1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "md-bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 #include "raid1-10.c" 114 115 /* 116 * for resync bio, r10bio pointer can be retrieved from the per-bio 117 * 'struct resync_pages'. 118 */ 119 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 120 { 121 return get_resync_pages(bio)->raid_bio; 122 } 123 124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 125 { 126 struct r10conf *conf = data; 127 int size = offsetof(struct r10bio, devs[conf->copies]); 128 129 /* allocate a r10bio with room for raid_disks entries in the 130 * bios array */ 131 return kzalloc(size, gfp_flags); 132 } 133 134 static void r10bio_pool_free(void *r10_bio, void *data) 135 { 136 kfree(r10_bio); 137 } 138 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 /* amount of memory to reserve for resync requests */ 141 #define RESYNC_WINDOW (1024*1024) 142 /* maximum number of concurrent requests, memory permitting */ 143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 146 147 /* 148 * When performing a resync, we need to read and compare, so 149 * we need as many pages are there are copies. 150 * When performing a recovery, we need 2 bios, one for read, 151 * one for write (we recover only one drive per r10buf) 152 * 153 */ 154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 155 { 156 struct r10conf *conf = data; 157 struct r10bio *r10_bio; 158 struct bio *bio; 159 int j; 160 int nalloc, nalloc_rp; 161 struct resync_pages *rps; 162 163 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 164 if (!r10_bio) 165 return NULL; 166 167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 169 nalloc = conf->copies; /* resync */ 170 else 171 nalloc = 2; /* recovery */ 172 173 /* allocate once for all bios */ 174 if (!conf->have_replacement) 175 nalloc_rp = nalloc; 176 else 177 nalloc_rp = nalloc * 2; 178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 179 if (!rps) 180 goto out_free_r10bio; 181 182 /* 183 * Allocate bios. 184 */ 185 for (j = nalloc ; j-- ; ) { 186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 187 if (!bio) 188 goto out_free_bio; 189 r10_bio->devs[j].bio = bio; 190 if (!conf->have_replacement) 191 continue; 192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 193 if (!bio) 194 goto out_free_bio; 195 r10_bio->devs[j].repl_bio = bio; 196 } 197 /* 198 * Allocate RESYNC_PAGES data pages and attach them 199 * where needed. 200 */ 201 for (j = 0; j < nalloc; j++) { 202 struct bio *rbio = r10_bio->devs[j].repl_bio; 203 struct resync_pages *rp, *rp_repl; 204 205 rp = &rps[j]; 206 if (rbio) 207 rp_repl = &rps[nalloc + j]; 208 209 bio = r10_bio->devs[j].bio; 210 211 if (!j || test_bit(MD_RECOVERY_SYNC, 212 &conf->mddev->recovery)) { 213 if (resync_alloc_pages(rp, gfp_flags)) 214 goto out_free_pages; 215 } else { 216 memcpy(rp, &rps[0], sizeof(*rp)); 217 resync_get_all_pages(rp); 218 } 219 220 rp->raid_bio = r10_bio; 221 bio->bi_private = rp; 222 if (rbio) { 223 memcpy(rp_repl, rp, sizeof(*rp)); 224 rbio->bi_private = rp_repl; 225 } 226 } 227 228 return r10_bio; 229 230 out_free_pages: 231 while (--j >= 0) 232 resync_free_pages(&rps[j * 2]); 233 234 j = 0; 235 out_free_bio: 236 for ( ; j < nalloc; j++) { 237 if (r10_bio->devs[j].bio) 238 bio_put(r10_bio->devs[j].bio); 239 if (r10_bio->devs[j].repl_bio) 240 bio_put(r10_bio->devs[j].repl_bio); 241 } 242 kfree(rps); 243 out_free_r10bio: 244 r10bio_pool_free(r10_bio, conf); 245 return NULL; 246 } 247 248 static void r10buf_pool_free(void *__r10_bio, void *data) 249 { 250 struct r10conf *conf = data; 251 struct r10bio *r10bio = __r10_bio; 252 int j; 253 struct resync_pages *rp = NULL; 254 255 for (j = conf->copies; j--; ) { 256 struct bio *bio = r10bio->devs[j].bio; 257 258 rp = get_resync_pages(bio); 259 resync_free_pages(rp); 260 bio_put(bio); 261 262 bio = r10bio->devs[j].repl_bio; 263 if (bio) 264 bio_put(bio); 265 } 266 267 /* resync pages array stored in the 1st bio's .bi_private */ 268 kfree(rp); 269 270 r10bio_pool_free(r10bio, conf); 271 } 272 273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 274 { 275 int i; 276 277 for (i = 0; i < conf->copies; i++) { 278 struct bio **bio = & r10_bio->devs[i].bio; 279 if (!BIO_SPECIAL(*bio)) 280 bio_put(*bio); 281 *bio = NULL; 282 bio = &r10_bio->devs[i].repl_bio; 283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 284 bio_put(*bio); 285 *bio = NULL; 286 } 287 } 288 289 static void free_r10bio(struct r10bio *r10_bio) 290 { 291 struct r10conf *conf = r10_bio->mddev->private; 292 293 put_all_bios(conf, r10_bio); 294 mempool_free(r10_bio, &conf->r10bio_pool); 295 } 296 297 static void put_buf(struct r10bio *r10_bio) 298 { 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 mempool_free(r10_bio, &conf->r10buf_pool); 302 303 lower_barrier(conf); 304 } 305 306 static void reschedule_retry(struct r10bio *r10_bio) 307 { 308 unsigned long flags; 309 struct mddev *mddev = r10_bio->mddev; 310 struct r10conf *conf = mddev->private; 311 312 spin_lock_irqsave(&conf->device_lock, flags); 313 list_add(&r10_bio->retry_list, &conf->retry_list); 314 conf->nr_queued ++; 315 spin_unlock_irqrestore(&conf->device_lock, flags); 316 317 /* wake up frozen array... */ 318 wake_up(&conf->wait_barrier); 319 320 md_wakeup_thread(mddev->thread); 321 } 322 323 /* 324 * raid_end_bio_io() is called when we have finished servicing a mirrored 325 * operation and are ready to return a success/failure code to the buffer 326 * cache layer. 327 */ 328 static void raid_end_bio_io(struct r10bio *r10_bio) 329 { 330 struct bio *bio = r10_bio->master_bio; 331 struct r10conf *conf = r10_bio->mddev->private; 332 333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 334 bio->bi_status = BLK_STS_IOERR; 335 336 bio_endio(bio); 337 /* 338 * Wake up any possible resync thread that waits for the device 339 * to go idle. 340 */ 341 allow_barrier(conf); 342 343 free_r10bio(r10_bio); 344 } 345 346 /* 347 * Update disk head position estimator based on IRQ completion info. 348 */ 349 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 350 { 351 struct r10conf *conf = r10_bio->mddev->private; 352 353 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 354 r10_bio->devs[slot].addr + (r10_bio->sectors); 355 } 356 357 /* 358 * Find the disk number which triggered given bio 359 */ 360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 361 struct bio *bio, int *slotp, int *replp) 362 { 363 int slot; 364 int repl = 0; 365 366 for (slot = 0; slot < conf->copies; slot++) { 367 if (r10_bio->devs[slot].bio == bio) 368 break; 369 if (r10_bio->devs[slot].repl_bio == bio) { 370 repl = 1; 371 break; 372 } 373 } 374 375 BUG_ON(slot == conf->copies); 376 update_head_pos(slot, r10_bio); 377 378 if (slotp) 379 *slotp = slot; 380 if (replp) 381 *replp = repl; 382 return r10_bio->devs[slot].devnum; 383 } 384 385 static void raid10_end_read_request(struct bio *bio) 386 { 387 int uptodate = !bio->bi_status; 388 struct r10bio *r10_bio = bio->bi_private; 389 int slot; 390 struct md_rdev *rdev; 391 struct r10conf *conf = r10_bio->mddev->private; 392 393 slot = r10_bio->read_slot; 394 rdev = r10_bio->devs[slot].rdev; 395 /* 396 * this branch is our 'one mirror IO has finished' event handler: 397 */ 398 update_head_pos(slot, r10_bio); 399 400 if (uptodate) { 401 /* 402 * Set R10BIO_Uptodate in our master bio, so that 403 * we will return a good error code to the higher 404 * levels even if IO on some other mirrored buffer fails. 405 * 406 * The 'master' represents the composite IO operation to 407 * user-side. So if something waits for IO, then it will 408 * wait for the 'master' bio. 409 */ 410 set_bit(R10BIO_Uptodate, &r10_bio->state); 411 } else { 412 /* If all other devices that store this block have 413 * failed, we want to return the error upwards rather 414 * than fail the last device. Here we redefine 415 * "uptodate" to mean "Don't want to retry" 416 */ 417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 418 rdev->raid_disk)) 419 uptodate = 1; 420 } 421 if (uptodate) { 422 raid_end_bio_io(r10_bio); 423 rdev_dec_pending(rdev, conf->mddev); 424 } else { 425 /* 426 * oops, read error - keep the refcount on the rdev 427 */ 428 char b[BDEVNAME_SIZE]; 429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 430 mdname(conf->mddev), 431 bdevname(rdev->bdev, b), 432 (unsigned long long)r10_bio->sector); 433 set_bit(R10BIO_ReadError, &r10_bio->state); 434 reschedule_retry(r10_bio); 435 } 436 } 437 438 static void close_write(struct r10bio *r10_bio) 439 { 440 /* clear the bitmap if all writes complete successfully */ 441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 442 r10_bio->sectors, 443 !test_bit(R10BIO_Degraded, &r10_bio->state), 444 0); 445 md_write_end(r10_bio->mddev); 446 } 447 448 static void one_write_done(struct r10bio *r10_bio) 449 { 450 if (atomic_dec_and_test(&r10_bio->remaining)) { 451 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 452 reschedule_retry(r10_bio); 453 else { 454 close_write(r10_bio); 455 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 456 reschedule_retry(r10_bio); 457 else 458 raid_end_bio_io(r10_bio); 459 } 460 } 461 } 462 463 static void raid10_end_write_request(struct bio *bio) 464 { 465 struct r10bio *r10_bio = bio->bi_private; 466 int dev; 467 int dec_rdev = 1; 468 struct r10conf *conf = r10_bio->mddev->private; 469 int slot, repl; 470 struct md_rdev *rdev = NULL; 471 struct bio *to_put = NULL; 472 bool discard_error; 473 474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 475 476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 477 478 if (repl) 479 rdev = conf->mirrors[dev].replacement; 480 if (!rdev) { 481 smp_rmb(); 482 repl = 0; 483 rdev = conf->mirrors[dev].rdev; 484 } 485 /* 486 * this branch is our 'one mirror IO has finished' event handler: 487 */ 488 if (bio->bi_status && !discard_error) { 489 if (repl) 490 /* Never record new bad blocks to replacement, 491 * just fail it. 492 */ 493 md_error(rdev->mddev, rdev); 494 else { 495 set_bit(WriteErrorSeen, &rdev->flags); 496 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 497 set_bit(MD_RECOVERY_NEEDED, 498 &rdev->mddev->recovery); 499 500 dec_rdev = 0; 501 if (test_bit(FailFast, &rdev->flags) && 502 (bio->bi_opf & MD_FAILFAST)) { 503 md_error(rdev->mddev, rdev); 504 if (!test_bit(Faulty, &rdev->flags)) 505 /* This is the only remaining device, 506 * We need to retry the write without 507 * FailFast 508 */ 509 set_bit(R10BIO_WriteError, &r10_bio->state); 510 else { 511 r10_bio->devs[slot].bio = NULL; 512 to_put = bio; 513 dec_rdev = 1; 514 } 515 } else 516 set_bit(R10BIO_WriteError, &r10_bio->state); 517 } 518 } else { 519 /* 520 * Set R10BIO_Uptodate in our master bio, so that 521 * we will return a good error code for to the higher 522 * levels even if IO on some other mirrored buffer fails. 523 * 524 * The 'master' represents the composite IO operation to 525 * user-side. So if something waits for IO, then it will 526 * wait for the 'master' bio. 527 */ 528 sector_t first_bad; 529 int bad_sectors; 530 531 /* 532 * Do not set R10BIO_Uptodate if the current device is 533 * rebuilding or Faulty. This is because we cannot use 534 * such device for properly reading the data back (we could 535 * potentially use it, if the current write would have felt 536 * before rdev->recovery_offset, but for simplicity we don't 537 * check this here. 538 */ 539 if (test_bit(In_sync, &rdev->flags) && 540 !test_bit(Faulty, &rdev->flags)) 541 set_bit(R10BIO_Uptodate, &r10_bio->state); 542 543 /* Maybe we can clear some bad blocks. */ 544 if (is_badblock(rdev, 545 r10_bio->devs[slot].addr, 546 r10_bio->sectors, 547 &first_bad, &bad_sectors) && !discard_error) { 548 bio_put(bio); 549 if (repl) 550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 551 else 552 r10_bio->devs[slot].bio = IO_MADE_GOOD; 553 dec_rdev = 0; 554 set_bit(R10BIO_MadeGood, &r10_bio->state); 555 } 556 } 557 558 /* 559 * 560 * Let's see if all mirrored write operations have finished 561 * already. 562 */ 563 one_write_done(r10_bio); 564 if (dec_rdev) 565 rdev_dec_pending(rdev, conf->mddev); 566 if (to_put) 567 bio_put(to_put); 568 } 569 570 /* 571 * RAID10 layout manager 572 * As well as the chunksize and raid_disks count, there are two 573 * parameters: near_copies and far_copies. 574 * near_copies * far_copies must be <= raid_disks. 575 * Normally one of these will be 1. 576 * If both are 1, we get raid0. 577 * If near_copies == raid_disks, we get raid1. 578 * 579 * Chunks are laid out in raid0 style with near_copies copies of the 580 * first chunk, followed by near_copies copies of the next chunk and 581 * so on. 582 * If far_copies > 1, then after 1/far_copies of the array has been assigned 583 * as described above, we start again with a device offset of near_copies. 584 * So we effectively have another copy of the whole array further down all 585 * the drives, but with blocks on different drives. 586 * With this layout, and block is never stored twice on the one device. 587 * 588 * raid10_find_phys finds the sector offset of a given virtual sector 589 * on each device that it is on. 590 * 591 * raid10_find_virt does the reverse mapping, from a device and a 592 * sector offset to a virtual address 593 */ 594 595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 596 { 597 int n,f; 598 sector_t sector; 599 sector_t chunk; 600 sector_t stripe; 601 int dev; 602 int slot = 0; 603 int last_far_set_start, last_far_set_size; 604 605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 606 last_far_set_start *= geo->far_set_size; 607 608 last_far_set_size = geo->far_set_size; 609 last_far_set_size += (geo->raid_disks % geo->far_set_size); 610 611 /* now calculate first sector/dev */ 612 chunk = r10bio->sector >> geo->chunk_shift; 613 sector = r10bio->sector & geo->chunk_mask; 614 615 chunk *= geo->near_copies; 616 stripe = chunk; 617 dev = sector_div(stripe, geo->raid_disks); 618 if (geo->far_offset) 619 stripe *= geo->far_copies; 620 621 sector += stripe << geo->chunk_shift; 622 623 /* and calculate all the others */ 624 for (n = 0; n < geo->near_copies; n++) { 625 int d = dev; 626 int set; 627 sector_t s = sector; 628 r10bio->devs[slot].devnum = d; 629 r10bio->devs[slot].addr = s; 630 slot++; 631 632 for (f = 1; f < geo->far_copies; f++) { 633 set = d / geo->far_set_size; 634 d += geo->near_copies; 635 636 if ((geo->raid_disks % geo->far_set_size) && 637 (d > last_far_set_start)) { 638 d -= last_far_set_start; 639 d %= last_far_set_size; 640 d += last_far_set_start; 641 } else { 642 d %= geo->far_set_size; 643 d += geo->far_set_size * set; 644 } 645 s += geo->stride; 646 r10bio->devs[slot].devnum = d; 647 r10bio->devs[slot].addr = s; 648 slot++; 649 } 650 dev++; 651 if (dev >= geo->raid_disks) { 652 dev = 0; 653 sector += (geo->chunk_mask + 1); 654 } 655 } 656 } 657 658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 659 { 660 struct geom *geo = &conf->geo; 661 662 if (conf->reshape_progress != MaxSector && 663 ((r10bio->sector >= conf->reshape_progress) != 664 conf->mddev->reshape_backwards)) { 665 set_bit(R10BIO_Previous, &r10bio->state); 666 geo = &conf->prev; 667 } else 668 clear_bit(R10BIO_Previous, &r10bio->state); 669 670 __raid10_find_phys(geo, r10bio); 671 } 672 673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 674 { 675 sector_t offset, chunk, vchunk; 676 /* Never use conf->prev as this is only called during resync 677 * or recovery, so reshape isn't happening 678 */ 679 struct geom *geo = &conf->geo; 680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 681 int far_set_size = geo->far_set_size; 682 int last_far_set_start; 683 684 if (geo->raid_disks % geo->far_set_size) { 685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 686 last_far_set_start *= geo->far_set_size; 687 688 if (dev >= last_far_set_start) { 689 far_set_size = geo->far_set_size; 690 far_set_size += (geo->raid_disks % geo->far_set_size); 691 far_set_start = last_far_set_start; 692 } 693 } 694 695 offset = sector & geo->chunk_mask; 696 if (geo->far_offset) { 697 int fc; 698 chunk = sector >> geo->chunk_shift; 699 fc = sector_div(chunk, geo->far_copies); 700 dev -= fc * geo->near_copies; 701 if (dev < far_set_start) 702 dev += far_set_size; 703 } else { 704 while (sector >= geo->stride) { 705 sector -= geo->stride; 706 if (dev < (geo->near_copies + far_set_start)) 707 dev += far_set_size - geo->near_copies; 708 else 709 dev -= geo->near_copies; 710 } 711 chunk = sector >> geo->chunk_shift; 712 } 713 vchunk = chunk * geo->raid_disks + dev; 714 sector_div(vchunk, geo->near_copies); 715 return (vchunk << geo->chunk_shift) + offset; 716 } 717 718 /* 719 * This routine returns the disk from which the requested read should 720 * be done. There is a per-array 'next expected sequential IO' sector 721 * number - if this matches on the next IO then we use the last disk. 722 * There is also a per-disk 'last know head position' sector that is 723 * maintained from IRQ contexts, both the normal and the resync IO 724 * completion handlers update this position correctly. If there is no 725 * perfect sequential match then we pick the disk whose head is closest. 726 * 727 * If there are 2 mirrors in the same 2 devices, performance degrades 728 * because position is mirror, not device based. 729 * 730 * The rdev for the device selected will have nr_pending incremented. 731 */ 732 733 /* 734 * FIXME: possibly should rethink readbalancing and do it differently 735 * depending on near_copies / far_copies geometry. 736 */ 737 static struct md_rdev *read_balance(struct r10conf *conf, 738 struct r10bio *r10_bio, 739 int *max_sectors) 740 { 741 const sector_t this_sector = r10_bio->sector; 742 int disk, slot; 743 int sectors = r10_bio->sectors; 744 int best_good_sectors; 745 sector_t new_distance, best_dist; 746 struct md_rdev *best_rdev, *rdev = NULL; 747 int do_balance; 748 int best_slot; 749 struct geom *geo = &conf->geo; 750 751 raid10_find_phys(conf, r10_bio); 752 rcu_read_lock(); 753 best_slot = -1; 754 best_rdev = NULL; 755 best_dist = MaxSector; 756 best_good_sectors = 0; 757 do_balance = 1; 758 clear_bit(R10BIO_FailFast, &r10_bio->state); 759 /* 760 * Check if we can balance. We can balance on the whole 761 * device if no resync is going on (recovery is ok), or below 762 * the resync window. We take the first readable disk when 763 * above the resync window. 764 */ 765 if ((conf->mddev->recovery_cp < MaxSector 766 && (this_sector + sectors >= conf->next_resync)) || 767 (mddev_is_clustered(conf->mddev) && 768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 769 this_sector + sectors))) 770 do_balance = 0; 771 772 for (slot = 0; slot < conf->copies ; slot++) { 773 sector_t first_bad; 774 int bad_sectors; 775 sector_t dev_sector; 776 777 if (r10_bio->devs[slot].bio == IO_BLOCKED) 778 continue; 779 disk = r10_bio->devs[slot].devnum; 780 rdev = rcu_dereference(conf->mirrors[disk].replacement); 781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 783 rdev = rcu_dereference(conf->mirrors[disk].rdev); 784 if (rdev == NULL || 785 test_bit(Faulty, &rdev->flags)) 786 continue; 787 if (!test_bit(In_sync, &rdev->flags) && 788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 789 continue; 790 791 dev_sector = r10_bio->devs[slot].addr; 792 if (is_badblock(rdev, dev_sector, sectors, 793 &first_bad, &bad_sectors)) { 794 if (best_dist < MaxSector) 795 /* Already have a better slot */ 796 continue; 797 if (first_bad <= dev_sector) { 798 /* Cannot read here. If this is the 799 * 'primary' device, then we must not read 800 * beyond 'bad_sectors' from another device. 801 */ 802 bad_sectors -= (dev_sector - first_bad); 803 if (!do_balance && sectors > bad_sectors) 804 sectors = bad_sectors; 805 if (best_good_sectors > sectors) 806 best_good_sectors = sectors; 807 } else { 808 sector_t good_sectors = 809 first_bad - dev_sector; 810 if (good_sectors > best_good_sectors) { 811 best_good_sectors = good_sectors; 812 best_slot = slot; 813 best_rdev = rdev; 814 } 815 if (!do_balance) 816 /* Must read from here */ 817 break; 818 } 819 continue; 820 } else 821 best_good_sectors = sectors; 822 823 if (!do_balance) 824 break; 825 826 if (best_slot >= 0) 827 /* At least 2 disks to choose from so failfast is OK */ 828 set_bit(R10BIO_FailFast, &r10_bio->state); 829 /* This optimisation is debatable, and completely destroys 830 * sequential read speed for 'far copies' arrays. So only 831 * keep it for 'near' arrays, and review those later. 832 */ 833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 834 new_distance = 0; 835 836 /* for far > 1 always use the lowest address */ 837 else if (geo->far_copies > 1) 838 new_distance = r10_bio->devs[slot].addr; 839 else 840 new_distance = abs(r10_bio->devs[slot].addr - 841 conf->mirrors[disk].head_position); 842 if (new_distance < best_dist) { 843 best_dist = new_distance; 844 best_slot = slot; 845 best_rdev = rdev; 846 } 847 } 848 if (slot >= conf->copies) { 849 slot = best_slot; 850 rdev = best_rdev; 851 } 852 853 if (slot >= 0) { 854 atomic_inc(&rdev->nr_pending); 855 r10_bio->read_slot = slot; 856 } else 857 rdev = NULL; 858 rcu_read_unlock(); 859 *max_sectors = best_good_sectors; 860 861 return rdev; 862 } 863 864 static int raid10_congested(struct mddev *mddev, int bits) 865 { 866 struct r10conf *conf = mddev->private; 867 int i, ret = 0; 868 869 if ((bits & (1 << WB_async_congested)) && 870 conf->pending_count >= max_queued_requests) 871 return 1; 872 873 rcu_read_lock(); 874 for (i = 0; 875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 876 && ret == 0; 877 i++) { 878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 879 if (rdev && !test_bit(Faulty, &rdev->flags)) { 880 struct request_queue *q = bdev_get_queue(rdev->bdev); 881 882 ret |= bdi_congested(q->backing_dev_info, bits); 883 } 884 } 885 rcu_read_unlock(); 886 return ret; 887 } 888 889 static void flush_pending_writes(struct r10conf *conf) 890 { 891 /* Any writes that have been queued but are awaiting 892 * bitmap updates get flushed here. 893 */ 894 spin_lock_irq(&conf->device_lock); 895 896 if (conf->pending_bio_list.head) { 897 struct blk_plug plug; 898 struct bio *bio; 899 900 bio = bio_list_get(&conf->pending_bio_list); 901 conf->pending_count = 0; 902 spin_unlock_irq(&conf->device_lock); 903 904 /* 905 * As this is called in a wait_event() loop (see freeze_array), 906 * current->state might be TASK_UNINTERRUPTIBLE which will 907 * cause a warning when we prepare to wait again. As it is 908 * rare that this path is taken, it is perfectly safe to force 909 * us to go around the wait_event() loop again, so the warning 910 * is a false-positive. Silence the warning by resetting 911 * thread state 912 */ 913 __set_current_state(TASK_RUNNING); 914 915 blk_start_plug(&plug); 916 /* flush any pending bitmap writes to disk 917 * before proceeding w/ I/O */ 918 bitmap_unplug(conf->mddev->bitmap); 919 wake_up(&conf->wait_barrier); 920 921 while (bio) { /* submit pending writes */ 922 struct bio *next = bio->bi_next; 923 struct md_rdev *rdev = (void*)bio->bi_disk; 924 bio->bi_next = NULL; 925 bio_set_dev(bio, rdev->bdev); 926 if (test_bit(Faulty, &rdev->flags)) { 927 bio_io_error(bio); 928 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 929 !blk_queue_discard(bio->bi_disk->queue))) 930 /* Just ignore it */ 931 bio_endio(bio); 932 else 933 generic_make_request(bio); 934 bio = next; 935 } 936 blk_finish_plug(&plug); 937 } else 938 spin_unlock_irq(&conf->device_lock); 939 } 940 941 /* Barriers.... 942 * Sometimes we need to suspend IO while we do something else, 943 * either some resync/recovery, or reconfigure the array. 944 * To do this we raise a 'barrier'. 945 * The 'barrier' is a counter that can be raised multiple times 946 * to count how many activities are happening which preclude 947 * normal IO. 948 * We can only raise the barrier if there is no pending IO. 949 * i.e. if nr_pending == 0. 950 * We choose only to raise the barrier if no-one is waiting for the 951 * barrier to go down. This means that as soon as an IO request 952 * is ready, no other operations which require a barrier will start 953 * until the IO request has had a chance. 954 * 955 * So: regular IO calls 'wait_barrier'. When that returns there 956 * is no backgroup IO happening, It must arrange to call 957 * allow_barrier when it has finished its IO. 958 * backgroup IO calls must call raise_barrier. Once that returns 959 * there is no normal IO happeing. It must arrange to call 960 * lower_barrier when the particular background IO completes. 961 */ 962 963 static void raise_barrier(struct r10conf *conf, int force) 964 { 965 BUG_ON(force && !conf->barrier); 966 spin_lock_irq(&conf->resync_lock); 967 968 /* Wait until no block IO is waiting (unless 'force') */ 969 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 970 conf->resync_lock); 971 972 /* block any new IO from starting */ 973 conf->barrier++; 974 975 /* Now wait for all pending IO to complete */ 976 wait_event_lock_irq(conf->wait_barrier, 977 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 978 conf->resync_lock); 979 980 spin_unlock_irq(&conf->resync_lock); 981 } 982 983 static void lower_barrier(struct r10conf *conf) 984 { 985 unsigned long flags; 986 spin_lock_irqsave(&conf->resync_lock, flags); 987 conf->barrier--; 988 spin_unlock_irqrestore(&conf->resync_lock, flags); 989 wake_up(&conf->wait_barrier); 990 } 991 992 static void wait_barrier(struct r10conf *conf) 993 { 994 spin_lock_irq(&conf->resync_lock); 995 if (conf->barrier) { 996 conf->nr_waiting++; 997 /* Wait for the barrier to drop. 998 * However if there are already pending 999 * requests (preventing the barrier from 1000 * rising completely), and the 1001 * pre-process bio queue isn't empty, 1002 * then don't wait, as we need to empty 1003 * that queue to get the nr_pending 1004 * count down. 1005 */ 1006 raid10_log(conf->mddev, "wait barrier"); 1007 wait_event_lock_irq(conf->wait_barrier, 1008 !conf->barrier || 1009 (atomic_read(&conf->nr_pending) && 1010 current->bio_list && 1011 (!bio_list_empty(¤t->bio_list[0]) || 1012 !bio_list_empty(¤t->bio_list[1]))), 1013 conf->resync_lock); 1014 conf->nr_waiting--; 1015 if (!conf->nr_waiting) 1016 wake_up(&conf->wait_barrier); 1017 } 1018 atomic_inc(&conf->nr_pending); 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void allow_barrier(struct r10conf *conf) 1023 { 1024 if ((atomic_dec_and_test(&conf->nr_pending)) || 1025 (conf->array_freeze_pending)) 1026 wake_up(&conf->wait_barrier); 1027 } 1028 1029 static void freeze_array(struct r10conf *conf, int extra) 1030 { 1031 /* stop syncio and normal IO and wait for everything to 1032 * go quiet. 1033 * We increment barrier and nr_waiting, and then 1034 * wait until nr_pending match nr_queued+extra 1035 * This is called in the context of one normal IO request 1036 * that has failed. Thus any sync request that might be pending 1037 * will be blocked by nr_pending, and we need to wait for 1038 * pending IO requests to complete or be queued for re-try. 1039 * Thus the number queued (nr_queued) plus this request (extra) 1040 * must match the number of pending IOs (nr_pending) before 1041 * we continue. 1042 */ 1043 spin_lock_irq(&conf->resync_lock); 1044 conf->array_freeze_pending++; 1045 conf->barrier++; 1046 conf->nr_waiting++; 1047 wait_event_lock_irq_cmd(conf->wait_barrier, 1048 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1049 conf->resync_lock, 1050 flush_pending_writes(conf)); 1051 1052 conf->array_freeze_pending--; 1053 spin_unlock_irq(&conf->resync_lock); 1054 } 1055 1056 static void unfreeze_array(struct r10conf *conf) 1057 { 1058 /* reverse the effect of the freeze */ 1059 spin_lock_irq(&conf->resync_lock); 1060 conf->barrier--; 1061 conf->nr_waiting--; 1062 wake_up(&conf->wait_barrier); 1063 spin_unlock_irq(&conf->resync_lock); 1064 } 1065 1066 static sector_t choose_data_offset(struct r10bio *r10_bio, 1067 struct md_rdev *rdev) 1068 { 1069 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1070 test_bit(R10BIO_Previous, &r10_bio->state)) 1071 return rdev->data_offset; 1072 else 1073 return rdev->new_data_offset; 1074 } 1075 1076 struct raid10_plug_cb { 1077 struct blk_plug_cb cb; 1078 struct bio_list pending; 1079 int pending_cnt; 1080 }; 1081 1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1083 { 1084 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1085 cb); 1086 struct mddev *mddev = plug->cb.data; 1087 struct r10conf *conf = mddev->private; 1088 struct bio *bio; 1089 1090 if (from_schedule || current->bio_list) { 1091 spin_lock_irq(&conf->device_lock); 1092 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1093 conf->pending_count += plug->pending_cnt; 1094 spin_unlock_irq(&conf->device_lock); 1095 wake_up(&conf->wait_barrier); 1096 md_wakeup_thread(mddev->thread); 1097 kfree(plug); 1098 return; 1099 } 1100 1101 /* we aren't scheduling, so we can do the write-out directly. */ 1102 bio = bio_list_get(&plug->pending); 1103 bitmap_unplug(mddev->bitmap); 1104 wake_up(&conf->wait_barrier); 1105 1106 while (bio) { /* submit pending writes */ 1107 struct bio *next = bio->bi_next; 1108 struct md_rdev *rdev = (void*)bio->bi_disk; 1109 bio->bi_next = NULL; 1110 bio_set_dev(bio, rdev->bdev); 1111 if (test_bit(Faulty, &rdev->flags)) { 1112 bio_io_error(bio); 1113 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1114 !blk_queue_discard(bio->bi_disk->queue))) 1115 /* Just ignore it */ 1116 bio_endio(bio); 1117 else 1118 generic_make_request(bio); 1119 bio = next; 1120 } 1121 kfree(plug); 1122 } 1123 1124 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1125 struct r10bio *r10_bio) 1126 { 1127 struct r10conf *conf = mddev->private; 1128 struct bio *read_bio; 1129 const int op = bio_op(bio); 1130 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1131 int max_sectors; 1132 sector_t sectors; 1133 struct md_rdev *rdev; 1134 char b[BDEVNAME_SIZE]; 1135 int slot = r10_bio->read_slot; 1136 struct md_rdev *err_rdev = NULL; 1137 gfp_t gfp = GFP_NOIO; 1138 1139 if (r10_bio->devs[slot].rdev) { 1140 /* 1141 * This is an error retry, but we cannot 1142 * safely dereference the rdev in the r10_bio, 1143 * we must use the one in conf. 1144 * If it has already been disconnected (unlikely) 1145 * we lose the device name in error messages. 1146 */ 1147 int disk; 1148 /* 1149 * As we are blocking raid10, it is a little safer to 1150 * use __GFP_HIGH. 1151 */ 1152 gfp = GFP_NOIO | __GFP_HIGH; 1153 1154 rcu_read_lock(); 1155 disk = r10_bio->devs[slot].devnum; 1156 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1157 if (err_rdev) 1158 bdevname(err_rdev->bdev, b); 1159 else { 1160 strcpy(b, "???"); 1161 /* This never gets dereferenced */ 1162 err_rdev = r10_bio->devs[slot].rdev; 1163 } 1164 rcu_read_unlock(); 1165 } 1166 /* 1167 * Register the new request and wait if the reconstruction 1168 * thread has put up a bar for new requests. 1169 * Continue immediately if no resync is active currently. 1170 */ 1171 wait_barrier(conf); 1172 1173 sectors = r10_bio->sectors; 1174 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1175 bio->bi_iter.bi_sector < conf->reshape_progress && 1176 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1177 /* 1178 * IO spans the reshape position. Need to wait for reshape to 1179 * pass 1180 */ 1181 raid10_log(conf->mddev, "wait reshape"); 1182 allow_barrier(conf); 1183 wait_event(conf->wait_barrier, 1184 conf->reshape_progress <= bio->bi_iter.bi_sector || 1185 conf->reshape_progress >= bio->bi_iter.bi_sector + 1186 sectors); 1187 wait_barrier(conf); 1188 } 1189 1190 rdev = read_balance(conf, r10_bio, &max_sectors); 1191 if (!rdev) { 1192 if (err_rdev) { 1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1194 mdname(mddev), b, 1195 (unsigned long long)r10_bio->sector); 1196 } 1197 raid_end_bio_io(r10_bio); 1198 return; 1199 } 1200 if (err_rdev) 1201 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1202 mdname(mddev), 1203 bdevname(rdev->bdev, b), 1204 (unsigned long long)r10_bio->sector); 1205 if (max_sectors < bio_sectors(bio)) { 1206 struct bio *split = bio_split(bio, max_sectors, 1207 gfp, &conf->bio_split); 1208 bio_chain(split, bio); 1209 generic_make_request(bio); 1210 bio = split; 1211 r10_bio->master_bio = bio; 1212 r10_bio->sectors = max_sectors; 1213 } 1214 slot = r10_bio->read_slot; 1215 1216 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1217 1218 r10_bio->devs[slot].bio = read_bio; 1219 r10_bio->devs[slot].rdev = rdev; 1220 1221 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1222 choose_data_offset(r10_bio, rdev); 1223 bio_set_dev(read_bio, rdev->bdev); 1224 read_bio->bi_end_io = raid10_end_read_request; 1225 bio_set_op_attrs(read_bio, op, do_sync); 1226 if (test_bit(FailFast, &rdev->flags) && 1227 test_bit(R10BIO_FailFast, &r10_bio->state)) 1228 read_bio->bi_opf |= MD_FAILFAST; 1229 read_bio->bi_private = r10_bio; 1230 1231 if (mddev->gendisk) 1232 trace_block_bio_remap(read_bio->bi_disk->queue, 1233 read_bio, disk_devt(mddev->gendisk), 1234 r10_bio->sector); 1235 generic_make_request(read_bio); 1236 return; 1237 } 1238 1239 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1240 struct bio *bio, bool replacement, 1241 int n_copy) 1242 { 1243 const int op = bio_op(bio); 1244 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1245 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1246 unsigned long flags; 1247 struct blk_plug_cb *cb; 1248 struct raid10_plug_cb *plug = NULL; 1249 struct r10conf *conf = mddev->private; 1250 struct md_rdev *rdev; 1251 int devnum = r10_bio->devs[n_copy].devnum; 1252 struct bio *mbio; 1253 1254 if (replacement) { 1255 rdev = conf->mirrors[devnum].replacement; 1256 if (rdev == NULL) { 1257 /* Replacement just got moved to main 'rdev' */ 1258 smp_mb(); 1259 rdev = conf->mirrors[devnum].rdev; 1260 } 1261 } else 1262 rdev = conf->mirrors[devnum].rdev; 1263 1264 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1265 if (replacement) 1266 r10_bio->devs[n_copy].repl_bio = mbio; 1267 else 1268 r10_bio->devs[n_copy].bio = mbio; 1269 1270 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1271 choose_data_offset(r10_bio, rdev)); 1272 bio_set_dev(mbio, rdev->bdev); 1273 mbio->bi_end_io = raid10_end_write_request; 1274 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1275 if (!replacement && test_bit(FailFast, 1276 &conf->mirrors[devnum].rdev->flags) 1277 && enough(conf, devnum)) 1278 mbio->bi_opf |= MD_FAILFAST; 1279 mbio->bi_private = r10_bio; 1280 1281 if (conf->mddev->gendisk) 1282 trace_block_bio_remap(mbio->bi_disk->queue, 1283 mbio, disk_devt(conf->mddev->gendisk), 1284 r10_bio->sector); 1285 /* flush_pending_writes() needs access to the rdev so...*/ 1286 mbio->bi_disk = (void *)rdev; 1287 1288 atomic_inc(&r10_bio->remaining); 1289 1290 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1291 if (cb) 1292 plug = container_of(cb, struct raid10_plug_cb, cb); 1293 else 1294 plug = NULL; 1295 if (plug) { 1296 bio_list_add(&plug->pending, mbio); 1297 plug->pending_cnt++; 1298 } else { 1299 spin_lock_irqsave(&conf->device_lock, flags); 1300 bio_list_add(&conf->pending_bio_list, mbio); 1301 conf->pending_count++; 1302 spin_unlock_irqrestore(&conf->device_lock, flags); 1303 md_wakeup_thread(mddev->thread); 1304 } 1305 } 1306 1307 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1308 struct r10bio *r10_bio) 1309 { 1310 struct r10conf *conf = mddev->private; 1311 int i; 1312 struct md_rdev *blocked_rdev; 1313 sector_t sectors; 1314 int max_sectors; 1315 1316 if ((mddev_is_clustered(mddev) && 1317 md_cluster_ops->area_resyncing(mddev, WRITE, 1318 bio->bi_iter.bi_sector, 1319 bio_end_sector(bio)))) { 1320 DEFINE_WAIT(w); 1321 for (;;) { 1322 prepare_to_wait(&conf->wait_barrier, 1323 &w, TASK_IDLE); 1324 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1325 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1326 break; 1327 schedule(); 1328 } 1329 finish_wait(&conf->wait_barrier, &w); 1330 } 1331 1332 /* 1333 * Register the new request and wait if the reconstruction 1334 * thread has put up a bar for new requests. 1335 * Continue immediately if no resync is active currently. 1336 */ 1337 wait_barrier(conf); 1338 1339 sectors = r10_bio->sectors; 1340 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1341 bio->bi_iter.bi_sector < conf->reshape_progress && 1342 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1343 /* 1344 * IO spans the reshape position. Need to wait for reshape to 1345 * pass 1346 */ 1347 raid10_log(conf->mddev, "wait reshape"); 1348 allow_barrier(conf); 1349 wait_event(conf->wait_barrier, 1350 conf->reshape_progress <= bio->bi_iter.bi_sector || 1351 conf->reshape_progress >= bio->bi_iter.bi_sector + 1352 sectors); 1353 wait_barrier(conf); 1354 } 1355 1356 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1357 (mddev->reshape_backwards 1358 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1359 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1360 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1361 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1362 /* Need to update reshape_position in metadata */ 1363 mddev->reshape_position = conf->reshape_progress; 1364 set_mask_bits(&mddev->sb_flags, 0, 1365 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1366 md_wakeup_thread(mddev->thread); 1367 raid10_log(conf->mddev, "wait reshape metadata"); 1368 wait_event(mddev->sb_wait, 1369 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1370 1371 conf->reshape_safe = mddev->reshape_position; 1372 } 1373 1374 if (conf->pending_count >= max_queued_requests) { 1375 md_wakeup_thread(mddev->thread); 1376 raid10_log(mddev, "wait queued"); 1377 wait_event(conf->wait_barrier, 1378 conf->pending_count < max_queued_requests); 1379 } 1380 /* first select target devices under rcu_lock and 1381 * inc refcount on their rdev. Record them by setting 1382 * bios[x] to bio 1383 * If there are known/acknowledged bad blocks on any device 1384 * on which we have seen a write error, we want to avoid 1385 * writing to those blocks. This potentially requires several 1386 * writes to write around the bad blocks. Each set of writes 1387 * gets its own r10_bio with a set of bios attached. 1388 */ 1389 1390 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1391 raid10_find_phys(conf, r10_bio); 1392 retry_write: 1393 blocked_rdev = NULL; 1394 rcu_read_lock(); 1395 max_sectors = r10_bio->sectors; 1396 1397 for (i = 0; i < conf->copies; i++) { 1398 int d = r10_bio->devs[i].devnum; 1399 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1400 struct md_rdev *rrdev = rcu_dereference( 1401 conf->mirrors[d].replacement); 1402 if (rdev == rrdev) 1403 rrdev = NULL; 1404 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1405 atomic_inc(&rdev->nr_pending); 1406 blocked_rdev = rdev; 1407 break; 1408 } 1409 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1410 atomic_inc(&rrdev->nr_pending); 1411 blocked_rdev = rrdev; 1412 break; 1413 } 1414 if (rdev && (test_bit(Faulty, &rdev->flags))) 1415 rdev = NULL; 1416 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1417 rrdev = NULL; 1418 1419 r10_bio->devs[i].bio = NULL; 1420 r10_bio->devs[i].repl_bio = NULL; 1421 1422 if (!rdev && !rrdev) { 1423 set_bit(R10BIO_Degraded, &r10_bio->state); 1424 continue; 1425 } 1426 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1427 sector_t first_bad; 1428 sector_t dev_sector = r10_bio->devs[i].addr; 1429 int bad_sectors; 1430 int is_bad; 1431 1432 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1433 &first_bad, &bad_sectors); 1434 if (is_bad < 0) { 1435 /* Mustn't write here until the bad block 1436 * is acknowledged 1437 */ 1438 atomic_inc(&rdev->nr_pending); 1439 set_bit(BlockedBadBlocks, &rdev->flags); 1440 blocked_rdev = rdev; 1441 break; 1442 } 1443 if (is_bad && first_bad <= dev_sector) { 1444 /* Cannot write here at all */ 1445 bad_sectors -= (dev_sector - first_bad); 1446 if (bad_sectors < max_sectors) 1447 /* Mustn't write more than bad_sectors 1448 * to other devices yet 1449 */ 1450 max_sectors = bad_sectors; 1451 /* We don't set R10BIO_Degraded as that 1452 * only applies if the disk is missing, 1453 * so it might be re-added, and we want to 1454 * know to recover this chunk. 1455 * In this case the device is here, and the 1456 * fact that this chunk is not in-sync is 1457 * recorded in the bad block log. 1458 */ 1459 continue; 1460 } 1461 if (is_bad) { 1462 int good_sectors = first_bad - dev_sector; 1463 if (good_sectors < max_sectors) 1464 max_sectors = good_sectors; 1465 } 1466 } 1467 if (rdev) { 1468 r10_bio->devs[i].bio = bio; 1469 atomic_inc(&rdev->nr_pending); 1470 } 1471 if (rrdev) { 1472 r10_bio->devs[i].repl_bio = bio; 1473 atomic_inc(&rrdev->nr_pending); 1474 } 1475 } 1476 rcu_read_unlock(); 1477 1478 if (unlikely(blocked_rdev)) { 1479 /* Have to wait for this device to get unblocked, then retry */ 1480 int j; 1481 int d; 1482 1483 for (j = 0; j < i; j++) { 1484 if (r10_bio->devs[j].bio) { 1485 d = r10_bio->devs[j].devnum; 1486 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1487 } 1488 if (r10_bio->devs[j].repl_bio) { 1489 struct md_rdev *rdev; 1490 d = r10_bio->devs[j].devnum; 1491 rdev = conf->mirrors[d].replacement; 1492 if (!rdev) { 1493 /* Race with remove_disk */ 1494 smp_mb(); 1495 rdev = conf->mirrors[d].rdev; 1496 } 1497 rdev_dec_pending(rdev, mddev); 1498 } 1499 } 1500 allow_barrier(conf); 1501 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1502 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1503 wait_barrier(conf); 1504 goto retry_write; 1505 } 1506 1507 if (max_sectors < r10_bio->sectors) 1508 r10_bio->sectors = max_sectors; 1509 1510 if (r10_bio->sectors < bio_sectors(bio)) { 1511 struct bio *split = bio_split(bio, r10_bio->sectors, 1512 GFP_NOIO, &conf->bio_split); 1513 bio_chain(split, bio); 1514 generic_make_request(bio); 1515 bio = split; 1516 r10_bio->master_bio = bio; 1517 } 1518 1519 atomic_set(&r10_bio->remaining, 1); 1520 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1521 1522 for (i = 0; i < conf->copies; i++) { 1523 if (r10_bio->devs[i].bio) 1524 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1525 if (r10_bio->devs[i].repl_bio) 1526 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1527 } 1528 one_write_done(r10_bio); 1529 } 1530 1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1532 { 1533 struct r10conf *conf = mddev->private; 1534 struct r10bio *r10_bio; 1535 1536 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1537 1538 r10_bio->master_bio = bio; 1539 r10_bio->sectors = sectors; 1540 1541 r10_bio->mddev = mddev; 1542 r10_bio->sector = bio->bi_iter.bi_sector; 1543 r10_bio->state = 0; 1544 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1545 1546 if (bio_data_dir(bio) == READ) 1547 raid10_read_request(mddev, bio, r10_bio); 1548 else 1549 raid10_write_request(mddev, bio, r10_bio); 1550 } 1551 1552 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1553 { 1554 struct r10conf *conf = mddev->private; 1555 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1556 int chunk_sects = chunk_mask + 1; 1557 int sectors = bio_sectors(bio); 1558 1559 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1560 md_flush_request(mddev, bio); 1561 return true; 1562 } 1563 1564 if (!md_write_start(mddev, bio)) 1565 return false; 1566 1567 /* 1568 * If this request crosses a chunk boundary, we need to split 1569 * it. 1570 */ 1571 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1572 sectors > chunk_sects 1573 && (conf->geo.near_copies < conf->geo.raid_disks 1574 || conf->prev.near_copies < 1575 conf->prev.raid_disks))) 1576 sectors = chunk_sects - 1577 (bio->bi_iter.bi_sector & 1578 (chunk_sects - 1)); 1579 __make_request(mddev, bio, sectors); 1580 1581 /* In case raid10d snuck in to freeze_array */ 1582 wake_up(&conf->wait_barrier); 1583 return true; 1584 } 1585 1586 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1587 { 1588 struct r10conf *conf = mddev->private; 1589 int i; 1590 1591 if (conf->geo.near_copies < conf->geo.raid_disks) 1592 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1593 if (conf->geo.near_copies > 1) 1594 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1595 if (conf->geo.far_copies > 1) { 1596 if (conf->geo.far_offset) 1597 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1598 else 1599 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1600 if (conf->geo.far_set_size != conf->geo.raid_disks) 1601 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1602 } 1603 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1604 conf->geo.raid_disks - mddev->degraded); 1605 rcu_read_lock(); 1606 for (i = 0; i < conf->geo.raid_disks; i++) { 1607 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1608 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1609 } 1610 rcu_read_unlock(); 1611 seq_printf(seq, "]"); 1612 } 1613 1614 /* check if there are enough drives for 1615 * every block to appear on atleast one. 1616 * Don't consider the device numbered 'ignore' 1617 * as we might be about to remove it. 1618 */ 1619 static int _enough(struct r10conf *conf, int previous, int ignore) 1620 { 1621 int first = 0; 1622 int has_enough = 0; 1623 int disks, ncopies; 1624 if (previous) { 1625 disks = conf->prev.raid_disks; 1626 ncopies = conf->prev.near_copies; 1627 } else { 1628 disks = conf->geo.raid_disks; 1629 ncopies = conf->geo.near_copies; 1630 } 1631 1632 rcu_read_lock(); 1633 do { 1634 int n = conf->copies; 1635 int cnt = 0; 1636 int this = first; 1637 while (n--) { 1638 struct md_rdev *rdev; 1639 if (this != ignore && 1640 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1641 test_bit(In_sync, &rdev->flags)) 1642 cnt++; 1643 this = (this+1) % disks; 1644 } 1645 if (cnt == 0) 1646 goto out; 1647 first = (first + ncopies) % disks; 1648 } while (first != 0); 1649 has_enough = 1; 1650 out: 1651 rcu_read_unlock(); 1652 return has_enough; 1653 } 1654 1655 static int enough(struct r10conf *conf, int ignore) 1656 { 1657 /* when calling 'enough', both 'prev' and 'geo' must 1658 * be stable. 1659 * This is ensured if ->reconfig_mutex or ->device_lock 1660 * is held. 1661 */ 1662 return _enough(conf, 0, ignore) && 1663 _enough(conf, 1, ignore); 1664 } 1665 1666 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1667 { 1668 char b[BDEVNAME_SIZE]; 1669 struct r10conf *conf = mddev->private; 1670 unsigned long flags; 1671 1672 /* 1673 * If it is not operational, then we have already marked it as dead 1674 * else if it is the last working disks, ignore the error, let the 1675 * next level up know. 1676 * else mark the drive as failed 1677 */ 1678 spin_lock_irqsave(&conf->device_lock, flags); 1679 if (test_bit(In_sync, &rdev->flags) 1680 && !enough(conf, rdev->raid_disk)) { 1681 /* 1682 * Don't fail the drive, just return an IO error. 1683 */ 1684 spin_unlock_irqrestore(&conf->device_lock, flags); 1685 return; 1686 } 1687 if (test_and_clear_bit(In_sync, &rdev->flags)) 1688 mddev->degraded++; 1689 /* 1690 * If recovery is running, make sure it aborts. 1691 */ 1692 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1693 set_bit(Blocked, &rdev->flags); 1694 set_bit(Faulty, &rdev->flags); 1695 set_mask_bits(&mddev->sb_flags, 0, 1696 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1697 spin_unlock_irqrestore(&conf->device_lock, flags); 1698 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1699 "md/raid10:%s: Operation continuing on %d devices.\n", 1700 mdname(mddev), bdevname(rdev->bdev, b), 1701 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1702 } 1703 1704 static void print_conf(struct r10conf *conf) 1705 { 1706 int i; 1707 struct md_rdev *rdev; 1708 1709 pr_debug("RAID10 conf printout:\n"); 1710 if (!conf) { 1711 pr_debug("(!conf)\n"); 1712 return; 1713 } 1714 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1715 conf->geo.raid_disks); 1716 1717 /* This is only called with ->reconfix_mutex held, so 1718 * rcu protection of rdev is not needed */ 1719 for (i = 0; i < conf->geo.raid_disks; i++) { 1720 char b[BDEVNAME_SIZE]; 1721 rdev = conf->mirrors[i].rdev; 1722 if (rdev) 1723 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1724 i, !test_bit(In_sync, &rdev->flags), 1725 !test_bit(Faulty, &rdev->flags), 1726 bdevname(rdev->bdev,b)); 1727 } 1728 } 1729 1730 static void close_sync(struct r10conf *conf) 1731 { 1732 wait_barrier(conf); 1733 allow_barrier(conf); 1734 1735 mempool_exit(&conf->r10buf_pool); 1736 } 1737 1738 static int raid10_spare_active(struct mddev *mddev) 1739 { 1740 int i; 1741 struct r10conf *conf = mddev->private; 1742 struct raid10_info *tmp; 1743 int count = 0; 1744 unsigned long flags; 1745 1746 /* 1747 * Find all non-in_sync disks within the RAID10 configuration 1748 * and mark them in_sync 1749 */ 1750 for (i = 0; i < conf->geo.raid_disks; i++) { 1751 tmp = conf->mirrors + i; 1752 if (tmp->replacement 1753 && tmp->replacement->recovery_offset == MaxSector 1754 && !test_bit(Faulty, &tmp->replacement->flags) 1755 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1756 /* Replacement has just become active */ 1757 if (!tmp->rdev 1758 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1759 count++; 1760 if (tmp->rdev) { 1761 /* Replaced device not technically faulty, 1762 * but we need to be sure it gets removed 1763 * and never re-added. 1764 */ 1765 set_bit(Faulty, &tmp->rdev->flags); 1766 sysfs_notify_dirent_safe( 1767 tmp->rdev->sysfs_state); 1768 } 1769 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1770 } else if (tmp->rdev 1771 && tmp->rdev->recovery_offset == MaxSector 1772 && !test_bit(Faulty, &tmp->rdev->flags) 1773 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1774 count++; 1775 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1776 } 1777 } 1778 spin_lock_irqsave(&conf->device_lock, flags); 1779 mddev->degraded -= count; 1780 spin_unlock_irqrestore(&conf->device_lock, flags); 1781 1782 print_conf(conf); 1783 return count; 1784 } 1785 1786 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1787 { 1788 struct r10conf *conf = mddev->private; 1789 int err = -EEXIST; 1790 int mirror; 1791 int first = 0; 1792 int last = conf->geo.raid_disks - 1; 1793 1794 if (mddev->recovery_cp < MaxSector) 1795 /* only hot-add to in-sync arrays, as recovery is 1796 * very different from resync 1797 */ 1798 return -EBUSY; 1799 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1800 return -EINVAL; 1801 1802 if (md_integrity_add_rdev(rdev, mddev)) 1803 return -ENXIO; 1804 1805 if (rdev->raid_disk >= 0) 1806 first = last = rdev->raid_disk; 1807 1808 if (rdev->saved_raid_disk >= first && 1809 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1810 mirror = rdev->saved_raid_disk; 1811 else 1812 mirror = first; 1813 for ( ; mirror <= last ; mirror++) { 1814 struct raid10_info *p = &conf->mirrors[mirror]; 1815 if (p->recovery_disabled == mddev->recovery_disabled) 1816 continue; 1817 if (p->rdev) { 1818 if (!test_bit(WantReplacement, &p->rdev->flags) || 1819 p->replacement != NULL) 1820 continue; 1821 clear_bit(In_sync, &rdev->flags); 1822 set_bit(Replacement, &rdev->flags); 1823 rdev->raid_disk = mirror; 1824 err = 0; 1825 if (mddev->gendisk) 1826 disk_stack_limits(mddev->gendisk, rdev->bdev, 1827 rdev->data_offset << 9); 1828 conf->fullsync = 1; 1829 rcu_assign_pointer(p->replacement, rdev); 1830 break; 1831 } 1832 1833 if (mddev->gendisk) 1834 disk_stack_limits(mddev->gendisk, rdev->bdev, 1835 rdev->data_offset << 9); 1836 1837 p->head_position = 0; 1838 p->recovery_disabled = mddev->recovery_disabled - 1; 1839 rdev->raid_disk = mirror; 1840 err = 0; 1841 if (rdev->saved_raid_disk != mirror) 1842 conf->fullsync = 1; 1843 rcu_assign_pointer(p->rdev, rdev); 1844 break; 1845 } 1846 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1847 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1848 1849 print_conf(conf); 1850 return err; 1851 } 1852 1853 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1854 { 1855 struct r10conf *conf = mddev->private; 1856 int err = 0; 1857 int number = rdev->raid_disk; 1858 struct md_rdev **rdevp; 1859 struct raid10_info *p = conf->mirrors + number; 1860 1861 print_conf(conf); 1862 if (rdev == p->rdev) 1863 rdevp = &p->rdev; 1864 else if (rdev == p->replacement) 1865 rdevp = &p->replacement; 1866 else 1867 return 0; 1868 1869 if (test_bit(In_sync, &rdev->flags) || 1870 atomic_read(&rdev->nr_pending)) { 1871 err = -EBUSY; 1872 goto abort; 1873 } 1874 /* Only remove non-faulty devices if recovery 1875 * is not possible. 1876 */ 1877 if (!test_bit(Faulty, &rdev->flags) && 1878 mddev->recovery_disabled != p->recovery_disabled && 1879 (!p->replacement || p->replacement == rdev) && 1880 number < conf->geo.raid_disks && 1881 enough(conf, -1)) { 1882 err = -EBUSY; 1883 goto abort; 1884 } 1885 *rdevp = NULL; 1886 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1887 synchronize_rcu(); 1888 if (atomic_read(&rdev->nr_pending)) { 1889 /* lost the race, try later */ 1890 err = -EBUSY; 1891 *rdevp = rdev; 1892 goto abort; 1893 } 1894 } 1895 if (p->replacement) { 1896 /* We must have just cleared 'rdev' */ 1897 p->rdev = p->replacement; 1898 clear_bit(Replacement, &p->replacement->flags); 1899 smp_mb(); /* Make sure other CPUs may see both as identical 1900 * but will never see neither -- if they are careful. 1901 */ 1902 p->replacement = NULL; 1903 } 1904 1905 clear_bit(WantReplacement, &rdev->flags); 1906 err = md_integrity_register(mddev); 1907 1908 abort: 1909 1910 print_conf(conf); 1911 return err; 1912 } 1913 1914 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1915 { 1916 struct r10conf *conf = r10_bio->mddev->private; 1917 1918 if (!bio->bi_status) 1919 set_bit(R10BIO_Uptodate, &r10_bio->state); 1920 else 1921 /* The write handler will notice the lack of 1922 * R10BIO_Uptodate and record any errors etc 1923 */ 1924 atomic_add(r10_bio->sectors, 1925 &conf->mirrors[d].rdev->corrected_errors); 1926 1927 /* for reconstruct, we always reschedule after a read. 1928 * for resync, only after all reads 1929 */ 1930 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1931 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1932 atomic_dec_and_test(&r10_bio->remaining)) { 1933 /* we have read all the blocks, 1934 * do the comparison in process context in raid10d 1935 */ 1936 reschedule_retry(r10_bio); 1937 } 1938 } 1939 1940 static void end_sync_read(struct bio *bio) 1941 { 1942 struct r10bio *r10_bio = get_resync_r10bio(bio); 1943 struct r10conf *conf = r10_bio->mddev->private; 1944 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1945 1946 __end_sync_read(r10_bio, bio, d); 1947 } 1948 1949 static void end_reshape_read(struct bio *bio) 1950 { 1951 /* reshape read bio isn't allocated from r10buf_pool */ 1952 struct r10bio *r10_bio = bio->bi_private; 1953 1954 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1955 } 1956 1957 static void end_sync_request(struct r10bio *r10_bio) 1958 { 1959 struct mddev *mddev = r10_bio->mddev; 1960 1961 while (atomic_dec_and_test(&r10_bio->remaining)) { 1962 if (r10_bio->master_bio == NULL) { 1963 /* the primary of several recovery bios */ 1964 sector_t s = r10_bio->sectors; 1965 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1966 test_bit(R10BIO_WriteError, &r10_bio->state)) 1967 reschedule_retry(r10_bio); 1968 else 1969 put_buf(r10_bio); 1970 md_done_sync(mddev, s, 1); 1971 break; 1972 } else { 1973 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1974 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1975 test_bit(R10BIO_WriteError, &r10_bio->state)) 1976 reschedule_retry(r10_bio); 1977 else 1978 put_buf(r10_bio); 1979 r10_bio = r10_bio2; 1980 } 1981 } 1982 } 1983 1984 static void end_sync_write(struct bio *bio) 1985 { 1986 struct r10bio *r10_bio = get_resync_r10bio(bio); 1987 struct mddev *mddev = r10_bio->mddev; 1988 struct r10conf *conf = mddev->private; 1989 int d; 1990 sector_t first_bad; 1991 int bad_sectors; 1992 int slot; 1993 int repl; 1994 struct md_rdev *rdev = NULL; 1995 1996 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1997 if (repl) 1998 rdev = conf->mirrors[d].replacement; 1999 else 2000 rdev = conf->mirrors[d].rdev; 2001 2002 if (bio->bi_status) { 2003 if (repl) 2004 md_error(mddev, rdev); 2005 else { 2006 set_bit(WriteErrorSeen, &rdev->flags); 2007 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2008 set_bit(MD_RECOVERY_NEEDED, 2009 &rdev->mddev->recovery); 2010 set_bit(R10BIO_WriteError, &r10_bio->state); 2011 } 2012 } else if (is_badblock(rdev, 2013 r10_bio->devs[slot].addr, 2014 r10_bio->sectors, 2015 &first_bad, &bad_sectors)) 2016 set_bit(R10BIO_MadeGood, &r10_bio->state); 2017 2018 rdev_dec_pending(rdev, mddev); 2019 2020 end_sync_request(r10_bio); 2021 } 2022 2023 /* 2024 * Note: sync and recover and handled very differently for raid10 2025 * This code is for resync. 2026 * For resync, we read through virtual addresses and read all blocks. 2027 * If there is any error, we schedule a write. The lowest numbered 2028 * drive is authoritative. 2029 * However requests come for physical address, so we need to map. 2030 * For every physical address there are raid_disks/copies virtual addresses, 2031 * which is always are least one, but is not necessarly an integer. 2032 * This means that a physical address can span multiple chunks, so we may 2033 * have to submit multiple io requests for a single sync request. 2034 */ 2035 /* 2036 * We check if all blocks are in-sync and only write to blocks that 2037 * aren't in sync 2038 */ 2039 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2040 { 2041 struct r10conf *conf = mddev->private; 2042 int i, first; 2043 struct bio *tbio, *fbio; 2044 int vcnt; 2045 struct page **tpages, **fpages; 2046 2047 atomic_set(&r10_bio->remaining, 1); 2048 2049 /* find the first device with a block */ 2050 for (i=0; i<conf->copies; i++) 2051 if (!r10_bio->devs[i].bio->bi_status) 2052 break; 2053 2054 if (i == conf->copies) 2055 goto done; 2056 2057 first = i; 2058 fbio = r10_bio->devs[i].bio; 2059 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2060 fbio->bi_iter.bi_idx = 0; 2061 fpages = get_resync_pages(fbio)->pages; 2062 2063 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2064 /* now find blocks with errors */ 2065 for (i=0 ; i < conf->copies ; i++) { 2066 int j, d; 2067 struct md_rdev *rdev; 2068 struct resync_pages *rp; 2069 2070 tbio = r10_bio->devs[i].bio; 2071 2072 if (tbio->bi_end_io != end_sync_read) 2073 continue; 2074 if (i == first) 2075 continue; 2076 2077 tpages = get_resync_pages(tbio)->pages; 2078 d = r10_bio->devs[i].devnum; 2079 rdev = conf->mirrors[d].rdev; 2080 if (!r10_bio->devs[i].bio->bi_status) { 2081 /* We know that the bi_io_vec layout is the same for 2082 * both 'first' and 'i', so we just compare them. 2083 * All vec entries are PAGE_SIZE; 2084 */ 2085 int sectors = r10_bio->sectors; 2086 for (j = 0; j < vcnt; j++) { 2087 int len = PAGE_SIZE; 2088 if (sectors < (len / 512)) 2089 len = sectors * 512; 2090 if (memcmp(page_address(fpages[j]), 2091 page_address(tpages[j]), 2092 len)) 2093 break; 2094 sectors -= len/512; 2095 } 2096 if (j == vcnt) 2097 continue; 2098 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2099 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2100 /* Don't fix anything. */ 2101 continue; 2102 } else if (test_bit(FailFast, &rdev->flags)) { 2103 /* Just give up on this device */ 2104 md_error(rdev->mddev, rdev); 2105 continue; 2106 } 2107 /* Ok, we need to write this bio, either to correct an 2108 * inconsistency or to correct an unreadable block. 2109 * First we need to fixup bv_offset, bv_len and 2110 * bi_vecs, as the read request might have corrupted these 2111 */ 2112 rp = get_resync_pages(tbio); 2113 bio_reset(tbio); 2114 2115 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2116 2117 rp->raid_bio = r10_bio; 2118 tbio->bi_private = rp; 2119 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2120 tbio->bi_end_io = end_sync_write; 2121 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2122 2123 bio_copy_data(tbio, fbio); 2124 2125 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2126 atomic_inc(&r10_bio->remaining); 2127 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2128 2129 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2130 tbio->bi_opf |= MD_FAILFAST; 2131 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2132 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2133 generic_make_request(tbio); 2134 } 2135 2136 /* Now write out to any replacement devices 2137 * that are active 2138 */ 2139 for (i = 0; i < conf->copies; i++) { 2140 int d; 2141 2142 tbio = r10_bio->devs[i].repl_bio; 2143 if (!tbio || !tbio->bi_end_io) 2144 continue; 2145 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2146 && r10_bio->devs[i].bio != fbio) 2147 bio_copy_data(tbio, fbio); 2148 d = r10_bio->devs[i].devnum; 2149 atomic_inc(&r10_bio->remaining); 2150 md_sync_acct(conf->mirrors[d].replacement->bdev, 2151 bio_sectors(tbio)); 2152 generic_make_request(tbio); 2153 } 2154 2155 done: 2156 if (atomic_dec_and_test(&r10_bio->remaining)) { 2157 md_done_sync(mddev, r10_bio->sectors, 1); 2158 put_buf(r10_bio); 2159 } 2160 } 2161 2162 /* 2163 * Now for the recovery code. 2164 * Recovery happens across physical sectors. 2165 * We recover all non-is_sync drives by finding the virtual address of 2166 * each, and then choose a working drive that also has that virt address. 2167 * There is a separate r10_bio for each non-in_sync drive. 2168 * Only the first two slots are in use. The first for reading, 2169 * The second for writing. 2170 * 2171 */ 2172 static void fix_recovery_read_error(struct r10bio *r10_bio) 2173 { 2174 /* We got a read error during recovery. 2175 * We repeat the read in smaller page-sized sections. 2176 * If a read succeeds, write it to the new device or record 2177 * a bad block if we cannot. 2178 * If a read fails, record a bad block on both old and 2179 * new devices. 2180 */ 2181 struct mddev *mddev = r10_bio->mddev; 2182 struct r10conf *conf = mddev->private; 2183 struct bio *bio = r10_bio->devs[0].bio; 2184 sector_t sect = 0; 2185 int sectors = r10_bio->sectors; 2186 int idx = 0; 2187 int dr = r10_bio->devs[0].devnum; 2188 int dw = r10_bio->devs[1].devnum; 2189 struct page **pages = get_resync_pages(bio)->pages; 2190 2191 while (sectors) { 2192 int s = sectors; 2193 struct md_rdev *rdev; 2194 sector_t addr; 2195 int ok; 2196 2197 if (s > (PAGE_SIZE>>9)) 2198 s = PAGE_SIZE >> 9; 2199 2200 rdev = conf->mirrors[dr].rdev; 2201 addr = r10_bio->devs[0].addr + sect, 2202 ok = sync_page_io(rdev, 2203 addr, 2204 s << 9, 2205 pages[idx], 2206 REQ_OP_READ, 0, false); 2207 if (ok) { 2208 rdev = conf->mirrors[dw].rdev; 2209 addr = r10_bio->devs[1].addr + sect; 2210 ok = sync_page_io(rdev, 2211 addr, 2212 s << 9, 2213 pages[idx], 2214 REQ_OP_WRITE, 0, false); 2215 if (!ok) { 2216 set_bit(WriteErrorSeen, &rdev->flags); 2217 if (!test_and_set_bit(WantReplacement, 2218 &rdev->flags)) 2219 set_bit(MD_RECOVERY_NEEDED, 2220 &rdev->mddev->recovery); 2221 } 2222 } 2223 if (!ok) { 2224 /* We don't worry if we cannot set a bad block - 2225 * it really is bad so there is no loss in not 2226 * recording it yet 2227 */ 2228 rdev_set_badblocks(rdev, addr, s, 0); 2229 2230 if (rdev != conf->mirrors[dw].rdev) { 2231 /* need bad block on destination too */ 2232 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2233 addr = r10_bio->devs[1].addr + sect; 2234 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2235 if (!ok) { 2236 /* just abort the recovery */ 2237 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2238 mdname(mddev)); 2239 2240 conf->mirrors[dw].recovery_disabled 2241 = mddev->recovery_disabled; 2242 set_bit(MD_RECOVERY_INTR, 2243 &mddev->recovery); 2244 break; 2245 } 2246 } 2247 } 2248 2249 sectors -= s; 2250 sect += s; 2251 idx++; 2252 } 2253 } 2254 2255 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2256 { 2257 struct r10conf *conf = mddev->private; 2258 int d; 2259 struct bio *wbio, *wbio2; 2260 2261 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2262 fix_recovery_read_error(r10_bio); 2263 end_sync_request(r10_bio); 2264 return; 2265 } 2266 2267 /* 2268 * share the pages with the first bio 2269 * and submit the write request 2270 */ 2271 d = r10_bio->devs[1].devnum; 2272 wbio = r10_bio->devs[1].bio; 2273 wbio2 = r10_bio->devs[1].repl_bio; 2274 /* Need to test wbio2->bi_end_io before we call 2275 * generic_make_request as if the former is NULL, 2276 * the latter is free to free wbio2. 2277 */ 2278 if (wbio2 && !wbio2->bi_end_io) 2279 wbio2 = NULL; 2280 if (wbio->bi_end_io) { 2281 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2282 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2283 generic_make_request(wbio); 2284 } 2285 if (wbio2) { 2286 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2287 md_sync_acct(conf->mirrors[d].replacement->bdev, 2288 bio_sectors(wbio2)); 2289 generic_make_request(wbio2); 2290 } 2291 } 2292 2293 /* 2294 * Used by fix_read_error() to decay the per rdev read_errors. 2295 * We halve the read error count for every hour that has elapsed 2296 * since the last recorded read error. 2297 * 2298 */ 2299 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2300 { 2301 long cur_time_mon; 2302 unsigned long hours_since_last; 2303 unsigned int read_errors = atomic_read(&rdev->read_errors); 2304 2305 cur_time_mon = ktime_get_seconds(); 2306 2307 if (rdev->last_read_error == 0) { 2308 /* first time we've seen a read error */ 2309 rdev->last_read_error = cur_time_mon; 2310 return; 2311 } 2312 2313 hours_since_last = (long)(cur_time_mon - 2314 rdev->last_read_error) / 3600; 2315 2316 rdev->last_read_error = cur_time_mon; 2317 2318 /* 2319 * if hours_since_last is > the number of bits in read_errors 2320 * just set read errors to 0. We do this to avoid 2321 * overflowing the shift of read_errors by hours_since_last. 2322 */ 2323 if (hours_since_last >= 8 * sizeof(read_errors)) 2324 atomic_set(&rdev->read_errors, 0); 2325 else 2326 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2327 } 2328 2329 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2330 int sectors, struct page *page, int rw) 2331 { 2332 sector_t first_bad; 2333 int bad_sectors; 2334 2335 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2336 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2337 return -1; 2338 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2339 /* success */ 2340 return 1; 2341 if (rw == WRITE) { 2342 set_bit(WriteErrorSeen, &rdev->flags); 2343 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2344 set_bit(MD_RECOVERY_NEEDED, 2345 &rdev->mddev->recovery); 2346 } 2347 /* need to record an error - either for the block or the device */ 2348 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2349 md_error(rdev->mddev, rdev); 2350 return 0; 2351 } 2352 2353 /* 2354 * This is a kernel thread which: 2355 * 2356 * 1. Retries failed read operations on working mirrors. 2357 * 2. Updates the raid superblock when problems encounter. 2358 * 3. Performs writes following reads for array synchronising. 2359 */ 2360 2361 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2362 { 2363 int sect = 0; /* Offset from r10_bio->sector */ 2364 int sectors = r10_bio->sectors; 2365 struct md_rdev*rdev; 2366 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2367 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2368 2369 /* still own a reference to this rdev, so it cannot 2370 * have been cleared recently. 2371 */ 2372 rdev = conf->mirrors[d].rdev; 2373 2374 if (test_bit(Faulty, &rdev->flags)) 2375 /* drive has already been failed, just ignore any 2376 more fix_read_error() attempts */ 2377 return; 2378 2379 check_decay_read_errors(mddev, rdev); 2380 atomic_inc(&rdev->read_errors); 2381 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2382 char b[BDEVNAME_SIZE]; 2383 bdevname(rdev->bdev, b); 2384 2385 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2386 mdname(mddev), b, 2387 atomic_read(&rdev->read_errors), max_read_errors); 2388 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2389 mdname(mddev), b); 2390 md_error(mddev, rdev); 2391 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2392 return; 2393 } 2394 2395 while(sectors) { 2396 int s = sectors; 2397 int sl = r10_bio->read_slot; 2398 int success = 0; 2399 int start; 2400 2401 if (s > (PAGE_SIZE>>9)) 2402 s = PAGE_SIZE >> 9; 2403 2404 rcu_read_lock(); 2405 do { 2406 sector_t first_bad; 2407 int bad_sectors; 2408 2409 d = r10_bio->devs[sl].devnum; 2410 rdev = rcu_dereference(conf->mirrors[d].rdev); 2411 if (rdev && 2412 test_bit(In_sync, &rdev->flags) && 2413 !test_bit(Faulty, &rdev->flags) && 2414 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2415 &first_bad, &bad_sectors) == 0) { 2416 atomic_inc(&rdev->nr_pending); 2417 rcu_read_unlock(); 2418 success = sync_page_io(rdev, 2419 r10_bio->devs[sl].addr + 2420 sect, 2421 s<<9, 2422 conf->tmppage, 2423 REQ_OP_READ, 0, false); 2424 rdev_dec_pending(rdev, mddev); 2425 rcu_read_lock(); 2426 if (success) 2427 break; 2428 } 2429 sl++; 2430 if (sl == conf->copies) 2431 sl = 0; 2432 } while (!success && sl != r10_bio->read_slot); 2433 rcu_read_unlock(); 2434 2435 if (!success) { 2436 /* Cannot read from anywhere, just mark the block 2437 * as bad on the first device to discourage future 2438 * reads. 2439 */ 2440 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2441 rdev = conf->mirrors[dn].rdev; 2442 2443 if (!rdev_set_badblocks( 2444 rdev, 2445 r10_bio->devs[r10_bio->read_slot].addr 2446 + sect, 2447 s, 0)) { 2448 md_error(mddev, rdev); 2449 r10_bio->devs[r10_bio->read_slot].bio 2450 = IO_BLOCKED; 2451 } 2452 break; 2453 } 2454 2455 start = sl; 2456 /* write it back and re-read */ 2457 rcu_read_lock(); 2458 while (sl != r10_bio->read_slot) { 2459 char b[BDEVNAME_SIZE]; 2460 2461 if (sl==0) 2462 sl = conf->copies; 2463 sl--; 2464 d = r10_bio->devs[sl].devnum; 2465 rdev = rcu_dereference(conf->mirrors[d].rdev); 2466 if (!rdev || 2467 test_bit(Faulty, &rdev->flags) || 2468 !test_bit(In_sync, &rdev->flags)) 2469 continue; 2470 2471 atomic_inc(&rdev->nr_pending); 2472 rcu_read_unlock(); 2473 if (r10_sync_page_io(rdev, 2474 r10_bio->devs[sl].addr + 2475 sect, 2476 s, conf->tmppage, WRITE) 2477 == 0) { 2478 /* Well, this device is dead */ 2479 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2480 mdname(mddev), s, 2481 (unsigned long long)( 2482 sect + 2483 choose_data_offset(r10_bio, 2484 rdev)), 2485 bdevname(rdev->bdev, b)); 2486 pr_notice("md/raid10:%s: %s: failing drive\n", 2487 mdname(mddev), 2488 bdevname(rdev->bdev, b)); 2489 } 2490 rdev_dec_pending(rdev, mddev); 2491 rcu_read_lock(); 2492 } 2493 sl = start; 2494 while (sl != r10_bio->read_slot) { 2495 char b[BDEVNAME_SIZE]; 2496 2497 if (sl==0) 2498 sl = conf->copies; 2499 sl--; 2500 d = r10_bio->devs[sl].devnum; 2501 rdev = rcu_dereference(conf->mirrors[d].rdev); 2502 if (!rdev || 2503 test_bit(Faulty, &rdev->flags) || 2504 !test_bit(In_sync, &rdev->flags)) 2505 continue; 2506 2507 atomic_inc(&rdev->nr_pending); 2508 rcu_read_unlock(); 2509 switch (r10_sync_page_io(rdev, 2510 r10_bio->devs[sl].addr + 2511 sect, 2512 s, conf->tmppage, 2513 READ)) { 2514 case 0: 2515 /* Well, this device is dead */ 2516 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2517 mdname(mddev), s, 2518 (unsigned long long)( 2519 sect + 2520 choose_data_offset(r10_bio, rdev)), 2521 bdevname(rdev->bdev, b)); 2522 pr_notice("md/raid10:%s: %s: failing drive\n", 2523 mdname(mddev), 2524 bdevname(rdev->bdev, b)); 2525 break; 2526 case 1: 2527 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2528 mdname(mddev), s, 2529 (unsigned long long)( 2530 sect + 2531 choose_data_offset(r10_bio, rdev)), 2532 bdevname(rdev->bdev, b)); 2533 atomic_add(s, &rdev->corrected_errors); 2534 } 2535 2536 rdev_dec_pending(rdev, mddev); 2537 rcu_read_lock(); 2538 } 2539 rcu_read_unlock(); 2540 2541 sectors -= s; 2542 sect += s; 2543 } 2544 } 2545 2546 static int narrow_write_error(struct r10bio *r10_bio, int i) 2547 { 2548 struct bio *bio = r10_bio->master_bio; 2549 struct mddev *mddev = r10_bio->mddev; 2550 struct r10conf *conf = mddev->private; 2551 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2552 /* bio has the data to be written to slot 'i' where 2553 * we just recently had a write error. 2554 * We repeatedly clone the bio and trim down to one block, 2555 * then try the write. Where the write fails we record 2556 * a bad block. 2557 * It is conceivable that the bio doesn't exactly align with 2558 * blocks. We must handle this. 2559 * 2560 * We currently own a reference to the rdev. 2561 */ 2562 2563 int block_sectors; 2564 sector_t sector; 2565 int sectors; 2566 int sect_to_write = r10_bio->sectors; 2567 int ok = 1; 2568 2569 if (rdev->badblocks.shift < 0) 2570 return 0; 2571 2572 block_sectors = roundup(1 << rdev->badblocks.shift, 2573 bdev_logical_block_size(rdev->bdev) >> 9); 2574 sector = r10_bio->sector; 2575 sectors = ((r10_bio->sector + block_sectors) 2576 & ~(sector_t)(block_sectors - 1)) 2577 - sector; 2578 2579 while (sect_to_write) { 2580 struct bio *wbio; 2581 sector_t wsector; 2582 if (sectors > sect_to_write) 2583 sectors = sect_to_write; 2584 /* Write at 'sector' for 'sectors' */ 2585 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2586 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2587 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2588 wbio->bi_iter.bi_sector = wsector + 2589 choose_data_offset(r10_bio, rdev); 2590 bio_set_dev(wbio, rdev->bdev); 2591 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2592 2593 if (submit_bio_wait(wbio) < 0) 2594 /* Failure! */ 2595 ok = rdev_set_badblocks(rdev, wsector, 2596 sectors, 0) 2597 && ok; 2598 2599 bio_put(wbio); 2600 sect_to_write -= sectors; 2601 sector += sectors; 2602 sectors = block_sectors; 2603 } 2604 return ok; 2605 } 2606 2607 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2608 { 2609 int slot = r10_bio->read_slot; 2610 struct bio *bio; 2611 struct r10conf *conf = mddev->private; 2612 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2613 2614 /* we got a read error. Maybe the drive is bad. Maybe just 2615 * the block and we can fix it. 2616 * We freeze all other IO, and try reading the block from 2617 * other devices. When we find one, we re-write 2618 * and check it that fixes the read error. 2619 * This is all done synchronously while the array is 2620 * frozen. 2621 */ 2622 bio = r10_bio->devs[slot].bio; 2623 bio_put(bio); 2624 r10_bio->devs[slot].bio = NULL; 2625 2626 if (mddev->ro) 2627 r10_bio->devs[slot].bio = IO_BLOCKED; 2628 else if (!test_bit(FailFast, &rdev->flags)) { 2629 freeze_array(conf, 1); 2630 fix_read_error(conf, mddev, r10_bio); 2631 unfreeze_array(conf); 2632 } else 2633 md_error(mddev, rdev); 2634 2635 rdev_dec_pending(rdev, mddev); 2636 allow_barrier(conf); 2637 r10_bio->state = 0; 2638 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2639 } 2640 2641 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2642 { 2643 /* Some sort of write request has finished and it 2644 * succeeded in writing where we thought there was a 2645 * bad block. So forget the bad block. 2646 * Or possibly if failed and we need to record 2647 * a bad block. 2648 */ 2649 int m; 2650 struct md_rdev *rdev; 2651 2652 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2653 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2654 for (m = 0; m < conf->copies; m++) { 2655 int dev = r10_bio->devs[m].devnum; 2656 rdev = conf->mirrors[dev].rdev; 2657 if (r10_bio->devs[m].bio == NULL || 2658 r10_bio->devs[m].bio->bi_end_io == NULL) 2659 continue; 2660 if (!r10_bio->devs[m].bio->bi_status) { 2661 rdev_clear_badblocks( 2662 rdev, 2663 r10_bio->devs[m].addr, 2664 r10_bio->sectors, 0); 2665 } else { 2666 if (!rdev_set_badblocks( 2667 rdev, 2668 r10_bio->devs[m].addr, 2669 r10_bio->sectors, 0)) 2670 md_error(conf->mddev, rdev); 2671 } 2672 rdev = conf->mirrors[dev].replacement; 2673 if (r10_bio->devs[m].repl_bio == NULL || 2674 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2675 continue; 2676 2677 if (!r10_bio->devs[m].repl_bio->bi_status) { 2678 rdev_clear_badblocks( 2679 rdev, 2680 r10_bio->devs[m].addr, 2681 r10_bio->sectors, 0); 2682 } else { 2683 if (!rdev_set_badblocks( 2684 rdev, 2685 r10_bio->devs[m].addr, 2686 r10_bio->sectors, 0)) 2687 md_error(conf->mddev, rdev); 2688 } 2689 } 2690 put_buf(r10_bio); 2691 } else { 2692 bool fail = false; 2693 for (m = 0; m < conf->copies; m++) { 2694 int dev = r10_bio->devs[m].devnum; 2695 struct bio *bio = r10_bio->devs[m].bio; 2696 rdev = conf->mirrors[dev].rdev; 2697 if (bio == IO_MADE_GOOD) { 2698 rdev_clear_badblocks( 2699 rdev, 2700 r10_bio->devs[m].addr, 2701 r10_bio->sectors, 0); 2702 rdev_dec_pending(rdev, conf->mddev); 2703 } else if (bio != NULL && bio->bi_status) { 2704 fail = true; 2705 if (!narrow_write_error(r10_bio, m)) { 2706 md_error(conf->mddev, rdev); 2707 set_bit(R10BIO_Degraded, 2708 &r10_bio->state); 2709 } 2710 rdev_dec_pending(rdev, conf->mddev); 2711 } 2712 bio = r10_bio->devs[m].repl_bio; 2713 rdev = conf->mirrors[dev].replacement; 2714 if (rdev && bio == IO_MADE_GOOD) { 2715 rdev_clear_badblocks( 2716 rdev, 2717 r10_bio->devs[m].addr, 2718 r10_bio->sectors, 0); 2719 rdev_dec_pending(rdev, conf->mddev); 2720 } 2721 } 2722 if (fail) { 2723 spin_lock_irq(&conf->device_lock); 2724 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2725 conf->nr_queued++; 2726 spin_unlock_irq(&conf->device_lock); 2727 /* 2728 * In case freeze_array() is waiting for condition 2729 * nr_pending == nr_queued + extra to be true. 2730 */ 2731 wake_up(&conf->wait_barrier); 2732 md_wakeup_thread(conf->mddev->thread); 2733 } else { 2734 if (test_bit(R10BIO_WriteError, 2735 &r10_bio->state)) 2736 close_write(r10_bio); 2737 raid_end_bio_io(r10_bio); 2738 } 2739 } 2740 } 2741 2742 static void raid10d(struct md_thread *thread) 2743 { 2744 struct mddev *mddev = thread->mddev; 2745 struct r10bio *r10_bio; 2746 unsigned long flags; 2747 struct r10conf *conf = mddev->private; 2748 struct list_head *head = &conf->retry_list; 2749 struct blk_plug plug; 2750 2751 md_check_recovery(mddev); 2752 2753 if (!list_empty_careful(&conf->bio_end_io_list) && 2754 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2755 LIST_HEAD(tmp); 2756 spin_lock_irqsave(&conf->device_lock, flags); 2757 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2758 while (!list_empty(&conf->bio_end_io_list)) { 2759 list_move(conf->bio_end_io_list.prev, &tmp); 2760 conf->nr_queued--; 2761 } 2762 } 2763 spin_unlock_irqrestore(&conf->device_lock, flags); 2764 while (!list_empty(&tmp)) { 2765 r10_bio = list_first_entry(&tmp, struct r10bio, 2766 retry_list); 2767 list_del(&r10_bio->retry_list); 2768 if (mddev->degraded) 2769 set_bit(R10BIO_Degraded, &r10_bio->state); 2770 2771 if (test_bit(R10BIO_WriteError, 2772 &r10_bio->state)) 2773 close_write(r10_bio); 2774 raid_end_bio_io(r10_bio); 2775 } 2776 } 2777 2778 blk_start_plug(&plug); 2779 for (;;) { 2780 2781 flush_pending_writes(conf); 2782 2783 spin_lock_irqsave(&conf->device_lock, flags); 2784 if (list_empty(head)) { 2785 spin_unlock_irqrestore(&conf->device_lock, flags); 2786 break; 2787 } 2788 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2789 list_del(head->prev); 2790 conf->nr_queued--; 2791 spin_unlock_irqrestore(&conf->device_lock, flags); 2792 2793 mddev = r10_bio->mddev; 2794 conf = mddev->private; 2795 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2796 test_bit(R10BIO_WriteError, &r10_bio->state)) 2797 handle_write_completed(conf, r10_bio); 2798 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2799 reshape_request_write(mddev, r10_bio); 2800 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2801 sync_request_write(mddev, r10_bio); 2802 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2803 recovery_request_write(mddev, r10_bio); 2804 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2805 handle_read_error(mddev, r10_bio); 2806 else 2807 WARN_ON_ONCE(1); 2808 2809 cond_resched(); 2810 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2811 md_check_recovery(mddev); 2812 } 2813 blk_finish_plug(&plug); 2814 } 2815 2816 static int init_resync(struct r10conf *conf) 2817 { 2818 int ret, buffs, i; 2819 2820 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2821 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2822 conf->have_replacement = 0; 2823 for (i = 0; i < conf->geo.raid_disks; i++) 2824 if (conf->mirrors[i].replacement) 2825 conf->have_replacement = 1; 2826 ret = mempool_init(&conf->r10buf_pool, buffs, 2827 r10buf_pool_alloc, r10buf_pool_free, conf); 2828 if (ret) 2829 return ret; 2830 conf->next_resync = 0; 2831 return 0; 2832 } 2833 2834 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2835 { 2836 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2837 struct rsync_pages *rp; 2838 struct bio *bio; 2839 int nalloc; 2840 int i; 2841 2842 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2843 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2844 nalloc = conf->copies; /* resync */ 2845 else 2846 nalloc = 2; /* recovery */ 2847 2848 for (i = 0; i < nalloc; i++) { 2849 bio = r10bio->devs[i].bio; 2850 rp = bio->bi_private; 2851 bio_reset(bio); 2852 bio->bi_private = rp; 2853 bio = r10bio->devs[i].repl_bio; 2854 if (bio) { 2855 rp = bio->bi_private; 2856 bio_reset(bio); 2857 bio->bi_private = rp; 2858 } 2859 } 2860 return r10bio; 2861 } 2862 2863 /* 2864 * Set cluster_sync_high since we need other nodes to add the 2865 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2866 */ 2867 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2868 { 2869 sector_t window_size; 2870 int extra_chunk, chunks; 2871 2872 /* 2873 * First, here we define "stripe" as a unit which across 2874 * all member devices one time, so we get chunks by use 2875 * raid_disks / near_copies. Otherwise, if near_copies is 2876 * close to raid_disks, then resync window could increases 2877 * linearly with the increase of raid_disks, which means 2878 * we will suspend a really large IO window while it is not 2879 * necessary. If raid_disks is not divisible by near_copies, 2880 * an extra chunk is needed to ensure the whole "stripe" is 2881 * covered. 2882 */ 2883 2884 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2885 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2886 extra_chunk = 0; 2887 else 2888 extra_chunk = 1; 2889 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2890 2891 /* 2892 * At least use a 32M window to align with raid1's resync window 2893 */ 2894 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2895 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2896 2897 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2898 } 2899 2900 /* 2901 * perform a "sync" on one "block" 2902 * 2903 * We need to make sure that no normal I/O request - particularly write 2904 * requests - conflict with active sync requests. 2905 * 2906 * This is achieved by tracking pending requests and a 'barrier' concept 2907 * that can be installed to exclude normal IO requests. 2908 * 2909 * Resync and recovery are handled very differently. 2910 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2911 * 2912 * For resync, we iterate over virtual addresses, read all copies, 2913 * and update if there are differences. If only one copy is live, 2914 * skip it. 2915 * For recovery, we iterate over physical addresses, read a good 2916 * value for each non-in_sync drive, and over-write. 2917 * 2918 * So, for recovery we may have several outstanding complex requests for a 2919 * given address, one for each out-of-sync device. We model this by allocating 2920 * a number of r10_bio structures, one for each out-of-sync device. 2921 * As we setup these structures, we collect all bio's together into a list 2922 * which we then process collectively to add pages, and then process again 2923 * to pass to generic_make_request. 2924 * 2925 * The r10_bio structures are linked using a borrowed master_bio pointer. 2926 * This link is counted in ->remaining. When the r10_bio that points to NULL 2927 * has its remaining count decremented to 0, the whole complex operation 2928 * is complete. 2929 * 2930 */ 2931 2932 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2933 int *skipped) 2934 { 2935 struct r10conf *conf = mddev->private; 2936 struct r10bio *r10_bio; 2937 struct bio *biolist = NULL, *bio; 2938 sector_t max_sector, nr_sectors; 2939 int i; 2940 int max_sync; 2941 sector_t sync_blocks; 2942 sector_t sectors_skipped = 0; 2943 int chunks_skipped = 0; 2944 sector_t chunk_mask = conf->geo.chunk_mask; 2945 int page_idx = 0; 2946 2947 if (!mempool_initialized(&conf->r10buf_pool)) 2948 if (init_resync(conf)) 2949 return 0; 2950 2951 /* 2952 * Allow skipping a full rebuild for incremental assembly 2953 * of a clean array, like RAID1 does. 2954 */ 2955 if (mddev->bitmap == NULL && 2956 mddev->recovery_cp == MaxSector && 2957 mddev->reshape_position == MaxSector && 2958 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2959 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2960 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2961 conf->fullsync == 0) { 2962 *skipped = 1; 2963 return mddev->dev_sectors - sector_nr; 2964 } 2965 2966 skipped: 2967 max_sector = mddev->dev_sectors; 2968 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2969 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2970 max_sector = mddev->resync_max_sectors; 2971 if (sector_nr >= max_sector) { 2972 conf->cluster_sync_low = 0; 2973 conf->cluster_sync_high = 0; 2974 2975 /* If we aborted, we need to abort the 2976 * sync on the 'current' bitmap chucks (there can 2977 * be several when recovering multiple devices). 2978 * as we may have started syncing it but not finished. 2979 * We can find the current address in 2980 * mddev->curr_resync, but for recovery, 2981 * we need to convert that to several 2982 * virtual addresses. 2983 */ 2984 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2985 end_reshape(conf); 2986 close_sync(conf); 2987 return 0; 2988 } 2989 2990 if (mddev->curr_resync < max_sector) { /* aborted */ 2991 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2992 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2993 &sync_blocks, 1); 2994 else for (i = 0; i < conf->geo.raid_disks; i++) { 2995 sector_t sect = 2996 raid10_find_virt(conf, mddev->curr_resync, i); 2997 bitmap_end_sync(mddev->bitmap, sect, 2998 &sync_blocks, 1); 2999 } 3000 } else { 3001 /* completed sync */ 3002 if ((!mddev->bitmap || conf->fullsync) 3003 && conf->have_replacement 3004 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3005 /* Completed a full sync so the replacements 3006 * are now fully recovered. 3007 */ 3008 rcu_read_lock(); 3009 for (i = 0; i < conf->geo.raid_disks; i++) { 3010 struct md_rdev *rdev = 3011 rcu_dereference(conf->mirrors[i].replacement); 3012 if (rdev) 3013 rdev->recovery_offset = MaxSector; 3014 } 3015 rcu_read_unlock(); 3016 } 3017 conf->fullsync = 0; 3018 } 3019 bitmap_close_sync(mddev->bitmap); 3020 close_sync(conf); 3021 *skipped = 1; 3022 return sectors_skipped; 3023 } 3024 3025 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3026 return reshape_request(mddev, sector_nr, skipped); 3027 3028 if (chunks_skipped >= conf->geo.raid_disks) { 3029 /* if there has been nothing to do on any drive, 3030 * then there is nothing to do at all.. 3031 */ 3032 *skipped = 1; 3033 return (max_sector - sector_nr) + sectors_skipped; 3034 } 3035 3036 if (max_sector > mddev->resync_max) 3037 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3038 3039 /* make sure whole request will fit in a chunk - if chunks 3040 * are meaningful 3041 */ 3042 if (conf->geo.near_copies < conf->geo.raid_disks && 3043 max_sector > (sector_nr | chunk_mask)) 3044 max_sector = (sector_nr | chunk_mask) + 1; 3045 3046 /* 3047 * If there is non-resync activity waiting for a turn, then let it 3048 * though before starting on this new sync request. 3049 */ 3050 if (conf->nr_waiting) 3051 schedule_timeout_uninterruptible(1); 3052 3053 /* Again, very different code for resync and recovery. 3054 * Both must result in an r10bio with a list of bios that 3055 * have bi_end_io, bi_sector, bi_disk set, 3056 * and bi_private set to the r10bio. 3057 * For recovery, we may actually create several r10bios 3058 * with 2 bios in each, that correspond to the bios in the main one. 3059 * In this case, the subordinate r10bios link back through a 3060 * borrowed master_bio pointer, and the counter in the master 3061 * includes a ref from each subordinate. 3062 */ 3063 /* First, we decide what to do and set ->bi_end_io 3064 * To end_sync_read if we want to read, and 3065 * end_sync_write if we will want to write. 3066 */ 3067 3068 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3069 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3070 /* recovery... the complicated one */ 3071 int j; 3072 r10_bio = NULL; 3073 3074 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3075 int still_degraded; 3076 struct r10bio *rb2; 3077 sector_t sect; 3078 int must_sync; 3079 int any_working; 3080 struct raid10_info *mirror = &conf->mirrors[i]; 3081 struct md_rdev *mrdev, *mreplace; 3082 3083 rcu_read_lock(); 3084 mrdev = rcu_dereference(mirror->rdev); 3085 mreplace = rcu_dereference(mirror->replacement); 3086 3087 if ((mrdev == NULL || 3088 test_bit(Faulty, &mrdev->flags) || 3089 test_bit(In_sync, &mrdev->flags)) && 3090 (mreplace == NULL || 3091 test_bit(Faulty, &mreplace->flags))) { 3092 rcu_read_unlock(); 3093 continue; 3094 } 3095 3096 still_degraded = 0; 3097 /* want to reconstruct this device */ 3098 rb2 = r10_bio; 3099 sect = raid10_find_virt(conf, sector_nr, i); 3100 if (sect >= mddev->resync_max_sectors) { 3101 /* last stripe is not complete - don't 3102 * try to recover this sector. 3103 */ 3104 rcu_read_unlock(); 3105 continue; 3106 } 3107 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3108 mreplace = NULL; 3109 /* Unless we are doing a full sync, or a replacement 3110 * we only need to recover the block if it is set in 3111 * the bitmap 3112 */ 3113 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3114 &sync_blocks, 1); 3115 if (sync_blocks < max_sync) 3116 max_sync = sync_blocks; 3117 if (!must_sync && 3118 mreplace == NULL && 3119 !conf->fullsync) { 3120 /* yep, skip the sync_blocks here, but don't assume 3121 * that there will never be anything to do here 3122 */ 3123 chunks_skipped = -1; 3124 rcu_read_unlock(); 3125 continue; 3126 } 3127 atomic_inc(&mrdev->nr_pending); 3128 if (mreplace) 3129 atomic_inc(&mreplace->nr_pending); 3130 rcu_read_unlock(); 3131 3132 r10_bio = raid10_alloc_init_r10buf(conf); 3133 r10_bio->state = 0; 3134 raise_barrier(conf, rb2 != NULL); 3135 atomic_set(&r10_bio->remaining, 0); 3136 3137 r10_bio->master_bio = (struct bio*)rb2; 3138 if (rb2) 3139 atomic_inc(&rb2->remaining); 3140 r10_bio->mddev = mddev; 3141 set_bit(R10BIO_IsRecover, &r10_bio->state); 3142 r10_bio->sector = sect; 3143 3144 raid10_find_phys(conf, r10_bio); 3145 3146 /* Need to check if the array will still be 3147 * degraded 3148 */ 3149 rcu_read_lock(); 3150 for (j = 0; j < conf->geo.raid_disks; j++) { 3151 struct md_rdev *rdev = rcu_dereference( 3152 conf->mirrors[j].rdev); 3153 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3154 still_degraded = 1; 3155 break; 3156 } 3157 } 3158 3159 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3160 &sync_blocks, still_degraded); 3161 3162 any_working = 0; 3163 for (j=0; j<conf->copies;j++) { 3164 int k; 3165 int d = r10_bio->devs[j].devnum; 3166 sector_t from_addr, to_addr; 3167 struct md_rdev *rdev = 3168 rcu_dereference(conf->mirrors[d].rdev); 3169 sector_t sector, first_bad; 3170 int bad_sectors; 3171 if (!rdev || 3172 !test_bit(In_sync, &rdev->flags)) 3173 continue; 3174 /* This is where we read from */ 3175 any_working = 1; 3176 sector = r10_bio->devs[j].addr; 3177 3178 if (is_badblock(rdev, sector, max_sync, 3179 &first_bad, &bad_sectors)) { 3180 if (first_bad > sector) 3181 max_sync = first_bad - sector; 3182 else { 3183 bad_sectors -= (sector 3184 - first_bad); 3185 if (max_sync > bad_sectors) 3186 max_sync = bad_sectors; 3187 continue; 3188 } 3189 } 3190 bio = r10_bio->devs[0].bio; 3191 bio->bi_next = biolist; 3192 biolist = bio; 3193 bio->bi_end_io = end_sync_read; 3194 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3195 if (test_bit(FailFast, &rdev->flags)) 3196 bio->bi_opf |= MD_FAILFAST; 3197 from_addr = r10_bio->devs[j].addr; 3198 bio->bi_iter.bi_sector = from_addr + 3199 rdev->data_offset; 3200 bio_set_dev(bio, rdev->bdev); 3201 atomic_inc(&rdev->nr_pending); 3202 /* and we write to 'i' (if not in_sync) */ 3203 3204 for (k=0; k<conf->copies; k++) 3205 if (r10_bio->devs[k].devnum == i) 3206 break; 3207 BUG_ON(k == conf->copies); 3208 to_addr = r10_bio->devs[k].addr; 3209 r10_bio->devs[0].devnum = d; 3210 r10_bio->devs[0].addr = from_addr; 3211 r10_bio->devs[1].devnum = i; 3212 r10_bio->devs[1].addr = to_addr; 3213 3214 if (!test_bit(In_sync, &mrdev->flags)) { 3215 bio = r10_bio->devs[1].bio; 3216 bio->bi_next = biolist; 3217 biolist = bio; 3218 bio->bi_end_io = end_sync_write; 3219 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3220 bio->bi_iter.bi_sector = to_addr 3221 + mrdev->data_offset; 3222 bio_set_dev(bio, mrdev->bdev); 3223 atomic_inc(&r10_bio->remaining); 3224 } else 3225 r10_bio->devs[1].bio->bi_end_io = NULL; 3226 3227 /* and maybe write to replacement */ 3228 bio = r10_bio->devs[1].repl_bio; 3229 if (bio) 3230 bio->bi_end_io = NULL; 3231 /* Note: if mreplace != NULL, then bio 3232 * cannot be NULL as r10buf_pool_alloc will 3233 * have allocated it. 3234 * So the second test here is pointless. 3235 * But it keeps semantic-checkers happy, and 3236 * this comment keeps human reviewers 3237 * happy. 3238 */ 3239 if (mreplace == NULL || bio == NULL || 3240 test_bit(Faulty, &mreplace->flags)) 3241 break; 3242 bio->bi_next = biolist; 3243 biolist = bio; 3244 bio->bi_end_io = end_sync_write; 3245 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3246 bio->bi_iter.bi_sector = to_addr + 3247 mreplace->data_offset; 3248 bio_set_dev(bio, mreplace->bdev); 3249 atomic_inc(&r10_bio->remaining); 3250 break; 3251 } 3252 rcu_read_unlock(); 3253 if (j == conf->copies) { 3254 /* Cannot recover, so abort the recovery or 3255 * record a bad block */ 3256 if (any_working) { 3257 /* problem is that there are bad blocks 3258 * on other device(s) 3259 */ 3260 int k; 3261 for (k = 0; k < conf->copies; k++) 3262 if (r10_bio->devs[k].devnum == i) 3263 break; 3264 if (!test_bit(In_sync, 3265 &mrdev->flags) 3266 && !rdev_set_badblocks( 3267 mrdev, 3268 r10_bio->devs[k].addr, 3269 max_sync, 0)) 3270 any_working = 0; 3271 if (mreplace && 3272 !rdev_set_badblocks( 3273 mreplace, 3274 r10_bio->devs[k].addr, 3275 max_sync, 0)) 3276 any_working = 0; 3277 } 3278 if (!any_working) { 3279 if (!test_and_set_bit(MD_RECOVERY_INTR, 3280 &mddev->recovery)) 3281 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3282 mdname(mddev)); 3283 mirror->recovery_disabled 3284 = mddev->recovery_disabled; 3285 } 3286 put_buf(r10_bio); 3287 if (rb2) 3288 atomic_dec(&rb2->remaining); 3289 r10_bio = rb2; 3290 rdev_dec_pending(mrdev, mddev); 3291 if (mreplace) 3292 rdev_dec_pending(mreplace, mddev); 3293 break; 3294 } 3295 rdev_dec_pending(mrdev, mddev); 3296 if (mreplace) 3297 rdev_dec_pending(mreplace, mddev); 3298 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3299 /* Only want this if there is elsewhere to 3300 * read from. 'j' is currently the first 3301 * readable copy. 3302 */ 3303 int targets = 1; 3304 for (; j < conf->copies; j++) { 3305 int d = r10_bio->devs[j].devnum; 3306 if (conf->mirrors[d].rdev && 3307 test_bit(In_sync, 3308 &conf->mirrors[d].rdev->flags)) 3309 targets++; 3310 } 3311 if (targets == 1) 3312 r10_bio->devs[0].bio->bi_opf 3313 &= ~MD_FAILFAST; 3314 } 3315 } 3316 if (biolist == NULL) { 3317 while (r10_bio) { 3318 struct r10bio *rb2 = r10_bio; 3319 r10_bio = (struct r10bio*) rb2->master_bio; 3320 rb2->master_bio = NULL; 3321 put_buf(rb2); 3322 } 3323 goto giveup; 3324 } 3325 } else { 3326 /* resync. Schedule a read for every block at this virt offset */ 3327 int count = 0; 3328 3329 /* 3330 * Since curr_resync_completed could probably not update in 3331 * time, and we will set cluster_sync_low based on it. 3332 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3333 * safety reason, which ensures curr_resync_completed is 3334 * updated in bitmap_cond_end_sync. 3335 */ 3336 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3337 mddev_is_clustered(mddev) && 3338 (sector_nr + 2 * RESYNC_SECTORS > 3339 conf->cluster_sync_high)); 3340 3341 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3342 &sync_blocks, mddev->degraded) && 3343 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3344 &mddev->recovery)) { 3345 /* We can skip this block */ 3346 *skipped = 1; 3347 return sync_blocks + sectors_skipped; 3348 } 3349 if (sync_blocks < max_sync) 3350 max_sync = sync_blocks; 3351 r10_bio = raid10_alloc_init_r10buf(conf); 3352 r10_bio->state = 0; 3353 3354 r10_bio->mddev = mddev; 3355 atomic_set(&r10_bio->remaining, 0); 3356 raise_barrier(conf, 0); 3357 conf->next_resync = sector_nr; 3358 3359 r10_bio->master_bio = NULL; 3360 r10_bio->sector = sector_nr; 3361 set_bit(R10BIO_IsSync, &r10_bio->state); 3362 raid10_find_phys(conf, r10_bio); 3363 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3364 3365 for (i = 0; i < conf->copies; i++) { 3366 int d = r10_bio->devs[i].devnum; 3367 sector_t first_bad, sector; 3368 int bad_sectors; 3369 struct md_rdev *rdev; 3370 3371 if (r10_bio->devs[i].repl_bio) 3372 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3373 3374 bio = r10_bio->devs[i].bio; 3375 bio->bi_status = BLK_STS_IOERR; 3376 rcu_read_lock(); 3377 rdev = rcu_dereference(conf->mirrors[d].rdev); 3378 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3379 rcu_read_unlock(); 3380 continue; 3381 } 3382 sector = r10_bio->devs[i].addr; 3383 if (is_badblock(rdev, sector, max_sync, 3384 &first_bad, &bad_sectors)) { 3385 if (first_bad > sector) 3386 max_sync = first_bad - sector; 3387 else { 3388 bad_sectors -= (sector - first_bad); 3389 if (max_sync > bad_sectors) 3390 max_sync = bad_sectors; 3391 rcu_read_unlock(); 3392 continue; 3393 } 3394 } 3395 atomic_inc(&rdev->nr_pending); 3396 atomic_inc(&r10_bio->remaining); 3397 bio->bi_next = biolist; 3398 biolist = bio; 3399 bio->bi_end_io = end_sync_read; 3400 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3401 if (test_bit(FailFast, &rdev->flags)) 3402 bio->bi_opf |= MD_FAILFAST; 3403 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3404 bio_set_dev(bio, rdev->bdev); 3405 count++; 3406 3407 rdev = rcu_dereference(conf->mirrors[d].replacement); 3408 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3409 rcu_read_unlock(); 3410 continue; 3411 } 3412 atomic_inc(&rdev->nr_pending); 3413 3414 /* Need to set up for writing to the replacement */ 3415 bio = r10_bio->devs[i].repl_bio; 3416 bio->bi_status = BLK_STS_IOERR; 3417 3418 sector = r10_bio->devs[i].addr; 3419 bio->bi_next = biolist; 3420 biolist = bio; 3421 bio->bi_end_io = end_sync_write; 3422 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3423 if (test_bit(FailFast, &rdev->flags)) 3424 bio->bi_opf |= MD_FAILFAST; 3425 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3426 bio_set_dev(bio, rdev->bdev); 3427 count++; 3428 rcu_read_unlock(); 3429 } 3430 3431 if (count < 2) { 3432 for (i=0; i<conf->copies; i++) { 3433 int d = r10_bio->devs[i].devnum; 3434 if (r10_bio->devs[i].bio->bi_end_io) 3435 rdev_dec_pending(conf->mirrors[d].rdev, 3436 mddev); 3437 if (r10_bio->devs[i].repl_bio && 3438 r10_bio->devs[i].repl_bio->bi_end_io) 3439 rdev_dec_pending( 3440 conf->mirrors[d].replacement, 3441 mddev); 3442 } 3443 put_buf(r10_bio); 3444 biolist = NULL; 3445 goto giveup; 3446 } 3447 } 3448 3449 nr_sectors = 0; 3450 if (sector_nr + max_sync < max_sector) 3451 max_sector = sector_nr + max_sync; 3452 do { 3453 struct page *page; 3454 int len = PAGE_SIZE; 3455 if (sector_nr + (len>>9) > max_sector) 3456 len = (max_sector - sector_nr) << 9; 3457 if (len == 0) 3458 break; 3459 for (bio= biolist ; bio ; bio=bio->bi_next) { 3460 struct resync_pages *rp = get_resync_pages(bio); 3461 page = resync_fetch_page(rp, page_idx); 3462 /* 3463 * won't fail because the vec table is big enough 3464 * to hold all these pages 3465 */ 3466 bio_add_page(bio, page, len, 0); 3467 } 3468 nr_sectors += len>>9; 3469 sector_nr += len>>9; 3470 } while (++page_idx < RESYNC_PAGES); 3471 r10_bio->sectors = nr_sectors; 3472 3473 if (mddev_is_clustered(mddev) && 3474 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3475 /* It is resync not recovery */ 3476 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3477 conf->cluster_sync_low = mddev->curr_resync_completed; 3478 raid10_set_cluster_sync_high(conf); 3479 /* Send resync message */ 3480 md_cluster_ops->resync_info_update(mddev, 3481 conf->cluster_sync_low, 3482 conf->cluster_sync_high); 3483 } 3484 } else if (mddev_is_clustered(mddev)) { 3485 /* This is recovery not resync */ 3486 sector_t sect_va1, sect_va2; 3487 bool broadcast_msg = false; 3488 3489 for (i = 0; i < conf->geo.raid_disks; i++) { 3490 /* 3491 * sector_nr is a device address for recovery, so we 3492 * need translate it to array address before compare 3493 * with cluster_sync_high. 3494 */ 3495 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3496 3497 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3498 broadcast_msg = true; 3499 /* 3500 * curr_resync_completed is similar as 3501 * sector_nr, so make the translation too. 3502 */ 3503 sect_va2 = raid10_find_virt(conf, 3504 mddev->curr_resync_completed, i); 3505 3506 if (conf->cluster_sync_low == 0 || 3507 conf->cluster_sync_low > sect_va2) 3508 conf->cluster_sync_low = sect_va2; 3509 } 3510 } 3511 if (broadcast_msg) { 3512 raid10_set_cluster_sync_high(conf); 3513 md_cluster_ops->resync_info_update(mddev, 3514 conf->cluster_sync_low, 3515 conf->cluster_sync_high); 3516 } 3517 } 3518 3519 while (biolist) { 3520 bio = biolist; 3521 biolist = biolist->bi_next; 3522 3523 bio->bi_next = NULL; 3524 r10_bio = get_resync_r10bio(bio); 3525 r10_bio->sectors = nr_sectors; 3526 3527 if (bio->bi_end_io == end_sync_read) { 3528 md_sync_acct_bio(bio, nr_sectors); 3529 bio->bi_status = 0; 3530 generic_make_request(bio); 3531 } 3532 } 3533 3534 if (sectors_skipped) 3535 /* pretend they weren't skipped, it makes 3536 * no important difference in this case 3537 */ 3538 md_done_sync(mddev, sectors_skipped, 1); 3539 3540 return sectors_skipped + nr_sectors; 3541 giveup: 3542 /* There is nowhere to write, so all non-sync 3543 * drives must be failed or in resync, all drives 3544 * have a bad block, so try the next chunk... 3545 */ 3546 if (sector_nr + max_sync < max_sector) 3547 max_sector = sector_nr + max_sync; 3548 3549 sectors_skipped += (max_sector - sector_nr); 3550 chunks_skipped ++; 3551 sector_nr = max_sector; 3552 goto skipped; 3553 } 3554 3555 static sector_t 3556 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3557 { 3558 sector_t size; 3559 struct r10conf *conf = mddev->private; 3560 3561 if (!raid_disks) 3562 raid_disks = min(conf->geo.raid_disks, 3563 conf->prev.raid_disks); 3564 if (!sectors) 3565 sectors = conf->dev_sectors; 3566 3567 size = sectors >> conf->geo.chunk_shift; 3568 sector_div(size, conf->geo.far_copies); 3569 size = size * raid_disks; 3570 sector_div(size, conf->geo.near_copies); 3571 3572 return size << conf->geo.chunk_shift; 3573 } 3574 3575 static void calc_sectors(struct r10conf *conf, sector_t size) 3576 { 3577 /* Calculate the number of sectors-per-device that will 3578 * actually be used, and set conf->dev_sectors and 3579 * conf->stride 3580 */ 3581 3582 size = size >> conf->geo.chunk_shift; 3583 sector_div(size, conf->geo.far_copies); 3584 size = size * conf->geo.raid_disks; 3585 sector_div(size, conf->geo.near_copies); 3586 /* 'size' is now the number of chunks in the array */ 3587 /* calculate "used chunks per device" */ 3588 size = size * conf->copies; 3589 3590 /* We need to round up when dividing by raid_disks to 3591 * get the stride size. 3592 */ 3593 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3594 3595 conf->dev_sectors = size << conf->geo.chunk_shift; 3596 3597 if (conf->geo.far_offset) 3598 conf->geo.stride = 1 << conf->geo.chunk_shift; 3599 else { 3600 sector_div(size, conf->geo.far_copies); 3601 conf->geo.stride = size << conf->geo.chunk_shift; 3602 } 3603 } 3604 3605 enum geo_type {geo_new, geo_old, geo_start}; 3606 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3607 { 3608 int nc, fc, fo; 3609 int layout, chunk, disks; 3610 switch (new) { 3611 case geo_old: 3612 layout = mddev->layout; 3613 chunk = mddev->chunk_sectors; 3614 disks = mddev->raid_disks - mddev->delta_disks; 3615 break; 3616 case geo_new: 3617 layout = mddev->new_layout; 3618 chunk = mddev->new_chunk_sectors; 3619 disks = mddev->raid_disks; 3620 break; 3621 default: /* avoid 'may be unused' warnings */ 3622 case geo_start: /* new when starting reshape - raid_disks not 3623 * updated yet. */ 3624 layout = mddev->new_layout; 3625 chunk = mddev->new_chunk_sectors; 3626 disks = mddev->raid_disks + mddev->delta_disks; 3627 break; 3628 } 3629 if (layout >> 19) 3630 return -1; 3631 if (chunk < (PAGE_SIZE >> 9) || 3632 !is_power_of_2(chunk)) 3633 return -2; 3634 nc = layout & 255; 3635 fc = (layout >> 8) & 255; 3636 fo = layout & (1<<16); 3637 geo->raid_disks = disks; 3638 geo->near_copies = nc; 3639 geo->far_copies = fc; 3640 geo->far_offset = fo; 3641 switch (layout >> 17) { 3642 case 0: /* original layout. simple but not always optimal */ 3643 geo->far_set_size = disks; 3644 break; 3645 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3646 * actually using this, but leave code here just in case.*/ 3647 geo->far_set_size = disks/fc; 3648 WARN(geo->far_set_size < fc, 3649 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3650 break; 3651 case 2: /* "improved" layout fixed to match documentation */ 3652 geo->far_set_size = fc * nc; 3653 break; 3654 default: /* Not a valid layout */ 3655 return -1; 3656 } 3657 geo->chunk_mask = chunk - 1; 3658 geo->chunk_shift = ffz(~chunk); 3659 return nc*fc; 3660 } 3661 3662 static struct r10conf *setup_conf(struct mddev *mddev) 3663 { 3664 struct r10conf *conf = NULL; 3665 int err = -EINVAL; 3666 struct geom geo; 3667 int copies; 3668 3669 copies = setup_geo(&geo, mddev, geo_new); 3670 3671 if (copies == -2) { 3672 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3673 mdname(mddev), PAGE_SIZE); 3674 goto out; 3675 } 3676 3677 if (copies < 2 || copies > mddev->raid_disks) { 3678 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3679 mdname(mddev), mddev->new_layout); 3680 goto out; 3681 } 3682 3683 err = -ENOMEM; 3684 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3685 if (!conf) 3686 goto out; 3687 3688 /* FIXME calc properly */ 3689 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3690 max(0,-mddev->delta_disks)), 3691 GFP_KERNEL); 3692 if (!conf->mirrors) 3693 goto out; 3694 3695 conf->tmppage = alloc_page(GFP_KERNEL); 3696 if (!conf->tmppage) 3697 goto out; 3698 3699 conf->geo = geo; 3700 conf->copies = copies; 3701 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc, 3702 r10bio_pool_free, conf); 3703 if (err) 3704 goto out; 3705 3706 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3707 if (err) 3708 goto out; 3709 3710 calc_sectors(conf, mddev->dev_sectors); 3711 if (mddev->reshape_position == MaxSector) { 3712 conf->prev = conf->geo; 3713 conf->reshape_progress = MaxSector; 3714 } else { 3715 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3716 err = -EINVAL; 3717 goto out; 3718 } 3719 conf->reshape_progress = mddev->reshape_position; 3720 if (conf->prev.far_offset) 3721 conf->prev.stride = 1 << conf->prev.chunk_shift; 3722 else 3723 /* far_copies must be 1 */ 3724 conf->prev.stride = conf->dev_sectors; 3725 } 3726 conf->reshape_safe = conf->reshape_progress; 3727 spin_lock_init(&conf->device_lock); 3728 INIT_LIST_HEAD(&conf->retry_list); 3729 INIT_LIST_HEAD(&conf->bio_end_io_list); 3730 3731 spin_lock_init(&conf->resync_lock); 3732 init_waitqueue_head(&conf->wait_barrier); 3733 atomic_set(&conf->nr_pending, 0); 3734 3735 err = -ENOMEM; 3736 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3737 if (!conf->thread) 3738 goto out; 3739 3740 conf->mddev = mddev; 3741 return conf; 3742 3743 out: 3744 if (conf) { 3745 mempool_exit(&conf->r10bio_pool); 3746 kfree(conf->mirrors); 3747 safe_put_page(conf->tmppage); 3748 bioset_exit(&conf->bio_split); 3749 kfree(conf); 3750 } 3751 return ERR_PTR(err); 3752 } 3753 3754 static int raid10_run(struct mddev *mddev) 3755 { 3756 struct r10conf *conf; 3757 int i, disk_idx, chunk_size; 3758 struct raid10_info *disk; 3759 struct md_rdev *rdev; 3760 sector_t size; 3761 sector_t min_offset_diff = 0; 3762 int first = 1; 3763 bool discard_supported = false; 3764 3765 if (mddev_init_writes_pending(mddev) < 0) 3766 return -ENOMEM; 3767 3768 if (mddev->private == NULL) { 3769 conf = setup_conf(mddev); 3770 if (IS_ERR(conf)) 3771 return PTR_ERR(conf); 3772 mddev->private = conf; 3773 } 3774 conf = mddev->private; 3775 if (!conf) 3776 goto out; 3777 3778 if (mddev_is_clustered(conf->mddev)) { 3779 int fc, fo; 3780 3781 fc = (mddev->layout >> 8) & 255; 3782 fo = mddev->layout & (1<<16); 3783 if (fc > 1 || fo > 0) { 3784 pr_err("only near layout is supported by clustered" 3785 " raid10\n"); 3786 goto out_free_conf; 3787 } 3788 } 3789 3790 mddev->thread = conf->thread; 3791 conf->thread = NULL; 3792 3793 chunk_size = mddev->chunk_sectors << 9; 3794 if (mddev->queue) { 3795 blk_queue_max_discard_sectors(mddev->queue, 3796 mddev->chunk_sectors); 3797 blk_queue_max_write_same_sectors(mddev->queue, 0); 3798 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3799 blk_queue_io_min(mddev->queue, chunk_size); 3800 if (conf->geo.raid_disks % conf->geo.near_copies) 3801 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3802 else 3803 blk_queue_io_opt(mddev->queue, chunk_size * 3804 (conf->geo.raid_disks / conf->geo.near_copies)); 3805 } 3806 3807 rdev_for_each(rdev, mddev) { 3808 long long diff; 3809 3810 disk_idx = rdev->raid_disk; 3811 if (disk_idx < 0) 3812 continue; 3813 if (disk_idx >= conf->geo.raid_disks && 3814 disk_idx >= conf->prev.raid_disks) 3815 continue; 3816 disk = conf->mirrors + disk_idx; 3817 3818 if (test_bit(Replacement, &rdev->flags)) { 3819 if (disk->replacement) 3820 goto out_free_conf; 3821 disk->replacement = rdev; 3822 } else { 3823 if (disk->rdev) 3824 goto out_free_conf; 3825 disk->rdev = rdev; 3826 } 3827 diff = (rdev->new_data_offset - rdev->data_offset); 3828 if (!mddev->reshape_backwards) 3829 diff = -diff; 3830 if (diff < 0) 3831 diff = 0; 3832 if (first || diff < min_offset_diff) 3833 min_offset_diff = diff; 3834 3835 if (mddev->gendisk) 3836 disk_stack_limits(mddev->gendisk, rdev->bdev, 3837 rdev->data_offset << 9); 3838 3839 disk->head_position = 0; 3840 3841 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3842 discard_supported = true; 3843 first = 0; 3844 } 3845 3846 if (mddev->queue) { 3847 if (discard_supported) 3848 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3849 mddev->queue); 3850 else 3851 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3852 mddev->queue); 3853 } 3854 /* need to check that every block has at least one working mirror */ 3855 if (!enough(conf, -1)) { 3856 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3857 mdname(mddev)); 3858 goto out_free_conf; 3859 } 3860 3861 if (conf->reshape_progress != MaxSector) { 3862 /* must ensure that shape change is supported */ 3863 if (conf->geo.far_copies != 1 && 3864 conf->geo.far_offset == 0) 3865 goto out_free_conf; 3866 if (conf->prev.far_copies != 1 && 3867 conf->prev.far_offset == 0) 3868 goto out_free_conf; 3869 } 3870 3871 mddev->degraded = 0; 3872 for (i = 0; 3873 i < conf->geo.raid_disks 3874 || i < conf->prev.raid_disks; 3875 i++) { 3876 3877 disk = conf->mirrors + i; 3878 3879 if (!disk->rdev && disk->replacement) { 3880 /* The replacement is all we have - use it */ 3881 disk->rdev = disk->replacement; 3882 disk->replacement = NULL; 3883 clear_bit(Replacement, &disk->rdev->flags); 3884 } 3885 3886 if (!disk->rdev || 3887 !test_bit(In_sync, &disk->rdev->flags)) { 3888 disk->head_position = 0; 3889 mddev->degraded++; 3890 if (disk->rdev && 3891 disk->rdev->saved_raid_disk < 0) 3892 conf->fullsync = 1; 3893 } 3894 disk->recovery_disabled = mddev->recovery_disabled - 1; 3895 } 3896 3897 if (mddev->recovery_cp != MaxSector) 3898 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3899 mdname(mddev)); 3900 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3901 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3902 conf->geo.raid_disks); 3903 /* 3904 * Ok, everything is just fine now 3905 */ 3906 mddev->dev_sectors = conf->dev_sectors; 3907 size = raid10_size(mddev, 0, 0); 3908 md_set_array_sectors(mddev, size); 3909 mddev->resync_max_sectors = size; 3910 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3911 3912 if (mddev->queue) { 3913 int stripe = conf->geo.raid_disks * 3914 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3915 3916 /* Calculate max read-ahead size. 3917 * We need to readahead at least twice a whole stripe.... 3918 * maybe... 3919 */ 3920 stripe /= conf->geo.near_copies; 3921 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3922 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3923 } 3924 3925 if (md_integrity_register(mddev)) 3926 goto out_free_conf; 3927 3928 if (conf->reshape_progress != MaxSector) { 3929 unsigned long before_length, after_length; 3930 3931 before_length = ((1 << conf->prev.chunk_shift) * 3932 conf->prev.far_copies); 3933 after_length = ((1 << conf->geo.chunk_shift) * 3934 conf->geo.far_copies); 3935 3936 if (max(before_length, after_length) > min_offset_diff) { 3937 /* This cannot work */ 3938 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3939 goto out_free_conf; 3940 } 3941 conf->offset_diff = min_offset_diff; 3942 3943 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3944 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3945 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3946 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3947 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3948 "reshape"); 3949 } 3950 3951 return 0; 3952 3953 out_free_conf: 3954 md_unregister_thread(&mddev->thread); 3955 mempool_exit(&conf->r10bio_pool); 3956 safe_put_page(conf->tmppage); 3957 kfree(conf->mirrors); 3958 kfree(conf); 3959 mddev->private = NULL; 3960 out: 3961 return -EIO; 3962 } 3963 3964 static void raid10_free(struct mddev *mddev, void *priv) 3965 { 3966 struct r10conf *conf = priv; 3967 3968 mempool_exit(&conf->r10bio_pool); 3969 safe_put_page(conf->tmppage); 3970 kfree(conf->mirrors); 3971 kfree(conf->mirrors_old); 3972 kfree(conf->mirrors_new); 3973 bioset_exit(&conf->bio_split); 3974 kfree(conf); 3975 } 3976 3977 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3978 { 3979 struct r10conf *conf = mddev->private; 3980 3981 if (quiesce) 3982 raise_barrier(conf, 0); 3983 else 3984 lower_barrier(conf); 3985 } 3986 3987 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3988 { 3989 /* Resize of 'far' arrays is not supported. 3990 * For 'near' and 'offset' arrays we can set the 3991 * number of sectors used to be an appropriate multiple 3992 * of the chunk size. 3993 * For 'offset', this is far_copies*chunksize. 3994 * For 'near' the multiplier is the LCM of 3995 * near_copies and raid_disks. 3996 * So if far_copies > 1 && !far_offset, fail. 3997 * Else find LCM(raid_disks, near_copy)*far_copies and 3998 * multiply by chunk_size. Then round to this number. 3999 * This is mostly done by raid10_size() 4000 */ 4001 struct r10conf *conf = mddev->private; 4002 sector_t oldsize, size; 4003 4004 if (mddev->reshape_position != MaxSector) 4005 return -EBUSY; 4006 4007 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4008 return -EINVAL; 4009 4010 oldsize = raid10_size(mddev, 0, 0); 4011 size = raid10_size(mddev, sectors, 0); 4012 if (mddev->external_size && 4013 mddev->array_sectors > size) 4014 return -EINVAL; 4015 if (mddev->bitmap) { 4016 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 4017 if (ret) 4018 return ret; 4019 } 4020 md_set_array_sectors(mddev, size); 4021 if (sectors > mddev->dev_sectors && 4022 mddev->recovery_cp > oldsize) { 4023 mddev->recovery_cp = oldsize; 4024 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4025 } 4026 calc_sectors(conf, sectors); 4027 mddev->dev_sectors = conf->dev_sectors; 4028 mddev->resync_max_sectors = size; 4029 return 0; 4030 } 4031 4032 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4033 { 4034 struct md_rdev *rdev; 4035 struct r10conf *conf; 4036 4037 if (mddev->degraded > 0) { 4038 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4039 mdname(mddev)); 4040 return ERR_PTR(-EINVAL); 4041 } 4042 sector_div(size, devs); 4043 4044 /* Set new parameters */ 4045 mddev->new_level = 10; 4046 /* new layout: far_copies = 1, near_copies = 2 */ 4047 mddev->new_layout = (1<<8) + 2; 4048 mddev->new_chunk_sectors = mddev->chunk_sectors; 4049 mddev->delta_disks = mddev->raid_disks; 4050 mddev->raid_disks *= 2; 4051 /* make sure it will be not marked as dirty */ 4052 mddev->recovery_cp = MaxSector; 4053 mddev->dev_sectors = size; 4054 4055 conf = setup_conf(mddev); 4056 if (!IS_ERR(conf)) { 4057 rdev_for_each(rdev, mddev) 4058 if (rdev->raid_disk >= 0) { 4059 rdev->new_raid_disk = rdev->raid_disk * 2; 4060 rdev->sectors = size; 4061 } 4062 conf->barrier = 1; 4063 } 4064 4065 return conf; 4066 } 4067 4068 static void *raid10_takeover(struct mddev *mddev) 4069 { 4070 struct r0conf *raid0_conf; 4071 4072 /* raid10 can take over: 4073 * raid0 - providing it has only two drives 4074 */ 4075 if (mddev->level == 0) { 4076 /* for raid0 takeover only one zone is supported */ 4077 raid0_conf = mddev->private; 4078 if (raid0_conf->nr_strip_zones > 1) { 4079 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4080 mdname(mddev)); 4081 return ERR_PTR(-EINVAL); 4082 } 4083 return raid10_takeover_raid0(mddev, 4084 raid0_conf->strip_zone->zone_end, 4085 raid0_conf->strip_zone->nb_dev); 4086 } 4087 return ERR_PTR(-EINVAL); 4088 } 4089 4090 static int raid10_check_reshape(struct mddev *mddev) 4091 { 4092 /* Called when there is a request to change 4093 * - layout (to ->new_layout) 4094 * - chunk size (to ->new_chunk_sectors) 4095 * - raid_disks (by delta_disks) 4096 * or when trying to restart a reshape that was ongoing. 4097 * 4098 * We need to validate the request and possibly allocate 4099 * space if that might be an issue later. 4100 * 4101 * Currently we reject any reshape of a 'far' mode array, 4102 * allow chunk size to change if new is generally acceptable, 4103 * allow raid_disks to increase, and allow 4104 * a switch between 'near' mode and 'offset' mode. 4105 */ 4106 struct r10conf *conf = mddev->private; 4107 struct geom geo; 4108 4109 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4110 return -EINVAL; 4111 4112 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4113 /* mustn't change number of copies */ 4114 return -EINVAL; 4115 if (geo.far_copies > 1 && !geo.far_offset) 4116 /* Cannot switch to 'far' mode */ 4117 return -EINVAL; 4118 4119 if (mddev->array_sectors & geo.chunk_mask) 4120 /* not factor of array size */ 4121 return -EINVAL; 4122 4123 if (!enough(conf, -1)) 4124 return -EINVAL; 4125 4126 kfree(conf->mirrors_new); 4127 conf->mirrors_new = NULL; 4128 if (mddev->delta_disks > 0) { 4129 /* allocate new 'mirrors' list */ 4130 conf->mirrors_new = kzalloc( 4131 sizeof(struct raid10_info) 4132 *(mddev->raid_disks + 4133 mddev->delta_disks), 4134 GFP_KERNEL); 4135 if (!conf->mirrors_new) 4136 return -ENOMEM; 4137 } 4138 return 0; 4139 } 4140 4141 /* 4142 * Need to check if array has failed when deciding whether to: 4143 * - start an array 4144 * - remove non-faulty devices 4145 * - add a spare 4146 * - allow a reshape 4147 * This determination is simple when no reshape is happening. 4148 * However if there is a reshape, we need to carefully check 4149 * both the before and after sections. 4150 * This is because some failed devices may only affect one 4151 * of the two sections, and some non-in_sync devices may 4152 * be insync in the section most affected by failed devices. 4153 */ 4154 static int calc_degraded(struct r10conf *conf) 4155 { 4156 int degraded, degraded2; 4157 int i; 4158 4159 rcu_read_lock(); 4160 degraded = 0; 4161 /* 'prev' section first */ 4162 for (i = 0; i < conf->prev.raid_disks; i++) { 4163 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4164 if (!rdev || test_bit(Faulty, &rdev->flags)) 4165 degraded++; 4166 else if (!test_bit(In_sync, &rdev->flags)) 4167 /* When we can reduce the number of devices in 4168 * an array, this might not contribute to 4169 * 'degraded'. It does now. 4170 */ 4171 degraded++; 4172 } 4173 rcu_read_unlock(); 4174 if (conf->geo.raid_disks == conf->prev.raid_disks) 4175 return degraded; 4176 rcu_read_lock(); 4177 degraded2 = 0; 4178 for (i = 0; i < conf->geo.raid_disks; i++) { 4179 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4180 if (!rdev || test_bit(Faulty, &rdev->flags)) 4181 degraded2++; 4182 else if (!test_bit(In_sync, &rdev->flags)) { 4183 /* If reshape is increasing the number of devices, 4184 * this section has already been recovered, so 4185 * it doesn't contribute to degraded. 4186 * else it does. 4187 */ 4188 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4189 degraded2++; 4190 } 4191 } 4192 rcu_read_unlock(); 4193 if (degraded2 > degraded) 4194 return degraded2; 4195 return degraded; 4196 } 4197 4198 static int raid10_start_reshape(struct mddev *mddev) 4199 { 4200 /* A 'reshape' has been requested. This commits 4201 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4202 * This also checks if there are enough spares and adds them 4203 * to the array. 4204 * We currently require enough spares to make the final 4205 * array non-degraded. We also require that the difference 4206 * between old and new data_offset - on each device - is 4207 * enough that we never risk over-writing. 4208 */ 4209 4210 unsigned long before_length, after_length; 4211 sector_t min_offset_diff = 0; 4212 int first = 1; 4213 struct geom new; 4214 struct r10conf *conf = mddev->private; 4215 struct md_rdev *rdev; 4216 int spares = 0; 4217 int ret; 4218 4219 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4220 return -EBUSY; 4221 4222 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4223 return -EINVAL; 4224 4225 before_length = ((1 << conf->prev.chunk_shift) * 4226 conf->prev.far_copies); 4227 after_length = ((1 << conf->geo.chunk_shift) * 4228 conf->geo.far_copies); 4229 4230 rdev_for_each(rdev, mddev) { 4231 if (!test_bit(In_sync, &rdev->flags) 4232 && !test_bit(Faulty, &rdev->flags)) 4233 spares++; 4234 if (rdev->raid_disk >= 0) { 4235 long long diff = (rdev->new_data_offset 4236 - rdev->data_offset); 4237 if (!mddev->reshape_backwards) 4238 diff = -diff; 4239 if (diff < 0) 4240 diff = 0; 4241 if (first || diff < min_offset_diff) 4242 min_offset_diff = diff; 4243 first = 0; 4244 } 4245 } 4246 4247 if (max(before_length, after_length) > min_offset_diff) 4248 return -EINVAL; 4249 4250 if (spares < mddev->delta_disks) 4251 return -EINVAL; 4252 4253 conf->offset_diff = min_offset_diff; 4254 spin_lock_irq(&conf->device_lock); 4255 if (conf->mirrors_new) { 4256 memcpy(conf->mirrors_new, conf->mirrors, 4257 sizeof(struct raid10_info)*conf->prev.raid_disks); 4258 smp_mb(); 4259 kfree(conf->mirrors_old); 4260 conf->mirrors_old = conf->mirrors; 4261 conf->mirrors = conf->mirrors_new; 4262 conf->mirrors_new = NULL; 4263 } 4264 setup_geo(&conf->geo, mddev, geo_start); 4265 smp_mb(); 4266 if (mddev->reshape_backwards) { 4267 sector_t size = raid10_size(mddev, 0, 0); 4268 if (size < mddev->array_sectors) { 4269 spin_unlock_irq(&conf->device_lock); 4270 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4271 mdname(mddev)); 4272 return -EINVAL; 4273 } 4274 mddev->resync_max_sectors = size; 4275 conf->reshape_progress = size; 4276 } else 4277 conf->reshape_progress = 0; 4278 conf->reshape_safe = conf->reshape_progress; 4279 spin_unlock_irq(&conf->device_lock); 4280 4281 if (mddev->delta_disks && mddev->bitmap) { 4282 ret = bitmap_resize(mddev->bitmap, 4283 raid10_size(mddev, 0, 4284 conf->geo.raid_disks), 4285 0, 0); 4286 if (ret) 4287 goto abort; 4288 } 4289 if (mddev->delta_disks > 0) { 4290 rdev_for_each(rdev, mddev) 4291 if (rdev->raid_disk < 0 && 4292 !test_bit(Faulty, &rdev->flags)) { 4293 if (raid10_add_disk(mddev, rdev) == 0) { 4294 if (rdev->raid_disk >= 4295 conf->prev.raid_disks) 4296 set_bit(In_sync, &rdev->flags); 4297 else 4298 rdev->recovery_offset = 0; 4299 4300 if (sysfs_link_rdev(mddev, rdev)) 4301 /* Failure here is OK */; 4302 } 4303 } else if (rdev->raid_disk >= conf->prev.raid_disks 4304 && !test_bit(Faulty, &rdev->flags)) { 4305 /* This is a spare that was manually added */ 4306 set_bit(In_sync, &rdev->flags); 4307 } 4308 } 4309 /* When a reshape changes the number of devices, 4310 * ->degraded is measured against the larger of the 4311 * pre and post numbers. 4312 */ 4313 spin_lock_irq(&conf->device_lock); 4314 mddev->degraded = calc_degraded(conf); 4315 spin_unlock_irq(&conf->device_lock); 4316 mddev->raid_disks = conf->geo.raid_disks; 4317 mddev->reshape_position = conf->reshape_progress; 4318 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4319 4320 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4321 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4322 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4323 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4324 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4325 4326 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4327 "reshape"); 4328 if (!mddev->sync_thread) { 4329 ret = -EAGAIN; 4330 goto abort; 4331 } 4332 conf->reshape_checkpoint = jiffies; 4333 md_wakeup_thread(mddev->sync_thread); 4334 md_new_event(mddev); 4335 return 0; 4336 4337 abort: 4338 mddev->recovery = 0; 4339 spin_lock_irq(&conf->device_lock); 4340 conf->geo = conf->prev; 4341 mddev->raid_disks = conf->geo.raid_disks; 4342 rdev_for_each(rdev, mddev) 4343 rdev->new_data_offset = rdev->data_offset; 4344 smp_wmb(); 4345 conf->reshape_progress = MaxSector; 4346 conf->reshape_safe = MaxSector; 4347 mddev->reshape_position = MaxSector; 4348 spin_unlock_irq(&conf->device_lock); 4349 return ret; 4350 } 4351 4352 /* Calculate the last device-address that could contain 4353 * any block from the chunk that includes the array-address 's' 4354 * and report the next address. 4355 * i.e. the address returned will be chunk-aligned and after 4356 * any data that is in the chunk containing 's'. 4357 */ 4358 static sector_t last_dev_address(sector_t s, struct geom *geo) 4359 { 4360 s = (s | geo->chunk_mask) + 1; 4361 s >>= geo->chunk_shift; 4362 s *= geo->near_copies; 4363 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4364 s *= geo->far_copies; 4365 s <<= geo->chunk_shift; 4366 return s; 4367 } 4368 4369 /* Calculate the first device-address that could contain 4370 * any block from the chunk that includes the array-address 's'. 4371 * This too will be the start of a chunk 4372 */ 4373 static sector_t first_dev_address(sector_t s, struct geom *geo) 4374 { 4375 s >>= geo->chunk_shift; 4376 s *= geo->near_copies; 4377 sector_div(s, geo->raid_disks); 4378 s *= geo->far_copies; 4379 s <<= geo->chunk_shift; 4380 return s; 4381 } 4382 4383 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4384 int *skipped) 4385 { 4386 /* We simply copy at most one chunk (smallest of old and new) 4387 * at a time, possibly less if that exceeds RESYNC_PAGES, 4388 * or we hit a bad block or something. 4389 * This might mean we pause for normal IO in the middle of 4390 * a chunk, but that is not a problem as mddev->reshape_position 4391 * can record any location. 4392 * 4393 * If we will want to write to a location that isn't 4394 * yet recorded as 'safe' (i.e. in metadata on disk) then 4395 * we need to flush all reshape requests and update the metadata. 4396 * 4397 * When reshaping forwards (e.g. to more devices), we interpret 4398 * 'safe' as the earliest block which might not have been copied 4399 * down yet. We divide this by previous stripe size and multiply 4400 * by previous stripe length to get lowest device offset that we 4401 * cannot write to yet. 4402 * We interpret 'sector_nr' as an address that we want to write to. 4403 * From this we use last_device_address() to find where we might 4404 * write to, and first_device_address on the 'safe' position. 4405 * If this 'next' write position is after the 'safe' position, 4406 * we must update the metadata to increase the 'safe' position. 4407 * 4408 * When reshaping backwards, we round in the opposite direction 4409 * and perform the reverse test: next write position must not be 4410 * less than current safe position. 4411 * 4412 * In all this the minimum difference in data offsets 4413 * (conf->offset_diff - always positive) allows a bit of slack, 4414 * so next can be after 'safe', but not by more than offset_diff 4415 * 4416 * We need to prepare all the bios here before we start any IO 4417 * to ensure the size we choose is acceptable to all devices. 4418 * The means one for each copy for write-out and an extra one for 4419 * read-in. 4420 * We store the read-in bio in ->master_bio and the others in 4421 * ->devs[x].bio and ->devs[x].repl_bio. 4422 */ 4423 struct r10conf *conf = mddev->private; 4424 struct r10bio *r10_bio; 4425 sector_t next, safe, last; 4426 int max_sectors; 4427 int nr_sectors; 4428 int s; 4429 struct md_rdev *rdev; 4430 int need_flush = 0; 4431 struct bio *blist; 4432 struct bio *bio, *read_bio; 4433 int sectors_done = 0; 4434 struct page **pages; 4435 4436 if (sector_nr == 0) { 4437 /* If restarting in the middle, skip the initial sectors */ 4438 if (mddev->reshape_backwards && 4439 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4440 sector_nr = (raid10_size(mddev, 0, 0) 4441 - conf->reshape_progress); 4442 } else if (!mddev->reshape_backwards && 4443 conf->reshape_progress > 0) 4444 sector_nr = conf->reshape_progress; 4445 if (sector_nr) { 4446 mddev->curr_resync_completed = sector_nr; 4447 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4448 *skipped = 1; 4449 return sector_nr; 4450 } 4451 } 4452 4453 /* We don't use sector_nr to track where we are up to 4454 * as that doesn't work well for ->reshape_backwards. 4455 * So just use ->reshape_progress. 4456 */ 4457 if (mddev->reshape_backwards) { 4458 /* 'next' is the earliest device address that we might 4459 * write to for this chunk in the new layout 4460 */ 4461 next = first_dev_address(conf->reshape_progress - 1, 4462 &conf->geo); 4463 4464 /* 'safe' is the last device address that we might read from 4465 * in the old layout after a restart 4466 */ 4467 safe = last_dev_address(conf->reshape_safe - 1, 4468 &conf->prev); 4469 4470 if (next + conf->offset_diff < safe) 4471 need_flush = 1; 4472 4473 last = conf->reshape_progress - 1; 4474 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4475 & conf->prev.chunk_mask); 4476 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4477 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4478 } else { 4479 /* 'next' is after the last device address that we 4480 * might write to for this chunk in the new layout 4481 */ 4482 next = last_dev_address(conf->reshape_progress, &conf->geo); 4483 4484 /* 'safe' is the earliest device address that we might 4485 * read from in the old layout after a restart 4486 */ 4487 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4488 4489 /* Need to update metadata if 'next' might be beyond 'safe' 4490 * as that would possibly corrupt data 4491 */ 4492 if (next > safe + conf->offset_diff) 4493 need_flush = 1; 4494 4495 sector_nr = conf->reshape_progress; 4496 last = sector_nr | (conf->geo.chunk_mask 4497 & conf->prev.chunk_mask); 4498 4499 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4500 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4501 } 4502 4503 if (need_flush || 4504 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4505 /* Need to update reshape_position in metadata */ 4506 wait_barrier(conf); 4507 mddev->reshape_position = conf->reshape_progress; 4508 if (mddev->reshape_backwards) 4509 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4510 - conf->reshape_progress; 4511 else 4512 mddev->curr_resync_completed = conf->reshape_progress; 4513 conf->reshape_checkpoint = jiffies; 4514 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4515 md_wakeup_thread(mddev->thread); 4516 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4517 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4518 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4519 allow_barrier(conf); 4520 return sectors_done; 4521 } 4522 conf->reshape_safe = mddev->reshape_position; 4523 allow_barrier(conf); 4524 } 4525 4526 read_more: 4527 /* Now schedule reads for blocks from sector_nr to last */ 4528 r10_bio = raid10_alloc_init_r10buf(conf); 4529 r10_bio->state = 0; 4530 raise_barrier(conf, sectors_done != 0); 4531 atomic_set(&r10_bio->remaining, 0); 4532 r10_bio->mddev = mddev; 4533 r10_bio->sector = sector_nr; 4534 set_bit(R10BIO_IsReshape, &r10_bio->state); 4535 r10_bio->sectors = last - sector_nr + 1; 4536 rdev = read_balance(conf, r10_bio, &max_sectors); 4537 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4538 4539 if (!rdev) { 4540 /* Cannot read from here, so need to record bad blocks 4541 * on all the target devices. 4542 */ 4543 // FIXME 4544 mempool_free(r10_bio, &conf->r10buf_pool); 4545 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4546 return sectors_done; 4547 } 4548 4549 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4550 4551 bio_set_dev(read_bio, rdev->bdev); 4552 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4553 + rdev->data_offset); 4554 read_bio->bi_private = r10_bio; 4555 read_bio->bi_end_io = end_reshape_read; 4556 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4557 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4558 read_bio->bi_status = 0; 4559 read_bio->bi_vcnt = 0; 4560 read_bio->bi_iter.bi_size = 0; 4561 r10_bio->master_bio = read_bio; 4562 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4563 4564 /* Now find the locations in the new layout */ 4565 __raid10_find_phys(&conf->geo, r10_bio); 4566 4567 blist = read_bio; 4568 read_bio->bi_next = NULL; 4569 4570 rcu_read_lock(); 4571 for (s = 0; s < conf->copies*2; s++) { 4572 struct bio *b; 4573 int d = r10_bio->devs[s/2].devnum; 4574 struct md_rdev *rdev2; 4575 if (s&1) { 4576 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4577 b = r10_bio->devs[s/2].repl_bio; 4578 } else { 4579 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4580 b = r10_bio->devs[s/2].bio; 4581 } 4582 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4583 continue; 4584 4585 bio_set_dev(b, rdev2->bdev); 4586 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4587 rdev2->new_data_offset; 4588 b->bi_end_io = end_reshape_write; 4589 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4590 b->bi_next = blist; 4591 blist = b; 4592 } 4593 4594 /* Now add as many pages as possible to all of these bios. */ 4595 4596 nr_sectors = 0; 4597 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4598 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4599 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4600 int len = (max_sectors - s) << 9; 4601 if (len > PAGE_SIZE) 4602 len = PAGE_SIZE; 4603 for (bio = blist; bio ; bio = bio->bi_next) { 4604 /* 4605 * won't fail because the vec table is big enough 4606 * to hold all these pages 4607 */ 4608 bio_add_page(bio, page, len, 0); 4609 } 4610 sector_nr += len >> 9; 4611 nr_sectors += len >> 9; 4612 } 4613 rcu_read_unlock(); 4614 r10_bio->sectors = nr_sectors; 4615 4616 /* Now submit the read */ 4617 md_sync_acct_bio(read_bio, r10_bio->sectors); 4618 atomic_inc(&r10_bio->remaining); 4619 read_bio->bi_next = NULL; 4620 generic_make_request(read_bio); 4621 sector_nr += nr_sectors; 4622 sectors_done += nr_sectors; 4623 if (sector_nr <= last) 4624 goto read_more; 4625 4626 /* Now that we have done the whole section we can 4627 * update reshape_progress 4628 */ 4629 if (mddev->reshape_backwards) 4630 conf->reshape_progress -= sectors_done; 4631 else 4632 conf->reshape_progress += sectors_done; 4633 4634 return sectors_done; 4635 } 4636 4637 static void end_reshape_request(struct r10bio *r10_bio); 4638 static int handle_reshape_read_error(struct mddev *mddev, 4639 struct r10bio *r10_bio); 4640 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4641 { 4642 /* Reshape read completed. Hopefully we have a block 4643 * to write out. 4644 * If we got a read error then we do sync 1-page reads from 4645 * elsewhere until we find the data - or give up. 4646 */ 4647 struct r10conf *conf = mddev->private; 4648 int s; 4649 4650 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4651 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4652 /* Reshape has been aborted */ 4653 md_done_sync(mddev, r10_bio->sectors, 0); 4654 return; 4655 } 4656 4657 /* We definitely have the data in the pages, schedule the 4658 * writes. 4659 */ 4660 atomic_set(&r10_bio->remaining, 1); 4661 for (s = 0; s < conf->copies*2; s++) { 4662 struct bio *b; 4663 int d = r10_bio->devs[s/2].devnum; 4664 struct md_rdev *rdev; 4665 rcu_read_lock(); 4666 if (s&1) { 4667 rdev = rcu_dereference(conf->mirrors[d].replacement); 4668 b = r10_bio->devs[s/2].repl_bio; 4669 } else { 4670 rdev = rcu_dereference(conf->mirrors[d].rdev); 4671 b = r10_bio->devs[s/2].bio; 4672 } 4673 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4674 rcu_read_unlock(); 4675 continue; 4676 } 4677 atomic_inc(&rdev->nr_pending); 4678 rcu_read_unlock(); 4679 md_sync_acct_bio(b, r10_bio->sectors); 4680 atomic_inc(&r10_bio->remaining); 4681 b->bi_next = NULL; 4682 generic_make_request(b); 4683 } 4684 end_reshape_request(r10_bio); 4685 } 4686 4687 static void end_reshape(struct r10conf *conf) 4688 { 4689 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4690 return; 4691 4692 spin_lock_irq(&conf->device_lock); 4693 conf->prev = conf->geo; 4694 md_finish_reshape(conf->mddev); 4695 smp_wmb(); 4696 conf->reshape_progress = MaxSector; 4697 conf->reshape_safe = MaxSector; 4698 spin_unlock_irq(&conf->device_lock); 4699 4700 /* read-ahead size must cover two whole stripes, which is 4701 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4702 */ 4703 if (conf->mddev->queue) { 4704 int stripe = conf->geo.raid_disks * 4705 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4706 stripe /= conf->geo.near_copies; 4707 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4708 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4709 } 4710 conf->fullsync = 0; 4711 } 4712 4713 static int handle_reshape_read_error(struct mddev *mddev, 4714 struct r10bio *r10_bio) 4715 { 4716 /* Use sync reads to get the blocks from somewhere else */ 4717 int sectors = r10_bio->sectors; 4718 struct r10conf *conf = mddev->private; 4719 struct r10bio *r10b; 4720 int slot = 0; 4721 int idx = 0; 4722 struct page **pages; 4723 4724 r10b = kmalloc(sizeof(*r10b) + 4725 sizeof(struct r10dev) * conf->copies, GFP_NOIO); 4726 if (!r10b) { 4727 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4728 return -ENOMEM; 4729 } 4730 4731 /* reshape IOs share pages from .devs[0].bio */ 4732 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4733 4734 r10b->sector = r10_bio->sector; 4735 __raid10_find_phys(&conf->prev, r10b); 4736 4737 while (sectors) { 4738 int s = sectors; 4739 int success = 0; 4740 int first_slot = slot; 4741 4742 if (s > (PAGE_SIZE >> 9)) 4743 s = PAGE_SIZE >> 9; 4744 4745 rcu_read_lock(); 4746 while (!success) { 4747 int d = r10b->devs[slot].devnum; 4748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4749 sector_t addr; 4750 if (rdev == NULL || 4751 test_bit(Faulty, &rdev->flags) || 4752 !test_bit(In_sync, &rdev->flags)) 4753 goto failed; 4754 4755 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4756 atomic_inc(&rdev->nr_pending); 4757 rcu_read_unlock(); 4758 success = sync_page_io(rdev, 4759 addr, 4760 s << 9, 4761 pages[idx], 4762 REQ_OP_READ, 0, false); 4763 rdev_dec_pending(rdev, mddev); 4764 rcu_read_lock(); 4765 if (success) 4766 break; 4767 failed: 4768 slot++; 4769 if (slot >= conf->copies) 4770 slot = 0; 4771 if (slot == first_slot) 4772 break; 4773 } 4774 rcu_read_unlock(); 4775 if (!success) { 4776 /* couldn't read this block, must give up */ 4777 set_bit(MD_RECOVERY_INTR, 4778 &mddev->recovery); 4779 kfree(r10b); 4780 return -EIO; 4781 } 4782 sectors -= s; 4783 idx++; 4784 } 4785 kfree(r10b); 4786 return 0; 4787 } 4788 4789 static void end_reshape_write(struct bio *bio) 4790 { 4791 struct r10bio *r10_bio = get_resync_r10bio(bio); 4792 struct mddev *mddev = r10_bio->mddev; 4793 struct r10conf *conf = mddev->private; 4794 int d; 4795 int slot; 4796 int repl; 4797 struct md_rdev *rdev = NULL; 4798 4799 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4800 if (repl) 4801 rdev = conf->mirrors[d].replacement; 4802 if (!rdev) { 4803 smp_mb(); 4804 rdev = conf->mirrors[d].rdev; 4805 } 4806 4807 if (bio->bi_status) { 4808 /* FIXME should record badblock */ 4809 md_error(mddev, rdev); 4810 } 4811 4812 rdev_dec_pending(rdev, mddev); 4813 end_reshape_request(r10_bio); 4814 } 4815 4816 static void end_reshape_request(struct r10bio *r10_bio) 4817 { 4818 if (!atomic_dec_and_test(&r10_bio->remaining)) 4819 return; 4820 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4821 bio_put(r10_bio->master_bio); 4822 put_buf(r10_bio); 4823 } 4824 4825 static void raid10_finish_reshape(struct mddev *mddev) 4826 { 4827 struct r10conf *conf = mddev->private; 4828 4829 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4830 return; 4831 4832 if (mddev->delta_disks > 0) { 4833 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4834 mddev->recovery_cp = mddev->resync_max_sectors; 4835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4836 } 4837 mddev->resync_max_sectors = mddev->array_sectors; 4838 } else { 4839 int d; 4840 rcu_read_lock(); 4841 for (d = conf->geo.raid_disks ; 4842 d < conf->geo.raid_disks - mddev->delta_disks; 4843 d++) { 4844 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4845 if (rdev) 4846 clear_bit(In_sync, &rdev->flags); 4847 rdev = rcu_dereference(conf->mirrors[d].replacement); 4848 if (rdev) 4849 clear_bit(In_sync, &rdev->flags); 4850 } 4851 rcu_read_unlock(); 4852 } 4853 mddev->layout = mddev->new_layout; 4854 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4855 mddev->reshape_position = MaxSector; 4856 mddev->delta_disks = 0; 4857 mddev->reshape_backwards = 0; 4858 } 4859 4860 static struct md_personality raid10_personality = 4861 { 4862 .name = "raid10", 4863 .level = 10, 4864 .owner = THIS_MODULE, 4865 .make_request = raid10_make_request, 4866 .run = raid10_run, 4867 .free = raid10_free, 4868 .status = raid10_status, 4869 .error_handler = raid10_error, 4870 .hot_add_disk = raid10_add_disk, 4871 .hot_remove_disk= raid10_remove_disk, 4872 .spare_active = raid10_spare_active, 4873 .sync_request = raid10_sync_request, 4874 .quiesce = raid10_quiesce, 4875 .size = raid10_size, 4876 .resize = raid10_resize, 4877 .takeover = raid10_takeover, 4878 .check_reshape = raid10_check_reshape, 4879 .start_reshape = raid10_start_reshape, 4880 .finish_reshape = raid10_finish_reshape, 4881 .congested = raid10_congested, 4882 }; 4883 4884 static int __init raid_init(void) 4885 { 4886 return register_md_personality(&raid10_personality); 4887 } 4888 4889 static void raid_exit(void) 4890 { 4891 unregister_md_personality(&raid10_personality); 4892 } 4893 4894 module_init(raid_init); 4895 module_exit(raid_exit); 4896 MODULE_LICENSE("GPL"); 4897 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4898 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4899 MODULE_ALIAS("md-raid10"); 4900 MODULE_ALIAS("md-level-10"); 4901 4902 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4903