1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * 33 * The data to be stored is divided into chunks using chunksize. 34 * Each device is divided into far_copies sections. 35 * In each section, chunks are laid out in a style similar to raid0, but 36 * near_copies copies of each chunk is stored (each on a different drive). 37 * The starting device for each section is offset near_copies from the starting 38 * device of the previous section. 39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different 40 * drive. 41 * near_copies and far_copies must be at least one, and their product is at most 42 * raid_disks. 43 */ 44 45 /* 46 * Number of guaranteed r10bios in case of extreme VM load: 47 */ 48 #define NR_RAID10_BIOS 256 49 50 static void unplug_slaves(mddev_t *mddev); 51 52 static void allow_barrier(conf_t *conf); 53 static void lower_barrier(conf_t *conf); 54 55 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 56 { 57 conf_t *conf = data; 58 r10bio_t *r10_bio; 59 int size = offsetof(struct r10bio_s, devs[conf->copies]); 60 61 /* allocate a r10bio with room for raid_disks entries in the bios array */ 62 r10_bio = kzalloc(size, gfp_flags); 63 if (!r10_bio) 64 unplug_slaves(conf->mddev); 65 66 return r10_bio; 67 } 68 69 static void r10bio_pool_free(void *r10_bio, void *data) 70 { 71 kfree(r10_bio); 72 } 73 74 #define RESYNC_BLOCK_SIZE (64*1024) 75 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 76 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 77 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 78 #define RESYNC_WINDOW (2048*1024) 79 80 /* 81 * When performing a resync, we need to read and compare, so 82 * we need as many pages are there are copies. 83 * When performing a recovery, we need 2 bios, one for read, 84 * one for write (we recover only one drive per r10buf) 85 * 86 */ 87 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 88 { 89 conf_t *conf = data; 90 struct page *page; 91 r10bio_t *r10_bio; 92 struct bio *bio; 93 int i, j; 94 int nalloc; 95 96 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 97 if (!r10_bio) { 98 unplug_slaves(conf->mddev); 99 return NULL; 100 } 101 102 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 103 nalloc = conf->copies; /* resync */ 104 else 105 nalloc = 2; /* recovery */ 106 107 /* 108 * Allocate bios. 109 */ 110 for (j = nalloc ; j-- ; ) { 111 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r10_bio->devs[j].bio = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them 118 * where needed. 119 */ 120 for (j = 0 ; j < nalloc; j++) { 121 bio = r10_bio->devs[j].bio; 122 for (i = 0; i < RESYNC_PAGES; i++) { 123 page = alloc_page(gfp_flags); 124 if (unlikely(!page)) 125 goto out_free_pages; 126 127 bio->bi_io_vec[i].bv_page = page; 128 } 129 } 130 131 return r10_bio; 132 133 out_free_pages: 134 for ( ; i > 0 ; i--) 135 safe_put_page(bio->bi_io_vec[i-1].bv_page); 136 while (j--) 137 for (i = 0; i < RESYNC_PAGES ; i++) 138 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 139 j = -1; 140 out_free_bio: 141 while ( ++j < nalloc ) 142 bio_put(r10_bio->devs[j].bio); 143 r10bio_pool_free(r10_bio, conf); 144 return NULL; 145 } 146 147 static void r10buf_pool_free(void *__r10_bio, void *data) 148 { 149 int i; 150 conf_t *conf = data; 151 r10bio_t *r10bio = __r10_bio; 152 int j; 153 154 for (j=0; j < conf->copies; j++) { 155 struct bio *bio = r10bio->devs[j].bio; 156 if (bio) { 157 for (i = 0; i < RESYNC_PAGES; i++) { 158 safe_put_page(bio->bi_io_vec[i].bv_page); 159 bio->bi_io_vec[i].bv_page = NULL; 160 } 161 bio_put(bio); 162 } 163 } 164 r10bio_pool_free(r10bio, conf); 165 } 166 167 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->copies; i++) { 172 struct bio **bio = & r10_bio->devs[i].bio; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r10bio(r10bio_t *r10_bio) 180 { 181 conf_t *conf = mddev_to_conf(r10_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r10_bio); 190 mempool_free(r10_bio, conf->r10bio_pool); 191 } 192 193 static void put_buf(r10bio_t *r10_bio) 194 { 195 conf_t *conf = mddev_to_conf(r10_bio->mddev); 196 197 mempool_free(r10_bio, conf->r10buf_pool); 198 199 lower_barrier(conf); 200 } 201 202 static void reschedule_retry(r10bio_t *r10_bio) 203 { 204 unsigned long flags; 205 mddev_t *mddev = r10_bio->mddev; 206 conf_t *conf = mddev_to_conf(mddev); 207 208 spin_lock_irqsave(&conf->device_lock, flags); 209 list_add(&r10_bio->retry_list, &conf->retry_list); 210 conf->nr_queued ++; 211 spin_unlock_irqrestore(&conf->device_lock, flags); 212 213 md_wakeup_thread(mddev->thread); 214 } 215 216 /* 217 * raid_end_bio_io() is called when we have finished servicing a mirrored 218 * operation and are ready to return a success/failure code to the buffer 219 * cache layer. 220 */ 221 static void raid_end_bio_io(r10bio_t *r10_bio) 222 { 223 struct bio *bio = r10_bio->master_bio; 224 225 bio_endio(bio, bio->bi_size, 226 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 227 free_r10bio(r10_bio); 228 } 229 230 /* 231 * Update disk head position estimator based on IRQ completion info. 232 */ 233 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 234 { 235 conf_t *conf = mddev_to_conf(r10_bio->mddev); 236 237 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 238 r10_bio->devs[slot].addr + (r10_bio->sectors); 239 } 240 241 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 242 { 243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 244 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 245 int slot, dev; 246 conf_t *conf = mddev_to_conf(r10_bio->mddev); 247 248 if (bio->bi_size) 249 return 1; 250 251 slot = r10_bio->read_slot; 252 dev = r10_bio->devs[slot].devnum; 253 /* 254 * this branch is our 'one mirror IO has finished' event handler: 255 */ 256 update_head_pos(slot, r10_bio); 257 258 if (uptodate) { 259 /* 260 * Set R10BIO_Uptodate in our master bio, so that 261 * we will return a good error code to the higher 262 * levels even if IO on some other mirrored buffer fails. 263 * 264 * The 'master' represents the composite IO operation to 265 * user-side. So if something waits for IO, then it will 266 * wait for the 'master' bio. 267 */ 268 set_bit(R10BIO_Uptodate, &r10_bio->state); 269 raid_end_bio_io(r10_bio); 270 } else { 271 /* 272 * oops, read error: 273 */ 274 char b[BDEVNAME_SIZE]; 275 if (printk_ratelimit()) 276 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 277 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 278 reschedule_retry(r10_bio); 279 } 280 281 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 282 return 0; 283 } 284 285 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 286 { 287 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 288 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 289 int slot, dev; 290 conf_t *conf = mddev_to_conf(r10_bio->mddev); 291 292 if (bio->bi_size) 293 return 1; 294 295 for (slot = 0; slot < conf->copies; slot++) 296 if (r10_bio->devs[slot].bio == bio) 297 break; 298 dev = r10_bio->devs[slot].devnum; 299 300 /* 301 * this branch is our 'one mirror IO has finished' event handler: 302 */ 303 if (!uptodate) { 304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 305 /* an I/O failed, we can't clear the bitmap */ 306 set_bit(R10BIO_Degraded, &r10_bio->state); 307 } else 308 /* 309 * Set R10BIO_Uptodate in our master bio, so that 310 * we will return a good error code for to the higher 311 * levels even if IO on some other mirrored buffer fails. 312 * 313 * The 'master' represents the composite IO operation to 314 * user-side. So if something waits for IO, then it will 315 * wait for the 'master' bio. 316 */ 317 set_bit(R10BIO_Uptodate, &r10_bio->state); 318 319 update_head_pos(slot, r10_bio); 320 321 /* 322 * 323 * Let's see if all mirrored write operations have finished 324 * already. 325 */ 326 if (atomic_dec_and_test(&r10_bio->remaining)) { 327 /* clear the bitmap if all writes complete successfully */ 328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 329 r10_bio->sectors, 330 !test_bit(R10BIO_Degraded, &r10_bio->state), 331 0); 332 md_write_end(r10_bio->mddev); 333 raid_end_bio_io(r10_bio); 334 } 335 336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 337 return 0; 338 } 339 340 341 /* 342 * RAID10 layout manager 343 * Aswell as the chunksize and raid_disks count, there are two 344 * parameters: near_copies and far_copies. 345 * near_copies * far_copies must be <= raid_disks. 346 * Normally one of these will be 1. 347 * If both are 1, we get raid0. 348 * If near_copies == raid_disks, we get raid1. 349 * 350 * Chunks are layed out in raid0 style with near_copies copies of the 351 * first chunk, followed by near_copies copies of the next chunk and 352 * so on. 353 * If far_copies > 1, then after 1/far_copies of the array has been assigned 354 * as described above, we start again with a device offset of near_copies. 355 * So we effectively have another copy of the whole array further down all 356 * the drives, but with blocks on different drives. 357 * With this layout, and block is never stored twice on the one device. 358 * 359 * raid10_find_phys finds the sector offset of a given virtual sector 360 * on each device that it is on. If a block isn't on a device, 361 * that entry in the array is set to MaxSector. 362 * 363 * raid10_find_virt does the reverse mapping, from a device and a 364 * sector offset to a virtual address 365 */ 366 367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 368 { 369 int n,f; 370 sector_t sector; 371 sector_t chunk; 372 sector_t stripe; 373 int dev; 374 375 int slot = 0; 376 377 /* now calculate first sector/dev */ 378 chunk = r10bio->sector >> conf->chunk_shift; 379 sector = r10bio->sector & conf->chunk_mask; 380 381 chunk *= conf->near_copies; 382 stripe = chunk; 383 dev = sector_div(stripe, conf->raid_disks); 384 385 sector += stripe << conf->chunk_shift; 386 387 /* and calculate all the others */ 388 for (n=0; n < conf->near_copies; n++) { 389 int d = dev; 390 sector_t s = sector; 391 r10bio->devs[slot].addr = sector; 392 r10bio->devs[slot].devnum = d; 393 slot++; 394 395 for (f = 1; f < conf->far_copies; f++) { 396 d += conf->near_copies; 397 if (d >= conf->raid_disks) 398 d -= conf->raid_disks; 399 s += conf->stride; 400 r10bio->devs[slot].devnum = d; 401 r10bio->devs[slot].addr = s; 402 slot++; 403 } 404 dev++; 405 if (dev >= conf->raid_disks) { 406 dev = 0; 407 sector += (conf->chunk_mask + 1); 408 } 409 } 410 BUG_ON(slot != conf->copies); 411 } 412 413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 414 { 415 sector_t offset, chunk, vchunk; 416 417 while (sector > conf->stride) { 418 sector -= conf->stride; 419 if (dev < conf->near_copies) 420 dev += conf->raid_disks - conf->near_copies; 421 else 422 dev -= conf->near_copies; 423 } 424 425 offset = sector & conf->chunk_mask; 426 chunk = sector >> conf->chunk_shift; 427 vchunk = chunk * conf->raid_disks + dev; 428 sector_div(vchunk, conf->near_copies); 429 return (vchunk << conf->chunk_shift) + offset; 430 } 431 432 /** 433 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 434 * @q: request queue 435 * @bio: the buffer head that's been built up so far 436 * @biovec: the request that could be merged to it. 437 * 438 * Return amount of bytes we can accept at this offset 439 * If near_copies == raid_disk, there are no striping issues, 440 * but in that case, the function isn't called at all. 441 */ 442 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 443 struct bio_vec *bio_vec) 444 { 445 mddev_t *mddev = q->queuedata; 446 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 447 int max; 448 unsigned int chunk_sectors = mddev->chunk_size >> 9; 449 unsigned int bio_sectors = bio->bi_size >> 9; 450 451 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 452 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 453 if (max <= bio_vec->bv_len && bio_sectors == 0) 454 return bio_vec->bv_len; 455 else 456 return max; 457 } 458 459 /* 460 * This routine returns the disk from which the requested read should 461 * be done. There is a per-array 'next expected sequential IO' sector 462 * number - if this matches on the next IO then we use the last disk. 463 * There is also a per-disk 'last know head position' sector that is 464 * maintained from IRQ contexts, both the normal and the resync IO 465 * completion handlers update this position correctly. If there is no 466 * perfect sequential match then we pick the disk whose head is closest. 467 * 468 * If there are 2 mirrors in the same 2 devices, performance degrades 469 * because position is mirror, not device based. 470 * 471 * The rdev for the device selected will have nr_pending incremented. 472 */ 473 474 /* 475 * FIXME: possibly should rethink readbalancing and do it differently 476 * depending on near_copies / far_copies geometry. 477 */ 478 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 479 { 480 const unsigned long this_sector = r10_bio->sector; 481 int disk, slot, nslot; 482 const int sectors = r10_bio->sectors; 483 sector_t new_distance, current_distance; 484 mdk_rdev_t *rdev; 485 486 raid10_find_phys(conf, r10_bio); 487 rcu_read_lock(); 488 /* 489 * Check if we can balance. We can balance on the whole 490 * device if no resync is going on (recovery is ok), or below 491 * the resync window. We take the first readable disk when 492 * above the resync window. 493 */ 494 if (conf->mddev->recovery_cp < MaxSector 495 && (this_sector + sectors >= conf->next_resync)) { 496 /* make sure that disk is operational */ 497 slot = 0; 498 disk = r10_bio->devs[slot].devnum; 499 500 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 501 r10_bio->devs[slot].bio == IO_BLOCKED || 502 !test_bit(In_sync, &rdev->flags)) { 503 slot++; 504 if (slot == conf->copies) { 505 slot = 0; 506 disk = -1; 507 break; 508 } 509 disk = r10_bio->devs[slot].devnum; 510 } 511 goto rb_out; 512 } 513 514 515 /* make sure the disk is operational */ 516 slot = 0; 517 disk = r10_bio->devs[slot].devnum; 518 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 519 r10_bio->devs[slot].bio == IO_BLOCKED || 520 !test_bit(In_sync, &rdev->flags)) { 521 slot ++; 522 if (slot == conf->copies) { 523 disk = -1; 524 goto rb_out; 525 } 526 disk = r10_bio->devs[slot].devnum; 527 } 528 529 530 current_distance = abs(r10_bio->devs[slot].addr - 531 conf->mirrors[disk].head_position); 532 533 /* Find the disk whose head is closest */ 534 535 for (nslot = slot; nslot < conf->copies; nslot++) { 536 int ndisk = r10_bio->devs[nslot].devnum; 537 538 539 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 540 r10_bio->devs[nslot].bio == IO_BLOCKED || 541 !test_bit(In_sync, &rdev->flags)) 542 continue; 543 544 /* This optimisation is debatable, and completely destroys 545 * sequential read speed for 'far copies' arrays. So only 546 * keep it for 'near' arrays, and review those later. 547 */ 548 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 549 disk = ndisk; 550 slot = nslot; 551 break; 552 } 553 new_distance = abs(r10_bio->devs[nslot].addr - 554 conf->mirrors[ndisk].head_position); 555 if (new_distance < current_distance) { 556 current_distance = new_distance; 557 disk = ndisk; 558 slot = nslot; 559 } 560 } 561 562 rb_out: 563 r10_bio->read_slot = slot; 564 /* conf->next_seq_sect = this_sector + sectors;*/ 565 566 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 567 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 568 else 569 disk = -1; 570 rcu_read_unlock(); 571 572 return disk; 573 } 574 575 static void unplug_slaves(mddev_t *mddev) 576 { 577 conf_t *conf = mddev_to_conf(mddev); 578 int i; 579 580 rcu_read_lock(); 581 for (i=0; i<mddev->raid_disks; i++) { 582 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 583 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 584 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 585 586 atomic_inc(&rdev->nr_pending); 587 rcu_read_unlock(); 588 589 if (r_queue->unplug_fn) 590 r_queue->unplug_fn(r_queue); 591 592 rdev_dec_pending(rdev, mddev); 593 rcu_read_lock(); 594 } 595 } 596 rcu_read_unlock(); 597 } 598 599 static void raid10_unplug(request_queue_t *q) 600 { 601 mddev_t *mddev = q->queuedata; 602 603 unplug_slaves(q->queuedata); 604 md_wakeup_thread(mddev->thread); 605 } 606 607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 608 sector_t *error_sector) 609 { 610 mddev_t *mddev = q->queuedata; 611 conf_t *conf = mddev_to_conf(mddev); 612 int i, ret = 0; 613 614 rcu_read_lock(); 615 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 616 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 617 if (rdev && !test_bit(Faulty, &rdev->flags)) { 618 struct block_device *bdev = rdev->bdev; 619 request_queue_t *r_queue = bdev_get_queue(bdev); 620 621 if (!r_queue->issue_flush_fn) 622 ret = -EOPNOTSUPP; 623 else { 624 atomic_inc(&rdev->nr_pending); 625 rcu_read_unlock(); 626 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 627 error_sector); 628 rdev_dec_pending(rdev, mddev); 629 rcu_read_lock(); 630 } 631 } 632 } 633 rcu_read_unlock(); 634 return ret; 635 } 636 637 /* Barriers.... 638 * Sometimes we need to suspend IO while we do something else, 639 * either some resync/recovery, or reconfigure the array. 640 * To do this we raise a 'barrier'. 641 * The 'barrier' is a counter that can be raised multiple times 642 * to count how many activities are happening which preclude 643 * normal IO. 644 * We can only raise the barrier if there is no pending IO. 645 * i.e. if nr_pending == 0. 646 * We choose only to raise the barrier if no-one is waiting for the 647 * barrier to go down. This means that as soon as an IO request 648 * is ready, no other operations which require a barrier will start 649 * until the IO request has had a chance. 650 * 651 * So: regular IO calls 'wait_barrier'. When that returns there 652 * is no backgroup IO happening, It must arrange to call 653 * allow_barrier when it has finished its IO. 654 * backgroup IO calls must call raise_barrier. Once that returns 655 * there is no normal IO happeing. It must arrange to call 656 * lower_barrier when the particular background IO completes. 657 */ 658 #define RESYNC_DEPTH 32 659 660 static void raise_barrier(conf_t *conf, int force) 661 { 662 BUG_ON(force && !conf->barrier); 663 spin_lock_irq(&conf->resync_lock); 664 665 /* Wait until no block IO is waiting (unless 'force') */ 666 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 667 conf->resync_lock, 668 raid10_unplug(conf->mddev->queue)); 669 670 /* block any new IO from starting */ 671 conf->barrier++; 672 673 /* No wait for all pending IO to complete */ 674 wait_event_lock_irq(conf->wait_barrier, 675 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 676 conf->resync_lock, 677 raid10_unplug(conf->mddev->queue)); 678 679 spin_unlock_irq(&conf->resync_lock); 680 } 681 682 static void lower_barrier(conf_t *conf) 683 { 684 unsigned long flags; 685 spin_lock_irqsave(&conf->resync_lock, flags); 686 conf->barrier--; 687 spin_unlock_irqrestore(&conf->resync_lock, flags); 688 wake_up(&conf->wait_barrier); 689 } 690 691 static void wait_barrier(conf_t *conf) 692 { 693 spin_lock_irq(&conf->resync_lock); 694 if (conf->barrier) { 695 conf->nr_waiting++; 696 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 697 conf->resync_lock, 698 raid10_unplug(conf->mddev->queue)); 699 conf->nr_waiting--; 700 } 701 conf->nr_pending++; 702 spin_unlock_irq(&conf->resync_lock); 703 } 704 705 static void allow_barrier(conf_t *conf) 706 { 707 unsigned long flags; 708 spin_lock_irqsave(&conf->resync_lock, flags); 709 conf->nr_pending--; 710 spin_unlock_irqrestore(&conf->resync_lock, flags); 711 wake_up(&conf->wait_barrier); 712 } 713 714 static void freeze_array(conf_t *conf) 715 { 716 /* stop syncio and normal IO and wait for everything to 717 * go quiet. 718 * We increment barrier and nr_waiting, and then 719 * wait until barrier+nr_pending match nr_queued+2 720 */ 721 spin_lock_irq(&conf->resync_lock); 722 conf->barrier++; 723 conf->nr_waiting++; 724 wait_event_lock_irq(conf->wait_barrier, 725 conf->barrier+conf->nr_pending == conf->nr_queued+2, 726 conf->resync_lock, 727 raid10_unplug(conf->mddev->queue)); 728 spin_unlock_irq(&conf->resync_lock); 729 } 730 731 static void unfreeze_array(conf_t *conf) 732 { 733 /* reverse the effect of the freeze */ 734 spin_lock_irq(&conf->resync_lock); 735 conf->barrier--; 736 conf->nr_waiting--; 737 wake_up(&conf->wait_barrier); 738 spin_unlock_irq(&conf->resync_lock); 739 } 740 741 static int make_request(request_queue_t *q, struct bio * bio) 742 { 743 mddev_t *mddev = q->queuedata; 744 conf_t *conf = mddev_to_conf(mddev); 745 mirror_info_t *mirror; 746 r10bio_t *r10_bio; 747 struct bio *read_bio; 748 int i; 749 int chunk_sects = conf->chunk_mask + 1; 750 const int rw = bio_data_dir(bio); 751 struct bio_list bl; 752 unsigned long flags; 753 754 if (unlikely(bio_barrier(bio))) { 755 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 756 return 0; 757 } 758 759 /* If this request crosses a chunk boundary, we need to 760 * split it. This will only happen for 1 PAGE (or less) requests. 761 */ 762 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 763 > chunk_sects && 764 conf->near_copies < conf->raid_disks)) { 765 struct bio_pair *bp; 766 /* Sanity check -- queue functions should prevent this happening */ 767 if (bio->bi_vcnt != 1 || 768 bio->bi_idx != 0) 769 goto bad_map; 770 /* This is a one page bio that upper layers 771 * refuse to split for us, so we need to split it. 772 */ 773 bp = bio_split(bio, bio_split_pool, 774 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 775 if (make_request(q, &bp->bio1)) 776 generic_make_request(&bp->bio1); 777 if (make_request(q, &bp->bio2)) 778 generic_make_request(&bp->bio2); 779 780 bio_pair_release(bp); 781 return 0; 782 bad_map: 783 printk("raid10_make_request bug: can't convert block across chunks" 784 " or bigger than %dk %llu %d\n", chunk_sects/2, 785 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 786 787 bio_io_error(bio, bio->bi_size); 788 return 0; 789 } 790 791 md_write_start(mddev, bio); 792 793 /* 794 * Register the new request and wait if the reconstruction 795 * thread has put up a bar for new requests. 796 * Continue immediately if no resync is active currently. 797 */ 798 wait_barrier(conf); 799 800 disk_stat_inc(mddev->gendisk, ios[rw]); 801 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 802 803 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 804 805 r10_bio->master_bio = bio; 806 r10_bio->sectors = bio->bi_size >> 9; 807 808 r10_bio->mddev = mddev; 809 r10_bio->sector = bio->bi_sector; 810 r10_bio->state = 0; 811 812 if (rw == READ) { 813 /* 814 * read balancing logic: 815 */ 816 int disk = read_balance(conf, r10_bio); 817 int slot = r10_bio->read_slot; 818 if (disk < 0) { 819 raid_end_bio_io(r10_bio); 820 return 0; 821 } 822 mirror = conf->mirrors + disk; 823 824 read_bio = bio_clone(bio, GFP_NOIO); 825 826 r10_bio->devs[slot].bio = read_bio; 827 828 read_bio->bi_sector = r10_bio->devs[slot].addr + 829 mirror->rdev->data_offset; 830 read_bio->bi_bdev = mirror->rdev->bdev; 831 read_bio->bi_end_io = raid10_end_read_request; 832 read_bio->bi_rw = READ; 833 read_bio->bi_private = r10_bio; 834 835 generic_make_request(read_bio); 836 return 0; 837 } 838 839 /* 840 * WRITE: 841 */ 842 /* first select target devices under spinlock and 843 * inc refcount on their rdev. Record them by setting 844 * bios[x] to bio 845 */ 846 raid10_find_phys(conf, r10_bio); 847 rcu_read_lock(); 848 for (i = 0; i < conf->copies; i++) { 849 int d = r10_bio->devs[i].devnum; 850 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 851 if (rdev && 852 !test_bit(Faulty, &rdev->flags)) { 853 atomic_inc(&rdev->nr_pending); 854 r10_bio->devs[i].bio = bio; 855 } else { 856 r10_bio->devs[i].bio = NULL; 857 set_bit(R10BIO_Degraded, &r10_bio->state); 858 } 859 } 860 rcu_read_unlock(); 861 862 atomic_set(&r10_bio->remaining, 0); 863 864 bio_list_init(&bl); 865 for (i = 0; i < conf->copies; i++) { 866 struct bio *mbio; 867 int d = r10_bio->devs[i].devnum; 868 if (!r10_bio->devs[i].bio) 869 continue; 870 871 mbio = bio_clone(bio, GFP_NOIO); 872 r10_bio->devs[i].bio = mbio; 873 874 mbio->bi_sector = r10_bio->devs[i].addr+ 875 conf->mirrors[d].rdev->data_offset; 876 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 877 mbio->bi_end_io = raid10_end_write_request; 878 mbio->bi_rw = WRITE; 879 mbio->bi_private = r10_bio; 880 881 atomic_inc(&r10_bio->remaining); 882 bio_list_add(&bl, mbio); 883 } 884 885 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 886 spin_lock_irqsave(&conf->device_lock, flags); 887 bio_list_merge(&conf->pending_bio_list, &bl); 888 blk_plug_device(mddev->queue); 889 spin_unlock_irqrestore(&conf->device_lock, flags); 890 891 return 0; 892 } 893 894 static void status(struct seq_file *seq, mddev_t *mddev) 895 { 896 conf_t *conf = mddev_to_conf(mddev); 897 int i; 898 899 if (conf->near_copies < conf->raid_disks) 900 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 901 if (conf->near_copies > 1) 902 seq_printf(seq, " %d near-copies", conf->near_copies); 903 if (conf->far_copies > 1) 904 seq_printf(seq, " %d far-copies", conf->far_copies); 905 906 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 907 conf->working_disks); 908 for (i = 0; i < conf->raid_disks; i++) 909 seq_printf(seq, "%s", 910 conf->mirrors[i].rdev && 911 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 912 seq_printf(seq, "]"); 913 } 914 915 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 916 { 917 char b[BDEVNAME_SIZE]; 918 conf_t *conf = mddev_to_conf(mddev); 919 920 /* 921 * If it is not operational, then we have already marked it as dead 922 * else if it is the last working disks, ignore the error, let the 923 * next level up know. 924 * else mark the drive as failed 925 */ 926 if (test_bit(In_sync, &rdev->flags) 927 && conf->working_disks == 1) 928 /* 929 * Don't fail the drive, just return an IO error. 930 * The test should really be more sophisticated than 931 * "working_disks == 1", but it isn't critical, and 932 * can wait until we do more sophisticated "is the drive 933 * really dead" tests... 934 */ 935 return; 936 if (test_bit(In_sync, &rdev->flags)) { 937 mddev->degraded++; 938 conf->working_disks--; 939 /* 940 * if recovery is running, make sure it aborts. 941 */ 942 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 943 } 944 clear_bit(In_sync, &rdev->flags); 945 set_bit(Faulty, &rdev->flags); 946 mddev->sb_dirty = 1; 947 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 948 " Operation continuing on %d devices\n", 949 bdevname(rdev->bdev,b), conf->working_disks); 950 } 951 952 static void print_conf(conf_t *conf) 953 { 954 int i; 955 mirror_info_t *tmp; 956 957 printk("RAID10 conf printout:\n"); 958 if (!conf) { 959 printk("(!conf)\n"); 960 return; 961 } 962 printk(" --- wd:%d rd:%d\n", conf->working_disks, 963 conf->raid_disks); 964 965 for (i = 0; i < conf->raid_disks; i++) { 966 char b[BDEVNAME_SIZE]; 967 tmp = conf->mirrors + i; 968 if (tmp->rdev) 969 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 970 i, !test_bit(In_sync, &tmp->rdev->flags), 971 !test_bit(Faulty, &tmp->rdev->flags), 972 bdevname(tmp->rdev->bdev,b)); 973 } 974 } 975 976 static void close_sync(conf_t *conf) 977 { 978 wait_barrier(conf); 979 allow_barrier(conf); 980 981 mempool_destroy(conf->r10buf_pool); 982 conf->r10buf_pool = NULL; 983 } 984 985 /* check if there are enough drives for 986 * every block to appear on atleast one 987 */ 988 static int enough(conf_t *conf) 989 { 990 int first = 0; 991 992 do { 993 int n = conf->copies; 994 int cnt = 0; 995 while (n--) { 996 if (conf->mirrors[first].rdev) 997 cnt++; 998 first = (first+1) % conf->raid_disks; 999 } 1000 if (cnt == 0) 1001 return 0; 1002 } while (first != 0); 1003 return 1; 1004 } 1005 1006 static int raid10_spare_active(mddev_t *mddev) 1007 { 1008 int i; 1009 conf_t *conf = mddev->private; 1010 mirror_info_t *tmp; 1011 1012 /* 1013 * Find all non-in_sync disks within the RAID10 configuration 1014 * and mark them in_sync 1015 */ 1016 for (i = 0; i < conf->raid_disks; i++) { 1017 tmp = conf->mirrors + i; 1018 if (tmp->rdev 1019 && !test_bit(Faulty, &tmp->rdev->flags) 1020 && !test_bit(In_sync, &tmp->rdev->flags)) { 1021 conf->working_disks++; 1022 mddev->degraded--; 1023 set_bit(In_sync, &tmp->rdev->flags); 1024 } 1025 } 1026 1027 print_conf(conf); 1028 return 0; 1029 } 1030 1031 1032 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1033 { 1034 conf_t *conf = mddev->private; 1035 int found = 0; 1036 int mirror; 1037 mirror_info_t *p; 1038 1039 if (mddev->recovery_cp < MaxSector) 1040 /* only hot-add to in-sync arrays, as recovery is 1041 * very different from resync 1042 */ 1043 return 0; 1044 if (!enough(conf)) 1045 return 0; 1046 1047 if (rdev->saved_raid_disk >= 0 && 1048 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1049 mirror = rdev->saved_raid_disk; 1050 else 1051 mirror = 0; 1052 for ( ; mirror < mddev->raid_disks; mirror++) 1053 if ( !(p=conf->mirrors+mirror)->rdev) { 1054 1055 blk_queue_stack_limits(mddev->queue, 1056 rdev->bdev->bd_disk->queue); 1057 /* as we don't honour merge_bvec_fn, we must never risk 1058 * violating it, so limit ->max_sector to one PAGE, as 1059 * a one page request is never in violation. 1060 */ 1061 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1062 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1063 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1064 1065 p->head_position = 0; 1066 rdev->raid_disk = mirror; 1067 found = 1; 1068 if (rdev->saved_raid_disk != mirror) 1069 conf->fullsync = 1; 1070 rcu_assign_pointer(p->rdev, rdev); 1071 break; 1072 } 1073 1074 print_conf(conf); 1075 return found; 1076 } 1077 1078 static int raid10_remove_disk(mddev_t *mddev, int number) 1079 { 1080 conf_t *conf = mddev->private; 1081 int err = 0; 1082 mdk_rdev_t *rdev; 1083 mirror_info_t *p = conf->mirrors+ number; 1084 1085 print_conf(conf); 1086 rdev = p->rdev; 1087 if (rdev) { 1088 if (test_bit(In_sync, &rdev->flags) || 1089 atomic_read(&rdev->nr_pending)) { 1090 err = -EBUSY; 1091 goto abort; 1092 } 1093 p->rdev = NULL; 1094 synchronize_rcu(); 1095 if (atomic_read(&rdev->nr_pending)) { 1096 /* lost the race, try later */ 1097 err = -EBUSY; 1098 p->rdev = rdev; 1099 } 1100 } 1101 abort: 1102 1103 print_conf(conf); 1104 return err; 1105 } 1106 1107 1108 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1109 { 1110 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1111 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1112 int i,d; 1113 1114 if (bio->bi_size) 1115 return 1; 1116 1117 for (i=0; i<conf->copies; i++) 1118 if (r10_bio->devs[i].bio == bio) 1119 break; 1120 if (i == conf->copies) 1121 BUG(); 1122 update_head_pos(i, r10_bio); 1123 d = r10_bio->devs[i].devnum; 1124 1125 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1126 set_bit(R10BIO_Uptodate, &r10_bio->state); 1127 else { 1128 atomic_add(r10_bio->sectors, 1129 &conf->mirrors[d].rdev->corrected_errors); 1130 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1131 md_error(r10_bio->mddev, 1132 conf->mirrors[d].rdev); 1133 } 1134 1135 /* for reconstruct, we always reschedule after a read. 1136 * for resync, only after all reads 1137 */ 1138 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1139 atomic_dec_and_test(&r10_bio->remaining)) { 1140 /* we have read all the blocks, 1141 * do the comparison in process context in raid10d 1142 */ 1143 reschedule_retry(r10_bio); 1144 } 1145 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1146 return 0; 1147 } 1148 1149 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1150 { 1151 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1152 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1153 mddev_t *mddev = r10_bio->mddev; 1154 conf_t *conf = mddev_to_conf(mddev); 1155 int i,d; 1156 1157 if (bio->bi_size) 1158 return 1; 1159 1160 for (i = 0; i < conf->copies; i++) 1161 if (r10_bio->devs[i].bio == bio) 1162 break; 1163 d = r10_bio->devs[i].devnum; 1164 1165 if (!uptodate) 1166 md_error(mddev, conf->mirrors[d].rdev); 1167 update_head_pos(i, r10_bio); 1168 1169 while (atomic_dec_and_test(&r10_bio->remaining)) { 1170 if (r10_bio->master_bio == NULL) { 1171 /* the primary of several recovery bios */ 1172 md_done_sync(mddev, r10_bio->sectors, 1); 1173 put_buf(r10_bio); 1174 break; 1175 } else { 1176 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1177 put_buf(r10_bio); 1178 r10_bio = r10_bio2; 1179 } 1180 } 1181 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1182 return 0; 1183 } 1184 1185 /* 1186 * Note: sync and recover and handled very differently for raid10 1187 * This code is for resync. 1188 * For resync, we read through virtual addresses and read all blocks. 1189 * If there is any error, we schedule a write. The lowest numbered 1190 * drive is authoritative. 1191 * However requests come for physical address, so we need to map. 1192 * For every physical address there are raid_disks/copies virtual addresses, 1193 * which is always are least one, but is not necessarly an integer. 1194 * This means that a physical address can span multiple chunks, so we may 1195 * have to submit multiple io requests for a single sync request. 1196 */ 1197 /* 1198 * We check if all blocks are in-sync and only write to blocks that 1199 * aren't in sync 1200 */ 1201 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1202 { 1203 conf_t *conf = mddev_to_conf(mddev); 1204 int i, first; 1205 struct bio *tbio, *fbio; 1206 1207 atomic_set(&r10_bio->remaining, 1); 1208 1209 /* find the first device with a block */ 1210 for (i=0; i<conf->copies; i++) 1211 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1212 break; 1213 1214 if (i == conf->copies) 1215 goto done; 1216 1217 first = i; 1218 fbio = r10_bio->devs[i].bio; 1219 1220 /* now find blocks with errors */ 1221 for (i=0 ; i < conf->copies ; i++) { 1222 int j, d; 1223 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1224 1225 tbio = r10_bio->devs[i].bio; 1226 1227 if (tbio->bi_end_io != end_sync_read) 1228 continue; 1229 if (i == first) 1230 continue; 1231 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1232 /* We know that the bi_io_vec layout is the same for 1233 * both 'first' and 'i', so we just compare them. 1234 * All vec entries are PAGE_SIZE; 1235 */ 1236 for (j = 0; j < vcnt; j++) 1237 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1238 page_address(tbio->bi_io_vec[j].bv_page), 1239 PAGE_SIZE)) 1240 break; 1241 if (j == vcnt) 1242 continue; 1243 mddev->resync_mismatches += r10_bio->sectors; 1244 } 1245 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1246 /* Don't fix anything. */ 1247 continue; 1248 /* Ok, we need to write this bio 1249 * First we need to fixup bv_offset, bv_len and 1250 * bi_vecs, as the read request might have corrupted these 1251 */ 1252 tbio->bi_vcnt = vcnt; 1253 tbio->bi_size = r10_bio->sectors << 9; 1254 tbio->bi_idx = 0; 1255 tbio->bi_phys_segments = 0; 1256 tbio->bi_hw_segments = 0; 1257 tbio->bi_hw_front_size = 0; 1258 tbio->bi_hw_back_size = 0; 1259 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1260 tbio->bi_flags |= 1 << BIO_UPTODATE; 1261 tbio->bi_next = NULL; 1262 tbio->bi_rw = WRITE; 1263 tbio->bi_private = r10_bio; 1264 tbio->bi_sector = r10_bio->devs[i].addr; 1265 1266 for (j=0; j < vcnt ; j++) { 1267 tbio->bi_io_vec[j].bv_offset = 0; 1268 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1269 1270 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1271 page_address(fbio->bi_io_vec[j].bv_page), 1272 PAGE_SIZE); 1273 } 1274 tbio->bi_end_io = end_sync_write; 1275 1276 d = r10_bio->devs[i].devnum; 1277 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1278 atomic_inc(&r10_bio->remaining); 1279 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1280 1281 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1282 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1283 generic_make_request(tbio); 1284 } 1285 1286 done: 1287 if (atomic_dec_and_test(&r10_bio->remaining)) { 1288 md_done_sync(mddev, r10_bio->sectors, 1); 1289 put_buf(r10_bio); 1290 } 1291 } 1292 1293 /* 1294 * Now for the recovery code. 1295 * Recovery happens across physical sectors. 1296 * We recover all non-is_sync drives by finding the virtual address of 1297 * each, and then choose a working drive that also has that virt address. 1298 * There is a separate r10_bio for each non-in_sync drive. 1299 * Only the first two slots are in use. The first for reading, 1300 * The second for writing. 1301 * 1302 */ 1303 1304 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1305 { 1306 conf_t *conf = mddev_to_conf(mddev); 1307 int i, d; 1308 struct bio *bio, *wbio; 1309 1310 1311 /* move the pages across to the second bio 1312 * and submit the write request 1313 */ 1314 bio = r10_bio->devs[0].bio; 1315 wbio = r10_bio->devs[1].bio; 1316 for (i=0; i < wbio->bi_vcnt; i++) { 1317 struct page *p = bio->bi_io_vec[i].bv_page; 1318 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1319 wbio->bi_io_vec[i].bv_page = p; 1320 } 1321 d = r10_bio->devs[1].devnum; 1322 1323 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1324 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1325 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1326 generic_make_request(wbio); 1327 else 1328 bio_endio(wbio, wbio->bi_size, -EIO); 1329 } 1330 1331 1332 /* 1333 * This is a kernel thread which: 1334 * 1335 * 1. Retries failed read operations on working mirrors. 1336 * 2. Updates the raid superblock when problems encounter. 1337 * 3. Performs writes following reads for array syncronising. 1338 */ 1339 1340 static void raid10d(mddev_t *mddev) 1341 { 1342 r10bio_t *r10_bio; 1343 struct bio *bio; 1344 unsigned long flags; 1345 conf_t *conf = mddev_to_conf(mddev); 1346 struct list_head *head = &conf->retry_list; 1347 int unplug=0; 1348 mdk_rdev_t *rdev; 1349 1350 md_check_recovery(mddev); 1351 1352 for (;;) { 1353 char b[BDEVNAME_SIZE]; 1354 spin_lock_irqsave(&conf->device_lock, flags); 1355 1356 if (conf->pending_bio_list.head) { 1357 bio = bio_list_get(&conf->pending_bio_list); 1358 blk_remove_plug(mddev->queue); 1359 spin_unlock_irqrestore(&conf->device_lock, flags); 1360 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1361 if (bitmap_unplug(mddev->bitmap) != 0) 1362 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1363 1364 while (bio) { /* submit pending writes */ 1365 struct bio *next = bio->bi_next; 1366 bio->bi_next = NULL; 1367 generic_make_request(bio); 1368 bio = next; 1369 } 1370 unplug = 1; 1371 1372 continue; 1373 } 1374 1375 if (list_empty(head)) 1376 break; 1377 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1378 list_del(head->prev); 1379 conf->nr_queued--; 1380 spin_unlock_irqrestore(&conf->device_lock, flags); 1381 1382 mddev = r10_bio->mddev; 1383 conf = mddev_to_conf(mddev); 1384 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1385 sync_request_write(mddev, r10_bio); 1386 unplug = 1; 1387 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1388 recovery_request_write(mddev, r10_bio); 1389 unplug = 1; 1390 } else { 1391 int mirror; 1392 /* we got a read error. Maybe the drive is bad. Maybe just 1393 * the block and we can fix it. 1394 * We freeze all other IO, and try reading the block from 1395 * other devices. When we find one, we re-write 1396 * and check it that fixes the read error. 1397 * This is all done synchronously while the array is 1398 * frozen. 1399 */ 1400 int sect = 0; /* Offset from r10_bio->sector */ 1401 int sectors = r10_bio->sectors; 1402 freeze_array(conf); 1403 if (mddev->ro == 0) while(sectors) { 1404 int s = sectors; 1405 int sl = r10_bio->read_slot; 1406 int success = 0; 1407 1408 if (s > (PAGE_SIZE>>9)) 1409 s = PAGE_SIZE >> 9; 1410 1411 do { 1412 int d = r10_bio->devs[sl].devnum; 1413 rdev = conf->mirrors[d].rdev; 1414 if (rdev && 1415 test_bit(In_sync, &rdev->flags) && 1416 sync_page_io(rdev->bdev, 1417 r10_bio->devs[sl].addr + 1418 sect + rdev->data_offset, 1419 s<<9, 1420 conf->tmppage, READ)) 1421 success = 1; 1422 else { 1423 sl++; 1424 if (sl == conf->copies) 1425 sl = 0; 1426 } 1427 } while (!success && sl != r10_bio->read_slot); 1428 1429 if (success) { 1430 int start = sl; 1431 /* write it back and re-read */ 1432 while (sl != r10_bio->read_slot) { 1433 int d; 1434 if (sl==0) 1435 sl = conf->copies; 1436 sl--; 1437 d = r10_bio->devs[sl].devnum; 1438 rdev = conf->mirrors[d].rdev; 1439 atomic_add(s, &rdev->corrected_errors); 1440 if (rdev && 1441 test_bit(In_sync, &rdev->flags)) { 1442 if (sync_page_io(rdev->bdev, 1443 r10_bio->devs[sl].addr + 1444 sect + rdev->data_offset, 1445 s<<9, conf->tmppage, WRITE) == 0) 1446 /* Well, this device is dead */ 1447 md_error(mddev, rdev); 1448 } 1449 } 1450 sl = start; 1451 while (sl != r10_bio->read_slot) { 1452 int d; 1453 if (sl==0) 1454 sl = conf->copies; 1455 sl--; 1456 d = r10_bio->devs[sl].devnum; 1457 rdev = conf->mirrors[d].rdev; 1458 if (rdev && 1459 test_bit(In_sync, &rdev->flags)) { 1460 if (sync_page_io(rdev->bdev, 1461 r10_bio->devs[sl].addr + 1462 sect + rdev->data_offset, 1463 s<<9, conf->tmppage, READ) == 0) 1464 /* Well, this device is dead */ 1465 md_error(mddev, rdev); 1466 } 1467 } 1468 } else { 1469 /* Cannot read from anywhere -- bye bye array */ 1470 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev); 1471 break; 1472 } 1473 sectors -= s; 1474 sect += s; 1475 } 1476 1477 unfreeze_array(conf); 1478 1479 bio = r10_bio->devs[r10_bio->read_slot].bio; 1480 r10_bio->devs[r10_bio->read_slot].bio = 1481 mddev->ro ? IO_BLOCKED : NULL; 1482 bio_put(bio); 1483 mirror = read_balance(conf, r10_bio); 1484 if (mirror == -1) { 1485 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1486 " read error for block %llu\n", 1487 bdevname(bio->bi_bdev,b), 1488 (unsigned long long)r10_bio->sector); 1489 raid_end_bio_io(r10_bio); 1490 } else { 1491 rdev = conf->mirrors[mirror].rdev; 1492 if (printk_ratelimit()) 1493 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1494 " another mirror\n", 1495 bdevname(rdev->bdev,b), 1496 (unsigned long long)r10_bio->sector); 1497 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1498 r10_bio->devs[r10_bio->read_slot].bio = bio; 1499 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1500 + rdev->data_offset; 1501 bio->bi_bdev = rdev->bdev; 1502 bio->bi_rw = READ; 1503 bio->bi_private = r10_bio; 1504 bio->bi_end_io = raid10_end_read_request; 1505 unplug = 1; 1506 generic_make_request(bio); 1507 } 1508 } 1509 } 1510 spin_unlock_irqrestore(&conf->device_lock, flags); 1511 if (unplug) 1512 unplug_slaves(mddev); 1513 } 1514 1515 1516 static int init_resync(conf_t *conf) 1517 { 1518 int buffs; 1519 1520 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1521 if (conf->r10buf_pool) 1522 BUG(); 1523 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1524 if (!conf->r10buf_pool) 1525 return -ENOMEM; 1526 conf->next_resync = 0; 1527 return 0; 1528 } 1529 1530 /* 1531 * perform a "sync" on one "block" 1532 * 1533 * We need to make sure that no normal I/O request - particularly write 1534 * requests - conflict with active sync requests. 1535 * 1536 * This is achieved by tracking pending requests and a 'barrier' concept 1537 * that can be installed to exclude normal IO requests. 1538 * 1539 * Resync and recovery are handled very differently. 1540 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1541 * 1542 * For resync, we iterate over virtual addresses, read all copies, 1543 * and update if there are differences. If only one copy is live, 1544 * skip it. 1545 * For recovery, we iterate over physical addresses, read a good 1546 * value for each non-in_sync drive, and over-write. 1547 * 1548 * So, for recovery we may have several outstanding complex requests for a 1549 * given address, one for each out-of-sync device. We model this by allocating 1550 * a number of r10_bio structures, one for each out-of-sync device. 1551 * As we setup these structures, we collect all bio's together into a list 1552 * which we then process collectively to add pages, and then process again 1553 * to pass to generic_make_request. 1554 * 1555 * The r10_bio structures are linked using a borrowed master_bio pointer. 1556 * This link is counted in ->remaining. When the r10_bio that points to NULL 1557 * has its remaining count decremented to 0, the whole complex operation 1558 * is complete. 1559 * 1560 */ 1561 1562 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1563 { 1564 conf_t *conf = mddev_to_conf(mddev); 1565 r10bio_t *r10_bio; 1566 struct bio *biolist = NULL, *bio; 1567 sector_t max_sector, nr_sectors; 1568 int disk; 1569 int i; 1570 int max_sync; 1571 int sync_blocks; 1572 1573 sector_t sectors_skipped = 0; 1574 int chunks_skipped = 0; 1575 1576 if (!conf->r10buf_pool) 1577 if (init_resync(conf)) 1578 return 0; 1579 1580 skipped: 1581 max_sector = mddev->size << 1; 1582 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1583 max_sector = mddev->resync_max_sectors; 1584 if (sector_nr >= max_sector) { 1585 /* If we aborted, we need to abort the 1586 * sync on the 'current' bitmap chucks (there can 1587 * be several when recovering multiple devices). 1588 * as we may have started syncing it but not finished. 1589 * We can find the current address in 1590 * mddev->curr_resync, but for recovery, 1591 * we need to convert that to several 1592 * virtual addresses. 1593 */ 1594 if (mddev->curr_resync < max_sector) { /* aborted */ 1595 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1596 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1597 &sync_blocks, 1); 1598 else for (i=0; i<conf->raid_disks; i++) { 1599 sector_t sect = 1600 raid10_find_virt(conf, mddev->curr_resync, i); 1601 bitmap_end_sync(mddev->bitmap, sect, 1602 &sync_blocks, 1); 1603 } 1604 } else /* completed sync */ 1605 conf->fullsync = 0; 1606 1607 bitmap_close_sync(mddev->bitmap); 1608 close_sync(conf); 1609 *skipped = 1; 1610 return sectors_skipped; 1611 } 1612 if (chunks_skipped >= conf->raid_disks) { 1613 /* if there has been nothing to do on any drive, 1614 * then there is nothing to do at all.. 1615 */ 1616 *skipped = 1; 1617 return (max_sector - sector_nr) + sectors_skipped; 1618 } 1619 1620 /* make sure whole request will fit in a chunk - if chunks 1621 * are meaningful 1622 */ 1623 if (conf->near_copies < conf->raid_disks && 1624 max_sector > (sector_nr | conf->chunk_mask)) 1625 max_sector = (sector_nr | conf->chunk_mask) + 1; 1626 /* 1627 * If there is non-resync activity waiting for us then 1628 * put in a delay to throttle resync. 1629 */ 1630 if (!go_faster && conf->nr_waiting) 1631 msleep_interruptible(1000); 1632 1633 /* Again, very different code for resync and recovery. 1634 * Both must result in an r10bio with a list of bios that 1635 * have bi_end_io, bi_sector, bi_bdev set, 1636 * and bi_private set to the r10bio. 1637 * For recovery, we may actually create several r10bios 1638 * with 2 bios in each, that correspond to the bios in the main one. 1639 * In this case, the subordinate r10bios link back through a 1640 * borrowed master_bio pointer, and the counter in the master 1641 * includes a ref from each subordinate. 1642 */ 1643 /* First, we decide what to do and set ->bi_end_io 1644 * To end_sync_read if we want to read, and 1645 * end_sync_write if we will want to write. 1646 */ 1647 1648 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1649 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1650 /* recovery... the complicated one */ 1651 int i, j, k; 1652 r10_bio = NULL; 1653 1654 for (i=0 ; i<conf->raid_disks; i++) 1655 if (conf->mirrors[i].rdev && 1656 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1657 int still_degraded = 0; 1658 /* want to reconstruct this device */ 1659 r10bio_t *rb2 = r10_bio; 1660 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1661 int must_sync; 1662 /* Unless we are doing a full sync, we only need 1663 * to recover the block if it is set in the bitmap 1664 */ 1665 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1666 &sync_blocks, 1); 1667 if (sync_blocks < max_sync) 1668 max_sync = sync_blocks; 1669 if (!must_sync && 1670 !conf->fullsync) { 1671 /* yep, skip the sync_blocks here, but don't assume 1672 * that there will never be anything to do here 1673 */ 1674 chunks_skipped = -1; 1675 continue; 1676 } 1677 1678 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1679 raise_barrier(conf, rb2 != NULL); 1680 atomic_set(&r10_bio->remaining, 0); 1681 1682 r10_bio->master_bio = (struct bio*)rb2; 1683 if (rb2) 1684 atomic_inc(&rb2->remaining); 1685 r10_bio->mddev = mddev; 1686 set_bit(R10BIO_IsRecover, &r10_bio->state); 1687 r10_bio->sector = sect; 1688 1689 raid10_find_phys(conf, r10_bio); 1690 /* Need to check if this section will still be 1691 * degraded 1692 */ 1693 for (j=0; j<conf->copies;j++) { 1694 int d = r10_bio->devs[j].devnum; 1695 if (conf->mirrors[d].rdev == NULL || 1696 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1697 still_degraded = 1; 1698 break; 1699 } 1700 } 1701 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1702 &sync_blocks, still_degraded); 1703 1704 for (j=0; j<conf->copies;j++) { 1705 int d = r10_bio->devs[j].devnum; 1706 if (conf->mirrors[d].rdev && 1707 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1708 /* This is where we read from */ 1709 bio = r10_bio->devs[0].bio; 1710 bio->bi_next = biolist; 1711 biolist = bio; 1712 bio->bi_private = r10_bio; 1713 bio->bi_end_io = end_sync_read; 1714 bio->bi_rw = 0; 1715 bio->bi_sector = r10_bio->devs[j].addr + 1716 conf->mirrors[d].rdev->data_offset; 1717 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1718 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1719 atomic_inc(&r10_bio->remaining); 1720 /* and we write to 'i' */ 1721 1722 for (k=0; k<conf->copies; k++) 1723 if (r10_bio->devs[k].devnum == i) 1724 break; 1725 bio = r10_bio->devs[1].bio; 1726 bio->bi_next = biolist; 1727 biolist = bio; 1728 bio->bi_private = r10_bio; 1729 bio->bi_end_io = end_sync_write; 1730 bio->bi_rw = 1; 1731 bio->bi_sector = r10_bio->devs[k].addr + 1732 conf->mirrors[i].rdev->data_offset; 1733 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1734 1735 r10_bio->devs[0].devnum = d; 1736 r10_bio->devs[1].devnum = i; 1737 1738 break; 1739 } 1740 } 1741 if (j == conf->copies) { 1742 /* Cannot recover, so abort the recovery */ 1743 put_buf(r10_bio); 1744 r10_bio = rb2; 1745 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1746 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1747 mdname(mddev)); 1748 break; 1749 } 1750 } 1751 if (biolist == NULL) { 1752 while (r10_bio) { 1753 r10bio_t *rb2 = r10_bio; 1754 r10_bio = (r10bio_t*) rb2->master_bio; 1755 rb2->master_bio = NULL; 1756 put_buf(rb2); 1757 } 1758 goto giveup; 1759 } 1760 } else { 1761 /* resync. Schedule a read for every block at this virt offset */ 1762 int count = 0; 1763 1764 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1765 &sync_blocks, mddev->degraded) && 1766 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1767 /* We can skip this block */ 1768 *skipped = 1; 1769 return sync_blocks + sectors_skipped; 1770 } 1771 if (sync_blocks < max_sync) 1772 max_sync = sync_blocks; 1773 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1774 1775 r10_bio->mddev = mddev; 1776 atomic_set(&r10_bio->remaining, 0); 1777 raise_barrier(conf, 0); 1778 conf->next_resync = sector_nr; 1779 1780 r10_bio->master_bio = NULL; 1781 r10_bio->sector = sector_nr; 1782 set_bit(R10BIO_IsSync, &r10_bio->state); 1783 raid10_find_phys(conf, r10_bio); 1784 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1785 1786 for (i=0; i<conf->copies; i++) { 1787 int d = r10_bio->devs[i].devnum; 1788 bio = r10_bio->devs[i].bio; 1789 bio->bi_end_io = NULL; 1790 if (conf->mirrors[d].rdev == NULL || 1791 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1792 continue; 1793 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1794 atomic_inc(&r10_bio->remaining); 1795 bio->bi_next = biolist; 1796 biolist = bio; 1797 bio->bi_private = r10_bio; 1798 bio->bi_end_io = end_sync_read; 1799 bio->bi_rw = 0; 1800 bio->bi_sector = r10_bio->devs[i].addr + 1801 conf->mirrors[d].rdev->data_offset; 1802 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1803 count++; 1804 } 1805 1806 if (count < 2) { 1807 for (i=0; i<conf->copies; i++) { 1808 int d = r10_bio->devs[i].devnum; 1809 if (r10_bio->devs[i].bio->bi_end_io) 1810 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1811 } 1812 put_buf(r10_bio); 1813 biolist = NULL; 1814 goto giveup; 1815 } 1816 } 1817 1818 for (bio = biolist; bio ; bio=bio->bi_next) { 1819 1820 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1821 if (bio->bi_end_io) 1822 bio->bi_flags |= 1 << BIO_UPTODATE; 1823 bio->bi_vcnt = 0; 1824 bio->bi_idx = 0; 1825 bio->bi_phys_segments = 0; 1826 bio->bi_hw_segments = 0; 1827 bio->bi_size = 0; 1828 } 1829 1830 nr_sectors = 0; 1831 if (sector_nr + max_sync < max_sector) 1832 max_sector = sector_nr + max_sync; 1833 do { 1834 struct page *page; 1835 int len = PAGE_SIZE; 1836 disk = 0; 1837 if (sector_nr + (len>>9) > max_sector) 1838 len = (max_sector - sector_nr) << 9; 1839 if (len == 0) 1840 break; 1841 for (bio= biolist ; bio ; bio=bio->bi_next) { 1842 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1843 if (bio_add_page(bio, page, len, 0) == 0) { 1844 /* stop here */ 1845 struct bio *bio2; 1846 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1847 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1848 /* remove last page from this bio */ 1849 bio2->bi_vcnt--; 1850 bio2->bi_size -= len; 1851 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1852 } 1853 goto bio_full; 1854 } 1855 disk = i; 1856 } 1857 nr_sectors += len>>9; 1858 sector_nr += len>>9; 1859 } while (biolist->bi_vcnt < RESYNC_PAGES); 1860 bio_full: 1861 r10_bio->sectors = nr_sectors; 1862 1863 while (biolist) { 1864 bio = biolist; 1865 biolist = biolist->bi_next; 1866 1867 bio->bi_next = NULL; 1868 r10_bio = bio->bi_private; 1869 r10_bio->sectors = nr_sectors; 1870 1871 if (bio->bi_end_io == end_sync_read) { 1872 md_sync_acct(bio->bi_bdev, nr_sectors); 1873 generic_make_request(bio); 1874 } 1875 } 1876 1877 if (sectors_skipped) 1878 /* pretend they weren't skipped, it makes 1879 * no important difference in this case 1880 */ 1881 md_done_sync(mddev, sectors_skipped, 1); 1882 1883 return sectors_skipped + nr_sectors; 1884 giveup: 1885 /* There is nowhere to write, so all non-sync 1886 * drives must be failed, so try the next chunk... 1887 */ 1888 { 1889 sector_t sec = max_sector - sector_nr; 1890 sectors_skipped += sec; 1891 chunks_skipped ++; 1892 sector_nr = max_sector; 1893 goto skipped; 1894 } 1895 } 1896 1897 static int run(mddev_t *mddev) 1898 { 1899 conf_t *conf; 1900 int i, disk_idx; 1901 mirror_info_t *disk; 1902 mdk_rdev_t *rdev; 1903 struct list_head *tmp; 1904 int nc, fc; 1905 sector_t stride, size; 1906 1907 if (mddev->chunk_size == 0) { 1908 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1909 return -EINVAL; 1910 } 1911 1912 nc = mddev->layout & 255; 1913 fc = (mddev->layout >> 8) & 255; 1914 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1915 (mddev->layout >> 16)) { 1916 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1917 mdname(mddev), mddev->layout); 1918 goto out; 1919 } 1920 /* 1921 * copy the already verified devices into our private RAID10 1922 * bookkeeping area. [whatever we allocate in run(), 1923 * should be freed in stop()] 1924 */ 1925 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1926 mddev->private = conf; 1927 if (!conf) { 1928 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1929 mdname(mddev)); 1930 goto out; 1931 } 1932 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1933 GFP_KERNEL); 1934 if (!conf->mirrors) { 1935 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1936 mdname(mddev)); 1937 goto out_free_conf; 1938 } 1939 1940 conf->tmppage = alloc_page(GFP_KERNEL); 1941 if (!conf->tmppage) 1942 goto out_free_conf; 1943 1944 conf->near_copies = nc; 1945 conf->far_copies = fc; 1946 conf->copies = nc*fc; 1947 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1948 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1949 stride = mddev->size >> (conf->chunk_shift-1); 1950 sector_div(stride, fc); 1951 conf->stride = stride << conf->chunk_shift; 1952 1953 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1954 r10bio_pool_free, conf); 1955 if (!conf->r10bio_pool) { 1956 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1957 mdname(mddev)); 1958 goto out_free_conf; 1959 } 1960 1961 ITERATE_RDEV(mddev, rdev, tmp) { 1962 disk_idx = rdev->raid_disk; 1963 if (disk_idx >= mddev->raid_disks 1964 || disk_idx < 0) 1965 continue; 1966 disk = conf->mirrors + disk_idx; 1967 1968 disk->rdev = rdev; 1969 1970 blk_queue_stack_limits(mddev->queue, 1971 rdev->bdev->bd_disk->queue); 1972 /* as we don't honour merge_bvec_fn, we must never risk 1973 * violating it, so limit ->max_sector to one PAGE, as 1974 * a one page request is never in violation. 1975 */ 1976 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1977 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1978 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1979 1980 disk->head_position = 0; 1981 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 1982 conf->working_disks++; 1983 } 1984 conf->raid_disks = mddev->raid_disks; 1985 conf->mddev = mddev; 1986 spin_lock_init(&conf->device_lock); 1987 INIT_LIST_HEAD(&conf->retry_list); 1988 1989 spin_lock_init(&conf->resync_lock); 1990 init_waitqueue_head(&conf->wait_barrier); 1991 1992 /* need to check that every block has at least one working mirror */ 1993 if (!enough(conf)) { 1994 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 1995 mdname(mddev)); 1996 goto out_free_conf; 1997 } 1998 1999 mddev->degraded = 0; 2000 for (i = 0; i < conf->raid_disks; i++) { 2001 2002 disk = conf->mirrors + i; 2003 2004 if (!disk->rdev) { 2005 disk->head_position = 0; 2006 mddev->degraded++; 2007 } 2008 } 2009 2010 2011 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2012 if (!mddev->thread) { 2013 printk(KERN_ERR 2014 "raid10: couldn't allocate thread for %s\n", 2015 mdname(mddev)); 2016 goto out_free_conf; 2017 } 2018 2019 printk(KERN_INFO 2020 "raid10: raid set %s active with %d out of %d devices\n", 2021 mdname(mddev), mddev->raid_disks - mddev->degraded, 2022 mddev->raid_disks); 2023 /* 2024 * Ok, everything is just fine now 2025 */ 2026 size = conf->stride * conf->raid_disks; 2027 sector_div(size, conf->near_copies); 2028 mddev->array_size = size/2; 2029 mddev->resync_max_sectors = size; 2030 2031 mddev->queue->unplug_fn = raid10_unplug; 2032 mddev->queue->issue_flush_fn = raid10_issue_flush; 2033 2034 /* Calculate max read-ahead size. 2035 * We need to readahead at least twice a whole stripe.... 2036 * maybe... 2037 */ 2038 { 2039 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE; 2040 stripe /= conf->near_copies; 2041 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2042 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2043 } 2044 2045 if (conf->near_copies < mddev->raid_disks) 2046 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2047 return 0; 2048 2049 out_free_conf: 2050 if (conf->r10bio_pool) 2051 mempool_destroy(conf->r10bio_pool); 2052 safe_put_page(conf->tmppage); 2053 kfree(conf->mirrors); 2054 kfree(conf); 2055 mddev->private = NULL; 2056 out: 2057 return -EIO; 2058 } 2059 2060 static int stop(mddev_t *mddev) 2061 { 2062 conf_t *conf = mddev_to_conf(mddev); 2063 2064 md_unregister_thread(mddev->thread); 2065 mddev->thread = NULL; 2066 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2067 if (conf->r10bio_pool) 2068 mempool_destroy(conf->r10bio_pool); 2069 kfree(conf->mirrors); 2070 kfree(conf); 2071 mddev->private = NULL; 2072 return 0; 2073 } 2074 2075 static void raid10_quiesce(mddev_t *mddev, int state) 2076 { 2077 conf_t *conf = mddev_to_conf(mddev); 2078 2079 switch(state) { 2080 case 1: 2081 raise_barrier(conf, 0); 2082 break; 2083 case 0: 2084 lower_barrier(conf); 2085 break; 2086 } 2087 if (mddev->thread) { 2088 if (mddev->bitmap) 2089 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2090 else 2091 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2092 md_wakeup_thread(mddev->thread); 2093 } 2094 } 2095 2096 static struct mdk_personality raid10_personality = 2097 { 2098 .name = "raid10", 2099 .level = 10, 2100 .owner = THIS_MODULE, 2101 .make_request = make_request, 2102 .run = run, 2103 .stop = stop, 2104 .status = status, 2105 .error_handler = error, 2106 .hot_add_disk = raid10_add_disk, 2107 .hot_remove_disk= raid10_remove_disk, 2108 .spare_active = raid10_spare_active, 2109 .sync_request = sync_request, 2110 .quiesce = raid10_quiesce, 2111 }; 2112 2113 static int __init raid_init(void) 2114 { 2115 return register_md_personality(&raid10_personality); 2116 } 2117 2118 static void raid_exit(void) 2119 { 2120 unregister_md_personality(&raid10_personality); 2121 } 2122 2123 module_init(raid_init); 2124 module_exit(raid_exit); 2125 MODULE_LICENSE("GPL"); 2126 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2127 MODULE_ALIAS("md-raid10"); 2128 MODULE_ALIAS("md-level-10"); 2129