xref: /linux/drivers/md/raid5.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK		(NR_HASH - 1)
68 
69 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70 
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA	1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90 
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95 
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
99 #endif
100 
101 static inline int raid6_next_disk(int disk, int raid_disks)
102 {
103 	disk++;
104 	return (disk < raid_disks) ? disk : 0;
105 }
106 
107 static void return_io(struct bio *return_bi)
108 {
109 	struct bio *bi = return_bi;
110 	while (bi) {
111 
112 		return_bi = bi->bi_next;
113 		bi->bi_next = NULL;
114 		bi->bi_size = 0;
115 		bi->bi_end_io(bi,
116 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
117 			        ? 0 : -EIO);
118 		bi = return_bi;
119 	}
120 }
121 
122 static void print_raid5_conf (raid5_conf_t *conf);
123 
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
125 {
126 	if (atomic_dec_and_test(&sh->count)) {
127 		BUG_ON(!list_empty(&sh->lru));
128 		BUG_ON(atomic_read(&conf->active_stripes)==0);
129 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 				list_add_tail(&sh->lru, &conf->delayed_list);
132 				blk_plug_device(conf->mddev->queue);
133 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 				   sh->bm_seq - conf->seq_write > 0) {
135 				list_add_tail(&sh->lru, &conf->bitmap_list);
136 				blk_plug_device(conf->mddev->queue);
137 			} else {
138 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 				list_add_tail(&sh->lru, &conf->handle_list);
140 			}
141 			md_wakeup_thread(conf->mddev->thread);
142 		} else {
143 			BUG_ON(sh->ops.pending);
144 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 				atomic_dec(&conf->preread_active_stripes);
146 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 					md_wakeup_thread(conf->mddev->thread);
148 			}
149 			atomic_dec(&conf->active_stripes);
150 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 				list_add_tail(&sh->lru, &conf->inactive_list);
152 				wake_up(&conf->wait_for_stripe);
153 				if (conf->retry_read_aligned)
154 					md_wakeup_thread(conf->mddev->thread);
155 			}
156 		}
157 	}
158 }
159 static void release_stripe(struct stripe_head *sh)
160 {
161 	raid5_conf_t *conf = sh->raid_conf;
162 	unsigned long flags;
163 
164 	spin_lock_irqsave(&conf->device_lock, flags);
165 	__release_stripe(conf, sh);
166 	spin_unlock_irqrestore(&conf->device_lock, flags);
167 }
168 
169 static inline void remove_hash(struct stripe_head *sh)
170 {
171 	pr_debug("remove_hash(), stripe %llu\n",
172 		(unsigned long long)sh->sector);
173 
174 	hlist_del_init(&sh->hash);
175 }
176 
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
178 {
179 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
180 
181 	pr_debug("insert_hash(), stripe %llu\n",
182 		(unsigned long long)sh->sector);
183 
184 	CHECK_DEVLOCK();
185 	hlist_add_head(&sh->hash, hp);
186 }
187 
188 
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
191 {
192 	struct stripe_head *sh = NULL;
193 	struct list_head *first;
194 
195 	CHECK_DEVLOCK();
196 	if (list_empty(&conf->inactive_list))
197 		goto out;
198 	first = conf->inactive_list.next;
199 	sh = list_entry(first, struct stripe_head, lru);
200 	list_del_init(first);
201 	remove_hash(sh);
202 	atomic_inc(&conf->active_stripes);
203 out:
204 	return sh;
205 }
206 
207 static void shrink_buffers(struct stripe_head *sh, int num)
208 {
209 	struct page *p;
210 	int i;
211 
212 	for (i=0; i<num ; i++) {
213 		p = sh->dev[i].page;
214 		if (!p)
215 			continue;
216 		sh->dev[i].page = NULL;
217 		put_page(p);
218 	}
219 }
220 
221 static int grow_buffers(struct stripe_head *sh, int num)
222 {
223 	int i;
224 
225 	for (i=0; i<num; i++) {
226 		struct page *page;
227 
228 		if (!(page = alloc_page(GFP_KERNEL))) {
229 			return 1;
230 		}
231 		sh->dev[i].page = page;
232 	}
233 	return 0;
234 }
235 
236 static void raid5_build_block (struct stripe_head *sh, int i);
237 
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
239 {
240 	raid5_conf_t *conf = sh->raid_conf;
241 	int i;
242 
243 	BUG_ON(atomic_read(&sh->count) != 0);
244 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 	BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
246 
247 	CHECK_DEVLOCK();
248 	pr_debug("init_stripe called, stripe %llu\n",
249 		(unsigned long long)sh->sector);
250 
251 	remove_hash(sh);
252 
253 	sh->sector = sector;
254 	sh->pd_idx = pd_idx;
255 	sh->state = 0;
256 
257 	sh->disks = disks;
258 
259 	for (i = sh->disks; i--; ) {
260 		struct r5dev *dev = &sh->dev[i];
261 
262 		if (dev->toread || dev->read || dev->towrite || dev->written ||
263 		    test_bit(R5_LOCKED, &dev->flags)) {
264 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 			       (unsigned long long)sh->sector, i, dev->toread,
266 			       dev->read, dev->towrite, dev->written,
267 			       test_bit(R5_LOCKED, &dev->flags));
268 			BUG();
269 		}
270 		dev->flags = 0;
271 		raid5_build_block(sh, i);
272 	}
273 	insert_hash(conf, sh);
274 }
275 
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
277 {
278 	struct stripe_head *sh;
279 	struct hlist_node *hn;
280 
281 	CHECK_DEVLOCK();
282 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 		if (sh->sector == sector && sh->disks == disks)
285 			return sh;
286 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
287 	return NULL;
288 }
289 
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
292 
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 					     int pd_idx, int noblock)
295 {
296 	struct stripe_head *sh;
297 
298 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
299 
300 	spin_lock_irq(&conf->device_lock);
301 
302 	do {
303 		wait_event_lock_irq(conf->wait_for_stripe,
304 				    conf->quiesce == 0,
305 				    conf->device_lock, /* nothing */);
306 		sh = __find_stripe(conf, sector, disks);
307 		if (!sh) {
308 			if (!conf->inactive_blocked)
309 				sh = get_free_stripe(conf);
310 			if (noblock && sh == NULL)
311 				break;
312 			if (!sh) {
313 				conf->inactive_blocked = 1;
314 				wait_event_lock_irq(conf->wait_for_stripe,
315 						    !list_empty(&conf->inactive_list) &&
316 						    (atomic_read(&conf->active_stripes)
317 						     < (conf->max_nr_stripes *3/4)
318 						     || !conf->inactive_blocked),
319 						    conf->device_lock,
320 						    raid5_unplug_device(conf->mddev->queue)
321 					);
322 				conf->inactive_blocked = 0;
323 			} else
324 				init_stripe(sh, sector, pd_idx, disks);
325 		} else {
326 			if (atomic_read(&sh->count)) {
327 			  BUG_ON(!list_empty(&sh->lru));
328 			} else {
329 				if (!test_bit(STRIPE_HANDLE, &sh->state))
330 					atomic_inc(&conf->active_stripes);
331 				if (list_empty(&sh->lru) &&
332 				    !test_bit(STRIPE_EXPANDING, &sh->state))
333 					BUG();
334 				list_del_init(&sh->lru);
335 			}
336 		}
337 	} while (sh == NULL);
338 
339 	if (sh)
340 		atomic_inc(&sh->count);
341 
342 	spin_unlock_irq(&conf->device_lock);
343 	return sh;
344 }
345 
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
348 do {							\
349 	if (test_bit(op, &sh->ops.pending) &&		\
350 		!test_bit(op, &sh->ops.complete)) {	\
351 		if (test_and_set_bit(op, &sh->ops.ack)) \
352 			clear_bit(op, &pend);		\
353 		else					\
354 			ack++;				\
355 	} else						\
356 		clear_bit(op, &pend);			\
357 } while (0)
358 
359 /* find new work to run, do not resubmit work that is already
360  * in flight
361  */
362 static unsigned long get_stripe_work(struct stripe_head *sh)
363 {
364 	unsigned long pending;
365 	int ack = 0;
366 
367 	pending = sh->ops.pending;
368 
369 	test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 	test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 	test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 	test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 	test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 	test_and_ack_op(STRIPE_OP_CHECK, pending);
375 	if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
376 		ack++;
377 
378 	sh->ops.count -= ack;
379 	BUG_ON(sh->ops.count < 0);
380 
381 	return pending;
382 }
383 
384 static void
385 raid5_end_read_request(struct bio *bi, int error);
386 static void
387 raid5_end_write_request(struct bio *bi, int error);
388 
389 static void ops_run_io(struct stripe_head *sh)
390 {
391 	raid5_conf_t *conf = sh->raid_conf;
392 	int i, disks = sh->disks;
393 
394 	might_sleep();
395 
396 	for (i = disks; i--; ) {
397 		int rw;
398 		struct bio *bi;
399 		mdk_rdev_t *rdev;
400 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
401 			rw = WRITE;
402 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
403 			rw = READ;
404 		else
405 			continue;
406 
407 		bi = &sh->dev[i].req;
408 
409 		bi->bi_rw = rw;
410 		if (rw == WRITE)
411 			bi->bi_end_io = raid5_end_write_request;
412 		else
413 			bi->bi_end_io = raid5_end_read_request;
414 
415 		rcu_read_lock();
416 		rdev = rcu_dereference(conf->disks[i].rdev);
417 		if (rdev && test_bit(Faulty, &rdev->flags))
418 			rdev = NULL;
419 		if (rdev)
420 			atomic_inc(&rdev->nr_pending);
421 		rcu_read_unlock();
422 
423 		if (rdev) {
424 			if (test_bit(STRIPE_SYNCING, &sh->state) ||
425 				test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
426 				test_bit(STRIPE_EXPAND_READY, &sh->state))
427 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
428 
429 			bi->bi_bdev = rdev->bdev;
430 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
431 				__FUNCTION__, (unsigned long long)sh->sector,
432 				bi->bi_rw, i);
433 			atomic_inc(&sh->count);
434 			bi->bi_sector = sh->sector + rdev->data_offset;
435 			bi->bi_flags = 1 << BIO_UPTODATE;
436 			bi->bi_vcnt = 1;
437 			bi->bi_max_vecs = 1;
438 			bi->bi_idx = 0;
439 			bi->bi_io_vec = &sh->dev[i].vec;
440 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
441 			bi->bi_io_vec[0].bv_offset = 0;
442 			bi->bi_size = STRIPE_SIZE;
443 			bi->bi_next = NULL;
444 			if (rw == WRITE &&
445 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
446 				atomic_add(STRIPE_SECTORS,
447 					&rdev->corrected_errors);
448 			generic_make_request(bi);
449 		} else {
450 			if (rw == WRITE)
451 				set_bit(STRIPE_DEGRADED, &sh->state);
452 			pr_debug("skip op %ld on disc %d for sector %llu\n",
453 				bi->bi_rw, i, (unsigned long long)sh->sector);
454 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
455 			set_bit(STRIPE_HANDLE, &sh->state);
456 		}
457 	}
458 }
459 
460 static struct dma_async_tx_descriptor *
461 async_copy_data(int frombio, struct bio *bio, struct page *page,
462 	sector_t sector, struct dma_async_tx_descriptor *tx)
463 {
464 	struct bio_vec *bvl;
465 	struct page *bio_page;
466 	int i;
467 	int page_offset;
468 
469 	if (bio->bi_sector >= sector)
470 		page_offset = (signed)(bio->bi_sector - sector) * 512;
471 	else
472 		page_offset = (signed)(sector - bio->bi_sector) * -512;
473 	bio_for_each_segment(bvl, bio, i) {
474 		int len = bio_iovec_idx(bio, i)->bv_len;
475 		int clen;
476 		int b_offset = 0;
477 
478 		if (page_offset < 0) {
479 			b_offset = -page_offset;
480 			page_offset += b_offset;
481 			len -= b_offset;
482 		}
483 
484 		if (len > 0 && page_offset + len > STRIPE_SIZE)
485 			clen = STRIPE_SIZE - page_offset;
486 		else
487 			clen = len;
488 
489 		if (clen > 0) {
490 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
491 			bio_page = bio_iovec_idx(bio, i)->bv_page;
492 			if (frombio)
493 				tx = async_memcpy(page, bio_page, page_offset,
494 					b_offset, clen,
495 					ASYNC_TX_DEP_ACK,
496 					tx, NULL, NULL);
497 			else
498 				tx = async_memcpy(bio_page, page, b_offset,
499 					page_offset, clen,
500 					ASYNC_TX_DEP_ACK,
501 					tx, NULL, NULL);
502 		}
503 		if (clen < len) /* hit end of page */
504 			break;
505 		page_offset +=  len;
506 	}
507 
508 	return tx;
509 }
510 
511 static void ops_complete_biofill(void *stripe_head_ref)
512 {
513 	struct stripe_head *sh = stripe_head_ref;
514 	struct bio *return_bi = NULL;
515 	raid5_conf_t *conf = sh->raid_conf;
516 	int i;
517 
518 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
519 		(unsigned long long)sh->sector);
520 
521 	/* clear completed biofills */
522 	for (i = sh->disks; i--; ) {
523 		struct r5dev *dev = &sh->dev[i];
524 
525 		/* acknowledge completion of a biofill operation */
526 		/* and check if we need to reply to a read request,
527 		 * new R5_Wantfill requests are held off until
528 		 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
529 		 */
530 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
531 			struct bio *rbi, *rbi2;
532 
533 			/* The access to dev->read is outside of the
534 			 * spin_lock_irq(&conf->device_lock), but is protected
535 			 * by the STRIPE_OP_BIOFILL pending bit
536 			 */
537 			BUG_ON(!dev->read);
538 			rbi = dev->read;
539 			dev->read = NULL;
540 			while (rbi && rbi->bi_sector <
541 				dev->sector + STRIPE_SECTORS) {
542 				rbi2 = r5_next_bio(rbi, dev->sector);
543 				spin_lock_irq(&conf->device_lock);
544 				if (--rbi->bi_phys_segments == 0) {
545 					rbi->bi_next = return_bi;
546 					return_bi = rbi;
547 				}
548 				spin_unlock_irq(&conf->device_lock);
549 				rbi = rbi2;
550 			}
551 		}
552 	}
553 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
554 	clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
555 
556 	return_io(return_bi);
557 
558 	set_bit(STRIPE_HANDLE, &sh->state);
559 	release_stripe(sh);
560 }
561 
562 static void ops_run_biofill(struct stripe_head *sh)
563 {
564 	struct dma_async_tx_descriptor *tx = NULL;
565 	raid5_conf_t *conf = sh->raid_conf;
566 	int i;
567 
568 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
569 		(unsigned long long)sh->sector);
570 
571 	for (i = sh->disks; i--; ) {
572 		struct r5dev *dev = &sh->dev[i];
573 		if (test_bit(R5_Wantfill, &dev->flags)) {
574 			struct bio *rbi;
575 			spin_lock_irq(&conf->device_lock);
576 			dev->read = rbi = dev->toread;
577 			dev->toread = NULL;
578 			spin_unlock_irq(&conf->device_lock);
579 			while (rbi && rbi->bi_sector <
580 				dev->sector + STRIPE_SECTORS) {
581 				tx = async_copy_data(0, rbi, dev->page,
582 					dev->sector, tx);
583 				rbi = r5_next_bio(rbi, dev->sector);
584 			}
585 		}
586 	}
587 
588 	atomic_inc(&sh->count);
589 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
590 		ops_complete_biofill, sh);
591 }
592 
593 static void ops_complete_compute5(void *stripe_head_ref)
594 {
595 	struct stripe_head *sh = stripe_head_ref;
596 	int target = sh->ops.target;
597 	struct r5dev *tgt = &sh->dev[target];
598 
599 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
600 		(unsigned long long)sh->sector);
601 
602 	set_bit(R5_UPTODATE, &tgt->flags);
603 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
604 	clear_bit(R5_Wantcompute, &tgt->flags);
605 	set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
606 	set_bit(STRIPE_HANDLE, &sh->state);
607 	release_stripe(sh);
608 }
609 
610 static struct dma_async_tx_descriptor *
611 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
612 {
613 	/* kernel stack size limits the total number of disks */
614 	int disks = sh->disks;
615 	struct page *xor_srcs[disks];
616 	int target = sh->ops.target;
617 	struct r5dev *tgt = &sh->dev[target];
618 	struct page *xor_dest = tgt->page;
619 	int count = 0;
620 	struct dma_async_tx_descriptor *tx;
621 	int i;
622 
623 	pr_debug("%s: stripe %llu block: %d\n",
624 		__FUNCTION__, (unsigned long long)sh->sector, target);
625 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
626 
627 	for (i = disks; i--; )
628 		if (i != target)
629 			xor_srcs[count++] = sh->dev[i].page;
630 
631 	atomic_inc(&sh->count);
632 
633 	if (unlikely(count == 1))
634 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
635 			0, NULL, ops_complete_compute5, sh);
636 	else
637 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
638 			ASYNC_TX_XOR_ZERO_DST, NULL,
639 			ops_complete_compute5, sh);
640 
641 	/* ack now if postxor is not set to be run */
642 	if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
643 		async_tx_ack(tx);
644 
645 	return tx;
646 }
647 
648 static void ops_complete_prexor(void *stripe_head_ref)
649 {
650 	struct stripe_head *sh = stripe_head_ref;
651 
652 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
653 		(unsigned long long)sh->sector);
654 
655 	set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
656 }
657 
658 static struct dma_async_tx_descriptor *
659 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
660 {
661 	/* kernel stack size limits the total number of disks */
662 	int disks = sh->disks;
663 	struct page *xor_srcs[disks];
664 	int count = 0, pd_idx = sh->pd_idx, i;
665 
666 	/* existing parity data subtracted */
667 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
668 
669 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
670 		(unsigned long long)sh->sector);
671 
672 	for (i = disks; i--; ) {
673 		struct r5dev *dev = &sh->dev[i];
674 		/* Only process blocks that are known to be uptodate */
675 		if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
676 			xor_srcs[count++] = dev->page;
677 	}
678 
679 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
680 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
681 		ops_complete_prexor, sh);
682 
683 	return tx;
684 }
685 
686 static struct dma_async_tx_descriptor *
687 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
688 {
689 	int disks = sh->disks;
690 	int pd_idx = sh->pd_idx, i;
691 
692 	/* check if prexor is active which means only process blocks
693 	 * that are part of a read-modify-write (Wantprexor)
694 	 */
695 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
696 
697 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
698 		(unsigned long long)sh->sector);
699 
700 	for (i = disks; i--; ) {
701 		struct r5dev *dev = &sh->dev[i];
702 		struct bio *chosen;
703 		int towrite;
704 
705 		towrite = 0;
706 		if (prexor) { /* rmw */
707 			if (dev->towrite &&
708 			    test_bit(R5_Wantprexor, &dev->flags))
709 				towrite = 1;
710 		} else { /* rcw */
711 			if (i != pd_idx && dev->towrite &&
712 				test_bit(R5_LOCKED, &dev->flags))
713 				towrite = 1;
714 		}
715 
716 		if (towrite) {
717 			struct bio *wbi;
718 
719 			spin_lock(&sh->lock);
720 			chosen = dev->towrite;
721 			dev->towrite = NULL;
722 			BUG_ON(dev->written);
723 			wbi = dev->written = chosen;
724 			spin_unlock(&sh->lock);
725 
726 			while (wbi && wbi->bi_sector <
727 				dev->sector + STRIPE_SECTORS) {
728 				tx = async_copy_data(1, wbi, dev->page,
729 					dev->sector, tx);
730 				wbi = r5_next_bio(wbi, dev->sector);
731 			}
732 		}
733 	}
734 
735 	return tx;
736 }
737 
738 static void ops_complete_postxor(void *stripe_head_ref)
739 {
740 	struct stripe_head *sh = stripe_head_ref;
741 
742 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
743 		(unsigned long long)sh->sector);
744 
745 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
746 	set_bit(STRIPE_HANDLE, &sh->state);
747 	release_stripe(sh);
748 }
749 
750 static void ops_complete_write(void *stripe_head_ref)
751 {
752 	struct stripe_head *sh = stripe_head_ref;
753 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
754 
755 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
756 		(unsigned long long)sh->sector);
757 
758 	for (i = disks; i--; ) {
759 		struct r5dev *dev = &sh->dev[i];
760 		if (dev->written || i == pd_idx)
761 			set_bit(R5_UPTODATE, &dev->flags);
762 	}
763 
764 	set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
765 	set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
766 
767 	set_bit(STRIPE_HANDLE, &sh->state);
768 	release_stripe(sh);
769 }
770 
771 static void
772 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 {
774 	/* kernel stack size limits the total number of disks */
775 	int disks = sh->disks;
776 	struct page *xor_srcs[disks];
777 
778 	int count = 0, pd_idx = sh->pd_idx, i;
779 	struct page *xor_dest;
780 	int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
781 	unsigned long flags;
782 	dma_async_tx_callback callback;
783 
784 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
785 		(unsigned long long)sh->sector);
786 
787 	/* check if prexor is active which means only process blocks
788 	 * that are part of a read-modify-write (written)
789 	 */
790 	if (prexor) {
791 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792 		for (i = disks; i--; ) {
793 			struct r5dev *dev = &sh->dev[i];
794 			if (dev->written)
795 				xor_srcs[count++] = dev->page;
796 		}
797 	} else {
798 		xor_dest = sh->dev[pd_idx].page;
799 		for (i = disks; i--; ) {
800 			struct r5dev *dev = &sh->dev[i];
801 			if (i != pd_idx)
802 				xor_srcs[count++] = dev->page;
803 		}
804 	}
805 
806 	/* check whether this postxor is part of a write */
807 	callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
808 		ops_complete_write : ops_complete_postxor;
809 
810 	/* 1/ if we prexor'd then the dest is reused as a source
811 	 * 2/ if we did not prexor then we are redoing the parity
812 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813 	 * for the synchronous xor case
814 	 */
815 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
816 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
817 
818 	atomic_inc(&sh->count);
819 
820 	if (unlikely(count == 1)) {
821 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
822 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
823 			flags, tx, callback, sh);
824 	} else
825 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826 			flags, tx, callback, sh);
827 }
828 
829 static void ops_complete_check(void *stripe_head_ref)
830 {
831 	struct stripe_head *sh = stripe_head_ref;
832 	int pd_idx = sh->pd_idx;
833 
834 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
835 		(unsigned long long)sh->sector);
836 
837 	if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
838 		sh->ops.zero_sum_result == 0)
839 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
840 
841 	set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
842 	set_bit(STRIPE_HANDLE, &sh->state);
843 	release_stripe(sh);
844 }
845 
846 static void ops_run_check(struct stripe_head *sh)
847 {
848 	/* kernel stack size limits the total number of disks */
849 	int disks = sh->disks;
850 	struct page *xor_srcs[disks];
851 	struct dma_async_tx_descriptor *tx;
852 
853 	int count = 0, pd_idx = sh->pd_idx, i;
854 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
855 
856 	pr_debug("%s: stripe %llu\n", __FUNCTION__,
857 		(unsigned long long)sh->sector);
858 
859 	for (i = disks; i--; ) {
860 		struct r5dev *dev = &sh->dev[i];
861 		if (i != pd_idx)
862 			xor_srcs[count++] = dev->page;
863 	}
864 
865 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
866 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
867 
868 	if (tx)
869 		set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
870 	else
871 		clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
872 
873 	atomic_inc(&sh->count);
874 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
875 		ops_complete_check, sh);
876 }
877 
878 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
879 {
880 	int overlap_clear = 0, i, disks = sh->disks;
881 	struct dma_async_tx_descriptor *tx = NULL;
882 
883 	if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
884 		ops_run_biofill(sh);
885 		overlap_clear++;
886 	}
887 
888 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
889 		tx = ops_run_compute5(sh, pending);
890 
891 	if (test_bit(STRIPE_OP_PREXOR, &pending))
892 		tx = ops_run_prexor(sh, tx);
893 
894 	if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
895 		tx = ops_run_biodrain(sh, tx);
896 		overlap_clear++;
897 	}
898 
899 	if (test_bit(STRIPE_OP_POSTXOR, &pending))
900 		ops_run_postxor(sh, tx);
901 
902 	if (test_bit(STRIPE_OP_CHECK, &pending))
903 		ops_run_check(sh);
904 
905 	if (test_bit(STRIPE_OP_IO, &pending))
906 		ops_run_io(sh);
907 
908 	if (overlap_clear)
909 		for (i = disks; i--; ) {
910 			struct r5dev *dev = &sh->dev[i];
911 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
912 				wake_up(&sh->raid_conf->wait_for_overlap);
913 		}
914 }
915 
916 static int grow_one_stripe(raid5_conf_t *conf)
917 {
918 	struct stripe_head *sh;
919 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
920 	if (!sh)
921 		return 0;
922 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
923 	sh->raid_conf = conf;
924 	spin_lock_init(&sh->lock);
925 
926 	if (grow_buffers(sh, conf->raid_disks)) {
927 		shrink_buffers(sh, conf->raid_disks);
928 		kmem_cache_free(conf->slab_cache, sh);
929 		return 0;
930 	}
931 	sh->disks = conf->raid_disks;
932 	/* we just created an active stripe so... */
933 	atomic_set(&sh->count, 1);
934 	atomic_inc(&conf->active_stripes);
935 	INIT_LIST_HEAD(&sh->lru);
936 	release_stripe(sh);
937 	return 1;
938 }
939 
940 static int grow_stripes(raid5_conf_t *conf, int num)
941 {
942 	struct kmem_cache *sc;
943 	int devs = conf->raid_disks;
944 
945 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
946 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
947 	conf->active_name = 0;
948 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
949 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
950 			       0, 0, NULL);
951 	if (!sc)
952 		return 1;
953 	conf->slab_cache = sc;
954 	conf->pool_size = devs;
955 	while (num--)
956 		if (!grow_one_stripe(conf))
957 			return 1;
958 	return 0;
959 }
960 
961 #ifdef CONFIG_MD_RAID5_RESHAPE
962 static int resize_stripes(raid5_conf_t *conf, int newsize)
963 {
964 	/* Make all the stripes able to hold 'newsize' devices.
965 	 * New slots in each stripe get 'page' set to a new page.
966 	 *
967 	 * This happens in stages:
968 	 * 1/ create a new kmem_cache and allocate the required number of
969 	 *    stripe_heads.
970 	 * 2/ gather all the old stripe_heads and tranfer the pages across
971 	 *    to the new stripe_heads.  This will have the side effect of
972 	 *    freezing the array as once all stripe_heads have been collected,
973 	 *    no IO will be possible.  Old stripe heads are freed once their
974 	 *    pages have been transferred over, and the old kmem_cache is
975 	 *    freed when all stripes are done.
976 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
977 	 *    we simple return a failre status - no need to clean anything up.
978 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
979 	 *    If this fails, we don't bother trying the shrink the
980 	 *    stripe_heads down again, we just leave them as they are.
981 	 *    As each stripe_head is processed the new one is released into
982 	 *    active service.
983 	 *
984 	 * Once step2 is started, we cannot afford to wait for a write,
985 	 * so we use GFP_NOIO allocations.
986 	 */
987 	struct stripe_head *osh, *nsh;
988 	LIST_HEAD(newstripes);
989 	struct disk_info *ndisks;
990 	int err = 0;
991 	struct kmem_cache *sc;
992 	int i;
993 
994 	if (newsize <= conf->pool_size)
995 		return 0; /* never bother to shrink */
996 
997 	md_allow_write(conf->mddev);
998 
999 	/* Step 1 */
1000 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1001 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1002 			       0, 0, NULL);
1003 	if (!sc)
1004 		return -ENOMEM;
1005 
1006 	for (i = conf->max_nr_stripes; i; i--) {
1007 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1008 		if (!nsh)
1009 			break;
1010 
1011 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1012 
1013 		nsh->raid_conf = conf;
1014 		spin_lock_init(&nsh->lock);
1015 
1016 		list_add(&nsh->lru, &newstripes);
1017 	}
1018 	if (i) {
1019 		/* didn't get enough, give up */
1020 		while (!list_empty(&newstripes)) {
1021 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1022 			list_del(&nsh->lru);
1023 			kmem_cache_free(sc, nsh);
1024 		}
1025 		kmem_cache_destroy(sc);
1026 		return -ENOMEM;
1027 	}
1028 	/* Step 2 - Must use GFP_NOIO now.
1029 	 * OK, we have enough stripes, start collecting inactive
1030 	 * stripes and copying them over
1031 	 */
1032 	list_for_each_entry(nsh, &newstripes, lru) {
1033 		spin_lock_irq(&conf->device_lock);
1034 		wait_event_lock_irq(conf->wait_for_stripe,
1035 				    !list_empty(&conf->inactive_list),
1036 				    conf->device_lock,
1037 				    unplug_slaves(conf->mddev)
1038 			);
1039 		osh = get_free_stripe(conf);
1040 		spin_unlock_irq(&conf->device_lock);
1041 		atomic_set(&nsh->count, 1);
1042 		for(i=0; i<conf->pool_size; i++)
1043 			nsh->dev[i].page = osh->dev[i].page;
1044 		for( ; i<newsize; i++)
1045 			nsh->dev[i].page = NULL;
1046 		kmem_cache_free(conf->slab_cache, osh);
1047 	}
1048 	kmem_cache_destroy(conf->slab_cache);
1049 
1050 	/* Step 3.
1051 	 * At this point, we are holding all the stripes so the array
1052 	 * is completely stalled, so now is a good time to resize
1053 	 * conf->disks.
1054 	 */
1055 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1056 	if (ndisks) {
1057 		for (i=0; i<conf->raid_disks; i++)
1058 			ndisks[i] = conf->disks[i];
1059 		kfree(conf->disks);
1060 		conf->disks = ndisks;
1061 	} else
1062 		err = -ENOMEM;
1063 
1064 	/* Step 4, return new stripes to service */
1065 	while(!list_empty(&newstripes)) {
1066 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1067 		list_del_init(&nsh->lru);
1068 		for (i=conf->raid_disks; i < newsize; i++)
1069 			if (nsh->dev[i].page == NULL) {
1070 				struct page *p = alloc_page(GFP_NOIO);
1071 				nsh->dev[i].page = p;
1072 				if (!p)
1073 					err = -ENOMEM;
1074 			}
1075 		release_stripe(nsh);
1076 	}
1077 	/* critical section pass, GFP_NOIO no longer needed */
1078 
1079 	conf->slab_cache = sc;
1080 	conf->active_name = 1-conf->active_name;
1081 	conf->pool_size = newsize;
1082 	return err;
1083 }
1084 #endif
1085 
1086 static int drop_one_stripe(raid5_conf_t *conf)
1087 {
1088 	struct stripe_head *sh;
1089 
1090 	spin_lock_irq(&conf->device_lock);
1091 	sh = get_free_stripe(conf);
1092 	spin_unlock_irq(&conf->device_lock);
1093 	if (!sh)
1094 		return 0;
1095 	BUG_ON(atomic_read(&sh->count));
1096 	shrink_buffers(sh, conf->pool_size);
1097 	kmem_cache_free(conf->slab_cache, sh);
1098 	atomic_dec(&conf->active_stripes);
1099 	return 1;
1100 }
1101 
1102 static void shrink_stripes(raid5_conf_t *conf)
1103 {
1104 	while (drop_one_stripe(conf))
1105 		;
1106 
1107 	if (conf->slab_cache)
1108 		kmem_cache_destroy(conf->slab_cache);
1109 	conf->slab_cache = NULL;
1110 }
1111 
1112 static void raid5_end_read_request(struct bio * bi, int error)
1113 {
1114  	struct stripe_head *sh = bi->bi_private;
1115 	raid5_conf_t *conf = sh->raid_conf;
1116 	int disks = sh->disks, i;
1117 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1118 	char b[BDEVNAME_SIZE];
1119 	mdk_rdev_t *rdev;
1120 
1121 
1122 	for (i=0 ; i<disks; i++)
1123 		if (bi == &sh->dev[i].req)
1124 			break;
1125 
1126 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1127 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1128 		uptodate);
1129 	if (i == disks) {
1130 		BUG();
1131 		return;
1132 	}
1133 
1134 	if (uptodate) {
1135 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1136 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1137 			rdev = conf->disks[i].rdev;
1138 			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1139 			       mdname(conf->mddev), STRIPE_SECTORS,
1140 			       (unsigned long long)sh->sector + rdev->data_offset,
1141 			       bdevname(rdev->bdev, b));
1142 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1143 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1144 		}
1145 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1146 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1147 	} else {
1148 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1149 		int retry = 0;
1150 		rdev = conf->disks[i].rdev;
1151 
1152 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1153 		atomic_inc(&rdev->read_errors);
1154 		if (conf->mddev->degraded)
1155 			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1156 			       mdname(conf->mddev),
1157 			       (unsigned long long)sh->sector + rdev->data_offset,
1158 			       bdn);
1159 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1160 			/* Oh, no!!! */
1161 			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1162 			       mdname(conf->mddev),
1163 			       (unsigned long long)sh->sector + rdev->data_offset,
1164 			       bdn);
1165 		else if (atomic_read(&rdev->read_errors)
1166 			 > conf->max_nr_stripes)
1167 			printk(KERN_WARNING
1168 			       "raid5:%s: Too many read errors, failing device %s.\n",
1169 			       mdname(conf->mddev), bdn);
1170 		else
1171 			retry = 1;
1172 		if (retry)
1173 			set_bit(R5_ReadError, &sh->dev[i].flags);
1174 		else {
1175 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1176 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1177 			md_error(conf->mddev, rdev);
1178 		}
1179 	}
1180 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1181 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1182 	set_bit(STRIPE_HANDLE, &sh->state);
1183 	release_stripe(sh);
1184 }
1185 
1186 static void raid5_end_write_request (struct bio *bi, int error)
1187 {
1188  	struct stripe_head *sh = bi->bi_private;
1189 	raid5_conf_t *conf = sh->raid_conf;
1190 	int disks = sh->disks, i;
1191 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1192 
1193 	for (i=0 ; i<disks; i++)
1194 		if (bi == &sh->dev[i].req)
1195 			break;
1196 
1197 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1198 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1199 		uptodate);
1200 	if (i == disks) {
1201 		BUG();
1202 		return;
1203 	}
1204 
1205 	if (!uptodate)
1206 		md_error(conf->mddev, conf->disks[i].rdev);
1207 
1208 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1209 
1210 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1211 	set_bit(STRIPE_HANDLE, &sh->state);
1212 	release_stripe(sh);
1213 }
1214 
1215 
1216 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1217 
1218 static void raid5_build_block (struct stripe_head *sh, int i)
1219 {
1220 	struct r5dev *dev = &sh->dev[i];
1221 
1222 	bio_init(&dev->req);
1223 	dev->req.bi_io_vec = &dev->vec;
1224 	dev->req.bi_vcnt++;
1225 	dev->req.bi_max_vecs++;
1226 	dev->vec.bv_page = dev->page;
1227 	dev->vec.bv_len = STRIPE_SIZE;
1228 	dev->vec.bv_offset = 0;
1229 
1230 	dev->req.bi_sector = sh->sector;
1231 	dev->req.bi_private = sh;
1232 
1233 	dev->flags = 0;
1234 	dev->sector = compute_blocknr(sh, i);
1235 }
1236 
1237 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1238 {
1239 	char b[BDEVNAME_SIZE];
1240 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1241 	pr_debug("raid5: error called\n");
1242 
1243 	if (!test_bit(Faulty, &rdev->flags)) {
1244 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1245 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246 			unsigned long flags;
1247 			spin_lock_irqsave(&conf->device_lock, flags);
1248 			mddev->degraded++;
1249 			spin_unlock_irqrestore(&conf->device_lock, flags);
1250 			/*
1251 			 * if recovery was running, make sure it aborts.
1252 			 */
1253 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1254 		}
1255 		set_bit(Faulty, &rdev->flags);
1256 		printk (KERN_ALERT
1257 			"raid5: Disk failure on %s, disabling device."
1258 			" Operation continuing on %d devices\n",
1259 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1260 	}
1261 }
1262 
1263 /*
1264  * Input: a 'big' sector number,
1265  * Output: index of the data and parity disk, and the sector # in them.
1266  */
1267 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1268 			unsigned int data_disks, unsigned int * dd_idx,
1269 			unsigned int * pd_idx, raid5_conf_t *conf)
1270 {
1271 	long stripe;
1272 	unsigned long chunk_number;
1273 	unsigned int chunk_offset;
1274 	sector_t new_sector;
1275 	int sectors_per_chunk = conf->chunk_size >> 9;
1276 
1277 	/* First compute the information on this sector */
1278 
1279 	/*
1280 	 * Compute the chunk number and the sector offset inside the chunk
1281 	 */
1282 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1283 	chunk_number = r_sector;
1284 	BUG_ON(r_sector != chunk_number);
1285 
1286 	/*
1287 	 * Compute the stripe number
1288 	 */
1289 	stripe = chunk_number / data_disks;
1290 
1291 	/*
1292 	 * Compute the data disk and parity disk indexes inside the stripe
1293 	 */
1294 	*dd_idx = chunk_number % data_disks;
1295 
1296 	/*
1297 	 * Select the parity disk based on the user selected algorithm.
1298 	 */
1299 	switch(conf->level) {
1300 	case 4:
1301 		*pd_idx = data_disks;
1302 		break;
1303 	case 5:
1304 		switch (conf->algorithm) {
1305 		case ALGORITHM_LEFT_ASYMMETRIC:
1306 			*pd_idx = data_disks - stripe % raid_disks;
1307 			if (*dd_idx >= *pd_idx)
1308 				(*dd_idx)++;
1309 			break;
1310 		case ALGORITHM_RIGHT_ASYMMETRIC:
1311 			*pd_idx = stripe % raid_disks;
1312 			if (*dd_idx >= *pd_idx)
1313 				(*dd_idx)++;
1314 			break;
1315 		case ALGORITHM_LEFT_SYMMETRIC:
1316 			*pd_idx = data_disks - stripe % raid_disks;
1317 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1318 			break;
1319 		case ALGORITHM_RIGHT_SYMMETRIC:
1320 			*pd_idx = stripe % raid_disks;
1321 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322 			break;
1323 		default:
1324 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1325 				conf->algorithm);
1326 		}
1327 		break;
1328 	case 6:
1329 
1330 		/**** FIX THIS ****/
1331 		switch (conf->algorithm) {
1332 		case ALGORITHM_LEFT_ASYMMETRIC:
1333 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334 			if (*pd_idx == raid_disks-1)
1335 				(*dd_idx)++; 	/* Q D D D P */
1336 			else if (*dd_idx >= *pd_idx)
1337 				(*dd_idx) += 2; /* D D P Q D */
1338 			break;
1339 		case ALGORITHM_RIGHT_ASYMMETRIC:
1340 			*pd_idx = stripe % raid_disks;
1341 			if (*pd_idx == raid_disks-1)
1342 				(*dd_idx)++; 	/* Q D D D P */
1343 			else if (*dd_idx >= *pd_idx)
1344 				(*dd_idx) += 2; /* D D P Q D */
1345 			break;
1346 		case ALGORITHM_LEFT_SYMMETRIC:
1347 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1349 			break;
1350 		case ALGORITHM_RIGHT_SYMMETRIC:
1351 			*pd_idx = stripe % raid_disks;
1352 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353 			break;
1354 		default:
1355 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1356 				conf->algorithm);
1357 		}
1358 		break;
1359 	}
1360 
1361 	/*
1362 	 * Finally, compute the new sector number
1363 	 */
1364 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1365 	return new_sector;
1366 }
1367 
1368 
1369 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1370 {
1371 	raid5_conf_t *conf = sh->raid_conf;
1372 	int raid_disks = sh->disks;
1373 	int data_disks = raid_disks - conf->max_degraded;
1374 	sector_t new_sector = sh->sector, check;
1375 	int sectors_per_chunk = conf->chunk_size >> 9;
1376 	sector_t stripe;
1377 	int chunk_offset;
1378 	int chunk_number, dummy1, dummy2, dd_idx = i;
1379 	sector_t r_sector;
1380 
1381 
1382 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1383 	stripe = new_sector;
1384 	BUG_ON(new_sector != stripe);
1385 
1386 	if (i == sh->pd_idx)
1387 		return 0;
1388 	switch(conf->level) {
1389 	case 4: break;
1390 	case 5:
1391 		switch (conf->algorithm) {
1392 		case ALGORITHM_LEFT_ASYMMETRIC:
1393 		case ALGORITHM_RIGHT_ASYMMETRIC:
1394 			if (i > sh->pd_idx)
1395 				i--;
1396 			break;
1397 		case ALGORITHM_LEFT_SYMMETRIC:
1398 		case ALGORITHM_RIGHT_SYMMETRIC:
1399 			if (i < sh->pd_idx)
1400 				i += raid_disks;
1401 			i -= (sh->pd_idx + 1);
1402 			break;
1403 		default:
1404 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1405 			       conf->algorithm);
1406 		}
1407 		break;
1408 	case 6:
1409 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1410 			return 0; /* It is the Q disk */
1411 		switch (conf->algorithm) {
1412 		case ALGORITHM_LEFT_ASYMMETRIC:
1413 		case ALGORITHM_RIGHT_ASYMMETRIC:
1414 		  	if (sh->pd_idx == raid_disks-1)
1415 				i--; 	/* Q D D D P */
1416 			else if (i > sh->pd_idx)
1417 				i -= 2; /* D D P Q D */
1418 			break;
1419 		case ALGORITHM_LEFT_SYMMETRIC:
1420 		case ALGORITHM_RIGHT_SYMMETRIC:
1421 			if (sh->pd_idx == raid_disks-1)
1422 				i--; /* Q D D D P */
1423 			else {
1424 				/* D D P Q D */
1425 				if (i < sh->pd_idx)
1426 					i += raid_disks;
1427 				i -= (sh->pd_idx + 2);
1428 			}
1429 			break;
1430 		default:
1431 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1432 				conf->algorithm);
1433 		}
1434 		break;
1435 	}
1436 
1437 	chunk_number = stripe * data_disks + i;
1438 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1439 
1440 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1441 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1442 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1443 		return 0;
1444 	}
1445 	return r_sector;
1446 }
1447 
1448 
1449 
1450 /*
1451  * Copy data between a page in the stripe cache, and one or more bion
1452  * The page could align with the middle of the bio, or there could be
1453  * several bion, each with several bio_vecs, which cover part of the page
1454  * Multiple bion are linked together on bi_next.  There may be extras
1455  * at the end of this list.  We ignore them.
1456  */
1457 static void copy_data(int frombio, struct bio *bio,
1458 		     struct page *page,
1459 		     sector_t sector)
1460 {
1461 	char *pa = page_address(page);
1462 	struct bio_vec *bvl;
1463 	int i;
1464 	int page_offset;
1465 
1466 	if (bio->bi_sector >= sector)
1467 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1468 	else
1469 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1470 	bio_for_each_segment(bvl, bio, i) {
1471 		int len = bio_iovec_idx(bio,i)->bv_len;
1472 		int clen;
1473 		int b_offset = 0;
1474 
1475 		if (page_offset < 0) {
1476 			b_offset = -page_offset;
1477 			page_offset += b_offset;
1478 			len -= b_offset;
1479 		}
1480 
1481 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1482 			clen = STRIPE_SIZE - page_offset;
1483 		else clen = len;
1484 
1485 		if (clen > 0) {
1486 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1487 			if (frombio)
1488 				memcpy(pa+page_offset, ba+b_offset, clen);
1489 			else
1490 				memcpy(ba+b_offset, pa+page_offset, clen);
1491 			__bio_kunmap_atomic(ba, KM_USER0);
1492 		}
1493 		if (clen < len) /* hit end of page */
1494 			break;
1495 		page_offset +=  len;
1496 	}
1497 }
1498 
1499 #define check_xor()	do {						  \
1500 				if (count == MAX_XOR_BLOCKS) {		  \
1501 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1502 				count = 0;				  \
1503 			   }						  \
1504 			} while(0)
1505 
1506 static void compute_parity6(struct stripe_head *sh, int method)
1507 {
1508 	raid6_conf_t *conf = sh->raid_conf;
1509 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1510 	struct bio *chosen;
1511 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1512 	void *ptrs[disks];
1513 
1514 	qd_idx = raid6_next_disk(pd_idx, disks);
1515 	d0_idx = raid6_next_disk(qd_idx, disks);
1516 
1517 	pr_debug("compute_parity, stripe %llu, method %d\n",
1518 		(unsigned long long)sh->sector, method);
1519 
1520 	switch(method) {
1521 	case READ_MODIFY_WRITE:
1522 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1523 	case RECONSTRUCT_WRITE:
1524 		for (i= disks; i-- ;)
1525 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1526 				chosen = sh->dev[i].towrite;
1527 				sh->dev[i].towrite = NULL;
1528 
1529 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1530 					wake_up(&conf->wait_for_overlap);
1531 
1532 				BUG_ON(sh->dev[i].written);
1533 				sh->dev[i].written = chosen;
1534 			}
1535 		break;
1536 	case CHECK_PARITY:
1537 		BUG();		/* Not implemented yet */
1538 	}
1539 
1540 	for (i = disks; i--;)
1541 		if (sh->dev[i].written) {
1542 			sector_t sector = sh->dev[i].sector;
1543 			struct bio *wbi = sh->dev[i].written;
1544 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1545 				copy_data(1, wbi, sh->dev[i].page, sector);
1546 				wbi = r5_next_bio(wbi, sector);
1547 			}
1548 
1549 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1550 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1551 		}
1552 
1553 //	switch(method) {
1554 //	case RECONSTRUCT_WRITE:
1555 //	case CHECK_PARITY:
1556 //	case UPDATE_PARITY:
1557 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1558 		/* FIX: Is this ordering of drives even remotely optimal? */
1559 		count = 0;
1560 		i = d0_idx;
1561 		do {
1562 			ptrs[count++] = page_address(sh->dev[i].page);
1563 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1564 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1565 			i = raid6_next_disk(i, disks);
1566 		} while ( i != d0_idx );
1567 //		break;
1568 //	}
1569 
1570 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1571 
1572 	switch(method) {
1573 	case RECONSTRUCT_WRITE:
1574 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1575 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1576 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1577 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1578 		break;
1579 	case UPDATE_PARITY:
1580 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582 		break;
1583 	}
1584 }
1585 
1586 
1587 /* Compute one missing block */
1588 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1589 {
1590 	int i, count, disks = sh->disks;
1591 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1592 	int pd_idx = sh->pd_idx;
1593 	int qd_idx = raid6_next_disk(pd_idx, disks);
1594 
1595 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1596 		(unsigned long long)sh->sector, dd_idx);
1597 
1598 	if ( dd_idx == qd_idx ) {
1599 		/* We're actually computing the Q drive */
1600 		compute_parity6(sh, UPDATE_PARITY);
1601 	} else {
1602 		dest = page_address(sh->dev[dd_idx].page);
1603 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1604 		count = 0;
1605 		for (i = disks ; i--; ) {
1606 			if (i == dd_idx || i == qd_idx)
1607 				continue;
1608 			p = page_address(sh->dev[i].page);
1609 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1610 				ptr[count++] = p;
1611 			else
1612 				printk("compute_block() %d, stripe %llu, %d"
1613 				       " not present\n", dd_idx,
1614 				       (unsigned long long)sh->sector, i);
1615 
1616 			check_xor();
1617 		}
1618 		if (count)
1619 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1620 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1622 	}
1623 }
1624 
1625 /* Compute two missing blocks */
1626 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1627 {
1628 	int i, count, disks = sh->disks;
1629 	int pd_idx = sh->pd_idx;
1630 	int qd_idx = raid6_next_disk(pd_idx, disks);
1631 	int d0_idx = raid6_next_disk(qd_idx, disks);
1632 	int faila, failb;
1633 
1634 	/* faila and failb are disk numbers relative to d0_idx */
1635 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1636 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1637 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1638 
1639 	BUG_ON(faila == failb);
1640 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1641 
1642 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1643 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1644 
1645 	if ( failb == disks-1 ) {
1646 		/* Q disk is one of the missing disks */
1647 		if ( faila == disks-2 ) {
1648 			/* Missing P+Q, just recompute */
1649 			compute_parity6(sh, UPDATE_PARITY);
1650 			return;
1651 		} else {
1652 			/* We're missing D+Q; recompute D from P */
1653 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1654 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1655 			return;
1656 		}
1657 	}
1658 
1659 	/* We're missing D+P or D+D; build pointer table */
1660 	{
1661 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662 		void *ptrs[disks];
1663 
1664 		count = 0;
1665 		i = d0_idx;
1666 		do {
1667 			ptrs[count++] = page_address(sh->dev[i].page);
1668 			i = raid6_next_disk(i, disks);
1669 			if (i != dd_idx1 && i != dd_idx2 &&
1670 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1671 				printk("compute_2 with missing block %d/%d\n", count, i);
1672 		} while ( i != d0_idx );
1673 
1674 		if ( failb == disks-2 ) {
1675 			/* We're missing D+P. */
1676 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1677 		} else {
1678 			/* We're missing D+D. */
1679 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1680 		}
1681 
1682 		/* Both the above update both missing blocks */
1683 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1684 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1685 	}
1686 }
1687 
1688 static int
1689 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1690 {
1691 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1692 	int locked = 0;
1693 
1694 	if (rcw) {
1695 		/* if we are not expanding this is a proper write request, and
1696 		 * there will be bios with new data to be drained into the
1697 		 * stripe cache
1698 		 */
1699 		if (!expand) {
1700 			set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1701 			sh->ops.count++;
1702 		}
1703 
1704 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1705 		sh->ops.count++;
1706 
1707 		for (i = disks; i--; ) {
1708 			struct r5dev *dev = &sh->dev[i];
1709 
1710 			if (dev->towrite) {
1711 				set_bit(R5_LOCKED, &dev->flags);
1712 				if (!expand)
1713 					clear_bit(R5_UPTODATE, &dev->flags);
1714 				locked++;
1715 			}
1716 		}
1717 	} else {
1718 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1719 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1720 
1721 		set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1722 		set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1723 		set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1724 
1725 		sh->ops.count += 3;
1726 
1727 		for (i = disks; i--; ) {
1728 			struct r5dev *dev = &sh->dev[i];
1729 			if (i == pd_idx)
1730 				continue;
1731 
1732 			/* For a read-modify write there may be blocks that are
1733 			 * locked for reading while others are ready to be
1734 			 * written so we distinguish these blocks by the
1735 			 * R5_Wantprexor bit
1736 			 */
1737 			if (dev->towrite &&
1738 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1739 			    test_bit(R5_Wantcompute, &dev->flags))) {
1740 				set_bit(R5_Wantprexor, &dev->flags);
1741 				set_bit(R5_LOCKED, &dev->flags);
1742 				clear_bit(R5_UPTODATE, &dev->flags);
1743 				locked++;
1744 			}
1745 		}
1746 	}
1747 
1748 	/* keep the parity disk locked while asynchronous operations
1749 	 * are in flight
1750 	 */
1751 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1752 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1753 	locked++;
1754 
1755 	pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1756 		__FUNCTION__, (unsigned long long)sh->sector,
1757 		locked, sh->ops.pending);
1758 
1759 	return locked;
1760 }
1761 
1762 /*
1763  * Each stripe/dev can have one or more bion attached.
1764  * toread/towrite point to the first in a chain.
1765  * The bi_next chain must be in order.
1766  */
1767 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1768 {
1769 	struct bio **bip;
1770 	raid5_conf_t *conf = sh->raid_conf;
1771 	int firstwrite=0;
1772 
1773 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1774 		(unsigned long long)bi->bi_sector,
1775 		(unsigned long long)sh->sector);
1776 
1777 
1778 	spin_lock(&sh->lock);
1779 	spin_lock_irq(&conf->device_lock);
1780 	if (forwrite) {
1781 		bip = &sh->dev[dd_idx].towrite;
1782 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1783 			firstwrite = 1;
1784 	} else
1785 		bip = &sh->dev[dd_idx].toread;
1786 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1787 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1788 			goto overlap;
1789 		bip = & (*bip)->bi_next;
1790 	}
1791 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1792 		goto overlap;
1793 
1794 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1795 	if (*bip)
1796 		bi->bi_next = *bip;
1797 	*bip = bi;
1798 	bi->bi_phys_segments ++;
1799 	spin_unlock_irq(&conf->device_lock);
1800 	spin_unlock(&sh->lock);
1801 
1802 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1803 		(unsigned long long)bi->bi_sector,
1804 		(unsigned long long)sh->sector, dd_idx);
1805 
1806 	if (conf->mddev->bitmap && firstwrite) {
1807 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1808 				  STRIPE_SECTORS, 0);
1809 		sh->bm_seq = conf->seq_flush+1;
1810 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1811 	}
1812 
1813 	if (forwrite) {
1814 		/* check if page is covered */
1815 		sector_t sector = sh->dev[dd_idx].sector;
1816 		for (bi=sh->dev[dd_idx].towrite;
1817 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1818 			     bi && bi->bi_sector <= sector;
1819 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1820 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1821 				sector = bi->bi_sector + (bi->bi_size>>9);
1822 		}
1823 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1824 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1825 	}
1826 	return 1;
1827 
1828  overlap:
1829 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1830 	spin_unlock_irq(&conf->device_lock);
1831 	spin_unlock(&sh->lock);
1832 	return 0;
1833 }
1834 
1835 static void end_reshape(raid5_conf_t *conf);
1836 
1837 static int page_is_zero(struct page *p)
1838 {
1839 	char *a = page_address(p);
1840 	return ((*(u32*)a) == 0 &&
1841 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1842 }
1843 
1844 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1845 {
1846 	int sectors_per_chunk = conf->chunk_size >> 9;
1847 	int pd_idx, dd_idx;
1848 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1849 
1850 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1851 			     *sectors_per_chunk + chunk_offset,
1852 			     disks, disks - conf->max_degraded,
1853 			     &dd_idx, &pd_idx, conf);
1854 	return pd_idx;
1855 }
1856 
1857 static void
1858 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1859 				struct stripe_head_state *s, int disks,
1860 				struct bio **return_bi)
1861 {
1862 	int i;
1863 	for (i = disks; i--; ) {
1864 		struct bio *bi;
1865 		int bitmap_end = 0;
1866 
1867 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1868 			mdk_rdev_t *rdev;
1869 			rcu_read_lock();
1870 			rdev = rcu_dereference(conf->disks[i].rdev);
1871 			if (rdev && test_bit(In_sync, &rdev->flags))
1872 				/* multiple read failures in one stripe */
1873 				md_error(conf->mddev, rdev);
1874 			rcu_read_unlock();
1875 		}
1876 		spin_lock_irq(&conf->device_lock);
1877 		/* fail all writes first */
1878 		bi = sh->dev[i].towrite;
1879 		sh->dev[i].towrite = NULL;
1880 		if (bi) {
1881 			s->to_write--;
1882 			bitmap_end = 1;
1883 		}
1884 
1885 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1886 			wake_up(&conf->wait_for_overlap);
1887 
1888 		while (bi && bi->bi_sector <
1889 			sh->dev[i].sector + STRIPE_SECTORS) {
1890 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1891 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1892 			if (--bi->bi_phys_segments == 0) {
1893 				md_write_end(conf->mddev);
1894 				bi->bi_next = *return_bi;
1895 				*return_bi = bi;
1896 			}
1897 			bi = nextbi;
1898 		}
1899 		/* and fail all 'written' */
1900 		bi = sh->dev[i].written;
1901 		sh->dev[i].written = NULL;
1902 		if (bi) bitmap_end = 1;
1903 		while (bi && bi->bi_sector <
1904 		       sh->dev[i].sector + STRIPE_SECTORS) {
1905 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1906 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1907 			if (--bi->bi_phys_segments == 0) {
1908 				md_write_end(conf->mddev);
1909 				bi->bi_next = *return_bi;
1910 				*return_bi = bi;
1911 			}
1912 			bi = bi2;
1913 		}
1914 
1915 		/* fail any reads if this device is non-operational and
1916 		 * the data has not reached the cache yet.
1917 		 */
1918 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1919 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1920 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1921 			bi = sh->dev[i].toread;
1922 			sh->dev[i].toread = NULL;
1923 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1924 				wake_up(&conf->wait_for_overlap);
1925 			if (bi) s->to_read--;
1926 			while (bi && bi->bi_sector <
1927 			       sh->dev[i].sector + STRIPE_SECTORS) {
1928 				struct bio *nextbi =
1929 					r5_next_bio(bi, sh->dev[i].sector);
1930 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1931 				if (--bi->bi_phys_segments == 0) {
1932 					bi->bi_next = *return_bi;
1933 					*return_bi = bi;
1934 				}
1935 				bi = nextbi;
1936 			}
1937 		}
1938 		spin_unlock_irq(&conf->device_lock);
1939 		if (bitmap_end)
1940 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1941 					STRIPE_SECTORS, 0, 0);
1942 	}
1943 
1944 }
1945 
1946 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1947  * to process
1948  */
1949 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1950 			struct stripe_head_state *s, int disk_idx, int disks)
1951 {
1952 	struct r5dev *dev = &sh->dev[disk_idx];
1953 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1954 
1955 	/* don't schedule compute operations or reads on the parity block while
1956 	 * a check is in flight
1957 	 */
1958 	if ((disk_idx == sh->pd_idx) &&
1959 	     test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1960 		return ~0;
1961 
1962 	/* is the data in this block needed, and can we get it? */
1963 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1964 	    !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1965 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1966 	     s->syncing || s->expanding || (s->failed &&
1967 	     (failed_dev->toread || (failed_dev->towrite &&
1968 	     !test_bit(R5_OVERWRITE, &failed_dev->flags)
1969 	     ))))) {
1970 		/* 1/ We would like to get this block, possibly by computing it,
1971 		 * but we might not be able to.
1972 		 *
1973 		 * 2/ Since parity check operations potentially make the parity
1974 		 * block !uptodate it will need to be refreshed before any
1975 		 * compute operations on data disks are scheduled.
1976 		 *
1977 		 * 3/ We hold off parity block re-reads until check operations
1978 		 * have quiesced.
1979 		 */
1980 		if ((s->uptodate == disks - 1) &&
1981 		    !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1982 			set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1983 			set_bit(R5_Wantcompute, &dev->flags);
1984 			sh->ops.target = disk_idx;
1985 			s->req_compute = 1;
1986 			sh->ops.count++;
1987 			/* Careful: from this point on 'uptodate' is in the eye
1988 			 * of raid5_run_ops which services 'compute' operations
1989 			 * before writes. R5_Wantcompute flags a block that will
1990 			 * be R5_UPTODATE by the time it is needed for a
1991 			 * subsequent operation.
1992 			 */
1993 			s->uptodate++;
1994 			return 0; /* uptodate + compute == disks */
1995 		} else if ((s->uptodate < disks - 1) &&
1996 			test_bit(R5_Insync, &dev->flags)) {
1997 			/* Note: we hold off compute operations while checks are
1998 			 * in flight, but we still prefer 'compute' over 'read'
1999 			 * hence we only read if (uptodate < * disks-1)
2000 			 */
2001 			set_bit(R5_LOCKED, &dev->flags);
2002 			set_bit(R5_Wantread, &dev->flags);
2003 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2004 				sh->ops.count++;
2005 			s->locked++;
2006 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2007 				s->syncing);
2008 		}
2009 	}
2010 
2011 	return ~0;
2012 }
2013 
2014 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2015 			struct stripe_head_state *s, int disks)
2016 {
2017 	int i;
2018 
2019 	/* Clear completed compute operations.  Parity recovery
2020 	 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2021 	 * later on in this routine
2022 	 */
2023 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2024 		!test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2025 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2026 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2027 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2028 	}
2029 
2030 	/* look for blocks to read/compute, skip this if a compute
2031 	 * is already in flight, or if the stripe contents are in the
2032 	 * midst of changing due to a write
2033 	 */
2034 	if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2035 		!test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2036 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2037 		for (i = disks; i--; )
2038 			if (__handle_issuing_new_read_requests5(
2039 				sh, s, i, disks) == 0)
2040 				break;
2041 	}
2042 	set_bit(STRIPE_HANDLE, &sh->state);
2043 }
2044 
2045 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2046 			struct stripe_head_state *s, struct r6_state *r6s,
2047 			int disks)
2048 {
2049 	int i;
2050 	for (i = disks; i--; ) {
2051 		struct r5dev *dev = &sh->dev[i];
2052 		if (!test_bit(R5_LOCKED, &dev->flags) &&
2053 		    !test_bit(R5_UPTODATE, &dev->flags) &&
2054 		    (dev->toread || (dev->towrite &&
2055 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
2056 		     s->syncing || s->expanding ||
2057 		     (s->failed >= 1 &&
2058 		      (sh->dev[r6s->failed_num[0]].toread ||
2059 		       s->to_write)) ||
2060 		     (s->failed >= 2 &&
2061 		      (sh->dev[r6s->failed_num[1]].toread ||
2062 		       s->to_write)))) {
2063 			/* we would like to get this block, possibly
2064 			 * by computing it, but we might not be able to
2065 			 */
2066 			if (s->uptodate == disks-1) {
2067 				pr_debug("Computing stripe %llu block %d\n",
2068 				       (unsigned long long)sh->sector, i);
2069 				compute_block_1(sh, i, 0);
2070 				s->uptodate++;
2071 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2072 				/* Computing 2-failure is *very* expensive; only
2073 				 * do it if failed >= 2
2074 				 */
2075 				int other;
2076 				for (other = disks; other--; ) {
2077 					if (other == i)
2078 						continue;
2079 					if (!test_bit(R5_UPTODATE,
2080 					      &sh->dev[other].flags))
2081 						break;
2082 				}
2083 				BUG_ON(other < 0);
2084 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2085 				       (unsigned long long)sh->sector,
2086 				       i, other);
2087 				compute_block_2(sh, i, other);
2088 				s->uptodate += 2;
2089 			} else if (test_bit(R5_Insync, &dev->flags)) {
2090 				set_bit(R5_LOCKED, &dev->flags);
2091 				set_bit(R5_Wantread, &dev->flags);
2092 				s->locked++;
2093 				pr_debug("Reading block %d (sync=%d)\n",
2094 					i, s->syncing);
2095 			}
2096 		}
2097 	}
2098 	set_bit(STRIPE_HANDLE, &sh->state);
2099 }
2100 
2101 
2102 /* handle_completed_write_requests
2103  * any written block on an uptodate or failed drive can be returned.
2104  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2105  * never LOCKED, so we don't need to test 'failed' directly.
2106  */
2107 static void handle_completed_write_requests(raid5_conf_t *conf,
2108 	struct stripe_head *sh, int disks, struct bio **return_bi)
2109 {
2110 	int i;
2111 	struct r5dev *dev;
2112 
2113 	for (i = disks; i--; )
2114 		if (sh->dev[i].written) {
2115 			dev = &sh->dev[i];
2116 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2117 				test_bit(R5_UPTODATE, &dev->flags)) {
2118 				/* We can return any write requests */
2119 				struct bio *wbi, *wbi2;
2120 				int bitmap_end = 0;
2121 				pr_debug("Return write for disc %d\n", i);
2122 				spin_lock_irq(&conf->device_lock);
2123 				wbi = dev->written;
2124 				dev->written = NULL;
2125 				while (wbi && wbi->bi_sector <
2126 					dev->sector + STRIPE_SECTORS) {
2127 					wbi2 = r5_next_bio(wbi, dev->sector);
2128 					if (--wbi->bi_phys_segments == 0) {
2129 						md_write_end(conf->mddev);
2130 						wbi->bi_next = *return_bi;
2131 						*return_bi = wbi;
2132 					}
2133 					wbi = wbi2;
2134 				}
2135 				if (dev->towrite == NULL)
2136 					bitmap_end = 1;
2137 				spin_unlock_irq(&conf->device_lock);
2138 				if (bitmap_end)
2139 					bitmap_endwrite(conf->mddev->bitmap,
2140 							sh->sector,
2141 							STRIPE_SECTORS,
2142 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2143 							0);
2144 			}
2145 		}
2146 }
2147 
2148 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2149 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2150 {
2151 	int rmw = 0, rcw = 0, i;
2152 	for (i = disks; i--; ) {
2153 		/* would I have to read this buffer for read_modify_write */
2154 		struct r5dev *dev = &sh->dev[i];
2155 		if ((dev->towrite || i == sh->pd_idx) &&
2156 		    !test_bit(R5_LOCKED, &dev->flags) &&
2157 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2158 		      test_bit(R5_Wantcompute, &dev->flags))) {
2159 			if (test_bit(R5_Insync, &dev->flags))
2160 				rmw++;
2161 			else
2162 				rmw += 2*disks;  /* cannot read it */
2163 		}
2164 		/* Would I have to read this buffer for reconstruct_write */
2165 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2166 		    !test_bit(R5_LOCKED, &dev->flags) &&
2167 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2168 		    test_bit(R5_Wantcompute, &dev->flags))) {
2169 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2170 			else
2171 				rcw += 2*disks;
2172 		}
2173 	}
2174 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2175 		(unsigned long long)sh->sector, rmw, rcw);
2176 	set_bit(STRIPE_HANDLE, &sh->state);
2177 	if (rmw < rcw && rmw > 0)
2178 		/* prefer read-modify-write, but need to get some data */
2179 		for (i = disks; i--; ) {
2180 			struct r5dev *dev = &sh->dev[i];
2181 			if ((dev->towrite || i == sh->pd_idx) &&
2182 			    !test_bit(R5_LOCKED, &dev->flags) &&
2183 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2184 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2185 			    test_bit(R5_Insync, &dev->flags)) {
2186 				if (
2187 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2188 					pr_debug("Read_old block "
2189 						"%d for r-m-w\n", i);
2190 					set_bit(R5_LOCKED, &dev->flags);
2191 					set_bit(R5_Wantread, &dev->flags);
2192 					if (!test_and_set_bit(
2193 						STRIPE_OP_IO, &sh->ops.pending))
2194 						sh->ops.count++;
2195 					s->locked++;
2196 				} else {
2197 					set_bit(STRIPE_DELAYED, &sh->state);
2198 					set_bit(STRIPE_HANDLE, &sh->state);
2199 				}
2200 			}
2201 		}
2202 	if (rcw <= rmw && rcw > 0)
2203 		/* want reconstruct write, but need to get some data */
2204 		for (i = disks; i--; ) {
2205 			struct r5dev *dev = &sh->dev[i];
2206 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2207 			    i != sh->pd_idx &&
2208 			    !test_bit(R5_LOCKED, &dev->flags) &&
2209 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2210 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2211 			    test_bit(R5_Insync, &dev->flags)) {
2212 				if (
2213 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2214 					pr_debug("Read_old block "
2215 						"%d for Reconstruct\n", i);
2216 					set_bit(R5_LOCKED, &dev->flags);
2217 					set_bit(R5_Wantread, &dev->flags);
2218 					if (!test_and_set_bit(
2219 						STRIPE_OP_IO, &sh->ops.pending))
2220 						sh->ops.count++;
2221 					s->locked++;
2222 				} else {
2223 					set_bit(STRIPE_DELAYED, &sh->state);
2224 					set_bit(STRIPE_HANDLE, &sh->state);
2225 				}
2226 			}
2227 		}
2228 	/* now if nothing is locked, and if we have enough data,
2229 	 * we can start a write request
2230 	 */
2231 	/* since handle_stripe can be called at any time we need to handle the
2232 	 * case where a compute block operation has been submitted and then a
2233 	 * subsequent call wants to start a write request.  raid5_run_ops only
2234 	 * handles the case where compute block and postxor are requested
2235 	 * simultaneously.  If this is not the case then new writes need to be
2236 	 * held off until the compute completes.
2237 	 */
2238 	if ((s->req_compute ||
2239 	    !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2240 		(s->locked == 0 && (rcw == 0 || rmw == 0) &&
2241 		!test_bit(STRIPE_BIT_DELAY, &sh->state)))
2242 		s->locked += handle_write_operations5(sh, rcw == 0, 0);
2243 }
2244 
2245 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2246 		struct stripe_head *sh,	struct stripe_head_state *s,
2247 		struct r6_state *r6s, int disks)
2248 {
2249 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2250 	int qd_idx = r6s->qd_idx;
2251 	for (i = disks; i--; ) {
2252 		struct r5dev *dev = &sh->dev[i];
2253 		/* Would I have to read this buffer for reconstruct_write */
2254 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2255 		    && i != pd_idx && i != qd_idx
2256 		    && (!test_bit(R5_LOCKED, &dev->flags)
2257 			    ) &&
2258 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2259 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2260 			else {
2261 				pr_debug("raid6: must_compute: "
2262 					"disk %d flags=%#lx\n", i, dev->flags);
2263 				must_compute++;
2264 			}
2265 		}
2266 	}
2267 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2268 	       (unsigned long long)sh->sector, rcw, must_compute);
2269 	set_bit(STRIPE_HANDLE, &sh->state);
2270 
2271 	if (rcw > 0)
2272 		/* want reconstruct write, but need to get some data */
2273 		for (i = disks; i--; ) {
2274 			struct r5dev *dev = &sh->dev[i];
2275 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2276 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2277 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2278 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2279 			    test_bit(R5_Insync, &dev->flags)) {
2280 				if (
2281 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2282 					pr_debug("Read_old stripe %llu "
2283 						"block %d for Reconstruct\n",
2284 					     (unsigned long long)sh->sector, i);
2285 					set_bit(R5_LOCKED, &dev->flags);
2286 					set_bit(R5_Wantread, &dev->flags);
2287 					s->locked++;
2288 				} else {
2289 					pr_debug("Request delayed stripe %llu "
2290 						"block %d for Reconstruct\n",
2291 					     (unsigned long long)sh->sector, i);
2292 					set_bit(STRIPE_DELAYED, &sh->state);
2293 					set_bit(STRIPE_HANDLE, &sh->state);
2294 				}
2295 			}
2296 		}
2297 	/* now if nothing is locked, and if we have enough data, we can start a
2298 	 * write request
2299 	 */
2300 	if (s->locked == 0 && rcw == 0 &&
2301 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2302 		if (must_compute > 0) {
2303 			/* We have failed blocks and need to compute them */
2304 			switch (s->failed) {
2305 			case 0:
2306 				BUG();
2307 			case 1:
2308 				compute_block_1(sh, r6s->failed_num[0], 0);
2309 				break;
2310 			case 2:
2311 				compute_block_2(sh, r6s->failed_num[0],
2312 						r6s->failed_num[1]);
2313 				break;
2314 			default: /* This request should have been failed? */
2315 				BUG();
2316 			}
2317 		}
2318 
2319 		pr_debug("Computing parity for stripe %llu\n",
2320 			(unsigned long long)sh->sector);
2321 		compute_parity6(sh, RECONSTRUCT_WRITE);
2322 		/* now every locked buffer is ready to be written */
2323 		for (i = disks; i--; )
2324 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2325 				pr_debug("Writing stripe %llu block %d\n",
2326 				       (unsigned long long)sh->sector, i);
2327 				s->locked++;
2328 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2329 			}
2330 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2331 		set_bit(STRIPE_INSYNC, &sh->state);
2332 
2333 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2334 			atomic_dec(&conf->preread_active_stripes);
2335 			if (atomic_read(&conf->preread_active_stripes) <
2336 			    IO_THRESHOLD)
2337 				md_wakeup_thread(conf->mddev->thread);
2338 		}
2339 	}
2340 }
2341 
2342 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2343 				struct stripe_head_state *s, int disks)
2344 {
2345 	set_bit(STRIPE_HANDLE, &sh->state);
2346 	/* Take one of the following actions:
2347 	 * 1/ start a check parity operation if (uptodate == disks)
2348 	 * 2/ finish a check parity operation and act on the result
2349 	 * 3/ skip to the writeback section if we previously
2350 	 *    initiated a recovery operation
2351 	 */
2352 	if (s->failed == 0 &&
2353 	    !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2354 		if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2355 			BUG_ON(s->uptodate != disks);
2356 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2357 			sh->ops.count++;
2358 			s->uptodate--;
2359 		} else if (
2360 		       test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2361 			clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2362 			clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2363 
2364 			if (sh->ops.zero_sum_result == 0)
2365 				/* parity is correct (on disc,
2366 				 * not in buffer any more)
2367 				 */
2368 				set_bit(STRIPE_INSYNC, &sh->state);
2369 			else {
2370 				conf->mddev->resync_mismatches +=
2371 					STRIPE_SECTORS;
2372 				if (test_bit(
2373 				     MD_RECOVERY_CHECK, &conf->mddev->recovery))
2374 					/* don't try to repair!! */
2375 					set_bit(STRIPE_INSYNC, &sh->state);
2376 				else {
2377 					set_bit(STRIPE_OP_COMPUTE_BLK,
2378 						&sh->ops.pending);
2379 					set_bit(STRIPE_OP_MOD_REPAIR_PD,
2380 						&sh->ops.pending);
2381 					set_bit(R5_Wantcompute,
2382 						&sh->dev[sh->pd_idx].flags);
2383 					sh->ops.target = sh->pd_idx;
2384 					sh->ops.count++;
2385 					s->uptodate++;
2386 				}
2387 			}
2388 		}
2389 	}
2390 
2391 	/* check if we can clear a parity disk reconstruct */
2392 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2393 		test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2394 
2395 		clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2396 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2397 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2398 		clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2399 	}
2400 
2401 	/* Wait for check parity and compute block operations to complete
2402 	 * before write-back
2403 	 */
2404 	if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2405 		!test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2406 		!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2407 		struct r5dev *dev;
2408 		/* either failed parity check, or recovery is happening */
2409 		if (s->failed == 0)
2410 			s->failed_num = sh->pd_idx;
2411 		dev = &sh->dev[s->failed_num];
2412 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2413 		BUG_ON(s->uptodate != disks);
2414 
2415 		set_bit(R5_LOCKED, &dev->flags);
2416 		set_bit(R5_Wantwrite, &dev->flags);
2417 		if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2418 			sh->ops.count++;
2419 
2420 		clear_bit(STRIPE_DEGRADED, &sh->state);
2421 		s->locked++;
2422 		set_bit(STRIPE_INSYNC, &sh->state);
2423 	}
2424 }
2425 
2426 
2427 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2428 				struct stripe_head_state *s,
2429 				struct r6_state *r6s, struct page *tmp_page,
2430 				int disks)
2431 {
2432 	int update_p = 0, update_q = 0;
2433 	struct r5dev *dev;
2434 	int pd_idx = sh->pd_idx;
2435 	int qd_idx = r6s->qd_idx;
2436 
2437 	set_bit(STRIPE_HANDLE, &sh->state);
2438 
2439 	BUG_ON(s->failed > 2);
2440 	BUG_ON(s->uptodate < disks);
2441 	/* Want to check and possibly repair P and Q.
2442 	 * However there could be one 'failed' device, in which
2443 	 * case we can only check one of them, possibly using the
2444 	 * other to generate missing data
2445 	 */
2446 
2447 	/* If !tmp_page, we cannot do the calculations,
2448 	 * but as we have set STRIPE_HANDLE, we will soon be called
2449 	 * by stripe_handle with a tmp_page - just wait until then.
2450 	 */
2451 	if (tmp_page) {
2452 		if (s->failed == r6s->q_failed) {
2453 			/* The only possible failed device holds 'Q', so it
2454 			 * makes sense to check P (If anything else were failed,
2455 			 * we would have used P to recreate it).
2456 			 */
2457 			compute_block_1(sh, pd_idx, 1);
2458 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2459 				compute_block_1(sh, pd_idx, 0);
2460 				update_p = 1;
2461 			}
2462 		}
2463 		if (!r6s->q_failed && s->failed < 2) {
2464 			/* q is not failed, and we didn't use it to generate
2465 			 * anything, so it makes sense to check it
2466 			 */
2467 			memcpy(page_address(tmp_page),
2468 			       page_address(sh->dev[qd_idx].page),
2469 			       STRIPE_SIZE);
2470 			compute_parity6(sh, UPDATE_PARITY);
2471 			if (memcmp(page_address(tmp_page),
2472 				   page_address(sh->dev[qd_idx].page),
2473 				   STRIPE_SIZE) != 0) {
2474 				clear_bit(STRIPE_INSYNC, &sh->state);
2475 				update_q = 1;
2476 			}
2477 		}
2478 		if (update_p || update_q) {
2479 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2480 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2481 				/* don't try to repair!! */
2482 				update_p = update_q = 0;
2483 		}
2484 
2485 		/* now write out any block on a failed drive,
2486 		 * or P or Q if they need it
2487 		 */
2488 
2489 		if (s->failed == 2) {
2490 			dev = &sh->dev[r6s->failed_num[1]];
2491 			s->locked++;
2492 			set_bit(R5_LOCKED, &dev->flags);
2493 			set_bit(R5_Wantwrite, &dev->flags);
2494 		}
2495 		if (s->failed >= 1) {
2496 			dev = &sh->dev[r6s->failed_num[0]];
2497 			s->locked++;
2498 			set_bit(R5_LOCKED, &dev->flags);
2499 			set_bit(R5_Wantwrite, &dev->flags);
2500 		}
2501 
2502 		if (update_p) {
2503 			dev = &sh->dev[pd_idx];
2504 			s->locked++;
2505 			set_bit(R5_LOCKED, &dev->flags);
2506 			set_bit(R5_Wantwrite, &dev->flags);
2507 		}
2508 		if (update_q) {
2509 			dev = &sh->dev[qd_idx];
2510 			s->locked++;
2511 			set_bit(R5_LOCKED, &dev->flags);
2512 			set_bit(R5_Wantwrite, &dev->flags);
2513 		}
2514 		clear_bit(STRIPE_DEGRADED, &sh->state);
2515 
2516 		set_bit(STRIPE_INSYNC, &sh->state);
2517 	}
2518 }
2519 
2520 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2521 				struct r6_state *r6s)
2522 {
2523 	int i;
2524 
2525 	/* We have read all the blocks in this stripe and now we need to
2526 	 * copy some of them into a target stripe for expand.
2527 	 */
2528 	struct dma_async_tx_descriptor *tx = NULL;
2529 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2530 	for (i = 0; i < sh->disks; i++)
2531 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2532 			int dd_idx, pd_idx, j;
2533 			struct stripe_head *sh2;
2534 
2535 			sector_t bn = compute_blocknr(sh, i);
2536 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2537 						conf->raid_disks -
2538 						conf->max_degraded, &dd_idx,
2539 						&pd_idx, conf);
2540 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2541 						pd_idx, 1);
2542 			if (sh2 == NULL)
2543 				/* so far only the early blocks of this stripe
2544 				 * have been requested.  When later blocks
2545 				 * get requested, we will try again
2546 				 */
2547 				continue;
2548 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2549 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2550 				/* must have already done this block */
2551 				release_stripe(sh2);
2552 				continue;
2553 			}
2554 
2555 			/* place all the copies on one channel */
2556 			tx = async_memcpy(sh2->dev[dd_idx].page,
2557 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2558 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2559 
2560 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2561 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2562 			for (j = 0; j < conf->raid_disks; j++)
2563 				if (j != sh2->pd_idx &&
2564 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2565 								 sh2->disks)) &&
2566 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2567 					break;
2568 			if (j == conf->raid_disks) {
2569 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2570 				set_bit(STRIPE_HANDLE, &sh2->state);
2571 			}
2572 			release_stripe(sh2);
2573 
2574 		}
2575 	/* done submitting copies, wait for them to complete */
2576 	if (tx) {
2577 		async_tx_ack(tx);
2578 		dma_wait_for_async_tx(tx);
2579 	}
2580 }
2581 
2582 /*
2583  * handle_stripe - do things to a stripe.
2584  *
2585  * We lock the stripe and then examine the state of various bits
2586  * to see what needs to be done.
2587  * Possible results:
2588  *    return some read request which now have data
2589  *    return some write requests which are safely on disc
2590  *    schedule a read on some buffers
2591  *    schedule a write of some buffers
2592  *    return confirmation of parity correctness
2593  *
2594  * buffers are taken off read_list or write_list, and bh_cache buffers
2595  * get BH_Lock set before the stripe lock is released.
2596  *
2597  */
2598 
2599 static void handle_stripe5(struct stripe_head *sh)
2600 {
2601 	raid5_conf_t *conf = sh->raid_conf;
2602 	int disks = sh->disks, i;
2603 	struct bio *return_bi = NULL;
2604 	struct stripe_head_state s;
2605 	struct r5dev *dev;
2606 	unsigned long pending = 0;
2607 
2608 	memset(&s, 0, sizeof(s));
2609 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2610 		"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2611 		atomic_read(&sh->count), sh->pd_idx,
2612 		sh->ops.pending, sh->ops.ack, sh->ops.complete);
2613 
2614 	spin_lock(&sh->lock);
2615 	clear_bit(STRIPE_HANDLE, &sh->state);
2616 	clear_bit(STRIPE_DELAYED, &sh->state);
2617 
2618 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2619 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2620 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2621 	/* Now to look around and see what can be done */
2622 
2623 	rcu_read_lock();
2624 	for (i=disks; i--; ) {
2625 		mdk_rdev_t *rdev;
2626 		struct r5dev *dev = &sh->dev[i];
2627 		clear_bit(R5_Insync, &dev->flags);
2628 
2629 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2630 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2631 			dev->towrite, dev->written);
2632 
2633 		/* maybe we can request a biofill operation
2634 		 *
2635 		 * new wantfill requests are only permitted while
2636 		 * STRIPE_OP_BIOFILL is clear
2637 		 */
2638 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2639 			!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2640 			set_bit(R5_Wantfill, &dev->flags);
2641 
2642 		/* now count some things */
2643 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2644 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2645 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2646 
2647 		if (test_bit(R5_Wantfill, &dev->flags))
2648 			s.to_fill++;
2649 		else if (dev->toread)
2650 			s.to_read++;
2651 		if (dev->towrite) {
2652 			s.to_write++;
2653 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2654 				s.non_overwrite++;
2655 		}
2656 		if (dev->written)
2657 			s.written++;
2658 		rdev = rcu_dereference(conf->disks[i].rdev);
2659 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2660 			/* The ReadError flag will just be confusing now */
2661 			clear_bit(R5_ReadError, &dev->flags);
2662 			clear_bit(R5_ReWrite, &dev->flags);
2663 		}
2664 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2665 		    || test_bit(R5_ReadError, &dev->flags)) {
2666 			s.failed++;
2667 			s.failed_num = i;
2668 		} else
2669 			set_bit(R5_Insync, &dev->flags);
2670 	}
2671 	rcu_read_unlock();
2672 
2673 	if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2674 		sh->ops.count++;
2675 
2676 	pr_debug("locked=%d uptodate=%d to_read=%d"
2677 		" to_write=%d failed=%d failed_num=%d\n",
2678 		s.locked, s.uptodate, s.to_read, s.to_write,
2679 		s.failed, s.failed_num);
2680 	/* check if the array has lost two devices and, if so, some requests might
2681 	 * need to be failed
2682 	 */
2683 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2684 		handle_requests_to_failed_array(conf, sh, &s, disks,
2685 						&return_bi);
2686 	if (s.failed > 1 && s.syncing) {
2687 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2688 		clear_bit(STRIPE_SYNCING, &sh->state);
2689 		s.syncing = 0;
2690 	}
2691 
2692 	/* might be able to return some write requests if the parity block
2693 	 * is safe, or on a failed drive
2694 	 */
2695 	dev = &sh->dev[sh->pd_idx];
2696 	if ( s.written &&
2697 	     ((test_bit(R5_Insync, &dev->flags) &&
2698 	       !test_bit(R5_LOCKED, &dev->flags) &&
2699 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2700 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2701 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2702 
2703 	/* Now we might consider reading some blocks, either to check/generate
2704 	 * parity, or to satisfy requests
2705 	 * or to load a block that is being partially written.
2706 	 */
2707 	if (s.to_read || s.non_overwrite ||
2708 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2709 	    test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2710 		handle_issuing_new_read_requests5(sh, &s, disks);
2711 
2712 	/* Now we check to see if any write operations have recently
2713 	 * completed
2714 	 */
2715 
2716 	/* leave prexor set until postxor is done, allows us to distinguish
2717 	 * a rmw from a rcw during biodrain
2718 	 */
2719 	if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2720 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2721 
2722 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2723 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2724 		clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2725 
2726 		for (i = disks; i--; )
2727 			clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2728 	}
2729 
2730 	/* if only POSTXOR is set then this is an 'expand' postxor */
2731 	if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2732 		test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2733 
2734 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2735 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2736 		clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2737 
2738 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2739 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2740 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2741 
2742 		/* All the 'written' buffers and the parity block are ready to
2743 		 * be written back to disk
2744 		 */
2745 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2746 		for (i = disks; i--; ) {
2747 			dev = &sh->dev[i];
2748 			if (test_bit(R5_LOCKED, &dev->flags) &&
2749 				(i == sh->pd_idx || dev->written)) {
2750 				pr_debug("Writing block %d\n", i);
2751 				set_bit(R5_Wantwrite, &dev->flags);
2752 				if (!test_and_set_bit(
2753 				    STRIPE_OP_IO, &sh->ops.pending))
2754 					sh->ops.count++;
2755 				if (!test_bit(R5_Insync, &dev->flags) ||
2756 				    (i == sh->pd_idx && s.failed == 0))
2757 					set_bit(STRIPE_INSYNC, &sh->state);
2758 			}
2759 		}
2760 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761 			atomic_dec(&conf->preread_active_stripes);
2762 			if (atomic_read(&conf->preread_active_stripes) <
2763 				IO_THRESHOLD)
2764 				md_wakeup_thread(conf->mddev->thread);
2765 		}
2766 	}
2767 
2768 	/* Now to consider new write requests and what else, if anything
2769 	 * should be read.  We do not handle new writes when:
2770 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2771 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2772 	 *    block.
2773 	 */
2774 	if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2775 			  !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2776 		handle_issuing_new_write_requests5(conf, sh, &s, disks);
2777 
2778 	/* maybe we need to check and possibly fix the parity for this stripe
2779 	 * Any reads will already have been scheduled, so we just see if enough
2780 	 * data is available.  The parity check is held off while parity
2781 	 * dependent operations are in flight.
2782 	 */
2783 	if ((s.syncing && s.locked == 0 &&
2784 	     !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2785 	     !test_bit(STRIPE_INSYNC, &sh->state)) ||
2786 	      test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2787 	      test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2788 		handle_parity_checks5(conf, sh, &s, disks);
2789 
2790 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2791 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2792 		clear_bit(STRIPE_SYNCING, &sh->state);
2793 	}
2794 
2795 	/* If the failed drive is just a ReadError, then we might need to progress
2796 	 * the repair/check process
2797 	 */
2798 	if (s.failed == 1 && !conf->mddev->ro &&
2799 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2800 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2801 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2802 		) {
2803 		dev = &sh->dev[s.failed_num];
2804 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2805 			set_bit(R5_Wantwrite, &dev->flags);
2806 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2807 				sh->ops.count++;
2808 			set_bit(R5_ReWrite, &dev->flags);
2809 			set_bit(R5_LOCKED, &dev->flags);
2810 			s.locked++;
2811 		} else {
2812 			/* let's read it back */
2813 			set_bit(R5_Wantread, &dev->flags);
2814 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2815 				sh->ops.count++;
2816 			set_bit(R5_LOCKED, &dev->flags);
2817 			s.locked++;
2818 		}
2819 	}
2820 
2821 	/* Finish postxor operations initiated by the expansion
2822 	 * process
2823 	 */
2824 	if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2825 		!test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2826 
2827 		clear_bit(STRIPE_EXPANDING, &sh->state);
2828 
2829 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2830 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2831 		clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2832 
2833 		for (i = conf->raid_disks; i--; ) {
2834 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2835 			if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2836 				sh->ops.count++;
2837 		}
2838 	}
2839 
2840 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2841 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2842 		/* Need to write out all blocks after computing parity */
2843 		sh->disks = conf->raid_disks;
2844 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2845 			conf->raid_disks);
2846 		s.locked += handle_write_operations5(sh, 1, 1);
2847 	} else if (s.expanded &&
2848 		!test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2849 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2850 		atomic_dec(&conf->reshape_stripes);
2851 		wake_up(&conf->wait_for_overlap);
2852 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2853 	}
2854 
2855 	if (s.expanding && s.locked == 0)
2856 		handle_stripe_expansion(conf, sh, NULL);
2857 
2858 	if (sh->ops.count)
2859 		pending = get_stripe_work(sh);
2860 
2861 	spin_unlock(&sh->lock);
2862 
2863 	if (pending)
2864 		raid5_run_ops(sh, pending);
2865 
2866 	return_io(return_bi);
2867 
2868 }
2869 
2870 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2871 {
2872 	raid6_conf_t *conf = sh->raid_conf;
2873 	int disks = sh->disks;
2874 	struct bio *return_bi = NULL;
2875 	int i, pd_idx = sh->pd_idx;
2876 	struct stripe_head_state s;
2877 	struct r6_state r6s;
2878 	struct r5dev *dev, *pdev, *qdev;
2879 
2880 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2881 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2882 		"pd_idx=%d, qd_idx=%d\n",
2883 	       (unsigned long long)sh->sector, sh->state,
2884 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2885 	memset(&s, 0, sizeof(s));
2886 
2887 	spin_lock(&sh->lock);
2888 	clear_bit(STRIPE_HANDLE, &sh->state);
2889 	clear_bit(STRIPE_DELAYED, &sh->state);
2890 
2891 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2892 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2893 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2894 	/* Now to look around and see what can be done */
2895 
2896 	rcu_read_lock();
2897 	for (i=disks; i--; ) {
2898 		mdk_rdev_t *rdev;
2899 		dev = &sh->dev[i];
2900 		clear_bit(R5_Insync, &dev->flags);
2901 
2902 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2903 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2904 		/* maybe we can reply to a read */
2905 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2906 			struct bio *rbi, *rbi2;
2907 			pr_debug("Return read for disc %d\n", i);
2908 			spin_lock_irq(&conf->device_lock);
2909 			rbi = dev->toread;
2910 			dev->toread = NULL;
2911 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2912 				wake_up(&conf->wait_for_overlap);
2913 			spin_unlock_irq(&conf->device_lock);
2914 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2915 				copy_data(0, rbi, dev->page, dev->sector);
2916 				rbi2 = r5_next_bio(rbi, dev->sector);
2917 				spin_lock_irq(&conf->device_lock);
2918 				if (--rbi->bi_phys_segments == 0) {
2919 					rbi->bi_next = return_bi;
2920 					return_bi = rbi;
2921 				}
2922 				spin_unlock_irq(&conf->device_lock);
2923 				rbi = rbi2;
2924 			}
2925 		}
2926 
2927 		/* now count some things */
2928 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2929 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2930 
2931 
2932 		if (dev->toread)
2933 			s.to_read++;
2934 		if (dev->towrite) {
2935 			s.to_write++;
2936 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2937 				s.non_overwrite++;
2938 		}
2939 		if (dev->written)
2940 			s.written++;
2941 		rdev = rcu_dereference(conf->disks[i].rdev);
2942 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2943 			/* The ReadError flag will just be confusing now */
2944 			clear_bit(R5_ReadError, &dev->flags);
2945 			clear_bit(R5_ReWrite, &dev->flags);
2946 		}
2947 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2948 		    || test_bit(R5_ReadError, &dev->flags)) {
2949 			if (s.failed < 2)
2950 				r6s.failed_num[s.failed] = i;
2951 			s.failed++;
2952 		} else
2953 			set_bit(R5_Insync, &dev->flags);
2954 	}
2955 	rcu_read_unlock();
2956 	pr_debug("locked=%d uptodate=%d to_read=%d"
2957 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2958 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2959 	       r6s.failed_num[0], r6s.failed_num[1]);
2960 	/* check if the array has lost >2 devices and, if so, some requests
2961 	 * might need to be failed
2962 	 */
2963 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2964 		handle_requests_to_failed_array(conf, sh, &s, disks,
2965 						&return_bi);
2966 	if (s.failed > 2 && s.syncing) {
2967 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2968 		clear_bit(STRIPE_SYNCING, &sh->state);
2969 		s.syncing = 0;
2970 	}
2971 
2972 	/*
2973 	 * might be able to return some write requests if the parity blocks
2974 	 * are safe, or on a failed drive
2975 	 */
2976 	pdev = &sh->dev[pd_idx];
2977 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2978 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2979 	qdev = &sh->dev[r6s.qd_idx];
2980 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2981 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2982 
2983 	if ( s.written &&
2984 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2985 			     && !test_bit(R5_LOCKED, &pdev->flags)
2986 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2987 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2988 			     && !test_bit(R5_LOCKED, &qdev->flags)
2989 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
2990 		handle_completed_write_requests(conf, sh, disks, &return_bi);
2991 
2992 	/* Now we might consider reading some blocks, either to check/generate
2993 	 * parity, or to satisfy requests
2994 	 * or to load a block that is being partially written.
2995 	 */
2996 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2997 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
2998 		handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
2999 
3000 	/* now to consider writing and what else, if anything should be read */
3001 	if (s.to_write)
3002 		handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3003 
3004 	/* maybe we need to check and possibly fix the parity for this stripe
3005 	 * Any reads will already have been scheduled, so we just see if enough
3006 	 * data is available
3007 	 */
3008 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3009 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3010 
3011 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3012 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3013 		clear_bit(STRIPE_SYNCING, &sh->state);
3014 	}
3015 
3016 	/* If the failed drives are just a ReadError, then we might need
3017 	 * to progress the repair/check process
3018 	 */
3019 	if (s.failed <= 2 && !conf->mddev->ro)
3020 		for (i = 0; i < s.failed; i++) {
3021 			dev = &sh->dev[r6s.failed_num[i]];
3022 			if (test_bit(R5_ReadError, &dev->flags)
3023 			    && !test_bit(R5_LOCKED, &dev->flags)
3024 			    && test_bit(R5_UPTODATE, &dev->flags)
3025 				) {
3026 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3027 					set_bit(R5_Wantwrite, &dev->flags);
3028 					set_bit(R5_ReWrite, &dev->flags);
3029 					set_bit(R5_LOCKED, &dev->flags);
3030 				} else {
3031 					/* let's read it back */
3032 					set_bit(R5_Wantread, &dev->flags);
3033 					set_bit(R5_LOCKED, &dev->flags);
3034 				}
3035 			}
3036 		}
3037 
3038 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3039 		/* Need to write out all blocks after computing P&Q */
3040 		sh->disks = conf->raid_disks;
3041 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3042 					     conf->raid_disks);
3043 		compute_parity6(sh, RECONSTRUCT_WRITE);
3044 		for (i = conf->raid_disks ; i-- ;  ) {
3045 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3046 			s.locked++;
3047 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3048 		}
3049 		clear_bit(STRIPE_EXPANDING, &sh->state);
3050 	} else if (s.expanded) {
3051 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3052 		atomic_dec(&conf->reshape_stripes);
3053 		wake_up(&conf->wait_for_overlap);
3054 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3055 	}
3056 
3057 	if (s.expanding && s.locked == 0)
3058 		handle_stripe_expansion(conf, sh, &r6s);
3059 
3060 	spin_unlock(&sh->lock);
3061 
3062 	return_io(return_bi);
3063 
3064 	for (i=disks; i-- ;) {
3065 		int rw;
3066 		struct bio *bi;
3067 		mdk_rdev_t *rdev;
3068 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3069 			rw = WRITE;
3070 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3071 			rw = READ;
3072 		else
3073 			continue;
3074 
3075 		bi = &sh->dev[i].req;
3076 
3077 		bi->bi_rw = rw;
3078 		if (rw == WRITE)
3079 			bi->bi_end_io = raid5_end_write_request;
3080 		else
3081 			bi->bi_end_io = raid5_end_read_request;
3082 
3083 		rcu_read_lock();
3084 		rdev = rcu_dereference(conf->disks[i].rdev);
3085 		if (rdev && test_bit(Faulty, &rdev->flags))
3086 			rdev = NULL;
3087 		if (rdev)
3088 			atomic_inc(&rdev->nr_pending);
3089 		rcu_read_unlock();
3090 
3091 		if (rdev) {
3092 			if (s.syncing || s.expanding || s.expanded)
3093 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3094 
3095 			bi->bi_bdev = rdev->bdev;
3096 			pr_debug("for %llu schedule op %ld on disc %d\n",
3097 				(unsigned long long)sh->sector, bi->bi_rw, i);
3098 			atomic_inc(&sh->count);
3099 			bi->bi_sector = sh->sector + rdev->data_offset;
3100 			bi->bi_flags = 1 << BIO_UPTODATE;
3101 			bi->bi_vcnt = 1;
3102 			bi->bi_max_vecs = 1;
3103 			bi->bi_idx = 0;
3104 			bi->bi_io_vec = &sh->dev[i].vec;
3105 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3106 			bi->bi_io_vec[0].bv_offset = 0;
3107 			bi->bi_size = STRIPE_SIZE;
3108 			bi->bi_next = NULL;
3109 			if (rw == WRITE &&
3110 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
3111 				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3112 			generic_make_request(bi);
3113 		} else {
3114 			if (rw == WRITE)
3115 				set_bit(STRIPE_DEGRADED, &sh->state);
3116 			pr_debug("skip op %ld on disc %d for sector %llu\n",
3117 				bi->bi_rw, i, (unsigned long long)sh->sector);
3118 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
3119 			set_bit(STRIPE_HANDLE, &sh->state);
3120 		}
3121 	}
3122 }
3123 
3124 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3125 {
3126 	if (sh->raid_conf->level == 6)
3127 		handle_stripe6(sh, tmp_page);
3128 	else
3129 		handle_stripe5(sh);
3130 }
3131 
3132 
3133 
3134 static void raid5_activate_delayed(raid5_conf_t *conf)
3135 {
3136 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3137 		while (!list_empty(&conf->delayed_list)) {
3138 			struct list_head *l = conf->delayed_list.next;
3139 			struct stripe_head *sh;
3140 			sh = list_entry(l, struct stripe_head, lru);
3141 			list_del_init(l);
3142 			clear_bit(STRIPE_DELAYED, &sh->state);
3143 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3144 				atomic_inc(&conf->preread_active_stripes);
3145 			list_add_tail(&sh->lru, &conf->handle_list);
3146 		}
3147 	}
3148 }
3149 
3150 static void activate_bit_delay(raid5_conf_t *conf)
3151 {
3152 	/* device_lock is held */
3153 	struct list_head head;
3154 	list_add(&head, &conf->bitmap_list);
3155 	list_del_init(&conf->bitmap_list);
3156 	while (!list_empty(&head)) {
3157 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3158 		list_del_init(&sh->lru);
3159 		atomic_inc(&sh->count);
3160 		__release_stripe(conf, sh);
3161 	}
3162 }
3163 
3164 static void unplug_slaves(mddev_t *mddev)
3165 {
3166 	raid5_conf_t *conf = mddev_to_conf(mddev);
3167 	int i;
3168 
3169 	rcu_read_lock();
3170 	for (i=0; i<mddev->raid_disks; i++) {
3171 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3172 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3173 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3174 
3175 			atomic_inc(&rdev->nr_pending);
3176 			rcu_read_unlock();
3177 
3178 			if (r_queue->unplug_fn)
3179 				r_queue->unplug_fn(r_queue);
3180 
3181 			rdev_dec_pending(rdev, mddev);
3182 			rcu_read_lock();
3183 		}
3184 	}
3185 	rcu_read_unlock();
3186 }
3187 
3188 static void raid5_unplug_device(struct request_queue *q)
3189 {
3190 	mddev_t *mddev = q->queuedata;
3191 	raid5_conf_t *conf = mddev_to_conf(mddev);
3192 	unsigned long flags;
3193 
3194 	spin_lock_irqsave(&conf->device_lock, flags);
3195 
3196 	if (blk_remove_plug(q)) {
3197 		conf->seq_flush++;
3198 		raid5_activate_delayed(conf);
3199 	}
3200 	md_wakeup_thread(mddev->thread);
3201 
3202 	spin_unlock_irqrestore(&conf->device_lock, flags);
3203 
3204 	unplug_slaves(mddev);
3205 }
3206 
3207 static int raid5_issue_flush(struct request_queue *q, struct gendisk *disk,
3208 			     sector_t *error_sector)
3209 {
3210 	mddev_t *mddev = q->queuedata;
3211 	raid5_conf_t *conf = mddev_to_conf(mddev);
3212 	int i, ret = 0;
3213 
3214 	rcu_read_lock();
3215 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
3216 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3217 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
3218 			struct block_device *bdev = rdev->bdev;
3219 			struct request_queue *r_queue = bdev_get_queue(bdev);
3220 
3221 			if (!r_queue->issue_flush_fn)
3222 				ret = -EOPNOTSUPP;
3223 			else {
3224 				atomic_inc(&rdev->nr_pending);
3225 				rcu_read_unlock();
3226 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
3227 							      error_sector);
3228 				rdev_dec_pending(rdev, mddev);
3229 				rcu_read_lock();
3230 			}
3231 		}
3232 	}
3233 	rcu_read_unlock();
3234 	return ret;
3235 }
3236 
3237 static int raid5_congested(void *data, int bits)
3238 {
3239 	mddev_t *mddev = data;
3240 	raid5_conf_t *conf = mddev_to_conf(mddev);
3241 
3242 	/* No difference between reads and writes.  Just check
3243 	 * how busy the stripe_cache is
3244 	 */
3245 	if (conf->inactive_blocked)
3246 		return 1;
3247 	if (conf->quiesce)
3248 		return 1;
3249 	if (list_empty_careful(&conf->inactive_list))
3250 		return 1;
3251 
3252 	return 0;
3253 }
3254 
3255 /* We want read requests to align with chunks where possible,
3256  * but write requests don't need to.
3257  */
3258 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3259 {
3260 	mddev_t *mddev = q->queuedata;
3261 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3262 	int max;
3263 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3264 	unsigned int bio_sectors = bio->bi_size >> 9;
3265 
3266 	if (bio_data_dir(bio) == WRITE)
3267 		return biovec->bv_len; /* always allow writes to be mergeable */
3268 
3269 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3270 	if (max < 0) max = 0;
3271 	if (max <= biovec->bv_len && bio_sectors == 0)
3272 		return biovec->bv_len;
3273 	else
3274 		return max;
3275 }
3276 
3277 
3278 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3279 {
3280 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3281 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3282 	unsigned int bio_sectors = bio->bi_size >> 9;
3283 
3284 	return  chunk_sectors >=
3285 		((sector & (chunk_sectors - 1)) + bio_sectors);
3286 }
3287 
3288 /*
3289  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3290  *  later sampled by raid5d.
3291  */
3292 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3293 {
3294 	unsigned long flags;
3295 
3296 	spin_lock_irqsave(&conf->device_lock, flags);
3297 
3298 	bi->bi_next = conf->retry_read_aligned_list;
3299 	conf->retry_read_aligned_list = bi;
3300 
3301 	spin_unlock_irqrestore(&conf->device_lock, flags);
3302 	md_wakeup_thread(conf->mddev->thread);
3303 }
3304 
3305 
3306 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3307 {
3308 	struct bio *bi;
3309 
3310 	bi = conf->retry_read_aligned;
3311 	if (bi) {
3312 		conf->retry_read_aligned = NULL;
3313 		return bi;
3314 	}
3315 	bi = conf->retry_read_aligned_list;
3316 	if(bi) {
3317 		conf->retry_read_aligned_list = bi->bi_next;
3318 		bi->bi_next = NULL;
3319 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3320 		bi->bi_hw_segments = 0; /* count of processed stripes */
3321 	}
3322 
3323 	return bi;
3324 }
3325 
3326 
3327 /*
3328  *  The "raid5_align_endio" should check if the read succeeded and if it
3329  *  did, call bio_endio on the original bio (having bio_put the new bio
3330  *  first).
3331  *  If the read failed..
3332  */
3333 static void raid5_align_endio(struct bio *bi, int error)
3334 {
3335 	struct bio* raid_bi  = bi->bi_private;
3336 	mddev_t *mddev;
3337 	raid5_conf_t *conf;
3338 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3339 	mdk_rdev_t *rdev;
3340 
3341 	bio_put(bi);
3342 
3343 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3344 	conf = mddev_to_conf(mddev);
3345 	rdev = (void*)raid_bi->bi_next;
3346 	raid_bi->bi_next = NULL;
3347 
3348 	rdev_dec_pending(rdev, conf->mddev);
3349 
3350 	if (!error && uptodate) {
3351 		bio_endio(raid_bi, 0);
3352 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3353 			wake_up(&conf->wait_for_stripe);
3354 		return;
3355 	}
3356 
3357 
3358 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3359 
3360 	add_bio_to_retry(raid_bi, conf);
3361 }
3362 
3363 static int bio_fits_rdev(struct bio *bi)
3364 {
3365 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3366 
3367 	if ((bi->bi_size>>9) > q->max_sectors)
3368 		return 0;
3369 	blk_recount_segments(q, bi);
3370 	if (bi->bi_phys_segments > q->max_phys_segments ||
3371 	    bi->bi_hw_segments > q->max_hw_segments)
3372 		return 0;
3373 
3374 	if (q->merge_bvec_fn)
3375 		/* it's too hard to apply the merge_bvec_fn at this stage,
3376 		 * just just give up
3377 		 */
3378 		return 0;
3379 
3380 	return 1;
3381 }
3382 
3383 
3384 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3385 {
3386 	mddev_t *mddev = q->queuedata;
3387 	raid5_conf_t *conf = mddev_to_conf(mddev);
3388 	const unsigned int raid_disks = conf->raid_disks;
3389 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3390 	unsigned int dd_idx, pd_idx;
3391 	struct bio* align_bi;
3392 	mdk_rdev_t *rdev;
3393 
3394 	if (!in_chunk_boundary(mddev, raid_bio)) {
3395 		pr_debug("chunk_aligned_read : non aligned\n");
3396 		return 0;
3397 	}
3398 	/*
3399  	 * use bio_clone to make a copy of the bio
3400 	 */
3401 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3402 	if (!align_bi)
3403 		return 0;
3404 	/*
3405 	 *   set bi_end_io to a new function, and set bi_private to the
3406 	 *     original bio.
3407 	 */
3408 	align_bi->bi_end_io  = raid5_align_endio;
3409 	align_bi->bi_private = raid_bio;
3410 	/*
3411 	 *	compute position
3412 	 */
3413 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3414 					raid_disks,
3415 					data_disks,
3416 					&dd_idx,
3417 					&pd_idx,
3418 					conf);
3419 
3420 	rcu_read_lock();
3421 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3422 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3423 		atomic_inc(&rdev->nr_pending);
3424 		rcu_read_unlock();
3425 		raid_bio->bi_next = (void*)rdev;
3426 		align_bi->bi_bdev =  rdev->bdev;
3427 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3428 		align_bi->bi_sector += rdev->data_offset;
3429 
3430 		if (!bio_fits_rdev(align_bi)) {
3431 			/* too big in some way */
3432 			bio_put(align_bi);
3433 			rdev_dec_pending(rdev, mddev);
3434 			return 0;
3435 		}
3436 
3437 		spin_lock_irq(&conf->device_lock);
3438 		wait_event_lock_irq(conf->wait_for_stripe,
3439 				    conf->quiesce == 0,
3440 				    conf->device_lock, /* nothing */);
3441 		atomic_inc(&conf->active_aligned_reads);
3442 		spin_unlock_irq(&conf->device_lock);
3443 
3444 		generic_make_request(align_bi);
3445 		return 1;
3446 	} else {
3447 		rcu_read_unlock();
3448 		bio_put(align_bi);
3449 		return 0;
3450 	}
3451 }
3452 
3453 
3454 static int make_request(struct request_queue *q, struct bio * bi)
3455 {
3456 	mddev_t *mddev = q->queuedata;
3457 	raid5_conf_t *conf = mddev_to_conf(mddev);
3458 	unsigned int dd_idx, pd_idx;
3459 	sector_t new_sector;
3460 	sector_t logical_sector, last_sector;
3461 	struct stripe_head *sh;
3462 	const int rw = bio_data_dir(bi);
3463 	int remaining;
3464 
3465 	if (unlikely(bio_barrier(bi))) {
3466 		bio_endio(bi, -EOPNOTSUPP);
3467 		return 0;
3468 	}
3469 
3470 	md_write_start(mddev, bi);
3471 
3472 	disk_stat_inc(mddev->gendisk, ios[rw]);
3473 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3474 
3475 	if (rw == READ &&
3476 	     mddev->reshape_position == MaxSector &&
3477 	     chunk_aligned_read(q,bi))
3478             	return 0;
3479 
3480 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3481 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3482 	bi->bi_next = NULL;
3483 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3484 
3485 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3486 		DEFINE_WAIT(w);
3487 		int disks, data_disks;
3488 
3489 	retry:
3490 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3491 		if (likely(conf->expand_progress == MaxSector))
3492 			disks = conf->raid_disks;
3493 		else {
3494 			/* spinlock is needed as expand_progress may be
3495 			 * 64bit on a 32bit platform, and so it might be
3496 			 * possible to see a half-updated value
3497 			 * Ofcourse expand_progress could change after
3498 			 * the lock is dropped, so once we get a reference
3499 			 * to the stripe that we think it is, we will have
3500 			 * to check again.
3501 			 */
3502 			spin_lock_irq(&conf->device_lock);
3503 			disks = conf->raid_disks;
3504 			if (logical_sector >= conf->expand_progress)
3505 				disks = conf->previous_raid_disks;
3506 			else {
3507 				if (logical_sector >= conf->expand_lo) {
3508 					spin_unlock_irq(&conf->device_lock);
3509 					schedule();
3510 					goto retry;
3511 				}
3512 			}
3513 			spin_unlock_irq(&conf->device_lock);
3514 		}
3515 		data_disks = disks - conf->max_degraded;
3516 
3517  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3518 						  &dd_idx, &pd_idx, conf);
3519 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3520 			(unsigned long long)new_sector,
3521 			(unsigned long long)logical_sector);
3522 
3523 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3524 		if (sh) {
3525 			if (unlikely(conf->expand_progress != MaxSector)) {
3526 				/* expansion might have moved on while waiting for a
3527 				 * stripe, so we must do the range check again.
3528 				 * Expansion could still move past after this
3529 				 * test, but as we are holding a reference to
3530 				 * 'sh', we know that if that happens,
3531 				 *  STRIPE_EXPANDING will get set and the expansion
3532 				 * won't proceed until we finish with the stripe.
3533 				 */
3534 				int must_retry = 0;
3535 				spin_lock_irq(&conf->device_lock);
3536 				if (logical_sector <  conf->expand_progress &&
3537 				    disks == conf->previous_raid_disks)
3538 					/* mismatch, need to try again */
3539 					must_retry = 1;
3540 				spin_unlock_irq(&conf->device_lock);
3541 				if (must_retry) {
3542 					release_stripe(sh);
3543 					goto retry;
3544 				}
3545 			}
3546 			/* FIXME what if we get a false positive because these
3547 			 * are being updated.
3548 			 */
3549 			if (logical_sector >= mddev->suspend_lo &&
3550 			    logical_sector < mddev->suspend_hi) {
3551 				release_stripe(sh);
3552 				schedule();
3553 				goto retry;
3554 			}
3555 
3556 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3557 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3558 				/* Stripe is busy expanding or
3559 				 * add failed due to overlap.  Flush everything
3560 				 * and wait a while
3561 				 */
3562 				raid5_unplug_device(mddev->queue);
3563 				release_stripe(sh);
3564 				schedule();
3565 				goto retry;
3566 			}
3567 			finish_wait(&conf->wait_for_overlap, &w);
3568 			handle_stripe(sh, NULL);
3569 			release_stripe(sh);
3570 		} else {
3571 			/* cannot get stripe for read-ahead, just give-up */
3572 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3573 			finish_wait(&conf->wait_for_overlap, &w);
3574 			break;
3575 		}
3576 
3577 	}
3578 	spin_lock_irq(&conf->device_lock);
3579 	remaining = --bi->bi_phys_segments;
3580 	spin_unlock_irq(&conf->device_lock);
3581 	if (remaining == 0) {
3582 
3583 		if ( rw == WRITE )
3584 			md_write_end(mddev);
3585 
3586 		bi->bi_end_io(bi,
3587 			      test_bit(BIO_UPTODATE, &bi->bi_flags)
3588 			        ? 0 : -EIO);
3589 	}
3590 	return 0;
3591 }
3592 
3593 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3594 {
3595 	/* reshaping is quite different to recovery/resync so it is
3596 	 * handled quite separately ... here.
3597 	 *
3598 	 * On each call to sync_request, we gather one chunk worth of
3599 	 * destination stripes and flag them as expanding.
3600 	 * Then we find all the source stripes and request reads.
3601 	 * As the reads complete, handle_stripe will copy the data
3602 	 * into the destination stripe and release that stripe.
3603 	 */
3604 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3605 	struct stripe_head *sh;
3606 	int pd_idx;
3607 	sector_t first_sector, last_sector;
3608 	int raid_disks = conf->previous_raid_disks;
3609 	int data_disks = raid_disks - conf->max_degraded;
3610 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3611 	int i;
3612 	int dd_idx;
3613 	sector_t writepos, safepos, gap;
3614 
3615 	if (sector_nr == 0 &&
3616 	    conf->expand_progress != 0) {
3617 		/* restarting in the middle, skip the initial sectors */
3618 		sector_nr = conf->expand_progress;
3619 		sector_div(sector_nr, new_data_disks);
3620 		*skipped = 1;
3621 		return sector_nr;
3622 	}
3623 
3624 	/* we update the metadata when there is more than 3Meg
3625 	 * in the block range (that is rather arbitrary, should
3626 	 * probably be time based) or when the data about to be
3627 	 * copied would over-write the source of the data at
3628 	 * the front of the range.
3629 	 * i.e. one new_stripe forward from expand_progress new_maps
3630 	 * to after where expand_lo old_maps to
3631 	 */
3632 	writepos = conf->expand_progress +
3633 		conf->chunk_size/512*(new_data_disks);
3634 	sector_div(writepos, new_data_disks);
3635 	safepos = conf->expand_lo;
3636 	sector_div(safepos, data_disks);
3637 	gap = conf->expand_progress - conf->expand_lo;
3638 
3639 	if (writepos >= safepos ||
3640 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3641 		/* Cannot proceed until we've updated the superblock... */
3642 		wait_event(conf->wait_for_overlap,
3643 			   atomic_read(&conf->reshape_stripes)==0);
3644 		mddev->reshape_position = conf->expand_progress;
3645 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3646 		md_wakeup_thread(mddev->thread);
3647 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3648 			   kthread_should_stop());
3649 		spin_lock_irq(&conf->device_lock);
3650 		conf->expand_lo = mddev->reshape_position;
3651 		spin_unlock_irq(&conf->device_lock);
3652 		wake_up(&conf->wait_for_overlap);
3653 	}
3654 
3655 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3656 		int j;
3657 		int skipped = 0;
3658 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3659 		sh = get_active_stripe(conf, sector_nr+i,
3660 				       conf->raid_disks, pd_idx, 0);
3661 		set_bit(STRIPE_EXPANDING, &sh->state);
3662 		atomic_inc(&conf->reshape_stripes);
3663 		/* If any of this stripe is beyond the end of the old
3664 		 * array, then we need to zero those blocks
3665 		 */
3666 		for (j=sh->disks; j--;) {
3667 			sector_t s;
3668 			if (j == sh->pd_idx)
3669 				continue;
3670 			if (conf->level == 6 &&
3671 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3672 				continue;
3673 			s = compute_blocknr(sh, j);
3674 			if (s < (mddev->array_size<<1)) {
3675 				skipped = 1;
3676 				continue;
3677 			}
3678 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3679 			set_bit(R5_Expanded, &sh->dev[j].flags);
3680 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3681 		}
3682 		if (!skipped) {
3683 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3684 			set_bit(STRIPE_HANDLE, &sh->state);
3685 		}
3686 		release_stripe(sh);
3687 	}
3688 	spin_lock_irq(&conf->device_lock);
3689 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3690 	spin_unlock_irq(&conf->device_lock);
3691 	/* Ok, those stripe are ready. We can start scheduling
3692 	 * reads on the source stripes.
3693 	 * The source stripes are determined by mapping the first and last
3694 	 * block on the destination stripes.
3695 	 */
3696 	first_sector =
3697 		raid5_compute_sector(sector_nr*(new_data_disks),
3698 				     raid_disks, data_disks,
3699 				     &dd_idx, &pd_idx, conf);
3700 	last_sector =
3701 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3702 				     *(new_data_disks) -1,
3703 				     raid_disks, data_disks,
3704 				     &dd_idx, &pd_idx, conf);
3705 	if (last_sector >= (mddev->size<<1))
3706 		last_sector = (mddev->size<<1)-1;
3707 	while (first_sector <= last_sector) {
3708 		pd_idx = stripe_to_pdidx(first_sector, conf,
3709 					 conf->previous_raid_disks);
3710 		sh = get_active_stripe(conf, first_sector,
3711 				       conf->previous_raid_disks, pd_idx, 0);
3712 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3713 		set_bit(STRIPE_HANDLE, &sh->state);
3714 		release_stripe(sh);
3715 		first_sector += STRIPE_SECTORS;
3716 	}
3717 	return conf->chunk_size>>9;
3718 }
3719 
3720 /* FIXME go_faster isn't used */
3721 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3722 {
3723 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3724 	struct stripe_head *sh;
3725 	int pd_idx;
3726 	int raid_disks = conf->raid_disks;
3727 	sector_t max_sector = mddev->size << 1;
3728 	int sync_blocks;
3729 	int still_degraded = 0;
3730 	int i;
3731 
3732 	if (sector_nr >= max_sector) {
3733 		/* just being told to finish up .. nothing much to do */
3734 		unplug_slaves(mddev);
3735 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3736 			end_reshape(conf);
3737 			return 0;
3738 		}
3739 
3740 		if (mddev->curr_resync < max_sector) /* aborted */
3741 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3742 					&sync_blocks, 1);
3743 		else /* completed sync */
3744 			conf->fullsync = 0;
3745 		bitmap_close_sync(mddev->bitmap);
3746 
3747 		return 0;
3748 	}
3749 
3750 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3751 		return reshape_request(mddev, sector_nr, skipped);
3752 
3753 	/* if there is too many failed drives and we are trying
3754 	 * to resync, then assert that we are finished, because there is
3755 	 * nothing we can do.
3756 	 */
3757 	if (mddev->degraded >= conf->max_degraded &&
3758 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3759 		sector_t rv = (mddev->size << 1) - sector_nr;
3760 		*skipped = 1;
3761 		return rv;
3762 	}
3763 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3764 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3765 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3766 		/* we can skip this block, and probably more */
3767 		sync_blocks /= STRIPE_SECTORS;
3768 		*skipped = 1;
3769 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3770 	}
3771 
3772 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3773 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3774 	if (sh == NULL) {
3775 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3776 		/* make sure we don't swamp the stripe cache if someone else
3777 		 * is trying to get access
3778 		 */
3779 		schedule_timeout_uninterruptible(1);
3780 	}
3781 	/* Need to check if array will still be degraded after recovery/resync
3782 	 * We don't need to check the 'failed' flag as when that gets set,
3783 	 * recovery aborts.
3784 	 */
3785 	for (i=0; i<mddev->raid_disks; i++)
3786 		if (conf->disks[i].rdev == NULL)
3787 			still_degraded = 1;
3788 
3789 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3790 
3791 	spin_lock(&sh->lock);
3792 	set_bit(STRIPE_SYNCING, &sh->state);
3793 	clear_bit(STRIPE_INSYNC, &sh->state);
3794 	spin_unlock(&sh->lock);
3795 
3796 	handle_stripe(sh, NULL);
3797 	release_stripe(sh);
3798 
3799 	return STRIPE_SECTORS;
3800 }
3801 
3802 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3803 {
3804 	/* We may not be able to submit a whole bio at once as there
3805 	 * may not be enough stripe_heads available.
3806 	 * We cannot pre-allocate enough stripe_heads as we may need
3807 	 * more than exist in the cache (if we allow ever large chunks).
3808 	 * So we do one stripe head at a time and record in
3809 	 * ->bi_hw_segments how many have been done.
3810 	 *
3811 	 * We *know* that this entire raid_bio is in one chunk, so
3812 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3813 	 */
3814 	struct stripe_head *sh;
3815 	int dd_idx, pd_idx;
3816 	sector_t sector, logical_sector, last_sector;
3817 	int scnt = 0;
3818 	int remaining;
3819 	int handled = 0;
3820 
3821 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3822 	sector = raid5_compute_sector(	logical_sector,
3823 					conf->raid_disks,
3824 					conf->raid_disks - conf->max_degraded,
3825 					&dd_idx,
3826 					&pd_idx,
3827 					conf);
3828 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3829 
3830 	for (; logical_sector < last_sector;
3831 	     logical_sector += STRIPE_SECTORS,
3832 		     sector += STRIPE_SECTORS,
3833 		     scnt++) {
3834 
3835 		if (scnt < raid_bio->bi_hw_segments)
3836 			/* already done this stripe */
3837 			continue;
3838 
3839 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3840 
3841 		if (!sh) {
3842 			/* failed to get a stripe - must wait */
3843 			raid_bio->bi_hw_segments = scnt;
3844 			conf->retry_read_aligned = raid_bio;
3845 			return handled;
3846 		}
3847 
3848 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3849 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3850 			release_stripe(sh);
3851 			raid_bio->bi_hw_segments = scnt;
3852 			conf->retry_read_aligned = raid_bio;
3853 			return handled;
3854 		}
3855 
3856 		handle_stripe(sh, NULL);
3857 		release_stripe(sh);
3858 		handled++;
3859 	}
3860 	spin_lock_irq(&conf->device_lock);
3861 	remaining = --raid_bio->bi_phys_segments;
3862 	spin_unlock_irq(&conf->device_lock);
3863 	if (remaining == 0) {
3864 
3865 		raid_bio->bi_end_io(raid_bio,
3866 			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3867 			        ? 0 : -EIO);
3868 	}
3869 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3870 		wake_up(&conf->wait_for_stripe);
3871 	return handled;
3872 }
3873 
3874 
3875 
3876 /*
3877  * This is our raid5 kernel thread.
3878  *
3879  * We scan the hash table for stripes which can be handled now.
3880  * During the scan, completed stripes are saved for us by the interrupt
3881  * handler, so that they will not have to wait for our next wakeup.
3882  */
3883 static void raid5d (mddev_t *mddev)
3884 {
3885 	struct stripe_head *sh;
3886 	raid5_conf_t *conf = mddev_to_conf(mddev);
3887 	int handled;
3888 
3889 	pr_debug("+++ raid5d active\n");
3890 
3891 	md_check_recovery(mddev);
3892 
3893 	handled = 0;
3894 	spin_lock_irq(&conf->device_lock);
3895 	while (1) {
3896 		struct list_head *first;
3897 		struct bio *bio;
3898 
3899 		if (conf->seq_flush != conf->seq_write) {
3900 			int seq = conf->seq_flush;
3901 			spin_unlock_irq(&conf->device_lock);
3902 			bitmap_unplug(mddev->bitmap);
3903 			spin_lock_irq(&conf->device_lock);
3904 			conf->seq_write = seq;
3905 			activate_bit_delay(conf);
3906 		}
3907 
3908 		if (list_empty(&conf->handle_list) &&
3909 		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3910 		    !blk_queue_plugged(mddev->queue) &&
3911 		    !list_empty(&conf->delayed_list))
3912 			raid5_activate_delayed(conf);
3913 
3914 		while ((bio = remove_bio_from_retry(conf))) {
3915 			int ok;
3916 			spin_unlock_irq(&conf->device_lock);
3917 			ok = retry_aligned_read(conf, bio);
3918 			spin_lock_irq(&conf->device_lock);
3919 			if (!ok)
3920 				break;
3921 			handled++;
3922 		}
3923 
3924 		if (list_empty(&conf->handle_list)) {
3925 			async_tx_issue_pending_all();
3926 			break;
3927 		}
3928 
3929 		first = conf->handle_list.next;
3930 		sh = list_entry(first, struct stripe_head, lru);
3931 
3932 		list_del_init(first);
3933 		atomic_inc(&sh->count);
3934 		BUG_ON(atomic_read(&sh->count)!= 1);
3935 		spin_unlock_irq(&conf->device_lock);
3936 
3937 		handled++;
3938 		handle_stripe(sh, conf->spare_page);
3939 		release_stripe(sh);
3940 
3941 		spin_lock_irq(&conf->device_lock);
3942 	}
3943 	pr_debug("%d stripes handled\n", handled);
3944 
3945 	spin_unlock_irq(&conf->device_lock);
3946 
3947 	unplug_slaves(mddev);
3948 
3949 	pr_debug("--- raid5d inactive\n");
3950 }
3951 
3952 static ssize_t
3953 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3954 {
3955 	raid5_conf_t *conf = mddev_to_conf(mddev);
3956 	if (conf)
3957 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3958 	else
3959 		return 0;
3960 }
3961 
3962 static ssize_t
3963 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3964 {
3965 	raid5_conf_t *conf = mddev_to_conf(mddev);
3966 	char *end;
3967 	int new;
3968 	if (len >= PAGE_SIZE)
3969 		return -EINVAL;
3970 	if (!conf)
3971 		return -ENODEV;
3972 
3973 	new = simple_strtoul(page, &end, 10);
3974 	if (!*page || (*end && *end != '\n') )
3975 		return -EINVAL;
3976 	if (new <= 16 || new > 32768)
3977 		return -EINVAL;
3978 	while (new < conf->max_nr_stripes) {
3979 		if (drop_one_stripe(conf))
3980 			conf->max_nr_stripes--;
3981 		else
3982 			break;
3983 	}
3984 	md_allow_write(mddev);
3985 	while (new > conf->max_nr_stripes) {
3986 		if (grow_one_stripe(conf))
3987 			conf->max_nr_stripes++;
3988 		else break;
3989 	}
3990 	return len;
3991 }
3992 
3993 static struct md_sysfs_entry
3994 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3995 				raid5_show_stripe_cache_size,
3996 				raid5_store_stripe_cache_size);
3997 
3998 static ssize_t
3999 stripe_cache_active_show(mddev_t *mddev, char *page)
4000 {
4001 	raid5_conf_t *conf = mddev_to_conf(mddev);
4002 	if (conf)
4003 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4004 	else
4005 		return 0;
4006 }
4007 
4008 static struct md_sysfs_entry
4009 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4010 
4011 static struct attribute *raid5_attrs[] =  {
4012 	&raid5_stripecache_size.attr,
4013 	&raid5_stripecache_active.attr,
4014 	NULL,
4015 };
4016 static struct attribute_group raid5_attrs_group = {
4017 	.name = NULL,
4018 	.attrs = raid5_attrs,
4019 };
4020 
4021 static int run(mddev_t *mddev)
4022 {
4023 	raid5_conf_t *conf;
4024 	int raid_disk, memory;
4025 	mdk_rdev_t *rdev;
4026 	struct disk_info *disk;
4027 	struct list_head *tmp;
4028 	int working_disks = 0;
4029 
4030 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4031 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4032 		       mdname(mddev), mddev->level);
4033 		return -EIO;
4034 	}
4035 
4036 	if (mddev->reshape_position != MaxSector) {
4037 		/* Check that we can continue the reshape.
4038 		 * Currently only disks can change, it must
4039 		 * increase, and we must be past the point where
4040 		 * a stripe over-writes itself
4041 		 */
4042 		sector_t here_new, here_old;
4043 		int old_disks;
4044 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4045 
4046 		if (mddev->new_level != mddev->level ||
4047 		    mddev->new_layout != mddev->layout ||
4048 		    mddev->new_chunk != mddev->chunk_size) {
4049 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4050 			       "required - aborting.\n",
4051 			       mdname(mddev));
4052 			return -EINVAL;
4053 		}
4054 		if (mddev->delta_disks <= 0) {
4055 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4056 			       "(reduce disks) required - aborting.\n",
4057 			       mdname(mddev));
4058 			return -EINVAL;
4059 		}
4060 		old_disks = mddev->raid_disks - mddev->delta_disks;
4061 		/* reshape_position must be on a new-stripe boundary, and one
4062 		 * further up in new geometry must map after here in old
4063 		 * geometry.
4064 		 */
4065 		here_new = mddev->reshape_position;
4066 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4067 			       (mddev->raid_disks - max_degraded))) {
4068 			printk(KERN_ERR "raid5: reshape_position not "
4069 			       "on a stripe boundary\n");
4070 			return -EINVAL;
4071 		}
4072 		/* here_new is the stripe we will write to */
4073 		here_old = mddev->reshape_position;
4074 		sector_div(here_old, (mddev->chunk_size>>9)*
4075 			   (old_disks-max_degraded));
4076 		/* here_old is the first stripe that we might need to read
4077 		 * from */
4078 		if (here_new >= here_old) {
4079 			/* Reading from the same stripe as writing to - bad */
4080 			printk(KERN_ERR "raid5: reshape_position too early for "
4081 			       "auto-recovery - aborting.\n");
4082 			return -EINVAL;
4083 		}
4084 		printk(KERN_INFO "raid5: reshape will continue\n");
4085 		/* OK, we should be able to continue; */
4086 	}
4087 
4088 
4089 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4090 	if ((conf = mddev->private) == NULL)
4091 		goto abort;
4092 	if (mddev->reshape_position == MaxSector) {
4093 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4094 	} else {
4095 		conf->raid_disks = mddev->raid_disks;
4096 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4097 	}
4098 
4099 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4100 			      GFP_KERNEL);
4101 	if (!conf->disks)
4102 		goto abort;
4103 
4104 	conf->mddev = mddev;
4105 
4106 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4107 		goto abort;
4108 
4109 	if (mddev->level == 6) {
4110 		conf->spare_page = alloc_page(GFP_KERNEL);
4111 		if (!conf->spare_page)
4112 			goto abort;
4113 	}
4114 	spin_lock_init(&conf->device_lock);
4115 	init_waitqueue_head(&conf->wait_for_stripe);
4116 	init_waitqueue_head(&conf->wait_for_overlap);
4117 	INIT_LIST_HEAD(&conf->handle_list);
4118 	INIT_LIST_HEAD(&conf->delayed_list);
4119 	INIT_LIST_HEAD(&conf->bitmap_list);
4120 	INIT_LIST_HEAD(&conf->inactive_list);
4121 	atomic_set(&conf->active_stripes, 0);
4122 	atomic_set(&conf->preread_active_stripes, 0);
4123 	atomic_set(&conf->active_aligned_reads, 0);
4124 
4125 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4126 
4127 	ITERATE_RDEV(mddev,rdev,tmp) {
4128 		raid_disk = rdev->raid_disk;
4129 		if (raid_disk >= conf->raid_disks
4130 		    || raid_disk < 0)
4131 			continue;
4132 		disk = conf->disks + raid_disk;
4133 
4134 		disk->rdev = rdev;
4135 
4136 		if (test_bit(In_sync, &rdev->flags)) {
4137 			char b[BDEVNAME_SIZE];
4138 			printk(KERN_INFO "raid5: device %s operational as raid"
4139 				" disk %d\n", bdevname(rdev->bdev,b),
4140 				raid_disk);
4141 			working_disks++;
4142 		}
4143 	}
4144 
4145 	/*
4146 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4147 	 */
4148 	mddev->degraded = conf->raid_disks - working_disks;
4149 	conf->mddev = mddev;
4150 	conf->chunk_size = mddev->chunk_size;
4151 	conf->level = mddev->level;
4152 	if (conf->level == 6)
4153 		conf->max_degraded = 2;
4154 	else
4155 		conf->max_degraded = 1;
4156 	conf->algorithm = mddev->layout;
4157 	conf->max_nr_stripes = NR_STRIPES;
4158 	conf->expand_progress = mddev->reshape_position;
4159 
4160 	/* device size must be a multiple of chunk size */
4161 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4162 	mddev->resync_max_sectors = mddev->size << 1;
4163 
4164 	if (conf->level == 6 && conf->raid_disks < 4) {
4165 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4166 		       mdname(mddev), conf->raid_disks);
4167 		goto abort;
4168 	}
4169 	if (!conf->chunk_size || conf->chunk_size % 4) {
4170 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4171 			conf->chunk_size, mdname(mddev));
4172 		goto abort;
4173 	}
4174 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4175 		printk(KERN_ERR
4176 			"raid5: unsupported parity algorithm %d for %s\n",
4177 			conf->algorithm, mdname(mddev));
4178 		goto abort;
4179 	}
4180 	if (mddev->degraded > conf->max_degraded) {
4181 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4182 			" (%d/%d failed)\n",
4183 			mdname(mddev), mddev->degraded, conf->raid_disks);
4184 		goto abort;
4185 	}
4186 
4187 	if (mddev->degraded > 0 &&
4188 	    mddev->recovery_cp != MaxSector) {
4189 		if (mddev->ok_start_degraded)
4190 			printk(KERN_WARNING
4191 			       "raid5: starting dirty degraded array: %s"
4192 			       "- data corruption possible.\n",
4193 			       mdname(mddev));
4194 		else {
4195 			printk(KERN_ERR
4196 			       "raid5: cannot start dirty degraded array for %s\n",
4197 			       mdname(mddev));
4198 			goto abort;
4199 		}
4200 	}
4201 
4202 	{
4203 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4204 		if (!mddev->thread) {
4205 			printk(KERN_ERR
4206 				"raid5: couldn't allocate thread for %s\n",
4207 				mdname(mddev));
4208 			goto abort;
4209 		}
4210 	}
4211 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4212 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4213 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4214 		printk(KERN_ERR
4215 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4216 		shrink_stripes(conf);
4217 		md_unregister_thread(mddev->thread);
4218 		goto abort;
4219 	} else
4220 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4221 			memory, mdname(mddev));
4222 
4223 	if (mddev->degraded == 0)
4224 		printk("raid5: raid level %d set %s active with %d out of %d"
4225 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4226 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4227 			conf->algorithm);
4228 	else
4229 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4230 			" out of %d devices, algorithm %d\n", conf->level,
4231 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4232 			mddev->raid_disks, conf->algorithm);
4233 
4234 	print_raid5_conf(conf);
4235 
4236 	if (conf->expand_progress != MaxSector) {
4237 		printk("...ok start reshape thread\n");
4238 		conf->expand_lo = conf->expand_progress;
4239 		atomic_set(&conf->reshape_stripes, 0);
4240 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4241 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4242 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4243 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4244 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4245 							"%s_reshape");
4246 	}
4247 
4248 	/* read-ahead size must cover two whole stripes, which is
4249 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4250 	 */
4251 	{
4252 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4253 		int stripe = data_disks *
4254 			(mddev->chunk_size / PAGE_SIZE);
4255 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4256 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4257 	}
4258 
4259 	/* Ok, everything is just fine now */
4260 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4261 		printk(KERN_WARNING
4262 		       "raid5: failed to create sysfs attributes for %s\n",
4263 		       mdname(mddev));
4264 
4265 	mddev->queue->unplug_fn = raid5_unplug_device;
4266 	mddev->queue->issue_flush_fn = raid5_issue_flush;
4267 	mddev->queue->backing_dev_info.congested_data = mddev;
4268 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4269 
4270 	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4271 					    conf->max_degraded);
4272 
4273 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4274 
4275 	return 0;
4276 abort:
4277 	if (conf) {
4278 		print_raid5_conf(conf);
4279 		safe_put_page(conf->spare_page);
4280 		kfree(conf->disks);
4281 		kfree(conf->stripe_hashtbl);
4282 		kfree(conf);
4283 	}
4284 	mddev->private = NULL;
4285 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4286 	return -EIO;
4287 }
4288 
4289 
4290 
4291 static int stop(mddev_t *mddev)
4292 {
4293 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4294 
4295 	md_unregister_thread(mddev->thread);
4296 	mddev->thread = NULL;
4297 	shrink_stripes(conf);
4298 	kfree(conf->stripe_hashtbl);
4299 	mddev->queue->backing_dev_info.congested_fn = NULL;
4300 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4301 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4302 	kfree(conf->disks);
4303 	kfree(conf);
4304 	mddev->private = NULL;
4305 	return 0;
4306 }
4307 
4308 #ifdef DEBUG
4309 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4310 {
4311 	int i;
4312 
4313 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4314 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4315 	seq_printf(seq, "sh %llu,  count %d.\n",
4316 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4317 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4318 	for (i = 0; i < sh->disks; i++) {
4319 		seq_printf(seq, "(cache%d: %p %ld) ",
4320 			   i, sh->dev[i].page, sh->dev[i].flags);
4321 	}
4322 	seq_printf(seq, "\n");
4323 }
4324 
4325 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4326 {
4327 	struct stripe_head *sh;
4328 	struct hlist_node *hn;
4329 	int i;
4330 
4331 	spin_lock_irq(&conf->device_lock);
4332 	for (i = 0; i < NR_HASH; i++) {
4333 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4334 			if (sh->raid_conf != conf)
4335 				continue;
4336 			print_sh(seq, sh);
4337 		}
4338 	}
4339 	spin_unlock_irq(&conf->device_lock);
4340 }
4341 #endif
4342 
4343 static void status (struct seq_file *seq, mddev_t *mddev)
4344 {
4345 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4346 	int i;
4347 
4348 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4349 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4350 	for (i = 0; i < conf->raid_disks; i++)
4351 		seq_printf (seq, "%s",
4352 			       conf->disks[i].rdev &&
4353 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4354 	seq_printf (seq, "]");
4355 #ifdef DEBUG
4356 	seq_printf (seq, "\n");
4357 	printall(seq, conf);
4358 #endif
4359 }
4360 
4361 static void print_raid5_conf (raid5_conf_t *conf)
4362 {
4363 	int i;
4364 	struct disk_info *tmp;
4365 
4366 	printk("RAID5 conf printout:\n");
4367 	if (!conf) {
4368 		printk("(conf==NULL)\n");
4369 		return;
4370 	}
4371 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4372 		 conf->raid_disks - conf->mddev->degraded);
4373 
4374 	for (i = 0; i < conf->raid_disks; i++) {
4375 		char b[BDEVNAME_SIZE];
4376 		tmp = conf->disks + i;
4377 		if (tmp->rdev)
4378 		printk(" disk %d, o:%d, dev:%s\n",
4379 			i, !test_bit(Faulty, &tmp->rdev->flags),
4380 			bdevname(tmp->rdev->bdev,b));
4381 	}
4382 }
4383 
4384 static int raid5_spare_active(mddev_t *mddev)
4385 {
4386 	int i;
4387 	raid5_conf_t *conf = mddev->private;
4388 	struct disk_info *tmp;
4389 
4390 	for (i = 0; i < conf->raid_disks; i++) {
4391 		tmp = conf->disks + i;
4392 		if (tmp->rdev
4393 		    && !test_bit(Faulty, &tmp->rdev->flags)
4394 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4395 			unsigned long flags;
4396 			spin_lock_irqsave(&conf->device_lock, flags);
4397 			mddev->degraded--;
4398 			spin_unlock_irqrestore(&conf->device_lock, flags);
4399 		}
4400 	}
4401 	print_raid5_conf(conf);
4402 	return 0;
4403 }
4404 
4405 static int raid5_remove_disk(mddev_t *mddev, int number)
4406 {
4407 	raid5_conf_t *conf = mddev->private;
4408 	int err = 0;
4409 	mdk_rdev_t *rdev;
4410 	struct disk_info *p = conf->disks + number;
4411 
4412 	print_raid5_conf(conf);
4413 	rdev = p->rdev;
4414 	if (rdev) {
4415 		if (test_bit(In_sync, &rdev->flags) ||
4416 		    atomic_read(&rdev->nr_pending)) {
4417 			err = -EBUSY;
4418 			goto abort;
4419 		}
4420 		p->rdev = NULL;
4421 		synchronize_rcu();
4422 		if (atomic_read(&rdev->nr_pending)) {
4423 			/* lost the race, try later */
4424 			err = -EBUSY;
4425 			p->rdev = rdev;
4426 		}
4427 	}
4428 abort:
4429 
4430 	print_raid5_conf(conf);
4431 	return err;
4432 }
4433 
4434 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4435 {
4436 	raid5_conf_t *conf = mddev->private;
4437 	int found = 0;
4438 	int disk;
4439 	struct disk_info *p;
4440 
4441 	if (mddev->degraded > conf->max_degraded)
4442 		/* no point adding a device */
4443 		return 0;
4444 
4445 	/*
4446 	 * find the disk ... but prefer rdev->saved_raid_disk
4447 	 * if possible.
4448 	 */
4449 	if (rdev->saved_raid_disk >= 0 &&
4450 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4451 		disk = rdev->saved_raid_disk;
4452 	else
4453 		disk = 0;
4454 	for ( ; disk < conf->raid_disks; disk++)
4455 		if ((p=conf->disks + disk)->rdev == NULL) {
4456 			clear_bit(In_sync, &rdev->flags);
4457 			rdev->raid_disk = disk;
4458 			found = 1;
4459 			if (rdev->saved_raid_disk != disk)
4460 				conf->fullsync = 1;
4461 			rcu_assign_pointer(p->rdev, rdev);
4462 			break;
4463 		}
4464 	print_raid5_conf(conf);
4465 	return found;
4466 }
4467 
4468 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4469 {
4470 	/* no resync is happening, and there is enough space
4471 	 * on all devices, so we can resize.
4472 	 * We need to make sure resync covers any new space.
4473 	 * If the array is shrinking we should possibly wait until
4474 	 * any io in the removed space completes, but it hardly seems
4475 	 * worth it.
4476 	 */
4477 	raid5_conf_t *conf = mddev_to_conf(mddev);
4478 
4479 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4480 	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4481 	set_capacity(mddev->gendisk, mddev->array_size << 1);
4482 	mddev->changed = 1;
4483 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4484 		mddev->recovery_cp = mddev->size << 1;
4485 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4486 	}
4487 	mddev->size = sectors /2;
4488 	mddev->resync_max_sectors = sectors;
4489 	return 0;
4490 }
4491 
4492 #ifdef CONFIG_MD_RAID5_RESHAPE
4493 static int raid5_check_reshape(mddev_t *mddev)
4494 {
4495 	raid5_conf_t *conf = mddev_to_conf(mddev);
4496 	int err;
4497 
4498 	if (mddev->delta_disks < 0 ||
4499 	    mddev->new_level != mddev->level)
4500 		return -EINVAL; /* Cannot shrink array or change level yet */
4501 	if (mddev->delta_disks == 0)
4502 		return 0; /* nothing to do */
4503 
4504 	/* Can only proceed if there are plenty of stripe_heads.
4505 	 * We need a minimum of one full stripe,, and for sensible progress
4506 	 * it is best to have about 4 times that.
4507 	 * If we require 4 times, then the default 256 4K stripe_heads will
4508 	 * allow for chunk sizes up to 256K, which is probably OK.
4509 	 * If the chunk size is greater, user-space should request more
4510 	 * stripe_heads first.
4511 	 */
4512 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4513 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4514 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4515 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4516 		return -ENOSPC;
4517 	}
4518 
4519 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4520 	if (err)
4521 		return err;
4522 
4523 	if (mddev->degraded > conf->max_degraded)
4524 		return -EINVAL;
4525 	/* looks like we might be able to manage this */
4526 	return 0;
4527 }
4528 
4529 static int raid5_start_reshape(mddev_t *mddev)
4530 {
4531 	raid5_conf_t *conf = mddev_to_conf(mddev);
4532 	mdk_rdev_t *rdev;
4533 	struct list_head *rtmp;
4534 	int spares = 0;
4535 	int added_devices = 0;
4536 	unsigned long flags;
4537 
4538 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4539 		return -EBUSY;
4540 
4541 	ITERATE_RDEV(mddev, rdev, rtmp)
4542 		if (rdev->raid_disk < 0 &&
4543 		    !test_bit(Faulty, &rdev->flags))
4544 			spares++;
4545 
4546 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4547 		/* Not enough devices even to make a degraded array
4548 		 * of that size
4549 		 */
4550 		return -EINVAL;
4551 
4552 	atomic_set(&conf->reshape_stripes, 0);
4553 	spin_lock_irq(&conf->device_lock);
4554 	conf->previous_raid_disks = conf->raid_disks;
4555 	conf->raid_disks += mddev->delta_disks;
4556 	conf->expand_progress = 0;
4557 	conf->expand_lo = 0;
4558 	spin_unlock_irq(&conf->device_lock);
4559 
4560 	/* Add some new drives, as many as will fit.
4561 	 * We know there are enough to make the newly sized array work.
4562 	 */
4563 	ITERATE_RDEV(mddev, rdev, rtmp)
4564 		if (rdev->raid_disk < 0 &&
4565 		    !test_bit(Faulty, &rdev->flags)) {
4566 			if (raid5_add_disk(mddev, rdev)) {
4567 				char nm[20];
4568 				set_bit(In_sync, &rdev->flags);
4569 				added_devices++;
4570 				rdev->recovery_offset = 0;
4571 				sprintf(nm, "rd%d", rdev->raid_disk);
4572 				if (sysfs_create_link(&mddev->kobj,
4573 						      &rdev->kobj, nm))
4574 					printk(KERN_WARNING
4575 					       "raid5: failed to create "
4576 					       " link %s for %s\n",
4577 					       nm, mdname(mddev));
4578 			} else
4579 				break;
4580 		}
4581 
4582 	spin_lock_irqsave(&conf->device_lock, flags);
4583 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4584 	spin_unlock_irqrestore(&conf->device_lock, flags);
4585 	mddev->raid_disks = conf->raid_disks;
4586 	mddev->reshape_position = 0;
4587 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4588 
4589 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4590 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4591 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4592 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4593 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4594 						"%s_reshape");
4595 	if (!mddev->sync_thread) {
4596 		mddev->recovery = 0;
4597 		spin_lock_irq(&conf->device_lock);
4598 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4599 		conf->expand_progress = MaxSector;
4600 		spin_unlock_irq(&conf->device_lock);
4601 		return -EAGAIN;
4602 	}
4603 	md_wakeup_thread(mddev->sync_thread);
4604 	md_new_event(mddev);
4605 	return 0;
4606 }
4607 #endif
4608 
4609 static void end_reshape(raid5_conf_t *conf)
4610 {
4611 	struct block_device *bdev;
4612 
4613 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4614 		conf->mddev->array_size = conf->mddev->size *
4615 			(conf->raid_disks - conf->max_degraded);
4616 		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4617 		conf->mddev->changed = 1;
4618 
4619 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4620 		if (bdev) {
4621 			mutex_lock(&bdev->bd_inode->i_mutex);
4622 			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4623 			mutex_unlock(&bdev->bd_inode->i_mutex);
4624 			bdput(bdev);
4625 		}
4626 		spin_lock_irq(&conf->device_lock);
4627 		conf->expand_progress = MaxSector;
4628 		spin_unlock_irq(&conf->device_lock);
4629 		conf->mddev->reshape_position = MaxSector;
4630 
4631 		/* read-ahead size must cover two whole stripes, which is
4632 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4633 		 */
4634 		{
4635 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4636 			int stripe = data_disks *
4637 				(conf->mddev->chunk_size / PAGE_SIZE);
4638 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4639 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4640 		}
4641 	}
4642 }
4643 
4644 static void raid5_quiesce(mddev_t *mddev, int state)
4645 {
4646 	raid5_conf_t *conf = mddev_to_conf(mddev);
4647 
4648 	switch(state) {
4649 	case 2: /* resume for a suspend */
4650 		wake_up(&conf->wait_for_overlap);
4651 		break;
4652 
4653 	case 1: /* stop all writes */
4654 		spin_lock_irq(&conf->device_lock);
4655 		conf->quiesce = 1;
4656 		wait_event_lock_irq(conf->wait_for_stripe,
4657 				    atomic_read(&conf->active_stripes) == 0 &&
4658 				    atomic_read(&conf->active_aligned_reads) == 0,
4659 				    conf->device_lock, /* nothing */);
4660 		spin_unlock_irq(&conf->device_lock);
4661 		break;
4662 
4663 	case 0: /* re-enable writes */
4664 		spin_lock_irq(&conf->device_lock);
4665 		conf->quiesce = 0;
4666 		wake_up(&conf->wait_for_stripe);
4667 		wake_up(&conf->wait_for_overlap);
4668 		spin_unlock_irq(&conf->device_lock);
4669 		break;
4670 	}
4671 }
4672 
4673 static struct mdk_personality raid6_personality =
4674 {
4675 	.name		= "raid6",
4676 	.level		= 6,
4677 	.owner		= THIS_MODULE,
4678 	.make_request	= make_request,
4679 	.run		= run,
4680 	.stop		= stop,
4681 	.status		= status,
4682 	.error_handler	= error,
4683 	.hot_add_disk	= raid5_add_disk,
4684 	.hot_remove_disk= raid5_remove_disk,
4685 	.spare_active	= raid5_spare_active,
4686 	.sync_request	= sync_request,
4687 	.resize		= raid5_resize,
4688 #ifdef CONFIG_MD_RAID5_RESHAPE
4689 	.check_reshape	= raid5_check_reshape,
4690 	.start_reshape  = raid5_start_reshape,
4691 #endif
4692 	.quiesce	= raid5_quiesce,
4693 };
4694 static struct mdk_personality raid5_personality =
4695 {
4696 	.name		= "raid5",
4697 	.level		= 5,
4698 	.owner		= THIS_MODULE,
4699 	.make_request	= make_request,
4700 	.run		= run,
4701 	.stop		= stop,
4702 	.status		= status,
4703 	.error_handler	= error,
4704 	.hot_add_disk	= raid5_add_disk,
4705 	.hot_remove_disk= raid5_remove_disk,
4706 	.spare_active	= raid5_spare_active,
4707 	.sync_request	= sync_request,
4708 	.resize		= raid5_resize,
4709 #ifdef CONFIG_MD_RAID5_RESHAPE
4710 	.check_reshape	= raid5_check_reshape,
4711 	.start_reshape  = raid5_start_reshape,
4712 #endif
4713 	.quiesce	= raid5_quiesce,
4714 };
4715 
4716 static struct mdk_personality raid4_personality =
4717 {
4718 	.name		= "raid4",
4719 	.level		= 4,
4720 	.owner		= THIS_MODULE,
4721 	.make_request	= make_request,
4722 	.run		= run,
4723 	.stop		= stop,
4724 	.status		= status,
4725 	.error_handler	= error,
4726 	.hot_add_disk	= raid5_add_disk,
4727 	.hot_remove_disk= raid5_remove_disk,
4728 	.spare_active	= raid5_spare_active,
4729 	.sync_request	= sync_request,
4730 	.resize		= raid5_resize,
4731 #ifdef CONFIG_MD_RAID5_RESHAPE
4732 	.check_reshape	= raid5_check_reshape,
4733 	.start_reshape  = raid5_start_reshape,
4734 #endif
4735 	.quiesce	= raid5_quiesce,
4736 };
4737 
4738 static int __init raid5_init(void)
4739 {
4740 	int e;
4741 
4742 	e = raid6_select_algo();
4743 	if ( e )
4744 		return e;
4745 	register_md_personality(&raid6_personality);
4746 	register_md_personality(&raid5_personality);
4747 	register_md_personality(&raid4_personality);
4748 	return 0;
4749 }
4750 
4751 static void raid5_exit(void)
4752 {
4753 	unregister_md_personality(&raid6_personality);
4754 	unregister_md_personality(&raid5_personality);
4755 	unregister_md_personality(&raid4_personality);
4756 }
4757 
4758 module_init(raid5_init);
4759 module_exit(raid5_exit);
4760 MODULE_LICENSE("GPL");
4761 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4762 MODULE_ALIAS("md-raid5");
4763 MODULE_ALIAS("md-raid4");
4764 MODULE_ALIAS("md-level-5");
4765 MODULE_ALIAS("md-level-4");
4766 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4767 MODULE_ALIAS("md-raid6");
4768 MODULE_ALIAS("md-level-6");
4769 
4770 /* This used to be two separate modules, they were: */
4771 MODULE_ALIAS("raid5");
4772 MODULE_ALIAS("raid6");
4773