1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, bio->bi_size, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 if (bio->bi_size) 266 return 1; 267 268 mirror = r1_bio->read_disk; 269 /* 270 * this branch is our 'one mirror IO has finished' event handler: 271 */ 272 update_head_pos(mirror, r1_bio); 273 274 if (uptodate || conf->working_disks <= 1) { 275 /* 276 * Set R1BIO_Uptodate in our master bio, so that 277 * we will return a good error code for to the higher 278 * levels even if IO on some other mirrored buffer fails. 279 * 280 * The 'master' represents the composite IO operation to 281 * user-side. So if something waits for IO, then it will 282 * wait for the 'master' bio. 283 */ 284 if (uptodate) 285 set_bit(R1BIO_Uptodate, &r1_bio->state); 286 287 raid_end_bio_io(r1_bio); 288 } else { 289 /* 290 * oops, read error: 291 */ 292 char b[BDEVNAME_SIZE]; 293 if (printk_ratelimit()) 294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 296 reschedule_retry(r1_bio); 297 } 298 299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 300 return 0; 301 } 302 303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 if (bio->bi_size) 312 return 1; 313 314 for (mirror = 0; mirror < conf->raid_disks; mirror++) 315 if (r1_bio->bios[mirror] == bio) 316 break; 317 318 if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 320 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 321 r1_bio->mddev->barriers_work = 0; 322 } else { 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 r1_bio->bios[mirror] = NULL; 327 to_put = bio; 328 if (!uptodate) { 329 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 330 /* an I/O failed, we can't clear the bitmap */ 331 set_bit(R1BIO_Degraded, &r1_bio->state); 332 } else 333 /* 334 * Set R1BIO_Uptodate in our master bio, so that 335 * we will return a good error code for to the higher 336 * levels even if IO on some other mirrored buffer fails. 337 * 338 * The 'master' represents the composite IO operation to 339 * user-side. So if something waits for IO, then it will 340 * wait for the 'master' bio. 341 */ 342 set_bit(R1BIO_Uptodate, &r1_bio->state); 343 344 update_head_pos(mirror, r1_bio); 345 346 if (behind) { 347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 348 atomic_dec(&r1_bio->behind_remaining); 349 350 /* In behind mode, we ACK the master bio once the I/O has safely 351 * reached all non-writemostly disks. Setting the Returned bit 352 * ensures that this gets done only once -- we don't ever want to 353 * return -EIO here, instead we'll wait */ 354 355 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 356 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 357 /* Maybe we can return now */ 358 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 359 struct bio *mbio = r1_bio->master_bio; 360 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 361 (unsigned long long) mbio->bi_sector, 362 (unsigned long long) mbio->bi_sector + 363 (mbio->bi_size >> 9) - 1); 364 bio_endio(mbio, mbio->bi_size, 0); 365 } 366 } 367 } 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 376 reschedule_retry(r1_bio); 377 /* Don't dec_pending yet, we want to hold 378 * the reference over the retry 379 */ 380 goto out; 381 } 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 /* free extra copy of the data pages */ 384 int i = bio->bi_vcnt; 385 while (i--) 386 safe_put_page(bio->bi_io_vec[i].bv_page); 387 } 388 /* clear the bitmap if all writes complete successfully */ 389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 390 r1_bio->sectors, 391 !test_bit(R1BIO_Degraded, &r1_bio->state), 392 behind); 393 md_write_end(r1_bio->mddev); 394 raid_end_bio_io(r1_bio); 395 } 396 397 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 398 out: 399 if (to_put) 400 bio_put(to_put); 401 402 return 0; 403 } 404 405 406 /* 407 * This routine returns the disk from which the requested read should 408 * be done. There is a per-array 'next expected sequential IO' sector 409 * number - if this matches on the next IO then we use the last disk. 410 * There is also a per-disk 'last know head position' sector that is 411 * maintained from IRQ contexts, both the normal and the resync IO 412 * completion handlers update this position correctly. If there is no 413 * perfect sequential match then we pick the disk whose head is closest. 414 * 415 * If there are 2 mirrors in the same 2 devices, performance degrades 416 * because position is mirror, not device based. 417 * 418 * The rdev for the device selected will have nr_pending incremented. 419 */ 420 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 421 { 422 const unsigned long this_sector = r1_bio->sector; 423 int new_disk = conf->last_used, disk = new_disk; 424 int wonly_disk = -1; 425 const int sectors = r1_bio->sectors; 426 sector_t new_distance, current_distance; 427 mdk_rdev_t *rdev; 428 429 rcu_read_lock(); 430 /* 431 * Check if we can balance. We can balance on the whole 432 * device if no resync is going on, or below the resync window. 433 * We take the first readable disk when above the resync window. 434 */ 435 retry: 436 if (conf->mddev->recovery_cp < MaxSector && 437 (this_sector + sectors >= conf->next_resync)) { 438 /* Choose the first operation device, for consistancy */ 439 new_disk = 0; 440 441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 442 r1_bio->bios[new_disk] == IO_BLOCKED || 443 !rdev || !test_bit(In_sync, &rdev->flags) 444 || test_bit(WriteMostly, &rdev->flags); 445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 446 447 if (rdev && test_bit(In_sync, &rdev->flags) && 448 r1_bio->bios[new_disk] != IO_BLOCKED) 449 wonly_disk = new_disk; 450 451 if (new_disk == conf->raid_disks - 1) { 452 new_disk = wonly_disk; 453 break; 454 } 455 } 456 goto rb_out; 457 } 458 459 460 /* make sure the disk is operational */ 461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 462 r1_bio->bios[new_disk] == IO_BLOCKED || 463 !rdev || !test_bit(In_sync, &rdev->flags) || 464 test_bit(WriteMostly, &rdev->flags); 465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 466 467 if (rdev && test_bit(In_sync, &rdev->flags) && 468 r1_bio->bios[new_disk] != IO_BLOCKED) 469 wonly_disk = new_disk; 470 471 if (new_disk <= 0) 472 new_disk = conf->raid_disks; 473 new_disk--; 474 if (new_disk == disk) { 475 new_disk = wonly_disk; 476 break; 477 } 478 } 479 480 if (new_disk < 0) 481 goto rb_out; 482 483 disk = new_disk; 484 /* now disk == new_disk == starting point for search */ 485 486 /* 487 * Don't change to another disk for sequential reads: 488 */ 489 if (conf->next_seq_sect == this_sector) 490 goto rb_out; 491 if (this_sector == conf->mirrors[new_disk].head_position) 492 goto rb_out; 493 494 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 495 496 /* Find the disk whose head is closest */ 497 498 do { 499 if (disk <= 0) 500 disk = conf->raid_disks; 501 disk--; 502 503 rdev = rcu_dereference(conf->mirrors[disk].rdev); 504 505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 506 !test_bit(In_sync, &rdev->flags) || 507 test_bit(WriteMostly, &rdev->flags)) 508 continue; 509 510 if (!atomic_read(&rdev->nr_pending)) { 511 new_disk = disk; 512 break; 513 } 514 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 515 if (new_distance < current_distance) { 516 current_distance = new_distance; 517 new_disk = disk; 518 } 519 } while (disk != conf->last_used); 520 521 rb_out: 522 523 524 if (new_disk >= 0) { 525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 526 if (!rdev) 527 goto retry; 528 atomic_inc(&rdev->nr_pending); 529 if (!test_bit(In_sync, &rdev->flags)) { 530 /* cannot risk returning a device that failed 531 * before we inc'ed nr_pending 532 */ 533 rdev_dec_pending(rdev, conf->mddev); 534 goto retry; 535 } 536 conf->next_seq_sect = this_sector + sectors; 537 conf->last_used = new_disk; 538 } 539 rcu_read_unlock(); 540 541 return new_disk; 542 } 543 544 static void unplug_slaves(mddev_t *mddev) 545 { 546 conf_t *conf = mddev_to_conf(mddev); 547 int i; 548 549 rcu_read_lock(); 550 for (i=0; i<mddev->raid_disks; i++) { 551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 553 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 554 555 atomic_inc(&rdev->nr_pending); 556 rcu_read_unlock(); 557 558 if (r_queue->unplug_fn) 559 r_queue->unplug_fn(r_queue); 560 561 rdev_dec_pending(rdev, mddev); 562 rcu_read_lock(); 563 } 564 } 565 rcu_read_unlock(); 566 } 567 568 static void raid1_unplug(request_queue_t *q) 569 { 570 mddev_t *mddev = q->queuedata; 571 572 unplug_slaves(mddev); 573 md_wakeup_thread(mddev->thread); 574 } 575 576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 577 sector_t *error_sector) 578 { 579 mddev_t *mddev = q->queuedata; 580 conf_t *conf = mddev_to_conf(mddev); 581 int i, ret = 0; 582 583 rcu_read_lock(); 584 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 586 if (rdev && !test_bit(Faulty, &rdev->flags)) { 587 struct block_device *bdev = rdev->bdev; 588 request_queue_t *r_queue = bdev_get_queue(bdev); 589 590 if (!r_queue->issue_flush_fn) 591 ret = -EOPNOTSUPP; 592 else { 593 atomic_inc(&rdev->nr_pending); 594 rcu_read_unlock(); 595 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 596 error_sector); 597 rdev_dec_pending(rdev, mddev); 598 rcu_read_lock(); 599 } 600 } 601 } 602 rcu_read_unlock(); 603 return ret; 604 } 605 606 /* Barriers.... 607 * Sometimes we need to suspend IO while we do something else, 608 * either some resync/recovery, or reconfigure the array. 609 * To do this we raise a 'barrier'. 610 * The 'barrier' is a counter that can be raised multiple times 611 * to count how many activities are happening which preclude 612 * normal IO. 613 * We can only raise the barrier if there is no pending IO. 614 * i.e. if nr_pending == 0. 615 * We choose only to raise the barrier if no-one is waiting for the 616 * barrier to go down. This means that as soon as an IO request 617 * is ready, no other operations which require a barrier will start 618 * until the IO request has had a chance. 619 * 620 * So: regular IO calls 'wait_barrier'. When that returns there 621 * is no backgroup IO happening, It must arrange to call 622 * allow_barrier when it has finished its IO. 623 * backgroup IO calls must call raise_barrier. Once that returns 624 * there is no normal IO happeing. It must arrange to call 625 * lower_barrier when the particular background IO completes. 626 */ 627 #define RESYNC_DEPTH 32 628 629 static void raise_barrier(conf_t *conf) 630 { 631 spin_lock_irq(&conf->resync_lock); 632 633 /* Wait until no block IO is waiting */ 634 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 635 conf->resync_lock, 636 raid1_unplug(conf->mddev->queue)); 637 638 /* block any new IO from starting */ 639 conf->barrier++; 640 641 /* No wait for all pending IO to complete */ 642 wait_event_lock_irq(conf->wait_barrier, 643 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 644 conf->resync_lock, 645 raid1_unplug(conf->mddev->queue)); 646 647 spin_unlock_irq(&conf->resync_lock); 648 } 649 650 static void lower_barrier(conf_t *conf) 651 { 652 unsigned long flags; 653 spin_lock_irqsave(&conf->resync_lock, flags); 654 conf->barrier--; 655 spin_unlock_irqrestore(&conf->resync_lock, flags); 656 wake_up(&conf->wait_barrier); 657 } 658 659 static void wait_barrier(conf_t *conf) 660 { 661 spin_lock_irq(&conf->resync_lock); 662 if (conf->barrier) { 663 conf->nr_waiting++; 664 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 665 conf->resync_lock, 666 raid1_unplug(conf->mddev->queue)); 667 conf->nr_waiting--; 668 } 669 conf->nr_pending++; 670 spin_unlock_irq(&conf->resync_lock); 671 } 672 673 static void allow_barrier(conf_t *conf) 674 { 675 unsigned long flags; 676 spin_lock_irqsave(&conf->resync_lock, flags); 677 conf->nr_pending--; 678 spin_unlock_irqrestore(&conf->resync_lock, flags); 679 wake_up(&conf->wait_barrier); 680 } 681 682 static void freeze_array(conf_t *conf) 683 { 684 /* stop syncio and normal IO and wait for everything to 685 * go quite. 686 * We increment barrier and nr_waiting, and then 687 * wait until barrier+nr_pending match nr_queued+2 688 */ 689 spin_lock_irq(&conf->resync_lock); 690 conf->barrier++; 691 conf->nr_waiting++; 692 wait_event_lock_irq(conf->wait_barrier, 693 conf->barrier+conf->nr_pending == conf->nr_queued+2, 694 conf->resync_lock, 695 raid1_unplug(conf->mddev->queue)); 696 spin_unlock_irq(&conf->resync_lock); 697 } 698 static void unfreeze_array(conf_t *conf) 699 { 700 /* reverse the effect of the freeze */ 701 spin_lock_irq(&conf->resync_lock); 702 conf->barrier--; 703 conf->nr_waiting--; 704 wake_up(&conf->wait_barrier); 705 spin_unlock_irq(&conf->resync_lock); 706 } 707 708 709 /* duplicate the data pages for behind I/O */ 710 static struct page **alloc_behind_pages(struct bio *bio) 711 { 712 int i; 713 struct bio_vec *bvec; 714 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 715 GFP_NOIO); 716 if (unlikely(!pages)) 717 goto do_sync_io; 718 719 bio_for_each_segment(bvec, bio, i) { 720 pages[i] = alloc_page(GFP_NOIO); 721 if (unlikely(!pages[i])) 722 goto do_sync_io; 723 memcpy(kmap(pages[i]) + bvec->bv_offset, 724 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 725 kunmap(pages[i]); 726 kunmap(bvec->bv_page); 727 } 728 729 return pages; 730 731 do_sync_io: 732 if (pages) 733 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 734 put_page(pages[i]); 735 kfree(pages); 736 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 737 return NULL; 738 } 739 740 static int make_request(request_queue_t *q, struct bio * bio) 741 { 742 mddev_t *mddev = q->queuedata; 743 conf_t *conf = mddev_to_conf(mddev); 744 mirror_info_t *mirror; 745 r1bio_t *r1_bio; 746 struct bio *read_bio; 747 int i, targets = 0, disks; 748 mdk_rdev_t *rdev; 749 struct bitmap *bitmap = mddev->bitmap; 750 unsigned long flags; 751 struct bio_list bl; 752 struct page **behind_pages = NULL; 753 const int rw = bio_data_dir(bio); 754 int do_barriers; 755 756 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 757 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 758 return 0; 759 } 760 761 /* 762 * Register the new request and wait if the reconstruction 763 * thread has put up a bar for new requests. 764 * Continue immediately if no resync is active currently. 765 */ 766 md_write_start(mddev, bio); /* wait on superblock update early */ 767 768 wait_barrier(conf); 769 770 disk_stat_inc(mddev->gendisk, ios[rw]); 771 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 772 773 /* 774 * make_request() can abort the operation when READA is being 775 * used and no empty request is available. 776 * 777 */ 778 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 779 780 r1_bio->master_bio = bio; 781 r1_bio->sectors = bio->bi_size >> 9; 782 r1_bio->state = 0; 783 r1_bio->mddev = mddev; 784 r1_bio->sector = bio->bi_sector; 785 786 if (rw == READ) { 787 /* 788 * read balancing logic: 789 */ 790 int rdisk = read_balance(conf, r1_bio); 791 792 if (rdisk < 0) { 793 /* couldn't find anywhere to read from */ 794 raid_end_bio_io(r1_bio); 795 return 0; 796 } 797 mirror = conf->mirrors + rdisk; 798 799 r1_bio->read_disk = rdisk; 800 801 read_bio = bio_clone(bio, GFP_NOIO); 802 803 r1_bio->bios[rdisk] = read_bio; 804 805 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 806 read_bio->bi_bdev = mirror->rdev->bdev; 807 read_bio->bi_end_io = raid1_end_read_request; 808 read_bio->bi_rw = READ; 809 read_bio->bi_private = r1_bio; 810 811 generic_make_request(read_bio); 812 return 0; 813 } 814 815 /* 816 * WRITE: 817 */ 818 /* first select target devices under spinlock and 819 * inc refcount on their rdev. Record them by setting 820 * bios[x] to bio 821 */ 822 disks = conf->raid_disks; 823 #if 0 824 { static int first=1; 825 if (first) printk("First Write sector %llu disks %d\n", 826 (unsigned long long)r1_bio->sector, disks); 827 first = 0; 828 } 829 #endif 830 rcu_read_lock(); 831 for (i = 0; i < disks; i++) { 832 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 833 !test_bit(Faulty, &rdev->flags)) { 834 atomic_inc(&rdev->nr_pending); 835 if (test_bit(Faulty, &rdev->flags)) { 836 rdev_dec_pending(rdev, mddev); 837 r1_bio->bios[i] = NULL; 838 } else 839 r1_bio->bios[i] = bio; 840 targets++; 841 } else 842 r1_bio->bios[i] = NULL; 843 } 844 rcu_read_unlock(); 845 846 BUG_ON(targets == 0); /* we never fail the last device */ 847 848 if (targets < conf->raid_disks) { 849 /* array is degraded, we will not clear the bitmap 850 * on I/O completion (see raid1_end_write_request) */ 851 set_bit(R1BIO_Degraded, &r1_bio->state); 852 } 853 854 /* do behind I/O ? */ 855 if (bitmap && 856 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 857 (behind_pages = alloc_behind_pages(bio)) != NULL) 858 set_bit(R1BIO_BehindIO, &r1_bio->state); 859 860 atomic_set(&r1_bio->remaining, 0); 861 atomic_set(&r1_bio->behind_remaining, 0); 862 863 do_barriers = bio_barrier(bio); 864 if (do_barriers) 865 set_bit(R1BIO_Barrier, &r1_bio->state); 866 867 bio_list_init(&bl); 868 for (i = 0; i < disks; i++) { 869 struct bio *mbio; 870 if (!r1_bio->bios[i]) 871 continue; 872 873 mbio = bio_clone(bio, GFP_NOIO); 874 r1_bio->bios[i] = mbio; 875 876 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 877 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 878 mbio->bi_end_io = raid1_end_write_request; 879 mbio->bi_rw = WRITE | do_barriers; 880 mbio->bi_private = r1_bio; 881 882 if (behind_pages) { 883 struct bio_vec *bvec; 884 int j; 885 886 /* Yes, I really want the '__' version so that 887 * we clear any unused pointer in the io_vec, rather 888 * than leave them unchanged. This is important 889 * because when we come to free the pages, we won't 890 * know the originial bi_idx, so we just free 891 * them all 892 */ 893 __bio_for_each_segment(bvec, mbio, j, 0) 894 bvec->bv_page = behind_pages[j]; 895 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 896 atomic_inc(&r1_bio->behind_remaining); 897 } 898 899 atomic_inc(&r1_bio->remaining); 900 901 bio_list_add(&bl, mbio); 902 } 903 kfree(behind_pages); /* the behind pages are attached to the bios now */ 904 905 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 906 test_bit(R1BIO_BehindIO, &r1_bio->state)); 907 spin_lock_irqsave(&conf->device_lock, flags); 908 bio_list_merge(&conf->pending_bio_list, &bl); 909 bio_list_init(&bl); 910 911 blk_plug_device(mddev->queue); 912 spin_unlock_irqrestore(&conf->device_lock, flags); 913 914 #if 0 915 while ((bio = bio_list_pop(&bl)) != NULL) 916 generic_make_request(bio); 917 #endif 918 919 return 0; 920 } 921 922 static void status(struct seq_file *seq, mddev_t *mddev) 923 { 924 conf_t *conf = mddev_to_conf(mddev); 925 int i; 926 927 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 928 conf->working_disks); 929 for (i = 0; i < conf->raid_disks; i++) 930 seq_printf(seq, "%s", 931 conf->mirrors[i].rdev && 932 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 933 seq_printf(seq, "]"); 934 } 935 936 937 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 938 { 939 char b[BDEVNAME_SIZE]; 940 conf_t *conf = mddev_to_conf(mddev); 941 942 /* 943 * If it is not operational, then we have already marked it as dead 944 * else if it is the last working disks, ignore the error, let the 945 * next level up know. 946 * else mark the drive as failed 947 */ 948 if (test_bit(In_sync, &rdev->flags) 949 && conf->working_disks == 1) 950 /* 951 * Don't fail the drive, act as though we were just a 952 * normal single drive 953 */ 954 return; 955 if (test_bit(In_sync, &rdev->flags)) { 956 mddev->degraded++; 957 conf->working_disks--; 958 /* 959 * if recovery is running, make sure it aborts. 960 */ 961 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 962 } 963 clear_bit(In_sync, &rdev->flags); 964 set_bit(Faulty, &rdev->flags); 965 mddev->sb_dirty = 1; 966 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 967 " Operation continuing on %d devices\n", 968 bdevname(rdev->bdev,b), conf->working_disks); 969 } 970 971 static void print_conf(conf_t *conf) 972 { 973 int i; 974 mirror_info_t *tmp; 975 976 printk("RAID1 conf printout:\n"); 977 if (!conf) { 978 printk("(!conf)\n"); 979 return; 980 } 981 printk(" --- wd:%d rd:%d\n", conf->working_disks, 982 conf->raid_disks); 983 984 for (i = 0; i < conf->raid_disks; i++) { 985 char b[BDEVNAME_SIZE]; 986 tmp = conf->mirrors + i; 987 if (tmp->rdev) 988 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 989 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags), 990 bdevname(tmp->rdev->bdev,b)); 991 } 992 } 993 994 static void close_sync(conf_t *conf) 995 { 996 wait_barrier(conf); 997 allow_barrier(conf); 998 999 mempool_destroy(conf->r1buf_pool); 1000 conf->r1buf_pool = NULL; 1001 } 1002 1003 static int raid1_spare_active(mddev_t *mddev) 1004 { 1005 int i; 1006 conf_t *conf = mddev->private; 1007 mirror_info_t *tmp; 1008 1009 /* 1010 * Find all failed disks within the RAID1 configuration 1011 * and mark them readable 1012 */ 1013 for (i = 0; i < conf->raid_disks; i++) { 1014 tmp = conf->mirrors + i; 1015 if (tmp->rdev 1016 && !test_bit(Faulty, &tmp->rdev->flags) 1017 && !test_bit(In_sync, &tmp->rdev->flags)) { 1018 conf->working_disks++; 1019 mddev->degraded--; 1020 set_bit(In_sync, &tmp->rdev->flags); 1021 } 1022 } 1023 1024 print_conf(conf); 1025 return 0; 1026 } 1027 1028 1029 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1030 { 1031 conf_t *conf = mddev->private; 1032 int found = 0; 1033 int mirror = 0; 1034 mirror_info_t *p; 1035 1036 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1037 if ( !(p=conf->mirrors+mirror)->rdev) { 1038 1039 blk_queue_stack_limits(mddev->queue, 1040 rdev->bdev->bd_disk->queue); 1041 /* as we don't honour merge_bvec_fn, we must never risk 1042 * violating it, so limit ->max_sector to one PAGE, as 1043 * a one page request is never in violation. 1044 */ 1045 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1046 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1047 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1048 1049 p->head_position = 0; 1050 rdev->raid_disk = mirror; 1051 found = 1; 1052 /* As all devices are equivalent, we don't need a full recovery 1053 * if this was recently any drive of the array 1054 */ 1055 if (rdev->saved_raid_disk < 0) 1056 conf->fullsync = 1; 1057 rcu_assign_pointer(p->rdev, rdev); 1058 break; 1059 } 1060 1061 print_conf(conf); 1062 return found; 1063 } 1064 1065 static int raid1_remove_disk(mddev_t *mddev, int number) 1066 { 1067 conf_t *conf = mddev->private; 1068 int err = 0; 1069 mdk_rdev_t *rdev; 1070 mirror_info_t *p = conf->mirrors+ number; 1071 1072 print_conf(conf); 1073 rdev = p->rdev; 1074 if (rdev) { 1075 if (test_bit(In_sync, &rdev->flags) || 1076 atomic_read(&rdev->nr_pending)) { 1077 err = -EBUSY; 1078 goto abort; 1079 } 1080 p->rdev = NULL; 1081 synchronize_rcu(); 1082 if (atomic_read(&rdev->nr_pending)) { 1083 /* lost the race, try later */ 1084 err = -EBUSY; 1085 p->rdev = rdev; 1086 } 1087 } 1088 abort: 1089 1090 print_conf(conf); 1091 return err; 1092 } 1093 1094 1095 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1096 { 1097 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1098 int i; 1099 1100 if (bio->bi_size) 1101 return 1; 1102 1103 for (i=r1_bio->mddev->raid_disks; i--; ) 1104 if (r1_bio->bios[i] == bio) 1105 break; 1106 BUG_ON(i < 0); 1107 update_head_pos(i, r1_bio); 1108 /* 1109 * we have read a block, now it needs to be re-written, 1110 * or re-read if the read failed. 1111 * We don't do much here, just schedule handling by raid1d 1112 */ 1113 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1114 set_bit(R1BIO_Uptodate, &r1_bio->state); 1115 1116 if (atomic_dec_and_test(&r1_bio->remaining)) 1117 reschedule_retry(r1_bio); 1118 return 0; 1119 } 1120 1121 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1122 { 1123 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1124 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1125 mddev_t *mddev = r1_bio->mddev; 1126 conf_t *conf = mddev_to_conf(mddev); 1127 int i; 1128 int mirror=0; 1129 1130 if (bio->bi_size) 1131 return 1; 1132 1133 for (i = 0; i < conf->raid_disks; i++) 1134 if (r1_bio->bios[i] == bio) { 1135 mirror = i; 1136 break; 1137 } 1138 if (!uptodate) { 1139 int sync_blocks = 0; 1140 sector_t s = r1_bio->sector; 1141 long sectors_to_go = r1_bio->sectors; 1142 /* make sure these bits doesn't get cleared. */ 1143 do { 1144 bitmap_end_sync(mddev->bitmap, r1_bio->sector, 1145 &sync_blocks, 1); 1146 s += sync_blocks; 1147 sectors_to_go -= sync_blocks; 1148 } while (sectors_to_go > 0); 1149 md_error(mddev, conf->mirrors[mirror].rdev); 1150 } 1151 1152 update_head_pos(mirror, r1_bio); 1153 1154 if (atomic_dec_and_test(&r1_bio->remaining)) { 1155 md_done_sync(mddev, r1_bio->sectors, uptodate); 1156 put_buf(r1_bio); 1157 } 1158 return 0; 1159 } 1160 1161 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1162 { 1163 conf_t *conf = mddev_to_conf(mddev); 1164 int i; 1165 int disks = conf->raid_disks; 1166 struct bio *bio, *wbio; 1167 1168 bio = r1_bio->bios[r1_bio->read_disk]; 1169 1170 1171 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1172 /* We have read all readable devices. If we haven't 1173 * got the block, then there is no hope left. 1174 * If we have, then we want to do a comparison 1175 * and skip the write if everything is the same. 1176 * If any blocks failed to read, then we need to 1177 * attempt an over-write 1178 */ 1179 int primary; 1180 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1181 for (i=0; i<mddev->raid_disks; i++) 1182 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1183 md_error(mddev, conf->mirrors[i].rdev); 1184 1185 md_done_sync(mddev, r1_bio->sectors, 1); 1186 put_buf(r1_bio); 1187 return; 1188 } 1189 for (primary=0; primary<mddev->raid_disks; primary++) 1190 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1191 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1192 r1_bio->bios[primary]->bi_end_io = NULL; 1193 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1194 break; 1195 } 1196 r1_bio->read_disk = primary; 1197 for (i=0; i<mddev->raid_disks; i++) 1198 if (r1_bio->bios[i]->bi_end_io == end_sync_read && 1199 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) { 1200 int j; 1201 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1202 struct bio *pbio = r1_bio->bios[primary]; 1203 struct bio *sbio = r1_bio->bios[i]; 1204 for (j = vcnt; j-- ; ) 1205 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page), 1206 page_address(sbio->bi_io_vec[j].bv_page), 1207 PAGE_SIZE)) 1208 break; 1209 if (j >= 0) 1210 mddev->resync_mismatches += r1_bio->sectors; 1211 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1212 sbio->bi_end_io = NULL; 1213 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1214 } else { 1215 /* fixup the bio for reuse */ 1216 sbio->bi_vcnt = vcnt; 1217 sbio->bi_size = r1_bio->sectors << 9; 1218 sbio->bi_idx = 0; 1219 sbio->bi_phys_segments = 0; 1220 sbio->bi_hw_segments = 0; 1221 sbio->bi_hw_front_size = 0; 1222 sbio->bi_hw_back_size = 0; 1223 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1224 sbio->bi_flags |= 1 << BIO_UPTODATE; 1225 sbio->bi_next = NULL; 1226 sbio->bi_sector = r1_bio->sector + 1227 conf->mirrors[i].rdev->data_offset; 1228 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1229 } 1230 } 1231 } 1232 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1233 /* ouch - failed to read all of that. 1234 * Try some synchronous reads of other devices to get 1235 * good data, much like with normal read errors. Only 1236 * read into the pages we already have so they we don't 1237 * need to re-issue the read request. 1238 * We don't need to freeze the array, because being in an 1239 * active sync request, there is no normal IO, and 1240 * no overlapping syncs. 1241 */ 1242 sector_t sect = r1_bio->sector; 1243 int sectors = r1_bio->sectors; 1244 int idx = 0; 1245 1246 while(sectors) { 1247 int s = sectors; 1248 int d = r1_bio->read_disk; 1249 int success = 0; 1250 mdk_rdev_t *rdev; 1251 1252 if (s > (PAGE_SIZE>>9)) 1253 s = PAGE_SIZE >> 9; 1254 do { 1255 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1256 rdev = conf->mirrors[d].rdev; 1257 if (sync_page_io(rdev->bdev, 1258 sect + rdev->data_offset, 1259 s<<9, 1260 bio->bi_io_vec[idx].bv_page, 1261 READ)) { 1262 success = 1; 1263 break; 1264 } 1265 } 1266 d++; 1267 if (d == conf->raid_disks) 1268 d = 0; 1269 } while (!success && d != r1_bio->read_disk); 1270 1271 if (success) { 1272 int start = d; 1273 /* write it back and re-read */ 1274 set_bit(R1BIO_Uptodate, &r1_bio->state); 1275 while (d != r1_bio->read_disk) { 1276 if (d == 0) 1277 d = conf->raid_disks; 1278 d--; 1279 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1280 continue; 1281 rdev = conf->mirrors[d].rdev; 1282 atomic_add(s, &rdev->corrected_errors); 1283 if (sync_page_io(rdev->bdev, 1284 sect + rdev->data_offset, 1285 s<<9, 1286 bio->bi_io_vec[idx].bv_page, 1287 WRITE) == 0) 1288 md_error(mddev, rdev); 1289 } 1290 d = start; 1291 while (d != r1_bio->read_disk) { 1292 if (d == 0) 1293 d = conf->raid_disks; 1294 d--; 1295 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1296 continue; 1297 rdev = conf->mirrors[d].rdev; 1298 if (sync_page_io(rdev->bdev, 1299 sect + rdev->data_offset, 1300 s<<9, 1301 bio->bi_io_vec[idx].bv_page, 1302 READ) == 0) 1303 md_error(mddev, rdev); 1304 } 1305 } else { 1306 char b[BDEVNAME_SIZE]; 1307 /* Cannot read from anywhere, array is toast */ 1308 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1309 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1310 " for block %llu\n", 1311 bdevname(bio->bi_bdev,b), 1312 (unsigned long long)r1_bio->sector); 1313 md_done_sync(mddev, r1_bio->sectors, 0); 1314 put_buf(r1_bio); 1315 return; 1316 } 1317 sectors -= s; 1318 sect += s; 1319 idx ++; 1320 } 1321 } 1322 1323 /* 1324 * schedule writes 1325 */ 1326 atomic_set(&r1_bio->remaining, 1); 1327 for (i = 0; i < disks ; i++) { 1328 wbio = r1_bio->bios[i]; 1329 if (wbio->bi_end_io == NULL || 1330 (wbio->bi_end_io == end_sync_read && 1331 (i == r1_bio->read_disk || 1332 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1333 continue; 1334 1335 wbio->bi_rw = WRITE; 1336 wbio->bi_end_io = end_sync_write; 1337 atomic_inc(&r1_bio->remaining); 1338 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1339 1340 generic_make_request(wbio); 1341 } 1342 1343 if (atomic_dec_and_test(&r1_bio->remaining)) { 1344 /* if we're here, all write(s) have completed, so clean up */ 1345 md_done_sync(mddev, r1_bio->sectors, 1); 1346 put_buf(r1_bio); 1347 } 1348 } 1349 1350 /* 1351 * This is a kernel thread which: 1352 * 1353 * 1. Retries failed read operations on working mirrors. 1354 * 2. Updates the raid superblock when problems encounter. 1355 * 3. Performs writes following reads for array syncronising. 1356 */ 1357 1358 static void raid1d(mddev_t *mddev) 1359 { 1360 r1bio_t *r1_bio; 1361 struct bio *bio; 1362 unsigned long flags; 1363 conf_t *conf = mddev_to_conf(mddev); 1364 struct list_head *head = &conf->retry_list; 1365 int unplug=0; 1366 mdk_rdev_t *rdev; 1367 1368 md_check_recovery(mddev); 1369 1370 for (;;) { 1371 char b[BDEVNAME_SIZE]; 1372 spin_lock_irqsave(&conf->device_lock, flags); 1373 1374 if (conf->pending_bio_list.head) { 1375 bio = bio_list_get(&conf->pending_bio_list); 1376 blk_remove_plug(mddev->queue); 1377 spin_unlock_irqrestore(&conf->device_lock, flags); 1378 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1379 if (bitmap_unplug(mddev->bitmap) != 0) 1380 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1381 1382 while (bio) { /* submit pending writes */ 1383 struct bio *next = bio->bi_next; 1384 bio->bi_next = NULL; 1385 generic_make_request(bio); 1386 bio = next; 1387 } 1388 unplug = 1; 1389 1390 continue; 1391 } 1392 1393 if (list_empty(head)) 1394 break; 1395 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1396 list_del(head->prev); 1397 conf->nr_queued--; 1398 spin_unlock_irqrestore(&conf->device_lock, flags); 1399 1400 mddev = r1_bio->mddev; 1401 conf = mddev_to_conf(mddev); 1402 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1403 sync_request_write(mddev, r1_bio); 1404 unplug = 1; 1405 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1406 /* some requests in the r1bio were BIO_RW_BARRIER 1407 * requests which failed with -ENOTSUPP. Hohumm.. 1408 * Better resubmit without the barrier. 1409 * We know which devices to resubmit for, because 1410 * all others have had their bios[] entry cleared. 1411 */ 1412 int i; 1413 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1414 clear_bit(R1BIO_Barrier, &r1_bio->state); 1415 for (i=0; i < conf->raid_disks; i++) 1416 if (r1_bio->bios[i]) 1417 atomic_inc(&r1_bio->remaining); 1418 for (i=0; i < conf->raid_disks; i++) 1419 if (r1_bio->bios[i]) { 1420 struct bio_vec *bvec; 1421 int j; 1422 1423 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1424 /* copy pages from the failed bio, as 1425 * this might be a write-behind device */ 1426 __bio_for_each_segment(bvec, bio, j, 0) 1427 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1428 bio_put(r1_bio->bios[i]); 1429 bio->bi_sector = r1_bio->sector + 1430 conf->mirrors[i].rdev->data_offset; 1431 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1432 bio->bi_end_io = raid1_end_write_request; 1433 bio->bi_rw = WRITE; 1434 bio->bi_private = r1_bio; 1435 r1_bio->bios[i] = bio; 1436 generic_make_request(bio); 1437 } 1438 } else { 1439 int disk; 1440 1441 /* we got a read error. Maybe the drive is bad. Maybe just 1442 * the block and we can fix it. 1443 * We freeze all other IO, and try reading the block from 1444 * other devices. When we find one, we re-write 1445 * and check it that fixes the read error. 1446 * This is all done synchronously while the array is 1447 * frozen 1448 */ 1449 sector_t sect = r1_bio->sector; 1450 int sectors = r1_bio->sectors; 1451 freeze_array(conf); 1452 if (mddev->ro == 0) while(sectors) { 1453 int s = sectors; 1454 int d = r1_bio->read_disk; 1455 int success = 0; 1456 1457 if (s > (PAGE_SIZE>>9)) 1458 s = PAGE_SIZE >> 9; 1459 1460 do { 1461 rdev = conf->mirrors[d].rdev; 1462 if (rdev && 1463 test_bit(In_sync, &rdev->flags) && 1464 sync_page_io(rdev->bdev, 1465 sect + rdev->data_offset, 1466 s<<9, 1467 conf->tmppage, READ)) 1468 success = 1; 1469 else { 1470 d++; 1471 if (d == conf->raid_disks) 1472 d = 0; 1473 } 1474 } while (!success && d != r1_bio->read_disk); 1475 1476 if (success) { 1477 /* write it back and re-read */ 1478 int start = d; 1479 while (d != r1_bio->read_disk) { 1480 if (d==0) 1481 d = conf->raid_disks; 1482 d--; 1483 rdev = conf->mirrors[d].rdev; 1484 atomic_add(s, &rdev->corrected_errors); 1485 if (rdev && 1486 test_bit(In_sync, &rdev->flags)) { 1487 if (sync_page_io(rdev->bdev, 1488 sect + rdev->data_offset, 1489 s<<9, conf->tmppage, WRITE) == 0) 1490 /* Well, this device is dead */ 1491 md_error(mddev, rdev); 1492 } 1493 } 1494 d = start; 1495 while (d != r1_bio->read_disk) { 1496 if (d==0) 1497 d = conf->raid_disks; 1498 d--; 1499 rdev = conf->mirrors[d].rdev; 1500 if (rdev && 1501 test_bit(In_sync, &rdev->flags)) { 1502 if (sync_page_io(rdev->bdev, 1503 sect + rdev->data_offset, 1504 s<<9, conf->tmppage, READ) == 0) 1505 /* Well, this device is dead */ 1506 md_error(mddev, rdev); 1507 } 1508 } 1509 } else { 1510 /* Cannot read from anywhere -- bye bye array */ 1511 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1512 break; 1513 } 1514 sectors -= s; 1515 sect += s; 1516 } 1517 1518 unfreeze_array(conf); 1519 1520 bio = r1_bio->bios[r1_bio->read_disk]; 1521 if ((disk=read_balance(conf, r1_bio)) == -1) { 1522 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1523 " read error for block %llu\n", 1524 bdevname(bio->bi_bdev,b), 1525 (unsigned long long)r1_bio->sector); 1526 raid_end_bio_io(r1_bio); 1527 } else { 1528 r1_bio->bios[r1_bio->read_disk] = 1529 mddev->ro ? IO_BLOCKED : NULL; 1530 r1_bio->read_disk = disk; 1531 bio_put(bio); 1532 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1533 r1_bio->bios[r1_bio->read_disk] = bio; 1534 rdev = conf->mirrors[disk].rdev; 1535 if (printk_ratelimit()) 1536 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1537 " another mirror\n", 1538 bdevname(rdev->bdev,b), 1539 (unsigned long long)r1_bio->sector); 1540 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1541 bio->bi_bdev = rdev->bdev; 1542 bio->bi_end_io = raid1_end_read_request; 1543 bio->bi_rw = READ; 1544 bio->bi_private = r1_bio; 1545 unplug = 1; 1546 generic_make_request(bio); 1547 } 1548 } 1549 } 1550 spin_unlock_irqrestore(&conf->device_lock, flags); 1551 if (unplug) 1552 unplug_slaves(mddev); 1553 } 1554 1555 1556 static int init_resync(conf_t *conf) 1557 { 1558 int buffs; 1559 1560 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1561 BUG_ON(conf->r1buf_pool); 1562 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1563 conf->poolinfo); 1564 if (!conf->r1buf_pool) 1565 return -ENOMEM; 1566 conf->next_resync = 0; 1567 return 0; 1568 } 1569 1570 /* 1571 * perform a "sync" on one "block" 1572 * 1573 * We need to make sure that no normal I/O request - particularly write 1574 * requests - conflict with active sync requests. 1575 * 1576 * This is achieved by tracking pending requests and a 'barrier' concept 1577 * that can be installed to exclude normal IO requests. 1578 */ 1579 1580 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1581 { 1582 conf_t *conf = mddev_to_conf(mddev); 1583 r1bio_t *r1_bio; 1584 struct bio *bio; 1585 sector_t max_sector, nr_sectors; 1586 int disk = -1; 1587 int i; 1588 int wonly = -1; 1589 int write_targets = 0, read_targets = 0; 1590 int sync_blocks; 1591 int still_degraded = 0; 1592 1593 if (!conf->r1buf_pool) 1594 { 1595 /* 1596 printk("sync start - bitmap %p\n", mddev->bitmap); 1597 */ 1598 if (init_resync(conf)) 1599 return 0; 1600 } 1601 1602 max_sector = mddev->size << 1; 1603 if (sector_nr >= max_sector) { 1604 /* If we aborted, we need to abort the 1605 * sync on the 'current' bitmap chunk (there will 1606 * only be one in raid1 resync. 1607 * We can find the current addess in mddev->curr_resync 1608 */ 1609 if (mddev->curr_resync < max_sector) /* aborted */ 1610 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1611 &sync_blocks, 1); 1612 else /* completed sync */ 1613 conf->fullsync = 0; 1614 1615 bitmap_close_sync(mddev->bitmap); 1616 close_sync(conf); 1617 return 0; 1618 } 1619 1620 /* before building a request, check if we can skip these blocks.. 1621 * This call the bitmap_start_sync doesn't actually record anything 1622 */ 1623 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1624 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1625 /* We can skip this block, and probably several more */ 1626 *skipped = 1; 1627 return sync_blocks; 1628 } 1629 /* 1630 * If there is non-resync activity waiting for a turn, 1631 * and resync is going fast enough, 1632 * then let it though before starting on this new sync request. 1633 */ 1634 if (!go_faster && conf->nr_waiting) 1635 msleep_interruptible(1000); 1636 1637 raise_barrier(conf); 1638 1639 conf->next_resync = sector_nr; 1640 1641 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1642 rcu_read_lock(); 1643 /* 1644 * If we get a correctably read error during resync or recovery, 1645 * we might want to read from a different device. So we 1646 * flag all drives that could conceivably be read from for READ, 1647 * and any others (which will be non-In_sync devices) for WRITE. 1648 * If a read fails, we try reading from something else for which READ 1649 * is OK. 1650 */ 1651 1652 r1_bio->mddev = mddev; 1653 r1_bio->sector = sector_nr; 1654 r1_bio->state = 0; 1655 set_bit(R1BIO_IsSync, &r1_bio->state); 1656 1657 for (i=0; i < conf->raid_disks; i++) { 1658 mdk_rdev_t *rdev; 1659 bio = r1_bio->bios[i]; 1660 1661 /* take from bio_init */ 1662 bio->bi_next = NULL; 1663 bio->bi_flags |= 1 << BIO_UPTODATE; 1664 bio->bi_rw = 0; 1665 bio->bi_vcnt = 0; 1666 bio->bi_idx = 0; 1667 bio->bi_phys_segments = 0; 1668 bio->bi_hw_segments = 0; 1669 bio->bi_size = 0; 1670 bio->bi_end_io = NULL; 1671 bio->bi_private = NULL; 1672 1673 rdev = rcu_dereference(conf->mirrors[i].rdev); 1674 if (rdev == NULL || 1675 test_bit(Faulty, &rdev->flags)) { 1676 still_degraded = 1; 1677 continue; 1678 } else if (!test_bit(In_sync, &rdev->flags)) { 1679 bio->bi_rw = WRITE; 1680 bio->bi_end_io = end_sync_write; 1681 write_targets ++; 1682 } else { 1683 /* may need to read from here */ 1684 bio->bi_rw = READ; 1685 bio->bi_end_io = end_sync_read; 1686 if (test_bit(WriteMostly, &rdev->flags)) { 1687 if (wonly < 0) 1688 wonly = i; 1689 } else { 1690 if (disk < 0) 1691 disk = i; 1692 } 1693 read_targets++; 1694 } 1695 atomic_inc(&rdev->nr_pending); 1696 bio->bi_sector = sector_nr + rdev->data_offset; 1697 bio->bi_bdev = rdev->bdev; 1698 bio->bi_private = r1_bio; 1699 } 1700 rcu_read_unlock(); 1701 if (disk < 0) 1702 disk = wonly; 1703 r1_bio->read_disk = disk; 1704 1705 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1706 /* extra read targets are also write targets */ 1707 write_targets += read_targets-1; 1708 1709 if (write_targets == 0 || read_targets == 0) { 1710 /* There is nowhere to write, so all non-sync 1711 * drives must be failed - so we are finished 1712 */ 1713 sector_t rv = max_sector - sector_nr; 1714 *skipped = 1; 1715 put_buf(r1_bio); 1716 return rv; 1717 } 1718 1719 nr_sectors = 0; 1720 sync_blocks = 0; 1721 do { 1722 struct page *page; 1723 int len = PAGE_SIZE; 1724 if (sector_nr + (len>>9) > max_sector) 1725 len = (max_sector - sector_nr) << 9; 1726 if (len == 0) 1727 break; 1728 if (sync_blocks == 0) { 1729 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1730 &sync_blocks, still_degraded) && 1731 !conf->fullsync && 1732 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1733 break; 1734 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1735 if (len > (sync_blocks<<9)) 1736 len = sync_blocks<<9; 1737 } 1738 1739 for (i=0 ; i < conf->raid_disks; i++) { 1740 bio = r1_bio->bios[i]; 1741 if (bio->bi_end_io) { 1742 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1743 if (bio_add_page(bio, page, len, 0) == 0) { 1744 /* stop here */ 1745 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1746 while (i > 0) { 1747 i--; 1748 bio = r1_bio->bios[i]; 1749 if (bio->bi_end_io==NULL) 1750 continue; 1751 /* remove last page from this bio */ 1752 bio->bi_vcnt--; 1753 bio->bi_size -= len; 1754 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1755 } 1756 goto bio_full; 1757 } 1758 } 1759 } 1760 nr_sectors += len>>9; 1761 sector_nr += len>>9; 1762 sync_blocks -= (len>>9); 1763 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1764 bio_full: 1765 r1_bio->sectors = nr_sectors; 1766 1767 /* For a user-requested sync, we read all readable devices and do a 1768 * compare 1769 */ 1770 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1771 atomic_set(&r1_bio->remaining, read_targets); 1772 for (i=0; i<conf->raid_disks; i++) { 1773 bio = r1_bio->bios[i]; 1774 if (bio->bi_end_io == end_sync_read) { 1775 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors); 1776 generic_make_request(bio); 1777 } 1778 } 1779 } else { 1780 atomic_set(&r1_bio->remaining, 1); 1781 bio = r1_bio->bios[r1_bio->read_disk]; 1782 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev, 1783 nr_sectors); 1784 generic_make_request(bio); 1785 1786 } 1787 1788 return nr_sectors; 1789 } 1790 1791 static int run(mddev_t *mddev) 1792 { 1793 conf_t *conf; 1794 int i, j, disk_idx; 1795 mirror_info_t *disk; 1796 mdk_rdev_t *rdev; 1797 struct list_head *tmp; 1798 1799 if (mddev->level != 1) { 1800 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1801 mdname(mddev), mddev->level); 1802 goto out; 1803 } 1804 if (mddev->reshape_position != MaxSector) { 1805 printk("raid1: %s: reshape_position set but not supported\n", 1806 mdname(mddev)); 1807 goto out; 1808 } 1809 /* 1810 * copy the already verified devices into our private RAID1 1811 * bookkeeping area. [whatever we allocate in run(), 1812 * should be freed in stop()] 1813 */ 1814 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1815 mddev->private = conf; 1816 if (!conf) 1817 goto out_no_mem; 1818 1819 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1820 GFP_KERNEL); 1821 if (!conf->mirrors) 1822 goto out_no_mem; 1823 1824 conf->tmppage = alloc_page(GFP_KERNEL); 1825 if (!conf->tmppage) 1826 goto out_no_mem; 1827 1828 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1829 if (!conf->poolinfo) 1830 goto out_no_mem; 1831 conf->poolinfo->mddev = mddev; 1832 conf->poolinfo->raid_disks = mddev->raid_disks; 1833 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1834 r1bio_pool_free, 1835 conf->poolinfo); 1836 if (!conf->r1bio_pool) 1837 goto out_no_mem; 1838 1839 ITERATE_RDEV(mddev, rdev, tmp) { 1840 disk_idx = rdev->raid_disk; 1841 if (disk_idx >= mddev->raid_disks 1842 || disk_idx < 0) 1843 continue; 1844 disk = conf->mirrors + disk_idx; 1845 1846 disk->rdev = rdev; 1847 1848 blk_queue_stack_limits(mddev->queue, 1849 rdev->bdev->bd_disk->queue); 1850 /* as we don't honour merge_bvec_fn, we must never risk 1851 * violating it, so limit ->max_sector to one PAGE, as 1852 * a one page request is never in violation. 1853 */ 1854 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1855 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1856 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1857 1858 disk->head_position = 0; 1859 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 1860 conf->working_disks++; 1861 } 1862 conf->raid_disks = mddev->raid_disks; 1863 conf->mddev = mddev; 1864 spin_lock_init(&conf->device_lock); 1865 INIT_LIST_HEAD(&conf->retry_list); 1866 if (conf->working_disks == 1) 1867 mddev->recovery_cp = MaxSector; 1868 1869 spin_lock_init(&conf->resync_lock); 1870 init_waitqueue_head(&conf->wait_barrier); 1871 1872 bio_list_init(&conf->pending_bio_list); 1873 bio_list_init(&conf->flushing_bio_list); 1874 1875 if (!conf->working_disks) { 1876 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1877 mdname(mddev)); 1878 goto out_free_conf; 1879 } 1880 1881 mddev->degraded = 0; 1882 for (i = 0; i < conf->raid_disks; i++) { 1883 1884 disk = conf->mirrors + i; 1885 1886 if (!disk->rdev) { 1887 disk->head_position = 0; 1888 mddev->degraded++; 1889 } 1890 } 1891 1892 /* 1893 * find the first working one and use it as a starting point 1894 * to read balancing. 1895 */ 1896 for (j = 0; j < conf->raid_disks && 1897 (!conf->mirrors[j].rdev || 1898 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1899 /* nothing */; 1900 conf->last_used = j; 1901 1902 1903 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1904 if (!mddev->thread) { 1905 printk(KERN_ERR 1906 "raid1: couldn't allocate thread for %s\n", 1907 mdname(mddev)); 1908 goto out_free_conf; 1909 } 1910 1911 printk(KERN_INFO 1912 "raid1: raid set %s active with %d out of %d mirrors\n", 1913 mdname(mddev), mddev->raid_disks - mddev->degraded, 1914 mddev->raid_disks); 1915 /* 1916 * Ok, everything is just fine now 1917 */ 1918 mddev->array_size = mddev->size; 1919 1920 mddev->queue->unplug_fn = raid1_unplug; 1921 mddev->queue->issue_flush_fn = raid1_issue_flush; 1922 1923 return 0; 1924 1925 out_no_mem: 1926 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1927 mdname(mddev)); 1928 1929 out_free_conf: 1930 if (conf) { 1931 if (conf->r1bio_pool) 1932 mempool_destroy(conf->r1bio_pool); 1933 kfree(conf->mirrors); 1934 safe_put_page(conf->tmppage); 1935 kfree(conf->poolinfo); 1936 kfree(conf); 1937 mddev->private = NULL; 1938 } 1939 out: 1940 return -EIO; 1941 } 1942 1943 static int stop(mddev_t *mddev) 1944 { 1945 conf_t *conf = mddev_to_conf(mddev); 1946 struct bitmap *bitmap = mddev->bitmap; 1947 int behind_wait = 0; 1948 1949 /* wait for behind writes to complete */ 1950 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 1951 behind_wait++; 1952 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 1953 set_current_state(TASK_UNINTERRUPTIBLE); 1954 schedule_timeout(HZ); /* wait a second */ 1955 /* need to kick something here to make sure I/O goes? */ 1956 } 1957 1958 md_unregister_thread(mddev->thread); 1959 mddev->thread = NULL; 1960 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1961 if (conf->r1bio_pool) 1962 mempool_destroy(conf->r1bio_pool); 1963 kfree(conf->mirrors); 1964 kfree(conf->poolinfo); 1965 kfree(conf); 1966 mddev->private = NULL; 1967 return 0; 1968 } 1969 1970 static int raid1_resize(mddev_t *mddev, sector_t sectors) 1971 { 1972 /* no resync is happening, and there is enough space 1973 * on all devices, so we can resize. 1974 * We need to make sure resync covers any new space. 1975 * If the array is shrinking we should possibly wait until 1976 * any io in the removed space completes, but it hardly seems 1977 * worth it. 1978 */ 1979 mddev->array_size = sectors>>1; 1980 set_capacity(mddev->gendisk, mddev->array_size << 1); 1981 mddev->changed = 1; 1982 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 1983 mddev->recovery_cp = mddev->size << 1; 1984 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1985 } 1986 mddev->size = mddev->array_size; 1987 mddev->resync_max_sectors = sectors; 1988 return 0; 1989 } 1990 1991 static int raid1_reshape(mddev_t *mddev) 1992 { 1993 /* We need to: 1994 * 1/ resize the r1bio_pool 1995 * 2/ resize conf->mirrors 1996 * 1997 * We allocate a new r1bio_pool if we can. 1998 * Then raise a device barrier and wait until all IO stops. 1999 * Then resize conf->mirrors and swap in the new r1bio pool. 2000 * 2001 * At the same time, we "pack" the devices so that all the missing 2002 * devices have the higher raid_disk numbers. 2003 */ 2004 mempool_t *newpool, *oldpool; 2005 struct pool_info *newpoolinfo; 2006 mirror_info_t *newmirrors; 2007 conf_t *conf = mddev_to_conf(mddev); 2008 int cnt, raid_disks; 2009 2010 int d, d2; 2011 2012 /* Cannot change chunk_size, layout, or level */ 2013 if (mddev->chunk_size != mddev->new_chunk || 2014 mddev->layout != mddev->new_layout || 2015 mddev->level != mddev->new_level) { 2016 mddev->new_chunk = mddev->chunk_size; 2017 mddev->new_layout = mddev->layout; 2018 mddev->new_level = mddev->level; 2019 return -EINVAL; 2020 } 2021 2022 raid_disks = mddev->raid_disks + mddev->delta_disks; 2023 2024 if (raid_disks < conf->raid_disks) { 2025 cnt=0; 2026 for (d= 0; d < conf->raid_disks; d++) 2027 if (conf->mirrors[d].rdev) 2028 cnt++; 2029 if (cnt > raid_disks) 2030 return -EBUSY; 2031 } 2032 2033 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2034 if (!newpoolinfo) 2035 return -ENOMEM; 2036 newpoolinfo->mddev = mddev; 2037 newpoolinfo->raid_disks = raid_disks; 2038 2039 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2040 r1bio_pool_free, newpoolinfo); 2041 if (!newpool) { 2042 kfree(newpoolinfo); 2043 return -ENOMEM; 2044 } 2045 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2046 if (!newmirrors) { 2047 kfree(newpoolinfo); 2048 mempool_destroy(newpool); 2049 return -ENOMEM; 2050 } 2051 2052 raise_barrier(conf); 2053 2054 /* ok, everything is stopped */ 2055 oldpool = conf->r1bio_pool; 2056 conf->r1bio_pool = newpool; 2057 2058 for (d=d2=0; d < conf->raid_disks; d++) 2059 if (conf->mirrors[d].rdev) { 2060 conf->mirrors[d].rdev->raid_disk = d2; 2061 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 2062 } 2063 kfree(conf->mirrors); 2064 conf->mirrors = newmirrors; 2065 kfree(conf->poolinfo); 2066 conf->poolinfo = newpoolinfo; 2067 2068 mddev->degraded += (raid_disks - conf->raid_disks); 2069 conf->raid_disks = mddev->raid_disks = raid_disks; 2070 mddev->delta_disks = 0; 2071 2072 conf->last_used = 0; /* just make sure it is in-range */ 2073 lower_barrier(conf); 2074 2075 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2076 md_wakeup_thread(mddev->thread); 2077 2078 mempool_destroy(oldpool); 2079 return 0; 2080 } 2081 2082 static void raid1_quiesce(mddev_t *mddev, int state) 2083 { 2084 conf_t *conf = mddev_to_conf(mddev); 2085 2086 switch(state) { 2087 case 1: 2088 raise_barrier(conf); 2089 break; 2090 case 0: 2091 lower_barrier(conf); 2092 break; 2093 } 2094 } 2095 2096 2097 static struct mdk_personality raid1_personality = 2098 { 2099 .name = "raid1", 2100 .level = 1, 2101 .owner = THIS_MODULE, 2102 .make_request = make_request, 2103 .run = run, 2104 .stop = stop, 2105 .status = status, 2106 .error_handler = error, 2107 .hot_add_disk = raid1_add_disk, 2108 .hot_remove_disk= raid1_remove_disk, 2109 .spare_active = raid1_spare_active, 2110 .sync_request = sync_request, 2111 .resize = raid1_resize, 2112 .check_reshape = raid1_reshape, 2113 .quiesce = raid1_quiesce, 2114 }; 2115 2116 static int __init raid_init(void) 2117 { 2118 return register_md_personality(&raid1_personality); 2119 } 2120 2121 static void raid_exit(void) 2122 { 2123 unregister_md_personality(&raid1_personality); 2124 } 2125 2126 module_init(raid_init); 2127 module_exit(raid_exit); 2128 MODULE_LICENSE("GPL"); 2129 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2130 MODULE_ALIAS("md-raid1"); 2131 MODULE_ALIAS("md-level-1"); 2132