xref: /linux/drivers/md/raid5.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *
6  * RAID-5 management functions.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * You should have received a copy of the GNU General Public License
14  * (for example /usr/src/linux/COPYING); if not, write to the Free
15  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
16  */
17 
18 
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/raid/raid5.h>
23 #include <linux/highmem.h>
24 #include <linux/bitops.h>
25 #include <linux/kthread.h>
26 #include <asm/atomic.h>
27 
28 #include <linux/raid/bitmap.h>
29 
30 /*
31  * Stripe cache
32  */
33 
34 #define NR_STRIPES		256
35 #define STRIPE_SIZE		PAGE_SIZE
36 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
37 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
38 #define	IO_THRESHOLD		1
39 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
40 #define HASH_MASK		(NR_HASH - 1)
41 
42 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
43 
44 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
45  * order without overlap.  There may be several bio's per stripe+device, and
46  * a bio could span several devices.
47  * When walking this list for a particular stripe+device, we must never proceed
48  * beyond a bio that extends past this device, as the next bio might no longer
49  * be valid.
50  * This macro is used to determine the 'next' bio in the list, given the sector
51  * of the current stripe+device
52  */
53 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
54 /*
55  * The following can be used to debug the driver
56  */
57 #define RAID5_DEBUG	0
58 #define RAID5_PARANOIA	1
59 #if RAID5_PARANOIA && defined(CONFIG_SMP)
60 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
61 #else
62 # define CHECK_DEVLOCK()
63 #endif
64 
65 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
66 #if RAID5_DEBUG
67 #define inline
68 #define __inline__
69 #endif
70 
71 static void print_raid5_conf (raid5_conf_t *conf);
72 
73 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
74 {
75 	if (atomic_dec_and_test(&sh->count)) {
76 		if (!list_empty(&sh->lru))
77 			BUG();
78 		if (atomic_read(&conf->active_stripes)==0)
79 			BUG();
80 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
81 			if (test_bit(STRIPE_DELAYED, &sh->state))
82 				list_add_tail(&sh->lru, &conf->delayed_list);
83 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
84 				 conf->seq_write == sh->bm_seq)
85 				list_add_tail(&sh->lru, &conf->bitmap_list);
86 			else {
87 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
88 				list_add_tail(&sh->lru, &conf->handle_list);
89 			}
90 			md_wakeup_thread(conf->mddev->thread);
91 		} else {
92 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
93 				atomic_dec(&conf->preread_active_stripes);
94 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
95 					md_wakeup_thread(conf->mddev->thread);
96 			}
97 			atomic_dec(&conf->active_stripes);
98 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
99 				list_add_tail(&sh->lru, &conf->inactive_list);
100 				wake_up(&conf->wait_for_stripe);
101 			}
102 		}
103 	}
104 }
105 static void release_stripe(struct stripe_head *sh)
106 {
107 	raid5_conf_t *conf = sh->raid_conf;
108 	unsigned long flags;
109 
110 	spin_lock_irqsave(&conf->device_lock, flags);
111 	__release_stripe(conf, sh);
112 	spin_unlock_irqrestore(&conf->device_lock, flags);
113 }
114 
115 static inline void remove_hash(struct stripe_head *sh)
116 {
117 	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
118 
119 	hlist_del_init(&sh->hash);
120 }
121 
122 static void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
123 {
124 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
125 
126 	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
127 
128 	CHECK_DEVLOCK();
129 	hlist_add_head(&sh->hash, hp);
130 }
131 
132 
133 /* find an idle stripe, make sure it is unhashed, and return it. */
134 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
135 {
136 	struct stripe_head *sh = NULL;
137 	struct list_head *first;
138 
139 	CHECK_DEVLOCK();
140 	if (list_empty(&conf->inactive_list))
141 		goto out;
142 	first = conf->inactive_list.next;
143 	sh = list_entry(first, struct stripe_head, lru);
144 	list_del_init(first);
145 	remove_hash(sh);
146 	atomic_inc(&conf->active_stripes);
147 out:
148 	return sh;
149 }
150 
151 static void shrink_buffers(struct stripe_head *sh, int num)
152 {
153 	struct page *p;
154 	int i;
155 
156 	for (i=0; i<num ; i++) {
157 		p = sh->dev[i].page;
158 		if (!p)
159 			continue;
160 		sh->dev[i].page = NULL;
161 		put_page(p);
162 	}
163 }
164 
165 static int grow_buffers(struct stripe_head *sh, int num)
166 {
167 	int i;
168 
169 	for (i=0; i<num; i++) {
170 		struct page *page;
171 
172 		if (!(page = alloc_page(GFP_KERNEL))) {
173 			return 1;
174 		}
175 		sh->dev[i].page = page;
176 	}
177 	return 0;
178 }
179 
180 static void raid5_build_block (struct stripe_head *sh, int i);
181 
182 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
183 {
184 	raid5_conf_t *conf = sh->raid_conf;
185 	int i;
186 
187 	if (atomic_read(&sh->count) != 0)
188 		BUG();
189 	if (test_bit(STRIPE_HANDLE, &sh->state))
190 		BUG();
191 
192 	CHECK_DEVLOCK();
193 	PRINTK("init_stripe called, stripe %llu\n",
194 		(unsigned long long)sh->sector);
195 
196 	remove_hash(sh);
197 
198 	sh->sector = sector;
199 	sh->pd_idx = pd_idx;
200 	sh->state = 0;
201 
202 	sh->disks = disks;
203 
204 	for (i = sh->disks; i--; ) {
205 		struct r5dev *dev = &sh->dev[i];
206 
207 		if (dev->toread || dev->towrite || dev->written ||
208 		    test_bit(R5_LOCKED, &dev->flags)) {
209 			printk("sector=%llx i=%d %p %p %p %d\n",
210 			       (unsigned long long)sh->sector, i, dev->toread,
211 			       dev->towrite, dev->written,
212 			       test_bit(R5_LOCKED, &dev->flags));
213 			BUG();
214 		}
215 		dev->flags = 0;
216 		raid5_build_block(sh, i);
217 	}
218 	insert_hash(conf, sh);
219 }
220 
221 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
222 {
223 	struct stripe_head *sh;
224 	struct hlist_node *hn;
225 
226 	CHECK_DEVLOCK();
227 	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
228 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
229 		if (sh->sector == sector && sh->disks == disks)
230 			return sh;
231 	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
232 	return NULL;
233 }
234 
235 static void unplug_slaves(mddev_t *mddev);
236 static void raid5_unplug_device(request_queue_t *q);
237 
238 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
239 					     int pd_idx, int noblock)
240 {
241 	struct stripe_head *sh;
242 
243 	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
244 
245 	spin_lock_irq(&conf->device_lock);
246 
247 	do {
248 		wait_event_lock_irq(conf->wait_for_stripe,
249 				    conf->quiesce == 0,
250 				    conf->device_lock, /* nothing */);
251 		sh = __find_stripe(conf, sector, disks);
252 		if (!sh) {
253 			if (!conf->inactive_blocked)
254 				sh = get_free_stripe(conf);
255 			if (noblock && sh == NULL)
256 				break;
257 			if (!sh) {
258 				conf->inactive_blocked = 1;
259 				wait_event_lock_irq(conf->wait_for_stripe,
260 						    !list_empty(&conf->inactive_list) &&
261 						    (atomic_read(&conf->active_stripes)
262 						     < (conf->max_nr_stripes *3/4)
263 						     || !conf->inactive_blocked),
264 						    conf->device_lock,
265 						    unplug_slaves(conf->mddev)
266 					);
267 				conf->inactive_blocked = 0;
268 			} else
269 				init_stripe(sh, sector, pd_idx, disks);
270 		} else {
271 			if (atomic_read(&sh->count)) {
272 				if (!list_empty(&sh->lru))
273 					BUG();
274 			} else {
275 				if (!test_bit(STRIPE_HANDLE, &sh->state))
276 					atomic_inc(&conf->active_stripes);
277 				if (!list_empty(&sh->lru))
278 					list_del_init(&sh->lru);
279 			}
280 		}
281 	} while (sh == NULL);
282 
283 	if (sh)
284 		atomic_inc(&sh->count);
285 
286 	spin_unlock_irq(&conf->device_lock);
287 	return sh;
288 }
289 
290 static int grow_one_stripe(raid5_conf_t *conf)
291 {
292 	struct stripe_head *sh;
293 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
294 	if (!sh)
295 		return 0;
296 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
297 	sh->raid_conf = conf;
298 	spin_lock_init(&sh->lock);
299 
300 	if (grow_buffers(sh, conf->raid_disks)) {
301 		shrink_buffers(sh, conf->raid_disks);
302 		kmem_cache_free(conf->slab_cache, sh);
303 		return 0;
304 	}
305 	sh->disks = conf->raid_disks;
306 	/* we just created an active stripe so... */
307 	atomic_set(&sh->count, 1);
308 	atomic_inc(&conf->active_stripes);
309 	INIT_LIST_HEAD(&sh->lru);
310 	release_stripe(sh);
311 	return 1;
312 }
313 
314 static int grow_stripes(raid5_conf_t *conf, int num)
315 {
316 	kmem_cache_t *sc;
317 	int devs = conf->raid_disks;
318 
319 	sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
320 	sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
321 	conf->active_name = 0;
322 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
323 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
324 			       0, 0, NULL, NULL);
325 	if (!sc)
326 		return 1;
327 	conf->slab_cache = sc;
328 	conf->pool_size = devs;
329 	while (num--) {
330 		if (!grow_one_stripe(conf))
331 			return 1;
332 	}
333 	return 0;
334 }
335 
336 #ifdef CONFIG_MD_RAID5_RESHAPE
337 static int resize_stripes(raid5_conf_t *conf, int newsize)
338 {
339 	/* Make all the stripes able to hold 'newsize' devices.
340 	 * New slots in each stripe get 'page' set to a new page.
341 	 *
342 	 * This happens in stages:
343 	 * 1/ create a new kmem_cache and allocate the required number of
344 	 *    stripe_heads.
345 	 * 2/ gather all the old stripe_heads and tranfer the pages across
346 	 *    to the new stripe_heads.  This will have the side effect of
347 	 *    freezing the array as once all stripe_heads have been collected,
348 	 *    no IO will be possible.  Old stripe heads are freed once their
349 	 *    pages have been transferred over, and the old kmem_cache is
350 	 *    freed when all stripes are done.
351 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
352 	 *    we simple return a failre status - no need to clean anything up.
353 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
354 	 *    If this fails, we don't bother trying the shrink the
355 	 *    stripe_heads down again, we just leave them as they are.
356 	 *    As each stripe_head is processed the new one is released into
357 	 *    active service.
358 	 *
359 	 * Once step2 is started, we cannot afford to wait for a write,
360 	 * so we use GFP_NOIO allocations.
361 	 */
362 	struct stripe_head *osh, *nsh;
363 	LIST_HEAD(newstripes);
364 	struct disk_info *ndisks;
365 	int err = 0;
366 	kmem_cache_t *sc;
367 	int i;
368 
369 	if (newsize <= conf->pool_size)
370 		return 0; /* never bother to shrink */
371 
372 	/* Step 1 */
373 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
374 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
375 			       0, 0, NULL, NULL);
376 	if (!sc)
377 		return -ENOMEM;
378 
379 	for (i = conf->max_nr_stripes; i; i--) {
380 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
381 		if (!nsh)
382 			break;
383 
384 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
385 
386 		nsh->raid_conf = conf;
387 		spin_lock_init(&nsh->lock);
388 
389 		list_add(&nsh->lru, &newstripes);
390 	}
391 	if (i) {
392 		/* didn't get enough, give up */
393 		while (!list_empty(&newstripes)) {
394 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
395 			list_del(&nsh->lru);
396 			kmem_cache_free(sc, nsh);
397 		}
398 		kmem_cache_destroy(sc);
399 		return -ENOMEM;
400 	}
401 	/* Step 2 - Must use GFP_NOIO now.
402 	 * OK, we have enough stripes, start collecting inactive
403 	 * stripes and copying them over
404 	 */
405 	list_for_each_entry(nsh, &newstripes, lru) {
406 		spin_lock_irq(&conf->device_lock);
407 		wait_event_lock_irq(conf->wait_for_stripe,
408 				    !list_empty(&conf->inactive_list),
409 				    conf->device_lock,
410 				    unplug_slaves(conf->mddev)
411 			);
412 		osh = get_free_stripe(conf);
413 		spin_unlock_irq(&conf->device_lock);
414 		atomic_set(&nsh->count, 1);
415 		for(i=0; i<conf->pool_size; i++)
416 			nsh->dev[i].page = osh->dev[i].page;
417 		for( ; i<newsize; i++)
418 			nsh->dev[i].page = NULL;
419 		kmem_cache_free(conf->slab_cache, osh);
420 	}
421 	kmem_cache_destroy(conf->slab_cache);
422 
423 	/* Step 3.
424 	 * At this point, we are holding all the stripes so the array
425 	 * is completely stalled, so now is a good time to resize
426 	 * conf->disks.
427 	 */
428 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
429 	if (ndisks) {
430 		for (i=0; i<conf->raid_disks; i++)
431 			ndisks[i] = conf->disks[i];
432 		kfree(conf->disks);
433 		conf->disks = ndisks;
434 	} else
435 		err = -ENOMEM;
436 
437 	/* Step 4, return new stripes to service */
438 	while(!list_empty(&newstripes)) {
439 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
440 		list_del_init(&nsh->lru);
441 		for (i=conf->raid_disks; i < newsize; i++)
442 			if (nsh->dev[i].page == NULL) {
443 				struct page *p = alloc_page(GFP_NOIO);
444 				nsh->dev[i].page = p;
445 				if (!p)
446 					err = -ENOMEM;
447 			}
448 		release_stripe(nsh);
449 	}
450 	/* critical section pass, GFP_NOIO no longer needed */
451 
452 	conf->slab_cache = sc;
453 	conf->active_name = 1-conf->active_name;
454 	conf->pool_size = newsize;
455 	return err;
456 }
457 #endif
458 
459 static int drop_one_stripe(raid5_conf_t *conf)
460 {
461 	struct stripe_head *sh;
462 
463 	spin_lock_irq(&conf->device_lock);
464 	sh = get_free_stripe(conf);
465 	spin_unlock_irq(&conf->device_lock);
466 	if (!sh)
467 		return 0;
468 	if (atomic_read(&sh->count))
469 		BUG();
470 	shrink_buffers(sh, conf->pool_size);
471 	kmem_cache_free(conf->slab_cache, sh);
472 	atomic_dec(&conf->active_stripes);
473 	return 1;
474 }
475 
476 static void shrink_stripes(raid5_conf_t *conf)
477 {
478 	while (drop_one_stripe(conf))
479 		;
480 
481 	if (conf->slab_cache)
482 		kmem_cache_destroy(conf->slab_cache);
483 	conf->slab_cache = NULL;
484 }
485 
486 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
487 				   int error)
488 {
489  	struct stripe_head *sh = bi->bi_private;
490 	raid5_conf_t *conf = sh->raid_conf;
491 	int disks = sh->disks, i;
492 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
493 
494 	if (bi->bi_size)
495 		return 1;
496 
497 	for (i=0 ; i<disks; i++)
498 		if (bi == &sh->dev[i].req)
499 			break;
500 
501 	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
502 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
503 		uptodate);
504 	if (i == disks) {
505 		BUG();
506 		return 0;
507 	}
508 
509 	if (uptodate) {
510 #if 0
511 		struct bio *bio;
512 		unsigned long flags;
513 		spin_lock_irqsave(&conf->device_lock, flags);
514 		/* we can return a buffer if we bypassed the cache or
515 		 * if the top buffer is not in highmem.  If there are
516 		 * multiple buffers, leave the extra work to
517 		 * handle_stripe
518 		 */
519 		buffer = sh->bh_read[i];
520 		if (buffer &&
521 		    (!PageHighMem(buffer->b_page)
522 		     || buffer->b_page == bh->b_page )
523 			) {
524 			sh->bh_read[i] = buffer->b_reqnext;
525 			buffer->b_reqnext = NULL;
526 		} else
527 			buffer = NULL;
528 		spin_unlock_irqrestore(&conf->device_lock, flags);
529 		if (sh->bh_page[i]==bh->b_page)
530 			set_buffer_uptodate(bh);
531 		if (buffer) {
532 			if (buffer->b_page != bh->b_page)
533 				memcpy(buffer->b_data, bh->b_data, bh->b_size);
534 			buffer->b_end_io(buffer, 1);
535 		}
536 #else
537 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
538 #endif
539 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
540 			printk(KERN_INFO "raid5: read error corrected!!\n");
541 			clear_bit(R5_ReadError, &sh->dev[i].flags);
542 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
543 		}
544 		if (atomic_read(&conf->disks[i].rdev->read_errors))
545 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
546 	} else {
547 		int retry = 0;
548 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
549 		atomic_inc(&conf->disks[i].rdev->read_errors);
550 		if (conf->mddev->degraded)
551 			printk(KERN_WARNING "raid5: read error not correctable.\n");
552 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
553 			/* Oh, no!!! */
554 			printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
555 		else if (atomic_read(&conf->disks[i].rdev->read_errors)
556 			 > conf->max_nr_stripes)
557 			printk(KERN_WARNING
558 			       "raid5: Too many read errors, failing device.\n");
559 		else
560 			retry = 1;
561 		if (retry)
562 			set_bit(R5_ReadError, &sh->dev[i].flags);
563 		else {
564 			clear_bit(R5_ReadError, &sh->dev[i].flags);
565 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
566 			md_error(conf->mddev, conf->disks[i].rdev);
567 		}
568 	}
569 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
570 #if 0
571 	/* must restore b_page before unlocking buffer... */
572 	if (sh->bh_page[i] != bh->b_page) {
573 		bh->b_page = sh->bh_page[i];
574 		bh->b_data = page_address(bh->b_page);
575 		clear_buffer_uptodate(bh);
576 	}
577 #endif
578 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
579 	set_bit(STRIPE_HANDLE, &sh->state);
580 	release_stripe(sh);
581 	return 0;
582 }
583 
584 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
585 				    int error)
586 {
587  	struct stripe_head *sh = bi->bi_private;
588 	raid5_conf_t *conf = sh->raid_conf;
589 	int disks = sh->disks, i;
590 	unsigned long flags;
591 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
592 
593 	if (bi->bi_size)
594 		return 1;
595 
596 	for (i=0 ; i<disks; i++)
597 		if (bi == &sh->dev[i].req)
598 			break;
599 
600 	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
601 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
602 		uptodate);
603 	if (i == disks) {
604 		BUG();
605 		return 0;
606 	}
607 
608 	spin_lock_irqsave(&conf->device_lock, flags);
609 	if (!uptodate)
610 		md_error(conf->mddev, conf->disks[i].rdev);
611 
612 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
613 
614 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
615 	set_bit(STRIPE_HANDLE, &sh->state);
616 	__release_stripe(conf, sh);
617 	spin_unlock_irqrestore(&conf->device_lock, flags);
618 	return 0;
619 }
620 
621 
622 static sector_t compute_blocknr(struct stripe_head *sh, int i);
623 
624 static void raid5_build_block (struct stripe_head *sh, int i)
625 {
626 	struct r5dev *dev = &sh->dev[i];
627 
628 	bio_init(&dev->req);
629 	dev->req.bi_io_vec = &dev->vec;
630 	dev->req.bi_vcnt++;
631 	dev->req.bi_max_vecs++;
632 	dev->vec.bv_page = dev->page;
633 	dev->vec.bv_len = STRIPE_SIZE;
634 	dev->vec.bv_offset = 0;
635 
636 	dev->req.bi_sector = sh->sector;
637 	dev->req.bi_private = sh;
638 
639 	dev->flags = 0;
640 	if (i != sh->pd_idx)
641 		dev->sector = compute_blocknr(sh, i);
642 }
643 
644 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
645 {
646 	char b[BDEVNAME_SIZE];
647 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
648 	PRINTK("raid5: error called\n");
649 
650 	if (!test_bit(Faulty, &rdev->flags)) {
651 		mddev->sb_dirty = 1;
652 		if (test_bit(In_sync, &rdev->flags)) {
653 			conf->working_disks--;
654 			mddev->degraded++;
655 			conf->failed_disks++;
656 			clear_bit(In_sync, &rdev->flags);
657 			/*
658 			 * if recovery was running, make sure it aborts.
659 			 */
660 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
661 		}
662 		set_bit(Faulty, &rdev->flags);
663 		printk (KERN_ALERT
664 			"raid5: Disk failure on %s, disabling device."
665 			" Operation continuing on %d devices\n",
666 			bdevname(rdev->bdev,b), conf->working_disks);
667 	}
668 }
669 
670 /*
671  * Input: a 'big' sector number,
672  * Output: index of the data and parity disk, and the sector # in them.
673  */
674 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
675 			unsigned int data_disks, unsigned int * dd_idx,
676 			unsigned int * pd_idx, raid5_conf_t *conf)
677 {
678 	long stripe;
679 	unsigned long chunk_number;
680 	unsigned int chunk_offset;
681 	sector_t new_sector;
682 	int sectors_per_chunk = conf->chunk_size >> 9;
683 
684 	/* First compute the information on this sector */
685 
686 	/*
687 	 * Compute the chunk number and the sector offset inside the chunk
688 	 */
689 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
690 	chunk_number = r_sector;
691 	BUG_ON(r_sector != chunk_number);
692 
693 	/*
694 	 * Compute the stripe number
695 	 */
696 	stripe = chunk_number / data_disks;
697 
698 	/*
699 	 * Compute the data disk and parity disk indexes inside the stripe
700 	 */
701 	*dd_idx = chunk_number % data_disks;
702 
703 	/*
704 	 * Select the parity disk based on the user selected algorithm.
705 	 */
706 	if (conf->level == 4)
707 		*pd_idx = data_disks;
708 	else switch (conf->algorithm) {
709 		case ALGORITHM_LEFT_ASYMMETRIC:
710 			*pd_idx = data_disks - stripe % raid_disks;
711 			if (*dd_idx >= *pd_idx)
712 				(*dd_idx)++;
713 			break;
714 		case ALGORITHM_RIGHT_ASYMMETRIC:
715 			*pd_idx = stripe % raid_disks;
716 			if (*dd_idx >= *pd_idx)
717 				(*dd_idx)++;
718 			break;
719 		case ALGORITHM_LEFT_SYMMETRIC:
720 			*pd_idx = data_disks - stripe % raid_disks;
721 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
722 			break;
723 		case ALGORITHM_RIGHT_SYMMETRIC:
724 			*pd_idx = stripe % raid_disks;
725 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
726 			break;
727 		default:
728 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
729 				conf->algorithm);
730 	}
731 
732 	/*
733 	 * Finally, compute the new sector number
734 	 */
735 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
736 	return new_sector;
737 }
738 
739 
740 static sector_t compute_blocknr(struct stripe_head *sh, int i)
741 {
742 	raid5_conf_t *conf = sh->raid_conf;
743 	int raid_disks = sh->disks, data_disks = raid_disks - 1;
744 	sector_t new_sector = sh->sector, check;
745 	int sectors_per_chunk = conf->chunk_size >> 9;
746 	sector_t stripe;
747 	int chunk_offset;
748 	int chunk_number, dummy1, dummy2, dd_idx = i;
749 	sector_t r_sector;
750 
751 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
752 	stripe = new_sector;
753 	BUG_ON(new_sector != stripe);
754 
755 
756 	switch (conf->algorithm) {
757 		case ALGORITHM_LEFT_ASYMMETRIC:
758 		case ALGORITHM_RIGHT_ASYMMETRIC:
759 			if (i > sh->pd_idx)
760 				i--;
761 			break;
762 		case ALGORITHM_LEFT_SYMMETRIC:
763 		case ALGORITHM_RIGHT_SYMMETRIC:
764 			if (i < sh->pd_idx)
765 				i += raid_disks;
766 			i -= (sh->pd_idx + 1);
767 			break;
768 		default:
769 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
770 				conf->algorithm);
771 	}
772 
773 	chunk_number = stripe * data_disks + i;
774 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
775 
776 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
777 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
778 		printk(KERN_ERR "compute_blocknr: map not correct\n");
779 		return 0;
780 	}
781 	return r_sector;
782 }
783 
784 
785 
786 /*
787  * Copy data between a page in the stripe cache, and a bio.
788  * There are no alignment or size guarantees between the page or the
789  * bio except that there is some overlap.
790  * All iovecs in the bio must be considered.
791  */
792 static void copy_data(int frombio, struct bio *bio,
793 		     struct page *page,
794 		     sector_t sector)
795 {
796 	char *pa = page_address(page);
797 	struct bio_vec *bvl;
798 	int i;
799 	int page_offset;
800 
801 	if (bio->bi_sector >= sector)
802 		page_offset = (signed)(bio->bi_sector - sector) * 512;
803 	else
804 		page_offset = (signed)(sector - bio->bi_sector) * -512;
805 	bio_for_each_segment(bvl, bio, i) {
806 		int len = bio_iovec_idx(bio,i)->bv_len;
807 		int clen;
808 		int b_offset = 0;
809 
810 		if (page_offset < 0) {
811 			b_offset = -page_offset;
812 			page_offset += b_offset;
813 			len -= b_offset;
814 		}
815 
816 		if (len > 0 && page_offset + len > STRIPE_SIZE)
817 			clen = STRIPE_SIZE - page_offset;
818 		else clen = len;
819 
820 		if (clen > 0) {
821 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
822 			if (frombio)
823 				memcpy(pa+page_offset, ba+b_offset, clen);
824 			else
825 				memcpy(ba+b_offset, pa+page_offset, clen);
826 			__bio_kunmap_atomic(ba, KM_USER0);
827 		}
828 		if (clen < len) /* hit end of page */
829 			break;
830 		page_offset +=  len;
831 	}
832 }
833 
834 #define check_xor() 	do { 						\
835 			   if (count == MAX_XOR_BLOCKS) {		\
836 				xor_block(count, STRIPE_SIZE, ptr);	\
837 				count = 1;				\
838 			   }						\
839 			} while(0)
840 
841 
842 static void compute_block(struct stripe_head *sh, int dd_idx)
843 {
844 	int i, count, disks = sh->disks;
845 	void *ptr[MAX_XOR_BLOCKS], *p;
846 
847 	PRINTK("compute_block, stripe %llu, idx %d\n",
848 		(unsigned long long)sh->sector, dd_idx);
849 
850 	ptr[0] = page_address(sh->dev[dd_idx].page);
851 	memset(ptr[0], 0, STRIPE_SIZE);
852 	count = 1;
853 	for (i = disks ; i--; ) {
854 		if (i == dd_idx)
855 			continue;
856 		p = page_address(sh->dev[i].page);
857 		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
858 			ptr[count++] = p;
859 		else
860 			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
861 				" not present\n", dd_idx,
862 				(unsigned long long)sh->sector, i);
863 
864 		check_xor();
865 	}
866 	if (count != 1)
867 		xor_block(count, STRIPE_SIZE, ptr);
868 	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
869 }
870 
871 static void compute_parity(struct stripe_head *sh, int method)
872 {
873 	raid5_conf_t *conf = sh->raid_conf;
874 	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
875 	void *ptr[MAX_XOR_BLOCKS];
876 	struct bio *chosen;
877 
878 	PRINTK("compute_parity, stripe %llu, method %d\n",
879 		(unsigned long long)sh->sector, method);
880 
881 	count = 1;
882 	ptr[0] = page_address(sh->dev[pd_idx].page);
883 	switch(method) {
884 	case READ_MODIFY_WRITE:
885 		if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
886 			BUG();
887 		for (i=disks ; i-- ;) {
888 			if (i==pd_idx)
889 				continue;
890 			if (sh->dev[i].towrite &&
891 			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
892 				ptr[count++] = page_address(sh->dev[i].page);
893 				chosen = sh->dev[i].towrite;
894 				sh->dev[i].towrite = NULL;
895 
896 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
897 					wake_up(&conf->wait_for_overlap);
898 
899 				if (sh->dev[i].written) BUG();
900 				sh->dev[i].written = chosen;
901 				check_xor();
902 			}
903 		}
904 		break;
905 	case RECONSTRUCT_WRITE:
906 		memset(ptr[0], 0, STRIPE_SIZE);
907 		for (i= disks; i-- ;)
908 			if (i!=pd_idx && sh->dev[i].towrite) {
909 				chosen = sh->dev[i].towrite;
910 				sh->dev[i].towrite = NULL;
911 
912 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
913 					wake_up(&conf->wait_for_overlap);
914 
915 				if (sh->dev[i].written) BUG();
916 				sh->dev[i].written = chosen;
917 			}
918 		break;
919 	case CHECK_PARITY:
920 		break;
921 	}
922 	if (count>1) {
923 		xor_block(count, STRIPE_SIZE, ptr);
924 		count = 1;
925 	}
926 
927 	for (i = disks; i--;)
928 		if (sh->dev[i].written) {
929 			sector_t sector = sh->dev[i].sector;
930 			struct bio *wbi = sh->dev[i].written;
931 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
932 				copy_data(1, wbi, sh->dev[i].page, sector);
933 				wbi = r5_next_bio(wbi, sector);
934 			}
935 
936 			set_bit(R5_LOCKED, &sh->dev[i].flags);
937 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
938 		}
939 
940 	switch(method) {
941 	case RECONSTRUCT_WRITE:
942 	case CHECK_PARITY:
943 		for (i=disks; i--;)
944 			if (i != pd_idx) {
945 				ptr[count++] = page_address(sh->dev[i].page);
946 				check_xor();
947 			}
948 		break;
949 	case READ_MODIFY_WRITE:
950 		for (i = disks; i--;)
951 			if (sh->dev[i].written) {
952 				ptr[count++] = page_address(sh->dev[i].page);
953 				check_xor();
954 			}
955 	}
956 	if (count != 1)
957 		xor_block(count, STRIPE_SIZE, ptr);
958 
959 	if (method != CHECK_PARITY) {
960 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
961 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
962 	} else
963 		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
964 }
965 
966 /*
967  * Each stripe/dev can have one or more bion attached.
968  * toread/towrite point to the first in a chain.
969  * The bi_next chain must be in order.
970  */
971 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
972 {
973 	struct bio **bip;
974 	raid5_conf_t *conf = sh->raid_conf;
975 	int firstwrite=0;
976 
977 	PRINTK("adding bh b#%llu to stripe s#%llu\n",
978 		(unsigned long long)bi->bi_sector,
979 		(unsigned long long)sh->sector);
980 
981 
982 	spin_lock(&sh->lock);
983 	spin_lock_irq(&conf->device_lock);
984 	if (forwrite) {
985 		bip = &sh->dev[dd_idx].towrite;
986 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
987 			firstwrite = 1;
988 	} else
989 		bip = &sh->dev[dd_idx].toread;
990 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
991 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
992 			goto overlap;
993 		bip = & (*bip)->bi_next;
994 	}
995 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
996 		goto overlap;
997 
998 	if (*bip && bi->bi_next && (*bip) != bi->bi_next)
999 		BUG();
1000 	if (*bip)
1001 		bi->bi_next = *bip;
1002 	*bip = bi;
1003 	bi->bi_phys_segments ++;
1004 	spin_unlock_irq(&conf->device_lock);
1005 	spin_unlock(&sh->lock);
1006 
1007 	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1008 		(unsigned long long)bi->bi_sector,
1009 		(unsigned long long)sh->sector, dd_idx);
1010 
1011 	if (conf->mddev->bitmap && firstwrite) {
1012 		sh->bm_seq = conf->seq_write;
1013 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1014 				  STRIPE_SECTORS, 0);
1015 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1016 	}
1017 
1018 	if (forwrite) {
1019 		/* check if page is covered */
1020 		sector_t sector = sh->dev[dd_idx].sector;
1021 		for (bi=sh->dev[dd_idx].towrite;
1022 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1023 			     bi && bi->bi_sector <= sector;
1024 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1025 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1026 				sector = bi->bi_sector + (bi->bi_size>>9);
1027 		}
1028 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1029 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1030 	}
1031 	return 1;
1032 
1033  overlap:
1034 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1035 	spin_unlock_irq(&conf->device_lock);
1036 	spin_unlock(&sh->lock);
1037 	return 0;
1038 }
1039 
1040 static void end_reshape(raid5_conf_t *conf);
1041 
1042 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1043 {
1044 	int sectors_per_chunk = conf->chunk_size >> 9;
1045 	sector_t x = stripe;
1046 	int pd_idx, dd_idx;
1047 	int chunk_offset = sector_div(x, sectors_per_chunk);
1048 	stripe = x;
1049 	raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1050 			     + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1051 	return pd_idx;
1052 }
1053 
1054 
1055 /*
1056  * handle_stripe - do things to a stripe.
1057  *
1058  * We lock the stripe and then examine the state of various bits
1059  * to see what needs to be done.
1060  * Possible results:
1061  *    return some read request which now have data
1062  *    return some write requests which are safely on disc
1063  *    schedule a read on some buffers
1064  *    schedule a write of some buffers
1065  *    return confirmation of parity correctness
1066  *
1067  * Parity calculations are done inside the stripe lock
1068  * buffers are taken off read_list or write_list, and bh_cache buffers
1069  * get BH_Lock set before the stripe lock is released.
1070  *
1071  */
1072 
1073 static void handle_stripe(struct stripe_head *sh)
1074 {
1075 	raid5_conf_t *conf = sh->raid_conf;
1076 	int disks = sh->disks;
1077 	struct bio *return_bi= NULL;
1078 	struct bio *bi;
1079 	int i;
1080 	int syncing, expanding, expanded;
1081 	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1082 	int non_overwrite = 0;
1083 	int failed_num=0;
1084 	struct r5dev *dev;
1085 
1086 	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1087 		(unsigned long long)sh->sector, atomic_read(&sh->count),
1088 		sh->pd_idx);
1089 
1090 	spin_lock(&sh->lock);
1091 	clear_bit(STRIPE_HANDLE, &sh->state);
1092 	clear_bit(STRIPE_DELAYED, &sh->state);
1093 
1094 	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1095 	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1096 	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1097 	/* Now to look around and see what can be done */
1098 
1099 	rcu_read_lock();
1100 	for (i=disks; i--; ) {
1101 		mdk_rdev_t *rdev;
1102 		dev = &sh->dev[i];
1103 		clear_bit(R5_Insync, &dev->flags);
1104 
1105 		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1106 			i, dev->flags, dev->toread, dev->towrite, dev->written);
1107 		/* maybe we can reply to a read */
1108 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1109 			struct bio *rbi, *rbi2;
1110 			PRINTK("Return read for disc %d\n", i);
1111 			spin_lock_irq(&conf->device_lock);
1112 			rbi = dev->toread;
1113 			dev->toread = NULL;
1114 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1115 				wake_up(&conf->wait_for_overlap);
1116 			spin_unlock_irq(&conf->device_lock);
1117 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1118 				copy_data(0, rbi, dev->page, dev->sector);
1119 				rbi2 = r5_next_bio(rbi, dev->sector);
1120 				spin_lock_irq(&conf->device_lock);
1121 				if (--rbi->bi_phys_segments == 0) {
1122 					rbi->bi_next = return_bi;
1123 					return_bi = rbi;
1124 				}
1125 				spin_unlock_irq(&conf->device_lock);
1126 				rbi = rbi2;
1127 			}
1128 		}
1129 
1130 		/* now count some things */
1131 		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1132 		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1133 
1134 
1135 		if (dev->toread) to_read++;
1136 		if (dev->towrite) {
1137 			to_write++;
1138 			if (!test_bit(R5_OVERWRITE, &dev->flags))
1139 				non_overwrite++;
1140 		}
1141 		if (dev->written) written++;
1142 		rdev = rcu_dereference(conf->disks[i].rdev);
1143 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1144 			/* The ReadError flag will just be confusing now */
1145 			clear_bit(R5_ReadError, &dev->flags);
1146 			clear_bit(R5_ReWrite, &dev->flags);
1147 		}
1148 		if (!rdev || !test_bit(In_sync, &rdev->flags)
1149 		    || test_bit(R5_ReadError, &dev->flags)) {
1150 			failed++;
1151 			failed_num = i;
1152 		} else
1153 			set_bit(R5_Insync, &dev->flags);
1154 	}
1155 	rcu_read_unlock();
1156 	PRINTK("locked=%d uptodate=%d to_read=%d"
1157 		" to_write=%d failed=%d failed_num=%d\n",
1158 		locked, uptodate, to_read, to_write, failed, failed_num);
1159 	/* check if the array has lost two devices and, if so, some requests might
1160 	 * need to be failed
1161 	 */
1162 	if (failed > 1 && to_read+to_write+written) {
1163 		for (i=disks; i--; ) {
1164 			int bitmap_end = 0;
1165 
1166 			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1167 				mdk_rdev_t *rdev;
1168 				rcu_read_lock();
1169 				rdev = rcu_dereference(conf->disks[i].rdev);
1170 				if (rdev && test_bit(In_sync, &rdev->flags))
1171 					/* multiple read failures in one stripe */
1172 					md_error(conf->mddev, rdev);
1173 				rcu_read_unlock();
1174 			}
1175 
1176 			spin_lock_irq(&conf->device_lock);
1177 			/* fail all writes first */
1178 			bi = sh->dev[i].towrite;
1179 			sh->dev[i].towrite = NULL;
1180 			if (bi) { to_write--; bitmap_end = 1; }
1181 
1182 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1183 				wake_up(&conf->wait_for_overlap);
1184 
1185 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1186 				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1187 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1188 				if (--bi->bi_phys_segments == 0) {
1189 					md_write_end(conf->mddev);
1190 					bi->bi_next = return_bi;
1191 					return_bi = bi;
1192 				}
1193 				bi = nextbi;
1194 			}
1195 			/* and fail all 'written' */
1196 			bi = sh->dev[i].written;
1197 			sh->dev[i].written = NULL;
1198 			if (bi) bitmap_end = 1;
1199 			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1200 				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1201 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1202 				if (--bi->bi_phys_segments == 0) {
1203 					md_write_end(conf->mddev);
1204 					bi->bi_next = return_bi;
1205 					return_bi = bi;
1206 				}
1207 				bi = bi2;
1208 			}
1209 
1210 			/* fail any reads if this device is non-operational */
1211 			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1212 			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1213 				bi = sh->dev[i].toread;
1214 				sh->dev[i].toread = NULL;
1215 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1216 					wake_up(&conf->wait_for_overlap);
1217 				if (bi) to_read--;
1218 				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1219 					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1220 					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1221 					if (--bi->bi_phys_segments == 0) {
1222 						bi->bi_next = return_bi;
1223 						return_bi = bi;
1224 					}
1225 					bi = nextbi;
1226 				}
1227 			}
1228 			spin_unlock_irq(&conf->device_lock);
1229 			if (bitmap_end)
1230 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1231 						STRIPE_SECTORS, 0, 0);
1232 		}
1233 	}
1234 	if (failed > 1 && syncing) {
1235 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1236 		clear_bit(STRIPE_SYNCING, &sh->state);
1237 		syncing = 0;
1238 	}
1239 
1240 	/* might be able to return some write requests if the parity block
1241 	 * is safe, or on a failed drive
1242 	 */
1243 	dev = &sh->dev[sh->pd_idx];
1244 	if ( written &&
1245 	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1246 		test_bit(R5_UPTODATE, &dev->flags))
1247 	       || (failed == 1 && failed_num == sh->pd_idx))
1248 	    ) {
1249 	    /* any written block on an uptodate or failed drive can be returned.
1250 	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1251 	     * never LOCKED, so we don't need to test 'failed' directly.
1252 	     */
1253 	    for (i=disks; i--; )
1254 		if (sh->dev[i].written) {
1255 		    dev = &sh->dev[i];
1256 		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1257 			 test_bit(R5_UPTODATE, &dev->flags) ) {
1258 			/* We can return any write requests */
1259 			    struct bio *wbi, *wbi2;
1260 			    int bitmap_end = 0;
1261 			    PRINTK("Return write for disc %d\n", i);
1262 			    spin_lock_irq(&conf->device_lock);
1263 			    wbi = dev->written;
1264 			    dev->written = NULL;
1265 			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1266 				    wbi2 = r5_next_bio(wbi, dev->sector);
1267 				    if (--wbi->bi_phys_segments == 0) {
1268 					    md_write_end(conf->mddev);
1269 					    wbi->bi_next = return_bi;
1270 					    return_bi = wbi;
1271 				    }
1272 				    wbi = wbi2;
1273 			    }
1274 			    if (dev->towrite == NULL)
1275 				    bitmap_end = 1;
1276 			    spin_unlock_irq(&conf->device_lock);
1277 			    if (bitmap_end)
1278 				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1279 						    STRIPE_SECTORS,
1280 						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1281 		    }
1282 		}
1283 	}
1284 
1285 	/* Now we might consider reading some blocks, either to check/generate
1286 	 * parity, or to satisfy requests
1287 	 * or to load a block that is being partially written.
1288 	 */
1289 	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1290 		for (i=disks; i--;) {
1291 			dev = &sh->dev[i];
1292 			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1293 			    (dev->toread ||
1294 			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1295 			     syncing ||
1296 			     expanding ||
1297 			     (failed && (sh->dev[failed_num].toread ||
1298 					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1299 				    )
1300 				) {
1301 				/* we would like to get this block, possibly
1302 				 * by computing it, but we might not be able to
1303 				 */
1304 				if (uptodate == disks-1) {
1305 					PRINTK("Computing block %d\n", i);
1306 					compute_block(sh, i);
1307 					uptodate++;
1308 				} else if (test_bit(R5_Insync, &dev->flags)) {
1309 					set_bit(R5_LOCKED, &dev->flags);
1310 					set_bit(R5_Wantread, &dev->flags);
1311 #if 0
1312 					/* if I am just reading this block and we don't have
1313 					   a failed drive, or any pending writes then sidestep the cache */
1314 					if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1315 					    ! syncing && !failed && !to_write) {
1316 						sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1317 						sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1318 					}
1319 #endif
1320 					locked++;
1321 					PRINTK("Reading block %d (sync=%d)\n",
1322 						i, syncing);
1323 				}
1324 			}
1325 		}
1326 		set_bit(STRIPE_HANDLE, &sh->state);
1327 	}
1328 
1329 	/* now to consider writing and what else, if anything should be read */
1330 	if (to_write) {
1331 		int rmw=0, rcw=0;
1332 		for (i=disks ; i--;) {
1333 			/* would I have to read this buffer for read_modify_write */
1334 			dev = &sh->dev[i];
1335 			if ((dev->towrite || i == sh->pd_idx) &&
1336 			    (!test_bit(R5_LOCKED, &dev->flags)
1337 #if 0
1338 || sh->bh_page[i]!=bh->b_page
1339 #endif
1340 				    ) &&
1341 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1342 				if (test_bit(R5_Insync, &dev->flags)
1343 /*				    && !(!mddev->insync && i == sh->pd_idx) */
1344 					)
1345 					rmw++;
1346 				else rmw += 2*disks;  /* cannot read it */
1347 			}
1348 			/* Would I have to read this buffer for reconstruct_write */
1349 			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1350 			    (!test_bit(R5_LOCKED, &dev->flags)
1351 #if 0
1352 || sh->bh_page[i] != bh->b_page
1353 #endif
1354 				    ) &&
1355 			    !test_bit(R5_UPTODATE, &dev->flags)) {
1356 				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1357 				else rcw += 2*disks;
1358 			}
1359 		}
1360 		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1361 			(unsigned long long)sh->sector, rmw, rcw);
1362 		set_bit(STRIPE_HANDLE, &sh->state);
1363 		if (rmw < rcw && rmw > 0)
1364 			/* prefer read-modify-write, but need to get some data */
1365 			for (i=disks; i--;) {
1366 				dev = &sh->dev[i];
1367 				if ((dev->towrite || i == sh->pd_idx) &&
1368 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1369 				    test_bit(R5_Insync, &dev->flags)) {
1370 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1371 					{
1372 						PRINTK("Read_old block %d for r-m-w\n", i);
1373 						set_bit(R5_LOCKED, &dev->flags);
1374 						set_bit(R5_Wantread, &dev->flags);
1375 						locked++;
1376 					} else {
1377 						set_bit(STRIPE_DELAYED, &sh->state);
1378 						set_bit(STRIPE_HANDLE, &sh->state);
1379 					}
1380 				}
1381 			}
1382 		if (rcw <= rmw && rcw > 0)
1383 			/* want reconstruct write, but need to get some data */
1384 			for (i=disks; i--;) {
1385 				dev = &sh->dev[i];
1386 				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1387 				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1388 				    test_bit(R5_Insync, &dev->flags)) {
1389 					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1390 					{
1391 						PRINTK("Read_old block %d for Reconstruct\n", i);
1392 						set_bit(R5_LOCKED, &dev->flags);
1393 						set_bit(R5_Wantread, &dev->flags);
1394 						locked++;
1395 					} else {
1396 						set_bit(STRIPE_DELAYED, &sh->state);
1397 						set_bit(STRIPE_HANDLE, &sh->state);
1398 					}
1399 				}
1400 			}
1401 		/* now if nothing is locked, and if we have enough data, we can start a write request */
1402 		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1403 		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1404 			PRINTK("Computing parity...\n");
1405 			compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1406 			/* now every locked buffer is ready to be written */
1407 			for (i=disks; i--;)
1408 				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1409 					PRINTK("Writing block %d\n", i);
1410 					locked++;
1411 					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1412 					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1413 					    || (i==sh->pd_idx && failed == 0))
1414 						set_bit(STRIPE_INSYNC, &sh->state);
1415 				}
1416 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1417 				atomic_dec(&conf->preread_active_stripes);
1418 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1419 					md_wakeup_thread(conf->mddev->thread);
1420 			}
1421 		}
1422 	}
1423 
1424 	/* maybe we need to check and possibly fix the parity for this stripe
1425 	 * Any reads will already have been scheduled, so we just see if enough data
1426 	 * is available
1427 	 */
1428 	if (syncing && locked == 0 &&
1429 	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1430 		set_bit(STRIPE_HANDLE, &sh->state);
1431 		if (failed == 0) {
1432 			char *pagea;
1433 			if (uptodate != disks)
1434 				BUG();
1435 			compute_parity(sh, CHECK_PARITY);
1436 			uptodate--;
1437 			pagea = page_address(sh->dev[sh->pd_idx].page);
1438 			if ((*(u32*)pagea) == 0 &&
1439 			    !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
1440 				/* parity is correct (on disc, not in buffer any more) */
1441 				set_bit(STRIPE_INSYNC, &sh->state);
1442 			} else {
1443 				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1444 				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1445 					/* don't try to repair!! */
1446 					set_bit(STRIPE_INSYNC, &sh->state);
1447 				else {
1448 					compute_block(sh, sh->pd_idx);
1449 					uptodate++;
1450 				}
1451 			}
1452 		}
1453 		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1454 			/* either failed parity check, or recovery is happening */
1455 			if (failed==0)
1456 				failed_num = sh->pd_idx;
1457 			dev = &sh->dev[failed_num];
1458 			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1459 			BUG_ON(uptodate != disks);
1460 
1461 			set_bit(R5_LOCKED, &dev->flags);
1462 			set_bit(R5_Wantwrite, &dev->flags);
1463 			clear_bit(STRIPE_DEGRADED, &sh->state);
1464 			locked++;
1465 			set_bit(STRIPE_INSYNC, &sh->state);
1466 		}
1467 	}
1468 	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1469 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1470 		clear_bit(STRIPE_SYNCING, &sh->state);
1471 	}
1472 
1473 	/* If the failed drive is just a ReadError, then we might need to progress
1474 	 * the repair/check process
1475 	 */
1476 	if (failed == 1 && ! conf->mddev->ro &&
1477 	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1478 	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1479 	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1480 		) {
1481 		dev = &sh->dev[failed_num];
1482 		if (!test_bit(R5_ReWrite, &dev->flags)) {
1483 			set_bit(R5_Wantwrite, &dev->flags);
1484 			set_bit(R5_ReWrite, &dev->flags);
1485 			set_bit(R5_LOCKED, &dev->flags);
1486 			locked++;
1487 		} else {
1488 			/* let's read it back */
1489 			set_bit(R5_Wantread, &dev->flags);
1490 			set_bit(R5_LOCKED, &dev->flags);
1491 			locked++;
1492 		}
1493 	}
1494 
1495 	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1496 		/* Need to write out all blocks after computing parity */
1497 		sh->disks = conf->raid_disks;
1498 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1499 		compute_parity(sh, RECONSTRUCT_WRITE);
1500 		for (i= conf->raid_disks; i--;) {
1501 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1502 			locked++;
1503 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1504 		}
1505 		clear_bit(STRIPE_EXPANDING, &sh->state);
1506 	} else if (expanded) {
1507 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1508 		atomic_dec(&conf->reshape_stripes);
1509 		wake_up(&conf->wait_for_overlap);
1510 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1511 	}
1512 
1513 	if (expanding && locked == 0) {
1514 		/* We have read all the blocks in this stripe and now we need to
1515 		 * copy some of them into a target stripe for expand.
1516 		 */
1517 		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1518 		for (i=0; i< sh->disks; i++)
1519 			if (i != sh->pd_idx) {
1520 				int dd_idx, pd_idx, j;
1521 				struct stripe_head *sh2;
1522 
1523 				sector_t bn = compute_blocknr(sh, i);
1524 				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1525 								  conf->raid_disks-1,
1526 								  &dd_idx, &pd_idx, conf);
1527 				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1528 				if (sh2 == NULL)
1529 					/* so far only the early blocks of this stripe
1530 					 * have been requested.  When later blocks
1531 					 * get requested, we will try again
1532 					 */
1533 					continue;
1534 				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1535 				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1536 					/* must have already done this block */
1537 					release_stripe(sh2);
1538 					continue;
1539 				}
1540 				memcpy(page_address(sh2->dev[dd_idx].page),
1541 				       page_address(sh->dev[i].page),
1542 				       STRIPE_SIZE);
1543 				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1544 				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1545 				for (j=0; j<conf->raid_disks; j++)
1546 					if (j != sh2->pd_idx &&
1547 					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1548 						break;
1549 				if (j == conf->raid_disks) {
1550 					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1551 					set_bit(STRIPE_HANDLE, &sh2->state);
1552 				}
1553 				release_stripe(sh2);
1554 			}
1555 	}
1556 
1557 	spin_unlock(&sh->lock);
1558 
1559 	while ((bi=return_bi)) {
1560 		int bytes = bi->bi_size;
1561 
1562 		return_bi = bi->bi_next;
1563 		bi->bi_next = NULL;
1564 		bi->bi_size = 0;
1565 		bi->bi_end_io(bi, bytes, 0);
1566 	}
1567 	for (i=disks; i-- ;) {
1568 		int rw;
1569 		struct bio *bi;
1570 		mdk_rdev_t *rdev;
1571 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1572 			rw = 1;
1573 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1574 			rw = 0;
1575 		else
1576 			continue;
1577 
1578 		bi = &sh->dev[i].req;
1579 
1580 		bi->bi_rw = rw;
1581 		if (rw)
1582 			bi->bi_end_io = raid5_end_write_request;
1583 		else
1584 			bi->bi_end_io = raid5_end_read_request;
1585 
1586 		rcu_read_lock();
1587 		rdev = rcu_dereference(conf->disks[i].rdev);
1588 		if (rdev && test_bit(Faulty, &rdev->flags))
1589 			rdev = NULL;
1590 		if (rdev)
1591 			atomic_inc(&rdev->nr_pending);
1592 		rcu_read_unlock();
1593 
1594 		if (rdev) {
1595 			if (syncing || expanding || expanded)
1596 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1597 
1598 			bi->bi_bdev = rdev->bdev;
1599 			PRINTK("for %llu schedule op %ld on disc %d\n",
1600 				(unsigned long long)sh->sector, bi->bi_rw, i);
1601 			atomic_inc(&sh->count);
1602 			bi->bi_sector = sh->sector + rdev->data_offset;
1603 			bi->bi_flags = 1 << BIO_UPTODATE;
1604 			bi->bi_vcnt = 1;
1605 			bi->bi_max_vecs = 1;
1606 			bi->bi_idx = 0;
1607 			bi->bi_io_vec = &sh->dev[i].vec;
1608 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1609 			bi->bi_io_vec[0].bv_offset = 0;
1610 			bi->bi_size = STRIPE_SIZE;
1611 			bi->bi_next = NULL;
1612 			if (rw == WRITE &&
1613 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1614 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1615 			generic_make_request(bi);
1616 		} else {
1617 			if (rw == 1)
1618 				set_bit(STRIPE_DEGRADED, &sh->state);
1619 			PRINTK("skip op %ld on disc %d for sector %llu\n",
1620 				bi->bi_rw, i, (unsigned long long)sh->sector);
1621 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1622 			set_bit(STRIPE_HANDLE, &sh->state);
1623 		}
1624 	}
1625 }
1626 
1627 static void raid5_activate_delayed(raid5_conf_t *conf)
1628 {
1629 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
1630 		while (!list_empty(&conf->delayed_list)) {
1631 			struct list_head *l = conf->delayed_list.next;
1632 			struct stripe_head *sh;
1633 			sh = list_entry(l, struct stripe_head, lru);
1634 			list_del_init(l);
1635 			clear_bit(STRIPE_DELAYED, &sh->state);
1636 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1637 				atomic_inc(&conf->preread_active_stripes);
1638 			list_add_tail(&sh->lru, &conf->handle_list);
1639 		}
1640 	}
1641 }
1642 
1643 static void activate_bit_delay(raid5_conf_t *conf)
1644 {
1645 	/* device_lock is held */
1646 	struct list_head head;
1647 	list_add(&head, &conf->bitmap_list);
1648 	list_del_init(&conf->bitmap_list);
1649 	while (!list_empty(&head)) {
1650 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
1651 		list_del_init(&sh->lru);
1652 		atomic_inc(&sh->count);
1653 		__release_stripe(conf, sh);
1654 	}
1655 }
1656 
1657 static void unplug_slaves(mddev_t *mddev)
1658 {
1659 	raid5_conf_t *conf = mddev_to_conf(mddev);
1660 	int i;
1661 
1662 	rcu_read_lock();
1663 	for (i=0; i<mddev->raid_disks; i++) {
1664 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1665 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
1666 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
1667 
1668 			atomic_inc(&rdev->nr_pending);
1669 			rcu_read_unlock();
1670 
1671 			if (r_queue->unplug_fn)
1672 				r_queue->unplug_fn(r_queue);
1673 
1674 			rdev_dec_pending(rdev, mddev);
1675 			rcu_read_lock();
1676 		}
1677 	}
1678 	rcu_read_unlock();
1679 }
1680 
1681 static void raid5_unplug_device(request_queue_t *q)
1682 {
1683 	mddev_t *mddev = q->queuedata;
1684 	raid5_conf_t *conf = mddev_to_conf(mddev);
1685 	unsigned long flags;
1686 
1687 	spin_lock_irqsave(&conf->device_lock, flags);
1688 
1689 	if (blk_remove_plug(q)) {
1690 		conf->seq_flush++;
1691 		raid5_activate_delayed(conf);
1692 	}
1693 	md_wakeup_thread(mddev->thread);
1694 
1695 	spin_unlock_irqrestore(&conf->device_lock, flags);
1696 
1697 	unplug_slaves(mddev);
1698 }
1699 
1700 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
1701 			     sector_t *error_sector)
1702 {
1703 	mddev_t *mddev = q->queuedata;
1704 	raid5_conf_t *conf = mddev_to_conf(mddev);
1705 	int i, ret = 0;
1706 
1707 	rcu_read_lock();
1708 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
1709 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
1710 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
1711 			struct block_device *bdev = rdev->bdev;
1712 			request_queue_t *r_queue = bdev_get_queue(bdev);
1713 
1714 			if (!r_queue->issue_flush_fn)
1715 				ret = -EOPNOTSUPP;
1716 			else {
1717 				atomic_inc(&rdev->nr_pending);
1718 				rcu_read_unlock();
1719 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
1720 							      error_sector);
1721 				rdev_dec_pending(rdev, mddev);
1722 				rcu_read_lock();
1723 			}
1724 		}
1725 	}
1726 	rcu_read_unlock();
1727 	return ret;
1728 }
1729 
1730 static inline void raid5_plug_device(raid5_conf_t *conf)
1731 {
1732 	spin_lock_irq(&conf->device_lock);
1733 	blk_plug_device(conf->mddev->queue);
1734 	spin_unlock_irq(&conf->device_lock);
1735 }
1736 
1737 static int make_request(request_queue_t *q, struct bio * bi)
1738 {
1739 	mddev_t *mddev = q->queuedata;
1740 	raid5_conf_t *conf = mddev_to_conf(mddev);
1741 	unsigned int dd_idx, pd_idx;
1742 	sector_t new_sector;
1743 	sector_t logical_sector, last_sector;
1744 	struct stripe_head *sh;
1745 	const int rw = bio_data_dir(bi);
1746 	int remaining;
1747 
1748 	if (unlikely(bio_barrier(bi))) {
1749 		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
1750 		return 0;
1751 	}
1752 
1753 	md_write_start(mddev, bi);
1754 
1755 	disk_stat_inc(mddev->gendisk, ios[rw]);
1756 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
1757 
1758 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
1759 	last_sector = bi->bi_sector + (bi->bi_size>>9);
1760 	bi->bi_next = NULL;
1761 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
1762 
1763 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
1764 		DEFINE_WAIT(w);
1765 		int disks;
1766 
1767 	retry:
1768 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
1769 		if (likely(conf->expand_progress == MaxSector))
1770 			disks = conf->raid_disks;
1771 		else {
1772 			/* spinlock is needed as expand_progress may be
1773 			 * 64bit on a 32bit platform, and so it might be
1774 			 * possible to see a half-updated value
1775 			 * Ofcourse expand_progress could change after
1776 			 * the lock is dropped, so once we get a reference
1777 			 * to the stripe that we think it is, we will have
1778 			 * to check again.
1779 			 */
1780 			spin_lock_irq(&conf->device_lock);
1781 			disks = conf->raid_disks;
1782 			if (logical_sector >= conf->expand_progress)
1783 				disks = conf->previous_raid_disks;
1784 			else {
1785 				if (logical_sector >= conf->expand_lo) {
1786 					spin_unlock_irq(&conf->device_lock);
1787 					schedule();
1788 					goto retry;
1789 				}
1790 			}
1791 			spin_unlock_irq(&conf->device_lock);
1792 		}
1793  		new_sector = raid5_compute_sector(logical_sector, disks, disks - 1,
1794 						  &dd_idx, &pd_idx, conf);
1795 		PRINTK("raid5: make_request, sector %llu logical %llu\n",
1796 			(unsigned long long)new_sector,
1797 			(unsigned long long)logical_sector);
1798 
1799 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
1800 		if (sh) {
1801 			if (unlikely(conf->expand_progress != MaxSector)) {
1802 				/* expansion might have moved on while waiting for a
1803 				 * stripe, so we must do the range check again.
1804 				 * Expansion could still move past after this
1805 				 * test, but as we are holding a reference to
1806 				 * 'sh', we know that if that happens,
1807 				 *  STRIPE_EXPANDING will get set and the expansion
1808 				 * won't proceed until we finish with the stripe.
1809 				 */
1810 				int must_retry = 0;
1811 				spin_lock_irq(&conf->device_lock);
1812 				if (logical_sector <  conf->expand_progress &&
1813 				    disks == conf->previous_raid_disks)
1814 					/* mismatch, need to try again */
1815 					must_retry = 1;
1816 				spin_unlock_irq(&conf->device_lock);
1817 				if (must_retry) {
1818 					release_stripe(sh);
1819 					goto retry;
1820 				}
1821 			}
1822 			/* FIXME what if we get a false positive because these
1823 			 * are being updated.
1824 			 */
1825 			if (logical_sector >= mddev->suspend_lo &&
1826 			    logical_sector < mddev->suspend_hi) {
1827 				release_stripe(sh);
1828 				schedule();
1829 				goto retry;
1830 			}
1831 
1832 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
1833 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
1834 				/* Stripe is busy expanding or
1835 				 * add failed due to overlap.  Flush everything
1836 				 * and wait a while
1837 				 */
1838 				raid5_unplug_device(mddev->queue);
1839 				release_stripe(sh);
1840 				schedule();
1841 				goto retry;
1842 			}
1843 			finish_wait(&conf->wait_for_overlap, &w);
1844 			raid5_plug_device(conf);
1845 			handle_stripe(sh);
1846 			release_stripe(sh);
1847 		} else {
1848 			/* cannot get stripe for read-ahead, just give-up */
1849 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1850 			finish_wait(&conf->wait_for_overlap, &w);
1851 			break;
1852 		}
1853 
1854 	}
1855 	spin_lock_irq(&conf->device_lock);
1856 	remaining = --bi->bi_phys_segments;
1857 	spin_unlock_irq(&conf->device_lock);
1858 	if (remaining == 0) {
1859 		int bytes = bi->bi_size;
1860 
1861 		if ( bio_data_dir(bi) == WRITE )
1862 			md_write_end(mddev);
1863 		bi->bi_size = 0;
1864 		bi->bi_end_io(bi, bytes, 0);
1865 	}
1866 	return 0;
1867 }
1868 
1869 /* FIXME go_faster isn't used */
1870 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1871 {
1872 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1873 	struct stripe_head *sh;
1874 	int pd_idx;
1875 	sector_t first_sector, last_sector;
1876 	int raid_disks = conf->raid_disks;
1877 	int data_disks = raid_disks-1;
1878 	sector_t max_sector = mddev->size << 1;
1879 	int sync_blocks;
1880 
1881 	if (sector_nr >= max_sector) {
1882 		/* just being told to finish up .. nothing much to do */
1883 		unplug_slaves(mddev);
1884 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1885 			end_reshape(conf);
1886 			return 0;
1887 		}
1888 
1889 		if (mddev->curr_resync < max_sector) /* aborted */
1890 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1891 					&sync_blocks, 1);
1892 		else /* compelted sync */
1893 			conf->fullsync = 0;
1894 		bitmap_close_sync(mddev->bitmap);
1895 
1896 		return 0;
1897 	}
1898 
1899 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
1900 		/* reshaping is quite different to recovery/resync so it is
1901 		 * handled quite separately ... here.
1902 		 *
1903 		 * On each call to sync_request, we gather one chunk worth of
1904 		 * destination stripes and flag them as expanding.
1905 		 * Then we find all the source stripes and request reads.
1906 		 * As the reads complete, handle_stripe will copy the data
1907 		 * into the destination stripe and release that stripe.
1908 		 */
1909 		int i;
1910 		int dd_idx;
1911 		sector_t writepos, safepos, gap;
1912 
1913 		if (sector_nr == 0 &&
1914 		    conf->expand_progress != 0) {
1915 			/* restarting in the middle, skip the initial sectors */
1916 			sector_nr = conf->expand_progress;
1917 			sector_div(sector_nr, conf->raid_disks-1);
1918 			*skipped = 1;
1919 			return sector_nr;
1920 		}
1921 
1922 		/* we update the metadata when there is more than 3Meg
1923 		 * in the block range (that is rather arbitrary, should
1924 		 * probably be time based) or when the data about to be
1925 		 * copied would over-write the source of the data at
1926 		 * the front of the range.
1927 		 * i.e. one new_stripe forward from expand_progress new_maps
1928 		 * to after where expand_lo old_maps to
1929 		 */
1930 		writepos = conf->expand_progress +
1931 			conf->chunk_size/512*(conf->raid_disks-1);
1932 		sector_div(writepos, conf->raid_disks-1);
1933 		safepos = conf->expand_lo;
1934 		sector_div(safepos, conf->previous_raid_disks-1);
1935 		gap = conf->expand_progress - conf->expand_lo;
1936 
1937 		if (writepos >= safepos ||
1938 		    gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
1939 			/* Cannot proceed until we've updated the superblock... */
1940 			wait_event(conf->wait_for_overlap,
1941 				   atomic_read(&conf->reshape_stripes)==0);
1942 			mddev->reshape_position = conf->expand_progress;
1943 			mddev->sb_dirty = 1;
1944 			md_wakeup_thread(mddev->thread);
1945 			wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
1946 				   kthread_should_stop());
1947 			spin_lock_irq(&conf->device_lock);
1948 			conf->expand_lo = mddev->reshape_position;
1949 			spin_unlock_irq(&conf->device_lock);
1950 			wake_up(&conf->wait_for_overlap);
1951 		}
1952 
1953 		for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
1954 			int j;
1955 			int skipped = 0;
1956 			pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
1957 			sh = get_active_stripe(conf, sector_nr+i,
1958 					       conf->raid_disks, pd_idx, 0);
1959 			set_bit(STRIPE_EXPANDING, &sh->state);
1960 			atomic_inc(&conf->reshape_stripes);
1961 			/* If any of this stripe is beyond the end of the old
1962 			 * array, then we need to zero those blocks
1963 			 */
1964 			for (j=sh->disks; j--;) {
1965 				sector_t s;
1966 				if (j == sh->pd_idx)
1967 					continue;
1968 				s = compute_blocknr(sh, j);
1969 				if (s < (mddev->array_size<<1)) {
1970 					skipped = 1;
1971 					continue;
1972 				}
1973 				memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
1974 				set_bit(R5_Expanded, &sh->dev[j].flags);
1975 				set_bit(R5_UPTODATE, &sh->dev[j].flags);
1976 			}
1977 			if (!skipped) {
1978 				set_bit(STRIPE_EXPAND_READY, &sh->state);
1979 				set_bit(STRIPE_HANDLE, &sh->state);
1980 			}
1981 			release_stripe(sh);
1982 		}
1983 		spin_lock_irq(&conf->device_lock);
1984 		conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
1985 		spin_unlock_irq(&conf->device_lock);
1986 		/* Ok, those stripe are ready. We can start scheduling
1987 		 * reads on the source stripes.
1988 		 * The source stripes are determined by mapping the first and last
1989 		 * block on the destination stripes.
1990 		 */
1991 		raid_disks = conf->previous_raid_disks;
1992 		data_disks = raid_disks - 1;
1993 		first_sector =
1994 			raid5_compute_sector(sector_nr*(conf->raid_disks-1),
1995 					     raid_disks, data_disks,
1996 					     &dd_idx, &pd_idx, conf);
1997 		last_sector =
1998 			raid5_compute_sector((sector_nr+conf->chunk_size/512)
1999 					       *(conf->raid_disks-1) -1,
2000 					     raid_disks, data_disks,
2001 					     &dd_idx, &pd_idx, conf);
2002 		if (last_sector >= (mddev->size<<1))
2003 			last_sector = (mddev->size<<1)-1;
2004 		while (first_sector <= last_sector) {
2005 			pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2006 			sh = get_active_stripe(conf, first_sector,
2007 					       conf->previous_raid_disks, pd_idx, 0);
2008 			set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2009 			set_bit(STRIPE_HANDLE, &sh->state);
2010 			release_stripe(sh);
2011 			first_sector += STRIPE_SECTORS;
2012 		}
2013 		return conf->chunk_size>>9;
2014 	}
2015 	/* if there is 1 or more failed drives and we are trying
2016 	 * to resync, then assert that we are finished, because there is
2017 	 * nothing we can do.
2018 	 */
2019 	if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2020 		sector_t rv = (mddev->size << 1) - sector_nr;
2021 		*skipped = 1;
2022 		return rv;
2023 	}
2024 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2025 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2026 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2027 		/* we can skip this block, and probably more */
2028 		sync_blocks /= STRIPE_SECTORS;
2029 		*skipped = 1;
2030 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2031 	}
2032 
2033 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2034 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2035 	if (sh == NULL) {
2036 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2037 		/* make sure we don't swamp the stripe cache if someone else
2038 		 * is trying to get access
2039 		 */
2040 		schedule_timeout_uninterruptible(1);
2041 	}
2042 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
2043 	spin_lock(&sh->lock);
2044 	set_bit(STRIPE_SYNCING, &sh->state);
2045 	clear_bit(STRIPE_INSYNC, &sh->state);
2046 	spin_unlock(&sh->lock);
2047 
2048 	handle_stripe(sh);
2049 	release_stripe(sh);
2050 
2051 	return STRIPE_SECTORS;
2052 }
2053 
2054 /*
2055  * This is our raid5 kernel thread.
2056  *
2057  * We scan the hash table for stripes which can be handled now.
2058  * During the scan, completed stripes are saved for us by the interrupt
2059  * handler, so that they will not have to wait for our next wakeup.
2060  */
2061 static void raid5d (mddev_t *mddev)
2062 {
2063 	struct stripe_head *sh;
2064 	raid5_conf_t *conf = mddev_to_conf(mddev);
2065 	int handled;
2066 
2067 	PRINTK("+++ raid5d active\n");
2068 
2069 	md_check_recovery(mddev);
2070 
2071 	handled = 0;
2072 	spin_lock_irq(&conf->device_lock);
2073 	while (1) {
2074 		struct list_head *first;
2075 
2076 		if (conf->seq_flush - conf->seq_write > 0) {
2077 			int seq = conf->seq_flush;
2078 			spin_unlock_irq(&conf->device_lock);
2079 			bitmap_unplug(mddev->bitmap);
2080 			spin_lock_irq(&conf->device_lock);
2081 			conf->seq_write = seq;
2082 			activate_bit_delay(conf);
2083 		}
2084 
2085 		if (list_empty(&conf->handle_list) &&
2086 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2087 		    !blk_queue_plugged(mddev->queue) &&
2088 		    !list_empty(&conf->delayed_list))
2089 			raid5_activate_delayed(conf);
2090 
2091 		if (list_empty(&conf->handle_list))
2092 			break;
2093 
2094 		first = conf->handle_list.next;
2095 		sh = list_entry(first, struct stripe_head, lru);
2096 
2097 		list_del_init(first);
2098 		atomic_inc(&sh->count);
2099 		if (atomic_read(&sh->count)!= 1)
2100 			BUG();
2101 		spin_unlock_irq(&conf->device_lock);
2102 
2103 		handled++;
2104 		handle_stripe(sh);
2105 		release_stripe(sh);
2106 
2107 		spin_lock_irq(&conf->device_lock);
2108 	}
2109 	PRINTK("%d stripes handled\n", handled);
2110 
2111 	spin_unlock_irq(&conf->device_lock);
2112 
2113 	unplug_slaves(mddev);
2114 
2115 	PRINTK("--- raid5d inactive\n");
2116 }
2117 
2118 static ssize_t
2119 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
2120 {
2121 	raid5_conf_t *conf = mddev_to_conf(mddev);
2122 	if (conf)
2123 		return sprintf(page, "%d\n", conf->max_nr_stripes);
2124 	else
2125 		return 0;
2126 }
2127 
2128 static ssize_t
2129 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
2130 {
2131 	raid5_conf_t *conf = mddev_to_conf(mddev);
2132 	char *end;
2133 	int new;
2134 	if (len >= PAGE_SIZE)
2135 		return -EINVAL;
2136 	if (!conf)
2137 		return -ENODEV;
2138 
2139 	new = simple_strtoul(page, &end, 10);
2140 	if (!*page || (*end && *end != '\n') )
2141 		return -EINVAL;
2142 	if (new <= 16 || new > 32768)
2143 		return -EINVAL;
2144 	while (new < conf->max_nr_stripes) {
2145 		if (drop_one_stripe(conf))
2146 			conf->max_nr_stripes--;
2147 		else
2148 			break;
2149 	}
2150 	while (new > conf->max_nr_stripes) {
2151 		if (grow_one_stripe(conf))
2152 			conf->max_nr_stripes++;
2153 		else break;
2154 	}
2155 	return len;
2156 }
2157 
2158 static struct md_sysfs_entry
2159 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
2160 				raid5_show_stripe_cache_size,
2161 				raid5_store_stripe_cache_size);
2162 
2163 static ssize_t
2164 stripe_cache_active_show(mddev_t *mddev, char *page)
2165 {
2166 	raid5_conf_t *conf = mddev_to_conf(mddev);
2167 	if (conf)
2168 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
2169 	else
2170 		return 0;
2171 }
2172 
2173 static struct md_sysfs_entry
2174 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
2175 
2176 static struct attribute *raid5_attrs[] =  {
2177 	&raid5_stripecache_size.attr,
2178 	&raid5_stripecache_active.attr,
2179 	NULL,
2180 };
2181 static struct attribute_group raid5_attrs_group = {
2182 	.name = NULL,
2183 	.attrs = raid5_attrs,
2184 };
2185 
2186 static int run(mddev_t *mddev)
2187 {
2188 	raid5_conf_t *conf;
2189 	int raid_disk, memory;
2190 	mdk_rdev_t *rdev;
2191 	struct disk_info *disk;
2192 	struct list_head *tmp;
2193 
2194 	if (mddev->level != 5 && mddev->level != 4) {
2195 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n",
2196 		       mdname(mddev), mddev->level);
2197 		return -EIO;
2198 	}
2199 
2200 	if (mddev->reshape_position != MaxSector) {
2201 		/* Check that we can continue the reshape.
2202 		 * Currently only disks can change, it must
2203 		 * increase, and we must be past the point where
2204 		 * a stripe over-writes itself
2205 		 */
2206 		sector_t here_new, here_old;
2207 		int old_disks;
2208 
2209 		if (mddev->new_level != mddev->level ||
2210 		    mddev->new_layout != mddev->layout ||
2211 		    mddev->new_chunk != mddev->chunk_size) {
2212 			printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
2213 			       mdname(mddev));
2214 			return -EINVAL;
2215 		}
2216 		if (mddev->delta_disks <= 0) {
2217 			printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
2218 			       mdname(mddev));
2219 			return -EINVAL;
2220 		}
2221 		old_disks = mddev->raid_disks - mddev->delta_disks;
2222 		/* reshape_position must be on a new-stripe boundary, and one
2223 		 * further up in new geometry must map after here in old geometry.
2224 		 */
2225 		here_new = mddev->reshape_position;
2226 		if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
2227 			printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
2228 			return -EINVAL;
2229 		}
2230 		/* here_new is the stripe we will write to */
2231 		here_old = mddev->reshape_position;
2232 		sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
2233 		/* here_old is the first stripe that we might need to read from */
2234 		if (here_new >= here_old) {
2235 			/* Reading from the same stripe as writing to - bad */
2236 			printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
2237 			return -EINVAL;
2238 		}
2239 		printk(KERN_INFO "raid5: reshape will continue\n");
2240 		/* OK, we should be able to continue; */
2241 	}
2242 
2243 
2244 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
2245 	if ((conf = mddev->private) == NULL)
2246 		goto abort;
2247 	if (mddev->reshape_position == MaxSector) {
2248 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
2249 	} else {
2250 		conf->raid_disks = mddev->raid_disks;
2251 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
2252 	}
2253 
2254 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
2255 			      GFP_KERNEL);
2256 	if (!conf->disks)
2257 		goto abort;
2258 
2259 	conf->mddev = mddev;
2260 
2261 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
2262 		goto abort;
2263 
2264 	spin_lock_init(&conf->device_lock);
2265 	init_waitqueue_head(&conf->wait_for_stripe);
2266 	init_waitqueue_head(&conf->wait_for_overlap);
2267 	INIT_LIST_HEAD(&conf->handle_list);
2268 	INIT_LIST_HEAD(&conf->delayed_list);
2269 	INIT_LIST_HEAD(&conf->bitmap_list);
2270 	INIT_LIST_HEAD(&conf->inactive_list);
2271 	atomic_set(&conf->active_stripes, 0);
2272 	atomic_set(&conf->preread_active_stripes, 0);
2273 
2274 	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
2275 
2276 	ITERATE_RDEV(mddev,rdev,tmp) {
2277 		raid_disk = rdev->raid_disk;
2278 		if (raid_disk >= conf->raid_disks
2279 		    || raid_disk < 0)
2280 			continue;
2281 		disk = conf->disks + raid_disk;
2282 
2283 		disk->rdev = rdev;
2284 
2285 		if (test_bit(In_sync, &rdev->flags)) {
2286 			char b[BDEVNAME_SIZE];
2287 			printk(KERN_INFO "raid5: device %s operational as raid"
2288 				" disk %d\n", bdevname(rdev->bdev,b),
2289 				raid_disk);
2290 			conf->working_disks++;
2291 		}
2292 	}
2293 
2294 	/*
2295 	 * 0 for a fully functional array, 1 for a degraded array.
2296 	 */
2297 	mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
2298 	conf->mddev = mddev;
2299 	conf->chunk_size = mddev->chunk_size;
2300 	conf->level = mddev->level;
2301 	conf->algorithm = mddev->layout;
2302 	conf->max_nr_stripes = NR_STRIPES;
2303 	conf->expand_progress = mddev->reshape_position;
2304 
2305 	/* device size must be a multiple of chunk size */
2306 	mddev->size &= ~(mddev->chunk_size/1024 -1);
2307 	mddev->resync_max_sectors = mddev->size << 1;
2308 
2309 	if (!conf->chunk_size || conf->chunk_size % 4) {
2310 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
2311 			conf->chunk_size, mdname(mddev));
2312 		goto abort;
2313 	}
2314 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
2315 		printk(KERN_ERR
2316 			"raid5: unsupported parity algorithm %d for %s\n",
2317 			conf->algorithm, mdname(mddev));
2318 		goto abort;
2319 	}
2320 	if (mddev->degraded > 1) {
2321 		printk(KERN_ERR "raid5: not enough operational devices for %s"
2322 			" (%d/%d failed)\n",
2323 			mdname(mddev), conf->failed_disks, conf->raid_disks);
2324 		goto abort;
2325 	}
2326 
2327 	if (mddev->degraded == 1 &&
2328 	    mddev->recovery_cp != MaxSector) {
2329 		if (mddev->ok_start_degraded)
2330 			printk(KERN_WARNING
2331 			       "raid5: starting dirty degraded array: %s"
2332 			       "- data corruption possible.\n",
2333 			       mdname(mddev));
2334 		else {
2335 			printk(KERN_ERR
2336 			       "raid5: cannot start dirty degraded array for %s\n",
2337 			       mdname(mddev));
2338 			goto abort;
2339 		}
2340 	}
2341 
2342 	{
2343 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
2344 		if (!mddev->thread) {
2345 			printk(KERN_ERR
2346 				"raid5: couldn't allocate thread for %s\n",
2347 				mdname(mddev));
2348 			goto abort;
2349 		}
2350 	}
2351 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
2352 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
2353 	if (grow_stripes(conf, conf->max_nr_stripes)) {
2354 		printk(KERN_ERR
2355 			"raid5: couldn't allocate %dkB for buffers\n", memory);
2356 		shrink_stripes(conf);
2357 		md_unregister_thread(mddev->thread);
2358 		goto abort;
2359 	} else
2360 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
2361 			memory, mdname(mddev));
2362 
2363 	if (mddev->degraded == 0)
2364 		printk("raid5: raid level %d set %s active with %d out of %d"
2365 			" devices, algorithm %d\n", conf->level, mdname(mddev),
2366 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
2367 			conf->algorithm);
2368 	else
2369 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
2370 			" out of %d devices, algorithm %d\n", conf->level,
2371 			mdname(mddev), mddev->raid_disks - mddev->degraded,
2372 			mddev->raid_disks, conf->algorithm);
2373 
2374 	print_raid5_conf(conf);
2375 
2376 	if (conf->expand_progress != MaxSector) {
2377 		printk("...ok start reshape thread\n");
2378 		conf->expand_lo = conf->expand_progress;
2379 		atomic_set(&conf->reshape_stripes, 0);
2380 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2381 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2382 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2383 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2384 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2385 							"%s_reshape");
2386 		/* FIXME if md_register_thread fails?? */
2387 		md_wakeup_thread(mddev->sync_thread);
2388 
2389 	}
2390 
2391 	/* read-ahead size must cover two whole stripes, which is
2392 	 * 2 * (n-1) * chunksize where 'n' is the number of raid devices
2393 	 */
2394 	{
2395 		int stripe = (mddev->raid_disks-1) * mddev->chunk_size
2396 			/ PAGE_SIZE;
2397 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
2398 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
2399 	}
2400 
2401 	/* Ok, everything is just fine now */
2402 	sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
2403 
2404 	mddev->queue->unplug_fn = raid5_unplug_device;
2405 	mddev->queue->issue_flush_fn = raid5_issue_flush;
2406 	mddev->array_size =  mddev->size * (conf->previous_raid_disks - 1);
2407 
2408 	return 0;
2409 abort:
2410 	if (conf) {
2411 		print_raid5_conf(conf);
2412 		kfree(conf->disks);
2413 		kfree(conf->stripe_hashtbl);
2414 		kfree(conf);
2415 	}
2416 	mddev->private = NULL;
2417 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
2418 	return -EIO;
2419 }
2420 
2421 
2422 
2423 static int stop(mddev_t *mddev)
2424 {
2425 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2426 
2427 	md_unregister_thread(mddev->thread);
2428 	mddev->thread = NULL;
2429 	shrink_stripes(conf);
2430 	kfree(conf->stripe_hashtbl);
2431 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2432 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
2433 	kfree(conf->disks);
2434 	kfree(conf);
2435 	mddev->private = NULL;
2436 	return 0;
2437 }
2438 
2439 #if RAID5_DEBUG
2440 static void print_sh (struct stripe_head *sh)
2441 {
2442 	int i;
2443 
2444 	printk("sh %llu, pd_idx %d, state %ld.\n",
2445 		(unsigned long long)sh->sector, sh->pd_idx, sh->state);
2446 	printk("sh %llu,  count %d.\n",
2447 		(unsigned long long)sh->sector, atomic_read(&sh->count));
2448 	printk("sh %llu, ", (unsigned long long)sh->sector);
2449 	for (i = 0; i < sh->disks; i++) {
2450 		printk("(cache%d: %p %ld) ",
2451 			i, sh->dev[i].page, sh->dev[i].flags);
2452 	}
2453 	printk("\n");
2454 }
2455 
2456 static void printall (raid5_conf_t *conf)
2457 {
2458 	struct stripe_head *sh;
2459 	struct hlist_node *hn;
2460 	int i;
2461 
2462 	spin_lock_irq(&conf->device_lock);
2463 	for (i = 0; i < NR_HASH; i++) {
2464 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
2465 			if (sh->raid_conf != conf)
2466 				continue;
2467 			print_sh(sh);
2468 		}
2469 	}
2470 	spin_unlock_irq(&conf->device_lock);
2471 }
2472 #endif
2473 
2474 static void status (struct seq_file *seq, mddev_t *mddev)
2475 {
2476 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2477 	int i;
2478 
2479 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
2480 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
2481 	for (i = 0; i < conf->raid_disks; i++)
2482 		seq_printf (seq, "%s",
2483 			       conf->disks[i].rdev &&
2484 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
2485 	seq_printf (seq, "]");
2486 #if RAID5_DEBUG
2487 #define D(x) \
2488 	seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
2489 	printall(conf);
2490 #endif
2491 }
2492 
2493 static void print_raid5_conf (raid5_conf_t *conf)
2494 {
2495 	int i;
2496 	struct disk_info *tmp;
2497 
2498 	printk("RAID5 conf printout:\n");
2499 	if (!conf) {
2500 		printk("(conf==NULL)\n");
2501 		return;
2502 	}
2503 	printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
2504 		 conf->working_disks, conf->failed_disks);
2505 
2506 	for (i = 0; i < conf->raid_disks; i++) {
2507 		char b[BDEVNAME_SIZE];
2508 		tmp = conf->disks + i;
2509 		if (tmp->rdev)
2510 		printk(" disk %d, o:%d, dev:%s\n",
2511 			i, !test_bit(Faulty, &tmp->rdev->flags),
2512 			bdevname(tmp->rdev->bdev,b));
2513 	}
2514 }
2515 
2516 static int raid5_spare_active(mddev_t *mddev)
2517 {
2518 	int i;
2519 	raid5_conf_t *conf = mddev->private;
2520 	struct disk_info *tmp;
2521 
2522 	for (i = 0; i < conf->raid_disks; i++) {
2523 		tmp = conf->disks + i;
2524 		if (tmp->rdev
2525 		    && !test_bit(Faulty, &tmp->rdev->flags)
2526 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
2527 			mddev->degraded--;
2528 			conf->failed_disks--;
2529 			conf->working_disks++;
2530 			set_bit(In_sync, &tmp->rdev->flags);
2531 		}
2532 	}
2533 	print_raid5_conf(conf);
2534 	return 0;
2535 }
2536 
2537 static int raid5_remove_disk(mddev_t *mddev, int number)
2538 {
2539 	raid5_conf_t *conf = mddev->private;
2540 	int err = 0;
2541 	mdk_rdev_t *rdev;
2542 	struct disk_info *p = conf->disks + number;
2543 
2544 	print_raid5_conf(conf);
2545 	rdev = p->rdev;
2546 	if (rdev) {
2547 		if (test_bit(In_sync, &rdev->flags) ||
2548 		    atomic_read(&rdev->nr_pending)) {
2549 			err = -EBUSY;
2550 			goto abort;
2551 		}
2552 		p->rdev = NULL;
2553 		synchronize_rcu();
2554 		if (atomic_read(&rdev->nr_pending)) {
2555 			/* lost the race, try later */
2556 			err = -EBUSY;
2557 			p->rdev = rdev;
2558 		}
2559 	}
2560 abort:
2561 
2562 	print_raid5_conf(conf);
2563 	return err;
2564 }
2565 
2566 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
2567 {
2568 	raid5_conf_t *conf = mddev->private;
2569 	int found = 0;
2570 	int disk;
2571 	struct disk_info *p;
2572 
2573 	if (mddev->degraded > 1)
2574 		/* no point adding a device */
2575 		return 0;
2576 
2577 	/*
2578 	 * find the disk ...
2579 	 */
2580 	for (disk=0; disk < conf->raid_disks; disk++)
2581 		if ((p=conf->disks + disk)->rdev == NULL) {
2582 			clear_bit(In_sync, &rdev->flags);
2583 			rdev->raid_disk = disk;
2584 			found = 1;
2585 			if (rdev->saved_raid_disk != disk)
2586 				conf->fullsync = 1;
2587 			rcu_assign_pointer(p->rdev, rdev);
2588 			break;
2589 		}
2590 	print_raid5_conf(conf);
2591 	return found;
2592 }
2593 
2594 static int raid5_resize(mddev_t *mddev, sector_t sectors)
2595 {
2596 	/* no resync is happening, and there is enough space
2597 	 * on all devices, so we can resize.
2598 	 * We need to make sure resync covers any new space.
2599 	 * If the array is shrinking we should possibly wait until
2600 	 * any io in the removed space completes, but it hardly seems
2601 	 * worth it.
2602 	 */
2603 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
2604 	mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
2605 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2606 	mddev->changed = 1;
2607 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
2608 		mddev->recovery_cp = mddev->size << 1;
2609 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2610 	}
2611 	mddev->size = sectors /2;
2612 	mddev->resync_max_sectors = sectors;
2613 	return 0;
2614 }
2615 
2616 #ifdef CONFIG_MD_RAID5_RESHAPE
2617 static int raid5_check_reshape(mddev_t *mddev)
2618 {
2619 	raid5_conf_t *conf = mddev_to_conf(mddev);
2620 	int err;
2621 
2622 	if (mddev->delta_disks < 0 ||
2623 	    mddev->new_level != mddev->level)
2624 		return -EINVAL; /* Cannot shrink array or change level yet */
2625 	if (mddev->delta_disks == 0)
2626 		return 0; /* nothing to do */
2627 
2628 	/* Can only proceed if there are plenty of stripe_heads.
2629 	 * We need a minimum of one full stripe,, and for sensible progress
2630 	 * it is best to have about 4 times that.
2631 	 * If we require 4 times, then the default 256 4K stripe_heads will
2632 	 * allow for chunk sizes up to 256K, which is probably OK.
2633 	 * If the chunk size is greater, user-space should request more
2634 	 * stripe_heads first.
2635 	 */
2636 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
2637 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
2638 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
2639 		       (mddev->chunk_size / STRIPE_SIZE)*4);
2640 		return -ENOSPC;
2641 	}
2642 
2643 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
2644 	if (err)
2645 		return err;
2646 
2647 	/* looks like we might be able to manage this */
2648 	return 0;
2649 }
2650 
2651 static int raid5_start_reshape(mddev_t *mddev)
2652 {
2653 	raid5_conf_t *conf = mddev_to_conf(mddev);
2654 	mdk_rdev_t *rdev;
2655 	struct list_head *rtmp;
2656 	int spares = 0;
2657 	int added_devices = 0;
2658 
2659 	if (mddev->degraded ||
2660 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2661 		return -EBUSY;
2662 
2663 	ITERATE_RDEV(mddev, rdev, rtmp)
2664 		if (rdev->raid_disk < 0 &&
2665 		    !test_bit(Faulty, &rdev->flags))
2666 			spares++;
2667 
2668 	if (spares < mddev->delta_disks-1)
2669 		/* Not enough devices even to make a degraded array
2670 		 * of that size
2671 		 */
2672 		return -EINVAL;
2673 
2674 	atomic_set(&conf->reshape_stripes, 0);
2675 	spin_lock_irq(&conf->device_lock);
2676 	conf->previous_raid_disks = conf->raid_disks;
2677 	conf->raid_disks += mddev->delta_disks;
2678 	conf->expand_progress = 0;
2679 	conf->expand_lo = 0;
2680 	spin_unlock_irq(&conf->device_lock);
2681 
2682 	/* Add some new drives, as many as will fit.
2683 	 * We know there are enough to make the newly sized array work.
2684 	 */
2685 	ITERATE_RDEV(mddev, rdev, rtmp)
2686 		if (rdev->raid_disk < 0 &&
2687 		    !test_bit(Faulty, &rdev->flags)) {
2688 			if (raid5_add_disk(mddev, rdev)) {
2689 				char nm[20];
2690 				set_bit(In_sync, &rdev->flags);
2691 				conf->working_disks++;
2692 				added_devices++;
2693 				sprintf(nm, "rd%d", rdev->raid_disk);
2694 				sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2695 			} else
2696 				break;
2697 		}
2698 
2699 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
2700 	mddev->raid_disks = conf->raid_disks;
2701 	mddev->reshape_position = 0;
2702 	mddev->sb_dirty = 1;
2703 
2704 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2705 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2706 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
2707 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
2708 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
2709 						"%s_reshape");
2710 	if (!mddev->sync_thread) {
2711 		mddev->recovery = 0;
2712 		spin_lock_irq(&conf->device_lock);
2713 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
2714 		conf->expand_progress = MaxSector;
2715 		spin_unlock_irq(&conf->device_lock);
2716 		return -EAGAIN;
2717 	}
2718 	md_wakeup_thread(mddev->sync_thread);
2719 	md_new_event(mddev);
2720 	return 0;
2721 }
2722 #endif
2723 
2724 static void end_reshape(raid5_conf_t *conf)
2725 {
2726 	struct block_device *bdev;
2727 
2728 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
2729 		conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
2730 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
2731 		conf->mddev->changed = 1;
2732 
2733 		bdev = bdget_disk(conf->mddev->gendisk, 0);
2734 		if (bdev) {
2735 			mutex_lock(&bdev->bd_inode->i_mutex);
2736 			i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
2737 			mutex_unlock(&bdev->bd_inode->i_mutex);
2738 			bdput(bdev);
2739 		}
2740 		spin_lock_irq(&conf->device_lock);
2741 		conf->expand_progress = MaxSector;
2742 		spin_unlock_irq(&conf->device_lock);
2743 		conf->mddev->reshape_position = MaxSector;
2744 	}
2745 }
2746 
2747 static void raid5_quiesce(mddev_t *mddev, int state)
2748 {
2749 	raid5_conf_t *conf = mddev_to_conf(mddev);
2750 
2751 	switch(state) {
2752 	case 2: /* resume for a suspend */
2753 		wake_up(&conf->wait_for_overlap);
2754 		break;
2755 
2756 	case 1: /* stop all writes */
2757 		spin_lock_irq(&conf->device_lock);
2758 		conf->quiesce = 1;
2759 		wait_event_lock_irq(conf->wait_for_stripe,
2760 				    atomic_read(&conf->active_stripes) == 0,
2761 				    conf->device_lock, /* nothing */);
2762 		spin_unlock_irq(&conf->device_lock);
2763 		break;
2764 
2765 	case 0: /* re-enable writes */
2766 		spin_lock_irq(&conf->device_lock);
2767 		conf->quiesce = 0;
2768 		wake_up(&conf->wait_for_stripe);
2769 		wake_up(&conf->wait_for_overlap);
2770 		spin_unlock_irq(&conf->device_lock);
2771 		break;
2772 	}
2773 }
2774 
2775 static struct mdk_personality raid5_personality =
2776 {
2777 	.name		= "raid5",
2778 	.level		= 5,
2779 	.owner		= THIS_MODULE,
2780 	.make_request	= make_request,
2781 	.run		= run,
2782 	.stop		= stop,
2783 	.status		= status,
2784 	.error_handler	= error,
2785 	.hot_add_disk	= raid5_add_disk,
2786 	.hot_remove_disk= raid5_remove_disk,
2787 	.spare_active	= raid5_spare_active,
2788 	.sync_request	= sync_request,
2789 	.resize		= raid5_resize,
2790 #ifdef CONFIG_MD_RAID5_RESHAPE
2791 	.check_reshape	= raid5_check_reshape,
2792 	.start_reshape  = raid5_start_reshape,
2793 #endif
2794 	.quiesce	= raid5_quiesce,
2795 };
2796 
2797 static struct mdk_personality raid4_personality =
2798 {
2799 	.name		= "raid4",
2800 	.level		= 4,
2801 	.owner		= THIS_MODULE,
2802 	.make_request	= make_request,
2803 	.run		= run,
2804 	.stop		= stop,
2805 	.status		= status,
2806 	.error_handler	= error,
2807 	.hot_add_disk	= raid5_add_disk,
2808 	.hot_remove_disk= raid5_remove_disk,
2809 	.spare_active	= raid5_spare_active,
2810 	.sync_request	= sync_request,
2811 	.resize		= raid5_resize,
2812 	.quiesce	= raid5_quiesce,
2813 };
2814 
2815 static int __init raid5_init(void)
2816 {
2817 	register_md_personality(&raid5_personality);
2818 	register_md_personality(&raid4_personality);
2819 	return 0;
2820 }
2821 
2822 static void raid5_exit(void)
2823 {
2824 	unregister_md_personality(&raid5_personality);
2825 	unregister_md_personality(&raid4_personality);
2826 }
2827 
2828 module_init(raid5_init);
2829 module_exit(raid5_exit);
2830 MODULE_LICENSE("GPL");
2831 MODULE_ALIAS("md-personality-4"); /* RAID5 */
2832 MODULE_ALIAS("md-raid5");
2833 MODULE_ALIAS("md-raid4");
2834 MODULE_ALIAS("md-level-5");
2835 MODULE_ALIAS("md-level-4");
2836