xref: /linux/drivers/mmc/core/queue.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /*
2  *  Copyright (C) 2003 Russell King, All Rights Reserved.
3  *  Copyright 2006-2007 Pierre Ossman
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  */
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/blkdev.h>
13 #include <linux/freezer.h>
14 #include <linux/kthread.h>
15 #include <linux/scatterlist.h>
16 #include <linux/dma-mapping.h>
17 
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/host.h>
20 
21 #include "queue.h"
22 #include "block.h"
23 
24 #define MMC_QUEUE_BOUNCESZ	65536
25 
26 /*
27  * Prepare a MMC request. This just filters out odd stuff.
28  */
29 static int mmc_prep_request(struct request_queue *q, struct request *req)
30 {
31 	struct mmc_queue *mq = q->queuedata;
32 
33 	/*
34 	 * We only like normal block requests and discards.
35 	 */
36 	if (req->cmd_type != REQ_TYPE_FS && req_op(req) != REQ_OP_DISCARD &&
37 	    req_op(req) != REQ_OP_SECURE_ERASE) {
38 		blk_dump_rq_flags(req, "MMC bad request");
39 		return BLKPREP_KILL;
40 	}
41 
42 	if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
43 		return BLKPREP_KILL;
44 
45 	req->rq_flags |= RQF_DONTPREP;
46 
47 	return BLKPREP_OK;
48 }
49 
50 static int mmc_queue_thread(void *d)
51 {
52 	struct mmc_queue *mq = d;
53 	struct request_queue *q = mq->queue;
54 	struct mmc_context_info *cntx = &mq->card->host->context_info;
55 
56 	current->flags |= PF_MEMALLOC;
57 
58 	down(&mq->thread_sem);
59 	do {
60 		struct request *req = NULL;
61 
62 		spin_lock_irq(q->queue_lock);
63 		set_current_state(TASK_INTERRUPTIBLE);
64 		req = blk_fetch_request(q);
65 		mq->asleep = false;
66 		cntx->is_waiting_last_req = false;
67 		cntx->is_new_req = false;
68 		if (!req) {
69 			/*
70 			 * Dispatch queue is empty so set flags for
71 			 * mmc_request_fn() to wake us up.
72 			 */
73 			if (mq->mqrq_prev->req)
74 				cntx->is_waiting_last_req = true;
75 			else
76 				mq->asleep = true;
77 		}
78 		mq->mqrq_cur->req = req;
79 		spin_unlock_irq(q->queue_lock);
80 
81 		if (req || mq->mqrq_prev->req) {
82 			bool req_is_special = mmc_req_is_special(req);
83 
84 			set_current_state(TASK_RUNNING);
85 			mmc_blk_issue_rq(mq, req);
86 			cond_resched();
87 			if (mq->flags & MMC_QUEUE_NEW_REQUEST) {
88 				mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
89 				continue; /* fetch again */
90 			}
91 
92 			/*
93 			 * Current request becomes previous request
94 			 * and vice versa.
95 			 * In case of special requests, current request
96 			 * has been finished. Do not assign it to previous
97 			 * request.
98 			 */
99 			if (req_is_special)
100 				mq->mqrq_cur->req = NULL;
101 
102 			mq->mqrq_prev->brq.mrq.data = NULL;
103 			mq->mqrq_prev->req = NULL;
104 			swap(mq->mqrq_prev, mq->mqrq_cur);
105 		} else {
106 			if (kthread_should_stop()) {
107 				set_current_state(TASK_RUNNING);
108 				break;
109 			}
110 			up(&mq->thread_sem);
111 			schedule();
112 			down(&mq->thread_sem);
113 		}
114 	} while (1);
115 	up(&mq->thread_sem);
116 
117 	return 0;
118 }
119 
120 /*
121  * Generic MMC request handler.  This is called for any queue on a
122  * particular host.  When the host is not busy, we look for a request
123  * on any queue on this host, and attempt to issue it.  This may
124  * not be the queue we were asked to process.
125  */
126 static void mmc_request_fn(struct request_queue *q)
127 {
128 	struct mmc_queue *mq = q->queuedata;
129 	struct request *req;
130 	struct mmc_context_info *cntx;
131 
132 	if (!mq) {
133 		while ((req = blk_fetch_request(q)) != NULL) {
134 			req->rq_flags |= RQF_QUIET;
135 			__blk_end_request_all(req, -EIO);
136 		}
137 		return;
138 	}
139 
140 	cntx = &mq->card->host->context_info;
141 
142 	if (cntx->is_waiting_last_req) {
143 		cntx->is_new_req = true;
144 		wake_up_interruptible(&cntx->wait);
145 	}
146 
147 	if (mq->asleep)
148 		wake_up_process(mq->thread);
149 }
150 
151 static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
152 {
153 	struct scatterlist *sg;
154 
155 	sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
156 	if (!sg)
157 		*err = -ENOMEM;
158 	else {
159 		*err = 0;
160 		sg_init_table(sg, sg_len);
161 	}
162 
163 	return sg;
164 }
165 
166 static void mmc_queue_setup_discard(struct request_queue *q,
167 				    struct mmc_card *card)
168 {
169 	unsigned max_discard;
170 
171 	max_discard = mmc_calc_max_discard(card);
172 	if (!max_discard)
173 		return;
174 
175 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
176 	blk_queue_max_discard_sectors(q, max_discard);
177 	if (card->erased_byte == 0 && !mmc_can_discard(card))
178 		q->limits.discard_zeroes_data = 1;
179 	q->limits.discard_granularity = card->pref_erase << 9;
180 	/* granularity must not be greater than max. discard */
181 	if (card->pref_erase > max_discard)
182 		q->limits.discard_granularity = 0;
183 	if (mmc_can_secure_erase_trim(card))
184 		queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q);
185 }
186 
187 #ifdef CONFIG_MMC_BLOCK_BOUNCE
188 static bool mmc_queue_alloc_bounce_bufs(struct mmc_queue *mq,
189 					unsigned int bouncesz)
190 {
191 	int i;
192 
193 	for (i = 0; i < mq->qdepth; i++) {
194 		mq->mqrq[i].bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
195 		if (!mq->mqrq[i].bounce_buf)
196 			goto out_err;
197 	}
198 
199 	return true;
200 
201 out_err:
202 	while (--i >= 0) {
203 		kfree(mq->mqrq[i].bounce_buf);
204 		mq->mqrq[i].bounce_buf = NULL;
205 	}
206 	pr_warn("%s: unable to allocate bounce buffers\n",
207 		mmc_card_name(mq->card));
208 	return false;
209 }
210 
211 static int mmc_queue_alloc_bounce_sgs(struct mmc_queue *mq,
212 				      unsigned int bouncesz)
213 {
214 	int i, ret;
215 
216 	for (i = 0; i < mq->qdepth; i++) {
217 		mq->mqrq[i].sg = mmc_alloc_sg(1, &ret);
218 		if (ret)
219 			return ret;
220 
221 		mq->mqrq[i].bounce_sg = mmc_alloc_sg(bouncesz / 512, &ret);
222 		if (ret)
223 			return ret;
224 	}
225 
226 	return 0;
227 }
228 #endif
229 
230 static int mmc_queue_alloc_sgs(struct mmc_queue *mq, int max_segs)
231 {
232 	int i, ret;
233 
234 	for (i = 0; i < mq->qdepth; i++) {
235 		mq->mqrq[i].sg = mmc_alloc_sg(max_segs, &ret);
236 		if (ret)
237 			return ret;
238 	}
239 
240 	return 0;
241 }
242 
243 static void mmc_queue_req_free_bufs(struct mmc_queue_req *mqrq)
244 {
245 	kfree(mqrq->bounce_sg);
246 	mqrq->bounce_sg = NULL;
247 
248 	kfree(mqrq->sg);
249 	mqrq->sg = NULL;
250 
251 	kfree(mqrq->bounce_buf);
252 	mqrq->bounce_buf = NULL;
253 }
254 
255 static void mmc_queue_reqs_free_bufs(struct mmc_queue *mq)
256 {
257 	int i;
258 
259 	for (i = 0; i < mq->qdepth; i++)
260 		mmc_queue_req_free_bufs(&mq->mqrq[i]);
261 }
262 
263 /**
264  * mmc_init_queue - initialise a queue structure.
265  * @mq: mmc queue
266  * @card: mmc card to attach this queue
267  * @lock: queue lock
268  * @subname: partition subname
269  *
270  * Initialise a MMC card request queue.
271  */
272 int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
273 		   spinlock_t *lock, const char *subname)
274 {
275 	struct mmc_host *host = card->host;
276 	u64 limit = BLK_BOUNCE_HIGH;
277 	bool bounce = false;
278 	int ret = -ENOMEM;
279 
280 	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
281 		limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
282 
283 	mq->card = card;
284 	mq->queue = blk_init_queue(mmc_request_fn, lock);
285 	if (!mq->queue)
286 		return -ENOMEM;
287 
288 	mq->qdepth = 2;
289 	mq->mqrq = kcalloc(mq->qdepth, sizeof(struct mmc_queue_req),
290 			   GFP_KERNEL);
291 	if (!mq->mqrq)
292 		goto blk_cleanup;
293 	mq->mqrq_cur = &mq->mqrq[0];
294 	mq->mqrq_prev = &mq->mqrq[1];
295 	mq->queue->queuedata = mq;
296 
297 	blk_queue_prep_rq(mq->queue, mmc_prep_request);
298 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
299 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
300 	if (mmc_can_erase(card))
301 		mmc_queue_setup_discard(mq->queue, card);
302 
303 #ifdef CONFIG_MMC_BLOCK_BOUNCE
304 	if (host->max_segs == 1) {
305 		unsigned int bouncesz;
306 
307 		bouncesz = MMC_QUEUE_BOUNCESZ;
308 
309 		if (bouncesz > host->max_req_size)
310 			bouncesz = host->max_req_size;
311 		if (bouncesz > host->max_seg_size)
312 			bouncesz = host->max_seg_size;
313 		if (bouncesz > (host->max_blk_count * 512))
314 			bouncesz = host->max_blk_count * 512;
315 
316 		if (bouncesz > 512 &&
317 		    mmc_queue_alloc_bounce_bufs(mq, bouncesz)) {
318 			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
319 			blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
320 			blk_queue_max_segments(mq->queue, bouncesz / 512);
321 			blk_queue_max_segment_size(mq->queue, bouncesz);
322 
323 			ret = mmc_queue_alloc_bounce_sgs(mq, bouncesz);
324 			if (ret)
325 				goto cleanup_queue;
326 			bounce = true;
327 		}
328 	}
329 #endif
330 
331 	if (!bounce) {
332 		blk_queue_bounce_limit(mq->queue, limit);
333 		blk_queue_max_hw_sectors(mq->queue,
334 			min(host->max_blk_count, host->max_req_size / 512));
335 		blk_queue_max_segments(mq->queue, host->max_segs);
336 		blk_queue_max_segment_size(mq->queue, host->max_seg_size);
337 
338 		ret = mmc_queue_alloc_sgs(mq, host->max_segs);
339 		if (ret)
340 			goto cleanup_queue;
341 	}
342 
343 	sema_init(&mq->thread_sem, 1);
344 
345 	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
346 		host->index, subname ? subname : "");
347 
348 	if (IS_ERR(mq->thread)) {
349 		ret = PTR_ERR(mq->thread);
350 		goto cleanup_queue;
351 	}
352 
353 	return 0;
354 
355  cleanup_queue:
356 	mmc_queue_reqs_free_bufs(mq);
357 	kfree(mq->mqrq);
358 	mq->mqrq = NULL;
359 blk_cleanup:
360 	blk_cleanup_queue(mq->queue);
361 	return ret;
362 }
363 
364 void mmc_cleanup_queue(struct mmc_queue *mq)
365 {
366 	struct request_queue *q = mq->queue;
367 	unsigned long flags;
368 
369 	/* Make sure the queue isn't suspended, as that will deadlock */
370 	mmc_queue_resume(mq);
371 
372 	/* Then terminate our worker thread */
373 	kthread_stop(mq->thread);
374 
375 	/* Empty the queue */
376 	spin_lock_irqsave(q->queue_lock, flags);
377 	q->queuedata = NULL;
378 	blk_start_queue(q);
379 	spin_unlock_irqrestore(q->queue_lock, flags);
380 
381 	mmc_queue_reqs_free_bufs(mq);
382 	kfree(mq->mqrq);
383 	mq->mqrq = NULL;
384 
385 	mq->card = NULL;
386 }
387 EXPORT_SYMBOL(mmc_cleanup_queue);
388 
389 /**
390  * mmc_queue_suspend - suspend a MMC request queue
391  * @mq: MMC queue to suspend
392  *
393  * Stop the block request queue, and wait for our thread to
394  * complete any outstanding requests.  This ensures that we
395  * won't suspend while a request is being processed.
396  */
397 void mmc_queue_suspend(struct mmc_queue *mq)
398 {
399 	struct request_queue *q = mq->queue;
400 	unsigned long flags;
401 
402 	if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
403 		mq->flags |= MMC_QUEUE_SUSPENDED;
404 
405 		spin_lock_irqsave(q->queue_lock, flags);
406 		blk_stop_queue(q);
407 		spin_unlock_irqrestore(q->queue_lock, flags);
408 
409 		down(&mq->thread_sem);
410 	}
411 }
412 
413 /**
414  * mmc_queue_resume - resume a previously suspended MMC request queue
415  * @mq: MMC queue to resume
416  */
417 void mmc_queue_resume(struct mmc_queue *mq)
418 {
419 	struct request_queue *q = mq->queue;
420 	unsigned long flags;
421 
422 	if (mq->flags & MMC_QUEUE_SUSPENDED) {
423 		mq->flags &= ~MMC_QUEUE_SUSPENDED;
424 
425 		up(&mq->thread_sem);
426 
427 		spin_lock_irqsave(q->queue_lock, flags);
428 		blk_start_queue(q);
429 		spin_unlock_irqrestore(q->queue_lock, flags);
430 	}
431 }
432 
433 /*
434  * Prepare the sg list(s) to be handed of to the host driver
435  */
436 unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
437 {
438 	unsigned int sg_len;
439 	size_t buflen;
440 	struct scatterlist *sg;
441 	int i;
442 
443 	if (!mqrq->bounce_buf)
444 		return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
445 
446 	sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
447 
448 	mqrq->bounce_sg_len = sg_len;
449 
450 	buflen = 0;
451 	for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
452 		buflen += sg->length;
453 
454 	sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
455 
456 	return 1;
457 }
458 
459 /*
460  * If writing, bounce the data to the buffer before the request
461  * is sent to the host driver
462  */
463 void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
464 {
465 	if (!mqrq->bounce_buf)
466 		return;
467 
468 	if (rq_data_dir(mqrq->req) != WRITE)
469 		return;
470 
471 	sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
472 		mqrq->bounce_buf, mqrq->sg[0].length);
473 }
474 
475 /*
476  * If reading, bounce the data from the buffer after the request
477  * has been handled by the host driver
478  */
479 void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
480 {
481 	if (!mqrq->bounce_buf)
482 		return;
483 
484 	if (rq_data_dir(mqrq->req) != READ)
485 		return;
486 
487 	sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
488 		mqrq->bounce_buf, mqrq->sg[0].length);
489 }
490