xref: /linux/drivers/mmc/core/core.c (revision 878ba61aa98cbb97a513757800e77613f856a029)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
44 
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
48 
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
51 
52 /*
53  * Background operations can take a long time, depending on the housekeeping
54  * operations the card has to perform.
55  */
56 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
57 
58 static struct workqueue_struct *workqueue;
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 /*
70  * Internal function. Schedule delayed work in the MMC work queue.
71  */
72 static int mmc_schedule_delayed_work(struct delayed_work *work,
73 				     unsigned long delay)
74 {
75 	return queue_delayed_work(workqueue, work, delay);
76 }
77 
78 /*
79  * Internal function. Flush all scheduled work from the MMC work queue.
80  */
81 static void mmc_flush_scheduled_work(void)
82 {
83 	flush_workqueue(workqueue);
84 }
85 
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87 
88 /*
89  * Internal function. Inject random data errors.
90  * If mmc_data is NULL no errors are injected.
91  */
92 static void mmc_should_fail_request(struct mmc_host *host,
93 				    struct mmc_request *mrq)
94 {
95 	struct mmc_command *cmd = mrq->cmd;
96 	struct mmc_data *data = mrq->data;
97 	static const int data_errors[] = {
98 		-ETIMEDOUT,
99 		-EILSEQ,
100 		-EIO,
101 	};
102 
103 	if (!data)
104 		return;
105 
106 	if (cmd->error || data->error ||
107 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 		return;
109 
110 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113 
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115 
116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 					   struct mmc_request *mrq)
118 {
119 }
120 
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122 
123 /**
124  *	mmc_request_done - finish processing an MMC request
125  *	@host: MMC host which completed request
126  *	@mrq: MMC request which request
127  *
128  *	MMC drivers should call this function when they have completed
129  *	their processing of a request.
130  */
131 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132 {
133 	struct mmc_command *cmd = mrq->cmd;
134 	int err = cmd->error;
135 
136 	if (err && cmd->retries && mmc_host_is_spi(host)) {
137 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
138 			cmd->retries = 0;
139 	}
140 
141 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
142 		/*
143 		 * Request starter must handle retries - see
144 		 * mmc_wait_for_req_done().
145 		 */
146 		if (mrq->done)
147 			mrq->done(mrq);
148 	} else {
149 		mmc_should_fail_request(host, mrq);
150 
151 		led_trigger_event(host->led, LED_OFF);
152 
153 		if (mrq->sbc) {
154 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
155 				mmc_hostname(host), mrq->sbc->opcode,
156 				mrq->sbc->error,
157 				mrq->sbc->resp[0], mrq->sbc->resp[1],
158 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
159 		}
160 
161 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
162 			mmc_hostname(host), cmd->opcode, err,
163 			cmd->resp[0], cmd->resp[1],
164 			cmd->resp[2], cmd->resp[3]);
165 
166 		if (mrq->data) {
167 			pr_debug("%s:     %d bytes transferred: %d\n",
168 				mmc_hostname(host),
169 				mrq->data->bytes_xfered, mrq->data->error);
170 		}
171 
172 		if (mrq->stop) {
173 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
174 				mmc_hostname(host), mrq->stop->opcode,
175 				mrq->stop->error,
176 				mrq->stop->resp[0], mrq->stop->resp[1],
177 				mrq->stop->resp[2], mrq->stop->resp[3]);
178 		}
179 
180 		if (mrq->done)
181 			mrq->done(mrq);
182 
183 		mmc_host_clk_release(host);
184 	}
185 }
186 
187 EXPORT_SYMBOL(mmc_request_done);
188 
189 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190 {
191 #ifdef CONFIG_MMC_DEBUG
192 	unsigned int i, sz;
193 	struct scatterlist *sg;
194 #endif
195 	if (mmc_card_removed(host->card))
196 		return -ENOMEDIUM;
197 
198 	if (mrq->sbc) {
199 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
200 			 mmc_hostname(host), mrq->sbc->opcode,
201 			 mrq->sbc->arg, mrq->sbc->flags);
202 	}
203 
204 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
205 		 mmc_hostname(host), mrq->cmd->opcode,
206 		 mrq->cmd->arg, mrq->cmd->flags);
207 
208 	if (mrq->data) {
209 		pr_debug("%s:     blksz %d blocks %d flags %08x "
210 			"tsac %d ms nsac %d\n",
211 			mmc_hostname(host), mrq->data->blksz,
212 			mrq->data->blocks, mrq->data->flags,
213 			mrq->data->timeout_ns / 1000000,
214 			mrq->data->timeout_clks);
215 	}
216 
217 	if (mrq->stop) {
218 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
219 			 mmc_hostname(host), mrq->stop->opcode,
220 			 mrq->stop->arg, mrq->stop->flags);
221 	}
222 
223 	WARN_ON(!host->claimed);
224 
225 	mrq->cmd->error = 0;
226 	mrq->cmd->mrq = mrq;
227 	if (mrq->sbc) {
228 		mrq->sbc->error = 0;
229 		mrq->sbc->mrq = mrq;
230 	}
231 	if (mrq->data) {
232 		BUG_ON(mrq->data->blksz > host->max_blk_size);
233 		BUG_ON(mrq->data->blocks > host->max_blk_count);
234 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 			host->max_req_size);
236 
237 #ifdef CONFIG_MMC_DEBUG
238 		sz = 0;
239 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 			sz += sg->length;
241 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
243 
244 		mrq->cmd->data = mrq->data;
245 		mrq->data->error = 0;
246 		mrq->data->mrq = mrq;
247 		if (mrq->stop) {
248 			mrq->data->stop = mrq->stop;
249 			mrq->stop->error = 0;
250 			mrq->stop->mrq = mrq;
251 		}
252 	}
253 	mmc_host_clk_hold(host);
254 	led_trigger_event(host->led, LED_FULL);
255 	host->ops->request(host, mrq);
256 
257 	return 0;
258 }
259 
260 /**
261  *	mmc_start_bkops - start BKOPS for supported cards
262  *	@card: MMC card to start BKOPS
263  *	@form_exception: A flag to indicate if this function was
264  *			 called due to an exception raised by the card
265  *
266  *	Start background operations whenever requested.
267  *	When the urgent BKOPS bit is set in a R1 command response
268  *	then background operations should be started immediately.
269 */
270 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
271 {
272 	int err;
273 	int timeout;
274 	bool use_busy_signal;
275 
276 	BUG_ON(!card);
277 
278 	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
279 		return;
280 
281 	err = mmc_read_bkops_status(card);
282 	if (err) {
283 		pr_err("%s: Failed to read bkops status: %d\n",
284 		       mmc_hostname(card->host), err);
285 		return;
286 	}
287 
288 	if (!card->ext_csd.raw_bkops_status)
289 		return;
290 
291 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
292 	    from_exception)
293 		return;
294 
295 	mmc_claim_host(card->host);
296 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
297 		timeout = MMC_BKOPS_MAX_TIMEOUT;
298 		use_busy_signal = true;
299 	} else {
300 		timeout = 0;
301 		use_busy_signal = false;
302 	}
303 
304 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
305 			EXT_CSD_BKOPS_START, 1, timeout,
306 			use_busy_signal, true, false);
307 	if (err) {
308 		pr_warn("%s: Error %d starting bkops\n",
309 			mmc_hostname(card->host), err);
310 		goto out;
311 	}
312 
313 	/*
314 	 * For urgent bkops status (LEVEL_2 and more)
315 	 * bkops executed synchronously, otherwise
316 	 * the operation is in progress
317 	 */
318 	if (!use_busy_signal)
319 		mmc_card_set_doing_bkops(card);
320 out:
321 	mmc_release_host(card->host);
322 }
323 EXPORT_SYMBOL(mmc_start_bkops);
324 
325 /*
326  * mmc_wait_data_done() - done callback for data request
327  * @mrq: done data request
328  *
329  * Wakes up mmc context, passed as a callback to host controller driver
330  */
331 static void mmc_wait_data_done(struct mmc_request *mrq)
332 {
333 	mrq->host->context_info.is_done_rcv = true;
334 	wake_up_interruptible(&mrq->host->context_info.wait);
335 }
336 
337 static void mmc_wait_done(struct mmc_request *mrq)
338 {
339 	complete(&mrq->completion);
340 }
341 
342 /*
343  *__mmc_start_data_req() - starts data request
344  * @host: MMC host to start the request
345  * @mrq: data request to start
346  *
347  * Sets the done callback to be called when request is completed by the card.
348  * Starts data mmc request execution
349  */
350 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
351 {
352 	int err;
353 
354 	mrq->done = mmc_wait_data_done;
355 	mrq->host = host;
356 
357 	err = mmc_start_request(host, mrq);
358 	if (err) {
359 		mrq->cmd->error = err;
360 		mmc_wait_data_done(mrq);
361 	}
362 
363 	return err;
364 }
365 
366 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
367 {
368 	int err;
369 
370 	init_completion(&mrq->completion);
371 	mrq->done = mmc_wait_done;
372 
373 	err = mmc_start_request(host, mrq);
374 	if (err) {
375 		mrq->cmd->error = err;
376 		complete(&mrq->completion);
377 	}
378 
379 	return err;
380 }
381 
382 /*
383  * mmc_wait_for_data_req_done() - wait for request completed
384  * @host: MMC host to prepare the command.
385  * @mrq: MMC request to wait for
386  *
387  * Blocks MMC context till host controller will ack end of data request
388  * execution or new request notification arrives from the block layer.
389  * Handles command retries.
390  *
391  * Returns enum mmc_blk_status after checking errors.
392  */
393 static int mmc_wait_for_data_req_done(struct mmc_host *host,
394 				      struct mmc_request *mrq,
395 				      struct mmc_async_req *next_req)
396 {
397 	struct mmc_command *cmd;
398 	struct mmc_context_info *context_info = &host->context_info;
399 	int err;
400 	unsigned long flags;
401 
402 	while (1) {
403 		wait_event_interruptible(context_info->wait,
404 				(context_info->is_done_rcv ||
405 				 context_info->is_new_req));
406 		spin_lock_irqsave(&context_info->lock, flags);
407 		context_info->is_waiting_last_req = false;
408 		spin_unlock_irqrestore(&context_info->lock, flags);
409 		if (context_info->is_done_rcv) {
410 			context_info->is_done_rcv = false;
411 			context_info->is_new_req = false;
412 			cmd = mrq->cmd;
413 
414 			if (!cmd->error || !cmd->retries ||
415 			    mmc_card_removed(host->card)) {
416 				err = host->areq->err_check(host->card,
417 							    host->areq);
418 				break; /* return err */
419 			} else {
420 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
421 					mmc_hostname(host),
422 					cmd->opcode, cmd->error);
423 				cmd->retries--;
424 				cmd->error = 0;
425 				host->ops->request(host, mrq);
426 				continue; /* wait for done/new event again */
427 			}
428 		} else if (context_info->is_new_req) {
429 			context_info->is_new_req = false;
430 			if (!next_req) {
431 				err = MMC_BLK_NEW_REQUEST;
432 				break; /* return err */
433 			}
434 		}
435 	}
436 	return err;
437 }
438 
439 static void mmc_wait_for_req_done(struct mmc_host *host,
440 				  struct mmc_request *mrq)
441 {
442 	struct mmc_command *cmd;
443 
444 	while (1) {
445 		wait_for_completion(&mrq->completion);
446 
447 		cmd = mrq->cmd;
448 
449 		/*
450 		 * If host has timed out waiting for the sanitize
451 		 * to complete, card might be still in programming state
452 		 * so let's try to bring the card out of programming
453 		 * state.
454 		 */
455 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
456 			if (!mmc_interrupt_hpi(host->card)) {
457 				pr_warn("%s: %s: Interrupted sanitize\n",
458 					mmc_hostname(host), __func__);
459 				cmd->error = 0;
460 				break;
461 			} else {
462 				pr_err("%s: %s: Failed to interrupt sanitize\n",
463 				       mmc_hostname(host), __func__);
464 			}
465 		}
466 		if (!cmd->error || !cmd->retries ||
467 		    mmc_card_removed(host->card))
468 			break;
469 
470 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
471 			 mmc_hostname(host), cmd->opcode, cmd->error);
472 		cmd->retries--;
473 		cmd->error = 0;
474 		host->ops->request(host, mrq);
475 	}
476 }
477 
478 /**
479  *	mmc_pre_req - Prepare for a new request
480  *	@host: MMC host to prepare command
481  *	@mrq: MMC request to prepare for
482  *	@is_first_req: true if there is no previous started request
483  *                     that may run in parellel to this call, otherwise false
484  *
485  *	mmc_pre_req() is called in prior to mmc_start_req() to let
486  *	host prepare for the new request. Preparation of a request may be
487  *	performed while another request is running on the host.
488  */
489 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
490 		 bool is_first_req)
491 {
492 	if (host->ops->pre_req) {
493 		mmc_host_clk_hold(host);
494 		host->ops->pre_req(host, mrq, is_first_req);
495 		mmc_host_clk_release(host);
496 	}
497 }
498 
499 /**
500  *	mmc_post_req - Post process a completed request
501  *	@host: MMC host to post process command
502  *	@mrq: MMC request to post process for
503  *	@err: Error, if non zero, clean up any resources made in pre_req
504  *
505  *	Let the host post process a completed request. Post processing of
506  *	a request may be performed while another reuqest is running.
507  */
508 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
509 			 int err)
510 {
511 	if (host->ops->post_req) {
512 		mmc_host_clk_hold(host);
513 		host->ops->post_req(host, mrq, err);
514 		mmc_host_clk_release(host);
515 	}
516 }
517 
518 /**
519  *	mmc_start_req - start a non-blocking request
520  *	@host: MMC host to start command
521  *	@areq: async request to start
522  *	@error: out parameter returns 0 for success, otherwise non zero
523  *
524  *	Start a new MMC custom command request for a host.
525  *	If there is on ongoing async request wait for completion
526  *	of that request and start the new one and return.
527  *	Does not wait for the new request to complete.
528  *
529  *      Returns the completed request, NULL in case of none completed.
530  *	Wait for the an ongoing request (previoulsy started) to complete and
531  *	return the completed request. If there is no ongoing request, NULL
532  *	is returned without waiting. NULL is not an error condition.
533  */
534 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
535 				    struct mmc_async_req *areq, int *error)
536 {
537 	int err = 0;
538 	int start_err = 0;
539 	struct mmc_async_req *data = host->areq;
540 
541 	/* Prepare a new request */
542 	if (areq)
543 		mmc_pre_req(host, areq->mrq, !host->areq);
544 
545 	if (host->areq) {
546 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
547 		if (err == MMC_BLK_NEW_REQUEST) {
548 			if (error)
549 				*error = err;
550 			/*
551 			 * The previous request was not completed,
552 			 * nothing to return
553 			 */
554 			return NULL;
555 		}
556 		/*
557 		 * Check BKOPS urgency for each R1 response
558 		 */
559 		if (host->card && mmc_card_mmc(host->card) &&
560 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
561 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
562 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
563 
564 			/* Cancel the prepared request */
565 			if (areq)
566 				mmc_post_req(host, areq->mrq, -EINVAL);
567 
568 			mmc_start_bkops(host->card, true);
569 
570 			/* prepare the request again */
571 			if (areq)
572 				mmc_pre_req(host, areq->mrq, !host->areq);
573 		}
574 	}
575 
576 	if (!err && areq)
577 		start_err = __mmc_start_data_req(host, areq->mrq);
578 
579 	if (host->areq)
580 		mmc_post_req(host, host->areq->mrq, 0);
581 
582 	 /* Cancel a prepared request if it was not started. */
583 	if ((err || start_err) && areq)
584 		mmc_post_req(host, areq->mrq, -EINVAL);
585 
586 	if (err)
587 		host->areq = NULL;
588 	else
589 		host->areq = areq;
590 
591 	if (error)
592 		*error = err;
593 	return data;
594 }
595 EXPORT_SYMBOL(mmc_start_req);
596 
597 /**
598  *	mmc_wait_for_req - start a request and wait for completion
599  *	@host: MMC host to start command
600  *	@mrq: MMC request to start
601  *
602  *	Start a new MMC custom command request for a host, and wait
603  *	for the command to complete. Does not attempt to parse the
604  *	response.
605  */
606 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
607 {
608 	__mmc_start_req(host, mrq);
609 	mmc_wait_for_req_done(host, mrq);
610 }
611 EXPORT_SYMBOL(mmc_wait_for_req);
612 
613 /**
614  *	mmc_interrupt_hpi - Issue for High priority Interrupt
615  *	@card: the MMC card associated with the HPI transfer
616  *
617  *	Issued High Priority Interrupt, and check for card status
618  *	until out-of prg-state.
619  */
620 int mmc_interrupt_hpi(struct mmc_card *card)
621 {
622 	int err;
623 	u32 status;
624 	unsigned long prg_wait;
625 
626 	BUG_ON(!card);
627 
628 	if (!card->ext_csd.hpi_en) {
629 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
630 		return 1;
631 	}
632 
633 	mmc_claim_host(card->host);
634 	err = mmc_send_status(card, &status);
635 	if (err) {
636 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
637 		goto out;
638 	}
639 
640 	switch (R1_CURRENT_STATE(status)) {
641 	case R1_STATE_IDLE:
642 	case R1_STATE_READY:
643 	case R1_STATE_STBY:
644 	case R1_STATE_TRAN:
645 		/*
646 		 * In idle and transfer states, HPI is not needed and the caller
647 		 * can issue the next intended command immediately
648 		 */
649 		goto out;
650 	case R1_STATE_PRG:
651 		break;
652 	default:
653 		/* In all other states, it's illegal to issue HPI */
654 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
655 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
656 		err = -EINVAL;
657 		goto out;
658 	}
659 
660 	err = mmc_send_hpi_cmd(card, &status);
661 	if (err)
662 		goto out;
663 
664 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
665 	do {
666 		err = mmc_send_status(card, &status);
667 
668 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
669 			break;
670 		if (time_after(jiffies, prg_wait))
671 			err = -ETIMEDOUT;
672 	} while (!err);
673 
674 out:
675 	mmc_release_host(card->host);
676 	return err;
677 }
678 EXPORT_SYMBOL(mmc_interrupt_hpi);
679 
680 /**
681  *	mmc_wait_for_cmd - start a command and wait for completion
682  *	@host: MMC host to start command
683  *	@cmd: MMC command to start
684  *	@retries: maximum number of retries
685  *
686  *	Start a new MMC command for a host, and wait for the command
687  *	to complete.  Return any error that occurred while the command
688  *	was executing.  Do not attempt to parse the response.
689  */
690 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
691 {
692 	struct mmc_request mrq = {NULL};
693 
694 	WARN_ON(!host->claimed);
695 
696 	memset(cmd->resp, 0, sizeof(cmd->resp));
697 	cmd->retries = retries;
698 
699 	mrq.cmd = cmd;
700 	cmd->data = NULL;
701 
702 	mmc_wait_for_req(host, &mrq);
703 
704 	return cmd->error;
705 }
706 
707 EXPORT_SYMBOL(mmc_wait_for_cmd);
708 
709 /**
710  *	mmc_stop_bkops - stop ongoing BKOPS
711  *	@card: MMC card to check BKOPS
712  *
713  *	Send HPI command to stop ongoing background operations to
714  *	allow rapid servicing of foreground operations, e.g. read/
715  *	writes. Wait until the card comes out of the programming state
716  *	to avoid errors in servicing read/write requests.
717  */
718 int mmc_stop_bkops(struct mmc_card *card)
719 {
720 	int err = 0;
721 
722 	BUG_ON(!card);
723 	err = mmc_interrupt_hpi(card);
724 
725 	/*
726 	 * If err is EINVAL, we can't issue an HPI.
727 	 * It should complete the BKOPS.
728 	 */
729 	if (!err || (err == -EINVAL)) {
730 		mmc_card_clr_doing_bkops(card);
731 		err = 0;
732 	}
733 
734 	return err;
735 }
736 EXPORT_SYMBOL(mmc_stop_bkops);
737 
738 int mmc_read_bkops_status(struct mmc_card *card)
739 {
740 	int err;
741 	u8 *ext_csd;
742 
743 	mmc_claim_host(card->host);
744 	err = mmc_get_ext_csd(card, &ext_csd);
745 	mmc_release_host(card->host);
746 	if (err)
747 		return err;
748 
749 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
750 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
751 	kfree(ext_csd);
752 	return 0;
753 }
754 EXPORT_SYMBOL(mmc_read_bkops_status);
755 
756 /**
757  *	mmc_set_data_timeout - set the timeout for a data command
758  *	@data: data phase for command
759  *	@card: the MMC card associated with the data transfer
760  *
761  *	Computes the data timeout parameters according to the
762  *	correct algorithm given the card type.
763  */
764 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
765 {
766 	unsigned int mult;
767 
768 	/*
769 	 * SDIO cards only define an upper 1 s limit on access.
770 	 */
771 	if (mmc_card_sdio(card)) {
772 		data->timeout_ns = 1000000000;
773 		data->timeout_clks = 0;
774 		return;
775 	}
776 
777 	/*
778 	 * SD cards use a 100 multiplier rather than 10
779 	 */
780 	mult = mmc_card_sd(card) ? 100 : 10;
781 
782 	/*
783 	 * Scale up the multiplier (and therefore the timeout) by
784 	 * the r2w factor for writes.
785 	 */
786 	if (data->flags & MMC_DATA_WRITE)
787 		mult <<= card->csd.r2w_factor;
788 
789 	data->timeout_ns = card->csd.tacc_ns * mult;
790 	data->timeout_clks = card->csd.tacc_clks * mult;
791 
792 	/*
793 	 * SD cards also have an upper limit on the timeout.
794 	 */
795 	if (mmc_card_sd(card)) {
796 		unsigned int timeout_us, limit_us;
797 
798 		timeout_us = data->timeout_ns / 1000;
799 		if (mmc_host_clk_rate(card->host))
800 			timeout_us += data->timeout_clks * 1000 /
801 				(mmc_host_clk_rate(card->host) / 1000);
802 
803 		if (data->flags & MMC_DATA_WRITE)
804 			/*
805 			 * The MMC spec "It is strongly recommended
806 			 * for hosts to implement more than 500ms
807 			 * timeout value even if the card indicates
808 			 * the 250ms maximum busy length."  Even the
809 			 * previous value of 300ms is known to be
810 			 * insufficient for some cards.
811 			 */
812 			limit_us = 3000000;
813 		else
814 			limit_us = 100000;
815 
816 		/*
817 		 * SDHC cards always use these fixed values.
818 		 */
819 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
820 			data->timeout_ns = limit_us * 1000;
821 			data->timeout_clks = 0;
822 		}
823 
824 		/* assign limit value if invalid */
825 		if (timeout_us == 0)
826 			data->timeout_ns = limit_us * 1000;
827 	}
828 
829 	/*
830 	 * Some cards require longer data read timeout than indicated in CSD.
831 	 * Address this by setting the read timeout to a "reasonably high"
832 	 * value. For the cards tested, 300ms has proven enough. If necessary,
833 	 * this value can be increased if other problematic cards require this.
834 	 */
835 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
836 		data->timeout_ns = 300000000;
837 		data->timeout_clks = 0;
838 	}
839 
840 	/*
841 	 * Some cards need very high timeouts if driven in SPI mode.
842 	 * The worst observed timeout was 900ms after writing a
843 	 * continuous stream of data until the internal logic
844 	 * overflowed.
845 	 */
846 	if (mmc_host_is_spi(card->host)) {
847 		if (data->flags & MMC_DATA_WRITE) {
848 			if (data->timeout_ns < 1000000000)
849 				data->timeout_ns = 1000000000;	/* 1s */
850 		} else {
851 			if (data->timeout_ns < 100000000)
852 				data->timeout_ns =  100000000;	/* 100ms */
853 		}
854 	}
855 }
856 EXPORT_SYMBOL(mmc_set_data_timeout);
857 
858 /**
859  *	mmc_align_data_size - pads a transfer size to a more optimal value
860  *	@card: the MMC card associated with the data transfer
861  *	@sz: original transfer size
862  *
863  *	Pads the original data size with a number of extra bytes in
864  *	order to avoid controller bugs and/or performance hits
865  *	(e.g. some controllers revert to PIO for certain sizes).
866  *
867  *	Returns the improved size, which might be unmodified.
868  *
869  *	Note that this function is only relevant when issuing a
870  *	single scatter gather entry.
871  */
872 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
873 {
874 	/*
875 	 * FIXME: We don't have a system for the controller to tell
876 	 * the core about its problems yet, so for now we just 32-bit
877 	 * align the size.
878 	 */
879 	sz = ((sz + 3) / 4) * 4;
880 
881 	return sz;
882 }
883 EXPORT_SYMBOL(mmc_align_data_size);
884 
885 /**
886  *	__mmc_claim_host - exclusively claim a host
887  *	@host: mmc host to claim
888  *	@abort: whether or not the operation should be aborted
889  *
890  *	Claim a host for a set of operations.  If @abort is non null and
891  *	dereference a non-zero value then this will return prematurely with
892  *	that non-zero value without acquiring the lock.  Returns zero
893  *	with the lock held otherwise.
894  */
895 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
896 {
897 	DECLARE_WAITQUEUE(wait, current);
898 	unsigned long flags;
899 	int stop;
900 
901 	might_sleep();
902 
903 	add_wait_queue(&host->wq, &wait);
904 	spin_lock_irqsave(&host->lock, flags);
905 	while (1) {
906 		set_current_state(TASK_UNINTERRUPTIBLE);
907 		stop = abort ? atomic_read(abort) : 0;
908 		if (stop || !host->claimed || host->claimer == current)
909 			break;
910 		spin_unlock_irqrestore(&host->lock, flags);
911 		schedule();
912 		spin_lock_irqsave(&host->lock, flags);
913 	}
914 	set_current_state(TASK_RUNNING);
915 	if (!stop) {
916 		host->claimed = 1;
917 		host->claimer = current;
918 		host->claim_cnt += 1;
919 	} else
920 		wake_up(&host->wq);
921 	spin_unlock_irqrestore(&host->lock, flags);
922 	remove_wait_queue(&host->wq, &wait);
923 	if (host->ops->enable && !stop && host->claim_cnt == 1)
924 		host->ops->enable(host);
925 	return stop;
926 }
927 
928 EXPORT_SYMBOL(__mmc_claim_host);
929 
930 /**
931  *	mmc_release_host - release a host
932  *	@host: mmc host to release
933  *
934  *	Release a MMC host, allowing others to claim the host
935  *	for their operations.
936  */
937 void mmc_release_host(struct mmc_host *host)
938 {
939 	unsigned long flags;
940 
941 	WARN_ON(!host->claimed);
942 
943 	if (host->ops->disable && host->claim_cnt == 1)
944 		host->ops->disable(host);
945 
946 	spin_lock_irqsave(&host->lock, flags);
947 	if (--host->claim_cnt) {
948 		/* Release for nested claim */
949 		spin_unlock_irqrestore(&host->lock, flags);
950 	} else {
951 		host->claimed = 0;
952 		host->claimer = NULL;
953 		spin_unlock_irqrestore(&host->lock, flags);
954 		wake_up(&host->wq);
955 	}
956 }
957 EXPORT_SYMBOL(mmc_release_host);
958 
959 /*
960  * This is a helper function, which fetches a runtime pm reference for the
961  * card device and also claims the host.
962  */
963 void mmc_get_card(struct mmc_card *card)
964 {
965 	pm_runtime_get_sync(&card->dev);
966 	mmc_claim_host(card->host);
967 }
968 EXPORT_SYMBOL(mmc_get_card);
969 
970 /*
971  * This is a helper function, which releases the host and drops the runtime
972  * pm reference for the card device.
973  */
974 void mmc_put_card(struct mmc_card *card)
975 {
976 	mmc_release_host(card->host);
977 	pm_runtime_mark_last_busy(&card->dev);
978 	pm_runtime_put_autosuspend(&card->dev);
979 }
980 EXPORT_SYMBOL(mmc_put_card);
981 
982 /*
983  * Internal function that does the actual ios call to the host driver,
984  * optionally printing some debug output.
985  */
986 static inline void mmc_set_ios(struct mmc_host *host)
987 {
988 	struct mmc_ios *ios = &host->ios;
989 
990 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
991 		"width %u timing %u\n",
992 		 mmc_hostname(host), ios->clock, ios->bus_mode,
993 		 ios->power_mode, ios->chip_select, ios->vdd,
994 		 ios->bus_width, ios->timing);
995 
996 	if (ios->clock > 0)
997 		mmc_set_ungated(host);
998 	host->ops->set_ios(host, ios);
999 }
1000 
1001 /*
1002  * Control chip select pin on a host.
1003  */
1004 void mmc_set_chip_select(struct mmc_host *host, int mode)
1005 {
1006 	mmc_host_clk_hold(host);
1007 	host->ios.chip_select = mode;
1008 	mmc_set_ios(host);
1009 	mmc_host_clk_release(host);
1010 }
1011 
1012 /*
1013  * Sets the host clock to the highest possible frequency that
1014  * is below "hz".
1015  */
1016 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1017 {
1018 	WARN_ON(hz && hz < host->f_min);
1019 
1020 	if (hz > host->f_max)
1021 		hz = host->f_max;
1022 
1023 	host->ios.clock = hz;
1024 	mmc_set_ios(host);
1025 }
1026 
1027 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1028 {
1029 	mmc_host_clk_hold(host);
1030 	__mmc_set_clock(host, hz);
1031 	mmc_host_clk_release(host);
1032 }
1033 
1034 #ifdef CONFIG_MMC_CLKGATE
1035 /*
1036  * This gates the clock by setting it to 0 Hz.
1037  */
1038 void mmc_gate_clock(struct mmc_host *host)
1039 {
1040 	unsigned long flags;
1041 
1042 	spin_lock_irqsave(&host->clk_lock, flags);
1043 	host->clk_old = host->ios.clock;
1044 	host->ios.clock = 0;
1045 	host->clk_gated = true;
1046 	spin_unlock_irqrestore(&host->clk_lock, flags);
1047 	mmc_set_ios(host);
1048 }
1049 
1050 /*
1051  * This restores the clock from gating by using the cached
1052  * clock value.
1053  */
1054 void mmc_ungate_clock(struct mmc_host *host)
1055 {
1056 	/*
1057 	 * We should previously have gated the clock, so the clock shall
1058 	 * be 0 here! The clock may however be 0 during initialization,
1059 	 * when some request operations are performed before setting
1060 	 * the frequency. When ungate is requested in that situation
1061 	 * we just ignore the call.
1062 	 */
1063 	if (host->clk_old) {
1064 		BUG_ON(host->ios.clock);
1065 		/* This call will also set host->clk_gated to false */
1066 		__mmc_set_clock(host, host->clk_old);
1067 	}
1068 }
1069 
1070 void mmc_set_ungated(struct mmc_host *host)
1071 {
1072 	unsigned long flags;
1073 
1074 	/*
1075 	 * We've been given a new frequency while the clock is gated,
1076 	 * so make sure we regard this as ungating it.
1077 	 */
1078 	spin_lock_irqsave(&host->clk_lock, flags);
1079 	host->clk_gated = false;
1080 	spin_unlock_irqrestore(&host->clk_lock, flags);
1081 }
1082 
1083 #else
1084 void mmc_set_ungated(struct mmc_host *host)
1085 {
1086 }
1087 #endif
1088 
1089 int mmc_execute_tuning(struct mmc_card *card)
1090 {
1091 	struct mmc_host *host = card->host;
1092 	u32 opcode;
1093 	int err;
1094 
1095 	if (!host->ops->execute_tuning)
1096 		return 0;
1097 
1098 	if (mmc_card_mmc(card))
1099 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1100 	else
1101 		opcode = MMC_SEND_TUNING_BLOCK;
1102 
1103 	mmc_host_clk_hold(host);
1104 	err = host->ops->execute_tuning(host, opcode);
1105 	mmc_host_clk_release(host);
1106 
1107 	if (err)
1108 		pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1109 
1110 	return err;
1111 }
1112 
1113 /*
1114  * Change the bus mode (open drain/push-pull) of a host.
1115  */
1116 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1117 {
1118 	mmc_host_clk_hold(host);
1119 	host->ios.bus_mode = mode;
1120 	mmc_set_ios(host);
1121 	mmc_host_clk_release(host);
1122 }
1123 
1124 /*
1125  * Change data bus width of a host.
1126  */
1127 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1128 {
1129 	mmc_host_clk_hold(host);
1130 	host->ios.bus_width = width;
1131 	mmc_set_ios(host);
1132 	mmc_host_clk_release(host);
1133 }
1134 
1135 /*
1136  * Set initial state after a power cycle or a hw_reset.
1137  */
1138 void mmc_set_initial_state(struct mmc_host *host)
1139 {
1140 	if (mmc_host_is_spi(host))
1141 		host->ios.chip_select = MMC_CS_HIGH;
1142 	else
1143 		host->ios.chip_select = MMC_CS_DONTCARE;
1144 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1145 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1146 	host->ios.timing = MMC_TIMING_LEGACY;
1147 
1148 	mmc_set_ios(host);
1149 }
1150 
1151 /**
1152  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1153  * @vdd:	voltage (mV)
1154  * @low_bits:	prefer low bits in boundary cases
1155  *
1156  * This function returns the OCR bit number according to the provided @vdd
1157  * value. If conversion is not possible a negative errno value returned.
1158  *
1159  * Depending on the @low_bits flag the function prefers low or high OCR bits
1160  * on boundary voltages. For example,
1161  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1162  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1163  *
1164  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1165  */
1166 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1167 {
1168 	const int max_bit = ilog2(MMC_VDD_35_36);
1169 	int bit;
1170 
1171 	if (vdd < 1650 || vdd > 3600)
1172 		return -EINVAL;
1173 
1174 	if (vdd >= 1650 && vdd <= 1950)
1175 		return ilog2(MMC_VDD_165_195);
1176 
1177 	if (low_bits)
1178 		vdd -= 1;
1179 
1180 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1181 	bit = (vdd - 2000) / 100 + 8;
1182 	if (bit > max_bit)
1183 		return max_bit;
1184 	return bit;
1185 }
1186 
1187 /**
1188  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1189  * @vdd_min:	minimum voltage value (mV)
1190  * @vdd_max:	maximum voltage value (mV)
1191  *
1192  * This function returns the OCR mask bits according to the provided @vdd_min
1193  * and @vdd_max values. If conversion is not possible the function returns 0.
1194  *
1195  * Notes wrt boundary cases:
1196  * This function sets the OCR bits for all boundary voltages, for example
1197  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1198  * MMC_VDD_34_35 mask.
1199  */
1200 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1201 {
1202 	u32 mask = 0;
1203 
1204 	if (vdd_max < vdd_min)
1205 		return 0;
1206 
1207 	/* Prefer high bits for the boundary vdd_max values. */
1208 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1209 	if (vdd_max < 0)
1210 		return 0;
1211 
1212 	/* Prefer low bits for the boundary vdd_min values. */
1213 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1214 	if (vdd_min < 0)
1215 		return 0;
1216 
1217 	/* Fill the mask, from max bit to min bit. */
1218 	while (vdd_max >= vdd_min)
1219 		mask |= 1 << vdd_max--;
1220 
1221 	return mask;
1222 }
1223 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1224 
1225 #ifdef CONFIG_OF
1226 
1227 /**
1228  * mmc_of_parse_voltage - return mask of supported voltages
1229  * @np: The device node need to be parsed.
1230  * @mask: mask of voltages available for MMC/SD/SDIO
1231  *
1232  * 1. Return zero on success.
1233  * 2. Return negative errno: voltage-range is invalid.
1234  */
1235 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1236 {
1237 	const u32 *voltage_ranges;
1238 	int num_ranges, i;
1239 
1240 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1241 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1242 	if (!voltage_ranges || !num_ranges) {
1243 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1244 		return -EINVAL;
1245 	}
1246 
1247 	for (i = 0; i < num_ranges; i++) {
1248 		const int j = i * 2;
1249 		u32 ocr_mask;
1250 
1251 		ocr_mask = mmc_vddrange_to_ocrmask(
1252 				be32_to_cpu(voltage_ranges[j]),
1253 				be32_to_cpu(voltage_ranges[j + 1]));
1254 		if (!ocr_mask) {
1255 			pr_err("%s: voltage-range #%d is invalid\n",
1256 				np->full_name, i);
1257 			return -EINVAL;
1258 		}
1259 		*mask |= ocr_mask;
1260 	}
1261 
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(mmc_of_parse_voltage);
1265 
1266 #endif /* CONFIG_OF */
1267 
1268 static int mmc_of_get_func_num(struct device_node *node)
1269 {
1270 	u32 reg;
1271 	int ret;
1272 
1273 	ret = of_property_read_u32(node, "reg", &reg);
1274 	if (ret < 0)
1275 		return ret;
1276 
1277 	return reg;
1278 }
1279 
1280 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1281 		unsigned func_num)
1282 {
1283 	struct device_node *node;
1284 
1285 	if (!host->parent || !host->parent->of_node)
1286 		return NULL;
1287 
1288 	for_each_child_of_node(host->parent->of_node, node) {
1289 		if (mmc_of_get_func_num(node) == func_num)
1290 			return node;
1291 	}
1292 
1293 	return NULL;
1294 }
1295 
1296 #ifdef CONFIG_REGULATOR
1297 
1298 /**
1299  * mmc_regulator_get_ocrmask - return mask of supported voltages
1300  * @supply: regulator to use
1301  *
1302  * This returns either a negative errno, or a mask of voltages that
1303  * can be provided to MMC/SD/SDIO devices using the specified voltage
1304  * regulator.  This would normally be called before registering the
1305  * MMC host adapter.
1306  */
1307 int mmc_regulator_get_ocrmask(struct regulator *supply)
1308 {
1309 	int			result = 0;
1310 	int			count;
1311 	int			i;
1312 	int			vdd_uV;
1313 	int			vdd_mV;
1314 
1315 	count = regulator_count_voltages(supply);
1316 	if (count < 0)
1317 		return count;
1318 
1319 	for (i = 0; i < count; i++) {
1320 		vdd_uV = regulator_list_voltage(supply, i);
1321 		if (vdd_uV <= 0)
1322 			continue;
1323 
1324 		vdd_mV = vdd_uV / 1000;
1325 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1326 	}
1327 
1328 	if (!result) {
1329 		vdd_uV = regulator_get_voltage(supply);
1330 		if (vdd_uV <= 0)
1331 			return vdd_uV;
1332 
1333 		vdd_mV = vdd_uV / 1000;
1334 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1335 	}
1336 
1337 	return result;
1338 }
1339 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1340 
1341 /**
1342  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1343  * @mmc: the host to regulate
1344  * @supply: regulator to use
1345  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1346  *
1347  * Returns zero on success, else negative errno.
1348  *
1349  * MMC host drivers may use this to enable or disable a regulator using
1350  * a particular supply voltage.  This would normally be called from the
1351  * set_ios() method.
1352  */
1353 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1354 			struct regulator *supply,
1355 			unsigned short vdd_bit)
1356 {
1357 	int			result = 0;
1358 	int			min_uV, max_uV;
1359 
1360 	if (vdd_bit) {
1361 		int		tmp;
1362 
1363 		/*
1364 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1365 		 * bits this regulator doesn't quite support ... don't
1366 		 * be too picky, most cards and regulators are OK with
1367 		 * a 0.1V range goof (it's a small error percentage).
1368 		 */
1369 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1370 		if (tmp == 0) {
1371 			min_uV = 1650 * 1000;
1372 			max_uV = 1950 * 1000;
1373 		} else {
1374 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1375 			max_uV = min_uV + 100 * 1000;
1376 		}
1377 
1378 		result = regulator_set_voltage(supply, min_uV, max_uV);
1379 		if (result == 0 && !mmc->regulator_enabled) {
1380 			result = regulator_enable(supply);
1381 			if (!result)
1382 				mmc->regulator_enabled = true;
1383 		}
1384 	} else if (mmc->regulator_enabled) {
1385 		result = regulator_disable(supply);
1386 		if (result == 0)
1387 			mmc->regulator_enabled = false;
1388 	}
1389 
1390 	if (result)
1391 		dev_err(mmc_dev(mmc),
1392 			"could not set regulator OCR (%d)\n", result);
1393 	return result;
1394 }
1395 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396 
1397 #endif /* CONFIG_REGULATOR */
1398 
1399 int mmc_regulator_get_supply(struct mmc_host *mmc)
1400 {
1401 	struct device *dev = mmc_dev(mmc);
1402 	int ret;
1403 
1404 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1405 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1406 
1407 	if (IS_ERR(mmc->supply.vmmc)) {
1408 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1409 			return -EPROBE_DEFER;
1410 		dev_info(dev, "No vmmc regulator found\n");
1411 	} else {
1412 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1413 		if (ret > 0)
1414 			mmc->ocr_avail = ret;
1415 		else
1416 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1417 	}
1418 
1419 	if (IS_ERR(mmc->supply.vqmmc)) {
1420 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1421 			return -EPROBE_DEFER;
1422 		dev_info(dev, "No vqmmc regulator found\n");
1423 	}
1424 
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1428 
1429 /*
1430  * Mask off any voltages we don't support and select
1431  * the lowest voltage
1432  */
1433 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1434 {
1435 	int bit;
1436 
1437 	/*
1438 	 * Sanity check the voltages that the card claims to
1439 	 * support.
1440 	 */
1441 	if (ocr & 0x7F) {
1442 		dev_warn(mmc_dev(host),
1443 		"card claims to support voltages below defined range\n");
1444 		ocr &= ~0x7F;
1445 	}
1446 
1447 	ocr &= host->ocr_avail;
1448 	if (!ocr) {
1449 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1450 		return 0;
1451 	}
1452 
1453 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1454 		bit = ffs(ocr) - 1;
1455 		ocr &= 3 << bit;
1456 		mmc_power_cycle(host, ocr);
1457 	} else {
1458 		bit = fls(ocr) - 1;
1459 		ocr &= 3 << bit;
1460 		if (bit != host->ios.vdd)
1461 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1462 	}
1463 
1464 	return ocr;
1465 }
1466 
1467 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1468 {
1469 	int err = 0;
1470 	int old_signal_voltage = host->ios.signal_voltage;
1471 
1472 	host->ios.signal_voltage = signal_voltage;
1473 	if (host->ops->start_signal_voltage_switch) {
1474 		mmc_host_clk_hold(host);
1475 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1476 		mmc_host_clk_release(host);
1477 	}
1478 
1479 	if (err)
1480 		host->ios.signal_voltage = old_signal_voltage;
1481 
1482 	return err;
1483 
1484 }
1485 
1486 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1487 {
1488 	struct mmc_command cmd = {0};
1489 	int err = 0;
1490 	u32 clock;
1491 
1492 	BUG_ON(!host);
1493 
1494 	/*
1495 	 * Send CMD11 only if the request is to switch the card to
1496 	 * 1.8V signalling.
1497 	 */
1498 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1499 		return __mmc_set_signal_voltage(host, signal_voltage);
1500 
1501 	/*
1502 	 * If we cannot switch voltages, return failure so the caller
1503 	 * can continue without UHS mode
1504 	 */
1505 	if (!host->ops->start_signal_voltage_switch)
1506 		return -EPERM;
1507 	if (!host->ops->card_busy)
1508 		pr_warn("%s: cannot verify signal voltage switch\n",
1509 			mmc_hostname(host));
1510 
1511 	mmc_host_clk_hold(host);
1512 
1513 	cmd.opcode = SD_SWITCH_VOLTAGE;
1514 	cmd.arg = 0;
1515 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1516 
1517 	err = mmc_wait_for_cmd(host, &cmd, 0);
1518 	if (err)
1519 		goto err_command;
1520 
1521 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1522 		err = -EIO;
1523 		goto err_command;
1524 	}
1525 	/*
1526 	 * The card should drive cmd and dat[0:3] low immediately
1527 	 * after the response of cmd11, but wait 1 ms to be sure
1528 	 */
1529 	mmc_delay(1);
1530 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1531 		err = -EAGAIN;
1532 		goto power_cycle;
1533 	}
1534 	/*
1535 	 * During a signal voltage level switch, the clock must be gated
1536 	 * for 5 ms according to the SD spec
1537 	 */
1538 	clock = host->ios.clock;
1539 	host->ios.clock = 0;
1540 	mmc_set_ios(host);
1541 
1542 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1543 		/*
1544 		 * Voltages may not have been switched, but we've already
1545 		 * sent CMD11, so a power cycle is required anyway
1546 		 */
1547 		err = -EAGAIN;
1548 		goto power_cycle;
1549 	}
1550 
1551 	/* Keep clock gated for at least 5 ms */
1552 	mmc_delay(5);
1553 	host->ios.clock = clock;
1554 	mmc_set_ios(host);
1555 
1556 	/* Wait for at least 1 ms according to spec */
1557 	mmc_delay(1);
1558 
1559 	/*
1560 	 * Failure to switch is indicated by the card holding
1561 	 * dat[0:3] low
1562 	 */
1563 	if (host->ops->card_busy && host->ops->card_busy(host))
1564 		err = -EAGAIN;
1565 
1566 power_cycle:
1567 	if (err) {
1568 		pr_debug("%s: Signal voltage switch failed, "
1569 			"power cycling card\n", mmc_hostname(host));
1570 		mmc_power_cycle(host, ocr);
1571 	}
1572 
1573 err_command:
1574 	mmc_host_clk_release(host);
1575 
1576 	return err;
1577 }
1578 
1579 /*
1580  * Select timing parameters for host.
1581  */
1582 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1583 {
1584 	mmc_host_clk_hold(host);
1585 	host->ios.timing = timing;
1586 	mmc_set_ios(host);
1587 	mmc_host_clk_release(host);
1588 }
1589 
1590 /*
1591  * Select appropriate driver type for host.
1592  */
1593 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1594 {
1595 	mmc_host_clk_hold(host);
1596 	host->ios.drv_type = drv_type;
1597 	mmc_set_ios(host);
1598 	mmc_host_clk_release(host);
1599 }
1600 
1601 /*
1602  * Apply power to the MMC stack.  This is a two-stage process.
1603  * First, we enable power to the card without the clock running.
1604  * We then wait a bit for the power to stabilise.  Finally,
1605  * enable the bus drivers and clock to the card.
1606  *
1607  * We must _NOT_ enable the clock prior to power stablising.
1608  *
1609  * If a host does all the power sequencing itself, ignore the
1610  * initial MMC_POWER_UP stage.
1611  */
1612 void mmc_power_up(struct mmc_host *host, u32 ocr)
1613 {
1614 	if (host->ios.power_mode == MMC_POWER_ON)
1615 		return;
1616 
1617 	mmc_host_clk_hold(host);
1618 
1619 	mmc_pwrseq_pre_power_on(host);
1620 
1621 	host->ios.vdd = fls(ocr) - 1;
1622 	host->ios.power_mode = MMC_POWER_UP;
1623 	/* Set initial state and call mmc_set_ios */
1624 	mmc_set_initial_state(host);
1625 
1626 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1627 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1628 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1629 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1630 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1631 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1632 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1633 
1634 	/*
1635 	 * This delay should be sufficient to allow the power supply
1636 	 * to reach the minimum voltage.
1637 	 */
1638 	mmc_delay(10);
1639 
1640 	mmc_pwrseq_post_power_on(host);
1641 
1642 	host->ios.clock = host->f_init;
1643 
1644 	host->ios.power_mode = MMC_POWER_ON;
1645 	mmc_set_ios(host);
1646 
1647 	/*
1648 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1649 	 * time required to reach a stable voltage.
1650 	 */
1651 	mmc_delay(10);
1652 
1653 	mmc_host_clk_release(host);
1654 }
1655 
1656 void mmc_power_off(struct mmc_host *host)
1657 {
1658 	if (host->ios.power_mode == MMC_POWER_OFF)
1659 		return;
1660 
1661 	mmc_host_clk_hold(host);
1662 
1663 	mmc_pwrseq_power_off(host);
1664 
1665 	host->ios.clock = 0;
1666 	host->ios.vdd = 0;
1667 
1668 	host->ios.power_mode = MMC_POWER_OFF;
1669 	/* Set initial state and call mmc_set_ios */
1670 	mmc_set_initial_state(host);
1671 
1672 	/*
1673 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1674 	 * XO-1.5, require a short delay after poweroff before the card
1675 	 * can be successfully turned on again.
1676 	 */
1677 	mmc_delay(1);
1678 
1679 	mmc_host_clk_release(host);
1680 }
1681 
1682 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1683 {
1684 	mmc_power_off(host);
1685 	/* Wait at least 1 ms according to SD spec */
1686 	mmc_delay(1);
1687 	mmc_power_up(host, ocr);
1688 }
1689 
1690 /*
1691  * Cleanup when the last reference to the bus operator is dropped.
1692  */
1693 static void __mmc_release_bus(struct mmc_host *host)
1694 {
1695 	BUG_ON(!host);
1696 	BUG_ON(host->bus_refs);
1697 	BUG_ON(!host->bus_dead);
1698 
1699 	host->bus_ops = NULL;
1700 }
1701 
1702 /*
1703  * Increase reference count of bus operator
1704  */
1705 static inline void mmc_bus_get(struct mmc_host *host)
1706 {
1707 	unsigned long flags;
1708 
1709 	spin_lock_irqsave(&host->lock, flags);
1710 	host->bus_refs++;
1711 	spin_unlock_irqrestore(&host->lock, flags);
1712 }
1713 
1714 /*
1715  * Decrease reference count of bus operator and free it if
1716  * it is the last reference.
1717  */
1718 static inline void mmc_bus_put(struct mmc_host *host)
1719 {
1720 	unsigned long flags;
1721 
1722 	spin_lock_irqsave(&host->lock, flags);
1723 	host->bus_refs--;
1724 	if ((host->bus_refs == 0) && host->bus_ops)
1725 		__mmc_release_bus(host);
1726 	spin_unlock_irqrestore(&host->lock, flags);
1727 }
1728 
1729 /*
1730  * Assign a mmc bus handler to a host. Only one bus handler may control a
1731  * host at any given time.
1732  */
1733 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1734 {
1735 	unsigned long flags;
1736 
1737 	BUG_ON(!host);
1738 	BUG_ON(!ops);
1739 
1740 	WARN_ON(!host->claimed);
1741 
1742 	spin_lock_irqsave(&host->lock, flags);
1743 
1744 	BUG_ON(host->bus_ops);
1745 	BUG_ON(host->bus_refs);
1746 
1747 	host->bus_ops = ops;
1748 	host->bus_refs = 1;
1749 	host->bus_dead = 0;
1750 
1751 	spin_unlock_irqrestore(&host->lock, flags);
1752 }
1753 
1754 /*
1755  * Remove the current bus handler from a host.
1756  */
1757 void mmc_detach_bus(struct mmc_host *host)
1758 {
1759 	unsigned long flags;
1760 
1761 	BUG_ON(!host);
1762 
1763 	WARN_ON(!host->claimed);
1764 	WARN_ON(!host->bus_ops);
1765 
1766 	spin_lock_irqsave(&host->lock, flags);
1767 
1768 	host->bus_dead = 1;
1769 
1770 	spin_unlock_irqrestore(&host->lock, flags);
1771 
1772 	mmc_bus_put(host);
1773 }
1774 
1775 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1776 				bool cd_irq)
1777 {
1778 #ifdef CONFIG_MMC_DEBUG
1779 	unsigned long flags;
1780 	spin_lock_irqsave(&host->lock, flags);
1781 	WARN_ON(host->removed);
1782 	spin_unlock_irqrestore(&host->lock, flags);
1783 #endif
1784 
1785 	/*
1786 	 * If the device is configured as wakeup, we prevent a new sleep for
1787 	 * 5 s to give provision for user space to consume the event.
1788 	 */
1789 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1790 		device_can_wakeup(mmc_dev(host)))
1791 		pm_wakeup_event(mmc_dev(host), 5000);
1792 
1793 	host->detect_change = 1;
1794 	mmc_schedule_delayed_work(&host->detect, delay);
1795 }
1796 
1797 /**
1798  *	mmc_detect_change - process change of state on a MMC socket
1799  *	@host: host which changed state.
1800  *	@delay: optional delay to wait before detection (jiffies)
1801  *
1802  *	MMC drivers should call this when they detect a card has been
1803  *	inserted or removed. The MMC layer will confirm that any
1804  *	present card is still functional, and initialize any newly
1805  *	inserted.
1806  */
1807 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1808 {
1809 	_mmc_detect_change(host, delay, true);
1810 }
1811 EXPORT_SYMBOL(mmc_detect_change);
1812 
1813 void mmc_init_erase(struct mmc_card *card)
1814 {
1815 	unsigned int sz;
1816 
1817 	if (is_power_of_2(card->erase_size))
1818 		card->erase_shift = ffs(card->erase_size) - 1;
1819 	else
1820 		card->erase_shift = 0;
1821 
1822 	/*
1823 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1824 	 * card.  That is not desirable because it can take a long time
1825 	 * (minutes) potentially delaying more important I/O, and also the
1826 	 * timeout calculations become increasingly hugely over-estimated.
1827 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1828 	 * to that size and alignment.
1829 	 *
1830 	 * For SD cards that define Allocation Unit size, limit erases to one
1831 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1832 	 * Erase Size, whether it is switched on or not, limit to that size.
1833 	 * Otherwise just have a stab at a good value.  For modern cards it
1834 	 * will end up being 4MiB.  Note that if the value is too small, it
1835 	 * can end up taking longer to erase.
1836 	 */
1837 	if (mmc_card_sd(card) && card->ssr.au) {
1838 		card->pref_erase = card->ssr.au;
1839 		card->erase_shift = ffs(card->ssr.au) - 1;
1840 	} else if (card->ext_csd.hc_erase_size) {
1841 		card->pref_erase = card->ext_csd.hc_erase_size;
1842 	} else if (card->erase_size) {
1843 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1844 		if (sz < 128)
1845 			card->pref_erase = 512 * 1024 / 512;
1846 		else if (sz < 512)
1847 			card->pref_erase = 1024 * 1024 / 512;
1848 		else if (sz < 1024)
1849 			card->pref_erase = 2 * 1024 * 1024 / 512;
1850 		else
1851 			card->pref_erase = 4 * 1024 * 1024 / 512;
1852 		if (card->pref_erase < card->erase_size)
1853 			card->pref_erase = card->erase_size;
1854 		else {
1855 			sz = card->pref_erase % card->erase_size;
1856 			if (sz)
1857 				card->pref_erase += card->erase_size - sz;
1858 		}
1859 	} else
1860 		card->pref_erase = 0;
1861 }
1862 
1863 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1864 				          unsigned int arg, unsigned int qty)
1865 {
1866 	unsigned int erase_timeout;
1867 
1868 	if (arg == MMC_DISCARD_ARG ||
1869 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1870 		erase_timeout = card->ext_csd.trim_timeout;
1871 	} else if (card->ext_csd.erase_group_def & 1) {
1872 		/* High Capacity Erase Group Size uses HC timeouts */
1873 		if (arg == MMC_TRIM_ARG)
1874 			erase_timeout = card->ext_csd.trim_timeout;
1875 		else
1876 			erase_timeout = card->ext_csd.hc_erase_timeout;
1877 	} else {
1878 		/* CSD Erase Group Size uses write timeout */
1879 		unsigned int mult = (10 << card->csd.r2w_factor);
1880 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1881 		unsigned int timeout_us;
1882 
1883 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1884 		if (card->csd.tacc_ns < 1000000)
1885 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1886 		else
1887 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1888 
1889 		/*
1890 		 * ios.clock is only a target.  The real clock rate might be
1891 		 * less but not that much less, so fudge it by multiplying by 2.
1892 		 */
1893 		timeout_clks <<= 1;
1894 		timeout_us += (timeout_clks * 1000) /
1895 			      (mmc_host_clk_rate(card->host) / 1000);
1896 
1897 		erase_timeout = timeout_us / 1000;
1898 
1899 		/*
1900 		 * Theoretically, the calculation could underflow so round up
1901 		 * to 1ms in that case.
1902 		 */
1903 		if (!erase_timeout)
1904 			erase_timeout = 1;
1905 	}
1906 
1907 	/* Multiplier for secure operations */
1908 	if (arg & MMC_SECURE_ARGS) {
1909 		if (arg == MMC_SECURE_ERASE_ARG)
1910 			erase_timeout *= card->ext_csd.sec_erase_mult;
1911 		else
1912 			erase_timeout *= card->ext_csd.sec_trim_mult;
1913 	}
1914 
1915 	erase_timeout *= qty;
1916 
1917 	/*
1918 	 * Ensure at least a 1 second timeout for SPI as per
1919 	 * 'mmc_set_data_timeout()'
1920 	 */
1921 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1922 		erase_timeout = 1000;
1923 
1924 	return erase_timeout;
1925 }
1926 
1927 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1928 					 unsigned int arg,
1929 					 unsigned int qty)
1930 {
1931 	unsigned int erase_timeout;
1932 
1933 	if (card->ssr.erase_timeout) {
1934 		/* Erase timeout specified in SD Status Register (SSR) */
1935 		erase_timeout = card->ssr.erase_timeout * qty +
1936 				card->ssr.erase_offset;
1937 	} else {
1938 		/*
1939 		 * Erase timeout not specified in SD Status Register (SSR) so
1940 		 * use 250ms per write block.
1941 		 */
1942 		erase_timeout = 250 * qty;
1943 	}
1944 
1945 	/* Must not be less than 1 second */
1946 	if (erase_timeout < 1000)
1947 		erase_timeout = 1000;
1948 
1949 	return erase_timeout;
1950 }
1951 
1952 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1953 				      unsigned int arg,
1954 				      unsigned int qty)
1955 {
1956 	if (mmc_card_sd(card))
1957 		return mmc_sd_erase_timeout(card, arg, qty);
1958 	else
1959 		return mmc_mmc_erase_timeout(card, arg, qty);
1960 }
1961 
1962 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1963 			unsigned int to, unsigned int arg)
1964 {
1965 	struct mmc_command cmd = {0};
1966 	unsigned int qty = 0;
1967 	unsigned long timeout;
1968 	int err;
1969 
1970 	/*
1971 	 * qty is used to calculate the erase timeout which depends on how many
1972 	 * erase groups (or allocation units in SD terminology) are affected.
1973 	 * We count erasing part of an erase group as one erase group.
1974 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1975 	 * erase group size is almost certainly also power of 2, but it does not
1976 	 * seem to insist on that in the JEDEC standard, so we fall back to
1977 	 * division in that case.  SD may not specify an allocation unit size,
1978 	 * in which case the timeout is based on the number of write blocks.
1979 	 *
1980 	 * Note that the timeout for secure trim 2 will only be correct if the
1981 	 * number of erase groups specified is the same as the total of all
1982 	 * preceding secure trim 1 commands.  Since the power may have been
1983 	 * lost since the secure trim 1 commands occurred, it is generally
1984 	 * impossible to calculate the secure trim 2 timeout correctly.
1985 	 */
1986 	if (card->erase_shift)
1987 		qty += ((to >> card->erase_shift) -
1988 			(from >> card->erase_shift)) + 1;
1989 	else if (mmc_card_sd(card))
1990 		qty += to - from + 1;
1991 	else
1992 		qty += ((to / card->erase_size) -
1993 			(from / card->erase_size)) + 1;
1994 
1995 	if (!mmc_card_blockaddr(card)) {
1996 		from <<= 9;
1997 		to <<= 9;
1998 	}
1999 
2000 	if (mmc_card_sd(card))
2001 		cmd.opcode = SD_ERASE_WR_BLK_START;
2002 	else
2003 		cmd.opcode = MMC_ERASE_GROUP_START;
2004 	cmd.arg = from;
2005 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2006 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2007 	if (err) {
2008 		pr_err("mmc_erase: group start error %d, "
2009 		       "status %#x\n", err, cmd.resp[0]);
2010 		err = -EIO;
2011 		goto out;
2012 	}
2013 
2014 	memset(&cmd, 0, sizeof(struct mmc_command));
2015 	if (mmc_card_sd(card))
2016 		cmd.opcode = SD_ERASE_WR_BLK_END;
2017 	else
2018 		cmd.opcode = MMC_ERASE_GROUP_END;
2019 	cmd.arg = to;
2020 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2021 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2022 	if (err) {
2023 		pr_err("mmc_erase: group end error %d, status %#x\n",
2024 		       err, cmd.resp[0]);
2025 		err = -EIO;
2026 		goto out;
2027 	}
2028 
2029 	memset(&cmd, 0, sizeof(struct mmc_command));
2030 	cmd.opcode = MMC_ERASE;
2031 	cmd.arg = arg;
2032 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2033 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2034 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2035 	if (err) {
2036 		pr_err("mmc_erase: erase error %d, status %#x\n",
2037 		       err, cmd.resp[0]);
2038 		err = -EIO;
2039 		goto out;
2040 	}
2041 
2042 	if (mmc_host_is_spi(card->host))
2043 		goto out;
2044 
2045 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2046 	do {
2047 		memset(&cmd, 0, sizeof(struct mmc_command));
2048 		cmd.opcode = MMC_SEND_STATUS;
2049 		cmd.arg = card->rca << 16;
2050 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2051 		/* Do not retry else we can't see errors */
2052 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2054 			pr_err("error %d requesting status %#x\n",
2055 				err, cmd.resp[0]);
2056 			err = -EIO;
2057 			goto out;
2058 		}
2059 
2060 		/* Timeout if the device never becomes ready for data and
2061 		 * never leaves the program state.
2062 		 */
2063 		if (time_after(jiffies, timeout)) {
2064 			pr_err("%s: Card stuck in programming state! %s\n",
2065 				mmc_hostname(card->host), __func__);
2066 			err =  -EIO;
2067 			goto out;
2068 		}
2069 
2070 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2071 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2072 out:
2073 	return err;
2074 }
2075 
2076 /**
2077  * mmc_erase - erase sectors.
2078  * @card: card to erase
2079  * @from: first sector to erase
2080  * @nr: number of sectors to erase
2081  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2082  *
2083  * Caller must claim host before calling this function.
2084  */
2085 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2086 	      unsigned int arg)
2087 {
2088 	unsigned int rem, to = from + nr;
2089 
2090 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2091 	    !(card->csd.cmdclass & CCC_ERASE))
2092 		return -EOPNOTSUPP;
2093 
2094 	if (!card->erase_size)
2095 		return -EOPNOTSUPP;
2096 
2097 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2098 		return -EOPNOTSUPP;
2099 
2100 	if ((arg & MMC_SECURE_ARGS) &&
2101 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2102 		return -EOPNOTSUPP;
2103 
2104 	if ((arg & MMC_TRIM_ARGS) &&
2105 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2106 		return -EOPNOTSUPP;
2107 
2108 	if (arg == MMC_SECURE_ERASE_ARG) {
2109 		if (from % card->erase_size || nr % card->erase_size)
2110 			return -EINVAL;
2111 	}
2112 
2113 	if (arg == MMC_ERASE_ARG) {
2114 		rem = from % card->erase_size;
2115 		if (rem) {
2116 			rem = card->erase_size - rem;
2117 			from += rem;
2118 			if (nr > rem)
2119 				nr -= rem;
2120 			else
2121 				return 0;
2122 		}
2123 		rem = nr % card->erase_size;
2124 		if (rem)
2125 			nr -= rem;
2126 	}
2127 
2128 	if (nr == 0)
2129 		return 0;
2130 
2131 	to = from + nr;
2132 
2133 	if (to <= from)
2134 		return -EINVAL;
2135 
2136 	/* 'from' and 'to' are inclusive */
2137 	to -= 1;
2138 
2139 	return mmc_do_erase(card, from, to, arg);
2140 }
2141 EXPORT_SYMBOL(mmc_erase);
2142 
2143 int mmc_can_erase(struct mmc_card *card)
2144 {
2145 	if ((card->host->caps & MMC_CAP_ERASE) &&
2146 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2147 		return 1;
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL(mmc_can_erase);
2151 
2152 int mmc_can_trim(struct mmc_card *card)
2153 {
2154 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2155 		return 1;
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(mmc_can_trim);
2159 
2160 int mmc_can_discard(struct mmc_card *card)
2161 {
2162 	/*
2163 	 * As there's no way to detect the discard support bit at v4.5
2164 	 * use the s/w feature support filed.
2165 	 */
2166 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2167 		return 1;
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL(mmc_can_discard);
2171 
2172 int mmc_can_sanitize(struct mmc_card *card)
2173 {
2174 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2175 		return 0;
2176 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2177 		return 1;
2178 	return 0;
2179 }
2180 EXPORT_SYMBOL(mmc_can_sanitize);
2181 
2182 int mmc_can_secure_erase_trim(struct mmc_card *card)
2183 {
2184 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2185 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2186 		return 1;
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2190 
2191 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2192 			    unsigned int nr)
2193 {
2194 	if (!card->erase_size)
2195 		return 0;
2196 	if (from % card->erase_size || nr % card->erase_size)
2197 		return 0;
2198 	return 1;
2199 }
2200 EXPORT_SYMBOL(mmc_erase_group_aligned);
2201 
2202 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2203 					    unsigned int arg)
2204 {
2205 	struct mmc_host *host = card->host;
2206 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2207 	unsigned int last_timeout = 0;
2208 
2209 	if (card->erase_shift)
2210 		max_qty = UINT_MAX >> card->erase_shift;
2211 	else if (mmc_card_sd(card))
2212 		max_qty = UINT_MAX;
2213 	else
2214 		max_qty = UINT_MAX / card->erase_size;
2215 
2216 	/* Find the largest qty with an OK timeout */
2217 	do {
2218 		y = 0;
2219 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2220 			timeout = mmc_erase_timeout(card, arg, qty + x);
2221 			if (timeout > host->max_busy_timeout)
2222 				break;
2223 			if (timeout < last_timeout)
2224 				break;
2225 			last_timeout = timeout;
2226 			y = x;
2227 		}
2228 		qty += y;
2229 	} while (y);
2230 
2231 	if (!qty)
2232 		return 0;
2233 
2234 	if (qty == 1)
2235 		return 1;
2236 
2237 	/* Convert qty to sectors */
2238 	if (card->erase_shift)
2239 		max_discard = --qty << card->erase_shift;
2240 	else if (mmc_card_sd(card))
2241 		max_discard = qty;
2242 	else
2243 		max_discard = --qty * card->erase_size;
2244 
2245 	return max_discard;
2246 }
2247 
2248 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2249 {
2250 	struct mmc_host *host = card->host;
2251 	unsigned int max_discard, max_trim;
2252 
2253 	if (!host->max_busy_timeout)
2254 		return UINT_MAX;
2255 
2256 	/*
2257 	 * Without erase_group_def set, MMC erase timeout depends on clock
2258 	 * frequence which can change.  In that case, the best choice is
2259 	 * just the preferred erase size.
2260 	 */
2261 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2262 		return card->pref_erase;
2263 
2264 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2265 	if (mmc_can_trim(card)) {
2266 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2267 		if (max_trim < max_discard)
2268 			max_discard = max_trim;
2269 	} else if (max_discard < card->erase_size) {
2270 		max_discard = 0;
2271 	}
2272 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2273 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2274 	return max_discard;
2275 }
2276 EXPORT_SYMBOL(mmc_calc_max_discard);
2277 
2278 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2279 {
2280 	struct mmc_command cmd = {0};
2281 
2282 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2283 		return 0;
2284 
2285 	cmd.opcode = MMC_SET_BLOCKLEN;
2286 	cmd.arg = blocklen;
2287 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2288 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2289 }
2290 EXPORT_SYMBOL(mmc_set_blocklen);
2291 
2292 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2293 			bool is_rel_write)
2294 {
2295 	struct mmc_command cmd = {0};
2296 
2297 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2298 	cmd.arg = blockcount & 0x0000FFFF;
2299 	if (is_rel_write)
2300 		cmd.arg |= 1 << 31;
2301 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2302 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2303 }
2304 EXPORT_SYMBOL(mmc_set_blockcount);
2305 
2306 static void mmc_hw_reset_for_init(struct mmc_host *host)
2307 {
2308 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2309 		return;
2310 	mmc_host_clk_hold(host);
2311 	host->ops->hw_reset(host);
2312 	mmc_host_clk_release(host);
2313 }
2314 
2315 int mmc_hw_reset(struct mmc_host *host)
2316 {
2317 	int ret;
2318 
2319 	if (!host->card)
2320 		return -EINVAL;
2321 
2322 	mmc_bus_get(host);
2323 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2324 		mmc_bus_put(host);
2325 		return -EOPNOTSUPP;
2326 	}
2327 
2328 	ret = host->bus_ops->reset(host);
2329 	mmc_bus_put(host);
2330 
2331 	pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2332 
2333 	return ret;
2334 }
2335 EXPORT_SYMBOL(mmc_hw_reset);
2336 
2337 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2338 {
2339 	host->f_init = freq;
2340 
2341 #ifdef CONFIG_MMC_DEBUG
2342 	pr_info("%s: %s: trying to init card at %u Hz\n",
2343 		mmc_hostname(host), __func__, host->f_init);
2344 #endif
2345 	mmc_power_up(host, host->ocr_avail);
2346 
2347 	/*
2348 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2349 	 * do a hardware reset if possible.
2350 	 */
2351 	mmc_hw_reset_for_init(host);
2352 
2353 	/*
2354 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2355 	 * if the card is being re-initialized, just send it.  CMD52
2356 	 * should be ignored by SD/eMMC cards.
2357 	 */
2358 	sdio_reset(host);
2359 	mmc_go_idle(host);
2360 
2361 	mmc_send_if_cond(host, host->ocr_avail);
2362 
2363 	/* Order's important: probe SDIO, then SD, then MMC */
2364 	if (!mmc_attach_sdio(host))
2365 		return 0;
2366 	if (!mmc_attach_sd(host))
2367 		return 0;
2368 	if (!mmc_attach_mmc(host))
2369 		return 0;
2370 
2371 	mmc_power_off(host);
2372 	return -EIO;
2373 }
2374 
2375 int _mmc_detect_card_removed(struct mmc_host *host)
2376 {
2377 	int ret;
2378 
2379 	if (host->caps & MMC_CAP_NONREMOVABLE)
2380 		return 0;
2381 
2382 	if (!host->card || mmc_card_removed(host->card))
2383 		return 1;
2384 
2385 	ret = host->bus_ops->alive(host);
2386 
2387 	/*
2388 	 * Card detect status and alive check may be out of sync if card is
2389 	 * removed slowly, when card detect switch changes while card/slot
2390 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2391 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2392 	 * detect work 200ms later for this case.
2393 	 */
2394 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2395 		mmc_detect_change(host, msecs_to_jiffies(200));
2396 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2397 	}
2398 
2399 	if (ret) {
2400 		mmc_card_set_removed(host->card);
2401 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2402 	}
2403 
2404 	return ret;
2405 }
2406 
2407 int mmc_detect_card_removed(struct mmc_host *host)
2408 {
2409 	struct mmc_card *card = host->card;
2410 	int ret;
2411 
2412 	WARN_ON(!host->claimed);
2413 
2414 	if (!card)
2415 		return 1;
2416 
2417 	ret = mmc_card_removed(card);
2418 	/*
2419 	 * The card will be considered unchanged unless we have been asked to
2420 	 * detect a change or host requires polling to provide card detection.
2421 	 */
2422 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2423 		return ret;
2424 
2425 	host->detect_change = 0;
2426 	if (!ret) {
2427 		ret = _mmc_detect_card_removed(host);
2428 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2429 			/*
2430 			 * Schedule a detect work as soon as possible to let a
2431 			 * rescan handle the card removal.
2432 			 */
2433 			cancel_delayed_work(&host->detect);
2434 			_mmc_detect_change(host, 0, false);
2435 		}
2436 	}
2437 
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(mmc_detect_card_removed);
2441 
2442 void mmc_rescan(struct work_struct *work)
2443 {
2444 	struct mmc_host *host =
2445 		container_of(work, struct mmc_host, detect.work);
2446 	int i;
2447 
2448 	if (host->trigger_card_event && host->ops->card_event) {
2449 		host->ops->card_event(host);
2450 		host->trigger_card_event = false;
2451 	}
2452 
2453 	if (host->rescan_disable)
2454 		return;
2455 
2456 	/* If there is a non-removable card registered, only scan once */
2457 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2458 		return;
2459 	host->rescan_entered = 1;
2460 
2461 	mmc_bus_get(host);
2462 
2463 	/*
2464 	 * if there is a _removable_ card registered, check whether it is
2465 	 * still present
2466 	 */
2467 	if (host->bus_ops && !host->bus_dead
2468 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2469 		host->bus_ops->detect(host);
2470 
2471 	host->detect_change = 0;
2472 
2473 	/*
2474 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2475 	 * the card is no longer present.
2476 	 */
2477 	mmc_bus_put(host);
2478 	mmc_bus_get(host);
2479 
2480 	/* if there still is a card present, stop here */
2481 	if (host->bus_ops != NULL) {
2482 		mmc_bus_put(host);
2483 		goto out;
2484 	}
2485 
2486 	/*
2487 	 * Only we can add a new handler, so it's safe to
2488 	 * release the lock here.
2489 	 */
2490 	mmc_bus_put(host);
2491 
2492 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2493 			host->ops->get_cd(host) == 0) {
2494 		mmc_claim_host(host);
2495 		mmc_power_off(host);
2496 		mmc_release_host(host);
2497 		goto out;
2498 	}
2499 
2500 	mmc_claim_host(host);
2501 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2502 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2503 			break;
2504 		if (freqs[i] <= host->f_min)
2505 			break;
2506 	}
2507 	mmc_release_host(host);
2508 
2509  out:
2510 	if (host->caps & MMC_CAP_NEEDS_POLL)
2511 		mmc_schedule_delayed_work(&host->detect, HZ);
2512 }
2513 
2514 void mmc_start_host(struct mmc_host *host)
2515 {
2516 	host->f_init = max(freqs[0], host->f_min);
2517 	host->rescan_disable = 0;
2518 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2519 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2520 		mmc_power_off(host);
2521 	else
2522 		mmc_power_up(host, host->ocr_avail);
2523 	mmc_gpiod_request_cd_irq(host);
2524 	_mmc_detect_change(host, 0, false);
2525 }
2526 
2527 void mmc_stop_host(struct mmc_host *host)
2528 {
2529 #ifdef CONFIG_MMC_DEBUG
2530 	unsigned long flags;
2531 	spin_lock_irqsave(&host->lock, flags);
2532 	host->removed = 1;
2533 	spin_unlock_irqrestore(&host->lock, flags);
2534 #endif
2535 	if (host->slot.cd_irq >= 0)
2536 		disable_irq(host->slot.cd_irq);
2537 
2538 	host->rescan_disable = 1;
2539 	cancel_delayed_work_sync(&host->detect);
2540 	mmc_flush_scheduled_work();
2541 
2542 	/* clear pm flags now and let card drivers set them as needed */
2543 	host->pm_flags = 0;
2544 
2545 	mmc_bus_get(host);
2546 	if (host->bus_ops && !host->bus_dead) {
2547 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2548 		host->bus_ops->remove(host);
2549 		mmc_claim_host(host);
2550 		mmc_detach_bus(host);
2551 		mmc_power_off(host);
2552 		mmc_release_host(host);
2553 		mmc_bus_put(host);
2554 		return;
2555 	}
2556 	mmc_bus_put(host);
2557 
2558 	BUG_ON(host->card);
2559 
2560 	mmc_power_off(host);
2561 }
2562 
2563 int mmc_power_save_host(struct mmc_host *host)
2564 {
2565 	int ret = 0;
2566 
2567 #ifdef CONFIG_MMC_DEBUG
2568 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2569 #endif
2570 
2571 	mmc_bus_get(host);
2572 
2573 	if (!host->bus_ops || host->bus_dead) {
2574 		mmc_bus_put(host);
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (host->bus_ops->power_save)
2579 		ret = host->bus_ops->power_save(host);
2580 
2581 	mmc_bus_put(host);
2582 
2583 	mmc_power_off(host);
2584 
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL(mmc_power_save_host);
2588 
2589 int mmc_power_restore_host(struct mmc_host *host)
2590 {
2591 	int ret;
2592 
2593 #ifdef CONFIG_MMC_DEBUG
2594 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2595 #endif
2596 
2597 	mmc_bus_get(host);
2598 
2599 	if (!host->bus_ops || host->bus_dead) {
2600 		mmc_bus_put(host);
2601 		return -EINVAL;
2602 	}
2603 
2604 	mmc_power_up(host, host->card->ocr);
2605 	ret = host->bus_ops->power_restore(host);
2606 
2607 	mmc_bus_put(host);
2608 
2609 	return ret;
2610 }
2611 EXPORT_SYMBOL(mmc_power_restore_host);
2612 
2613 /*
2614  * Flush the cache to the non-volatile storage.
2615  */
2616 int mmc_flush_cache(struct mmc_card *card)
2617 {
2618 	int err = 0;
2619 
2620 	if (mmc_card_mmc(card) &&
2621 			(card->ext_csd.cache_size > 0) &&
2622 			(card->ext_csd.cache_ctrl & 1)) {
2623 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2624 				EXT_CSD_FLUSH_CACHE, 1, 0);
2625 		if (err)
2626 			pr_err("%s: cache flush error %d\n",
2627 					mmc_hostname(card->host), err);
2628 	}
2629 
2630 	return err;
2631 }
2632 EXPORT_SYMBOL(mmc_flush_cache);
2633 
2634 #ifdef CONFIG_PM
2635 
2636 /* Do the card removal on suspend if card is assumed removeable
2637  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2638    to sync the card.
2639 */
2640 int mmc_pm_notify(struct notifier_block *notify_block,
2641 					unsigned long mode, void *unused)
2642 {
2643 	struct mmc_host *host = container_of(
2644 		notify_block, struct mmc_host, pm_notify);
2645 	unsigned long flags;
2646 	int err = 0;
2647 
2648 	switch (mode) {
2649 	case PM_HIBERNATION_PREPARE:
2650 	case PM_SUSPEND_PREPARE:
2651 		spin_lock_irqsave(&host->lock, flags);
2652 		host->rescan_disable = 1;
2653 		spin_unlock_irqrestore(&host->lock, flags);
2654 		cancel_delayed_work_sync(&host->detect);
2655 
2656 		if (!host->bus_ops)
2657 			break;
2658 
2659 		/* Validate prerequisites for suspend */
2660 		if (host->bus_ops->pre_suspend)
2661 			err = host->bus_ops->pre_suspend(host);
2662 		if (!err)
2663 			break;
2664 
2665 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2666 		host->bus_ops->remove(host);
2667 		mmc_claim_host(host);
2668 		mmc_detach_bus(host);
2669 		mmc_power_off(host);
2670 		mmc_release_host(host);
2671 		host->pm_flags = 0;
2672 		break;
2673 
2674 	case PM_POST_SUSPEND:
2675 	case PM_POST_HIBERNATION:
2676 	case PM_POST_RESTORE:
2677 
2678 		spin_lock_irqsave(&host->lock, flags);
2679 		host->rescan_disable = 0;
2680 		spin_unlock_irqrestore(&host->lock, flags);
2681 		_mmc_detect_change(host, 0, false);
2682 
2683 	}
2684 
2685 	return 0;
2686 }
2687 #endif
2688 
2689 /**
2690  * mmc_init_context_info() - init synchronization context
2691  * @host: mmc host
2692  *
2693  * Init struct context_info needed to implement asynchronous
2694  * request mechanism, used by mmc core, host driver and mmc requests
2695  * supplier.
2696  */
2697 void mmc_init_context_info(struct mmc_host *host)
2698 {
2699 	spin_lock_init(&host->context_info.lock);
2700 	host->context_info.is_new_req = false;
2701 	host->context_info.is_done_rcv = false;
2702 	host->context_info.is_waiting_last_req = false;
2703 	init_waitqueue_head(&host->context_info.wait);
2704 }
2705 
2706 static int __init mmc_init(void)
2707 {
2708 	int ret;
2709 
2710 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2711 	if (!workqueue)
2712 		return -ENOMEM;
2713 
2714 	ret = mmc_register_bus();
2715 	if (ret)
2716 		goto destroy_workqueue;
2717 
2718 	ret = mmc_register_host_class();
2719 	if (ret)
2720 		goto unregister_bus;
2721 
2722 	ret = sdio_register_bus();
2723 	if (ret)
2724 		goto unregister_host_class;
2725 
2726 	return 0;
2727 
2728 unregister_host_class:
2729 	mmc_unregister_host_class();
2730 unregister_bus:
2731 	mmc_unregister_bus();
2732 destroy_workqueue:
2733 	destroy_workqueue(workqueue);
2734 
2735 	return ret;
2736 }
2737 
2738 static void __exit mmc_exit(void)
2739 {
2740 	sdio_unregister_bus();
2741 	mmc_unregister_host_class();
2742 	mmc_unregister_bus();
2743 	destroy_workqueue(workqueue);
2744 }
2745 
2746 subsys_initcall(mmc_init);
2747 module_exit(mmc_exit);
2748 
2749 MODULE_LICENSE("GPL");
2750