1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 static mdk_personality_t raid1_personality; 51 52 static void unplug_slaves(mddev_t *mddev); 53 54 55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 56 { 57 struct pool_info *pi = data; 58 r1bio_t *r1_bio; 59 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 60 61 /* allocate a r1bio with room for raid_disks entries in the bios array */ 62 r1_bio = kmalloc(size, gfp_flags); 63 if (r1_bio) 64 memset(r1_bio, 0, size); 65 else 66 unplug_slaves(pi->mddev); 67 68 return r1_bio; 69 } 70 71 static void r1bio_pool_free(void *r1_bio, void *data) 72 { 73 kfree(r1_bio); 74 } 75 76 #define RESYNC_BLOCK_SIZE (64*1024) 77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 80 #define RESYNC_WINDOW (2048*1024) 81 82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 83 { 84 struct pool_info *pi = data; 85 struct page *page; 86 r1bio_t *r1_bio; 87 struct bio *bio; 88 int i, j; 89 90 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 91 if (!r1_bio) { 92 unplug_slaves(pi->mddev); 93 return NULL; 94 } 95 96 /* 97 * Allocate bios : 1 for reading, n-1 for writing 98 */ 99 for (j = pi->raid_disks ; j-- ; ) { 100 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 101 if (!bio) 102 goto out_free_bio; 103 r1_bio->bios[j] = bio; 104 } 105 /* 106 * Allocate RESYNC_PAGES data pages and attach them to 107 * the first bio; 108 */ 109 bio = r1_bio->bios[0]; 110 for (i = 0; i < RESYNC_PAGES; i++) { 111 page = alloc_page(gfp_flags); 112 if (unlikely(!page)) 113 goto out_free_pages; 114 115 bio->bi_io_vec[i].bv_page = page; 116 } 117 118 r1_bio->master_bio = NULL; 119 120 return r1_bio; 121 122 out_free_pages: 123 for ( ; i > 0 ; i--) 124 __free_page(bio->bi_io_vec[i-1].bv_page); 125 out_free_bio: 126 while ( ++j < pi->raid_disks ) 127 bio_put(r1_bio->bios[j]); 128 r1bio_pool_free(r1_bio, data); 129 return NULL; 130 } 131 132 static void r1buf_pool_free(void *__r1_bio, void *data) 133 { 134 struct pool_info *pi = data; 135 int i; 136 r1bio_t *r1bio = __r1_bio; 137 struct bio *bio = r1bio->bios[0]; 138 139 for (i = 0; i < RESYNC_PAGES; i++) { 140 __free_page(bio->bi_io_vec[i].bv_page); 141 bio->bi_io_vec[i].bv_page = NULL; 142 } 143 for (i=0 ; i < pi->raid_disks; i++) 144 bio_put(r1bio->bios[i]); 145 146 r1bio_pool_free(r1bio, data); 147 } 148 149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 150 { 151 int i; 152 153 for (i = 0; i < conf->raid_disks; i++) { 154 struct bio **bio = r1_bio->bios + i; 155 if (*bio) 156 bio_put(*bio); 157 *bio = NULL; 158 } 159 } 160 161 static inline void free_r1bio(r1bio_t *r1_bio) 162 { 163 unsigned long flags; 164 165 conf_t *conf = mddev_to_conf(r1_bio->mddev); 166 167 /* 168 * Wake up any possible resync thread that waits for the device 169 * to go idle. 170 */ 171 spin_lock_irqsave(&conf->resync_lock, flags); 172 if (!--conf->nr_pending) { 173 wake_up(&conf->wait_idle); 174 wake_up(&conf->wait_resume); 175 } 176 spin_unlock_irqrestore(&conf->resync_lock, flags); 177 178 put_all_bios(conf, r1_bio); 179 mempool_free(r1_bio, conf->r1bio_pool); 180 } 181 182 static inline void put_buf(r1bio_t *r1_bio) 183 { 184 conf_t *conf = mddev_to_conf(r1_bio->mddev); 185 unsigned long flags; 186 187 mempool_free(r1_bio, conf->r1buf_pool); 188 189 spin_lock_irqsave(&conf->resync_lock, flags); 190 if (!conf->barrier) 191 BUG(); 192 --conf->barrier; 193 wake_up(&conf->wait_resume); 194 wake_up(&conf->wait_idle); 195 196 if (!--conf->nr_pending) { 197 wake_up(&conf->wait_idle); 198 wake_up(&conf->wait_resume); 199 } 200 spin_unlock_irqrestore(&conf->resync_lock, flags); 201 } 202 203 static void reschedule_retry(r1bio_t *r1_bio) 204 { 205 unsigned long flags; 206 mddev_t *mddev = r1_bio->mddev; 207 conf_t *conf = mddev_to_conf(mddev); 208 209 spin_lock_irqsave(&conf->device_lock, flags); 210 list_add(&r1_bio->retry_list, &conf->retry_list); 211 spin_unlock_irqrestore(&conf->device_lock, flags); 212 213 md_wakeup_thread(mddev->thread); 214 } 215 216 /* 217 * raid_end_bio_io() is called when we have finished servicing a mirrored 218 * operation and are ready to return a success/failure code to the buffer 219 * cache layer. 220 */ 221 static void raid_end_bio_io(r1bio_t *r1_bio) 222 { 223 struct bio *bio = r1_bio->master_bio; 224 225 /* if nobody has done the final endio yet, do it now */ 226 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 227 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 228 (bio_data_dir(bio) == WRITE) ? "write" : "read", 229 (unsigned long long) bio->bi_sector, 230 (unsigned long long) bio->bi_sector + 231 (bio->bi_size >> 9) - 1); 232 233 bio_endio(bio, bio->bi_size, 234 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 235 } 236 free_r1bio(r1_bio); 237 } 238 239 /* 240 * Update disk head position estimator based on IRQ completion info. 241 */ 242 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 243 { 244 conf_t *conf = mddev_to_conf(r1_bio->mddev); 245 246 conf->mirrors[disk].head_position = 247 r1_bio->sector + (r1_bio->sectors); 248 } 249 250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 251 { 252 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 253 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 254 int mirror; 255 conf_t *conf = mddev_to_conf(r1_bio->mddev); 256 257 if (bio->bi_size) 258 return 1; 259 260 mirror = r1_bio->read_disk; 261 /* 262 * this branch is our 'one mirror IO has finished' event handler: 263 */ 264 if (!uptodate) 265 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 266 else 267 /* 268 * Set R1BIO_Uptodate in our master bio, so that 269 * we will return a good error code for to the higher 270 * levels even if IO on some other mirrored buffer fails. 271 * 272 * The 'master' represents the composite IO operation to 273 * user-side. So if something waits for IO, then it will 274 * wait for the 'master' bio. 275 */ 276 set_bit(R1BIO_Uptodate, &r1_bio->state); 277 278 update_head_pos(mirror, r1_bio); 279 280 /* 281 * we have only one bio on the read side 282 */ 283 if (uptodate) 284 raid_end_bio_io(r1_bio); 285 else { 286 /* 287 * oops, read error: 288 */ 289 char b[BDEVNAME_SIZE]; 290 if (printk_ratelimit()) 291 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 292 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 293 reschedule_retry(r1_bio); 294 } 295 296 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 297 return 0; 298 } 299 300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 301 { 302 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 303 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 304 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 305 conf_t *conf = mddev_to_conf(r1_bio->mddev); 306 307 if (bio->bi_size) 308 return 1; 309 310 for (mirror = 0; mirror < conf->raid_disks; mirror++) 311 if (r1_bio->bios[mirror] == bio) 312 break; 313 314 if (error == -ENOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 315 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 316 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 317 r1_bio->mddev->barriers_work = 0; 318 } else { 319 /* 320 * this branch is our 'one mirror IO has finished' event handler: 321 */ 322 r1_bio->bios[mirror] = NULL; 323 if (!uptodate) { 324 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 325 /* an I/O failed, we can't clear the bitmap */ 326 set_bit(R1BIO_Degraded, &r1_bio->state); 327 } else 328 /* 329 * Set R1BIO_Uptodate in our master bio, so that 330 * we will return a good error code for to the higher 331 * levels even if IO on some other mirrored buffer fails. 332 * 333 * The 'master' represents the composite IO operation to 334 * user-side. So if something waits for IO, then it will 335 * wait for the 'master' bio. 336 */ 337 set_bit(R1BIO_Uptodate, &r1_bio->state); 338 339 update_head_pos(mirror, r1_bio); 340 341 if (behind) { 342 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 343 atomic_dec(&r1_bio->behind_remaining); 344 345 /* In behind mode, we ACK the master bio once the I/O has safely 346 * reached all non-writemostly disks. Setting the Returned bit 347 * ensures that this gets done only once -- we don't ever want to 348 * return -EIO here, instead we'll wait */ 349 350 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 351 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 352 /* Maybe we can return now */ 353 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 354 struct bio *mbio = r1_bio->master_bio; 355 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 356 (unsigned long long) mbio->bi_sector, 357 (unsigned long long) mbio->bi_sector + 358 (mbio->bi_size >> 9) - 1); 359 bio_endio(mbio, mbio->bi_size, 0); 360 } 361 } 362 } 363 } 364 /* 365 * 366 * Let's see if all mirrored write operations have finished 367 * already. 368 */ 369 if (atomic_dec_and_test(&r1_bio->remaining)) { 370 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 371 reschedule_retry(r1_bio); 372 /* Don't dec_pending yet, we want to hold 373 * the reference over the retry 374 */ 375 return 0; 376 } 377 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 378 /* free extra copy of the data pages */ 379 int i = bio->bi_vcnt; 380 while (i--) 381 __free_page(bio->bi_io_vec[i].bv_page); 382 } 383 /* clear the bitmap if all writes complete successfully */ 384 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 385 r1_bio->sectors, 386 !test_bit(R1BIO_Degraded, &r1_bio->state), 387 behind); 388 md_write_end(r1_bio->mddev); 389 raid_end_bio_io(r1_bio); 390 } 391 392 if (r1_bio->bios[mirror]==NULL) 393 bio_put(bio); 394 395 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 396 return 0; 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 !rdev || !test_bit(In_sync, &rdev->flags) 437 || test_bit(WriteMostly, &rdev->flags); 438 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 439 440 if (rdev && test_bit(In_sync, &rdev->flags)) 441 wonly_disk = new_disk; 442 443 if (new_disk == conf->raid_disks - 1) { 444 new_disk = wonly_disk; 445 break; 446 } 447 } 448 goto rb_out; 449 } 450 451 452 /* make sure the disk is operational */ 453 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 454 !rdev || !test_bit(In_sync, &rdev->flags) || 455 test_bit(WriteMostly, &rdev->flags); 456 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 457 458 if (rdev && test_bit(In_sync, &rdev->flags)) 459 wonly_disk = new_disk; 460 461 if (new_disk <= 0) 462 new_disk = conf->raid_disks; 463 new_disk--; 464 if (new_disk == disk) { 465 new_disk = wonly_disk; 466 break; 467 } 468 } 469 470 if (new_disk < 0) 471 goto rb_out; 472 473 disk = new_disk; 474 /* now disk == new_disk == starting point for search */ 475 476 /* 477 * Don't change to another disk for sequential reads: 478 */ 479 if (conf->next_seq_sect == this_sector) 480 goto rb_out; 481 if (this_sector == conf->mirrors[new_disk].head_position) 482 goto rb_out; 483 484 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 485 486 /* Find the disk whose head is closest */ 487 488 do { 489 if (disk <= 0) 490 disk = conf->raid_disks; 491 disk--; 492 493 rdev = rcu_dereference(conf->mirrors[disk].rdev); 494 495 if (!rdev || 496 !test_bit(In_sync, &rdev->flags) || 497 test_bit(WriteMostly, &rdev->flags)) 498 continue; 499 500 if (!atomic_read(&rdev->nr_pending)) { 501 new_disk = disk; 502 break; 503 } 504 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 505 if (new_distance < current_distance) { 506 current_distance = new_distance; 507 new_disk = disk; 508 } 509 } while (disk != conf->last_used); 510 511 rb_out: 512 513 514 if (new_disk >= 0) { 515 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 516 if (!rdev) 517 goto retry; 518 atomic_inc(&rdev->nr_pending); 519 if (!test_bit(In_sync, &rdev->flags)) { 520 /* cannot risk returning a device that failed 521 * before we inc'ed nr_pending 522 */ 523 atomic_dec(&rdev->nr_pending); 524 goto retry; 525 } 526 conf->next_seq_sect = this_sector + sectors; 527 conf->last_used = new_disk; 528 } 529 rcu_read_unlock(); 530 531 return new_disk; 532 } 533 534 static void unplug_slaves(mddev_t *mddev) 535 { 536 conf_t *conf = mddev_to_conf(mddev); 537 int i; 538 539 rcu_read_lock(); 540 for (i=0; i<mddev->raid_disks; i++) { 541 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 542 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 543 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 544 545 atomic_inc(&rdev->nr_pending); 546 rcu_read_unlock(); 547 548 if (r_queue->unplug_fn) 549 r_queue->unplug_fn(r_queue); 550 551 rdev_dec_pending(rdev, mddev); 552 rcu_read_lock(); 553 } 554 } 555 rcu_read_unlock(); 556 } 557 558 static void raid1_unplug(request_queue_t *q) 559 { 560 mddev_t *mddev = q->queuedata; 561 562 unplug_slaves(mddev); 563 md_wakeup_thread(mddev->thread); 564 } 565 566 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 567 sector_t *error_sector) 568 { 569 mddev_t *mddev = q->queuedata; 570 conf_t *conf = mddev_to_conf(mddev); 571 int i, ret = 0; 572 573 rcu_read_lock(); 574 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 575 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 576 if (rdev && !test_bit(Faulty, &rdev->flags)) { 577 struct block_device *bdev = rdev->bdev; 578 request_queue_t *r_queue = bdev_get_queue(bdev); 579 580 if (!r_queue->issue_flush_fn) 581 ret = -EOPNOTSUPP; 582 else { 583 atomic_inc(&rdev->nr_pending); 584 rcu_read_unlock(); 585 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 586 error_sector); 587 rdev_dec_pending(rdev, mddev); 588 rcu_read_lock(); 589 } 590 } 591 } 592 rcu_read_unlock(); 593 return ret; 594 } 595 596 /* 597 * Throttle resync depth, so that we can both get proper overlapping of 598 * requests, but are still able to handle normal requests quickly. 599 */ 600 #define RESYNC_DEPTH 32 601 602 static void device_barrier(conf_t *conf, sector_t sect) 603 { 604 spin_lock_irq(&conf->resync_lock); 605 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 606 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 607 608 if (!conf->barrier++) { 609 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 610 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 611 if (conf->nr_pending) 612 BUG(); 613 } 614 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 615 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 616 conf->next_resync = sect; 617 spin_unlock_irq(&conf->resync_lock); 618 } 619 620 /* duplicate the data pages for behind I/O */ 621 static struct page **alloc_behind_pages(struct bio *bio) 622 { 623 int i; 624 struct bio_vec *bvec; 625 struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *), 626 GFP_NOIO); 627 if (unlikely(!pages)) 628 goto do_sync_io; 629 630 memset(pages, 0, bio->bi_vcnt * sizeof(struct page *)); 631 632 bio_for_each_segment(bvec, bio, i) { 633 pages[i] = alloc_page(GFP_NOIO); 634 if (unlikely(!pages[i])) 635 goto do_sync_io; 636 memcpy(kmap(pages[i]) + bvec->bv_offset, 637 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 638 kunmap(pages[i]); 639 kunmap(bvec->bv_page); 640 } 641 642 return pages; 643 644 do_sync_io: 645 if (pages) 646 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 647 __free_page(pages[i]); 648 kfree(pages); 649 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 650 return NULL; 651 } 652 653 static int make_request(request_queue_t *q, struct bio * bio) 654 { 655 mddev_t *mddev = q->queuedata; 656 conf_t *conf = mddev_to_conf(mddev); 657 mirror_info_t *mirror; 658 r1bio_t *r1_bio; 659 struct bio *read_bio; 660 int i, targets = 0, disks; 661 mdk_rdev_t *rdev; 662 struct bitmap *bitmap = mddev->bitmap; 663 unsigned long flags; 664 struct bio_list bl; 665 struct page **behind_pages = NULL; 666 const int rw = bio_data_dir(bio); 667 int do_barriers; 668 669 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 670 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 671 return 0; 672 } 673 674 /* 675 * Register the new request and wait if the reconstruction 676 * thread has put up a bar for new requests. 677 * Continue immediately if no resync is active currently. 678 */ 679 md_write_start(mddev, bio); /* wait on superblock update early */ 680 681 spin_lock_irq(&conf->resync_lock); 682 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 683 conf->nr_pending++; 684 spin_unlock_irq(&conf->resync_lock); 685 686 disk_stat_inc(mddev->gendisk, ios[rw]); 687 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 688 689 /* 690 * make_request() can abort the operation when READA is being 691 * used and no empty request is available. 692 * 693 */ 694 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 695 696 r1_bio->master_bio = bio; 697 r1_bio->sectors = bio->bi_size >> 9; 698 r1_bio->state = 0; 699 r1_bio->mddev = mddev; 700 r1_bio->sector = bio->bi_sector; 701 702 if (rw == READ) { 703 /* 704 * read balancing logic: 705 */ 706 int rdisk = read_balance(conf, r1_bio); 707 708 if (rdisk < 0) { 709 /* couldn't find anywhere to read from */ 710 raid_end_bio_io(r1_bio); 711 return 0; 712 } 713 mirror = conf->mirrors + rdisk; 714 715 r1_bio->read_disk = rdisk; 716 717 read_bio = bio_clone(bio, GFP_NOIO); 718 719 r1_bio->bios[rdisk] = read_bio; 720 721 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 722 read_bio->bi_bdev = mirror->rdev->bdev; 723 read_bio->bi_end_io = raid1_end_read_request; 724 read_bio->bi_rw = READ; 725 read_bio->bi_private = r1_bio; 726 727 generic_make_request(read_bio); 728 return 0; 729 } 730 731 /* 732 * WRITE: 733 */ 734 /* first select target devices under spinlock and 735 * inc refcount on their rdev. Record them by setting 736 * bios[x] to bio 737 */ 738 disks = conf->raid_disks; 739 #if 0 740 { static int first=1; 741 if (first) printk("First Write sector %llu disks %d\n", 742 (unsigned long long)r1_bio->sector, disks); 743 first = 0; 744 } 745 #endif 746 rcu_read_lock(); 747 for (i = 0; i < disks; i++) { 748 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 749 !test_bit(Faulty, &rdev->flags)) { 750 atomic_inc(&rdev->nr_pending); 751 if (test_bit(Faulty, &rdev->flags)) { 752 atomic_dec(&rdev->nr_pending); 753 r1_bio->bios[i] = NULL; 754 } else 755 r1_bio->bios[i] = bio; 756 targets++; 757 } else 758 r1_bio->bios[i] = NULL; 759 } 760 rcu_read_unlock(); 761 762 BUG_ON(targets == 0); /* we never fail the last device */ 763 764 if (targets < conf->raid_disks) { 765 /* array is degraded, we will not clear the bitmap 766 * on I/O completion (see raid1_end_write_request) */ 767 set_bit(R1BIO_Degraded, &r1_bio->state); 768 } 769 770 /* do behind I/O ? */ 771 if (bitmap && 772 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 773 (behind_pages = alloc_behind_pages(bio)) != NULL) 774 set_bit(R1BIO_BehindIO, &r1_bio->state); 775 776 atomic_set(&r1_bio->remaining, 0); 777 atomic_set(&r1_bio->behind_remaining, 0); 778 779 do_barriers = bio->bi_rw & BIO_RW_BARRIER; 780 if (do_barriers) 781 set_bit(R1BIO_Barrier, &r1_bio->state); 782 783 bio_list_init(&bl); 784 for (i = 0; i < disks; i++) { 785 struct bio *mbio; 786 if (!r1_bio->bios[i]) 787 continue; 788 789 mbio = bio_clone(bio, GFP_NOIO); 790 r1_bio->bios[i] = mbio; 791 792 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 793 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 794 mbio->bi_end_io = raid1_end_write_request; 795 mbio->bi_rw = WRITE | do_barriers; 796 mbio->bi_private = r1_bio; 797 798 if (behind_pages) { 799 struct bio_vec *bvec; 800 int j; 801 802 /* Yes, I really want the '__' version so that 803 * we clear any unused pointer in the io_vec, rather 804 * than leave them unchanged. This is important 805 * because when we come to free the pages, we won't 806 * know the originial bi_idx, so we just free 807 * them all 808 */ 809 __bio_for_each_segment(bvec, mbio, j, 0) 810 bvec->bv_page = behind_pages[j]; 811 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 812 atomic_inc(&r1_bio->behind_remaining); 813 } 814 815 atomic_inc(&r1_bio->remaining); 816 817 bio_list_add(&bl, mbio); 818 } 819 kfree(behind_pages); /* the behind pages are attached to the bios now */ 820 821 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 822 test_bit(R1BIO_BehindIO, &r1_bio->state)); 823 spin_lock_irqsave(&conf->device_lock, flags); 824 bio_list_merge(&conf->pending_bio_list, &bl); 825 bio_list_init(&bl); 826 827 blk_plug_device(mddev->queue); 828 spin_unlock_irqrestore(&conf->device_lock, flags); 829 830 #if 0 831 while ((bio = bio_list_pop(&bl)) != NULL) 832 generic_make_request(bio); 833 #endif 834 835 return 0; 836 } 837 838 static void status(struct seq_file *seq, mddev_t *mddev) 839 { 840 conf_t *conf = mddev_to_conf(mddev); 841 int i; 842 843 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 844 conf->working_disks); 845 for (i = 0; i < conf->raid_disks; i++) 846 seq_printf(seq, "%s", 847 conf->mirrors[i].rdev && 848 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 849 seq_printf(seq, "]"); 850 } 851 852 853 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 854 { 855 char b[BDEVNAME_SIZE]; 856 conf_t *conf = mddev_to_conf(mddev); 857 858 /* 859 * If it is not operational, then we have already marked it as dead 860 * else if it is the last working disks, ignore the error, let the 861 * next level up know. 862 * else mark the drive as failed 863 */ 864 if (test_bit(In_sync, &rdev->flags) 865 && conf->working_disks == 1) 866 /* 867 * Don't fail the drive, act as though we were just a 868 * normal single drive 869 */ 870 return; 871 if (test_bit(In_sync, &rdev->flags)) { 872 mddev->degraded++; 873 conf->working_disks--; 874 /* 875 * if recovery is running, make sure it aborts. 876 */ 877 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 878 } 879 clear_bit(In_sync, &rdev->flags); 880 set_bit(Faulty, &rdev->flags); 881 mddev->sb_dirty = 1; 882 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 883 " Operation continuing on %d devices\n", 884 bdevname(rdev->bdev,b), conf->working_disks); 885 } 886 887 static void print_conf(conf_t *conf) 888 { 889 int i; 890 mirror_info_t *tmp; 891 892 printk("RAID1 conf printout:\n"); 893 if (!conf) { 894 printk("(!conf)\n"); 895 return; 896 } 897 printk(" --- wd:%d rd:%d\n", conf->working_disks, 898 conf->raid_disks); 899 900 for (i = 0; i < conf->raid_disks; i++) { 901 char b[BDEVNAME_SIZE]; 902 tmp = conf->mirrors + i; 903 if (tmp->rdev) 904 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 905 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags), 906 bdevname(tmp->rdev->bdev,b)); 907 } 908 } 909 910 static void close_sync(conf_t *conf) 911 { 912 spin_lock_irq(&conf->resync_lock); 913 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 914 conf->resync_lock, raid1_unplug(conf->mddev->queue)); 915 spin_unlock_irq(&conf->resync_lock); 916 917 if (conf->barrier) BUG(); 918 if (waitqueue_active(&conf->wait_idle)) BUG(); 919 920 mempool_destroy(conf->r1buf_pool); 921 conf->r1buf_pool = NULL; 922 } 923 924 static int raid1_spare_active(mddev_t *mddev) 925 { 926 int i; 927 conf_t *conf = mddev->private; 928 mirror_info_t *tmp; 929 930 /* 931 * Find all failed disks within the RAID1 configuration 932 * and mark them readable 933 */ 934 for (i = 0; i < conf->raid_disks; i++) { 935 tmp = conf->mirrors + i; 936 if (tmp->rdev 937 && !test_bit(Faulty, &tmp->rdev->flags) 938 && !test_bit(In_sync, &tmp->rdev->flags)) { 939 conf->working_disks++; 940 mddev->degraded--; 941 set_bit(In_sync, &tmp->rdev->flags); 942 } 943 } 944 945 print_conf(conf); 946 return 0; 947 } 948 949 950 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 951 { 952 conf_t *conf = mddev->private; 953 int found = 0; 954 int mirror = 0; 955 mirror_info_t *p; 956 957 for (mirror=0; mirror < mddev->raid_disks; mirror++) 958 if ( !(p=conf->mirrors+mirror)->rdev) { 959 960 blk_queue_stack_limits(mddev->queue, 961 rdev->bdev->bd_disk->queue); 962 /* as we don't honour merge_bvec_fn, we must never risk 963 * violating it, so limit ->max_sector to one PAGE, as 964 * a one page request is never in violation. 965 */ 966 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 967 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 968 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 969 970 p->head_position = 0; 971 rdev->raid_disk = mirror; 972 found = 1; 973 /* As all devices are equivalent, we don't need a full recovery 974 * if this was recently any drive of the array 975 */ 976 if (rdev->saved_raid_disk < 0) 977 conf->fullsync = 1; 978 rcu_assign_pointer(p->rdev, rdev); 979 break; 980 } 981 982 print_conf(conf); 983 return found; 984 } 985 986 static int raid1_remove_disk(mddev_t *mddev, int number) 987 { 988 conf_t *conf = mddev->private; 989 int err = 0; 990 mdk_rdev_t *rdev; 991 mirror_info_t *p = conf->mirrors+ number; 992 993 print_conf(conf); 994 rdev = p->rdev; 995 if (rdev) { 996 if (test_bit(In_sync, &rdev->flags) || 997 atomic_read(&rdev->nr_pending)) { 998 err = -EBUSY; 999 goto abort; 1000 } 1001 p->rdev = NULL; 1002 synchronize_rcu(); 1003 if (atomic_read(&rdev->nr_pending)) { 1004 /* lost the race, try later */ 1005 err = -EBUSY; 1006 p->rdev = rdev; 1007 } 1008 } 1009 abort: 1010 1011 print_conf(conf); 1012 return err; 1013 } 1014 1015 1016 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1017 { 1018 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1019 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1020 conf_t *conf = mddev_to_conf(r1_bio->mddev); 1021 1022 if (bio->bi_size) 1023 return 1; 1024 1025 if (r1_bio->bios[r1_bio->read_disk] != bio) 1026 BUG(); 1027 update_head_pos(r1_bio->read_disk, r1_bio); 1028 /* 1029 * we have read a block, now it needs to be re-written, 1030 * or re-read if the read failed. 1031 * We don't do much here, just schedule handling by raid1d 1032 */ 1033 if (!uptodate) { 1034 md_error(r1_bio->mddev, 1035 conf->mirrors[r1_bio->read_disk].rdev); 1036 } else 1037 set_bit(R1BIO_Uptodate, &r1_bio->state); 1038 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 1039 reschedule_retry(r1_bio); 1040 return 0; 1041 } 1042 1043 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1044 { 1045 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1046 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1047 mddev_t *mddev = r1_bio->mddev; 1048 conf_t *conf = mddev_to_conf(mddev); 1049 int i; 1050 int mirror=0; 1051 1052 if (bio->bi_size) 1053 return 1; 1054 1055 for (i = 0; i < conf->raid_disks; i++) 1056 if (r1_bio->bios[i] == bio) { 1057 mirror = i; 1058 break; 1059 } 1060 if (!uptodate) 1061 md_error(mddev, conf->mirrors[mirror].rdev); 1062 1063 update_head_pos(mirror, r1_bio); 1064 1065 if (atomic_dec_and_test(&r1_bio->remaining)) { 1066 md_done_sync(mddev, r1_bio->sectors, uptodate); 1067 put_buf(r1_bio); 1068 } 1069 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 1070 return 0; 1071 } 1072 1073 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1074 { 1075 conf_t *conf = mddev_to_conf(mddev); 1076 int i; 1077 int disks = conf->raid_disks; 1078 struct bio *bio, *wbio; 1079 1080 bio = r1_bio->bios[r1_bio->read_disk]; 1081 1082 /* 1083 if (r1_bio->sector == 0) printk("First sync write startss\n"); 1084 */ 1085 /* 1086 * schedule writes 1087 */ 1088 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1089 /* 1090 * There is no point trying a read-for-reconstruct as 1091 * reconstruct is about to be aborted 1092 */ 1093 char b[BDEVNAME_SIZE]; 1094 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1095 " for block %llu\n", 1096 bdevname(bio->bi_bdev,b), 1097 (unsigned long long)r1_bio->sector); 1098 md_done_sync(mddev, r1_bio->sectors, 0); 1099 put_buf(r1_bio); 1100 return; 1101 } 1102 1103 atomic_set(&r1_bio->remaining, 1); 1104 for (i = 0; i < disks ; i++) { 1105 wbio = r1_bio->bios[i]; 1106 if (wbio->bi_end_io != end_sync_write) 1107 continue; 1108 1109 atomic_inc(&conf->mirrors[i].rdev->nr_pending); 1110 atomic_inc(&r1_bio->remaining); 1111 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1112 1113 generic_make_request(wbio); 1114 } 1115 1116 if (atomic_dec_and_test(&r1_bio->remaining)) { 1117 /* if we're here, all write(s) have completed, so clean up */ 1118 md_done_sync(mddev, r1_bio->sectors, 1); 1119 put_buf(r1_bio); 1120 } 1121 } 1122 1123 /* 1124 * This is a kernel thread which: 1125 * 1126 * 1. Retries failed read operations on working mirrors. 1127 * 2. Updates the raid superblock when problems encounter. 1128 * 3. Performs writes following reads for array syncronising. 1129 */ 1130 1131 static void raid1d(mddev_t *mddev) 1132 { 1133 r1bio_t *r1_bio; 1134 struct bio *bio; 1135 unsigned long flags; 1136 conf_t *conf = mddev_to_conf(mddev); 1137 struct list_head *head = &conf->retry_list; 1138 int unplug=0; 1139 mdk_rdev_t *rdev; 1140 1141 md_check_recovery(mddev); 1142 1143 for (;;) { 1144 char b[BDEVNAME_SIZE]; 1145 spin_lock_irqsave(&conf->device_lock, flags); 1146 1147 if (conf->pending_bio_list.head) { 1148 bio = bio_list_get(&conf->pending_bio_list); 1149 blk_remove_plug(mddev->queue); 1150 spin_unlock_irqrestore(&conf->device_lock, flags); 1151 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1152 if (bitmap_unplug(mddev->bitmap) != 0) 1153 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1154 1155 while (bio) { /* submit pending writes */ 1156 struct bio *next = bio->bi_next; 1157 bio->bi_next = NULL; 1158 generic_make_request(bio); 1159 bio = next; 1160 } 1161 unplug = 1; 1162 1163 continue; 1164 } 1165 1166 if (list_empty(head)) 1167 break; 1168 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1169 list_del(head->prev); 1170 spin_unlock_irqrestore(&conf->device_lock, flags); 1171 1172 mddev = r1_bio->mddev; 1173 conf = mddev_to_conf(mddev); 1174 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1175 sync_request_write(mddev, r1_bio); 1176 unplug = 1; 1177 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1178 /* some requests in the r1bio were BIO_RW_BARRIER 1179 * requests which failed with -ENOTSUPP. Hohumm.. 1180 * Better resubmit without the barrier. 1181 * We know which devices to resubmit for, because 1182 * all others have had their bios[] entry cleared. 1183 */ 1184 int i; 1185 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1186 clear_bit(R1BIO_Barrier, &r1_bio->state); 1187 for (i=0; i < conf->raid_disks; i++) 1188 if (r1_bio->bios[i]) { 1189 struct bio_vec *bvec; 1190 int j; 1191 1192 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1193 /* copy pages from the failed bio, as 1194 * this might be a write-behind device */ 1195 __bio_for_each_segment(bvec, bio, j, 0) 1196 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1197 bio_put(r1_bio->bios[i]); 1198 bio->bi_sector = r1_bio->sector + 1199 conf->mirrors[i].rdev->data_offset; 1200 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1201 bio->bi_end_io = raid1_end_write_request; 1202 bio->bi_rw = WRITE; 1203 bio->bi_private = r1_bio; 1204 r1_bio->bios[i] = bio; 1205 generic_make_request(bio); 1206 } 1207 } else { 1208 int disk; 1209 bio = r1_bio->bios[r1_bio->read_disk]; 1210 if ((disk=read_balance(conf, r1_bio)) == -1) { 1211 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1212 " read error for block %llu\n", 1213 bdevname(bio->bi_bdev,b), 1214 (unsigned long long)r1_bio->sector); 1215 raid_end_bio_io(r1_bio); 1216 } else { 1217 r1_bio->bios[r1_bio->read_disk] = NULL; 1218 r1_bio->read_disk = disk; 1219 bio_put(bio); 1220 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1221 r1_bio->bios[r1_bio->read_disk] = bio; 1222 rdev = conf->mirrors[disk].rdev; 1223 if (printk_ratelimit()) 1224 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1225 " another mirror\n", 1226 bdevname(rdev->bdev,b), 1227 (unsigned long long)r1_bio->sector); 1228 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1229 bio->bi_bdev = rdev->bdev; 1230 bio->bi_end_io = raid1_end_read_request; 1231 bio->bi_rw = READ; 1232 bio->bi_private = r1_bio; 1233 unplug = 1; 1234 generic_make_request(bio); 1235 } 1236 } 1237 } 1238 spin_unlock_irqrestore(&conf->device_lock, flags); 1239 if (unplug) 1240 unplug_slaves(mddev); 1241 } 1242 1243 1244 static int init_resync(conf_t *conf) 1245 { 1246 int buffs; 1247 1248 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1249 if (conf->r1buf_pool) 1250 BUG(); 1251 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1252 conf->poolinfo); 1253 if (!conf->r1buf_pool) 1254 return -ENOMEM; 1255 conf->next_resync = 0; 1256 return 0; 1257 } 1258 1259 /* 1260 * perform a "sync" on one "block" 1261 * 1262 * We need to make sure that no normal I/O request - particularly write 1263 * requests - conflict with active sync requests. 1264 * 1265 * This is achieved by tracking pending requests and a 'barrier' concept 1266 * that can be installed to exclude normal IO requests. 1267 */ 1268 1269 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1270 { 1271 conf_t *conf = mddev_to_conf(mddev); 1272 mirror_info_t *mirror; 1273 r1bio_t *r1_bio; 1274 struct bio *bio; 1275 sector_t max_sector, nr_sectors; 1276 int disk; 1277 int i; 1278 int wonly; 1279 int write_targets = 0; 1280 int sync_blocks; 1281 int still_degraded = 0; 1282 1283 if (!conf->r1buf_pool) 1284 { 1285 /* 1286 printk("sync start - bitmap %p\n", mddev->bitmap); 1287 */ 1288 if (init_resync(conf)) 1289 return 0; 1290 } 1291 1292 max_sector = mddev->size << 1; 1293 if (sector_nr >= max_sector) { 1294 /* If we aborted, we need to abort the 1295 * sync on the 'current' bitmap chunk (there will 1296 * only be one in raid1 resync. 1297 * We can find the current addess in mddev->curr_resync 1298 */ 1299 if (mddev->curr_resync < max_sector) /* aborted */ 1300 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1301 &sync_blocks, 1); 1302 else /* completed sync */ 1303 conf->fullsync = 0; 1304 1305 bitmap_close_sync(mddev->bitmap); 1306 close_sync(conf); 1307 return 0; 1308 } 1309 1310 /* before building a request, check if we can skip these blocks.. 1311 * This call the bitmap_start_sync doesn't actually record anything 1312 */ 1313 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1314 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1315 /* We can skip this block, and probably several more */ 1316 *skipped = 1; 1317 return sync_blocks; 1318 } 1319 /* 1320 * If there is non-resync activity waiting for us then 1321 * put in a delay to throttle resync. 1322 */ 1323 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1324 msleep_interruptible(1000); 1325 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1326 1327 /* 1328 * If reconstructing, and >1 working disc, 1329 * could dedicate one to rebuild and others to 1330 * service read requests .. 1331 */ 1332 disk = conf->last_used; 1333 /* make sure disk is operational */ 1334 wonly = disk; 1335 while (conf->mirrors[disk].rdev == NULL || 1336 !test_bit(In_sync, &conf->mirrors[disk].rdev->flags) || 1337 test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags) 1338 ) { 1339 if (conf->mirrors[disk].rdev && 1340 test_bit(In_sync, &conf->mirrors[disk].rdev->flags)) 1341 wonly = disk; 1342 if (disk <= 0) 1343 disk = conf->raid_disks; 1344 disk--; 1345 if (disk == conf->last_used) { 1346 disk = wonly; 1347 break; 1348 } 1349 } 1350 conf->last_used = disk; 1351 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 1352 1353 1354 mirror = conf->mirrors + disk; 1355 1356 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1357 1358 spin_lock_irq(&conf->resync_lock); 1359 conf->nr_pending++; 1360 spin_unlock_irq(&conf->resync_lock); 1361 1362 r1_bio->mddev = mddev; 1363 r1_bio->sector = sector_nr; 1364 r1_bio->state = 0; 1365 set_bit(R1BIO_IsSync, &r1_bio->state); 1366 r1_bio->read_disk = disk; 1367 1368 for (i=0; i < conf->raid_disks; i++) { 1369 bio = r1_bio->bios[i]; 1370 1371 /* take from bio_init */ 1372 bio->bi_next = NULL; 1373 bio->bi_flags |= 1 << BIO_UPTODATE; 1374 bio->bi_rw = 0; 1375 bio->bi_vcnt = 0; 1376 bio->bi_idx = 0; 1377 bio->bi_phys_segments = 0; 1378 bio->bi_hw_segments = 0; 1379 bio->bi_size = 0; 1380 bio->bi_end_io = NULL; 1381 bio->bi_private = NULL; 1382 1383 if (i == disk) { 1384 bio->bi_rw = READ; 1385 bio->bi_end_io = end_sync_read; 1386 } else if (conf->mirrors[i].rdev == NULL || 1387 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 1388 still_degraded = 1; 1389 continue; 1390 } else if (!test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 1391 sector_nr + RESYNC_SECTORS > mddev->recovery_cp || 1392 test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1393 bio->bi_rw = WRITE; 1394 bio->bi_end_io = end_sync_write; 1395 write_targets ++; 1396 } else 1397 /* no need to read or write here */ 1398 continue; 1399 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset; 1400 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1401 bio->bi_private = r1_bio; 1402 } 1403 1404 if (write_targets == 0) { 1405 /* There is nowhere to write, so all non-sync 1406 * drives must be failed - so we are finished 1407 */ 1408 sector_t rv = max_sector - sector_nr; 1409 *skipped = 1; 1410 put_buf(r1_bio); 1411 rdev_dec_pending(conf->mirrors[disk].rdev, mddev); 1412 return rv; 1413 } 1414 1415 nr_sectors = 0; 1416 sync_blocks = 0; 1417 do { 1418 struct page *page; 1419 int len = PAGE_SIZE; 1420 if (sector_nr + (len>>9) > max_sector) 1421 len = (max_sector - sector_nr) << 9; 1422 if (len == 0) 1423 break; 1424 if (sync_blocks == 0) { 1425 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1426 &sync_blocks, still_degraded) && 1427 !conf->fullsync && 1428 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1429 break; 1430 if (sync_blocks < (PAGE_SIZE>>9)) 1431 BUG(); 1432 if (len > (sync_blocks<<9)) 1433 len = sync_blocks<<9; 1434 } 1435 1436 for (i=0 ; i < conf->raid_disks; i++) { 1437 bio = r1_bio->bios[i]; 1438 if (bio->bi_end_io) { 1439 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page; 1440 if (bio_add_page(bio, page, len, 0) == 0) { 1441 /* stop here */ 1442 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page; 1443 while (i > 0) { 1444 i--; 1445 bio = r1_bio->bios[i]; 1446 if (bio->bi_end_io==NULL) 1447 continue; 1448 /* remove last page from this bio */ 1449 bio->bi_vcnt--; 1450 bio->bi_size -= len; 1451 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1452 } 1453 goto bio_full; 1454 } 1455 } 1456 } 1457 nr_sectors += len>>9; 1458 sector_nr += len>>9; 1459 sync_blocks -= (len>>9); 1460 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1461 bio_full: 1462 bio = r1_bio->bios[disk]; 1463 r1_bio->sectors = nr_sectors; 1464 1465 md_sync_acct(mirror->rdev->bdev, nr_sectors); 1466 1467 generic_make_request(bio); 1468 1469 return nr_sectors; 1470 } 1471 1472 static int run(mddev_t *mddev) 1473 { 1474 conf_t *conf; 1475 int i, j, disk_idx; 1476 mirror_info_t *disk; 1477 mdk_rdev_t *rdev; 1478 struct list_head *tmp; 1479 1480 if (mddev->level != 1) { 1481 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1482 mdname(mddev), mddev->level); 1483 goto out; 1484 } 1485 /* 1486 * copy the already verified devices into our private RAID1 1487 * bookkeeping area. [whatever we allocate in run(), 1488 * should be freed in stop()] 1489 */ 1490 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1491 mddev->private = conf; 1492 if (!conf) 1493 goto out_no_mem; 1494 1495 memset(conf, 0, sizeof(*conf)); 1496 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1497 GFP_KERNEL); 1498 if (!conf->mirrors) 1499 goto out_no_mem; 1500 1501 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1502 1503 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1504 if (!conf->poolinfo) 1505 goto out_no_mem; 1506 conf->poolinfo->mddev = mddev; 1507 conf->poolinfo->raid_disks = mddev->raid_disks; 1508 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1509 r1bio_pool_free, 1510 conf->poolinfo); 1511 if (!conf->r1bio_pool) 1512 goto out_no_mem; 1513 1514 ITERATE_RDEV(mddev, rdev, tmp) { 1515 disk_idx = rdev->raid_disk; 1516 if (disk_idx >= mddev->raid_disks 1517 || disk_idx < 0) 1518 continue; 1519 disk = conf->mirrors + disk_idx; 1520 1521 disk->rdev = rdev; 1522 1523 blk_queue_stack_limits(mddev->queue, 1524 rdev->bdev->bd_disk->queue); 1525 /* as we don't honour merge_bvec_fn, we must never risk 1526 * violating it, so limit ->max_sector to one PAGE, as 1527 * a one page request is never in violation. 1528 */ 1529 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1530 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1531 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1532 1533 disk->head_position = 0; 1534 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 1535 conf->working_disks++; 1536 } 1537 conf->raid_disks = mddev->raid_disks; 1538 conf->mddev = mddev; 1539 spin_lock_init(&conf->device_lock); 1540 INIT_LIST_HEAD(&conf->retry_list); 1541 if (conf->working_disks == 1) 1542 mddev->recovery_cp = MaxSector; 1543 1544 spin_lock_init(&conf->resync_lock); 1545 init_waitqueue_head(&conf->wait_idle); 1546 init_waitqueue_head(&conf->wait_resume); 1547 1548 bio_list_init(&conf->pending_bio_list); 1549 bio_list_init(&conf->flushing_bio_list); 1550 1551 if (!conf->working_disks) { 1552 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1553 mdname(mddev)); 1554 goto out_free_conf; 1555 } 1556 1557 mddev->degraded = 0; 1558 for (i = 0; i < conf->raid_disks; i++) { 1559 1560 disk = conf->mirrors + i; 1561 1562 if (!disk->rdev) { 1563 disk->head_position = 0; 1564 mddev->degraded++; 1565 } 1566 } 1567 1568 /* 1569 * find the first working one and use it as a starting point 1570 * to read balancing. 1571 */ 1572 for (j = 0; j < conf->raid_disks && 1573 (!conf->mirrors[j].rdev || 1574 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1575 /* nothing */; 1576 conf->last_used = j; 1577 1578 1579 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1580 if (!mddev->thread) { 1581 printk(KERN_ERR 1582 "raid1: couldn't allocate thread for %s\n", 1583 mdname(mddev)); 1584 goto out_free_conf; 1585 } 1586 if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 1587 1588 printk(KERN_INFO 1589 "raid1: raid set %s active with %d out of %d mirrors\n", 1590 mdname(mddev), mddev->raid_disks - mddev->degraded, 1591 mddev->raid_disks); 1592 /* 1593 * Ok, everything is just fine now 1594 */ 1595 mddev->array_size = mddev->size; 1596 1597 mddev->queue->unplug_fn = raid1_unplug; 1598 mddev->queue->issue_flush_fn = raid1_issue_flush; 1599 1600 return 0; 1601 1602 out_no_mem: 1603 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1604 mdname(mddev)); 1605 1606 out_free_conf: 1607 if (conf) { 1608 if (conf->r1bio_pool) 1609 mempool_destroy(conf->r1bio_pool); 1610 kfree(conf->mirrors); 1611 kfree(conf->poolinfo); 1612 kfree(conf); 1613 mddev->private = NULL; 1614 } 1615 out: 1616 return -EIO; 1617 } 1618 1619 static int stop(mddev_t *mddev) 1620 { 1621 conf_t *conf = mddev_to_conf(mddev); 1622 struct bitmap *bitmap = mddev->bitmap; 1623 int behind_wait = 0; 1624 1625 /* wait for behind writes to complete */ 1626 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 1627 behind_wait++; 1628 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 1629 set_current_state(TASK_UNINTERRUPTIBLE); 1630 schedule_timeout(HZ); /* wait a second */ 1631 /* need to kick something here to make sure I/O goes? */ 1632 } 1633 1634 md_unregister_thread(mddev->thread); 1635 mddev->thread = NULL; 1636 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1637 if (conf->r1bio_pool) 1638 mempool_destroy(conf->r1bio_pool); 1639 kfree(conf->mirrors); 1640 kfree(conf->poolinfo); 1641 kfree(conf); 1642 mddev->private = NULL; 1643 return 0; 1644 } 1645 1646 static int raid1_resize(mddev_t *mddev, sector_t sectors) 1647 { 1648 /* no resync is happening, and there is enough space 1649 * on all devices, so we can resize. 1650 * We need to make sure resync covers any new space. 1651 * If the array is shrinking we should possibly wait until 1652 * any io in the removed space completes, but it hardly seems 1653 * worth it. 1654 */ 1655 mddev->array_size = sectors>>1; 1656 set_capacity(mddev->gendisk, mddev->array_size << 1); 1657 mddev->changed = 1; 1658 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 1659 mddev->recovery_cp = mddev->size << 1; 1660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1661 } 1662 mddev->size = mddev->array_size; 1663 mddev->resync_max_sectors = sectors; 1664 return 0; 1665 } 1666 1667 static int raid1_reshape(mddev_t *mddev, int raid_disks) 1668 { 1669 /* We need to: 1670 * 1/ resize the r1bio_pool 1671 * 2/ resize conf->mirrors 1672 * 1673 * We allocate a new r1bio_pool if we can. 1674 * Then raise a device barrier and wait until all IO stops. 1675 * Then resize conf->mirrors and swap in the new r1bio pool. 1676 * 1677 * At the same time, we "pack" the devices so that all the missing 1678 * devices have the higher raid_disk numbers. 1679 */ 1680 mempool_t *newpool, *oldpool; 1681 struct pool_info *newpoolinfo; 1682 mirror_info_t *newmirrors; 1683 conf_t *conf = mddev_to_conf(mddev); 1684 int cnt; 1685 1686 int d, d2; 1687 1688 if (raid_disks < conf->raid_disks) { 1689 cnt=0; 1690 for (d= 0; d < conf->raid_disks; d++) 1691 if (conf->mirrors[d].rdev) 1692 cnt++; 1693 if (cnt > raid_disks) 1694 return -EBUSY; 1695 } 1696 1697 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 1698 if (!newpoolinfo) 1699 return -ENOMEM; 1700 newpoolinfo->mddev = mddev; 1701 newpoolinfo->raid_disks = raid_disks; 1702 1703 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1704 r1bio_pool_free, newpoolinfo); 1705 if (!newpool) { 1706 kfree(newpoolinfo); 1707 return -ENOMEM; 1708 } 1709 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 1710 if (!newmirrors) { 1711 kfree(newpoolinfo); 1712 mempool_destroy(newpool); 1713 return -ENOMEM; 1714 } 1715 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks); 1716 1717 spin_lock_irq(&conf->resync_lock); 1718 conf->barrier++; 1719 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 1720 conf->resync_lock, raid1_unplug(mddev->queue)); 1721 spin_unlock_irq(&conf->resync_lock); 1722 1723 /* ok, everything is stopped */ 1724 oldpool = conf->r1bio_pool; 1725 conf->r1bio_pool = newpool; 1726 1727 for (d=d2=0; d < conf->raid_disks; d++) 1728 if (conf->mirrors[d].rdev) { 1729 conf->mirrors[d].rdev->raid_disk = d2; 1730 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 1731 } 1732 kfree(conf->mirrors); 1733 conf->mirrors = newmirrors; 1734 kfree(conf->poolinfo); 1735 conf->poolinfo = newpoolinfo; 1736 1737 mddev->degraded += (raid_disks - conf->raid_disks); 1738 conf->raid_disks = mddev->raid_disks = raid_disks; 1739 1740 conf->last_used = 0; /* just make sure it is in-range */ 1741 spin_lock_irq(&conf->resync_lock); 1742 conf->barrier--; 1743 spin_unlock_irq(&conf->resync_lock); 1744 wake_up(&conf->wait_resume); 1745 wake_up(&conf->wait_idle); 1746 1747 1748 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1749 md_wakeup_thread(mddev->thread); 1750 1751 mempool_destroy(oldpool); 1752 return 0; 1753 } 1754 1755 static void raid1_quiesce(mddev_t *mddev, int state) 1756 { 1757 conf_t *conf = mddev_to_conf(mddev); 1758 1759 switch(state) { 1760 case 1: 1761 spin_lock_irq(&conf->resync_lock); 1762 conf->barrier++; 1763 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 1764 conf->resync_lock, raid1_unplug(mddev->queue)); 1765 spin_unlock_irq(&conf->resync_lock); 1766 break; 1767 case 0: 1768 spin_lock_irq(&conf->resync_lock); 1769 conf->barrier--; 1770 spin_unlock_irq(&conf->resync_lock); 1771 wake_up(&conf->wait_resume); 1772 wake_up(&conf->wait_idle); 1773 break; 1774 } 1775 if (mddev->thread) { 1776 if (mddev->bitmap) 1777 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 1778 else 1779 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 1780 md_wakeup_thread(mddev->thread); 1781 } 1782 } 1783 1784 1785 static mdk_personality_t raid1_personality = 1786 { 1787 .name = "raid1", 1788 .owner = THIS_MODULE, 1789 .make_request = make_request, 1790 .run = run, 1791 .stop = stop, 1792 .status = status, 1793 .error_handler = error, 1794 .hot_add_disk = raid1_add_disk, 1795 .hot_remove_disk= raid1_remove_disk, 1796 .spare_active = raid1_spare_active, 1797 .sync_request = sync_request, 1798 .resize = raid1_resize, 1799 .reshape = raid1_reshape, 1800 .quiesce = raid1_quiesce, 1801 }; 1802 1803 static int __init raid_init(void) 1804 { 1805 return register_md_personality(RAID1, &raid1_personality); 1806 } 1807 1808 static void raid_exit(void) 1809 { 1810 unregister_md_personality(RAID1); 1811 } 1812 1813 module_init(raid_init); 1814 module_exit(raid_exit); 1815 MODULE_LICENSE("GPL"); 1816 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 1817