1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/raid/raid10.h> 22 23 /* 24 * RAID10 provides a combination of RAID0 and RAID1 functionality. 25 * The layout of data is defined by 26 * chunk_size 27 * raid_disks 28 * near_copies (stored in low byte of layout) 29 * far_copies (stored in second byte of layout) 30 * 31 * The data to be stored is divided into chunks using chunksize. 32 * Each device is divided into far_copies sections. 33 * In each section, chunks are laid out in a style similar to raid0, but 34 * near_copies copies of each chunk is stored (each on a different drive). 35 * The starting device for each section is offset near_copies from the starting 36 * device of the previous section. 37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different 38 * drive. 39 * near_copies and far_copies must be at least one, and their product is at most 40 * raid_disks. 41 */ 42 43 /* 44 * Number of guaranteed r10bios in case of extreme VM load: 45 */ 46 #define NR_RAID10_BIOS 256 47 48 static void unplug_slaves(mddev_t *mddev); 49 50 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 51 { 52 conf_t *conf = data; 53 r10bio_t *r10_bio; 54 int size = offsetof(struct r10bio_s, devs[conf->copies]); 55 56 /* allocate a r10bio with room for raid_disks entries in the bios array */ 57 r10_bio = kmalloc(size, gfp_flags); 58 if (r10_bio) 59 memset(r10_bio, 0, size); 60 else 61 unplug_slaves(conf->mddev); 62 63 return r10_bio; 64 } 65 66 static void r10bio_pool_free(void *r10_bio, void *data) 67 { 68 kfree(r10_bio); 69 } 70 71 #define RESYNC_BLOCK_SIZE (64*1024) 72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 75 #define RESYNC_WINDOW (2048*1024) 76 77 /* 78 * When performing a resync, we need to read and compare, so 79 * we need as many pages are there are copies. 80 * When performing a recovery, we need 2 bios, one for read, 81 * one for write (we recover only one drive per r10buf) 82 * 83 */ 84 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 85 { 86 conf_t *conf = data; 87 struct page *page; 88 r10bio_t *r10_bio; 89 struct bio *bio; 90 int i, j; 91 int nalloc; 92 93 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 94 if (!r10_bio) { 95 unplug_slaves(conf->mddev); 96 return NULL; 97 } 98 99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 100 nalloc = conf->copies; /* resync */ 101 else 102 nalloc = 2; /* recovery */ 103 104 /* 105 * Allocate bios. 106 */ 107 for (j = nalloc ; j-- ; ) { 108 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r10_bio->devs[j].bio = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them 115 * where needed. 116 */ 117 for (j = 0 ; j < nalloc; j++) { 118 bio = r10_bio->devs[j].bio; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 } 126 } 127 128 return r10_bio; 129 130 out_free_pages: 131 for ( ; i > 0 ; i--) 132 __free_page(bio->bi_io_vec[i-1].bv_page); 133 while (j--) 134 for (i = 0; i < RESYNC_PAGES ; i++) 135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < nalloc ) 139 bio_put(r10_bio->devs[j].bio); 140 r10bio_pool_free(r10_bio, conf); 141 return NULL; 142 } 143 144 static void r10buf_pool_free(void *__r10_bio, void *data) 145 { 146 int i; 147 conf_t *conf = data; 148 r10bio_t *r10bio = __r10_bio; 149 int j; 150 151 for (j=0; j < conf->copies; j++) { 152 struct bio *bio = r10bio->devs[j].bio; 153 if (bio) { 154 for (i = 0; i < RESYNC_PAGES; i++) { 155 __free_page(bio->bi_io_vec[i].bv_page); 156 bio->bi_io_vec[i].bv_page = NULL; 157 } 158 bio_put(bio); 159 } 160 } 161 r10bio_pool_free(r10bio, conf); 162 } 163 164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 165 { 166 int i; 167 168 for (i = 0; i < conf->copies; i++) { 169 struct bio **bio = & r10_bio->devs[i].bio; 170 if (*bio) 171 bio_put(*bio); 172 *bio = NULL; 173 } 174 } 175 176 static inline void free_r10bio(r10bio_t *r10_bio) 177 { 178 unsigned long flags; 179 180 conf_t *conf = mddev_to_conf(r10_bio->mddev); 181 182 /* 183 * Wake up any possible resync thread that waits for the device 184 * to go idle. 185 */ 186 spin_lock_irqsave(&conf->resync_lock, flags); 187 if (!--conf->nr_pending) { 188 wake_up(&conf->wait_idle); 189 wake_up(&conf->wait_resume); 190 } 191 spin_unlock_irqrestore(&conf->resync_lock, flags); 192 193 put_all_bios(conf, r10_bio); 194 mempool_free(r10_bio, conf->r10bio_pool); 195 } 196 197 static inline void put_buf(r10bio_t *r10_bio) 198 { 199 conf_t *conf = mddev_to_conf(r10_bio->mddev); 200 unsigned long flags; 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 spin_lock_irqsave(&conf->resync_lock, flags); 205 if (!conf->barrier) 206 BUG(); 207 --conf->barrier; 208 wake_up(&conf->wait_resume); 209 wake_up(&conf->wait_idle); 210 211 if (!--conf->nr_pending) { 212 wake_up(&conf->wait_idle); 213 wake_up(&conf->wait_resume); 214 } 215 spin_unlock_irqrestore(&conf->resync_lock, flags); 216 } 217 218 static void reschedule_retry(r10bio_t *r10_bio) 219 { 220 unsigned long flags; 221 mddev_t *mddev = r10_bio->mddev; 222 conf_t *conf = mddev_to_conf(mddev); 223 224 spin_lock_irqsave(&conf->device_lock, flags); 225 list_add(&r10_bio->retry_list, &conf->retry_list); 226 spin_unlock_irqrestore(&conf->device_lock, flags); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, bio->bi_size, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = mddev_to_conf(r10_bio->mddev); 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 260 int slot, dev; 261 conf_t *conf = mddev_to_conf(r10_bio->mddev); 262 263 if (bio->bi_size) 264 return 1; 265 266 slot = r10_bio->read_slot; 267 dev = r10_bio->devs[slot].devnum; 268 /* 269 * this branch is our 'one mirror IO has finished' event handler: 270 */ 271 if (!uptodate) 272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 273 else 274 /* 275 * Set R10BIO_Uptodate in our master bio, so that 276 * we will return a good error code to the higher 277 * levels even if IO on some other mirrored buffer fails. 278 * 279 * The 'master' represents the composite IO operation to 280 * user-side. So if something waits for IO, then it will 281 * wait for the 'master' bio. 282 */ 283 set_bit(R10BIO_Uptodate, &r10_bio->state); 284 285 update_head_pos(slot, r10_bio); 286 287 /* 288 * we have only one bio on the read side 289 */ 290 if (uptodate) 291 raid_end_bio_io(r10_bio); 292 else { 293 /* 294 * oops, read error: 295 */ 296 char b[BDEVNAME_SIZE]; 297 if (printk_ratelimit()) 298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 300 reschedule_retry(r10_bio); 301 } 302 303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 304 return 0; 305 } 306 307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 311 int slot, dev; 312 conf_t *conf = mddev_to_conf(r10_bio->mddev); 313 314 if (bio->bi_size) 315 return 1; 316 317 for (slot = 0; slot < conf->copies; slot++) 318 if (r10_bio->devs[slot].bio == bio) 319 break; 320 dev = r10_bio->devs[slot].devnum; 321 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 if (!uptodate) 326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 327 else 328 /* 329 * Set R10BIO_Uptodate in our master bio, so that 330 * we will return a good error code for to the higher 331 * levels even if IO on some other mirrored buffer fails. 332 * 333 * The 'master' represents the composite IO operation to 334 * user-side. So if something waits for IO, then it will 335 * wait for the 'master' bio. 336 */ 337 set_bit(R10BIO_Uptodate, &r10_bio->state); 338 339 update_head_pos(slot, r10_bio); 340 341 /* 342 * 343 * Let's see if all mirrored write operations have finished 344 * already. 345 */ 346 if (atomic_dec_and_test(&r10_bio->remaining)) { 347 md_write_end(r10_bio->mddev); 348 raid_end_bio_io(r10_bio); 349 } 350 351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 352 return 0; 353 } 354 355 356 /* 357 * RAID10 layout manager 358 * Aswell as the chunksize and raid_disks count, there are two 359 * parameters: near_copies and far_copies. 360 * near_copies * far_copies must be <= raid_disks. 361 * Normally one of these will be 1. 362 * If both are 1, we get raid0. 363 * If near_copies == raid_disks, we get raid1. 364 * 365 * Chunks are layed out in raid0 style with near_copies copies of the 366 * first chunk, followed by near_copies copies of the next chunk and 367 * so on. 368 * If far_copies > 1, then after 1/far_copies of the array has been assigned 369 * as described above, we start again with a device offset of near_copies. 370 * So we effectively have another copy of the whole array further down all 371 * the drives, but with blocks on different drives. 372 * With this layout, and block is never stored twice on the one device. 373 * 374 * raid10_find_phys finds the sector offset of a given virtual sector 375 * on each device that it is on. If a block isn't on a device, 376 * that entry in the array is set to MaxSector. 377 * 378 * raid10_find_virt does the reverse mapping, from a device and a 379 * sector offset to a virtual address 380 */ 381 382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 383 { 384 int n,f; 385 sector_t sector; 386 sector_t chunk; 387 sector_t stripe; 388 int dev; 389 390 int slot = 0; 391 392 /* now calculate first sector/dev */ 393 chunk = r10bio->sector >> conf->chunk_shift; 394 sector = r10bio->sector & conf->chunk_mask; 395 396 chunk *= conf->near_copies; 397 stripe = chunk; 398 dev = sector_div(stripe, conf->raid_disks); 399 400 sector += stripe << conf->chunk_shift; 401 402 /* and calculate all the others */ 403 for (n=0; n < conf->near_copies; n++) { 404 int d = dev; 405 sector_t s = sector; 406 r10bio->devs[slot].addr = sector; 407 r10bio->devs[slot].devnum = d; 408 slot++; 409 410 for (f = 1; f < conf->far_copies; f++) { 411 d += conf->near_copies; 412 if (d >= conf->raid_disks) 413 d -= conf->raid_disks; 414 s += conf->stride; 415 r10bio->devs[slot].devnum = d; 416 r10bio->devs[slot].addr = s; 417 slot++; 418 } 419 dev++; 420 if (dev >= conf->raid_disks) { 421 dev = 0; 422 sector += (conf->chunk_mask + 1); 423 } 424 } 425 BUG_ON(slot != conf->copies); 426 } 427 428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 429 { 430 sector_t offset, chunk, vchunk; 431 432 while (sector > conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 440 offset = sector & conf->chunk_mask; 441 chunk = sector >> conf->chunk_shift; 442 vchunk = chunk * conf->raid_disks + dev; 443 sector_div(vchunk, conf->near_copies); 444 return (vchunk << conf->chunk_shift) + offset; 445 } 446 447 /** 448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 449 * @q: request queue 450 * @bio: the buffer head that's been built up so far 451 * @biovec: the request that could be merged to it. 452 * 453 * Return amount of bytes we can accept at this offset 454 * If near_copies == raid_disk, there are no striping issues, 455 * but in that case, the function isn't called at all. 456 */ 457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 458 struct bio_vec *bio_vec) 459 { 460 mddev_t *mddev = q->queuedata; 461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 462 int max; 463 unsigned int chunk_sectors = mddev->chunk_size >> 9; 464 unsigned int bio_sectors = bio->bi_size >> 9; 465 466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 468 if (max <= bio_vec->bv_len && bio_sectors == 0) 469 return bio_vec->bv_len; 470 else 471 return max; 472 } 473 474 /* 475 * This routine returns the disk from which the requested read should 476 * be done. There is a per-array 'next expected sequential IO' sector 477 * number - if this matches on the next IO then we use the last disk. 478 * There is also a per-disk 'last know head position' sector that is 479 * maintained from IRQ contexts, both the normal and the resync IO 480 * completion handlers update this position correctly. If there is no 481 * perfect sequential match then we pick the disk whose head is closest. 482 * 483 * If there are 2 mirrors in the same 2 devices, performance degrades 484 * because position is mirror, not device based. 485 * 486 * The rdev for the device selected will have nr_pending incremented. 487 */ 488 489 /* 490 * FIXME: possibly should rethink readbalancing and do it differently 491 * depending on near_copies / far_copies geometry. 492 */ 493 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 494 { 495 const unsigned long this_sector = r10_bio->sector; 496 int disk, slot, nslot; 497 const int sectors = r10_bio->sectors; 498 sector_t new_distance, current_distance; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on, or below the resync window. 505 * We take the first readable disk when above the resync window. 506 */ 507 if (conf->mddev->recovery_cp < MaxSector 508 && (this_sector + sectors >= conf->next_resync)) { 509 /* make sure that disk is operational */ 510 slot = 0; 511 disk = r10_bio->devs[slot].devnum; 512 513 while (!conf->mirrors[disk].rdev || 514 !conf->mirrors[disk].rdev->in_sync) { 515 slot++; 516 if (slot == conf->copies) { 517 slot = 0; 518 disk = -1; 519 break; 520 } 521 disk = r10_bio->devs[slot].devnum; 522 } 523 goto rb_out; 524 } 525 526 527 /* make sure the disk is operational */ 528 slot = 0; 529 disk = r10_bio->devs[slot].devnum; 530 while (!conf->mirrors[disk].rdev || 531 !conf->mirrors[disk].rdev->in_sync) { 532 slot ++; 533 if (slot == conf->copies) { 534 disk = -1; 535 goto rb_out; 536 } 537 disk = r10_bio->devs[slot].devnum; 538 } 539 540 541 current_distance = abs(r10_bio->devs[slot].addr - 542 conf->mirrors[disk].head_position); 543 544 /* Find the disk whose head is closest */ 545 546 for (nslot = slot; nslot < conf->copies; nslot++) { 547 int ndisk = r10_bio->devs[nslot].devnum; 548 549 550 if (!conf->mirrors[ndisk].rdev || 551 !conf->mirrors[ndisk].rdev->in_sync) 552 continue; 553 554 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) { 555 disk = ndisk; 556 slot = nslot; 557 break; 558 } 559 new_distance = abs(r10_bio->devs[nslot].addr - 560 conf->mirrors[ndisk].head_position); 561 if (new_distance < current_distance) { 562 current_distance = new_distance; 563 disk = ndisk; 564 slot = nslot; 565 } 566 } 567 568 rb_out: 569 r10_bio->read_slot = slot; 570 /* conf->next_seq_sect = this_sector + sectors;*/ 571 572 if (disk >= 0 && conf->mirrors[disk].rdev) 573 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 574 rcu_read_unlock(); 575 576 return disk; 577 } 578 579 static void unplug_slaves(mddev_t *mddev) 580 { 581 conf_t *conf = mddev_to_conf(mddev); 582 int i; 583 584 rcu_read_lock(); 585 for (i=0; i<mddev->raid_disks; i++) { 586 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 587 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 588 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 589 590 atomic_inc(&rdev->nr_pending); 591 rcu_read_unlock(); 592 593 if (r_queue->unplug_fn) 594 r_queue->unplug_fn(r_queue); 595 596 rdev_dec_pending(rdev, mddev); 597 rcu_read_lock(); 598 } 599 } 600 rcu_read_unlock(); 601 } 602 603 static void raid10_unplug(request_queue_t *q) 604 { 605 unplug_slaves(q->queuedata); 606 } 607 608 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 609 sector_t *error_sector) 610 { 611 mddev_t *mddev = q->queuedata; 612 conf_t *conf = mddev_to_conf(mddev); 613 int i, ret = 0; 614 615 rcu_read_lock(); 616 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 617 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 618 if (rdev && !rdev->faulty) { 619 struct block_device *bdev = rdev->bdev; 620 request_queue_t *r_queue = bdev_get_queue(bdev); 621 622 if (!r_queue->issue_flush_fn) 623 ret = -EOPNOTSUPP; 624 else { 625 atomic_inc(&rdev->nr_pending); 626 rcu_read_unlock(); 627 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 628 error_sector); 629 rdev_dec_pending(rdev, mddev); 630 rcu_read_lock(); 631 } 632 } 633 } 634 rcu_read_unlock(); 635 return ret; 636 } 637 638 /* 639 * Throttle resync depth, so that we can both get proper overlapping of 640 * requests, but are still able to handle normal requests quickly. 641 */ 642 #define RESYNC_DEPTH 32 643 644 static void device_barrier(conf_t *conf, sector_t sect) 645 { 646 spin_lock_irq(&conf->resync_lock); 647 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 648 conf->resync_lock, unplug_slaves(conf->mddev)); 649 650 if (!conf->barrier++) { 651 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 652 conf->resync_lock, unplug_slaves(conf->mddev)); 653 if (conf->nr_pending) 654 BUG(); 655 } 656 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 657 conf->resync_lock, unplug_slaves(conf->mddev)); 658 conf->next_resync = sect; 659 spin_unlock_irq(&conf->resync_lock); 660 } 661 662 static int make_request(request_queue_t *q, struct bio * bio) 663 { 664 mddev_t *mddev = q->queuedata; 665 conf_t *conf = mddev_to_conf(mddev); 666 mirror_info_t *mirror; 667 r10bio_t *r10_bio; 668 struct bio *read_bio; 669 int i; 670 int chunk_sects = conf->chunk_mask + 1; 671 const int rw = bio_data_dir(bio); 672 673 if (unlikely(bio_barrier(bio))) { 674 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 675 return 0; 676 } 677 678 /* If this request crosses a chunk boundary, we need to 679 * split it. This will only happen for 1 PAGE (or less) requests. 680 */ 681 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 682 > chunk_sects && 683 conf->near_copies < conf->raid_disks)) { 684 struct bio_pair *bp; 685 /* Sanity check -- queue functions should prevent this happening */ 686 if (bio->bi_vcnt != 1 || 687 bio->bi_idx != 0) 688 goto bad_map; 689 /* This is a one page bio that upper layers 690 * refuse to split for us, so we need to split it. 691 */ 692 bp = bio_split(bio, bio_split_pool, 693 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 694 if (make_request(q, &bp->bio1)) 695 generic_make_request(&bp->bio1); 696 if (make_request(q, &bp->bio2)) 697 generic_make_request(&bp->bio2); 698 699 bio_pair_release(bp); 700 return 0; 701 bad_map: 702 printk("raid10_make_request bug: can't convert block across chunks" 703 " or bigger than %dk %llu %d\n", chunk_sects/2, 704 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 705 706 bio_io_error(bio, bio->bi_size); 707 return 0; 708 } 709 710 md_write_start(mddev, bio); 711 712 /* 713 * Register the new request and wait if the reconstruction 714 * thread has put up a bar for new requests. 715 * Continue immediately if no resync is active currently. 716 */ 717 spin_lock_irq(&conf->resync_lock); 718 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 719 conf->nr_pending++; 720 spin_unlock_irq(&conf->resync_lock); 721 722 disk_stat_inc(mddev->gendisk, ios[rw]); 723 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 724 725 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 726 727 r10_bio->master_bio = bio; 728 r10_bio->sectors = bio->bi_size >> 9; 729 730 r10_bio->mddev = mddev; 731 r10_bio->sector = bio->bi_sector; 732 733 if (rw == READ) { 734 /* 735 * read balancing logic: 736 */ 737 int disk = read_balance(conf, r10_bio); 738 int slot = r10_bio->read_slot; 739 if (disk < 0) { 740 raid_end_bio_io(r10_bio); 741 return 0; 742 } 743 mirror = conf->mirrors + disk; 744 745 read_bio = bio_clone(bio, GFP_NOIO); 746 747 r10_bio->devs[slot].bio = read_bio; 748 749 read_bio->bi_sector = r10_bio->devs[slot].addr + 750 mirror->rdev->data_offset; 751 read_bio->bi_bdev = mirror->rdev->bdev; 752 read_bio->bi_end_io = raid10_end_read_request; 753 read_bio->bi_rw = READ; 754 read_bio->bi_private = r10_bio; 755 756 generic_make_request(read_bio); 757 return 0; 758 } 759 760 /* 761 * WRITE: 762 */ 763 /* first select target devices under spinlock and 764 * inc refcount on their rdev. Record them by setting 765 * bios[x] to bio 766 */ 767 raid10_find_phys(conf, r10_bio); 768 rcu_read_lock(); 769 for (i = 0; i < conf->copies; i++) { 770 int d = r10_bio->devs[i].devnum; 771 if (conf->mirrors[d].rdev && 772 !conf->mirrors[d].rdev->faulty) { 773 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 774 r10_bio->devs[i].bio = bio; 775 } else 776 r10_bio->devs[i].bio = NULL; 777 } 778 rcu_read_unlock(); 779 780 atomic_set(&r10_bio->remaining, 1); 781 782 for (i = 0; i < conf->copies; i++) { 783 struct bio *mbio; 784 int d = r10_bio->devs[i].devnum; 785 if (!r10_bio->devs[i].bio) 786 continue; 787 788 mbio = bio_clone(bio, GFP_NOIO); 789 r10_bio->devs[i].bio = mbio; 790 791 mbio->bi_sector = r10_bio->devs[i].addr+ 792 conf->mirrors[d].rdev->data_offset; 793 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 794 mbio->bi_end_io = raid10_end_write_request; 795 mbio->bi_rw = WRITE; 796 mbio->bi_private = r10_bio; 797 798 atomic_inc(&r10_bio->remaining); 799 generic_make_request(mbio); 800 } 801 802 if (atomic_dec_and_test(&r10_bio->remaining)) { 803 md_write_end(mddev); 804 raid_end_bio_io(r10_bio); 805 } 806 807 return 0; 808 } 809 810 static void status(struct seq_file *seq, mddev_t *mddev) 811 { 812 conf_t *conf = mddev_to_conf(mddev); 813 int i; 814 815 if (conf->near_copies < conf->raid_disks) 816 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 817 if (conf->near_copies > 1) 818 seq_printf(seq, " %d near-copies", conf->near_copies); 819 if (conf->far_copies > 1) 820 seq_printf(seq, " %d far-copies", conf->far_copies); 821 822 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 823 conf->working_disks); 824 for (i = 0; i < conf->raid_disks; i++) 825 seq_printf(seq, "%s", 826 conf->mirrors[i].rdev && 827 conf->mirrors[i].rdev->in_sync ? "U" : "_"); 828 seq_printf(seq, "]"); 829 } 830 831 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 832 { 833 char b[BDEVNAME_SIZE]; 834 conf_t *conf = mddev_to_conf(mddev); 835 836 /* 837 * If it is not operational, then we have already marked it as dead 838 * else if it is the last working disks, ignore the error, let the 839 * next level up know. 840 * else mark the drive as failed 841 */ 842 if (rdev->in_sync 843 && conf->working_disks == 1) 844 /* 845 * Don't fail the drive, just return an IO error. 846 * The test should really be more sophisticated than 847 * "working_disks == 1", but it isn't critical, and 848 * can wait until we do more sophisticated "is the drive 849 * really dead" tests... 850 */ 851 return; 852 if (rdev->in_sync) { 853 mddev->degraded++; 854 conf->working_disks--; 855 /* 856 * if recovery is running, make sure it aborts. 857 */ 858 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 859 } 860 rdev->in_sync = 0; 861 rdev->faulty = 1; 862 mddev->sb_dirty = 1; 863 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 864 " Operation continuing on %d devices\n", 865 bdevname(rdev->bdev,b), conf->working_disks); 866 } 867 868 static void print_conf(conf_t *conf) 869 { 870 int i; 871 mirror_info_t *tmp; 872 873 printk("RAID10 conf printout:\n"); 874 if (!conf) { 875 printk("(!conf)\n"); 876 return; 877 } 878 printk(" --- wd:%d rd:%d\n", conf->working_disks, 879 conf->raid_disks); 880 881 for (i = 0; i < conf->raid_disks; i++) { 882 char b[BDEVNAME_SIZE]; 883 tmp = conf->mirrors + i; 884 if (tmp->rdev) 885 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 886 i, !tmp->rdev->in_sync, !tmp->rdev->faulty, 887 bdevname(tmp->rdev->bdev,b)); 888 } 889 } 890 891 static void close_sync(conf_t *conf) 892 { 893 spin_lock_irq(&conf->resync_lock); 894 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 895 conf->resync_lock, unplug_slaves(conf->mddev)); 896 spin_unlock_irq(&conf->resync_lock); 897 898 if (conf->barrier) BUG(); 899 if (waitqueue_active(&conf->wait_idle)) BUG(); 900 901 mempool_destroy(conf->r10buf_pool); 902 conf->r10buf_pool = NULL; 903 } 904 905 /* check if there are enough drives for 906 * every block to appear on atleast one 907 */ 908 static int enough(conf_t *conf) 909 { 910 int first = 0; 911 912 do { 913 int n = conf->copies; 914 int cnt = 0; 915 while (n--) { 916 if (conf->mirrors[first].rdev) 917 cnt++; 918 first = (first+1) % conf->raid_disks; 919 } 920 if (cnt == 0) 921 return 0; 922 } while (first != 0); 923 return 1; 924 } 925 926 static int raid10_spare_active(mddev_t *mddev) 927 { 928 int i; 929 conf_t *conf = mddev->private; 930 mirror_info_t *tmp; 931 932 /* 933 * Find all non-in_sync disks within the RAID10 configuration 934 * and mark them in_sync 935 */ 936 for (i = 0; i < conf->raid_disks; i++) { 937 tmp = conf->mirrors + i; 938 if (tmp->rdev 939 && !tmp->rdev->faulty 940 && !tmp->rdev->in_sync) { 941 conf->working_disks++; 942 mddev->degraded--; 943 tmp->rdev->in_sync = 1; 944 } 945 } 946 947 print_conf(conf); 948 return 0; 949 } 950 951 952 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 953 { 954 conf_t *conf = mddev->private; 955 int found = 0; 956 int mirror; 957 mirror_info_t *p; 958 959 if (mddev->recovery_cp < MaxSector) 960 /* only hot-add to in-sync arrays, as recovery is 961 * very different from resync 962 */ 963 return 0; 964 if (!enough(conf)) 965 return 0; 966 967 for (mirror=0; mirror < mddev->raid_disks; mirror++) 968 if ( !(p=conf->mirrors+mirror)->rdev) { 969 970 blk_queue_stack_limits(mddev->queue, 971 rdev->bdev->bd_disk->queue); 972 /* as we don't honour merge_bvec_fn, we must never risk 973 * violating it, so limit ->max_sector to one PAGE, as 974 * a one page request is never in violation. 975 */ 976 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 977 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 978 mddev->queue->max_sectors = (PAGE_SIZE>>9); 979 980 p->head_position = 0; 981 rdev->raid_disk = mirror; 982 found = 1; 983 p->rdev = rdev; 984 break; 985 } 986 987 print_conf(conf); 988 return found; 989 } 990 991 static int raid10_remove_disk(mddev_t *mddev, int number) 992 { 993 conf_t *conf = mddev->private; 994 int err = 0; 995 mdk_rdev_t *rdev; 996 mirror_info_t *p = conf->mirrors+ number; 997 998 print_conf(conf); 999 rdev = p->rdev; 1000 if (rdev) { 1001 if (rdev->in_sync || 1002 atomic_read(&rdev->nr_pending)) { 1003 err = -EBUSY; 1004 goto abort; 1005 } 1006 p->rdev = NULL; 1007 synchronize_rcu(); 1008 if (atomic_read(&rdev->nr_pending)) { 1009 /* lost the race, try later */ 1010 err = -EBUSY; 1011 p->rdev = rdev; 1012 } 1013 } 1014 abort: 1015 1016 print_conf(conf); 1017 return err; 1018 } 1019 1020 1021 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1022 { 1023 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1024 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1025 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1026 int i,d; 1027 1028 if (bio->bi_size) 1029 return 1; 1030 1031 for (i=0; i<conf->copies; i++) 1032 if (r10_bio->devs[i].bio == bio) 1033 break; 1034 if (i == conf->copies) 1035 BUG(); 1036 update_head_pos(i, r10_bio); 1037 d = r10_bio->devs[i].devnum; 1038 if (!uptodate) 1039 md_error(r10_bio->mddev, 1040 conf->mirrors[d].rdev); 1041 1042 /* for reconstruct, we always reschedule after a read. 1043 * for resync, only after all reads 1044 */ 1045 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1046 atomic_dec_and_test(&r10_bio->remaining)) { 1047 /* we have read all the blocks, 1048 * do the comparison in process context in raid10d 1049 */ 1050 reschedule_retry(r10_bio); 1051 } 1052 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1053 return 0; 1054 } 1055 1056 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1057 { 1058 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1059 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1060 mddev_t *mddev = r10_bio->mddev; 1061 conf_t *conf = mddev_to_conf(mddev); 1062 int i,d; 1063 1064 if (bio->bi_size) 1065 return 1; 1066 1067 for (i = 0; i < conf->copies; i++) 1068 if (r10_bio->devs[i].bio == bio) 1069 break; 1070 d = r10_bio->devs[i].devnum; 1071 1072 if (!uptodate) 1073 md_error(mddev, conf->mirrors[d].rdev); 1074 update_head_pos(i, r10_bio); 1075 1076 while (atomic_dec_and_test(&r10_bio->remaining)) { 1077 if (r10_bio->master_bio == NULL) { 1078 /* the primary of several recovery bios */ 1079 md_done_sync(mddev, r10_bio->sectors, 1); 1080 put_buf(r10_bio); 1081 break; 1082 } else { 1083 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1084 put_buf(r10_bio); 1085 r10_bio = r10_bio2; 1086 } 1087 } 1088 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1089 return 0; 1090 } 1091 1092 /* 1093 * Note: sync and recover and handled very differently for raid10 1094 * This code is for resync. 1095 * For resync, we read through virtual addresses and read all blocks. 1096 * If there is any error, we schedule a write. The lowest numbered 1097 * drive is authoritative. 1098 * However requests come for physical address, so we need to map. 1099 * For every physical address there are raid_disks/copies virtual addresses, 1100 * which is always are least one, but is not necessarly an integer. 1101 * This means that a physical address can span multiple chunks, so we may 1102 * have to submit multiple io requests for a single sync request. 1103 */ 1104 /* 1105 * We check if all blocks are in-sync and only write to blocks that 1106 * aren't in sync 1107 */ 1108 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1109 { 1110 conf_t *conf = mddev_to_conf(mddev); 1111 int i, first; 1112 struct bio *tbio, *fbio; 1113 1114 atomic_set(&r10_bio->remaining, 1); 1115 1116 /* find the first device with a block */ 1117 for (i=0; i<conf->copies; i++) 1118 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1119 break; 1120 1121 if (i == conf->copies) 1122 goto done; 1123 1124 first = i; 1125 fbio = r10_bio->devs[i].bio; 1126 1127 /* now find blocks with errors */ 1128 for (i=first+1 ; i < conf->copies ; i++) { 1129 int vcnt, j, d; 1130 1131 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1132 continue; 1133 /* We know that the bi_io_vec layout is the same for 1134 * both 'first' and 'i', so we just compare them. 1135 * All vec entries are PAGE_SIZE; 1136 */ 1137 tbio = r10_bio->devs[i].bio; 1138 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1139 for (j = 0; j < vcnt; j++) 1140 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1141 page_address(tbio->bi_io_vec[j].bv_page), 1142 PAGE_SIZE)) 1143 break; 1144 if (j == vcnt) 1145 continue; 1146 /* Ok, we need to write this bio 1147 * First we need to fixup bv_offset, bv_len and 1148 * bi_vecs, as the read request might have corrupted these 1149 */ 1150 tbio->bi_vcnt = vcnt; 1151 tbio->bi_size = r10_bio->sectors << 9; 1152 tbio->bi_idx = 0; 1153 tbio->bi_phys_segments = 0; 1154 tbio->bi_hw_segments = 0; 1155 tbio->bi_hw_front_size = 0; 1156 tbio->bi_hw_back_size = 0; 1157 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1158 tbio->bi_flags |= 1 << BIO_UPTODATE; 1159 tbio->bi_next = NULL; 1160 tbio->bi_rw = WRITE; 1161 tbio->bi_private = r10_bio; 1162 tbio->bi_sector = r10_bio->devs[i].addr; 1163 1164 for (j=0; j < vcnt ; j++) { 1165 tbio->bi_io_vec[j].bv_offset = 0; 1166 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1167 1168 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1169 page_address(fbio->bi_io_vec[j].bv_page), 1170 PAGE_SIZE); 1171 } 1172 tbio->bi_end_io = end_sync_write; 1173 1174 d = r10_bio->devs[i].devnum; 1175 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1176 atomic_inc(&r10_bio->remaining); 1177 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1178 1179 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1180 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1181 generic_make_request(tbio); 1182 } 1183 1184 done: 1185 if (atomic_dec_and_test(&r10_bio->remaining)) { 1186 md_done_sync(mddev, r10_bio->sectors, 1); 1187 put_buf(r10_bio); 1188 } 1189 } 1190 1191 /* 1192 * Now for the recovery code. 1193 * Recovery happens across physical sectors. 1194 * We recover all non-is_sync drives by finding the virtual address of 1195 * each, and then choose a working drive that also has that virt address. 1196 * There is a separate r10_bio for each non-in_sync drive. 1197 * Only the first two slots are in use. The first for reading, 1198 * The second for writing. 1199 * 1200 */ 1201 1202 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1203 { 1204 conf_t *conf = mddev_to_conf(mddev); 1205 int i, d; 1206 struct bio *bio, *wbio; 1207 1208 1209 /* move the pages across to the second bio 1210 * and submit the write request 1211 */ 1212 bio = r10_bio->devs[0].bio; 1213 wbio = r10_bio->devs[1].bio; 1214 for (i=0; i < wbio->bi_vcnt; i++) { 1215 struct page *p = bio->bi_io_vec[i].bv_page; 1216 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1217 wbio->bi_io_vec[i].bv_page = p; 1218 } 1219 d = r10_bio->devs[1].devnum; 1220 1221 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1222 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1223 generic_make_request(wbio); 1224 } 1225 1226 1227 /* 1228 * This is a kernel thread which: 1229 * 1230 * 1. Retries failed read operations on working mirrors. 1231 * 2. Updates the raid superblock when problems encounter. 1232 * 3. Performs writes following reads for array syncronising. 1233 */ 1234 1235 static void raid10d(mddev_t *mddev) 1236 { 1237 r10bio_t *r10_bio; 1238 struct bio *bio; 1239 unsigned long flags; 1240 conf_t *conf = mddev_to_conf(mddev); 1241 struct list_head *head = &conf->retry_list; 1242 int unplug=0; 1243 mdk_rdev_t *rdev; 1244 1245 md_check_recovery(mddev); 1246 1247 for (;;) { 1248 char b[BDEVNAME_SIZE]; 1249 spin_lock_irqsave(&conf->device_lock, flags); 1250 if (list_empty(head)) 1251 break; 1252 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1253 list_del(head->prev); 1254 spin_unlock_irqrestore(&conf->device_lock, flags); 1255 1256 mddev = r10_bio->mddev; 1257 conf = mddev_to_conf(mddev); 1258 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1259 sync_request_write(mddev, r10_bio); 1260 unplug = 1; 1261 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1262 recovery_request_write(mddev, r10_bio); 1263 unplug = 1; 1264 } else { 1265 int mirror; 1266 bio = r10_bio->devs[r10_bio->read_slot].bio; 1267 r10_bio->devs[r10_bio->read_slot].bio = NULL; 1268 bio_put(bio); 1269 mirror = read_balance(conf, r10_bio); 1270 if (mirror == -1) { 1271 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1272 " read error for block %llu\n", 1273 bdevname(bio->bi_bdev,b), 1274 (unsigned long long)r10_bio->sector); 1275 raid_end_bio_io(r10_bio); 1276 } else { 1277 rdev = conf->mirrors[mirror].rdev; 1278 if (printk_ratelimit()) 1279 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1280 " another mirror\n", 1281 bdevname(rdev->bdev,b), 1282 (unsigned long long)r10_bio->sector); 1283 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1284 r10_bio->devs[r10_bio->read_slot].bio = bio; 1285 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1286 + rdev->data_offset; 1287 bio->bi_bdev = rdev->bdev; 1288 bio->bi_rw = READ; 1289 bio->bi_private = r10_bio; 1290 bio->bi_end_io = raid10_end_read_request; 1291 unplug = 1; 1292 generic_make_request(bio); 1293 } 1294 } 1295 } 1296 spin_unlock_irqrestore(&conf->device_lock, flags); 1297 if (unplug) 1298 unplug_slaves(mddev); 1299 } 1300 1301 1302 static int init_resync(conf_t *conf) 1303 { 1304 int buffs; 1305 1306 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1307 if (conf->r10buf_pool) 1308 BUG(); 1309 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1310 if (!conf->r10buf_pool) 1311 return -ENOMEM; 1312 conf->next_resync = 0; 1313 return 0; 1314 } 1315 1316 /* 1317 * perform a "sync" on one "block" 1318 * 1319 * We need to make sure that no normal I/O request - particularly write 1320 * requests - conflict with active sync requests. 1321 * 1322 * This is achieved by tracking pending requests and a 'barrier' concept 1323 * that can be installed to exclude normal IO requests. 1324 * 1325 * Resync and recovery are handled very differently. 1326 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1327 * 1328 * For resync, we iterate over virtual addresses, read all copies, 1329 * and update if there are differences. If only one copy is live, 1330 * skip it. 1331 * For recovery, we iterate over physical addresses, read a good 1332 * value for each non-in_sync drive, and over-write. 1333 * 1334 * So, for recovery we may have several outstanding complex requests for a 1335 * given address, one for each out-of-sync device. We model this by allocating 1336 * a number of r10_bio structures, one for each out-of-sync device. 1337 * As we setup these structures, we collect all bio's together into a list 1338 * which we then process collectively to add pages, and then process again 1339 * to pass to generic_make_request. 1340 * 1341 * The r10_bio structures are linked using a borrowed master_bio pointer. 1342 * This link is counted in ->remaining. When the r10_bio that points to NULL 1343 * has its remaining count decremented to 0, the whole complex operation 1344 * is complete. 1345 * 1346 */ 1347 1348 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1349 { 1350 conf_t *conf = mddev_to_conf(mddev); 1351 r10bio_t *r10_bio; 1352 struct bio *biolist = NULL, *bio; 1353 sector_t max_sector, nr_sectors; 1354 int disk; 1355 int i; 1356 1357 sector_t sectors_skipped = 0; 1358 int chunks_skipped = 0; 1359 1360 if (!conf->r10buf_pool) 1361 if (init_resync(conf)) 1362 return 0; 1363 1364 skipped: 1365 max_sector = mddev->size << 1; 1366 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1367 max_sector = mddev->resync_max_sectors; 1368 if (sector_nr >= max_sector) { 1369 close_sync(conf); 1370 *skipped = 1; 1371 return sectors_skipped; 1372 } 1373 if (chunks_skipped >= conf->raid_disks) { 1374 /* if there has been nothing to do on any drive, 1375 * then there is nothing to do at all.. 1376 */ 1377 *skipped = 1; 1378 return (max_sector - sector_nr) + sectors_skipped; 1379 } 1380 1381 /* make sure whole request will fit in a chunk - if chunks 1382 * are meaningful 1383 */ 1384 if (conf->near_copies < conf->raid_disks && 1385 max_sector > (sector_nr | conf->chunk_mask)) 1386 max_sector = (sector_nr | conf->chunk_mask) + 1; 1387 /* 1388 * If there is non-resync activity waiting for us then 1389 * put in a delay to throttle resync. 1390 */ 1391 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1392 msleep_interruptible(1000); 1393 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1394 1395 /* Again, very different code for resync and recovery. 1396 * Both must result in an r10bio with a list of bios that 1397 * have bi_end_io, bi_sector, bi_bdev set, 1398 * and bi_private set to the r10bio. 1399 * For recovery, we may actually create several r10bios 1400 * with 2 bios in each, that correspond to the bios in the main one. 1401 * In this case, the subordinate r10bios link back through a 1402 * borrowed master_bio pointer, and the counter in the master 1403 * includes a ref from each subordinate. 1404 */ 1405 /* First, we decide what to do and set ->bi_end_io 1406 * To end_sync_read if we want to read, and 1407 * end_sync_write if we will want to write. 1408 */ 1409 1410 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1411 /* recovery... the complicated one */ 1412 int i, j, k; 1413 r10_bio = NULL; 1414 1415 for (i=0 ; i<conf->raid_disks; i++) 1416 if (conf->mirrors[i].rdev && 1417 !conf->mirrors[i].rdev->in_sync) { 1418 /* want to reconstruct this device */ 1419 r10bio_t *rb2 = r10_bio; 1420 1421 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1422 spin_lock_irq(&conf->resync_lock); 1423 conf->nr_pending++; 1424 if (rb2) conf->barrier++; 1425 spin_unlock_irq(&conf->resync_lock); 1426 atomic_set(&r10_bio->remaining, 0); 1427 1428 r10_bio->master_bio = (struct bio*)rb2; 1429 if (rb2) 1430 atomic_inc(&rb2->remaining); 1431 r10_bio->mddev = mddev; 1432 set_bit(R10BIO_IsRecover, &r10_bio->state); 1433 r10_bio->sector = raid10_find_virt(conf, sector_nr, i); 1434 raid10_find_phys(conf, r10_bio); 1435 for (j=0; j<conf->copies;j++) { 1436 int d = r10_bio->devs[j].devnum; 1437 if (conf->mirrors[d].rdev && 1438 conf->mirrors[d].rdev->in_sync) { 1439 /* This is where we read from */ 1440 bio = r10_bio->devs[0].bio; 1441 bio->bi_next = biolist; 1442 biolist = bio; 1443 bio->bi_private = r10_bio; 1444 bio->bi_end_io = end_sync_read; 1445 bio->bi_rw = 0; 1446 bio->bi_sector = r10_bio->devs[j].addr + 1447 conf->mirrors[d].rdev->data_offset; 1448 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1449 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1450 atomic_inc(&r10_bio->remaining); 1451 /* and we write to 'i' */ 1452 1453 for (k=0; k<conf->copies; k++) 1454 if (r10_bio->devs[k].devnum == i) 1455 break; 1456 bio = r10_bio->devs[1].bio; 1457 bio->bi_next = biolist; 1458 biolist = bio; 1459 bio->bi_private = r10_bio; 1460 bio->bi_end_io = end_sync_write; 1461 bio->bi_rw = 1; 1462 bio->bi_sector = r10_bio->devs[k].addr + 1463 conf->mirrors[i].rdev->data_offset; 1464 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1465 1466 r10_bio->devs[0].devnum = d; 1467 r10_bio->devs[1].devnum = i; 1468 1469 break; 1470 } 1471 } 1472 if (j == conf->copies) { 1473 /* Cannot recover, so abort the recovery */ 1474 put_buf(r10_bio); 1475 r10_bio = rb2; 1476 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1477 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1478 mdname(mddev)); 1479 break; 1480 } 1481 } 1482 if (biolist == NULL) { 1483 while (r10_bio) { 1484 r10bio_t *rb2 = r10_bio; 1485 r10_bio = (r10bio_t*) rb2->master_bio; 1486 rb2->master_bio = NULL; 1487 put_buf(rb2); 1488 } 1489 goto giveup; 1490 } 1491 } else { 1492 /* resync. Schedule a read for every block at this virt offset */ 1493 int count = 0; 1494 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1495 1496 spin_lock_irq(&conf->resync_lock); 1497 conf->nr_pending++; 1498 spin_unlock_irq(&conf->resync_lock); 1499 1500 r10_bio->mddev = mddev; 1501 atomic_set(&r10_bio->remaining, 0); 1502 1503 r10_bio->master_bio = NULL; 1504 r10_bio->sector = sector_nr; 1505 set_bit(R10BIO_IsSync, &r10_bio->state); 1506 raid10_find_phys(conf, r10_bio); 1507 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1508 1509 for (i=0; i<conf->copies; i++) { 1510 int d = r10_bio->devs[i].devnum; 1511 bio = r10_bio->devs[i].bio; 1512 bio->bi_end_io = NULL; 1513 if (conf->mirrors[d].rdev == NULL || 1514 conf->mirrors[d].rdev->faulty) 1515 continue; 1516 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1517 atomic_inc(&r10_bio->remaining); 1518 bio->bi_next = biolist; 1519 biolist = bio; 1520 bio->bi_private = r10_bio; 1521 bio->bi_end_io = end_sync_read; 1522 bio->bi_rw = 0; 1523 bio->bi_sector = r10_bio->devs[i].addr + 1524 conf->mirrors[d].rdev->data_offset; 1525 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1526 count++; 1527 } 1528 1529 if (count < 2) { 1530 for (i=0; i<conf->copies; i++) { 1531 int d = r10_bio->devs[i].devnum; 1532 if (r10_bio->devs[i].bio->bi_end_io) 1533 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1534 } 1535 put_buf(r10_bio); 1536 biolist = NULL; 1537 goto giveup; 1538 } 1539 } 1540 1541 for (bio = biolist; bio ; bio=bio->bi_next) { 1542 1543 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1544 if (bio->bi_end_io) 1545 bio->bi_flags |= 1 << BIO_UPTODATE; 1546 bio->bi_vcnt = 0; 1547 bio->bi_idx = 0; 1548 bio->bi_phys_segments = 0; 1549 bio->bi_hw_segments = 0; 1550 bio->bi_size = 0; 1551 } 1552 1553 nr_sectors = 0; 1554 do { 1555 struct page *page; 1556 int len = PAGE_SIZE; 1557 disk = 0; 1558 if (sector_nr + (len>>9) > max_sector) 1559 len = (max_sector - sector_nr) << 9; 1560 if (len == 0) 1561 break; 1562 for (bio= biolist ; bio ; bio=bio->bi_next) { 1563 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1564 if (bio_add_page(bio, page, len, 0) == 0) { 1565 /* stop here */ 1566 struct bio *bio2; 1567 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1568 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1569 /* remove last page from this bio */ 1570 bio2->bi_vcnt--; 1571 bio2->bi_size -= len; 1572 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1573 } 1574 goto bio_full; 1575 } 1576 disk = i; 1577 } 1578 nr_sectors += len>>9; 1579 sector_nr += len>>9; 1580 } while (biolist->bi_vcnt < RESYNC_PAGES); 1581 bio_full: 1582 r10_bio->sectors = nr_sectors; 1583 1584 while (biolist) { 1585 bio = biolist; 1586 biolist = biolist->bi_next; 1587 1588 bio->bi_next = NULL; 1589 r10_bio = bio->bi_private; 1590 r10_bio->sectors = nr_sectors; 1591 1592 if (bio->bi_end_io == end_sync_read) { 1593 md_sync_acct(bio->bi_bdev, nr_sectors); 1594 generic_make_request(bio); 1595 } 1596 } 1597 1598 if (sectors_skipped) 1599 /* pretend they weren't skipped, it makes 1600 * no important difference in this case 1601 */ 1602 md_done_sync(mddev, sectors_skipped, 1); 1603 1604 return sectors_skipped + nr_sectors; 1605 giveup: 1606 /* There is nowhere to write, so all non-sync 1607 * drives must be failed, so try the next chunk... 1608 */ 1609 { 1610 sector_t sec = max_sector - sector_nr; 1611 sectors_skipped += sec; 1612 chunks_skipped ++; 1613 sector_nr = max_sector; 1614 goto skipped; 1615 } 1616 } 1617 1618 static int run(mddev_t *mddev) 1619 { 1620 conf_t *conf; 1621 int i, disk_idx; 1622 mirror_info_t *disk; 1623 mdk_rdev_t *rdev; 1624 struct list_head *tmp; 1625 int nc, fc; 1626 sector_t stride, size; 1627 1628 if (mddev->level != 10) { 1629 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n", 1630 mdname(mddev), mddev->level); 1631 goto out; 1632 } 1633 nc = mddev->layout & 255; 1634 fc = (mddev->layout >> 8) & 255; 1635 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1636 (mddev->layout >> 16)) { 1637 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1638 mdname(mddev), mddev->layout); 1639 goto out; 1640 } 1641 /* 1642 * copy the already verified devices into our private RAID10 1643 * bookkeeping area. [whatever we allocate in run(), 1644 * should be freed in stop()] 1645 */ 1646 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1647 mddev->private = conf; 1648 if (!conf) { 1649 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1650 mdname(mddev)); 1651 goto out; 1652 } 1653 memset(conf, 0, sizeof(*conf)); 1654 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1655 GFP_KERNEL); 1656 if (!conf->mirrors) { 1657 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1658 mdname(mddev)); 1659 goto out_free_conf; 1660 } 1661 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1662 1663 conf->near_copies = nc; 1664 conf->far_copies = fc; 1665 conf->copies = nc*fc; 1666 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1667 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1668 stride = mddev->size >> (conf->chunk_shift-1); 1669 sector_div(stride, fc); 1670 conf->stride = stride << conf->chunk_shift; 1671 1672 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1673 r10bio_pool_free, conf); 1674 if (!conf->r10bio_pool) { 1675 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1676 mdname(mddev)); 1677 goto out_free_conf; 1678 } 1679 1680 ITERATE_RDEV(mddev, rdev, tmp) { 1681 disk_idx = rdev->raid_disk; 1682 if (disk_idx >= mddev->raid_disks 1683 || disk_idx < 0) 1684 continue; 1685 disk = conf->mirrors + disk_idx; 1686 1687 disk->rdev = rdev; 1688 1689 blk_queue_stack_limits(mddev->queue, 1690 rdev->bdev->bd_disk->queue); 1691 /* as we don't honour merge_bvec_fn, we must never risk 1692 * violating it, so limit ->max_sector to one PAGE, as 1693 * a one page request is never in violation. 1694 */ 1695 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1696 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1697 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1698 1699 disk->head_position = 0; 1700 if (!rdev->faulty && rdev->in_sync) 1701 conf->working_disks++; 1702 } 1703 conf->raid_disks = mddev->raid_disks; 1704 conf->mddev = mddev; 1705 spin_lock_init(&conf->device_lock); 1706 INIT_LIST_HEAD(&conf->retry_list); 1707 1708 spin_lock_init(&conf->resync_lock); 1709 init_waitqueue_head(&conf->wait_idle); 1710 init_waitqueue_head(&conf->wait_resume); 1711 1712 /* need to check that every block has at least one working mirror */ 1713 if (!enough(conf)) { 1714 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 1715 mdname(mddev)); 1716 goto out_free_conf; 1717 } 1718 1719 mddev->degraded = 0; 1720 for (i = 0; i < conf->raid_disks; i++) { 1721 1722 disk = conf->mirrors + i; 1723 1724 if (!disk->rdev) { 1725 disk->head_position = 0; 1726 mddev->degraded++; 1727 } 1728 } 1729 1730 1731 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 1732 if (!mddev->thread) { 1733 printk(KERN_ERR 1734 "raid10: couldn't allocate thread for %s\n", 1735 mdname(mddev)); 1736 goto out_free_conf; 1737 } 1738 1739 printk(KERN_INFO 1740 "raid10: raid set %s active with %d out of %d devices\n", 1741 mdname(mddev), mddev->raid_disks - mddev->degraded, 1742 mddev->raid_disks); 1743 /* 1744 * Ok, everything is just fine now 1745 */ 1746 size = conf->stride * conf->raid_disks; 1747 sector_div(size, conf->near_copies); 1748 mddev->array_size = size/2; 1749 mddev->resync_max_sectors = size; 1750 1751 mddev->queue->unplug_fn = raid10_unplug; 1752 mddev->queue->issue_flush_fn = raid10_issue_flush; 1753 1754 /* Calculate max read-ahead size. 1755 * We need to readahead at least twice a whole stripe.... 1756 * maybe... 1757 */ 1758 { 1759 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE; 1760 stripe /= conf->near_copies; 1761 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 1762 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 1763 } 1764 1765 if (conf->near_copies < mddev->raid_disks) 1766 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 1767 return 0; 1768 1769 out_free_conf: 1770 if (conf->r10bio_pool) 1771 mempool_destroy(conf->r10bio_pool); 1772 kfree(conf->mirrors); 1773 kfree(conf); 1774 mddev->private = NULL; 1775 out: 1776 return -EIO; 1777 } 1778 1779 static int stop(mddev_t *mddev) 1780 { 1781 conf_t *conf = mddev_to_conf(mddev); 1782 1783 md_unregister_thread(mddev->thread); 1784 mddev->thread = NULL; 1785 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1786 if (conf->r10bio_pool) 1787 mempool_destroy(conf->r10bio_pool); 1788 kfree(conf->mirrors); 1789 kfree(conf); 1790 mddev->private = NULL; 1791 return 0; 1792 } 1793 1794 1795 static mdk_personality_t raid10_personality = 1796 { 1797 .name = "raid10", 1798 .owner = THIS_MODULE, 1799 .make_request = make_request, 1800 .run = run, 1801 .stop = stop, 1802 .status = status, 1803 .error_handler = error, 1804 .hot_add_disk = raid10_add_disk, 1805 .hot_remove_disk= raid10_remove_disk, 1806 .spare_active = raid10_spare_active, 1807 .sync_request = sync_request, 1808 }; 1809 1810 static int __init raid_init(void) 1811 { 1812 return register_md_personality(RAID10, &raid10_personality); 1813 } 1814 1815 static void raid_exit(void) 1816 { 1817 unregister_md_personality(RAID10); 1818 } 1819 1820 module_init(raid_init); 1821 module_exit(raid_exit); 1822 MODULE_LICENSE("GPL"); 1823 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 1824