1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include "md.h" 28 #include "raid10.h" 29 #include "raid0.h" 30 #include "bitmap.h" 31 32 /* 33 * RAID10 provides a combination of RAID0 and RAID1 functionality. 34 * The layout of data is defined by 35 * chunk_size 36 * raid_disks 37 * near_copies (stored in low byte of layout) 38 * far_copies (stored in second byte of layout) 39 * far_offset (stored in bit 16 of layout ) 40 * 41 * The data to be stored is divided into chunks using chunksize. 42 * Each device is divided into far_copies sections. 43 * In each section, chunks are laid out in a style similar to raid0, but 44 * near_copies copies of each chunk is stored (each on a different drive). 45 * The starting device for each section is offset near_copies from the starting 46 * device of the previous section. 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 48 * drive. 49 * near_copies and far_copies must be at least one, and their product is at most 50 * raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of be very far apart 54 * on disk, there are adjacent stripes. 55 */ 56 57 /* 58 * Number of guaranteed r10bios in case of extreme VM load: 59 */ 60 #define NR_RAID10_BIOS 256 61 62 /* When there are this many requests queue to be written by 63 * the raid10 thread, we become 'congested' to provide back-pressure 64 * for writeback. 65 */ 66 static int max_queued_requests = 1024; 67 68 static void allow_barrier(struct r10conf *conf); 69 static void lower_barrier(struct r10conf *conf); 70 static int enough(struct r10conf *conf, int ignore); 71 72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct r10conf *conf = data; 75 int size = offsetof(struct r10bio, devs[conf->copies]); 76 77 /* allocate a r10bio with room for raid_disks entries in the 78 * bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r10bio_pool_free(void *r10_bio, void *data) 83 { 84 kfree(r10_bio); 85 } 86 87 /* Maximum size of each resync request */ 88 #define RESYNC_BLOCK_SIZE (64*1024) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 /* amount of memory to reserve for resync requests */ 91 #define RESYNC_WINDOW (1024*1024) 92 /* maximum number of concurrent requests, memory permitting */ 93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 94 95 /* 96 * When performing a resync, we need to read and compare, so 97 * we need as many pages are there are copies. 98 * When performing a recovery, we need 2 bios, one for read, 99 * one for write (we recover only one drive per r10buf) 100 * 101 */ 102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 103 { 104 struct r10conf *conf = data; 105 struct page *page; 106 struct r10bio *r10_bio; 107 struct bio *bio; 108 int i, j; 109 int nalloc; 110 111 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 112 if (!r10_bio) 113 return NULL; 114 115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 116 nalloc = conf->copies; /* resync */ 117 else 118 nalloc = 2; /* recovery */ 119 120 /* 121 * Allocate bios. 122 */ 123 for (j = nalloc ; j-- ; ) { 124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 125 if (!bio) 126 goto out_free_bio; 127 r10_bio->devs[j].bio = bio; 128 if (!conf->have_replacement) 129 continue; 130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 131 if (!bio) 132 goto out_free_bio; 133 r10_bio->devs[j].repl_bio = bio; 134 } 135 /* 136 * Allocate RESYNC_PAGES data pages and attach them 137 * where needed. 138 */ 139 for (j = 0 ; j < nalloc; j++) { 140 struct bio *rbio = r10_bio->devs[j].repl_bio; 141 bio = r10_bio->devs[j].bio; 142 for (i = 0; i < RESYNC_PAGES; i++) { 143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC, 144 &conf->mddev->recovery)) { 145 /* we can share bv_page's during recovery */ 146 struct bio *rbio = r10_bio->devs[0].bio; 147 page = rbio->bi_io_vec[i].bv_page; 148 get_page(page); 149 } else 150 page = alloc_page(gfp_flags); 151 if (unlikely(!page)) 152 goto out_free_pages; 153 154 bio->bi_io_vec[i].bv_page = page; 155 if (rbio) 156 rbio->bi_io_vec[i].bv_page = page; 157 } 158 } 159 160 return r10_bio; 161 162 out_free_pages: 163 for ( ; i > 0 ; i--) 164 safe_put_page(bio->bi_io_vec[i-1].bv_page); 165 while (j--) 166 for (i = 0; i < RESYNC_PAGES ; i++) 167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 168 j = -1; 169 out_free_bio: 170 while (++j < nalloc) { 171 bio_put(r10_bio->devs[j].bio); 172 if (r10_bio->devs[j].repl_bio) 173 bio_put(r10_bio->devs[j].repl_bio); 174 } 175 r10bio_pool_free(r10_bio, conf); 176 return NULL; 177 } 178 179 static void r10buf_pool_free(void *__r10_bio, void *data) 180 { 181 int i; 182 struct r10conf *conf = data; 183 struct r10bio *r10bio = __r10_bio; 184 int j; 185 186 for (j=0; j < conf->copies; j++) { 187 struct bio *bio = r10bio->devs[j].bio; 188 if (bio) { 189 for (i = 0; i < RESYNC_PAGES; i++) { 190 safe_put_page(bio->bi_io_vec[i].bv_page); 191 bio->bi_io_vec[i].bv_page = NULL; 192 } 193 bio_put(bio); 194 } 195 bio = r10bio->devs[j].repl_bio; 196 if (bio) 197 bio_put(bio); 198 } 199 r10bio_pool_free(r10bio, conf); 200 } 201 202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 203 { 204 int i; 205 206 for (i = 0; i < conf->copies; i++) { 207 struct bio **bio = & r10_bio->devs[i].bio; 208 if (!BIO_SPECIAL(*bio)) 209 bio_put(*bio); 210 *bio = NULL; 211 bio = &r10_bio->devs[i].repl_bio; 212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 213 bio_put(*bio); 214 *bio = NULL; 215 } 216 } 217 218 static void free_r10bio(struct r10bio *r10_bio) 219 { 220 struct r10conf *conf = r10_bio->mddev->private; 221 222 put_all_bios(conf, r10_bio); 223 mempool_free(r10_bio, conf->r10bio_pool); 224 } 225 226 static void put_buf(struct r10bio *r10_bio) 227 { 228 struct r10conf *conf = r10_bio->mddev->private; 229 230 mempool_free(r10_bio, conf->r10buf_pool); 231 232 lower_barrier(conf); 233 } 234 235 static void reschedule_retry(struct r10bio *r10_bio) 236 { 237 unsigned long flags; 238 struct mddev *mddev = r10_bio->mddev; 239 struct r10conf *conf = mddev->private; 240 241 spin_lock_irqsave(&conf->device_lock, flags); 242 list_add(&r10_bio->retry_list, &conf->retry_list); 243 conf->nr_queued ++; 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 246 /* wake up frozen array... */ 247 wake_up(&conf->wait_barrier); 248 249 md_wakeup_thread(mddev->thread); 250 } 251 252 /* 253 * raid_end_bio_io() is called when we have finished servicing a mirrored 254 * operation and are ready to return a success/failure code to the buffer 255 * cache layer. 256 */ 257 static void raid_end_bio_io(struct r10bio *r10_bio) 258 { 259 struct bio *bio = r10_bio->master_bio; 260 int done; 261 struct r10conf *conf = r10_bio->mddev->private; 262 263 if (bio->bi_phys_segments) { 264 unsigned long flags; 265 spin_lock_irqsave(&conf->device_lock, flags); 266 bio->bi_phys_segments--; 267 done = (bio->bi_phys_segments == 0); 268 spin_unlock_irqrestore(&conf->device_lock, flags); 269 } else 270 done = 1; 271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 272 clear_bit(BIO_UPTODATE, &bio->bi_flags); 273 if (done) { 274 bio_endio(bio, 0); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf); 280 } 281 free_r10bio(r10_bio); 282 } 283 284 /* 285 * Update disk head position estimator based on IRQ completion info. 286 */ 287 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 288 { 289 struct r10conf *conf = r10_bio->mddev->private; 290 291 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 292 r10_bio->devs[slot].addr + (r10_bio->sectors); 293 } 294 295 /* 296 * Find the disk number which triggered given bio 297 */ 298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 299 struct bio *bio, int *slotp, int *replp) 300 { 301 int slot; 302 int repl = 0; 303 304 for (slot = 0; slot < conf->copies; slot++) { 305 if (r10_bio->devs[slot].bio == bio) 306 break; 307 if (r10_bio->devs[slot].repl_bio == bio) { 308 repl = 1; 309 break; 310 } 311 } 312 313 BUG_ON(slot == conf->copies); 314 update_head_pos(slot, r10_bio); 315 316 if (slotp) 317 *slotp = slot; 318 if (replp) 319 *replp = repl; 320 return r10_bio->devs[slot].devnum; 321 } 322 323 static void raid10_end_read_request(struct bio *bio, int error) 324 { 325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 326 struct r10bio *r10_bio = bio->bi_private; 327 int slot, dev; 328 struct md_rdev *rdev; 329 struct r10conf *conf = r10_bio->mddev->private; 330 331 332 slot = r10_bio->read_slot; 333 dev = r10_bio->devs[slot].devnum; 334 rdev = r10_bio->devs[slot].rdev; 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(slot, r10_bio); 339 340 if (uptodate) { 341 /* 342 * Set R10BIO_Uptodate in our master bio, so that 343 * we will return a good error code to the higher 344 * levels even if IO on some other mirrored buffer fails. 345 * 346 * The 'master' represents the composite IO operation to 347 * user-side. So if something waits for IO, then it will 348 * wait for the 'master' bio. 349 */ 350 set_bit(R10BIO_Uptodate, &r10_bio->state); 351 } else { 352 /* If all other devices that store this block have 353 * failed, we want to return the error upwards rather 354 * than fail the last device. Here we redefine 355 * "uptodate" to mean "Don't want to retry" 356 */ 357 unsigned long flags; 358 spin_lock_irqsave(&conf->device_lock, flags); 359 if (!enough(conf, rdev->raid_disk)) 360 uptodate = 1; 361 spin_unlock_irqrestore(&conf->device_lock, flags); 362 } 363 if (uptodate) { 364 raid_end_bio_io(r10_bio); 365 rdev_dec_pending(rdev, conf->mddev); 366 } else { 367 /* 368 * oops, read error - keep the refcount on the rdev 369 */ 370 char b[BDEVNAME_SIZE]; 371 printk_ratelimited(KERN_ERR 372 "md/raid10:%s: %s: rescheduling sector %llu\n", 373 mdname(conf->mddev), 374 bdevname(rdev->bdev, b), 375 (unsigned long long)r10_bio->sector); 376 set_bit(R10BIO_ReadError, &r10_bio->state); 377 reschedule_retry(r10_bio); 378 } 379 } 380 381 static void close_write(struct r10bio *r10_bio) 382 { 383 /* clear the bitmap if all writes complete successfully */ 384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 385 r10_bio->sectors, 386 !test_bit(R10BIO_Degraded, &r10_bio->state), 387 0); 388 md_write_end(r10_bio->mddev); 389 } 390 391 static void one_write_done(struct r10bio *r10_bio) 392 { 393 if (atomic_dec_and_test(&r10_bio->remaining)) { 394 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 395 reschedule_retry(r10_bio); 396 else { 397 close_write(r10_bio); 398 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 399 reschedule_retry(r10_bio); 400 else 401 raid_end_bio_io(r10_bio); 402 } 403 } 404 } 405 406 static void raid10_end_write_request(struct bio *bio, int error) 407 { 408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 409 struct r10bio *r10_bio = bio->bi_private; 410 int dev; 411 int dec_rdev = 1; 412 struct r10conf *conf = r10_bio->mddev->private; 413 int slot, repl; 414 struct md_rdev *rdev = NULL; 415 416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 417 418 if (repl) 419 rdev = conf->mirrors[dev].replacement; 420 if (!rdev) { 421 smp_rmb(); 422 repl = 0; 423 rdev = conf->mirrors[dev].rdev; 424 } 425 /* 426 * this branch is our 'one mirror IO has finished' event handler: 427 */ 428 if (!uptodate) { 429 if (repl) 430 /* Never record new bad blocks to replacement, 431 * just fail it. 432 */ 433 md_error(rdev->mddev, rdev); 434 else { 435 set_bit(WriteErrorSeen, &rdev->flags); 436 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 437 set_bit(MD_RECOVERY_NEEDED, 438 &rdev->mddev->recovery); 439 set_bit(R10BIO_WriteError, &r10_bio->state); 440 dec_rdev = 0; 441 } 442 } else { 443 /* 444 * Set R10BIO_Uptodate in our master bio, so that 445 * we will return a good error code for to the higher 446 * levels even if IO on some other mirrored buffer fails. 447 * 448 * The 'master' represents the composite IO operation to 449 * user-side. So if something waits for IO, then it will 450 * wait for the 'master' bio. 451 */ 452 sector_t first_bad; 453 int bad_sectors; 454 455 set_bit(R10BIO_Uptodate, &r10_bio->state); 456 457 /* Maybe we can clear some bad blocks. */ 458 if (is_badblock(rdev, 459 r10_bio->devs[slot].addr, 460 r10_bio->sectors, 461 &first_bad, &bad_sectors)) { 462 bio_put(bio); 463 if (repl) 464 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 465 else 466 r10_bio->devs[slot].bio = IO_MADE_GOOD; 467 dec_rdev = 0; 468 set_bit(R10BIO_MadeGood, &r10_bio->state); 469 } 470 } 471 472 /* 473 * 474 * Let's see if all mirrored write operations have finished 475 * already. 476 */ 477 one_write_done(r10_bio); 478 if (dec_rdev) 479 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 480 } 481 482 /* 483 * RAID10 layout manager 484 * As well as the chunksize and raid_disks count, there are two 485 * parameters: near_copies and far_copies. 486 * near_copies * far_copies must be <= raid_disks. 487 * Normally one of these will be 1. 488 * If both are 1, we get raid0. 489 * If near_copies == raid_disks, we get raid1. 490 * 491 * Chunks are laid out in raid0 style with near_copies copies of the 492 * first chunk, followed by near_copies copies of the next chunk and 493 * so on. 494 * If far_copies > 1, then after 1/far_copies of the array has been assigned 495 * as described above, we start again with a device offset of near_copies. 496 * So we effectively have another copy of the whole array further down all 497 * the drives, but with blocks on different drives. 498 * With this layout, and block is never stored twice on the one device. 499 * 500 * raid10_find_phys finds the sector offset of a given virtual sector 501 * on each device that it is on. 502 * 503 * raid10_find_virt does the reverse mapping, from a device and a 504 * sector offset to a virtual address 505 */ 506 507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 508 { 509 int n,f; 510 sector_t sector; 511 sector_t chunk; 512 sector_t stripe; 513 int dev; 514 515 int slot = 0; 516 517 /* now calculate first sector/dev */ 518 chunk = r10bio->sector >> conf->chunk_shift; 519 sector = r10bio->sector & conf->chunk_mask; 520 521 chunk *= conf->near_copies; 522 stripe = chunk; 523 dev = sector_div(stripe, conf->raid_disks); 524 if (conf->far_offset) 525 stripe *= conf->far_copies; 526 527 sector += stripe << conf->chunk_shift; 528 529 /* and calculate all the others */ 530 for (n=0; n < conf->near_copies; n++) { 531 int d = dev; 532 sector_t s = sector; 533 r10bio->devs[slot].addr = sector; 534 r10bio->devs[slot].devnum = d; 535 slot++; 536 537 for (f = 1; f < conf->far_copies; f++) { 538 d += conf->near_copies; 539 if (d >= conf->raid_disks) 540 d -= conf->raid_disks; 541 s += conf->stride; 542 r10bio->devs[slot].devnum = d; 543 r10bio->devs[slot].addr = s; 544 slot++; 545 } 546 dev++; 547 if (dev >= conf->raid_disks) { 548 dev = 0; 549 sector += (conf->chunk_mask + 1); 550 } 551 } 552 BUG_ON(slot != conf->copies); 553 } 554 555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 556 { 557 sector_t offset, chunk, vchunk; 558 559 offset = sector & conf->chunk_mask; 560 if (conf->far_offset) { 561 int fc; 562 chunk = sector >> conf->chunk_shift; 563 fc = sector_div(chunk, conf->far_copies); 564 dev -= fc * conf->near_copies; 565 if (dev < 0) 566 dev += conf->raid_disks; 567 } else { 568 while (sector >= conf->stride) { 569 sector -= conf->stride; 570 if (dev < conf->near_copies) 571 dev += conf->raid_disks - conf->near_copies; 572 else 573 dev -= conf->near_copies; 574 } 575 chunk = sector >> conf->chunk_shift; 576 } 577 vchunk = chunk * conf->raid_disks + dev; 578 sector_div(vchunk, conf->near_copies); 579 return (vchunk << conf->chunk_shift) + offset; 580 } 581 582 /** 583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 584 * @q: request queue 585 * @bvm: properties of new bio 586 * @biovec: the request that could be merged to it. 587 * 588 * Return amount of bytes we can accept at this offset 589 * If near_copies == raid_disk, there are no striping issues, 590 * but in that case, the function isn't called at all. 591 */ 592 static int raid10_mergeable_bvec(struct request_queue *q, 593 struct bvec_merge_data *bvm, 594 struct bio_vec *biovec) 595 { 596 struct mddev *mddev = q->queuedata; 597 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 598 int max; 599 unsigned int chunk_sectors = mddev->chunk_sectors; 600 unsigned int bio_sectors = bvm->bi_size >> 9; 601 602 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 603 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 604 if (max <= biovec->bv_len && bio_sectors == 0) 605 return biovec->bv_len; 606 else 607 return max; 608 } 609 610 /* 611 * This routine returns the disk from which the requested read should 612 * be done. There is a per-array 'next expected sequential IO' sector 613 * number - if this matches on the next IO then we use the last disk. 614 * There is also a per-disk 'last know head position' sector that is 615 * maintained from IRQ contexts, both the normal and the resync IO 616 * completion handlers update this position correctly. If there is no 617 * perfect sequential match then we pick the disk whose head is closest. 618 * 619 * If there are 2 mirrors in the same 2 devices, performance degrades 620 * because position is mirror, not device based. 621 * 622 * The rdev for the device selected will have nr_pending incremented. 623 */ 624 625 /* 626 * FIXME: possibly should rethink readbalancing and do it differently 627 * depending on near_copies / far_copies geometry. 628 */ 629 static struct md_rdev *read_balance(struct r10conf *conf, 630 struct r10bio *r10_bio, 631 int *max_sectors) 632 { 633 const sector_t this_sector = r10_bio->sector; 634 int disk, slot; 635 int sectors = r10_bio->sectors; 636 int best_good_sectors; 637 sector_t new_distance, best_dist; 638 struct md_rdev *rdev, *best_rdev; 639 int do_balance; 640 int best_slot; 641 642 raid10_find_phys(conf, r10_bio); 643 rcu_read_lock(); 644 retry: 645 sectors = r10_bio->sectors; 646 best_slot = -1; 647 best_rdev = NULL; 648 best_dist = MaxSector; 649 best_good_sectors = 0; 650 do_balance = 1; 651 /* 652 * Check if we can balance. We can balance on the whole 653 * device if no resync is going on (recovery is ok), or below 654 * the resync window. We take the first readable disk when 655 * above the resync window. 656 */ 657 if (conf->mddev->recovery_cp < MaxSector 658 && (this_sector + sectors >= conf->next_resync)) 659 do_balance = 0; 660 661 for (slot = 0; slot < conf->copies ; slot++) { 662 sector_t first_bad; 663 int bad_sectors; 664 sector_t dev_sector; 665 666 if (r10_bio->devs[slot].bio == IO_BLOCKED) 667 continue; 668 disk = r10_bio->devs[slot].devnum; 669 rdev = rcu_dereference(conf->mirrors[disk].replacement); 670 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 671 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 672 rdev = rcu_dereference(conf->mirrors[disk].rdev); 673 if (rdev == NULL) 674 continue; 675 if (test_bit(Faulty, &rdev->flags)) 676 continue; 677 if (!test_bit(In_sync, &rdev->flags) && 678 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 679 continue; 680 681 dev_sector = r10_bio->devs[slot].addr; 682 if (is_badblock(rdev, dev_sector, sectors, 683 &first_bad, &bad_sectors)) { 684 if (best_dist < MaxSector) 685 /* Already have a better slot */ 686 continue; 687 if (first_bad <= dev_sector) { 688 /* Cannot read here. If this is the 689 * 'primary' device, then we must not read 690 * beyond 'bad_sectors' from another device. 691 */ 692 bad_sectors -= (dev_sector - first_bad); 693 if (!do_balance && sectors > bad_sectors) 694 sectors = bad_sectors; 695 if (best_good_sectors > sectors) 696 best_good_sectors = sectors; 697 } else { 698 sector_t good_sectors = 699 first_bad - dev_sector; 700 if (good_sectors > best_good_sectors) { 701 best_good_sectors = good_sectors; 702 best_slot = slot; 703 best_rdev = rdev; 704 } 705 if (!do_balance) 706 /* Must read from here */ 707 break; 708 } 709 continue; 710 } else 711 best_good_sectors = sectors; 712 713 if (!do_balance) 714 break; 715 716 /* This optimisation is debatable, and completely destroys 717 * sequential read speed for 'far copies' arrays. So only 718 * keep it for 'near' arrays, and review those later. 719 */ 720 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 721 break; 722 723 /* for far > 1 always use the lowest address */ 724 if (conf->far_copies > 1) 725 new_distance = r10_bio->devs[slot].addr; 726 else 727 new_distance = abs(r10_bio->devs[slot].addr - 728 conf->mirrors[disk].head_position); 729 if (new_distance < best_dist) { 730 best_dist = new_distance; 731 best_slot = slot; 732 best_rdev = rdev; 733 } 734 } 735 if (slot >= conf->copies) { 736 slot = best_slot; 737 rdev = best_rdev; 738 } 739 740 if (slot >= 0) { 741 atomic_inc(&rdev->nr_pending); 742 if (test_bit(Faulty, &rdev->flags)) { 743 /* Cannot risk returning a device that failed 744 * before we inc'ed nr_pending 745 */ 746 rdev_dec_pending(rdev, conf->mddev); 747 goto retry; 748 } 749 r10_bio->read_slot = slot; 750 } else 751 rdev = NULL; 752 rcu_read_unlock(); 753 *max_sectors = best_good_sectors; 754 755 return rdev; 756 } 757 758 static int raid10_congested(void *data, int bits) 759 { 760 struct mddev *mddev = data; 761 struct r10conf *conf = mddev->private; 762 int i, ret = 0; 763 764 if ((bits & (1 << BDI_async_congested)) && 765 conf->pending_count >= max_queued_requests) 766 return 1; 767 768 if (mddev_congested(mddev, bits)) 769 return 1; 770 rcu_read_lock(); 771 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 772 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 773 if (rdev && !test_bit(Faulty, &rdev->flags)) { 774 struct request_queue *q = bdev_get_queue(rdev->bdev); 775 776 ret |= bdi_congested(&q->backing_dev_info, bits); 777 } 778 } 779 rcu_read_unlock(); 780 return ret; 781 } 782 783 static void flush_pending_writes(struct r10conf *conf) 784 { 785 /* Any writes that have been queued but are awaiting 786 * bitmap updates get flushed here. 787 */ 788 spin_lock_irq(&conf->device_lock); 789 790 if (conf->pending_bio_list.head) { 791 struct bio *bio; 792 bio = bio_list_get(&conf->pending_bio_list); 793 conf->pending_count = 0; 794 spin_unlock_irq(&conf->device_lock); 795 /* flush any pending bitmap writes to disk 796 * before proceeding w/ I/O */ 797 bitmap_unplug(conf->mddev->bitmap); 798 wake_up(&conf->wait_barrier); 799 800 while (bio) { /* submit pending writes */ 801 struct bio *next = bio->bi_next; 802 bio->bi_next = NULL; 803 generic_make_request(bio); 804 bio = next; 805 } 806 } else 807 spin_unlock_irq(&conf->device_lock); 808 } 809 810 /* Barriers.... 811 * Sometimes we need to suspend IO while we do something else, 812 * either some resync/recovery, or reconfigure the array. 813 * To do this we raise a 'barrier'. 814 * The 'barrier' is a counter that can be raised multiple times 815 * to count how many activities are happening which preclude 816 * normal IO. 817 * We can only raise the barrier if there is no pending IO. 818 * i.e. if nr_pending == 0. 819 * We choose only to raise the barrier if no-one is waiting for the 820 * barrier to go down. This means that as soon as an IO request 821 * is ready, no other operations which require a barrier will start 822 * until the IO request has had a chance. 823 * 824 * So: regular IO calls 'wait_barrier'. When that returns there 825 * is no backgroup IO happening, It must arrange to call 826 * allow_barrier when it has finished its IO. 827 * backgroup IO calls must call raise_barrier. Once that returns 828 * there is no normal IO happeing. It must arrange to call 829 * lower_barrier when the particular background IO completes. 830 */ 831 832 static void raise_barrier(struct r10conf *conf, int force) 833 { 834 BUG_ON(force && !conf->barrier); 835 spin_lock_irq(&conf->resync_lock); 836 837 /* Wait until no block IO is waiting (unless 'force') */ 838 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 839 conf->resync_lock, ); 840 841 /* block any new IO from starting */ 842 conf->barrier++; 843 844 /* Now wait for all pending IO to complete */ 845 wait_event_lock_irq(conf->wait_barrier, 846 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 847 conf->resync_lock, ); 848 849 spin_unlock_irq(&conf->resync_lock); 850 } 851 852 static void lower_barrier(struct r10conf *conf) 853 { 854 unsigned long flags; 855 spin_lock_irqsave(&conf->resync_lock, flags); 856 conf->barrier--; 857 spin_unlock_irqrestore(&conf->resync_lock, flags); 858 wake_up(&conf->wait_barrier); 859 } 860 861 static void wait_barrier(struct r10conf *conf) 862 { 863 spin_lock_irq(&conf->resync_lock); 864 if (conf->barrier) { 865 conf->nr_waiting++; 866 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 867 conf->resync_lock, 868 ); 869 conf->nr_waiting--; 870 } 871 conf->nr_pending++; 872 spin_unlock_irq(&conf->resync_lock); 873 } 874 875 static void allow_barrier(struct r10conf *conf) 876 { 877 unsigned long flags; 878 spin_lock_irqsave(&conf->resync_lock, flags); 879 conf->nr_pending--; 880 spin_unlock_irqrestore(&conf->resync_lock, flags); 881 wake_up(&conf->wait_barrier); 882 } 883 884 static void freeze_array(struct r10conf *conf) 885 { 886 /* stop syncio and normal IO and wait for everything to 887 * go quiet. 888 * We increment barrier and nr_waiting, and then 889 * wait until nr_pending match nr_queued+1 890 * This is called in the context of one normal IO request 891 * that has failed. Thus any sync request that might be pending 892 * will be blocked by nr_pending, and we need to wait for 893 * pending IO requests to complete or be queued for re-try. 894 * Thus the number queued (nr_queued) plus this request (1) 895 * must match the number of pending IOs (nr_pending) before 896 * we continue. 897 */ 898 spin_lock_irq(&conf->resync_lock); 899 conf->barrier++; 900 conf->nr_waiting++; 901 wait_event_lock_irq(conf->wait_barrier, 902 conf->nr_pending == conf->nr_queued+1, 903 conf->resync_lock, 904 flush_pending_writes(conf)); 905 906 spin_unlock_irq(&conf->resync_lock); 907 } 908 909 static void unfreeze_array(struct r10conf *conf) 910 { 911 /* reverse the effect of the freeze */ 912 spin_lock_irq(&conf->resync_lock); 913 conf->barrier--; 914 conf->nr_waiting--; 915 wake_up(&conf->wait_barrier); 916 spin_unlock_irq(&conf->resync_lock); 917 } 918 919 static void make_request(struct mddev *mddev, struct bio * bio) 920 { 921 struct r10conf *conf = mddev->private; 922 struct r10bio *r10_bio; 923 struct bio *read_bio; 924 int i; 925 int chunk_sects = conf->chunk_mask + 1; 926 const int rw = bio_data_dir(bio); 927 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 928 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 929 unsigned long flags; 930 struct md_rdev *blocked_rdev; 931 int plugged; 932 int sectors_handled; 933 int max_sectors; 934 935 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 936 md_flush_request(mddev, bio); 937 return; 938 } 939 940 /* If this request crosses a chunk boundary, we need to 941 * split it. This will only happen for 1 PAGE (or less) requests. 942 */ 943 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 944 > chunk_sects && 945 conf->near_copies < conf->raid_disks)) { 946 struct bio_pair *bp; 947 /* Sanity check -- queue functions should prevent this happening */ 948 if (bio->bi_vcnt != 1 || 949 bio->bi_idx != 0) 950 goto bad_map; 951 /* This is a one page bio that upper layers 952 * refuse to split for us, so we need to split it. 953 */ 954 bp = bio_split(bio, 955 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 956 957 /* Each of these 'make_request' calls will call 'wait_barrier'. 958 * If the first succeeds but the second blocks due to the resync 959 * thread raising the barrier, we will deadlock because the 960 * IO to the underlying device will be queued in generic_make_request 961 * and will never complete, so will never reduce nr_pending. 962 * So increment nr_waiting here so no new raise_barriers will 963 * succeed, and so the second wait_barrier cannot block. 964 */ 965 spin_lock_irq(&conf->resync_lock); 966 conf->nr_waiting++; 967 spin_unlock_irq(&conf->resync_lock); 968 969 make_request(mddev, &bp->bio1); 970 make_request(mddev, &bp->bio2); 971 972 spin_lock_irq(&conf->resync_lock); 973 conf->nr_waiting--; 974 wake_up(&conf->wait_barrier); 975 spin_unlock_irq(&conf->resync_lock); 976 977 bio_pair_release(bp); 978 return; 979 bad_map: 980 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 981 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 982 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 983 984 bio_io_error(bio); 985 return; 986 } 987 988 md_write_start(mddev, bio); 989 990 /* 991 * Register the new request and wait if the reconstruction 992 * thread has put up a bar for new requests. 993 * Continue immediately if no resync is active currently. 994 */ 995 wait_barrier(conf); 996 997 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 998 999 r10_bio->master_bio = bio; 1000 r10_bio->sectors = bio->bi_size >> 9; 1001 1002 r10_bio->mddev = mddev; 1003 r10_bio->sector = bio->bi_sector; 1004 r10_bio->state = 0; 1005 1006 /* We might need to issue multiple reads to different 1007 * devices if there are bad blocks around, so we keep 1008 * track of the number of reads in bio->bi_phys_segments. 1009 * If this is 0, there is only one r10_bio and no locking 1010 * will be needed when the request completes. If it is 1011 * non-zero, then it is the number of not-completed requests. 1012 */ 1013 bio->bi_phys_segments = 0; 1014 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1015 1016 if (rw == READ) { 1017 /* 1018 * read balancing logic: 1019 */ 1020 struct md_rdev *rdev; 1021 int slot; 1022 1023 read_again: 1024 rdev = read_balance(conf, r10_bio, &max_sectors); 1025 if (!rdev) { 1026 raid_end_bio_io(r10_bio); 1027 return; 1028 } 1029 slot = r10_bio->read_slot; 1030 1031 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1032 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1033 max_sectors); 1034 1035 r10_bio->devs[slot].bio = read_bio; 1036 r10_bio->devs[slot].rdev = rdev; 1037 1038 read_bio->bi_sector = r10_bio->devs[slot].addr + 1039 rdev->data_offset; 1040 read_bio->bi_bdev = rdev->bdev; 1041 read_bio->bi_end_io = raid10_end_read_request; 1042 read_bio->bi_rw = READ | do_sync; 1043 read_bio->bi_private = r10_bio; 1044 1045 if (max_sectors < r10_bio->sectors) { 1046 /* Could not read all from this device, so we will 1047 * need another r10_bio. 1048 */ 1049 sectors_handled = (r10_bio->sectors + max_sectors 1050 - bio->bi_sector); 1051 r10_bio->sectors = max_sectors; 1052 spin_lock_irq(&conf->device_lock); 1053 if (bio->bi_phys_segments == 0) 1054 bio->bi_phys_segments = 2; 1055 else 1056 bio->bi_phys_segments++; 1057 spin_unlock(&conf->device_lock); 1058 /* Cannot call generic_make_request directly 1059 * as that will be queued in __generic_make_request 1060 * and subsequent mempool_alloc might block 1061 * waiting for it. so hand bio over to raid10d. 1062 */ 1063 reschedule_retry(r10_bio); 1064 1065 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1066 1067 r10_bio->master_bio = bio; 1068 r10_bio->sectors = ((bio->bi_size >> 9) 1069 - sectors_handled); 1070 r10_bio->state = 0; 1071 r10_bio->mddev = mddev; 1072 r10_bio->sector = bio->bi_sector + sectors_handled; 1073 goto read_again; 1074 } else 1075 generic_make_request(read_bio); 1076 return; 1077 } 1078 1079 /* 1080 * WRITE: 1081 */ 1082 if (conf->pending_count >= max_queued_requests) { 1083 md_wakeup_thread(mddev->thread); 1084 wait_event(conf->wait_barrier, 1085 conf->pending_count < max_queued_requests); 1086 } 1087 /* first select target devices under rcu_lock and 1088 * inc refcount on their rdev. Record them by setting 1089 * bios[x] to bio 1090 * If there are known/acknowledged bad blocks on any device 1091 * on which we have seen a write error, we want to avoid 1092 * writing to those blocks. This potentially requires several 1093 * writes to write around the bad blocks. Each set of writes 1094 * gets its own r10_bio with a set of bios attached. The number 1095 * of r10_bios is recored in bio->bi_phys_segments just as with 1096 * the read case. 1097 */ 1098 plugged = mddev_check_plugged(mddev); 1099 1100 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1101 raid10_find_phys(conf, r10_bio); 1102 retry_write: 1103 blocked_rdev = NULL; 1104 rcu_read_lock(); 1105 max_sectors = r10_bio->sectors; 1106 1107 for (i = 0; i < conf->copies; i++) { 1108 int d = r10_bio->devs[i].devnum; 1109 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1110 struct md_rdev *rrdev = rcu_dereference( 1111 conf->mirrors[d].replacement); 1112 if (rdev == rrdev) 1113 rrdev = NULL; 1114 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1115 atomic_inc(&rdev->nr_pending); 1116 blocked_rdev = rdev; 1117 break; 1118 } 1119 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1120 atomic_inc(&rrdev->nr_pending); 1121 blocked_rdev = rrdev; 1122 break; 1123 } 1124 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1125 rrdev = NULL; 1126 1127 r10_bio->devs[i].bio = NULL; 1128 r10_bio->devs[i].repl_bio = NULL; 1129 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1130 set_bit(R10BIO_Degraded, &r10_bio->state); 1131 continue; 1132 } 1133 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1134 sector_t first_bad; 1135 sector_t dev_sector = r10_bio->devs[i].addr; 1136 int bad_sectors; 1137 int is_bad; 1138 1139 is_bad = is_badblock(rdev, dev_sector, 1140 max_sectors, 1141 &first_bad, &bad_sectors); 1142 if (is_bad < 0) { 1143 /* Mustn't write here until the bad block 1144 * is acknowledged 1145 */ 1146 atomic_inc(&rdev->nr_pending); 1147 set_bit(BlockedBadBlocks, &rdev->flags); 1148 blocked_rdev = rdev; 1149 break; 1150 } 1151 if (is_bad && first_bad <= dev_sector) { 1152 /* Cannot write here at all */ 1153 bad_sectors -= (dev_sector - first_bad); 1154 if (bad_sectors < max_sectors) 1155 /* Mustn't write more than bad_sectors 1156 * to other devices yet 1157 */ 1158 max_sectors = bad_sectors; 1159 /* We don't set R10BIO_Degraded as that 1160 * only applies if the disk is missing, 1161 * so it might be re-added, and we want to 1162 * know to recover this chunk. 1163 * In this case the device is here, and the 1164 * fact that this chunk is not in-sync is 1165 * recorded in the bad block log. 1166 */ 1167 continue; 1168 } 1169 if (is_bad) { 1170 int good_sectors = first_bad - dev_sector; 1171 if (good_sectors < max_sectors) 1172 max_sectors = good_sectors; 1173 } 1174 } 1175 r10_bio->devs[i].bio = bio; 1176 atomic_inc(&rdev->nr_pending); 1177 if (rrdev) { 1178 r10_bio->devs[i].repl_bio = bio; 1179 atomic_inc(&rrdev->nr_pending); 1180 } 1181 } 1182 rcu_read_unlock(); 1183 1184 if (unlikely(blocked_rdev)) { 1185 /* Have to wait for this device to get unblocked, then retry */ 1186 int j; 1187 int d; 1188 1189 for (j = 0; j < i; j++) { 1190 if (r10_bio->devs[j].bio) { 1191 d = r10_bio->devs[j].devnum; 1192 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1193 } 1194 if (r10_bio->devs[j].repl_bio) { 1195 struct md_rdev *rdev; 1196 d = r10_bio->devs[j].devnum; 1197 rdev = conf->mirrors[d].replacement; 1198 if (!rdev) { 1199 /* Race with remove_disk */ 1200 smp_mb(); 1201 rdev = conf->mirrors[d].rdev; 1202 } 1203 rdev_dec_pending(rdev, mddev); 1204 } 1205 } 1206 allow_barrier(conf); 1207 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1208 wait_barrier(conf); 1209 goto retry_write; 1210 } 1211 1212 if (max_sectors < r10_bio->sectors) { 1213 /* We are splitting this into multiple parts, so 1214 * we need to prepare for allocating another r10_bio. 1215 */ 1216 r10_bio->sectors = max_sectors; 1217 spin_lock_irq(&conf->device_lock); 1218 if (bio->bi_phys_segments == 0) 1219 bio->bi_phys_segments = 2; 1220 else 1221 bio->bi_phys_segments++; 1222 spin_unlock_irq(&conf->device_lock); 1223 } 1224 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1225 1226 atomic_set(&r10_bio->remaining, 1); 1227 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1228 1229 for (i = 0; i < conf->copies; i++) { 1230 struct bio *mbio; 1231 int d = r10_bio->devs[i].devnum; 1232 if (!r10_bio->devs[i].bio) 1233 continue; 1234 1235 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1236 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1237 max_sectors); 1238 r10_bio->devs[i].bio = mbio; 1239 1240 mbio->bi_sector = (r10_bio->devs[i].addr+ 1241 conf->mirrors[d].rdev->data_offset); 1242 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1243 mbio->bi_end_io = raid10_end_write_request; 1244 mbio->bi_rw = WRITE | do_sync | do_fua; 1245 mbio->bi_private = r10_bio; 1246 1247 atomic_inc(&r10_bio->remaining); 1248 spin_lock_irqsave(&conf->device_lock, flags); 1249 bio_list_add(&conf->pending_bio_list, mbio); 1250 conf->pending_count++; 1251 spin_unlock_irqrestore(&conf->device_lock, flags); 1252 1253 if (!r10_bio->devs[i].repl_bio) 1254 continue; 1255 1256 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1257 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1258 max_sectors); 1259 r10_bio->devs[i].repl_bio = mbio; 1260 1261 /* We are actively writing to the original device 1262 * so it cannot disappear, so the replacement cannot 1263 * become NULL here 1264 */ 1265 mbio->bi_sector = (r10_bio->devs[i].addr+ 1266 conf->mirrors[d].replacement->data_offset); 1267 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1268 mbio->bi_end_io = raid10_end_write_request; 1269 mbio->bi_rw = WRITE | do_sync | do_fua; 1270 mbio->bi_private = r10_bio; 1271 1272 atomic_inc(&r10_bio->remaining); 1273 spin_lock_irqsave(&conf->device_lock, flags); 1274 bio_list_add(&conf->pending_bio_list, mbio); 1275 conf->pending_count++; 1276 spin_unlock_irqrestore(&conf->device_lock, flags); 1277 } 1278 1279 /* Don't remove the bias on 'remaining' (one_write_done) until 1280 * after checking if we need to go around again. 1281 */ 1282 1283 if (sectors_handled < (bio->bi_size >> 9)) { 1284 one_write_done(r10_bio); 1285 /* We need another r10_bio. It has already been counted 1286 * in bio->bi_phys_segments. 1287 */ 1288 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1289 1290 r10_bio->master_bio = bio; 1291 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1292 1293 r10_bio->mddev = mddev; 1294 r10_bio->sector = bio->bi_sector + sectors_handled; 1295 r10_bio->state = 0; 1296 goto retry_write; 1297 } 1298 one_write_done(r10_bio); 1299 1300 /* In case raid10d snuck in to freeze_array */ 1301 wake_up(&conf->wait_barrier); 1302 1303 if (do_sync || !mddev->bitmap || !plugged) 1304 md_wakeup_thread(mddev->thread); 1305 } 1306 1307 static void status(struct seq_file *seq, struct mddev *mddev) 1308 { 1309 struct r10conf *conf = mddev->private; 1310 int i; 1311 1312 if (conf->near_copies < conf->raid_disks) 1313 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1314 if (conf->near_copies > 1) 1315 seq_printf(seq, " %d near-copies", conf->near_copies); 1316 if (conf->far_copies > 1) { 1317 if (conf->far_offset) 1318 seq_printf(seq, " %d offset-copies", conf->far_copies); 1319 else 1320 seq_printf(seq, " %d far-copies", conf->far_copies); 1321 } 1322 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1323 conf->raid_disks - mddev->degraded); 1324 for (i = 0; i < conf->raid_disks; i++) 1325 seq_printf(seq, "%s", 1326 conf->mirrors[i].rdev && 1327 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1328 seq_printf(seq, "]"); 1329 } 1330 1331 /* check if there are enough drives for 1332 * every block to appear on atleast one. 1333 * Don't consider the device numbered 'ignore' 1334 * as we might be about to remove it. 1335 */ 1336 static int enough(struct r10conf *conf, int ignore) 1337 { 1338 int first = 0; 1339 1340 do { 1341 int n = conf->copies; 1342 int cnt = 0; 1343 while (n--) { 1344 if (conf->mirrors[first].rdev && 1345 first != ignore) 1346 cnt++; 1347 first = (first+1) % conf->raid_disks; 1348 } 1349 if (cnt == 0) 1350 return 0; 1351 } while (first != 0); 1352 return 1; 1353 } 1354 1355 static void error(struct mddev *mddev, struct md_rdev *rdev) 1356 { 1357 char b[BDEVNAME_SIZE]; 1358 struct r10conf *conf = mddev->private; 1359 1360 /* 1361 * If it is not operational, then we have already marked it as dead 1362 * else if it is the last working disks, ignore the error, let the 1363 * next level up know. 1364 * else mark the drive as failed 1365 */ 1366 if (test_bit(In_sync, &rdev->flags) 1367 && !enough(conf, rdev->raid_disk)) 1368 /* 1369 * Don't fail the drive, just return an IO error. 1370 */ 1371 return; 1372 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1373 unsigned long flags; 1374 spin_lock_irqsave(&conf->device_lock, flags); 1375 mddev->degraded++; 1376 spin_unlock_irqrestore(&conf->device_lock, flags); 1377 /* 1378 * if recovery is running, make sure it aborts. 1379 */ 1380 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1381 } 1382 set_bit(Blocked, &rdev->flags); 1383 set_bit(Faulty, &rdev->flags); 1384 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1385 printk(KERN_ALERT 1386 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1387 "md/raid10:%s: Operation continuing on %d devices.\n", 1388 mdname(mddev), bdevname(rdev->bdev, b), 1389 mdname(mddev), conf->raid_disks - mddev->degraded); 1390 } 1391 1392 static void print_conf(struct r10conf *conf) 1393 { 1394 int i; 1395 struct mirror_info *tmp; 1396 1397 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1398 if (!conf) { 1399 printk(KERN_DEBUG "(!conf)\n"); 1400 return; 1401 } 1402 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1403 conf->raid_disks); 1404 1405 for (i = 0; i < conf->raid_disks; i++) { 1406 char b[BDEVNAME_SIZE]; 1407 tmp = conf->mirrors + i; 1408 if (tmp->rdev) 1409 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1410 i, !test_bit(In_sync, &tmp->rdev->flags), 1411 !test_bit(Faulty, &tmp->rdev->flags), 1412 bdevname(tmp->rdev->bdev,b)); 1413 } 1414 } 1415 1416 static void close_sync(struct r10conf *conf) 1417 { 1418 wait_barrier(conf); 1419 allow_barrier(conf); 1420 1421 mempool_destroy(conf->r10buf_pool); 1422 conf->r10buf_pool = NULL; 1423 } 1424 1425 static int raid10_spare_active(struct mddev *mddev) 1426 { 1427 int i; 1428 struct r10conf *conf = mddev->private; 1429 struct mirror_info *tmp; 1430 int count = 0; 1431 unsigned long flags; 1432 1433 /* 1434 * Find all non-in_sync disks within the RAID10 configuration 1435 * and mark them in_sync 1436 */ 1437 for (i = 0; i < conf->raid_disks; i++) { 1438 tmp = conf->mirrors + i; 1439 if (tmp->replacement 1440 && tmp->replacement->recovery_offset == MaxSector 1441 && !test_bit(Faulty, &tmp->replacement->flags) 1442 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1443 /* Replacement has just become active */ 1444 if (!tmp->rdev 1445 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1446 count++; 1447 if (tmp->rdev) { 1448 /* Replaced device not technically faulty, 1449 * but we need to be sure it gets removed 1450 * and never re-added. 1451 */ 1452 set_bit(Faulty, &tmp->rdev->flags); 1453 sysfs_notify_dirent_safe( 1454 tmp->rdev->sysfs_state); 1455 } 1456 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1457 } else if (tmp->rdev 1458 && !test_bit(Faulty, &tmp->rdev->flags) 1459 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1460 count++; 1461 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1462 } 1463 } 1464 spin_lock_irqsave(&conf->device_lock, flags); 1465 mddev->degraded -= count; 1466 spin_unlock_irqrestore(&conf->device_lock, flags); 1467 1468 print_conf(conf); 1469 return count; 1470 } 1471 1472 1473 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1474 { 1475 struct r10conf *conf = mddev->private; 1476 int err = -EEXIST; 1477 int mirror; 1478 int first = 0; 1479 int last = conf->raid_disks - 1; 1480 1481 if (mddev->recovery_cp < MaxSector) 1482 /* only hot-add to in-sync arrays, as recovery is 1483 * very different from resync 1484 */ 1485 return -EBUSY; 1486 if (!enough(conf, -1)) 1487 return -EINVAL; 1488 1489 if (rdev->raid_disk >= 0) 1490 first = last = rdev->raid_disk; 1491 1492 if (rdev->saved_raid_disk >= first && 1493 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1494 mirror = rdev->saved_raid_disk; 1495 else 1496 mirror = first; 1497 for ( ; mirror <= last ; mirror++) { 1498 struct mirror_info *p = &conf->mirrors[mirror]; 1499 if (p->recovery_disabled == mddev->recovery_disabled) 1500 continue; 1501 if (p->rdev) { 1502 if (!test_bit(WantReplacement, &p->rdev->flags) || 1503 p->replacement != NULL) 1504 continue; 1505 clear_bit(In_sync, &rdev->flags); 1506 set_bit(Replacement, &rdev->flags); 1507 rdev->raid_disk = mirror; 1508 err = 0; 1509 disk_stack_limits(mddev->gendisk, rdev->bdev, 1510 rdev->data_offset << 9); 1511 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1512 blk_queue_max_segments(mddev->queue, 1); 1513 blk_queue_segment_boundary(mddev->queue, 1514 PAGE_CACHE_SIZE - 1); 1515 } 1516 conf->fullsync = 1; 1517 rcu_assign_pointer(p->replacement, rdev); 1518 break; 1519 } 1520 1521 disk_stack_limits(mddev->gendisk, rdev->bdev, 1522 rdev->data_offset << 9); 1523 /* as we don't honour merge_bvec_fn, we must 1524 * never risk violating it, so limit 1525 * ->max_segments to one lying with a single 1526 * page, as a one page request is never in 1527 * violation. 1528 */ 1529 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1530 blk_queue_max_segments(mddev->queue, 1); 1531 blk_queue_segment_boundary(mddev->queue, 1532 PAGE_CACHE_SIZE - 1); 1533 } 1534 1535 p->head_position = 0; 1536 p->recovery_disabled = mddev->recovery_disabled - 1; 1537 rdev->raid_disk = mirror; 1538 err = 0; 1539 if (rdev->saved_raid_disk != mirror) 1540 conf->fullsync = 1; 1541 rcu_assign_pointer(p->rdev, rdev); 1542 break; 1543 } 1544 1545 md_integrity_add_rdev(rdev, mddev); 1546 print_conf(conf); 1547 return err; 1548 } 1549 1550 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1551 { 1552 struct r10conf *conf = mddev->private; 1553 int err = 0; 1554 int number = rdev->raid_disk; 1555 struct md_rdev **rdevp; 1556 struct mirror_info *p = conf->mirrors + number; 1557 1558 print_conf(conf); 1559 if (rdev == p->rdev) 1560 rdevp = &p->rdev; 1561 else if (rdev == p->replacement) 1562 rdevp = &p->replacement; 1563 else 1564 return 0; 1565 1566 if (test_bit(In_sync, &rdev->flags) || 1567 atomic_read(&rdev->nr_pending)) { 1568 err = -EBUSY; 1569 goto abort; 1570 } 1571 /* Only remove faulty devices if recovery 1572 * is not possible. 1573 */ 1574 if (!test_bit(Faulty, &rdev->flags) && 1575 mddev->recovery_disabled != p->recovery_disabled && 1576 (!p->replacement || p->replacement == rdev) && 1577 enough(conf, -1)) { 1578 err = -EBUSY; 1579 goto abort; 1580 } 1581 *rdevp = NULL; 1582 synchronize_rcu(); 1583 if (atomic_read(&rdev->nr_pending)) { 1584 /* lost the race, try later */ 1585 err = -EBUSY; 1586 *rdevp = rdev; 1587 goto abort; 1588 } else if (p->replacement) { 1589 /* We must have just cleared 'rdev' */ 1590 p->rdev = p->replacement; 1591 clear_bit(Replacement, &p->replacement->flags); 1592 smp_mb(); /* Make sure other CPUs may see both as identical 1593 * but will never see neither -- if they are careful. 1594 */ 1595 p->replacement = NULL; 1596 clear_bit(WantReplacement, &rdev->flags); 1597 } else 1598 /* We might have just remove the Replacement as faulty 1599 * Clear the flag just in case 1600 */ 1601 clear_bit(WantReplacement, &rdev->flags); 1602 1603 err = md_integrity_register(mddev); 1604 1605 abort: 1606 1607 print_conf(conf); 1608 return err; 1609 } 1610 1611 1612 static void end_sync_read(struct bio *bio, int error) 1613 { 1614 struct r10bio *r10_bio = bio->bi_private; 1615 struct r10conf *conf = r10_bio->mddev->private; 1616 int d; 1617 1618 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1619 1620 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1621 set_bit(R10BIO_Uptodate, &r10_bio->state); 1622 else 1623 /* The write handler will notice the lack of 1624 * R10BIO_Uptodate and record any errors etc 1625 */ 1626 atomic_add(r10_bio->sectors, 1627 &conf->mirrors[d].rdev->corrected_errors); 1628 1629 /* for reconstruct, we always reschedule after a read. 1630 * for resync, only after all reads 1631 */ 1632 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1633 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1634 atomic_dec_and_test(&r10_bio->remaining)) { 1635 /* we have read all the blocks, 1636 * do the comparison in process context in raid10d 1637 */ 1638 reschedule_retry(r10_bio); 1639 } 1640 } 1641 1642 static void end_sync_request(struct r10bio *r10_bio) 1643 { 1644 struct mddev *mddev = r10_bio->mddev; 1645 1646 while (atomic_dec_and_test(&r10_bio->remaining)) { 1647 if (r10_bio->master_bio == NULL) { 1648 /* the primary of several recovery bios */ 1649 sector_t s = r10_bio->sectors; 1650 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1651 test_bit(R10BIO_WriteError, &r10_bio->state)) 1652 reschedule_retry(r10_bio); 1653 else 1654 put_buf(r10_bio); 1655 md_done_sync(mddev, s, 1); 1656 break; 1657 } else { 1658 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1659 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1660 test_bit(R10BIO_WriteError, &r10_bio->state)) 1661 reschedule_retry(r10_bio); 1662 else 1663 put_buf(r10_bio); 1664 r10_bio = r10_bio2; 1665 } 1666 } 1667 } 1668 1669 static void end_sync_write(struct bio *bio, int error) 1670 { 1671 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1672 struct r10bio *r10_bio = bio->bi_private; 1673 struct mddev *mddev = r10_bio->mddev; 1674 struct r10conf *conf = mddev->private; 1675 int d; 1676 sector_t first_bad; 1677 int bad_sectors; 1678 int slot; 1679 int repl; 1680 struct md_rdev *rdev = NULL; 1681 1682 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1683 if (repl) 1684 rdev = conf->mirrors[d].replacement; 1685 if (!rdev) { 1686 smp_mb(); 1687 rdev = conf->mirrors[d].rdev; 1688 } 1689 1690 if (!uptodate) { 1691 if (repl) 1692 md_error(mddev, rdev); 1693 else { 1694 set_bit(WriteErrorSeen, &rdev->flags); 1695 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1696 set_bit(MD_RECOVERY_NEEDED, 1697 &rdev->mddev->recovery); 1698 set_bit(R10BIO_WriteError, &r10_bio->state); 1699 } 1700 } else if (is_badblock(rdev, 1701 r10_bio->devs[slot].addr, 1702 r10_bio->sectors, 1703 &first_bad, &bad_sectors)) 1704 set_bit(R10BIO_MadeGood, &r10_bio->state); 1705 1706 rdev_dec_pending(rdev, mddev); 1707 1708 end_sync_request(r10_bio); 1709 } 1710 1711 /* 1712 * Note: sync and recover and handled very differently for raid10 1713 * This code is for resync. 1714 * For resync, we read through virtual addresses and read all blocks. 1715 * If there is any error, we schedule a write. The lowest numbered 1716 * drive is authoritative. 1717 * However requests come for physical address, so we need to map. 1718 * For every physical address there are raid_disks/copies virtual addresses, 1719 * which is always are least one, but is not necessarly an integer. 1720 * This means that a physical address can span multiple chunks, so we may 1721 * have to submit multiple io requests for a single sync request. 1722 */ 1723 /* 1724 * We check if all blocks are in-sync and only write to blocks that 1725 * aren't in sync 1726 */ 1727 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1728 { 1729 struct r10conf *conf = mddev->private; 1730 int i, first; 1731 struct bio *tbio, *fbio; 1732 1733 atomic_set(&r10_bio->remaining, 1); 1734 1735 /* find the first device with a block */ 1736 for (i=0; i<conf->copies; i++) 1737 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1738 break; 1739 1740 if (i == conf->copies) 1741 goto done; 1742 1743 first = i; 1744 fbio = r10_bio->devs[i].bio; 1745 1746 /* now find blocks with errors */ 1747 for (i=0 ; i < conf->copies ; i++) { 1748 int j, d; 1749 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1750 1751 tbio = r10_bio->devs[i].bio; 1752 1753 if (tbio->bi_end_io != end_sync_read) 1754 continue; 1755 if (i == first) 1756 continue; 1757 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1758 /* We know that the bi_io_vec layout is the same for 1759 * both 'first' and 'i', so we just compare them. 1760 * All vec entries are PAGE_SIZE; 1761 */ 1762 for (j = 0; j < vcnt; j++) 1763 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1764 page_address(tbio->bi_io_vec[j].bv_page), 1765 PAGE_SIZE)) 1766 break; 1767 if (j == vcnt) 1768 continue; 1769 mddev->resync_mismatches += r10_bio->sectors; 1770 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1771 /* Don't fix anything. */ 1772 continue; 1773 } 1774 /* Ok, we need to write this bio, either to correct an 1775 * inconsistency or to correct an unreadable block. 1776 * First we need to fixup bv_offset, bv_len and 1777 * bi_vecs, as the read request might have corrupted these 1778 */ 1779 tbio->bi_vcnt = vcnt; 1780 tbio->bi_size = r10_bio->sectors << 9; 1781 tbio->bi_idx = 0; 1782 tbio->bi_phys_segments = 0; 1783 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1784 tbio->bi_flags |= 1 << BIO_UPTODATE; 1785 tbio->bi_next = NULL; 1786 tbio->bi_rw = WRITE; 1787 tbio->bi_private = r10_bio; 1788 tbio->bi_sector = r10_bio->devs[i].addr; 1789 1790 for (j=0; j < vcnt ; j++) { 1791 tbio->bi_io_vec[j].bv_offset = 0; 1792 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1793 1794 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1795 page_address(fbio->bi_io_vec[j].bv_page), 1796 PAGE_SIZE); 1797 } 1798 tbio->bi_end_io = end_sync_write; 1799 1800 d = r10_bio->devs[i].devnum; 1801 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1802 atomic_inc(&r10_bio->remaining); 1803 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1804 1805 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1806 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1807 generic_make_request(tbio); 1808 } 1809 1810 /* Now write out to any replacement devices 1811 * that are active 1812 */ 1813 for (i = 0; i < conf->copies; i++) { 1814 int j, d; 1815 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1816 1817 tbio = r10_bio->devs[i].repl_bio; 1818 if (!tbio || !tbio->bi_end_io) 1819 continue; 1820 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 1821 && r10_bio->devs[i].bio != fbio) 1822 for (j = 0; j < vcnt; j++) 1823 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1824 page_address(fbio->bi_io_vec[j].bv_page), 1825 PAGE_SIZE); 1826 d = r10_bio->devs[i].devnum; 1827 atomic_inc(&r10_bio->remaining); 1828 md_sync_acct(conf->mirrors[d].replacement->bdev, 1829 tbio->bi_size >> 9); 1830 generic_make_request(tbio); 1831 } 1832 1833 done: 1834 if (atomic_dec_and_test(&r10_bio->remaining)) { 1835 md_done_sync(mddev, r10_bio->sectors, 1); 1836 put_buf(r10_bio); 1837 } 1838 } 1839 1840 /* 1841 * Now for the recovery code. 1842 * Recovery happens across physical sectors. 1843 * We recover all non-is_sync drives by finding the virtual address of 1844 * each, and then choose a working drive that also has that virt address. 1845 * There is a separate r10_bio for each non-in_sync drive. 1846 * Only the first two slots are in use. The first for reading, 1847 * The second for writing. 1848 * 1849 */ 1850 static void fix_recovery_read_error(struct r10bio *r10_bio) 1851 { 1852 /* We got a read error during recovery. 1853 * We repeat the read in smaller page-sized sections. 1854 * If a read succeeds, write it to the new device or record 1855 * a bad block if we cannot. 1856 * If a read fails, record a bad block on both old and 1857 * new devices. 1858 */ 1859 struct mddev *mddev = r10_bio->mddev; 1860 struct r10conf *conf = mddev->private; 1861 struct bio *bio = r10_bio->devs[0].bio; 1862 sector_t sect = 0; 1863 int sectors = r10_bio->sectors; 1864 int idx = 0; 1865 int dr = r10_bio->devs[0].devnum; 1866 int dw = r10_bio->devs[1].devnum; 1867 1868 while (sectors) { 1869 int s = sectors; 1870 struct md_rdev *rdev; 1871 sector_t addr; 1872 int ok; 1873 1874 if (s > (PAGE_SIZE>>9)) 1875 s = PAGE_SIZE >> 9; 1876 1877 rdev = conf->mirrors[dr].rdev; 1878 addr = r10_bio->devs[0].addr + sect, 1879 ok = sync_page_io(rdev, 1880 addr, 1881 s << 9, 1882 bio->bi_io_vec[idx].bv_page, 1883 READ, false); 1884 if (ok) { 1885 rdev = conf->mirrors[dw].rdev; 1886 addr = r10_bio->devs[1].addr + sect; 1887 ok = sync_page_io(rdev, 1888 addr, 1889 s << 9, 1890 bio->bi_io_vec[idx].bv_page, 1891 WRITE, false); 1892 if (!ok) { 1893 set_bit(WriteErrorSeen, &rdev->flags); 1894 if (!test_and_set_bit(WantReplacement, 1895 &rdev->flags)) 1896 set_bit(MD_RECOVERY_NEEDED, 1897 &rdev->mddev->recovery); 1898 } 1899 } 1900 if (!ok) { 1901 /* We don't worry if we cannot set a bad block - 1902 * it really is bad so there is no loss in not 1903 * recording it yet 1904 */ 1905 rdev_set_badblocks(rdev, addr, s, 0); 1906 1907 if (rdev != conf->mirrors[dw].rdev) { 1908 /* need bad block on destination too */ 1909 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 1910 addr = r10_bio->devs[1].addr + sect; 1911 ok = rdev_set_badblocks(rdev2, addr, s, 0); 1912 if (!ok) { 1913 /* just abort the recovery */ 1914 printk(KERN_NOTICE 1915 "md/raid10:%s: recovery aborted" 1916 " due to read error\n", 1917 mdname(mddev)); 1918 1919 conf->mirrors[dw].recovery_disabled 1920 = mddev->recovery_disabled; 1921 set_bit(MD_RECOVERY_INTR, 1922 &mddev->recovery); 1923 break; 1924 } 1925 } 1926 } 1927 1928 sectors -= s; 1929 sect += s; 1930 idx++; 1931 } 1932 } 1933 1934 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1935 { 1936 struct r10conf *conf = mddev->private; 1937 int d; 1938 struct bio *wbio, *wbio2; 1939 1940 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 1941 fix_recovery_read_error(r10_bio); 1942 end_sync_request(r10_bio); 1943 return; 1944 } 1945 1946 /* 1947 * share the pages with the first bio 1948 * and submit the write request 1949 */ 1950 d = r10_bio->devs[1].devnum; 1951 wbio = r10_bio->devs[1].bio; 1952 wbio2 = r10_bio->devs[1].repl_bio; 1953 if (wbio->bi_end_io) { 1954 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1955 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1956 generic_make_request(wbio); 1957 } 1958 if (wbio2 && wbio2->bi_end_io) { 1959 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 1960 md_sync_acct(conf->mirrors[d].replacement->bdev, 1961 wbio2->bi_size >> 9); 1962 generic_make_request(wbio2); 1963 } 1964 } 1965 1966 1967 /* 1968 * Used by fix_read_error() to decay the per rdev read_errors. 1969 * We halve the read error count for every hour that has elapsed 1970 * since the last recorded read error. 1971 * 1972 */ 1973 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 1974 { 1975 struct timespec cur_time_mon; 1976 unsigned long hours_since_last; 1977 unsigned int read_errors = atomic_read(&rdev->read_errors); 1978 1979 ktime_get_ts(&cur_time_mon); 1980 1981 if (rdev->last_read_error.tv_sec == 0 && 1982 rdev->last_read_error.tv_nsec == 0) { 1983 /* first time we've seen a read error */ 1984 rdev->last_read_error = cur_time_mon; 1985 return; 1986 } 1987 1988 hours_since_last = (cur_time_mon.tv_sec - 1989 rdev->last_read_error.tv_sec) / 3600; 1990 1991 rdev->last_read_error = cur_time_mon; 1992 1993 /* 1994 * if hours_since_last is > the number of bits in read_errors 1995 * just set read errors to 0. We do this to avoid 1996 * overflowing the shift of read_errors by hours_since_last. 1997 */ 1998 if (hours_since_last >= 8 * sizeof(read_errors)) 1999 atomic_set(&rdev->read_errors, 0); 2000 else 2001 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2002 } 2003 2004 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2005 int sectors, struct page *page, int rw) 2006 { 2007 sector_t first_bad; 2008 int bad_sectors; 2009 2010 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2011 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2012 return -1; 2013 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2014 /* success */ 2015 return 1; 2016 if (rw == WRITE) { 2017 set_bit(WriteErrorSeen, &rdev->flags); 2018 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2019 set_bit(MD_RECOVERY_NEEDED, 2020 &rdev->mddev->recovery); 2021 } 2022 /* need to record an error - either for the block or the device */ 2023 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2024 md_error(rdev->mddev, rdev); 2025 return 0; 2026 } 2027 2028 /* 2029 * This is a kernel thread which: 2030 * 2031 * 1. Retries failed read operations on working mirrors. 2032 * 2. Updates the raid superblock when problems encounter. 2033 * 3. Performs writes following reads for array synchronising. 2034 */ 2035 2036 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2037 { 2038 int sect = 0; /* Offset from r10_bio->sector */ 2039 int sectors = r10_bio->sectors; 2040 struct md_rdev*rdev; 2041 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2042 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2043 2044 /* still own a reference to this rdev, so it cannot 2045 * have been cleared recently. 2046 */ 2047 rdev = conf->mirrors[d].rdev; 2048 2049 if (test_bit(Faulty, &rdev->flags)) 2050 /* drive has already been failed, just ignore any 2051 more fix_read_error() attempts */ 2052 return; 2053 2054 check_decay_read_errors(mddev, rdev); 2055 atomic_inc(&rdev->read_errors); 2056 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2057 char b[BDEVNAME_SIZE]; 2058 bdevname(rdev->bdev, b); 2059 2060 printk(KERN_NOTICE 2061 "md/raid10:%s: %s: Raid device exceeded " 2062 "read_error threshold [cur %d:max %d]\n", 2063 mdname(mddev), b, 2064 atomic_read(&rdev->read_errors), max_read_errors); 2065 printk(KERN_NOTICE 2066 "md/raid10:%s: %s: Failing raid device\n", 2067 mdname(mddev), b); 2068 md_error(mddev, conf->mirrors[d].rdev); 2069 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2070 return; 2071 } 2072 2073 while(sectors) { 2074 int s = sectors; 2075 int sl = r10_bio->read_slot; 2076 int success = 0; 2077 int start; 2078 2079 if (s > (PAGE_SIZE>>9)) 2080 s = PAGE_SIZE >> 9; 2081 2082 rcu_read_lock(); 2083 do { 2084 sector_t first_bad; 2085 int bad_sectors; 2086 2087 d = r10_bio->devs[sl].devnum; 2088 rdev = rcu_dereference(conf->mirrors[d].rdev); 2089 if (rdev && 2090 test_bit(In_sync, &rdev->flags) && 2091 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2092 &first_bad, &bad_sectors) == 0) { 2093 atomic_inc(&rdev->nr_pending); 2094 rcu_read_unlock(); 2095 success = sync_page_io(rdev, 2096 r10_bio->devs[sl].addr + 2097 sect, 2098 s<<9, 2099 conf->tmppage, READ, false); 2100 rdev_dec_pending(rdev, mddev); 2101 rcu_read_lock(); 2102 if (success) 2103 break; 2104 } 2105 sl++; 2106 if (sl == conf->copies) 2107 sl = 0; 2108 } while (!success && sl != r10_bio->read_slot); 2109 rcu_read_unlock(); 2110 2111 if (!success) { 2112 /* Cannot read from anywhere, just mark the block 2113 * as bad on the first device to discourage future 2114 * reads. 2115 */ 2116 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2117 rdev = conf->mirrors[dn].rdev; 2118 2119 if (!rdev_set_badblocks( 2120 rdev, 2121 r10_bio->devs[r10_bio->read_slot].addr 2122 + sect, 2123 s, 0)) { 2124 md_error(mddev, rdev); 2125 r10_bio->devs[r10_bio->read_slot].bio 2126 = IO_BLOCKED; 2127 } 2128 break; 2129 } 2130 2131 start = sl; 2132 /* write it back and re-read */ 2133 rcu_read_lock(); 2134 while (sl != r10_bio->read_slot) { 2135 char b[BDEVNAME_SIZE]; 2136 2137 if (sl==0) 2138 sl = conf->copies; 2139 sl--; 2140 d = r10_bio->devs[sl].devnum; 2141 rdev = rcu_dereference(conf->mirrors[d].rdev); 2142 if (!rdev || 2143 !test_bit(In_sync, &rdev->flags)) 2144 continue; 2145 2146 atomic_inc(&rdev->nr_pending); 2147 rcu_read_unlock(); 2148 if (r10_sync_page_io(rdev, 2149 r10_bio->devs[sl].addr + 2150 sect, 2151 s<<9, conf->tmppage, WRITE) 2152 == 0) { 2153 /* Well, this device is dead */ 2154 printk(KERN_NOTICE 2155 "md/raid10:%s: read correction " 2156 "write failed" 2157 " (%d sectors at %llu on %s)\n", 2158 mdname(mddev), s, 2159 (unsigned long long)( 2160 sect + rdev->data_offset), 2161 bdevname(rdev->bdev, b)); 2162 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2163 "drive\n", 2164 mdname(mddev), 2165 bdevname(rdev->bdev, b)); 2166 } 2167 rdev_dec_pending(rdev, mddev); 2168 rcu_read_lock(); 2169 } 2170 sl = start; 2171 while (sl != r10_bio->read_slot) { 2172 char b[BDEVNAME_SIZE]; 2173 2174 if (sl==0) 2175 sl = conf->copies; 2176 sl--; 2177 d = r10_bio->devs[sl].devnum; 2178 rdev = rcu_dereference(conf->mirrors[d].rdev); 2179 if (!rdev || 2180 !test_bit(In_sync, &rdev->flags)) 2181 continue; 2182 2183 atomic_inc(&rdev->nr_pending); 2184 rcu_read_unlock(); 2185 switch (r10_sync_page_io(rdev, 2186 r10_bio->devs[sl].addr + 2187 sect, 2188 s<<9, conf->tmppage, 2189 READ)) { 2190 case 0: 2191 /* Well, this device is dead */ 2192 printk(KERN_NOTICE 2193 "md/raid10:%s: unable to read back " 2194 "corrected sectors" 2195 " (%d sectors at %llu on %s)\n", 2196 mdname(mddev), s, 2197 (unsigned long long)( 2198 sect + rdev->data_offset), 2199 bdevname(rdev->bdev, b)); 2200 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2201 "drive\n", 2202 mdname(mddev), 2203 bdevname(rdev->bdev, b)); 2204 break; 2205 case 1: 2206 printk(KERN_INFO 2207 "md/raid10:%s: read error corrected" 2208 " (%d sectors at %llu on %s)\n", 2209 mdname(mddev), s, 2210 (unsigned long long)( 2211 sect + rdev->data_offset), 2212 bdevname(rdev->bdev, b)); 2213 atomic_add(s, &rdev->corrected_errors); 2214 } 2215 2216 rdev_dec_pending(rdev, mddev); 2217 rcu_read_lock(); 2218 } 2219 rcu_read_unlock(); 2220 2221 sectors -= s; 2222 sect += s; 2223 } 2224 } 2225 2226 static void bi_complete(struct bio *bio, int error) 2227 { 2228 complete((struct completion *)bio->bi_private); 2229 } 2230 2231 static int submit_bio_wait(int rw, struct bio *bio) 2232 { 2233 struct completion event; 2234 rw |= REQ_SYNC; 2235 2236 init_completion(&event); 2237 bio->bi_private = &event; 2238 bio->bi_end_io = bi_complete; 2239 submit_bio(rw, bio); 2240 wait_for_completion(&event); 2241 2242 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2243 } 2244 2245 static int narrow_write_error(struct r10bio *r10_bio, int i) 2246 { 2247 struct bio *bio = r10_bio->master_bio; 2248 struct mddev *mddev = r10_bio->mddev; 2249 struct r10conf *conf = mddev->private; 2250 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2251 /* bio has the data to be written to slot 'i' where 2252 * we just recently had a write error. 2253 * We repeatedly clone the bio and trim down to one block, 2254 * then try the write. Where the write fails we record 2255 * a bad block. 2256 * It is conceivable that the bio doesn't exactly align with 2257 * blocks. We must handle this. 2258 * 2259 * We currently own a reference to the rdev. 2260 */ 2261 2262 int block_sectors; 2263 sector_t sector; 2264 int sectors; 2265 int sect_to_write = r10_bio->sectors; 2266 int ok = 1; 2267 2268 if (rdev->badblocks.shift < 0) 2269 return 0; 2270 2271 block_sectors = 1 << rdev->badblocks.shift; 2272 sector = r10_bio->sector; 2273 sectors = ((r10_bio->sector + block_sectors) 2274 & ~(sector_t)(block_sectors - 1)) 2275 - sector; 2276 2277 while (sect_to_write) { 2278 struct bio *wbio; 2279 if (sectors > sect_to_write) 2280 sectors = sect_to_write; 2281 /* Write at 'sector' for 'sectors' */ 2282 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2283 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2284 wbio->bi_sector = (r10_bio->devs[i].addr+ 2285 rdev->data_offset+ 2286 (sector - r10_bio->sector)); 2287 wbio->bi_bdev = rdev->bdev; 2288 if (submit_bio_wait(WRITE, wbio) == 0) 2289 /* Failure! */ 2290 ok = rdev_set_badblocks(rdev, sector, 2291 sectors, 0) 2292 && ok; 2293 2294 bio_put(wbio); 2295 sect_to_write -= sectors; 2296 sector += sectors; 2297 sectors = block_sectors; 2298 } 2299 return ok; 2300 } 2301 2302 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2303 { 2304 int slot = r10_bio->read_slot; 2305 struct bio *bio; 2306 struct r10conf *conf = mddev->private; 2307 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2308 char b[BDEVNAME_SIZE]; 2309 unsigned long do_sync; 2310 int max_sectors; 2311 2312 /* we got a read error. Maybe the drive is bad. Maybe just 2313 * the block and we can fix it. 2314 * We freeze all other IO, and try reading the block from 2315 * other devices. When we find one, we re-write 2316 * and check it that fixes the read error. 2317 * This is all done synchronously while the array is 2318 * frozen. 2319 */ 2320 bio = r10_bio->devs[slot].bio; 2321 bdevname(bio->bi_bdev, b); 2322 bio_put(bio); 2323 r10_bio->devs[slot].bio = NULL; 2324 2325 if (mddev->ro == 0) { 2326 freeze_array(conf); 2327 fix_read_error(conf, mddev, r10_bio); 2328 unfreeze_array(conf); 2329 } else 2330 r10_bio->devs[slot].bio = IO_BLOCKED; 2331 2332 rdev_dec_pending(rdev, mddev); 2333 2334 read_more: 2335 rdev = read_balance(conf, r10_bio, &max_sectors); 2336 if (rdev == NULL) { 2337 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2338 " read error for block %llu\n", 2339 mdname(mddev), b, 2340 (unsigned long long)r10_bio->sector); 2341 raid_end_bio_io(r10_bio); 2342 return; 2343 } 2344 2345 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2346 slot = r10_bio->read_slot; 2347 printk_ratelimited( 2348 KERN_ERR 2349 "md/raid10:%s: %s: redirecting" 2350 "sector %llu to another mirror\n", 2351 mdname(mddev), 2352 bdevname(rdev->bdev, b), 2353 (unsigned long long)r10_bio->sector); 2354 bio = bio_clone_mddev(r10_bio->master_bio, 2355 GFP_NOIO, mddev); 2356 md_trim_bio(bio, 2357 r10_bio->sector - bio->bi_sector, 2358 max_sectors); 2359 r10_bio->devs[slot].bio = bio; 2360 r10_bio->devs[slot].rdev = rdev; 2361 bio->bi_sector = r10_bio->devs[slot].addr 2362 + rdev->data_offset; 2363 bio->bi_bdev = rdev->bdev; 2364 bio->bi_rw = READ | do_sync; 2365 bio->bi_private = r10_bio; 2366 bio->bi_end_io = raid10_end_read_request; 2367 if (max_sectors < r10_bio->sectors) { 2368 /* Drat - have to split this up more */ 2369 struct bio *mbio = r10_bio->master_bio; 2370 int sectors_handled = 2371 r10_bio->sector + max_sectors 2372 - mbio->bi_sector; 2373 r10_bio->sectors = max_sectors; 2374 spin_lock_irq(&conf->device_lock); 2375 if (mbio->bi_phys_segments == 0) 2376 mbio->bi_phys_segments = 2; 2377 else 2378 mbio->bi_phys_segments++; 2379 spin_unlock_irq(&conf->device_lock); 2380 generic_make_request(bio); 2381 2382 r10_bio = mempool_alloc(conf->r10bio_pool, 2383 GFP_NOIO); 2384 r10_bio->master_bio = mbio; 2385 r10_bio->sectors = (mbio->bi_size >> 9) 2386 - sectors_handled; 2387 r10_bio->state = 0; 2388 set_bit(R10BIO_ReadError, 2389 &r10_bio->state); 2390 r10_bio->mddev = mddev; 2391 r10_bio->sector = mbio->bi_sector 2392 + sectors_handled; 2393 2394 goto read_more; 2395 } else 2396 generic_make_request(bio); 2397 } 2398 2399 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2400 { 2401 /* Some sort of write request has finished and it 2402 * succeeded in writing where we thought there was a 2403 * bad block. So forget the bad block. 2404 * Or possibly if failed and we need to record 2405 * a bad block. 2406 */ 2407 int m; 2408 struct md_rdev *rdev; 2409 2410 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2411 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2412 for (m = 0; m < conf->copies; m++) { 2413 int dev = r10_bio->devs[m].devnum; 2414 rdev = conf->mirrors[dev].rdev; 2415 if (r10_bio->devs[m].bio == NULL) 2416 continue; 2417 if (test_bit(BIO_UPTODATE, 2418 &r10_bio->devs[m].bio->bi_flags)) { 2419 rdev_clear_badblocks( 2420 rdev, 2421 r10_bio->devs[m].addr, 2422 r10_bio->sectors); 2423 } else { 2424 if (!rdev_set_badblocks( 2425 rdev, 2426 r10_bio->devs[m].addr, 2427 r10_bio->sectors, 0)) 2428 md_error(conf->mddev, rdev); 2429 } 2430 rdev = conf->mirrors[dev].replacement; 2431 if (r10_bio->devs[m].repl_bio == NULL) 2432 continue; 2433 if (test_bit(BIO_UPTODATE, 2434 &r10_bio->devs[m].repl_bio->bi_flags)) { 2435 rdev_clear_badblocks( 2436 rdev, 2437 r10_bio->devs[m].addr, 2438 r10_bio->sectors); 2439 } else { 2440 if (!rdev_set_badblocks( 2441 rdev, 2442 r10_bio->devs[m].addr, 2443 r10_bio->sectors, 0)) 2444 md_error(conf->mddev, rdev); 2445 } 2446 } 2447 put_buf(r10_bio); 2448 } else { 2449 for (m = 0; m < conf->copies; m++) { 2450 int dev = r10_bio->devs[m].devnum; 2451 struct bio *bio = r10_bio->devs[m].bio; 2452 rdev = conf->mirrors[dev].rdev; 2453 if (bio == IO_MADE_GOOD) { 2454 rdev_clear_badblocks( 2455 rdev, 2456 r10_bio->devs[m].addr, 2457 r10_bio->sectors); 2458 rdev_dec_pending(rdev, conf->mddev); 2459 } else if (bio != NULL && 2460 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2461 if (!narrow_write_error(r10_bio, m)) { 2462 md_error(conf->mddev, rdev); 2463 set_bit(R10BIO_Degraded, 2464 &r10_bio->state); 2465 } 2466 rdev_dec_pending(rdev, conf->mddev); 2467 } 2468 bio = r10_bio->devs[m].repl_bio; 2469 rdev = conf->mirrors[dev].replacement; 2470 if (rdev && bio == IO_MADE_GOOD) { 2471 rdev_clear_badblocks( 2472 rdev, 2473 r10_bio->devs[m].addr, 2474 r10_bio->sectors); 2475 rdev_dec_pending(rdev, conf->mddev); 2476 } 2477 } 2478 if (test_bit(R10BIO_WriteError, 2479 &r10_bio->state)) 2480 close_write(r10_bio); 2481 raid_end_bio_io(r10_bio); 2482 } 2483 } 2484 2485 static void raid10d(struct mddev *mddev) 2486 { 2487 struct r10bio *r10_bio; 2488 unsigned long flags; 2489 struct r10conf *conf = mddev->private; 2490 struct list_head *head = &conf->retry_list; 2491 struct blk_plug plug; 2492 2493 md_check_recovery(mddev); 2494 2495 blk_start_plug(&plug); 2496 for (;;) { 2497 2498 flush_pending_writes(conf); 2499 2500 spin_lock_irqsave(&conf->device_lock, flags); 2501 if (list_empty(head)) { 2502 spin_unlock_irqrestore(&conf->device_lock, flags); 2503 break; 2504 } 2505 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2506 list_del(head->prev); 2507 conf->nr_queued--; 2508 spin_unlock_irqrestore(&conf->device_lock, flags); 2509 2510 mddev = r10_bio->mddev; 2511 conf = mddev->private; 2512 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2513 test_bit(R10BIO_WriteError, &r10_bio->state)) 2514 handle_write_completed(conf, r10_bio); 2515 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2516 sync_request_write(mddev, r10_bio); 2517 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2518 recovery_request_write(mddev, r10_bio); 2519 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2520 handle_read_error(mddev, r10_bio); 2521 else { 2522 /* just a partial read to be scheduled from a 2523 * separate context 2524 */ 2525 int slot = r10_bio->read_slot; 2526 generic_make_request(r10_bio->devs[slot].bio); 2527 } 2528 2529 cond_resched(); 2530 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2531 md_check_recovery(mddev); 2532 } 2533 blk_finish_plug(&plug); 2534 } 2535 2536 2537 static int init_resync(struct r10conf *conf) 2538 { 2539 int buffs; 2540 int i; 2541 2542 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2543 BUG_ON(conf->r10buf_pool); 2544 conf->have_replacement = 0; 2545 for (i = 0; i < conf->raid_disks; i++) 2546 if (conf->mirrors[i].replacement) 2547 conf->have_replacement = 1; 2548 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2549 if (!conf->r10buf_pool) 2550 return -ENOMEM; 2551 conf->next_resync = 0; 2552 return 0; 2553 } 2554 2555 /* 2556 * perform a "sync" on one "block" 2557 * 2558 * We need to make sure that no normal I/O request - particularly write 2559 * requests - conflict with active sync requests. 2560 * 2561 * This is achieved by tracking pending requests and a 'barrier' concept 2562 * that can be installed to exclude normal IO requests. 2563 * 2564 * Resync and recovery are handled very differently. 2565 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2566 * 2567 * For resync, we iterate over virtual addresses, read all copies, 2568 * and update if there are differences. If only one copy is live, 2569 * skip it. 2570 * For recovery, we iterate over physical addresses, read a good 2571 * value for each non-in_sync drive, and over-write. 2572 * 2573 * So, for recovery we may have several outstanding complex requests for a 2574 * given address, one for each out-of-sync device. We model this by allocating 2575 * a number of r10_bio structures, one for each out-of-sync device. 2576 * As we setup these structures, we collect all bio's together into a list 2577 * which we then process collectively to add pages, and then process again 2578 * to pass to generic_make_request. 2579 * 2580 * The r10_bio structures are linked using a borrowed master_bio pointer. 2581 * This link is counted in ->remaining. When the r10_bio that points to NULL 2582 * has its remaining count decremented to 0, the whole complex operation 2583 * is complete. 2584 * 2585 */ 2586 2587 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2588 int *skipped, int go_faster) 2589 { 2590 struct r10conf *conf = mddev->private; 2591 struct r10bio *r10_bio; 2592 struct bio *biolist = NULL, *bio; 2593 sector_t max_sector, nr_sectors; 2594 int i; 2595 int max_sync; 2596 sector_t sync_blocks; 2597 sector_t sectors_skipped = 0; 2598 int chunks_skipped = 0; 2599 2600 if (!conf->r10buf_pool) 2601 if (init_resync(conf)) 2602 return 0; 2603 2604 skipped: 2605 max_sector = mddev->dev_sectors; 2606 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2607 max_sector = mddev->resync_max_sectors; 2608 if (sector_nr >= max_sector) { 2609 /* If we aborted, we need to abort the 2610 * sync on the 'current' bitmap chucks (there can 2611 * be several when recovering multiple devices). 2612 * as we may have started syncing it but not finished. 2613 * We can find the current address in 2614 * mddev->curr_resync, but for recovery, 2615 * we need to convert that to several 2616 * virtual addresses. 2617 */ 2618 if (mddev->curr_resync < max_sector) { /* aborted */ 2619 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2620 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2621 &sync_blocks, 1); 2622 else for (i=0; i<conf->raid_disks; i++) { 2623 sector_t sect = 2624 raid10_find_virt(conf, mddev->curr_resync, i); 2625 bitmap_end_sync(mddev->bitmap, sect, 2626 &sync_blocks, 1); 2627 } 2628 } else { 2629 /* completed sync */ 2630 if ((!mddev->bitmap || conf->fullsync) 2631 && conf->have_replacement 2632 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2633 /* Completed a full sync so the replacements 2634 * are now fully recovered. 2635 */ 2636 for (i = 0; i < conf->raid_disks; i++) 2637 if (conf->mirrors[i].replacement) 2638 conf->mirrors[i].replacement 2639 ->recovery_offset 2640 = MaxSector; 2641 } 2642 conf->fullsync = 0; 2643 } 2644 bitmap_close_sync(mddev->bitmap); 2645 close_sync(conf); 2646 *skipped = 1; 2647 return sectors_skipped; 2648 } 2649 if (chunks_skipped >= conf->raid_disks) { 2650 /* if there has been nothing to do on any drive, 2651 * then there is nothing to do at all.. 2652 */ 2653 *skipped = 1; 2654 return (max_sector - sector_nr) + sectors_skipped; 2655 } 2656 2657 if (max_sector > mddev->resync_max) 2658 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2659 2660 /* make sure whole request will fit in a chunk - if chunks 2661 * are meaningful 2662 */ 2663 if (conf->near_copies < conf->raid_disks && 2664 max_sector > (sector_nr | conf->chunk_mask)) 2665 max_sector = (sector_nr | conf->chunk_mask) + 1; 2666 /* 2667 * If there is non-resync activity waiting for us then 2668 * put in a delay to throttle resync. 2669 */ 2670 if (!go_faster && conf->nr_waiting) 2671 msleep_interruptible(1000); 2672 2673 /* Again, very different code for resync and recovery. 2674 * Both must result in an r10bio with a list of bios that 2675 * have bi_end_io, bi_sector, bi_bdev set, 2676 * and bi_private set to the r10bio. 2677 * For recovery, we may actually create several r10bios 2678 * with 2 bios in each, that correspond to the bios in the main one. 2679 * In this case, the subordinate r10bios link back through a 2680 * borrowed master_bio pointer, and the counter in the master 2681 * includes a ref from each subordinate. 2682 */ 2683 /* First, we decide what to do and set ->bi_end_io 2684 * To end_sync_read if we want to read, and 2685 * end_sync_write if we will want to write. 2686 */ 2687 2688 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2689 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2690 /* recovery... the complicated one */ 2691 int j; 2692 r10_bio = NULL; 2693 2694 for (i=0 ; i<conf->raid_disks; i++) { 2695 int still_degraded; 2696 struct r10bio *rb2; 2697 sector_t sect; 2698 int must_sync; 2699 int any_working; 2700 struct mirror_info *mirror = &conf->mirrors[i]; 2701 2702 if ((mirror->rdev == NULL || 2703 test_bit(In_sync, &mirror->rdev->flags)) 2704 && 2705 (mirror->replacement == NULL || 2706 test_bit(Faulty, 2707 &mirror->replacement->flags))) 2708 continue; 2709 2710 still_degraded = 0; 2711 /* want to reconstruct this device */ 2712 rb2 = r10_bio; 2713 sect = raid10_find_virt(conf, sector_nr, i); 2714 /* Unless we are doing a full sync, or a replacement 2715 * we only need to recover the block if it is set in 2716 * the bitmap 2717 */ 2718 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2719 &sync_blocks, 1); 2720 if (sync_blocks < max_sync) 2721 max_sync = sync_blocks; 2722 if (!must_sync && 2723 mirror->replacement == NULL && 2724 !conf->fullsync) { 2725 /* yep, skip the sync_blocks here, but don't assume 2726 * that there will never be anything to do here 2727 */ 2728 chunks_skipped = -1; 2729 continue; 2730 } 2731 2732 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2733 raise_barrier(conf, rb2 != NULL); 2734 atomic_set(&r10_bio->remaining, 0); 2735 2736 r10_bio->master_bio = (struct bio*)rb2; 2737 if (rb2) 2738 atomic_inc(&rb2->remaining); 2739 r10_bio->mddev = mddev; 2740 set_bit(R10BIO_IsRecover, &r10_bio->state); 2741 r10_bio->sector = sect; 2742 2743 raid10_find_phys(conf, r10_bio); 2744 2745 /* Need to check if the array will still be 2746 * degraded 2747 */ 2748 for (j=0; j<conf->raid_disks; j++) 2749 if (conf->mirrors[j].rdev == NULL || 2750 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2751 still_degraded = 1; 2752 break; 2753 } 2754 2755 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2756 &sync_blocks, still_degraded); 2757 2758 any_working = 0; 2759 for (j=0; j<conf->copies;j++) { 2760 int k; 2761 int d = r10_bio->devs[j].devnum; 2762 sector_t from_addr, to_addr; 2763 struct md_rdev *rdev; 2764 sector_t sector, first_bad; 2765 int bad_sectors; 2766 if (!conf->mirrors[d].rdev || 2767 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2768 continue; 2769 /* This is where we read from */ 2770 any_working = 1; 2771 rdev = conf->mirrors[d].rdev; 2772 sector = r10_bio->devs[j].addr; 2773 2774 if (is_badblock(rdev, sector, max_sync, 2775 &first_bad, &bad_sectors)) { 2776 if (first_bad > sector) 2777 max_sync = first_bad - sector; 2778 else { 2779 bad_sectors -= (sector 2780 - first_bad); 2781 if (max_sync > bad_sectors) 2782 max_sync = bad_sectors; 2783 continue; 2784 } 2785 } 2786 bio = r10_bio->devs[0].bio; 2787 bio->bi_next = biolist; 2788 biolist = bio; 2789 bio->bi_private = r10_bio; 2790 bio->bi_end_io = end_sync_read; 2791 bio->bi_rw = READ; 2792 from_addr = r10_bio->devs[j].addr; 2793 bio->bi_sector = from_addr + rdev->data_offset; 2794 bio->bi_bdev = rdev->bdev; 2795 atomic_inc(&rdev->nr_pending); 2796 /* and we write to 'i' (if not in_sync) */ 2797 2798 for (k=0; k<conf->copies; k++) 2799 if (r10_bio->devs[k].devnum == i) 2800 break; 2801 BUG_ON(k == conf->copies); 2802 to_addr = r10_bio->devs[k].addr; 2803 r10_bio->devs[0].devnum = d; 2804 r10_bio->devs[0].addr = from_addr; 2805 r10_bio->devs[1].devnum = i; 2806 r10_bio->devs[1].addr = to_addr; 2807 2808 rdev = mirror->rdev; 2809 if (!test_bit(In_sync, &rdev->flags)) { 2810 bio = r10_bio->devs[1].bio; 2811 bio->bi_next = biolist; 2812 biolist = bio; 2813 bio->bi_private = r10_bio; 2814 bio->bi_end_io = end_sync_write; 2815 bio->bi_rw = WRITE; 2816 bio->bi_sector = to_addr 2817 + rdev->data_offset; 2818 bio->bi_bdev = rdev->bdev; 2819 atomic_inc(&r10_bio->remaining); 2820 } else 2821 r10_bio->devs[1].bio->bi_end_io = NULL; 2822 2823 /* and maybe write to replacement */ 2824 bio = r10_bio->devs[1].repl_bio; 2825 if (bio) 2826 bio->bi_end_io = NULL; 2827 rdev = mirror->replacement; 2828 /* Note: if rdev != NULL, then bio 2829 * cannot be NULL as r10buf_pool_alloc will 2830 * have allocated it. 2831 * So the second test here is pointless. 2832 * But it keeps semantic-checkers happy, and 2833 * this comment keeps human reviewers 2834 * happy. 2835 */ 2836 if (rdev == NULL || bio == NULL || 2837 test_bit(Faulty, &rdev->flags)) 2838 break; 2839 bio->bi_next = biolist; 2840 biolist = bio; 2841 bio->bi_private = r10_bio; 2842 bio->bi_end_io = end_sync_write; 2843 bio->bi_rw = WRITE; 2844 bio->bi_sector = to_addr + rdev->data_offset; 2845 bio->bi_bdev = rdev->bdev; 2846 atomic_inc(&r10_bio->remaining); 2847 break; 2848 } 2849 if (j == conf->copies) { 2850 /* Cannot recover, so abort the recovery or 2851 * record a bad block */ 2852 put_buf(r10_bio); 2853 if (rb2) 2854 atomic_dec(&rb2->remaining); 2855 r10_bio = rb2; 2856 if (any_working) { 2857 /* problem is that there are bad blocks 2858 * on other device(s) 2859 */ 2860 int k; 2861 for (k = 0; k < conf->copies; k++) 2862 if (r10_bio->devs[k].devnum == i) 2863 break; 2864 if (!test_bit(In_sync, 2865 &mirror->rdev->flags) 2866 && !rdev_set_badblocks( 2867 mirror->rdev, 2868 r10_bio->devs[k].addr, 2869 max_sync, 0)) 2870 any_working = 0; 2871 if (mirror->replacement && 2872 !rdev_set_badblocks( 2873 mirror->replacement, 2874 r10_bio->devs[k].addr, 2875 max_sync, 0)) 2876 any_working = 0; 2877 } 2878 if (!any_working) { 2879 if (!test_and_set_bit(MD_RECOVERY_INTR, 2880 &mddev->recovery)) 2881 printk(KERN_INFO "md/raid10:%s: insufficient " 2882 "working devices for recovery.\n", 2883 mdname(mddev)); 2884 mirror->recovery_disabled 2885 = mddev->recovery_disabled; 2886 } 2887 break; 2888 } 2889 } 2890 if (biolist == NULL) { 2891 while (r10_bio) { 2892 struct r10bio *rb2 = r10_bio; 2893 r10_bio = (struct r10bio*) rb2->master_bio; 2894 rb2->master_bio = NULL; 2895 put_buf(rb2); 2896 } 2897 goto giveup; 2898 } 2899 } else { 2900 /* resync. Schedule a read for every block at this virt offset */ 2901 int count = 0; 2902 2903 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2904 2905 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2906 &sync_blocks, mddev->degraded) && 2907 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 2908 &mddev->recovery)) { 2909 /* We can skip this block */ 2910 *skipped = 1; 2911 return sync_blocks + sectors_skipped; 2912 } 2913 if (sync_blocks < max_sync) 2914 max_sync = sync_blocks; 2915 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2916 2917 r10_bio->mddev = mddev; 2918 atomic_set(&r10_bio->remaining, 0); 2919 raise_barrier(conf, 0); 2920 conf->next_resync = sector_nr; 2921 2922 r10_bio->master_bio = NULL; 2923 r10_bio->sector = sector_nr; 2924 set_bit(R10BIO_IsSync, &r10_bio->state); 2925 raid10_find_phys(conf, r10_bio); 2926 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2927 2928 for (i=0; i<conf->copies; i++) { 2929 int d = r10_bio->devs[i].devnum; 2930 sector_t first_bad, sector; 2931 int bad_sectors; 2932 2933 if (r10_bio->devs[i].repl_bio) 2934 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 2935 2936 bio = r10_bio->devs[i].bio; 2937 bio->bi_end_io = NULL; 2938 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2939 if (conf->mirrors[d].rdev == NULL || 2940 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2941 continue; 2942 sector = r10_bio->devs[i].addr; 2943 if (is_badblock(conf->mirrors[d].rdev, 2944 sector, max_sync, 2945 &first_bad, &bad_sectors)) { 2946 if (first_bad > sector) 2947 max_sync = first_bad - sector; 2948 else { 2949 bad_sectors -= (sector - first_bad); 2950 if (max_sync > bad_sectors) 2951 max_sync = max_sync; 2952 continue; 2953 } 2954 } 2955 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2956 atomic_inc(&r10_bio->remaining); 2957 bio->bi_next = biolist; 2958 biolist = bio; 2959 bio->bi_private = r10_bio; 2960 bio->bi_end_io = end_sync_read; 2961 bio->bi_rw = READ; 2962 bio->bi_sector = sector + 2963 conf->mirrors[d].rdev->data_offset; 2964 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2965 count++; 2966 2967 if (conf->mirrors[d].replacement == NULL || 2968 test_bit(Faulty, 2969 &conf->mirrors[d].replacement->flags)) 2970 continue; 2971 2972 /* Need to set up for writing to the replacement */ 2973 bio = r10_bio->devs[i].repl_bio; 2974 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2975 2976 sector = r10_bio->devs[i].addr; 2977 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2978 bio->bi_next = biolist; 2979 biolist = bio; 2980 bio->bi_private = r10_bio; 2981 bio->bi_end_io = end_sync_write; 2982 bio->bi_rw = WRITE; 2983 bio->bi_sector = sector + 2984 conf->mirrors[d].replacement->data_offset; 2985 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 2986 count++; 2987 } 2988 2989 if (count < 2) { 2990 for (i=0; i<conf->copies; i++) { 2991 int d = r10_bio->devs[i].devnum; 2992 if (r10_bio->devs[i].bio->bi_end_io) 2993 rdev_dec_pending(conf->mirrors[d].rdev, 2994 mddev); 2995 if (r10_bio->devs[i].repl_bio && 2996 r10_bio->devs[i].repl_bio->bi_end_io) 2997 rdev_dec_pending( 2998 conf->mirrors[d].replacement, 2999 mddev); 3000 } 3001 put_buf(r10_bio); 3002 biolist = NULL; 3003 goto giveup; 3004 } 3005 } 3006 3007 for (bio = biolist; bio ; bio=bio->bi_next) { 3008 3009 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3010 if (bio->bi_end_io) 3011 bio->bi_flags |= 1 << BIO_UPTODATE; 3012 bio->bi_vcnt = 0; 3013 bio->bi_idx = 0; 3014 bio->bi_phys_segments = 0; 3015 bio->bi_size = 0; 3016 } 3017 3018 nr_sectors = 0; 3019 if (sector_nr + max_sync < max_sector) 3020 max_sector = sector_nr + max_sync; 3021 do { 3022 struct page *page; 3023 int len = PAGE_SIZE; 3024 if (sector_nr + (len>>9) > max_sector) 3025 len = (max_sector - sector_nr) << 9; 3026 if (len == 0) 3027 break; 3028 for (bio= biolist ; bio ; bio=bio->bi_next) { 3029 struct bio *bio2; 3030 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3031 if (bio_add_page(bio, page, len, 0)) 3032 continue; 3033 3034 /* stop here */ 3035 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3036 for (bio2 = biolist; 3037 bio2 && bio2 != bio; 3038 bio2 = bio2->bi_next) { 3039 /* remove last page from this bio */ 3040 bio2->bi_vcnt--; 3041 bio2->bi_size -= len; 3042 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3043 } 3044 goto bio_full; 3045 } 3046 nr_sectors += len>>9; 3047 sector_nr += len>>9; 3048 } while (biolist->bi_vcnt < RESYNC_PAGES); 3049 bio_full: 3050 r10_bio->sectors = nr_sectors; 3051 3052 while (biolist) { 3053 bio = biolist; 3054 biolist = biolist->bi_next; 3055 3056 bio->bi_next = NULL; 3057 r10_bio = bio->bi_private; 3058 r10_bio->sectors = nr_sectors; 3059 3060 if (bio->bi_end_io == end_sync_read) { 3061 md_sync_acct(bio->bi_bdev, nr_sectors); 3062 generic_make_request(bio); 3063 } 3064 } 3065 3066 if (sectors_skipped) 3067 /* pretend they weren't skipped, it makes 3068 * no important difference in this case 3069 */ 3070 md_done_sync(mddev, sectors_skipped, 1); 3071 3072 return sectors_skipped + nr_sectors; 3073 giveup: 3074 /* There is nowhere to write, so all non-sync 3075 * drives must be failed or in resync, all drives 3076 * have a bad block, so try the next chunk... 3077 */ 3078 if (sector_nr + max_sync < max_sector) 3079 max_sector = sector_nr + max_sync; 3080 3081 sectors_skipped += (max_sector - sector_nr); 3082 chunks_skipped ++; 3083 sector_nr = max_sector; 3084 goto skipped; 3085 } 3086 3087 static sector_t 3088 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3089 { 3090 sector_t size; 3091 struct r10conf *conf = mddev->private; 3092 3093 if (!raid_disks) 3094 raid_disks = conf->raid_disks; 3095 if (!sectors) 3096 sectors = conf->dev_sectors; 3097 3098 size = sectors >> conf->chunk_shift; 3099 sector_div(size, conf->far_copies); 3100 size = size * raid_disks; 3101 sector_div(size, conf->near_copies); 3102 3103 return size << conf->chunk_shift; 3104 } 3105 3106 3107 static struct r10conf *setup_conf(struct mddev *mddev) 3108 { 3109 struct r10conf *conf = NULL; 3110 int nc, fc, fo; 3111 sector_t stride, size; 3112 int err = -EINVAL; 3113 3114 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 3115 !is_power_of_2(mddev->new_chunk_sectors)) { 3116 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3117 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3118 mdname(mddev), PAGE_SIZE); 3119 goto out; 3120 } 3121 3122 nc = mddev->new_layout & 255; 3123 fc = (mddev->new_layout >> 8) & 255; 3124 fo = mddev->new_layout & (1<<16); 3125 3126 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 3127 (mddev->new_layout >> 17)) { 3128 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3129 mdname(mddev), mddev->new_layout); 3130 goto out; 3131 } 3132 3133 err = -ENOMEM; 3134 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3135 if (!conf) 3136 goto out; 3137 3138 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 3139 GFP_KERNEL); 3140 if (!conf->mirrors) 3141 goto out; 3142 3143 conf->tmppage = alloc_page(GFP_KERNEL); 3144 if (!conf->tmppage) 3145 goto out; 3146 3147 3148 conf->raid_disks = mddev->raid_disks; 3149 conf->near_copies = nc; 3150 conf->far_copies = fc; 3151 conf->copies = nc*fc; 3152 conf->far_offset = fo; 3153 conf->chunk_mask = mddev->new_chunk_sectors - 1; 3154 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 3155 3156 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3157 r10bio_pool_free, conf); 3158 if (!conf->r10bio_pool) 3159 goto out; 3160 3161 size = mddev->dev_sectors >> conf->chunk_shift; 3162 sector_div(size, fc); 3163 size = size * conf->raid_disks; 3164 sector_div(size, nc); 3165 /* 'size' is now the number of chunks in the array */ 3166 /* calculate "used chunks per device" in 'stride' */ 3167 stride = size * conf->copies; 3168 3169 /* We need to round up when dividing by raid_disks to 3170 * get the stride size. 3171 */ 3172 stride += conf->raid_disks - 1; 3173 sector_div(stride, conf->raid_disks); 3174 3175 conf->dev_sectors = stride << conf->chunk_shift; 3176 3177 if (fo) 3178 stride = 1; 3179 else 3180 sector_div(stride, fc); 3181 conf->stride = stride << conf->chunk_shift; 3182 3183 3184 spin_lock_init(&conf->device_lock); 3185 INIT_LIST_HEAD(&conf->retry_list); 3186 3187 spin_lock_init(&conf->resync_lock); 3188 init_waitqueue_head(&conf->wait_barrier); 3189 3190 conf->thread = md_register_thread(raid10d, mddev, NULL); 3191 if (!conf->thread) 3192 goto out; 3193 3194 conf->mddev = mddev; 3195 return conf; 3196 3197 out: 3198 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3199 mdname(mddev)); 3200 if (conf) { 3201 if (conf->r10bio_pool) 3202 mempool_destroy(conf->r10bio_pool); 3203 kfree(conf->mirrors); 3204 safe_put_page(conf->tmppage); 3205 kfree(conf); 3206 } 3207 return ERR_PTR(err); 3208 } 3209 3210 static int run(struct mddev *mddev) 3211 { 3212 struct r10conf *conf; 3213 int i, disk_idx, chunk_size; 3214 struct mirror_info *disk; 3215 struct md_rdev *rdev; 3216 sector_t size; 3217 3218 /* 3219 * copy the already verified devices into our private RAID10 3220 * bookkeeping area. [whatever we allocate in run(), 3221 * should be freed in stop()] 3222 */ 3223 3224 if (mddev->private == NULL) { 3225 conf = setup_conf(mddev); 3226 if (IS_ERR(conf)) 3227 return PTR_ERR(conf); 3228 mddev->private = conf; 3229 } 3230 conf = mddev->private; 3231 if (!conf) 3232 goto out; 3233 3234 mddev->thread = conf->thread; 3235 conf->thread = NULL; 3236 3237 chunk_size = mddev->chunk_sectors << 9; 3238 blk_queue_io_min(mddev->queue, chunk_size); 3239 if (conf->raid_disks % conf->near_copies) 3240 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 3241 else 3242 blk_queue_io_opt(mddev->queue, chunk_size * 3243 (conf->raid_disks / conf->near_copies)); 3244 3245 list_for_each_entry(rdev, &mddev->disks, same_set) { 3246 3247 disk_idx = rdev->raid_disk; 3248 if (disk_idx >= conf->raid_disks 3249 || disk_idx < 0) 3250 continue; 3251 disk = conf->mirrors + disk_idx; 3252 3253 if (test_bit(Replacement, &rdev->flags)) { 3254 if (disk->replacement) 3255 goto out_free_conf; 3256 disk->replacement = rdev; 3257 } else { 3258 if (disk->rdev) 3259 goto out_free_conf; 3260 disk->rdev = rdev; 3261 } 3262 3263 disk_stack_limits(mddev->gendisk, rdev->bdev, 3264 rdev->data_offset << 9); 3265 /* as we don't honour merge_bvec_fn, we must never risk 3266 * violating it, so limit max_segments to 1 lying 3267 * within a single page. 3268 */ 3269 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 3270 blk_queue_max_segments(mddev->queue, 1); 3271 blk_queue_segment_boundary(mddev->queue, 3272 PAGE_CACHE_SIZE - 1); 3273 } 3274 3275 disk->head_position = 0; 3276 } 3277 /* need to check that every block has at least one working mirror */ 3278 if (!enough(conf, -1)) { 3279 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3280 mdname(mddev)); 3281 goto out_free_conf; 3282 } 3283 3284 mddev->degraded = 0; 3285 for (i = 0; i < conf->raid_disks; i++) { 3286 3287 disk = conf->mirrors + i; 3288 3289 if (!disk->rdev && disk->replacement) { 3290 /* The replacement is all we have - use it */ 3291 disk->rdev = disk->replacement; 3292 disk->replacement = NULL; 3293 clear_bit(Replacement, &disk->rdev->flags); 3294 } 3295 3296 if (!disk->rdev || 3297 !test_bit(In_sync, &disk->rdev->flags)) { 3298 disk->head_position = 0; 3299 mddev->degraded++; 3300 if (disk->rdev) 3301 conf->fullsync = 1; 3302 } 3303 disk->recovery_disabled = mddev->recovery_disabled - 1; 3304 } 3305 3306 if (mddev->recovery_cp != MaxSector) 3307 printk(KERN_NOTICE "md/raid10:%s: not clean" 3308 " -- starting background reconstruction\n", 3309 mdname(mddev)); 3310 printk(KERN_INFO 3311 "md/raid10:%s: active with %d out of %d devices\n", 3312 mdname(mddev), conf->raid_disks - mddev->degraded, 3313 conf->raid_disks); 3314 /* 3315 * Ok, everything is just fine now 3316 */ 3317 mddev->dev_sectors = conf->dev_sectors; 3318 size = raid10_size(mddev, 0, 0); 3319 md_set_array_sectors(mddev, size); 3320 mddev->resync_max_sectors = size; 3321 3322 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3323 mddev->queue->backing_dev_info.congested_data = mddev; 3324 3325 /* Calculate max read-ahead size. 3326 * We need to readahead at least twice a whole stripe.... 3327 * maybe... 3328 */ 3329 { 3330 int stripe = conf->raid_disks * 3331 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3332 stripe /= conf->near_copies; 3333 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 3334 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 3335 } 3336 3337 if (conf->near_copies < conf->raid_disks) 3338 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3339 3340 if (md_integrity_register(mddev)) 3341 goto out_free_conf; 3342 3343 return 0; 3344 3345 out_free_conf: 3346 md_unregister_thread(&mddev->thread); 3347 if (conf->r10bio_pool) 3348 mempool_destroy(conf->r10bio_pool); 3349 safe_put_page(conf->tmppage); 3350 kfree(conf->mirrors); 3351 kfree(conf); 3352 mddev->private = NULL; 3353 out: 3354 return -EIO; 3355 } 3356 3357 static int stop(struct mddev *mddev) 3358 { 3359 struct r10conf *conf = mddev->private; 3360 3361 raise_barrier(conf, 0); 3362 lower_barrier(conf); 3363 3364 md_unregister_thread(&mddev->thread); 3365 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 3366 if (conf->r10bio_pool) 3367 mempool_destroy(conf->r10bio_pool); 3368 kfree(conf->mirrors); 3369 kfree(conf); 3370 mddev->private = NULL; 3371 return 0; 3372 } 3373 3374 static void raid10_quiesce(struct mddev *mddev, int state) 3375 { 3376 struct r10conf *conf = mddev->private; 3377 3378 switch(state) { 3379 case 1: 3380 raise_barrier(conf, 0); 3381 break; 3382 case 0: 3383 lower_barrier(conf); 3384 break; 3385 } 3386 } 3387 3388 static void *raid10_takeover_raid0(struct mddev *mddev) 3389 { 3390 struct md_rdev *rdev; 3391 struct r10conf *conf; 3392 3393 if (mddev->degraded > 0) { 3394 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3395 mdname(mddev)); 3396 return ERR_PTR(-EINVAL); 3397 } 3398 3399 /* Set new parameters */ 3400 mddev->new_level = 10; 3401 /* new layout: far_copies = 1, near_copies = 2 */ 3402 mddev->new_layout = (1<<8) + 2; 3403 mddev->new_chunk_sectors = mddev->chunk_sectors; 3404 mddev->delta_disks = mddev->raid_disks; 3405 mddev->raid_disks *= 2; 3406 /* make sure it will be not marked as dirty */ 3407 mddev->recovery_cp = MaxSector; 3408 3409 conf = setup_conf(mddev); 3410 if (!IS_ERR(conf)) { 3411 list_for_each_entry(rdev, &mddev->disks, same_set) 3412 if (rdev->raid_disk >= 0) 3413 rdev->new_raid_disk = rdev->raid_disk * 2; 3414 conf->barrier = 1; 3415 } 3416 3417 return conf; 3418 } 3419 3420 static void *raid10_takeover(struct mddev *mddev) 3421 { 3422 struct r0conf *raid0_conf; 3423 3424 /* raid10 can take over: 3425 * raid0 - providing it has only two drives 3426 */ 3427 if (mddev->level == 0) { 3428 /* for raid0 takeover only one zone is supported */ 3429 raid0_conf = mddev->private; 3430 if (raid0_conf->nr_strip_zones > 1) { 3431 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3432 " with more than one zone.\n", 3433 mdname(mddev)); 3434 return ERR_PTR(-EINVAL); 3435 } 3436 return raid10_takeover_raid0(mddev); 3437 } 3438 return ERR_PTR(-EINVAL); 3439 } 3440 3441 static struct md_personality raid10_personality = 3442 { 3443 .name = "raid10", 3444 .level = 10, 3445 .owner = THIS_MODULE, 3446 .make_request = make_request, 3447 .run = run, 3448 .stop = stop, 3449 .status = status, 3450 .error_handler = error, 3451 .hot_add_disk = raid10_add_disk, 3452 .hot_remove_disk= raid10_remove_disk, 3453 .spare_active = raid10_spare_active, 3454 .sync_request = sync_request, 3455 .quiesce = raid10_quiesce, 3456 .size = raid10_size, 3457 .takeover = raid10_takeover, 3458 }; 3459 3460 static int __init raid_init(void) 3461 { 3462 return register_md_personality(&raid10_personality); 3463 } 3464 3465 static void raid_exit(void) 3466 { 3467 unregister_md_personality(&raid10_personality); 3468 } 3469 3470 module_init(raid_init); 3471 module_exit(raid_exit); 3472 MODULE_LICENSE("GPL"); 3473 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 3474 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 3475 MODULE_ALIAS("md-raid10"); 3476 MODULE_ALIAS("md-level-10"); 3477 3478 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3479