate = FL_XIP_WHILE_ERASING; 913 chip->erase_suspended = 1; 914 } else { 915 if (!map_word_bitsset(map, status, CMD(0x04))) 916 break; 917 newstate = FL_XIP_WHILE_WRITING; 918 chip->write_suspended = 1; 919 } 920 chip->state = newstate; 921 map_write(map, CMD(0xff), adr); 922 (void) map_read(map, adr); 923 asm volatile (".rep 8; nop; .endr"); 924 local_irq_enable(); 925 spin_unlock(chip->mutex); 926 asm volatile (".rep 8; nop; .endr"); 927 cond_resched(); 928 929 /* 930 * We're back. However someone else might have 931 * decided to go write to the chip if we are in 932 * a suspended erase state. If so let's wait 933 * until it's done. 934 */ 935 spin_lock(chip->mutex); 936 while (chip->state != newstate) { 937 DECLARE_WAITQUEUE(wait, current); 938 set_current_state(TASK_UNINTERRUPTIBLE); 939 add_wait_queue(&chip->wq, &wait); 940 spin_unlock(chip->mutex); 941 schedule(); 942 remove_wait_queue(&chip->wq, &wait); 943 spin_lock(chip->mutex); 944 } 945 /* Disallow XIP again */ 946 local_irq_disable(); 947 948 /* Resume the write or erase operation */ 949 map_write(map, CMD(0xd0), adr); 950 map_write(map, CMD(0x70), adr); 951 chip->state = oldstate; 952 start = xip_currtime(); 953 } else if (usec >= 1000000/HZ) { 954 /* 955 * Try to save on CPU power when waiting delay 956 * is at least a system timer tick period. 957 * No need to be extremely accurate here. 958 */ 959 xip_cpu_idle(); 960 } 961 status = map_read(map, adr); 962 } while (!map_word_andequal(map, status, OK, OK) 963 && xip_elapsed_since(start) < usec); 964 } 965 966 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) 967 968 /* 969 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while 970 * the flash is actively programming or erasing since we have to poll for 971 * the operation to complete anyway. We can't do that in a generic way with 972 * a XIP setup so do it before the actual flash operation in this case 973 * and stub it out from INVALIDATE_CACHE_UDELAY. 974 */ 975 #define XIP_INVAL_CACHED_RANGE(map, from, size) \ 976 INVALIDATE_CACHED_RANGE(map, from, size) 977 978 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ 979 UDELAY(map, chip, adr, usec) 980 981 /* 982 * Extra notes: 983 * 984 * Activating this XIP support changes the way the code works a bit. For 985 * example the code to suspend the current process when concurrent access 986 * happens is never executed because xip_udelay() will always return with the 987 * same chip state as it was entered with. This is why there is no care for 988 * the presence of add_wait_queue() or schedule() calls from within a couple 989 * xip_disable()'d areas of code, like in do_erase_oneblock for example. 990 * The queueing and scheduling are always happening within xip_udelay(). 991 * 992 * Similarly, get_chip() and put_chip() just happen to always be executed 993 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state 994 * is in array mode, therefore never executing many cases therein and not 995 * causing any problem with XIP. 996 */ 997 998 #else 999 1000 #define xip_disable(map, chip, adr) 1001 #define xip_enable(map, chip, adr) 1002 #define XIP_INVAL_CACHED_RANGE(x...) 1003 1004 #define UDELAY(map, chip, adr, usec) \ 1005 do { \ 1006 spin_unlock(chip->mutex); \ 1007 cfi_udelay(usec); \ 1008 spin_lock(chip->mutex); \ 1009 } while (0) 1010 1011 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \ 1012 do { \ 1013 spin_unlock(chip->mutex); \ 1014 INVALIDATE_CACHED_RANGE(map, adr, len); \ 1015 cfi_udelay(usec); \ 1016 spin_lock(chip->mutex); \ 1017 } while (0) 1018 1019 #endif 1020 1021 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) 1022 { 1023 unsigned long cmd_addr; 1024 struct cfi_private *cfi = map->fldrv_priv; 1025 int ret = 0; 1026 1027 adr += chip->start; 1028 1029 /* Ensure cmd read/writes are aligned. */ 1030 cmd_addr = adr & ~(map_bankwidth(map)-1); 1031 1032 spin_lock(chip->mutex); 1033 1034 ret = get_chip(map, chip, cmd_addr, FL_POINT); 1035 1036 if (!ret) { 1037 if (chip->state != FL_POINT && chip->state != FL_READY) 1038 map_write(map, CMD(0xff), cmd_addr); 1039 1040 chip->state = FL_POINT; 1041 chip->ref_point_counter++; 1042 } 1043 spin_unlock(chip->mutex); 1044 1045 return ret; 1046 } 1047 1048 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) 1049 { 1050 struct map_info *map = mtd->priv; 1051 struct cfi_private *cfi = map->fldrv_priv; 1052 unsigned long ofs; 1053 int chipnum; 1054 int ret = 0; 1055 1056 if (!map->virt || (from + len > mtd->size)) 1057 return -EINVAL; 1058 1059 *mtdbuf = (void *)map->virt + from; 1060 *retlen = 0; 1061 1062 /* Now lock the chip(s) to POINT state */ 1063 1064 /* ofs: offset within the first chip that the first read should start */ 1065 chipnum = (from >> cfi->chipshift); 1066 ofs = from - (chipnum << cfi->chipshift); 1067 1068 while (len) { 1069 unsigned long thislen; 1070 1071 if (chipnum >= cfi->numchips) 1072 break; 1073 1074 if ((len + ofs -1) >> cfi->chipshift) 1075 thislen = (1<<cfi->chipshift) - ofs; 1076 else 1077 thislen = len; 1078 1079 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); 1080 if (ret) 1081 break; 1082 1083 *retlen += thislen; 1084 len -= thislen; 1085 1086 ofs = 0; 1087 chipnum++; 1088 } 1089 return 0; 1090 } 1091 1092 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) 1093 { 1094 struct map_info *map = mtd->priv; 1095 struct cfi_private *cfi = map->fldrv_priv; 1096 unsigned long ofs; 1097 int chipnum; 1098 1099 /* Now unlock the chip(s) POINT state */ 1100 1101 /* ofs: offset within the first chip that the first read should start */ 1102 chipnum = (from >> cfi->chipshift); 1103 ofs = from - (chipnum << cfi->chipshift); 1104 1105 while (len) { 1106 unsigned long thislen; 1107 struct flchip *chip; 1108 1109 chip = &cfi->chips[chipnum]; 1110 if (chipnum >= cfi->numchips) 1111 break; 1112 1113 if ((len + ofs -1) >> cfi->chipshift) 1114 thislen = (1<<cfi->chipshift) - ofs; 1115 else 1116 thislen = len; 1117 1118 spin_lock(chip->mutex); 1119 if (chip->state == FL_POINT) { 1120 chip->ref_point_counter--; 1121 if(chip->ref_point_counter == 0) 1122 chip->state = FL_READY; 1123 } else 1124 printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ 1125 1126 put_chip(map, chip, chip->start); 1127 spin_unlock(chip->mutex); 1128 1129 len -= thislen; 1130 ofs = 0; 1131 chipnum++; 1132 } 1133 } 1134 1135 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) 1136 { 1137 unsigned long cmd_addr; 1138 struct cfi_private *cfi = map->fldrv_priv; 1139 int ret; 1140 1141 adr += chip->start; 1142 1143 /* Ensure cmd read/writes are aligned. */ 1144 cmd_addr = adr & ~(map_bankwidth(map)-1); 1145 1146 spin_lock(chip->mutex); 1147 ret = get_chip(map, chip, cmd_addr, FL_READY); 1148 if (ret) { 1149 spin_unlock(chip->mutex); 1150 return ret; 1151 } 1152 1153 if (chip->state != FL_POINT && chip->state != FL_READY) { 1154 map_write(map, CMD(0xff), cmd_addr); 1155 1156 chip->state = FL_READY; 1157 } 1158 1159 map_copy_from(map, buf, adr, len); 1160 1161 put_chip(map, chip, cmd_addr); 1162 1163 spin_unlock(chip->mutex); 1164 return 0; 1165 } 1166 1167 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) 1168 { 1169 struct map_info *map = mtd->priv; 1170 struct cfi_private *cfi = map->fldrv_priv; 1171 unsigned long ofs; 1172 int chipnum; 1173 int ret = 0; 1174 1175 /* ofs: offset within the first chip that the first read should start */ 1176 chipnum = (from >> cfi->chipshift); 1177 ofs = from - (chipnum << cfi->chipshift); 1178 1179 *retlen = 0; 1180 1181 while (len) { 1182 unsigned long thislen; 1183 1184 if (chipnum >= cfi->numchips) 1185 break; 1186 1187 if ((len + ofs -1) >> cfi->chipshift) 1188 thislen = (1<<cfi->chipshift) - ofs; 1189 else 1190 thislen = len; 1191 1192 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); 1193 if (ret) 1194 break; 1195 1196 *retlen += thislen; 1197 len -= thislen; 1198 buf += thislen; 1199 1200 ofs = 0; 1201 chipnum++; 1202 } 1203 return ret; 1204 } 1205 1206 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, 1207 unsigned long adr, map_word datum, int mode) 1208 { 1209 struct cfi_private *cfi = map->fldrv_priv; 1210 map_word status, status_OK, write_cmd; 1211 unsigned long timeo; 1212 int z, ret=0; 1213 1214 adr += chip->start; 1215 1216 /* Let's determine this according to the interleave only once */ 1217 status_OK = CMD(0x80); 1218 switch (mode) { 1219 case FL_WRITING: write_cmd = CMD(0x40); break; 1220 case FL_OTP_WRITE: write_cmd = CMD(0xc0); break; 1221 default: return -EINVAL; 1222 } 1223 1224 spin_lock(chip->mutex); 1225 ret = get_chip(map, chip, adr, mode); 1226 if (ret) { 1227 spin_unlock(chip->mutex); 1228 return ret; 1229 } 1230 1231 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); 1232 ENABLE_VPP(map); 1233 xip_disable(map, chip, adr); 1234 map_write(map, write_cmd, adr); 1235 map_write(map, datum, adr); 1236 chip->state = mode; 1237 1238 INVALIDATE_CACHE_UDELAY(map, chip, 1239 adr, map_bankwidth(map), 1240 chip->word_write_time); 1241 1242 timeo = jiffies + (HZ/2); 1243 z = 0; 1244 for (;;) { 1245 if (chip->state != mode) { 1246 /* Someone's suspended the write. Sleep */ 1247 DECLARE_WAITQUEUE(wait, current); 1248 1249 set_current_state(TASK_UNINTERRUPTIBLE); 1250 add_wait_queue(&chip->wq, &wait); 1251 spin_unlock(chip->mutex); 1252 schedule(); 1253 remove_wait_queue(&chip->wq, &wait); 1254 timeo = jiffies + (HZ / 2); /* FIXME */ 1255 spin_lock(chip->mutex); 1256 continue; 1257 } 1258 1259 status = map_read(map, adr); 1260 if (map_word_andequal(map, status, status_OK, status_OK)) 1261 break; 1262 1263 /* OK Still waiting */ 1264 if (time_after(jiffies, timeo)) { 1265 chip->state = FL_STATUS; 1266 xip_enable(map, chip, adr); 1267 printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); 1268 ret = -EIO; 1269 goto out; 1270 } 1271 1272 /* Latency issues. Drop the lock, wait a while and retry */ 1273 z++; 1274 UDELAY(map, chip, adr, 1); 1275 } 1276 if (!z) { 1277 chip->word_write_time--; 1278 if (!chip->word_write_time) 1279 chip->word_write_time++; 1280 } 1281 if (z > 1) 1282 chip->word_write_time++; 1283 1284 /* Done and happy. */ 1285 chip->state = FL_STATUS; 1286 1287 /* check for lock bit */ 1288 if (map_word_bitsset(map, status, CMD(0x02))) { 1289 /* clear status */ 1290 map_write(map, CMD(0x50), adr); 1291 /* put back into read status register mode */ 1292 map_write(map, CMD(0x70), adr); 1293 ret = -EROFS; 1294 } 1295 1296 xip_enable(map, chip, adr); 1297 out: put_chip(map, chip, adr); 1298 spin_unlock(chip->mutex); 1299 1300 return ret; 1301 } 1302 1303 1304 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) 1305 { 1306 struct map_info *map = mtd->priv; 1307 struct cfi_private *cfi = map->fldrv_priv; 1308 int ret = 0; 1309 int chipnum; 1310 unsigned long ofs; 1311 1312 *retlen = 0; 1313 if (!len) 1314 return 0; 1315 1316 chipnum = to >> cfi->chipshift; 1317 ofs = to - (chipnum << cfi->chipshift); 1318 1319 /* If it's not bus-aligned, do the first byte write */ 1320 if (ofs & (map_bankwidth(map)-1)) { 1321 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); 1322 int gap = ofs - bus_ofs; 1323 int n; 1324 map_word datum; 1325 1326 n = min_t(int, len, map_bankwidth(map)-gap); 1327 datum = map_word_ff(map); 1328 datum = map_word_load_partial(map, datum, buf, gap, n); 1329 1330 ret = do_write_oneword(map, &cfi->chips[chipnum], 1331 bus_ofs, datum, FL_WRITING); 1332 if (ret) 1333 return ret; 1334 1335 len -= n; 1336 ofs += n; 1337 buf += n; 1338 (*retlen) += n; 1339 1340 if (ofs >> cfi->chipshift) { 1341 chipnum ++; 1342 ofs = 0; 1343 if (chipnum == cfi->numchips) 1344 return 0; 1345 } 1346 } 1347 1348 while(len >= map_bankwidth(map)) { 1349 map_word datum = map_word_load(map, buf); 1350 1351 ret = do_write_oneword(map, &cfi->chips[chipnum], 1352 ofs, datum, FL_WRITING); 1353 if (ret) 1354 return ret; 1355 1356 ofs += map_bankwidth(map); 1357 buf += map_bankwidth(map); 1358 (*retlen) += map_bankwidth(map); 1359 len -= map_bankwidth(map); 1360 1361 if (ofs >> cfi->chipshift) { 1362 chipnum ++; 1363 ofs = 0; 1364 if (chipnum == cfi->numchips) 1365 return 0; 1366 } 1367 } 1368 1369 if (len & (map_bankwidth(map)-1)) { 1370 map_word datum; 1371 1372 datum = map_word_ff(map); 1373 datum = map_word_load_partial(map, datum, buf, 0, len); 1374 1375 ret = do_write_oneword(map, &cfi->chips[chipnum], 1376 ofs, datum, FL_WRITING); 1377 if (ret) 1378 return ret; 1379 1380 (*retlen) += len; 1381 } 1382 1383 return 0; 1384 } 1385 1386 1387 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 1388 unsigned long adr, const u_char *buf, int len) 1389 { 1390 struct cfi_private *cfi = map->fldrv_priv; 1391 map_word status, status_OK; 1392 unsigned long cmd_adr, timeo; 1393 int wbufsize, z, ret=0, bytes, words; 1394 1395 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1396 adr += chip->start; 1397 cmd_adr = adr & ~(wbufsize-1); 1398 1399 /* Let's determine this according to the interleave only once */ 1400 status_OK = CMD(0x80); 1401 1402 spin_lock(chip->mutex); 1403 ret = get_chip(map, chip, cmd_adr, FL_WRITING); 1404 if (ret) { 1405 spin_unlock(chip->mutex); 1406 return ret; 1407 } 1408 1409 XIP_INVAL_CACHED_RANGE(map, adr, len); 1410 ENABLE_VPP(map); 1411 xip_disable(map, chip, cmd_adr); 1412 1413 /* �4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set 1414 [...], the device will not accept any more Write to Buffer commands". 1415 So we must check here and reset those bits if they're set. Otherwise 1416 we're just pissing in the wind */ 1417 if (chip->state != FL_STATUS) 1418 map_write(map, CMD(0x70), cmd_adr); 1419 status = map_read(map, cmd_adr); 1420 if (map_word_bitsset(map, status, CMD(0x30))) { 1421 xip_enable(map, chip, cmd_adr); 1422 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); 1423 xip_disable(map, chip, cmd_adr); 1424 map_write(map, CMD(0x50), cmd_adr); 1425 map_write(map, CMD(0x70), cmd_adr); 1426 } 1427 1428 chip->state = FL_WRITING_TO_BUFFER; 1429 1430 z = 0; 1431 for (;;) { 1432 map_write(map, CMD(0xe8), cmd_adr); 1433 1434 status = map_read(map, cmd_adr); 1435 if (map_word_andequal(map, status, status_OK, status_OK)) 1436 break; 1437 1438 UDELAY(map, chip, cmd_adr, 1); 1439 1440 if (++z > 20) { 1441 /* Argh. Not ready for write to buffer */ 1442 map_word Xstatus; 1443 map_write(map, CMD(0x70), cmd_adr); 1444 chip->state = FL_STATUS; 1445 Xstatus = map_read(map, cmd_adr); 1446 /* Odd. Clear status bits */ 1447 map_write(map, CMD(0x50), cmd_adr); 1448 map_write(map, CMD(0x70), cmd_adr); 1449 xip_enable(map, chip, cmd_adr); 1450 printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", 1451 status.x[0], Xstatus.x[0]); 1452 ret = -EIO; 1453 goto out; 1454 } 1455 } 1456 1457 /* Write length of data to come */ 1458 bytes = len & (map_bankwidth(map)-1); 1459 words = len / map_bankwidth(map); 1460 map_write(map, CMD(words - !bytes), cmd_adr ); 1461 1462 /* Write data */ 1463 z = 0; 1464 while(z < words * map_bankwidth(map)) { 1465 map_word datum = map_word_load(map, buf); 1466 map_write(map, datum, adr+z); 1467 1468 z += map_bankwidth(map); 1469 buf += map_bankwidth(map); 1470 } 1471 1472 if (bytes) { 1473 map_word datum; 1474 1475 datum = map_word_ff(map); 1476 datum = map_word_load_partial(map, datum, buf, 0, bytes); 1477 map_write(map, datum, adr+z); 1478 } 1479 1480 /* GO GO GO */ 1481 map_write(map, CMD(0xd0), cmd_adr); 1482 chip->state = FL_WRITING; 1483 1484 INVALIDATE_CACHE_UDELAY(map, chip, 1485 cmd_adr, len, 1486 chip->buffer_write_time); 1487 1488 timeo = jiffies + (HZ/2); 1489 z = 0; 1490 for (;;) { 1491 if (chip->state != FL_WRITING) { 1492 /* Someone's suspended the write. Sleep */ 1493 DECLARE_WAITQUEUE(wait, current); 1494 set_current_state(TASK_UNINTERRUPTIBLE); 1495 add_wait_queue(&chip->wq, &wait); 1496 spin_unlock(chip->mutex); 1497 schedule(); 1498 remove_wait_queue(&chip->wq, &wait); 1499 timeo = jiffies + (HZ / 2); /* FIXME */ 1500 spin_lock(chip->mutex); 1501 continue; 1502 } 1503 1504 status = map_read(map, cmd_adr); 1505 if (map_word_andequal(map, status, status_OK, status_OK)) 1506 break; 1507 1508 /* OK Still waiting */ 1509 if (time_after(jiffies, timeo)) { 1510 chip->state = FL_STATUS; 1511 xip_enable(map, chip, cmd_adr); 1512 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); 1513 ret = -EIO; 1514 goto out; 1515 } 1516 1517 /* Latency issues. Drop the lock, wait a while and retry */ 1518 z++; 1519 UDELAY(map, chip, cmd_adr, 1); 1520 } 1521 if (!z) { 1522 chip->buffer_write_time--; 1523 if (!chip->buffer_write_time) 1524 chip->buffer_write_time++; 1525 } 1526 if (z > 1) 1527 chip->buffer_write_time++; 1528 1529 /* Done and happy. */ 1530 chip->state = FL_STATUS; 1531 1532 /* check for lock bit */ 1533 if (map_word_bitsset(map, status, CMD(0x02))) { 1534 /* clear status */ 1535 map_write(map, CMD(0x50), cmd_adr); 1536 /* put back into read status register mode */ 1537 map_write(map, CMD(0x70), adr); 1538 ret = -EROFS; 1539 } 1540 1541 xip_enable(map, chip, cmd_adr); 1542 out: put_chip(map, chip, cmd_adr); 1543 spin_unlock(chip->mutex); 1544 return ret; 1545 } 1546 1547 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 1548 size_t len, size_t *retlen, const u_char *buf) 1549 { 1550 struct map_info *map = mtd->priv; 1551 struct cfi_private *cfi = map->fldrv_priv; 1552 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; 1553 int ret = 0; 1554 int chipnum; 1555 unsigned long ofs; 1556 1557 *retlen = 0; 1558 if (!len) 1559 return 0; 1560 1561 chipnum = to >> cfi->chipshift; 1562 ofs = to - (chipnum << cfi->chipshift); 1563 1564 /* If it's not bus-aligned, do the first word write */ 1565 if (ofs & (map_bankwidth(map)-1)) { 1566 size_t local_len = (-ofs)&(map_bankwidth(map)-1); 1567 if (local_len > len) 1568 local_len = len; 1569 ret = cfi_intelext_write_words(mtd, to, local_len, 1570 retlen, buf); 1571 if (ret) 1572 return ret; 1573 ofs += local_len; 1574 buf += local_len; 1575 len -= local_len; 1576 1577 if (ofs >> cfi->chipshift) { 1578 chipnum ++; 1579 ofs = 0; 1580 if (chipnum == cfi->numchips) 1581 return 0; 1582 } 1583 } 1584 1585 while(len) { 1586 /* We must not cross write block boundaries */ 1587 int size = wbufsize - (ofs & (wbufsize-1)); 1588 1589 if (size > len) 1590 size = len; 1591 ret = do_write_buffer(map, &cfi->chips[chipnum], 1592 ofs, buf, size); 1593 if (ret) 1594 return ret; 1595 1596 ofs += size; 1597 buf += size; 1598 (*retlen) += size; 1599 len -= size; 1600 1601 if (ofs >> cfi->chipshift) { 1602 chipnum ++; 1603 ofs = 0; 1604 if (chipnum == cfi->numchips) 1605 return 0; 1606 } 1607 } 1608 return 0; 1609 } 1610 1611 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, 1612 unsigned long adr, int len, void *thunk) 1613 { 1614 struct cfi_private *cfi = map->fldrv_priv; 1615 map_word status, status_OK; 1616 unsigned long timeo; 1617 int retries = 3; 1618 DECLARE_WAITQUEUE(wait, current); 1619 int ret = 0; 1620 1621 adr += chip->start; 1622 1623 /* Let's determine this according to the interleave only once */ 1624 status_OK = CMD(0x80); 1625 1626 retry: 1627 spin_lock(chip->mutex); 1628 ret = get_chip(map, chip, adr, FL_ERASING); 1629 if (ret) { 1630 spin_unlock(chip->mutex); 1631 return ret; 1632 } 1633 1634 XIP_INVAL_CACHED_RANGE(map, adr, len); 1635 ENABLE_VPP(map); 1636 xip_disable(map, chip, adr); 1637 1638 /* Clear the status register first */ 1639 map_write(map, CMD(0x50), adr); 1640 1641 /* Now erase */ 1642 map_write(map, CMD(0x20), adr); 1643 map_write(map, CMD(0xD0), adr); 1644 chip->state = FL_ERASING; 1645 chip->erase_suspended = 0; 1646 1647 INVALIDATE_CACHE_UDELAY(map, chip, 1648 adr, len, 1649 chip->erase_time*1000/2); 1650 1651 /* FIXME. Use a timer to check this, and return immediately. */ 1652 /* Once the state machine's known to be working I'll do that */ 1653 1654 timeo = jiffies + (HZ*20); 1655 for (;;) { 1656 if (chip->state != FL_ERASING) { 1657 /* Someone's suspended the erase. Sleep */ 1658 set_current_state(TASK_UNINTERRUPTIBLE); 1659 add_wait_queue(&chip->wq, &wait); 1660 spin_unlock(chip->mutex); 1661 schedule(); 1662 remove_wait_queue(&chip->wq, &wait); 1663 spin_lock(chip->mutex); 1664 continue; 1665 } 1666 if (chip->erase_suspended) { 1667 /* This erase was suspended and resumed. 1668 Adjust the timeout */ 1669 timeo = jiffies + (HZ*20); /* FIXME */ 1670 chip->erase_suspended = 0; 1671 } 1672 1673 status = map_read(map, adr); 1674 if (map_word_andequal(map, status, status_OK, status_OK)) 1675 break; 1676 1677 /* OK Still waiting */ 1678 if (time_after(jiffies, timeo)) { 1679 map_word Xstatus; 1680 map_write(map, CMD(0x70), adr); 1681 chip->state = FL_STATUS; 1682 Xstatus = map_read(map, adr); 1683 /* Clear status bits */ 1684 map_write(map, CMD(0x50), adr); 1685 map_write(map, CMD(0x70), adr); 1686 xip_enable(map, chip, adr); 1687 printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", 1688 adr, status.x[0], Xstatus.x[0]); 1689 ret = -EIO; 1690 goto out; 1691 } 1692 1693 /* Latency issues. Drop the lock, wait a while and retry */ 1694 UDELAY(map, chip, adr, 1000000/HZ); 1695 } 1696 1697 /* We've broken this before. It doesn't hurt to be safe */ 1698 map_write(map, CMD(0x70), adr); 1699 chip->state = FL_STATUS; 1700 status = map_read(map, adr); 1701 1702 /* check for lock bit */ 1703 if (map_word_bitsset(map, status, CMD(0x3a))) { 1704 unsigned long chipstatus; 1705 1706 /* Reset the error bits */ 1707 map_write(map, CMD(0x50), adr); 1708 map_write(map, CMD(0x70), adr); 1709 xip_enable(map, chip, adr); 1710 1711 chipstatus = MERGESTATUS(status); 1712 1713 if ((chipstatus & 0x30) == 0x30) { 1714 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%lx\n", chipstatus); 1715 ret = -EIO; 1716 } else if (chipstatus & 0x02) { 1717 /* Protection bit set */ 1718 ret = -EROFS; 1719 } else if (chipstatus & 0x8) { 1720 /* Voltage */ 1721 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%lx\n", chipstatus); 1722 ret = -EIO; 1723 } else if (chipstatus & 0x20) { 1724 if (retries--) { 1725 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus); 1726 timeo = jiffies + HZ; 1727 put_chip(map, chip, adr); 1728 spin_unlock(chip->mutex); 1729 goto retry; 1730 } 1731 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx\n", adr, chipstatus); 1732 ret = -EIO; 1733 } 1734 } else { 1735 xip_enable(map, chip, adr); 1736 ret = 0; 1737 } 1738 1739 out: put_chip(map, chip, adr); 1740 spin_unlock(chip->mutex); 1741 return ret; 1742 } 1743 1744 int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) 1745 { 1746 unsigned long ofs, len; 1747 int ret; 1748 1749 ofs = instr->addr; 1750 len = instr->len; 1751 1752 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); 1753 if (ret) 1754 return ret; 1755 1756 instr->state = MTD_ERASE_DONE; 1757 mtd_erase_callback(instr); 1758 1759 return 0; 1760 } 1761 1762 static void cfi_intelext_sync (struct mtd_info *mtd) 1763 { 1764 struct map_info *map = mtd->priv; 1765 struct cfi_private *cfi = map->fldrv_priv; 1766 int i; 1767 struct flchip *chip; 1768 int ret = 0; 1769 1770 for (i=0; !ret && i<cfi->numchips; i++) { 1771 chip = &cfi->chips[i]; 1772 1773 spin_lock(chip->mutex); 1774 ret = get_chip(map, chip, chip->start, FL_SYNCING); 1775 1776 if (!ret) { 1777 chip->oldstate = chip->state; 1778 chip->state = FL_SYNCING; 1779 /* No need to wake_up() on this state change - 1780 * as the whole point is that nobody can do anything 1781 * with the chip now anyway. 1782 */ 1783 } 1784 spin_unlock(chip->mutex); 1785 } 1786 1787 /* Unlock the chips again */ 1788 1789 for (i--; i >=0; i--) { 1790 chip = &cfi->chips[i]; 1791 1792 spin_lock(chip->mutex); 1793 1794 if (chip->state == FL_SYNCING) { 1795 chip->state = chip->oldstate; 1796 chip->oldstate = FL_READY; 1797 wake_up(&chip->wq); 1798 } 1799 spin_unlock(chip->mutex); 1800 } 1801 } 1802 1803 #ifdef DEBUG_LOCK_BITS 1804 static int __xipram do_printlockstatus_oneblock(struct map_info *map, 1805 struct flchip *chip, 1806 unsigned long adr, 1807 int len, void *thunk) 1808 { 1809 struct cfi_private *cfi = map->fldrv_priv; 1810 int status, ofs_factor = cfi->interleave * cfi->device_type; 1811 1812 adr += chip->start; 1813 xip_disable(map, chip, adr+(2*ofs_factor)); 1814 map_write(map, CMD(0x90), adr+(2*ofs_factor)); 1815 chip->state = FL_JEDEC_QUERY; 1816 status = cfi_read_query(map, adr+(2*ofs_factor)); 1817 xip_enable(map, chip, 0); 1818 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", 1819 adr, status); 1820 return 0; 1821 } 1822 #endif 1823 1824 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) 1825 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) 1826 1827 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, 1828 unsigned long adr, int len, void *thunk) 1829 { 1830 struct cfi_private *cfi = map->fldrv_priv; 1831 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 1832 map_word status, status_OK; 1833 unsigned long timeo = jiffies + HZ; 1834 int ret; 1835 1836 adr += chip->start; 1837 1838 /* Let's determine this according to the interleave only once */ 1839 status_OK = CMD(0x80); 1840 1841 spin_lock(chip->mutex); 1842 ret = get_chip(map, chip, adr, FL_LOCKING); 1843 if (ret) { 1844 spin_unlock(chip->mutex); 1845 return ret; 1846 } 1847 1848 ENABLE_VPP(map); 1849 xip_disable(map, chip, adr); 1850 1851 map_write(map, CMD(0x60), adr); 1852 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { 1853 map_write(map, CMD(0x01), adr); 1854 chip->state = FL_LOCKING; 1855 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { 1856 map_write(map, CMD(0xD0), adr); 1857 chip->state = FL_UNLOCKING; 1858 } else 1859 BUG(); 1860 1861 /* 1862 * If Instant Individual Block Locking supported then no need 1863 * to delay. 1864 */ 1865 1866 if (!extp || !(extp->FeatureSupport & (1 << 5))) 1867 UDELAY(map, chip, adr, 1000000/HZ); 1868 1869 /* FIXME. Use a timer to check this, and return immediately. */ 1870 /* Once the state machine's known to be working I'll do that */ 1871 1872 timeo = jiffies + (HZ*20); 1873 for (;;) { 1874 1875 status = map_read(map, adr); 1876 if (map_word_andequal(map, status, status_OK, status_OK)) 1877 break; 1878 1879 /* OK Still waiting */ 1880 if (time_after(jiffies, timeo)) { 1881 map_word Xstatus; 1882 map_write(map, CMD(0x70), adr); 1883 chip->state = FL_STATUS; 1884 Xstatus = map_read(map, adr); 1885 xip_enable(map, chip, adr); 1886 printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", 1887 status.x[0], Xstatus.x[0]); 1888 put_chip(map, chip, adr); 1889 spin_unlock(chip->mutex); 1890 return -EIO; 1891 } 1892 1893 /* Latency issues. Drop the lock, wait a while and retry */ 1894 UDELAY(map, chip, adr, 1); 1895 } 1896 1897 /* Done and happy. */ 1898 chip->state = FL_STATUS; 1899 xip_enable(map, chip, adr); 1900 put_chip(map, chip, adr); 1901 spin_unlock(chip->mutex); 1902 return 0; 1903 } 1904 1905 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 1906 { 1907 int ret; 1908 1909 #ifdef DEBUG_LOCK_BITS 1910 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 1911 __FUNCTION__, ofs, len); 1912 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 1913 ofs, len, 0); 1914 #endif 1915 1916 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 1917 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); 1918 1919 #ifdef DEBUG_LOCK_BITS 1920 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 1921 __FUNCTION__, ret); 1922 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 1923 ofs, len, 0); 1924 #endif 1925 1926 return ret; 1927 } 1928 1929 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 1930 { 1931 int ret; 1932 1933 #ifdef DEBUG_LOCK_BITS 1934 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", 1935 __FUNCTION__, ofs, len); 1936 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 1937 ofs, len, 0); 1938 #endif 1939 1940 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 1941 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); 1942 1943 #ifdef DEBUG_LOCK_BITS 1944 printk(KERN_DEBUG "%s: lock status after, ret=%d\n", 1945 __FUNCTION__, ret); 1946 cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 1947 ofs, len, 0); 1948 #endif 1949 1950 return ret; 1951 } 1952 1953 #ifdef CONFIG_MTD_OTP 1954 1955 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, 1956 u_long data_offset, u_char *buf, u_int size, 1957 u_long prot_offset, u_int groupno, u_int groupsize); 1958 1959 static int __xipram 1960 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset, 1961 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 1962 { 1963 struct cfi_private *cfi = map->fldrv_priv; 1964 int ret; 1965 1966 spin_lock(chip->mutex); 1967 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); 1968 if (ret) { 1969 spin_unlock(chip->mutex); 1970 return ret; 1971 } 1972 1973 /* let's ensure we're not reading back cached data from array mode */ 1974 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 1975 1976 xip_disable(map, chip, chip->start); 1977 if (chip->state != FL_JEDEC_QUERY) { 1978 map_write(map, CMD(0x90), chip->start); 1979 chip->state = FL_JEDEC_QUERY; 1980 } 1981 map_copy_from(map, buf, chip->start + offset, size); 1982 xip_enable(map, chip, chip->start); 1983 1984 /* then ensure we don't keep OTP data in the cache */ 1985 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size); 1986 1987 put_chip(map, chip, chip->start); 1988 spin_unlock(chip->mutex); 1989 return 0; 1990 } 1991 1992 static int 1993 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset, 1994 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 1995 { 1996 int ret; 1997 1998 while (size) { 1999 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1); 2000 int gap = offset - bus_ofs; 2001 int n = min_t(int, size, map_bankwidth(map)-gap); 2002 map_word datum = map_word_ff(map); 2003 2004 datum = map_word_load_partial(map, datum, buf, gap, n); 2005 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); 2006 if (ret) 2007 return ret; 2008 2009 offset += n; 2010 buf += n; 2011 size -= n; 2012 } 2013 2014 return 0; 2015 } 2016 2017 static int 2018 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset, 2019 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz) 2020 { 2021 struct cfi_private *cfi = map->fldrv_priv; 2022 map_word datum; 2023 2024 /* make sure area matches group boundaries */ 2025 if (size != grpsz) 2026 return -EXDEV; 2027 2028 datum = map_word_ff(map); 2029 datum = map_word_clr(map, datum, CMD(1 << grpno)); 2030 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE); 2031 } 2032 2033 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, 2034 size_t *retlen, u_char *buf, 2035 otp_op_t action, int user_regs) 2036 { 2037 struct map_info *map = mtd->priv; 2038 struct cfi_private *cfi = map->fldrv_priv; 2039 struct cfi_pri_intelext *extp = cfi->cmdset_priv; 2040 struct flchip *chip; 2041 struct cfi_intelext_otpinfo *otp; 2042 u_long devsize, reg_prot_offset, data_offset; 2043 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size; 2044 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups; 2045 int ret; 2046 2047 *retlen = 0; 2048 2049 /* Check that we actually have some OTP registers */ 2050 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields) 2051 return -ENODATA; 2052 2053 /* we need real chips here not virtual ones */ 2054 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave; 2055 chip_step = devsize >> cfi->chipshift; 2056 chip_num = 0; 2057 2058 /* Some chips have OTP located in the _top_ partition only. 2059 For example: Intel 28F256L18T (T means top-parameter device) */ 2060 if (cfi->mfr == MANUFACTURER_INTEL) { 2061 switch (cfi->id) { 2062 case 0x880b: 2063 case 0x880c: 2064 case 0x880d: 2065 chip_num = chip_step - 1; 2066 } 2067 } 2068 2069 for ( ; chip_num < cfi->numchips; chip_num += chip_step) { 2070 chip = &cfi->chips[chip_num]; 2071 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0]; 2072 2073 /* first OTP region */ 2074 field = 0; 2075 reg_prot_offset = extp->ProtRegAddr; 2076 reg_fact_groups = 1; 2077 reg_fact_size = 1 << extp->FactProtRegSize; 2078 reg_user_groups = 1; 2079 reg_user_size = 1 << extp->UserProtRegSize; 2080 2081 while (len > 0) { 2082 /* flash geometry fixup */ 2083 data_offset = reg_prot_offset + 1; 2084 data_offset *= cfi->interleave * cfi->device_type; 2085 reg_prot_offset *= cfi->interleave * cfi->device_type; 2086 reg_fact_size *= cfi->interleave; 2087 reg_user_size *= cfi->interleave; 2088 2089 if (user_regs) { 2090 groups = reg_user_groups; 2091 groupsize = reg_user_size; 2092 /* skip over factory reg area */ 2093 groupno = reg_fact_groups; 2094 data_offset += reg_fact_groups * reg_fact_size; 2095 } else { 2096 groups = reg_fact_groups; 2097 groupsize = reg_fact_size; 2098 groupno = 0; 2099 } 2100 2101 while (len > 0 && groups > 0) { 2102 if (!action) { 2103 /* 2104 * Special case: if action is NULL 2105 * we fill buf with otp_info records. 2106 */ 2107 struct otp_info *otpinfo; 2108 map_word lockword; 2109 len -= sizeof(struct otp_info); 2110 if (len <= 0) 2111 return -ENOSPC; 2112 ret = do_otp_read(map, chip, 2113 reg_prot_offset, 2114 (u_char *)&lockword, 2115 map_bankwidth(map), 2116 0, 0, 0); 2117 if (ret) 2118 return ret; 2119 otpinfo = (struct otp_info *)buf; 2120 otpinfo->start = from; 2121 otpinfo->length = groupsize; 2122 otpinfo->locked = 2123 !map_word_bitsset(map, lockword, 2124 CMD(1 << groupno)); 2125 from += groupsize; 2126 buf += sizeof(*otpinfo); 2127 *retlen += sizeof(*otpinfo); 2128 } else if (from >= groupsize) { 2129 from -= groupsize; 2130 data_offset += groupsize; 2131 } else { 2132 int size = groupsize; 2133 data_offset += from; 2134 size -= from; 2135 from = 0; 2136 if (size > len) 2137 size = len; 2138 ret = action(map, chip, data_offset, 2139 buf, size, reg_prot_offset, 2140 groupno, groupsize); 2141 if (ret < 0) 2142 return ret; 2143 buf += size; 2144 len -= size; 2145 *retlen += size; 2146 data_offset += size; 2147 } 2148 groupno++; 2149 groups--; 2150 } 2151 2152 /* next OTP region */ 2153 if (++field == extp->NumProtectionFields) 2154 break; 2155 reg_prot_offset = otp->ProtRegAddr; 2156 reg_fact_groups = otp->FactGroups; 2157 reg_fact_size = 1 << otp->FactProtRegSize; 2158 reg_user_groups = otp->UserGroups; 2159 reg_user_size = 1 << otp->UserProtRegSize; 2160 otp++; 2161 } 2162 } 2163 2164 return 0; 2165 } 2166 2167 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 2168 size_t len, size_t *retlen, 2169 u_char *buf) 2170 { 2171 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2172 buf, do_otp_read, 0); 2173 } 2174 2175 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 2176 size_t len, size_t *retlen, 2177 u_char *buf) 2178 { 2179 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2180 buf, do_otp_read, 1); 2181 } 2182 2183 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 2184 size_t len, size_t *retlen, 2185 u_char *buf) 2186 { 2187 return cfi_intelext_otp_walk(mtd, from, len, retlen, 2188 buf, do_otp_write, 1); 2189 } 2190 2191 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd, 2192 loff_t from, size_t len) 2193 { 2194 size_t retlen; 2195 return cfi_intelext_otp_walk(mtd, from, len, &retlen, 2196 NULL, do_otp_lock, 1); 2197 } 2198 2199 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, 2200 struct otp_info *buf, size_t len) 2201 { 2202 size_t retlen; 2203 int ret; 2204 2205 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0); 2206 return ret ? : retlen; 2207 } 2208 2209 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd, 2210 struct otp_info *buf, size_t len) 2211 { 2212 size_t retlen; 2213 int ret; 2214 2215 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1); 2216 return ret ? : retlen; 2217 } 2218 2219 #endif 2220 2221 static int cfi_intelext_suspend(struct mtd_info *mtd) 2222 { 2223 struct map_info *map = mtd->priv; 2224 struct cfi_private *cfi = map->fldrv_priv; 2225 int i; 2226 struct flchip *chip; 2227 int ret = 0; 2228 2229 for (i=0; !ret && i<cfi->numchips; i++) { 2230 chip = &cfi->chips[i]; 2231 2232 spin_lock(chip->mutex); 2233 2234 switch (chip->state) { 2235 case FL_READY: 2236 case FL_STATUS: 2237 case FL_CFI_QUERY: 2238 case FL_JEDEC_QUERY: 2239 if (chip->oldstate == FL_READY) { 2240 chip->oldstate = chip->state; 2241 chip->state = FL_PM_SUSPENDED; 2242 /* No need to wake_up() on this state change - 2243 * as the whole point is that nobody can do anything 2244 * with the chip now anyway. 2245 */ 2246 } else { 2247 /* There seems to be an operation pending. We must wait for it. */ 2248 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); 2249 ret = -EAGAIN; 2250 } 2251 break; 2252 default: 2253 /* Should we actually wait? Once upon a time these routines weren't 2254 allowed to. Or should we return -EAGAIN, because the upper layers 2255 ought to have already shut down anything which was using the device 2256 anyway? The latter for now. */ 2257 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); 2258 ret = -EAGAIN; 2259 case FL_PM_SUSPENDED: 2260 break; 2261 } 2262 spin_unlock(chip->mutex); 2263 } 2264 2265 /* Unlock the chips again */ 2266 2267 if (ret) { 2268 for (i--; i >=0; i--) { 2269 chip = &cfi->chips[i]; 2270 2271 spin_lock(chip->mutex); 2272 2273 if (chip->state == FL_PM_SUSPENDED) { 2274 /* No need to force it into a known state here, 2275 because we're returning failure, and it didn't 2276 get power cycled */ 2277 chip->state = chip->oldstate; 2278 chip->oldstate = FL_READY; 2279 wake_up(&chip->wq); 2280 } 2281 spin_unlock(chip->mutex); 2282 } 2283 } 2284 2285 return ret; 2286 } 2287 2288 static void cfi_intelext_resume(struct mtd_info *mtd) 2289 { 2290 struct map_info *map = mtd->priv; 2291 struct cfi_private *cfi = map->fldrv_priv; 2292 int i; 2293 struct flchip *chip; 2294 2295 for (i=0; i<cfi->numchips; i++) { 2296 2297 chip = &cfi->chips[i]; 2298 2299 spin_lock(chip->mutex); 2300 2301 /* Go to known state. Chip may have been power cycled */ 2302 if (chip->state == FL_PM_SUSPENDED) { 2303 map_write(map, CMD(0xFF), cfi->chips[i].start); 2304 chip->oldstate = chip->state = FL_READY; 2305 wake_up(&chip->wq); 2306 } 2307 2308 spin_unlock(chip->mutex); 2309 } 2310 } 2311 2312 static int cfi_intelext_reset(struct mtd_info *mtd) 2313 { 2314 struct map_info *map = mtd->priv; 2315 struct cfi_private *cfi = map->fldrv_priv; 2316 int i, ret; 2317 2318 for (i=0; i < cfi->numchips; i++) { 2319 struct flchip *chip = &cfi->chips[i]; 2320 2321 /* force the completion of any ongoing operation 2322 and switch to array mode so any bootloader in 2323 flash is accessible for soft reboot. */ 2324 spin_lock(chip->mutex); 2325 ret = get_chip(map, chip, chip->start, FL_SYNCING); 2326 if (!ret) { 2327 map_write(map, CMD(0xff), chip->start); 2328 chip->state = FL_READY; 2329 } 2330 spin_unlock(chip->mutex); 2331 } 2332 2333 return 0; 2334 } 2335 2336 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val, 2337 void *v) 2338 { 2339 struct mtd_info *mtd; 2340 2341 mtd = container_of(nb, struct mtd_info, reboot_notifier); 2342 cfi_intelext_reset(mtd); 2343 return NOTIFY_DONE; 2344 } 2345 2346 static void cfi_intelext_destroy(struct mtd_info *mtd) 2347 { 2348 struct map_info *map = mtd->priv; 2349 struct cfi_private *cfi = map->fldrv_priv; 2350 cfi_intelext_reset(mtd); 2351 unregister_reboot_notifier(&mtd->reboot_notifier); 2352 kfree(cfi->cmdset_priv); 2353 kfree(cfi->cfiq); 2354 kfree(cfi->chips[0].priv); 2355 kfree(cfi); 2356 kfree(mtd->eraseregions); 2357 } 2358 2359 static char im_name_1[]="cfi_cmdset_0001"; 2360 static char im_name_3[]="cfi_cmdset_0003"; 2361 2362 static int __init cfi_intelext_init(void) 2363 { 2364 inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); 2365 inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); 2366 return 0; 2367 } 2368 2369 static void __exit cfi_intelext_exit(void) 2370 { 2371 inter_module_unregister(im_name_1); 2372 inter_module_unregister(im_name_3); 2373 } 2374 2375 module_init(cfi_intelext_init); 2376 module_exit(cfi_intelext_exit); 2377 2378 MODULE_LICENSE("GPL"); 2379 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); 2380 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); 2381