xref: /linux/drivers/md/md.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 static void md_print_devices(void);
75 
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 
78 /*
79  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80  * is 1000 KB/sec, so the extra system load does not show up that much.
81  * Increase it if you want to have more _guaranteed_ speed. Note that
82  * the RAID driver will use the maximum available bandwidth if the IO
83  * subsystem is idle. There is also an 'absolute maximum' reconstruction
84  * speed limit - in case reconstruction slows down your system despite
85  * idle IO detection.
86  *
87  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88  * or /sys/block/mdX/md/sync_speed_{min,max}
89  */
90 
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 	return mddev->sync_speed_min ?
96 		mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98 
99 static inline int speed_max(mddev_t *mddev)
100 {
101 	return mddev->sync_speed_max ?
102 		mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104 
105 static struct ctl_table_header *raid_table_header;
106 
107 static ctl_table raid_table[] = {
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
110 		.procname	= "speed_limit_min",
111 		.data		= &sysctl_speed_limit_min,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{
117 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= &proc_dointvec,
123 	},
124 	{ .ctl_name = 0 }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.ctl_name	= DEV_RAID,
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ .ctl_name = 0 }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.ctl_name	= CTL_DEV,
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{ .ctl_name = 0 }
147 };
148 
149 static struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /*
154  * We have a system wide 'event count' that is incremented
155  * on any 'interesting' event, and readers of /proc/mdstat
156  * can use 'poll' or 'select' to find out when the event
157  * count increases.
158  *
159  * Events are:
160  *  start array, stop array, error, add device, remove device,
161  *  start build, activate spare
162  */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 	atomic_inc(&md_event_count);
168 	wake_up(&md_event_waiters);
169 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172 
173 /* Alternate version that can be called from interrupts
174  * when calling sysfs_notify isn't needed.
175  */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 	atomic_inc(&md_event_count);
179 	wake_up(&md_event_waiters);
180 }
181 
182 /*
183  * Enables to iterate over all existing md arrays
184  * all_mddevs_lock protects this list.
185  */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188 
189 
190 /*
191  * iterates through all used mddevs in the system.
192  * We take care to grab the all_mddevs_lock whenever navigating
193  * the list, and to always hold a refcount when unlocked.
194  * Any code which breaks out of this loop while own
195  * a reference to the current mddev and must mddev_put it.
196  */
197 #define ITERATE_MDDEV(mddev,tmp)					\
198 									\
199 	for (({ spin_lock(&all_mddevs_lock); 				\
200 		tmp = all_mddevs.next;					\
201 		mddev = NULL;});					\
202 	     ({ if (tmp != &all_mddevs)					\
203 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 		spin_unlock(&all_mddevs_lock);				\
205 		if (mddev) mddev_put(mddev);				\
206 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
207 		tmp != &all_mddevs;});					\
208 	     ({ spin_lock(&all_mddevs_lock);				\
209 		tmp = tmp->next;})					\
210 		)
211 
212 
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 	bio_io_error(bio, bio->bi_size);
216 	return 0;
217 }
218 
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 	atomic_inc(&mddev->active);
222 	return mddev;
223 }
224 
225 static void mddev_put(mddev_t *mddev)
226 {
227 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 		return;
229 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 		list_del(&mddev->all_mddevs);
231 		spin_unlock(&all_mddevs_lock);
232 		blk_cleanup_queue(mddev->queue);
233 		kobject_unregister(&mddev->kobj);
234 	} else
235 		spin_unlock(&all_mddevs_lock);
236 }
237 
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 	mddev_t *mddev, *new = NULL;
241 
242  retry:
243 	spin_lock(&all_mddevs_lock);
244 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 		if (mddev->unit == unit) {
246 			mddev_get(mddev);
247 			spin_unlock(&all_mddevs_lock);
248 			kfree(new);
249 			return mddev;
250 		}
251 
252 	if (new) {
253 		list_add(&new->all_mddevs, &all_mddevs);
254 		spin_unlock(&all_mddevs_lock);
255 		return new;
256 	}
257 	spin_unlock(&all_mddevs_lock);
258 
259 	new = kzalloc(sizeof(*new), GFP_KERNEL);
260 	if (!new)
261 		return NULL;
262 
263 	new->unit = unit;
264 	if (MAJOR(unit) == MD_MAJOR)
265 		new->md_minor = MINOR(unit);
266 	else
267 		new->md_minor = MINOR(unit) >> MdpMinorShift;
268 
269 	mutex_init(&new->reconfig_mutex);
270 	INIT_LIST_HEAD(&new->disks);
271 	INIT_LIST_HEAD(&new->all_mddevs);
272 	init_timer(&new->safemode_timer);
273 	atomic_set(&new->active, 1);
274 	spin_lock_init(&new->write_lock);
275 	init_waitqueue_head(&new->sb_wait);
276 
277 	new->queue = blk_alloc_queue(GFP_KERNEL);
278 	if (!new->queue) {
279 		kfree(new);
280 		return NULL;
281 	}
282 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283 
284 	blk_queue_make_request(new->queue, md_fail_request);
285 
286 	goto retry;
287 }
288 
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293 
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 	return mutex_trylock(&mddev->reconfig_mutex);
297 }
298 
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 	mutex_unlock(&mddev->reconfig_mutex);
302 
303 	md_wakeup_thread(mddev->thread);
304 }
305 
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 	mdk_rdev_t * rdev;
309 	struct list_head *tmp;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->desc_nr == nr)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 	struct list_head *tmp;
321 	mdk_rdev_t *rdev;
322 
323 	ITERATE_RDEV(mddev,rdev,tmp) {
324 		if (rdev->bdev->bd_dev == dev)
325 			return rdev;
326 	}
327 	return NULL;
328 }
329 
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 	struct mdk_personality *pers;
333 	list_for_each_entry(pers, &pers_list, list) {
334 		if (level != LEVEL_NONE && pers->level == level)
335 			return pers;
336 		if (strcmp(pers->name, clevel)==0)
337 			return pers;
338 	}
339 	return NULL;
340 }
341 
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 	return MD_NEW_SIZE_BLOCKS(size);
346 }
347 
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 	sector_t size;
351 
352 	size = rdev->sb_offset;
353 
354 	if (chunk_size)
355 		size &= ~((sector_t)chunk_size/1024 - 1);
356 	return size;
357 }
358 
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 	if (rdev->sb_page)
362 		MD_BUG();
363 
364 	rdev->sb_page = alloc_page(GFP_KERNEL);
365 	if (!rdev->sb_page) {
366 		printk(KERN_ALERT "md: out of memory.\n");
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 	if (rdev->sb_page) {
376 		put_page(rdev->sb_page);
377 		rdev->sb_loaded = 0;
378 		rdev->sb_page = NULL;
379 		rdev->sb_offset = 0;
380 		rdev->size = 0;
381 	}
382 }
383 
384 
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 	mdk_rdev_t *rdev = bio->bi_private;
388 	mddev_t *mddev = rdev->mddev;
389 	if (bio->bi_size)
390 		return 1;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 	return 0;
403 }
404 
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 	struct bio *bio2 = bio->bi_private;
408 	mdk_rdev_t *rdev = bio2->bi_private;
409 	mddev_t *mddev = rdev->mddev;
410 	if (bio->bi_size)
411 		return 1;
412 
413 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 	    error == -EOPNOTSUPP) {
415 		unsigned long flags;
416 		/* barriers don't appear to be supported :-( */
417 		set_bit(BarriersNotsupp, &rdev->flags);
418 		mddev->barriers_work = 0;
419 		spin_lock_irqsave(&mddev->write_lock, flags);
420 		bio2->bi_next = mddev->biolist;
421 		mddev->biolist = bio2;
422 		spin_unlock_irqrestore(&mddev->write_lock, flags);
423 		wake_up(&mddev->sb_wait);
424 		bio_put(bio);
425 		return 0;
426 	}
427 	bio_put(bio2);
428 	bio->bi_private = rdev;
429 	return super_written(bio, bytes_done, error);
430 }
431 
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 		   sector_t sector, int size, struct page *page)
434 {
435 	/* write first size bytes of page to sector of rdev
436 	 * Increment mddev->pending_writes before returning
437 	 * and decrement it on completion, waking up sb_wait
438 	 * if zero is reached.
439 	 * If an error occurred, call md_error
440 	 *
441 	 * As we might need to resubmit the request if BIO_RW_BARRIER
442 	 * causes ENOTSUPP, we allocate a spare bio...
443 	 */
444 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446 
447 	bio->bi_bdev = rdev->bdev;
448 	bio->bi_sector = sector;
449 	bio_add_page(bio, page, size, 0);
450 	bio->bi_private = rdev;
451 	bio->bi_end_io = super_written;
452 	bio->bi_rw = rw;
453 
454 	atomic_inc(&mddev->pending_writes);
455 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 		struct bio *rbio;
457 		rw |= (1<<BIO_RW_BARRIER);
458 		rbio = bio_clone(bio, GFP_NOIO);
459 		rbio->bi_private = bio;
460 		rbio->bi_end_io = super_written_barrier;
461 		submit_bio(rw, rbio);
462 	} else
463 		submit_bio(rw, bio);
464 }
465 
466 void md_super_wait(mddev_t *mddev)
467 {
468 	/* wait for all superblock writes that were scheduled to complete.
469 	 * if any had to be retried (due to BARRIER problems), retry them
470 	 */
471 	DEFINE_WAIT(wq);
472 	for(;;) {
473 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 		if (atomic_read(&mddev->pending_writes)==0)
475 			break;
476 		while (mddev->biolist) {
477 			struct bio *bio;
478 			spin_lock_irq(&mddev->write_lock);
479 			bio = mddev->biolist;
480 			mddev->biolist = bio->bi_next ;
481 			bio->bi_next = NULL;
482 			spin_unlock_irq(&mddev->write_lock);
483 			submit_bio(bio->bi_rw, bio);
484 		}
485 		schedule();
486 	}
487 	finish_wait(&mddev->sb_wait, &wq);
488 }
489 
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 	if (bio->bi_size)
493 		return 1;
494 
495 	complete((struct completion*)bio->bi_private);
496 	return 0;
497 }
498 
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 		   struct page *page, int rw)
501 {
502 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 	struct completion event;
504 	int ret;
505 
506 	rw |= (1 << BIO_RW_SYNC);
507 
508 	bio->bi_bdev = bdev;
509 	bio->bi_sector = sector;
510 	bio_add_page(bio, page, size, 0);
511 	init_completion(&event);
512 	bio->bi_private = &event;
513 	bio->bi_end_io = bi_complete;
514 	submit_bio(rw, bio);
515 	wait_for_completion(&event);
516 
517 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 	bio_put(bio);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522 
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 	char b[BDEVNAME_SIZE];
526 	if (!rdev->sb_page) {
527 		MD_BUG();
528 		return -EINVAL;
529 	}
530 	if (rdev->sb_loaded)
531 		return 0;
532 
533 
534 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 		goto fail;
536 	rdev->sb_loaded = 1;
537 	return 0;
538 
539 fail:
540 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 		bdevname(rdev->bdev,b));
542 	return -EINVAL;
543 }
544 
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
548 		(sb1->set_uuid1 == sb2->set_uuid1) &&
549 		(sb1->set_uuid2 == sb2->set_uuid2) &&
550 		(sb1->set_uuid3 == sb2->set_uuid3))
551 
552 		return 1;
553 
554 	return 0;
555 }
556 
557 
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 	int ret;
561 	mdp_super_t *tmp1, *tmp2;
562 
563 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565 
566 	if (!tmp1 || !tmp2) {
567 		ret = 0;
568 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 		goto abort;
570 	}
571 
572 	*tmp1 = *sb1;
573 	*tmp2 = *sb2;
574 
575 	/*
576 	 * nr_disks is not constant
577 	 */
578 	tmp1->nr_disks = 0;
579 	tmp2->nr_disks = 0;
580 
581 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 		ret = 0;
583 	else
584 		ret = 1;
585 
586 abort:
587 	kfree(tmp1);
588 	kfree(tmp2);
589 	return ret;
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	unsigned int disk_csum, csum;
595 
596 	disk_csum = sb->sb_csum;
597 	sb->sb_csum = 0;
598 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 	sb->sb_csum = disk_csum;
600 	return csum;
601 }
602 
603 
604 /*
605  * Handle superblock details.
606  * We want to be able to handle multiple superblock formats
607  * so we have a common interface to them all, and an array of
608  * different handlers.
609  * We rely on user-space to write the initial superblock, and support
610  * reading and updating of superblocks.
611  * Interface methods are:
612  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613  *      loads and validates a superblock on dev.
614  *      if refdev != NULL, compare superblocks on both devices
615  *    Return:
616  *      0 - dev has a superblock that is compatible with refdev
617  *      1 - dev has a superblock that is compatible and newer than refdev
618  *          so dev should be used as the refdev in future
619  *     -EINVAL superblock incompatible or invalid
620  *     -othererror e.g. -EIO
621  *
622  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623  *      Verify that dev is acceptable into mddev.
624  *       The first time, mddev->raid_disks will be 0, and data from
625  *       dev should be merged in.  Subsequent calls check that dev
626  *       is new enough.  Return 0 or -EINVAL
627  *
628  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629  *     Update the superblock for rdev with data in mddev
630  *     This does not write to disc.
631  *
632  */
633 
634 struct super_type  {
635 	char 		*name;
636 	struct module	*owner;
637 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641 
642 /*
643  * load_super for 0.90.0
644  */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 	mdp_super_t *sb;
649 	int ret;
650 	sector_t sb_offset;
651 
652 	/*
653 	 * Calculate the position of the superblock,
654 	 * it's at the end of the disk.
655 	 *
656 	 * It also happens to be a multiple of 4Kb.
657 	 */
658 	sb_offset = calc_dev_sboffset(rdev->bdev);
659 	rdev->sb_offset = sb_offset;
660 
661 	ret = read_disk_sb(rdev, MD_SB_BYTES);
662 	if (ret) return ret;
663 
664 	ret = -EINVAL;
665 
666 	bdevname(rdev->bdev, b);
667 	sb = (mdp_super_t*)page_address(rdev->sb_page);
668 
669 	if (sb->md_magic != MD_SB_MAGIC) {
670 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 		       b);
672 		goto abort;
673 	}
674 
675 	if (sb->major_version != 0 ||
676 	    sb->minor_version < 90 ||
677 	    sb->minor_version > 91) {
678 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 			sb->major_version, sb->minor_version,
680 			b);
681 		goto abort;
682 	}
683 
684 	if (sb->raid_disks <= 0)
685 		goto abort;
686 
687 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 			b);
690 		goto abort;
691 	}
692 
693 	rdev->preferred_minor = sb->md_minor;
694 	rdev->data_offset = 0;
695 	rdev->sb_size = MD_SB_BYTES;
696 
697 	if (sb->level == LEVEL_MULTIPATH)
698 		rdev->desc_nr = -1;
699 	else
700 		rdev->desc_nr = sb->this_disk.number;
701 
702 	if (refdev == 0)
703 		ret = 1;
704 	else {
705 		__u64 ev1, ev2;
706 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 		if (!uuid_equal(refsb, sb)) {
708 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 				b, bdevname(refdev->bdev,b2));
710 			goto abort;
711 		}
712 		if (!sb_equal(refsb, sb)) {
713 			printk(KERN_WARNING "md: %s has same UUID"
714 			       " but different superblock to %s\n",
715 			       b, bdevname(refdev->bdev, b2));
716 			goto abort;
717 		}
718 		ev1 = md_event(sb);
719 		ev2 = md_event(refsb);
720 		if (ev1 > ev2)
721 			ret = 1;
722 		else
723 			ret = 0;
724 	}
725 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
726 
727 	if (rdev->size < sb->size && sb->level > 1)
728 		/* "this cannot possibly happen" ... */
729 		ret = -EINVAL;
730 
731  abort:
732 	return ret;
733 }
734 
735 /*
736  * validate_super for 0.90.0
737  */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 	mdp_disk_t *desc;
741 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 	__u64 ev1 = md_event(sb);
743 
744 	rdev->raid_disk = -1;
745 	rdev->flags = 0;
746 	if (mddev->raid_disks == 0) {
747 		mddev->major_version = 0;
748 		mddev->minor_version = sb->minor_version;
749 		mddev->patch_version = sb->patch_version;
750 		mddev->persistent = ! sb->not_persistent;
751 		mddev->chunk_size = sb->chunk_size;
752 		mddev->ctime = sb->ctime;
753 		mddev->utime = sb->utime;
754 		mddev->level = sb->level;
755 		mddev->clevel[0] = 0;
756 		mddev->layout = sb->layout;
757 		mddev->raid_disks = sb->raid_disks;
758 		mddev->size = sb->size;
759 		mddev->events = ev1;
760 		mddev->bitmap_offset = 0;
761 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762 
763 		if (mddev->minor_version >= 91) {
764 			mddev->reshape_position = sb->reshape_position;
765 			mddev->delta_disks = sb->delta_disks;
766 			mddev->new_level = sb->new_level;
767 			mddev->new_layout = sb->new_layout;
768 			mddev->new_chunk = sb->new_chunk;
769 		} else {
770 			mddev->reshape_position = MaxSector;
771 			mddev->delta_disks = 0;
772 			mddev->new_level = mddev->level;
773 			mddev->new_layout = mddev->layout;
774 			mddev->new_chunk = mddev->chunk_size;
775 		}
776 
777 		if (sb->state & (1<<MD_SB_CLEAN))
778 			mddev->recovery_cp = MaxSector;
779 		else {
780 			if (sb->events_hi == sb->cp_events_hi &&
781 				sb->events_lo == sb->cp_events_lo) {
782 				mddev->recovery_cp = sb->recovery_cp;
783 			} else
784 				mddev->recovery_cp = 0;
785 		}
786 
787 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791 
792 		mddev->max_disks = MD_SB_DISKS;
793 
794 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 		    mddev->bitmap_file == NULL) {
796 			if (mddev->level != 1 && mddev->level != 4
797 			    && mddev->level != 5 && mddev->level != 6
798 			    && mddev->level != 10) {
799 				/* FIXME use a better test */
800 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 				return -EINVAL;
802 			}
803 			mddev->bitmap_offset = mddev->default_bitmap_offset;
804 		}
805 
806 	} else if (mddev->pers == NULL) {
807 		/* Insist on good event counter while assembling */
808 		++ev1;
809 		if (ev1 < mddev->events)
810 			return -EINVAL;
811 	} else if (mddev->bitmap) {
812 		/* if adding to array with a bitmap, then we can accept an
813 		 * older device ... but not too old.
814 		 */
815 		if (ev1 < mddev->bitmap->events_cleared)
816 			return 0;
817 	} else {
818 		if (ev1 < mddev->events)
819 			/* just a hot-add of a new device, leave raid_disk at -1 */
820 			return 0;
821 	}
822 
823 	if (mddev->level != LEVEL_MULTIPATH) {
824 		desc = sb->disks + rdev->desc_nr;
825 
826 		if (desc->state & (1<<MD_DISK_FAULTY))
827 			set_bit(Faulty, &rdev->flags);
828 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 			    desc->raid_disk < mddev->raid_disks */) {
830 			set_bit(In_sync, &rdev->flags);
831 			rdev->raid_disk = desc->raid_disk;
832 		}
833 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 			set_bit(WriteMostly, &rdev->flags);
835 	} else /* MULTIPATH are always insync */
836 		set_bit(In_sync, &rdev->flags);
837 	return 0;
838 }
839 
840 /*
841  * sync_super for 0.90.0
842  */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 	mdp_super_t *sb;
846 	struct list_head *tmp;
847 	mdk_rdev_t *rdev2;
848 	int next_spare = mddev->raid_disks;
849 
850 
851 	/* make rdev->sb match mddev data..
852 	 *
853 	 * 1/ zero out disks
854 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 	 * 3/ any empty disks < next_spare become removed
856 	 *
857 	 * disks[0] gets initialised to REMOVED because
858 	 * we cannot be sure from other fields if it has
859 	 * been initialised or not.
860 	 */
861 	int i;
862 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
863 
864 	rdev->sb_size = MD_SB_BYTES;
865 
866 	sb = (mdp_super_t*)page_address(rdev->sb_page);
867 
868 	memset(sb, 0, sizeof(*sb));
869 
870 	sb->md_magic = MD_SB_MAGIC;
871 	sb->major_version = mddev->major_version;
872 	sb->patch_version = mddev->patch_version;
873 	sb->gvalid_words  = 0; /* ignored */
874 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878 
879 	sb->ctime = mddev->ctime;
880 	sb->level = mddev->level;
881 	sb->size  = mddev->size;
882 	sb->raid_disks = mddev->raid_disks;
883 	sb->md_minor = mddev->md_minor;
884 	sb->not_persistent = !mddev->persistent;
885 	sb->utime = mddev->utime;
886 	sb->state = 0;
887 	sb->events_hi = (mddev->events>>32);
888 	sb->events_lo = (u32)mddev->events;
889 
890 	if (mddev->reshape_position == MaxSector)
891 		sb->minor_version = 90;
892 	else {
893 		sb->minor_version = 91;
894 		sb->reshape_position = mddev->reshape_position;
895 		sb->new_level = mddev->new_level;
896 		sb->delta_disks = mddev->delta_disks;
897 		sb->new_layout = mddev->new_layout;
898 		sb->new_chunk = mddev->new_chunk;
899 	}
900 	mddev->minor_version = sb->minor_version;
901 	if (mddev->in_sync)
902 	{
903 		sb->recovery_cp = mddev->recovery_cp;
904 		sb->cp_events_hi = (mddev->events>>32);
905 		sb->cp_events_lo = (u32)mddev->events;
906 		if (mddev->recovery_cp == MaxSector)
907 			sb->state = (1<< MD_SB_CLEAN);
908 	} else
909 		sb->recovery_cp = 0;
910 
911 	sb->layout = mddev->layout;
912 	sb->chunk_size = mddev->chunk_size;
913 
914 	if (mddev->bitmap && mddev->bitmap_file == NULL)
915 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916 
917 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 	ITERATE_RDEV(mddev,rdev2,tmp) {
919 		mdp_disk_t *d;
920 		int desc_nr;
921 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 		    && !test_bit(Faulty, &rdev2->flags))
923 			desc_nr = rdev2->raid_disk;
924 		else
925 			desc_nr = next_spare++;
926 		rdev2->desc_nr = desc_nr;
927 		d = &sb->disks[rdev2->desc_nr];
928 		nr_disks++;
929 		d->number = rdev2->desc_nr;
930 		d->major = MAJOR(rdev2->bdev->bd_dev);
931 		d->minor = MINOR(rdev2->bdev->bd_dev);
932 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 		    && !test_bit(Faulty, &rdev2->flags))
934 			d->raid_disk = rdev2->raid_disk;
935 		else
936 			d->raid_disk = rdev2->desc_nr; /* compatibility */
937 		if (test_bit(Faulty, &rdev2->flags))
938 			d->state = (1<<MD_DISK_FAULTY);
939 		else if (test_bit(In_sync, &rdev2->flags)) {
940 			d->state = (1<<MD_DISK_ACTIVE);
941 			d->state |= (1<<MD_DISK_SYNC);
942 			active++;
943 			working++;
944 		} else {
945 			d->state = 0;
946 			spare++;
947 			working++;
948 		}
949 		if (test_bit(WriteMostly, &rdev2->flags))
950 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 	}
952 	/* now set the "removed" and "faulty" bits on any missing devices */
953 	for (i=0 ; i < mddev->raid_disks ; i++) {
954 		mdp_disk_t *d = &sb->disks[i];
955 		if (d->state == 0 && d->number == 0) {
956 			d->number = i;
957 			d->raid_disk = i;
958 			d->state = (1<<MD_DISK_REMOVED);
959 			d->state |= (1<<MD_DISK_FAULTY);
960 			failed++;
961 		}
962 	}
963 	sb->nr_disks = nr_disks;
964 	sb->active_disks = active;
965 	sb->working_disks = working;
966 	sb->failed_disks = failed;
967 	sb->spare_disks = spare;
968 
969 	sb->this_disk = sb->disks[rdev->desc_nr];
970 	sb->sb_csum = calc_sb_csum(sb);
971 }
972 
973 /*
974  * version 1 superblock
975  */
976 
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 	__le32 disk_csum;
980 	u32 csum;
981 	unsigned long long newcsum;
982 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 	__le32 *isuper = (__le32*)sb;
984 	int i;
985 
986 	disk_csum = sb->sb_csum;
987 	sb->sb_csum = 0;
988 	newcsum = 0;
989 	for (i=0; size>=4; size -= 4 )
990 		newcsum += le32_to_cpu(*isuper++);
991 
992 	if (size == 2)
993 		newcsum += le16_to_cpu(*(__le16*) isuper);
994 
995 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 	sb->sb_csum = disk_csum;
997 	return cpu_to_le32(csum);
998 }
999 
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 	struct mdp_superblock_1 *sb;
1003 	int ret;
1004 	sector_t sb_offset;
1005 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 	int bmask;
1007 
1008 	/*
1009 	 * Calculate the position of the superblock.
1010 	 * It is always aligned to a 4K boundary and
1011 	 * depeding on minor_version, it can be:
1012 	 * 0: At least 8K, but less than 12K, from end of device
1013 	 * 1: At start of device
1014 	 * 2: 4K from start of device.
1015 	 */
1016 	switch(minor_version) {
1017 	case 0:
1018 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 		sb_offset -= 8*2;
1020 		sb_offset &= ~(sector_t)(4*2-1);
1021 		/* convert from sectors to K */
1022 		sb_offset /= 2;
1023 		break;
1024 	case 1:
1025 		sb_offset = 0;
1026 		break;
1027 	case 2:
1028 		sb_offset = 4;
1029 		break;
1030 	default:
1031 		return -EINVAL;
1032 	}
1033 	rdev->sb_offset = sb_offset;
1034 
1035 	/* superblock is rarely larger than 1K, but it can be larger,
1036 	 * and it is safe to read 4k, so we do that
1037 	 */
1038 	ret = read_disk_sb(rdev, 4096);
1039 	if (ret) return ret;
1040 
1041 
1042 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043 
1044 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 	    sb->major_version != cpu_to_le32(1) ||
1046 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 		return -EINVAL;
1050 
1051 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 		printk("md: invalid superblock checksum on %s\n",
1053 			bdevname(rdev->bdev,b));
1054 		return -EINVAL;
1055 	}
1056 	if (le64_to_cpu(sb->data_size) < 10) {
1057 		printk("md: data_size too small on %s\n",
1058 		       bdevname(rdev->bdev,b));
1059 		return -EINVAL;
1060 	}
1061 	rdev->preferred_minor = 0xffff;
1062 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064 
1065 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 	if (rdev->sb_size & bmask)
1068 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069 
1070 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 		rdev->desc_nr = -1;
1072 	else
1073 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074 
1075 	if (refdev == 0)
1076 		ret = 1;
1077 	else {
1078 		__u64 ev1, ev2;
1079 		struct mdp_superblock_1 *refsb =
1080 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1081 
1082 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 		    sb->level != refsb->level ||
1084 		    sb->layout != refsb->layout ||
1085 		    sb->chunksize != refsb->chunksize) {
1086 			printk(KERN_WARNING "md: %s has strangely different"
1087 				" superblock to %s\n",
1088 				bdevname(rdev->bdev,b),
1089 				bdevname(refdev->bdev,b2));
1090 			return -EINVAL;
1091 		}
1092 		ev1 = le64_to_cpu(sb->events);
1093 		ev2 = le64_to_cpu(refsb->events);
1094 
1095 		if (ev1 > ev2)
1096 			ret = 1;
1097 		else
1098 			ret = 0;
1099 	}
1100 	if (minor_version)
1101 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 	else
1103 		rdev->size = rdev->sb_offset;
1104 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 		return -EINVAL;
1106 	rdev->size = le64_to_cpu(sb->data_size)/2;
1107 	if (le32_to_cpu(sb->chunksize))
1108 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109 
1110 	if (le64_to_cpu(sb->size) > rdev->size*2)
1111 		return -EINVAL;
1112 	return ret;
1113 }
1114 
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 	__u64 ev1 = le64_to_cpu(sb->events);
1119 
1120 	rdev->raid_disk = -1;
1121 	rdev->flags = 0;
1122 	if (mddev->raid_disks == 0) {
1123 		mddev->major_version = 1;
1124 		mddev->patch_version = 0;
1125 		mddev->persistent = 1;
1126 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 		mddev->level = le32_to_cpu(sb->level);
1130 		mddev->clevel[0] = 0;
1131 		mddev->layout = le32_to_cpu(sb->layout);
1132 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 		mddev->size = le64_to_cpu(sb->size)/2;
1134 		mddev->events = ev1;
1135 		mddev->bitmap_offset = 0;
1136 		mddev->default_bitmap_offset = 1024 >> 9;
1137 
1138 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 		memcpy(mddev->uuid, sb->set_uuid, 16);
1140 
1141 		mddev->max_disks =  (4096-256)/2;
1142 
1143 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 		    mddev->bitmap_file == NULL ) {
1145 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 			    && mddev->level != 10) {
1147 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 				return -EINVAL;
1149 			}
1150 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 		}
1152 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 			mddev->new_level = le32_to_cpu(sb->new_level);
1156 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 		} else {
1159 			mddev->reshape_position = MaxSector;
1160 			mddev->delta_disks = 0;
1161 			mddev->new_level = mddev->level;
1162 			mddev->new_layout = mddev->layout;
1163 			mddev->new_chunk = mddev->chunk_size;
1164 		}
1165 
1166 	} else if (mddev->pers == NULL) {
1167 		/* Insist of good event counter while assembling */
1168 		++ev1;
1169 		if (ev1 < mddev->events)
1170 			return -EINVAL;
1171 	} else if (mddev->bitmap) {
1172 		/* If adding to array with a bitmap, then we can accept an
1173 		 * older device, but not too old.
1174 		 */
1175 		if (ev1 < mddev->bitmap->events_cleared)
1176 			return 0;
1177 	} else {
1178 		if (ev1 < mddev->events)
1179 			/* just a hot-add of a new device, leave raid_disk at -1 */
1180 			return 0;
1181 	}
1182 	if (mddev->level != LEVEL_MULTIPATH) {
1183 		int role;
1184 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 		switch(role) {
1186 		case 0xffff: /* spare */
1187 			break;
1188 		case 0xfffe: /* faulty */
1189 			set_bit(Faulty, &rdev->flags);
1190 			break;
1191 		default:
1192 			if ((le32_to_cpu(sb->feature_map) &
1193 			     MD_FEATURE_RECOVERY_OFFSET))
1194 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 			else
1196 				set_bit(In_sync, &rdev->flags);
1197 			rdev->raid_disk = role;
1198 			break;
1199 		}
1200 		if (sb->devflags & WriteMostly1)
1201 			set_bit(WriteMostly, &rdev->flags);
1202 	} else /* MULTIPATH are always insync */
1203 		set_bit(In_sync, &rdev->flags);
1204 
1205 	return 0;
1206 }
1207 
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 	struct mdp_superblock_1 *sb;
1211 	struct list_head *tmp;
1212 	mdk_rdev_t *rdev2;
1213 	int max_dev, i;
1214 	/* make rdev->sb match mddev and rdev data. */
1215 
1216 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217 
1218 	sb->feature_map = 0;
1219 	sb->pad0 = 0;
1220 	sb->recovery_offset = cpu_to_le64(0);
1221 	memset(sb->pad1, 0, sizeof(sb->pad1));
1222 	memset(sb->pad2, 0, sizeof(sb->pad2));
1223 	memset(sb->pad3, 0, sizeof(sb->pad3));
1224 
1225 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 	sb->events = cpu_to_le64(mddev->events);
1227 	if (mddev->in_sync)
1228 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 	else
1230 		sb->resync_offset = cpu_to_le64(0);
1231 
1232 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233 
1234 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 	sb->size = cpu_to_le64(mddev->size<<1);
1236 
1237 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 	}
1241 
1242 	if (rdev->raid_disk >= 0 &&
1243 	    !test_bit(In_sync, &rdev->flags) &&
1244 	    rdev->recovery_offset > 0) {
1245 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 	}
1248 
1249 	if (mddev->reshape_position != MaxSector) {
1250 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 		sb->new_level = cpu_to_le32(mddev->new_level);
1255 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 	}
1257 
1258 	max_dev = 0;
1259 	ITERATE_RDEV(mddev,rdev2,tmp)
1260 		if (rdev2->desc_nr+1 > max_dev)
1261 			max_dev = rdev2->desc_nr+1;
1262 
1263 	sb->max_dev = cpu_to_le32(max_dev);
1264 	for (i=0; i<max_dev;i++)
1265 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 
1267 	ITERATE_RDEV(mddev,rdev2,tmp) {
1268 		i = rdev2->desc_nr;
1269 		if (test_bit(Faulty, &rdev2->flags))
1270 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 		else if (test_bit(In_sync, &rdev2->flags))
1272 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 		else
1276 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 	}
1278 
1279 	sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281 
1282 
1283 static struct super_type super_types[] = {
1284 	[0] = {
1285 		.name	= "0.90.0",
1286 		.owner	= THIS_MODULE,
1287 		.load_super	= super_90_load,
1288 		.validate_super	= super_90_validate,
1289 		.sync_super	= super_90_sync,
1290 	},
1291 	[1] = {
1292 		.name	= "md-1",
1293 		.owner	= THIS_MODULE,
1294 		.load_super	= super_1_load,
1295 		.validate_super	= super_1_validate,
1296 		.sync_super	= super_1_sync,
1297 	},
1298 };
1299 
1300 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1301 {
1302 	struct list_head *tmp, *tmp2;
1303 	mdk_rdev_t *rdev, *rdev2;
1304 
1305 	ITERATE_RDEV(mddev1,rdev,tmp)
1306 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1307 			if (rdev->bdev->bd_contains ==
1308 			    rdev2->bdev->bd_contains)
1309 				return 1;
1310 
1311 	return 0;
1312 }
1313 
1314 static LIST_HEAD(pending_raid_disks);
1315 
1316 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1317 {
1318 	char b[BDEVNAME_SIZE];
1319 	struct kobject *ko;
1320 	char *s;
1321 
1322 	if (rdev->mddev) {
1323 		MD_BUG();
1324 		return -EINVAL;
1325 	}
1326 	/* make sure rdev->size exceeds mddev->size */
1327 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1328 		if (mddev->pers)
1329 			/* Cannot change size, so fail */
1330 			return -ENOSPC;
1331 		else
1332 			mddev->size = rdev->size;
1333 	}
1334 
1335 	/* Verify rdev->desc_nr is unique.
1336 	 * If it is -1, assign a free number, else
1337 	 * check number is not in use
1338 	 */
1339 	if (rdev->desc_nr < 0) {
1340 		int choice = 0;
1341 		if (mddev->pers) choice = mddev->raid_disks;
1342 		while (find_rdev_nr(mddev, choice))
1343 			choice++;
1344 		rdev->desc_nr = choice;
1345 	} else {
1346 		if (find_rdev_nr(mddev, rdev->desc_nr))
1347 			return -EBUSY;
1348 	}
1349 	bdevname(rdev->bdev,b);
1350 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1351 		return -ENOMEM;
1352 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1353 		*s = '!';
1354 
1355 	list_add(&rdev->same_set, &mddev->disks);
1356 	rdev->mddev = mddev;
1357 	printk(KERN_INFO "md: bind<%s>\n", b);
1358 
1359 	rdev->kobj.parent = &mddev->kobj;
1360 	kobject_add(&rdev->kobj);
1361 
1362 	if (rdev->bdev->bd_part)
1363 		ko = &rdev->bdev->bd_part->kobj;
1364 	else
1365 		ko = &rdev->bdev->bd_disk->kobj;
1366 	sysfs_create_link(&rdev->kobj, ko, "block");
1367 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1368 	return 0;
1369 }
1370 
1371 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1372 {
1373 	char b[BDEVNAME_SIZE];
1374 	if (!rdev->mddev) {
1375 		MD_BUG();
1376 		return;
1377 	}
1378 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1379 	list_del_init(&rdev->same_set);
1380 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1381 	rdev->mddev = NULL;
1382 	sysfs_remove_link(&rdev->kobj, "block");
1383 	kobject_del(&rdev->kobj);
1384 }
1385 
1386 /*
1387  * prevent the device from being mounted, repartitioned or
1388  * otherwise reused by a RAID array (or any other kernel
1389  * subsystem), by bd_claiming the device.
1390  */
1391 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1392 {
1393 	int err = 0;
1394 	struct block_device *bdev;
1395 	char b[BDEVNAME_SIZE];
1396 
1397 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1398 	if (IS_ERR(bdev)) {
1399 		printk(KERN_ERR "md: could not open %s.\n",
1400 			__bdevname(dev, b));
1401 		return PTR_ERR(bdev);
1402 	}
1403 	err = bd_claim(bdev, rdev);
1404 	if (err) {
1405 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1406 			bdevname(bdev, b));
1407 		blkdev_put(bdev);
1408 		return err;
1409 	}
1410 	rdev->bdev = bdev;
1411 	return err;
1412 }
1413 
1414 static void unlock_rdev(mdk_rdev_t *rdev)
1415 {
1416 	struct block_device *bdev = rdev->bdev;
1417 	rdev->bdev = NULL;
1418 	if (!bdev)
1419 		MD_BUG();
1420 	bd_release(bdev);
1421 	blkdev_put(bdev);
1422 }
1423 
1424 void md_autodetect_dev(dev_t dev);
1425 
1426 static void export_rdev(mdk_rdev_t * rdev)
1427 {
1428 	char b[BDEVNAME_SIZE];
1429 	printk(KERN_INFO "md: export_rdev(%s)\n",
1430 		bdevname(rdev->bdev,b));
1431 	if (rdev->mddev)
1432 		MD_BUG();
1433 	free_disk_sb(rdev);
1434 	list_del_init(&rdev->same_set);
1435 #ifndef MODULE
1436 	md_autodetect_dev(rdev->bdev->bd_dev);
1437 #endif
1438 	unlock_rdev(rdev);
1439 	kobject_put(&rdev->kobj);
1440 }
1441 
1442 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1443 {
1444 	unbind_rdev_from_array(rdev);
1445 	export_rdev(rdev);
1446 }
1447 
1448 static void export_array(mddev_t *mddev)
1449 {
1450 	struct list_head *tmp;
1451 	mdk_rdev_t *rdev;
1452 
1453 	ITERATE_RDEV(mddev,rdev,tmp) {
1454 		if (!rdev->mddev) {
1455 			MD_BUG();
1456 			continue;
1457 		}
1458 		kick_rdev_from_array(rdev);
1459 	}
1460 	if (!list_empty(&mddev->disks))
1461 		MD_BUG();
1462 	mddev->raid_disks = 0;
1463 	mddev->major_version = 0;
1464 }
1465 
1466 static void print_desc(mdp_disk_t *desc)
1467 {
1468 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1469 		desc->major,desc->minor,desc->raid_disk,desc->state);
1470 }
1471 
1472 static void print_sb(mdp_super_t *sb)
1473 {
1474 	int i;
1475 
1476 	printk(KERN_INFO
1477 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1478 		sb->major_version, sb->minor_version, sb->patch_version,
1479 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1480 		sb->ctime);
1481 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1482 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1483 		sb->md_minor, sb->layout, sb->chunk_size);
1484 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1485 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1486 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1487 		sb->failed_disks, sb->spare_disks,
1488 		sb->sb_csum, (unsigned long)sb->events_lo);
1489 
1490 	printk(KERN_INFO);
1491 	for (i = 0; i < MD_SB_DISKS; i++) {
1492 		mdp_disk_t *desc;
1493 
1494 		desc = sb->disks + i;
1495 		if (desc->number || desc->major || desc->minor ||
1496 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1497 			printk("     D %2d: ", i);
1498 			print_desc(desc);
1499 		}
1500 	}
1501 	printk(KERN_INFO "md:     THIS: ");
1502 	print_desc(&sb->this_disk);
1503 
1504 }
1505 
1506 static void print_rdev(mdk_rdev_t *rdev)
1507 {
1508 	char b[BDEVNAME_SIZE];
1509 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1510 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1511 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1512 	        rdev->desc_nr);
1513 	if (rdev->sb_loaded) {
1514 		printk(KERN_INFO "md: rdev superblock:\n");
1515 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1516 	} else
1517 		printk(KERN_INFO "md: no rdev superblock!\n");
1518 }
1519 
1520 static void md_print_devices(void)
1521 {
1522 	struct list_head *tmp, *tmp2;
1523 	mdk_rdev_t *rdev;
1524 	mddev_t *mddev;
1525 	char b[BDEVNAME_SIZE];
1526 
1527 	printk("\n");
1528 	printk("md:	**********************************\n");
1529 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1530 	printk("md:	**********************************\n");
1531 	ITERATE_MDDEV(mddev,tmp) {
1532 
1533 		if (mddev->bitmap)
1534 			bitmap_print_sb(mddev->bitmap);
1535 		else
1536 			printk("%s: ", mdname(mddev));
1537 		ITERATE_RDEV(mddev,rdev,tmp2)
1538 			printk("<%s>", bdevname(rdev->bdev,b));
1539 		printk("\n");
1540 
1541 		ITERATE_RDEV(mddev,rdev,tmp2)
1542 			print_rdev(rdev);
1543 	}
1544 	printk("md:	**********************************\n");
1545 	printk("\n");
1546 }
1547 
1548 
1549 static void sync_sbs(mddev_t * mddev, int nospares)
1550 {
1551 	/* Update each superblock (in-memory image), but
1552 	 * if we are allowed to, skip spares which already
1553 	 * have the right event counter, or have one earlier
1554 	 * (which would mean they aren't being marked as dirty
1555 	 * with the rest of the array)
1556 	 */
1557 	mdk_rdev_t *rdev;
1558 	struct list_head *tmp;
1559 
1560 	ITERATE_RDEV(mddev,rdev,tmp) {
1561 		if (rdev->sb_events == mddev->events ||
1562 		    (nospares &&
1563 		     rdev->raid_disk < 0 &&
1564 		     (rdev->sb_events&1)==0 &&
1565 		     rdev->sb_events+1 == mddev->events)) {
1566 			/* Don't update this superblock */
1567 			rdev->sb_loaded = 2;
1568 		} else {
1569 			super_types[mddev->major_version].
1570 				sync_super(mddev, rdev);
1571 			rdev->sb_loaded = 1;
1572 		}
1573 	}
1574 }
1575 
1576 static void md_update_sb(mddev_t * mddev, int force_change)
1577 {
1578 	int err;
1579 	struct list_head *tmp;
1580 	mdk_rdev_t *rdev;
1581 	int sync_req;
1582 	int nospares = 0;
1583 
1584 repeat:
1585 	spin_lock_irq(&mddev->write_lock);
1586 
1587 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1588 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1589 		force_change = 1;
1590 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1591 		/* just a clean<-> dirty transition, possibly leave spares alone,
1592 		 * though if events isn't the right even/odd, we will have to do
1593 		 * spares after all
1594 		 */
1595 		nospares = 1;
1596 	if (force_change)
1597 		nospares = 0;
1598 	if (mddev->degraded)
1599 		/* If the array is degraded, then skipping spares is both
1600 		 * dangerous and fairly pointless.
1601 		 * Dangerous because a device that was removed from the array
1602 		 * might have a event_count that still looks up-to-date,
1603 		 * so it can be re-added without a resync.
1604 		 * Pointless because if there are any spares to skip,
1605 		 * then a recovery will happen and soon that array won't
1606 		 * be degraded any more and the spare can go back to sleep then.
1607 		 */
1608 		nospares = 0;
1609 
1610 	sync_req = mddev->in_sync;
1611 	mddev->utime = get_seconds();
1612 
1613 	/* If this is just a dirty<->clean transition, and the array is clean
1614 	 * and 'events' is odd, we can roll back to the previous clean state */
1615 	if (nospares
1616 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1617 	    && (mddev->events & 1)
1618 	    && mddev->events != 1)
1619 		mddev->events--;
1620 	else {
1621 		/* otherwise we have to go forward and ... */
1622 		mddev->events ++;
1623 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1624 			/* .. if the array isn't clean, insist on an odd 'events' */
1625 			if ((mddev->events&1)==0) {
1626 				mddev->events++;
1627 				nospares = 0;
1628 			}
1629 		} else {
1630 			/* otherwise insist on an even 'events' (for clean states) */
1631 			if ((mddev->events&1)) {
1632 				mddev->events++;
1633 				nospares = 0;
1634 			}
1635 		}
1636 	}
1637 
1638 	if (!mddev->events) {
1639 		/*
1640 		 * oops, this 64-bit counter should never wrap.
1641 		 * Either we are in around ~1 trillion A.C., assuming
1642 		 * 1 reboot per second, or we have a bug:
1643 		 */
1644 		MD_BUG();
1645 		mddev->events --;
1646 	}
1647 	sync_sbs(mddev, nospares);
1648 
1649 	/*
1650 	 * do not write anything to disk if using
1651 	 * nonpersistent superblocks
1652 	 */
1653 	if (!mddev->persistent) {
1654 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1655 		spin_unlock_irq(&mddev->write_lock);
1656 		wake_up(&mddev->sb_wait);
1657 		return;
1658 	}
1659 	spin_unlock_irq(&mddev->write_lock);
1660 
1661 	dprintk(KERN_INFO
1662 		"md: updating %s RAID superblock on device (in sync %d)\n",
1663 		mdname(mddev),mddev->in_sync);
1664 
1665 	err = bitmap_update_sb(mddev->bitmap);
1666 	ITERATE_RDEV(mddev,rdev,tmp) {
1667 		char b[BDEVNAME_SIZE];
1668 		dprintk(KERN_INFO "md: ");
1669 		if (rdev->sb_loaded != 1)
1670 			continue; /* no noise on spare devices */
1671 		if (test_bit(Faulty, &rdev->flags))
1672 			dprintk("(skipping faulty ");
1673 
1674 		dprintk("%s ", bdevname(rdev->bdev,b));
1675 		if (!test_bit(Faulty, &rdev->flags)) {
1676 			md_super_write(mddev,rdev,
1677 				       rdev->sb_offset<<1, rdev->sb_size,
1678 				       rdev->sb_page);
1679 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1680 				bdevname(rdev->bdev,b),
1681 				(unsigned long long)rdev->sb_offset);
1682 			rdev->sb_events = mddev->events;
1683 
1684 		} else
1685 			dprintk(")\n");
1686 		if (mddev->level == LEVEL_MULTIPATH)
1687 			/* only need to write one superblock... */
1688 			break;
1689 	}
1690 	md_super_wait(mddev);
1691 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1692 
1693 	spin_lock_irq(&mddev->write_lock);
1694 	if (mddev->in_sync != sync_req ||
1695 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1696 		/* have to write it out again */
1697 		spin_unlock_irq(&mddev->write_lock);
1698 		goto repeat;
1699 	}
1700 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1701 	spin_unlock_irq(&mddev->write_lock);
1702 	wake_up(&mddev->sb_wait);
1703 
1704 }
1705 
1706 /* words written to sysfs files may, or my not, be \n terminated.
1707  * We want to accept with case. For this we use cmd_match.
1708  */
1709 static int cmd_match(const char *cmd, const char *str)
1710 {
1711 	/* See if cmd, written into a sysfs file, matches
1712 	 * str.  They must either be the same, or cmd can
1713 	 * have a trailing newline
1714 	 */
1715 	while (*cmd && *str && *cmd == *str) {
1716 		cmd++;
1717 		str++;
1718 	}
1719 	if (*cmd == '\n')
1720 		cmd++;
1721 	if (*str || *cmd)
1722 		return 0;
1723 	return 1;
1724 }
1725 
1726 struct rdev_sysfs_entry {
1727 	struct attribute attr;
1728 	ssize_t (*show)(mdk_rdev_t *, char *);
1729 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1730 };
1731 
1732 static ssize_t
1733 state_show(mdk_rdev_t *rdev, char *page)
1734 {
1735 	char *sep = "";
1736 	int len=0;
1737 
1738 	if (test_bit(Faulty, &rdev->flags)) {
1739 		len+= sprintf(page+len, "%sfaulty",sep);
1740 		sep = ",";
1741 	}
1742 	if (test_bit(In_sync, &rdev->flags)) {
1743 		len += sprintf(page+len, "%sin_sync",sep);
1744 		sep = ",";
1745 	}
1746 	if (test_bit(WriteMostly, &rdev->flags)) {
1747 		len += sprintf(page+len, "%swrite_mostly",sep);
1748 		sep = ",";
1749 	}
1750 	if (!test_bit(Faulty, &rdev->flags) &&
1751 	    !test_bit(In_sync, &rdev->flags)) {
1752 		len += sprintf(page+len, "%sspare", sep);
1753 		sep = ",";
1754 	}
1755 	return len+sprintf(page+len, "\n");
1756 }
1757 
1758 static ssize_t
1759 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1760 {
1761 	/* can write
1762 	 *  faulty  - simulates and error
1763 	 *  remove  - disconnects the device
1764 	 *  writemostly - sets write_mostly
1765 	 *  -writemostly - clears write_mostly
1766 	 */
1767 	int err = -EINVAL;
1768 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1769 		md_error(rdev->mddev, rdev);
1770 		err = 0;
1771 	} else if (cmd_match(buf, "remove")) {
1772 		if (rdev->raid_disk >= 0)
1773 			err = -EBUSY;
1774 		else {
1775 			mddev_t *mddev = rdev->mddev;
1776 			kick_rdev_from_array(rdev);
1777 			if (mddev->pers)
1778 				md_update_sb(mddev, 1);
1779 			md_new_event(mddev);
1780 			err = 0;
1781 		}
1782 	} else if (cmd_match(buf, "writemostly")) {
1783 		set_bit(WriteMostly, &rdev->flags);
1784 		err = 0;
1785 	} else if (cmd_match(buf, "-writemostly")) {
1786 		clear_bit(WriteMostly, &rdev->flags);
1787 		err = 0;
1788 	}
1789 	return err ? err : len;
1790 }
1791 static struct rdev_sysfs_entry rdev_state =
1792 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1793 
1794 static ssize_t
1795 super_show(mdk_rdev_t *rdev, char *page)
1796 {
1797 	if (rdev->sb_loaded && rdev->sb_size) {
1798 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1799 		return rdev->sb_size;
1800 	} else
1801 		return 0;
1802 }
1803 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1804 
1805 static ssize_t
1806 errors_show(mdk_rdev_t *rdev, char *page)
1807 {
1808 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1809 }
1810 
1811 static ssize_t
1812 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1813 {
1814 	char *e;
1815 	unsigned long n = simple_strtoul(buf, &e, 10);
1816 	if (*buf && (*e == 0 || *e == '\n')) {
1817 		atomic_set(&rdev->corrected_errors, n);
1818 		return len;
1819 	}
1820 	return -EINVAL;
1821 }
1822 static struct rdev_sysfs_entry rdev_errors =
1823 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1824 
1825 static ssize_t
1826 slot_show(mdk_rdev_t *rdev, char *page)
1827 {
1828 	if (rdev->raid_disk < 0)
1829 		return sprintf(page, "none\n");
1830 	else
1831 		return sprintf(page, "%d\n", rdev->raid_disk);
1832 }
1833 
1834 static ssize_t
1835 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1836 {
1837 	char *e;
1838 	int slot = simple_strtoul(buf, &e, 10);
1839 	if (strncmp(buf, "none", 4)==0)
1840 		slot = -1;
1841 	else if (e==buf || (*e && *e!= '\n'))
1842 		return -EINVAL;
1843 	if (rdev->mddev->pers)
1844 		/* Cannot set slot in active array (yet) */
1845 		return -EBUSY;
1846 	if (slot >= rdev->mddev->raid_disks)
1847 		return -ENOSPC;
1848 	rdev->raid_disk = slot;
1849 	/* assume it is working */
1850 	rdev->flags = 0;
1851 	set_bit(In_sync, &rdev->flags);
1852 	return len;
1853 }
1854 
1855 
1856 static struct rdev_sysfs_entry rdev_slot =
1857 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1858 
1859 static ssize_t
1860 offset_show(mdk_rdev_t *rdev, char *page)
1861 {
1862 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1863 }
1864 
1865 static ssize_t
1866 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1867 {
1868 	char *e;
1869 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1870 	if (e==buf || (*e && *e != '\n'))
1871 		return -EINVAL;
1872 	if (rdev->mddev->pers)
1873 		return -EBUSY;
1874 	rdev->data_offset = offset;
1875 	return len;
1876 }
1877 
1878 static struct rdev_sysfs_entry rdev_offset =
1879 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1880 
1881 static ssize_t
1882 rdev_size_show(mdk_rdev_t *rdev, char *page)
1883 {
1884 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1885 }
1886 
1887 static ssize_t
1888 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1889 {
1890 	char *e;
1891 	unsigned long long size = simple_strtoull(buf, &e, 10);
1892 	if (e==buf || (*e && *e != '\n'))
1893 		return -EINVAL;
1894 	if (rdev->mddev->pers)
1895 		return -EBUSY;
1896 	rdev->size = size;
1897 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1898 		rdev->mddev->size = size;
1899 	return len;
1900 }
1901 
1902 static struct rdev_sysfs_entry rdev_size =
1903 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1904 
1905 static struct attribute *rdev_default_attrs[] = {
1906 	&rdev_state.attr,
1907 	&rdev_super.attr,
1908 	&rdev_errors.attr,
1909 	&rdev_slot.attr,
1910 	&rdev_offset.attr,
1911 	&rdev_size.attr,
1912 	NULL,
1913 };
1914 static ssize_t
1915 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1916 {
1917 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1918 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1919 
1920 	if (!entry->show)
1921 		return -EIO;
1922 	return entry->show(rdev, page);
1923 }
1924 
1925 static ssize_t
1926 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1927 	      const char *page, size_t length)
1928 {
1929 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1930 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1931 
1932 	if (!entry->store)
1933 		return -EIO;
1934 	if (!capable(CAP_SYS_ADMIN))
1935 		return -EACCES;
1936 	return entry->store(rdev, page, length);
1937 }
1938 
1939 static void rdev_free(struct kobject *ko)
1940 {
1941 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1942 	kfree(rdev);
1943 }
1944 static struct sysfs_ops rdev_sysfs_ops = {
1945 	.show		= rdev_attr_show,
1946 	.store		= rdev_attr_store,
1947 };
1948 static struct kobj_type rdev_ktype = {
1949 	.release	= rdev_free,
1950 	.sysfs_ops	= &rdev_sysfs_ops,
1951 	.default_attrs	= rdev_default_attrs,
1952 };
1953 
1954 /*
1955  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1956  *
1957  * mark the device faulty if:
1958  *
1959  *   - the device is nonexistent (zero size)
1960  *   - the device has no valid superblock
1961  *
1962  * a faulty rdev _never_ has rdev->sb set.
1963  */
1964 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1965 {
1966 	char b[BDEVNAME_SIZE];
1967 	int err;
1968 	mdk_rdev_t *rdev;
1969 	sector_t size;
1970 
1971 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1972 	if (!rdev) {
1973 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1974 		return ERR_PTR(-ENOMEM);
1975 	}
1976 
1977 	if ((err = alloc_disk_sb(rdev)))
1978 		goto abort_free;
1979 
1980 	err = lock_rdev(rdev, newdev);
1981 	if (err)
1982 		goto abort_free;
1983 
1984 	rdev->kobj.parent = NULL;
1985 	rdev->kobj.ktype = &rdev_ktype;
1986 	kobject_init(&rdev->kobj);
1987 
1988 	rdev->desc_nr = -1;
1989 	rdev->saved_raid_disk = -1;
1990 	rdev->raid_disk = -1;
1991 	rdev->flags = 0;
1992 	rdev->data_offset = 0;
1993 	rdev->sb_events = 0;
1994 	atomic_set(&rdev->nr_pending, 0);
1995 	atomic_set(&rdev->read_errors, 0);
1996 	atomic_set(&rdev->corrected_errors, 0);
1997 
1998 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1999 	if (!size) {
2000 		printk(KERN_WARNING
2001 			"md: %s has zero or unknown size, marking faulty!\n",
2002 			bdevname(rdev->bdev,b));
2003 		err = -EINVAL;
2004 		goto abort_free;
2005 	}
2006 
2007 	if (super_format >= 0) {
2008 		err = super_types[super_format].
2009 			load_super(rdev, NULL, super_minor);
2010 		if (err == -EINVAL) {
2011 			printk(KERN_WARNING
2012 				"md: %s has invalid sb, not importing!\n",
2013 				bdevname(rdev->bdev,b));
2014 			goto abort_free;
2015 		}
2016 		if (err < 0) {
2017 			printk(KERN_WARNING
2018 				"md: could not read %s's sb, not importing!\n",
2019 				bdevname(rdev->bdev,b));
2020 			goto abort_free;
2021 		}
2022 	}
2023 	INIT_LIST_HEAD(&rdev->same_set);
2024 
2025 	return rdev;
2026 
2027 abort_free:
2028 	if (rdev->sb_page) {
2029 		if (rdev->bdev)
2030 			unlock_rdev(rdev);
2031 		free_disk_sb(rdev);
2032 	}
2033 	kfree(rdev);
2034 	return ERR_PTR(err);
2035 }
2036 
2037 /*
2038  * Check a full RAID array for plausibility
2039  */
2040 
2041 
2042 static void analyze_sbs(mddev_t * mddev)
2043 {
2044 	int i;
2045 	struct list_head *tmp;
2046 	mdk_rdev_t *rdev, *freshest;
2047 	char b[BDEVNAME_SIZE];
2048 
2049 	freshest = NULL;
2050 	ITERATE_RDEV(mddev,rdev,tmp)
2051 		switch (super_types[mddev->major_version].
2052 			load_super(rdev, freshest, mddev->minor_version)) {
2053 		case 1:
2054 			freshest = rdev;
2055 			break;
2056 		case 0:
2057 			break;
2058 		default:
2059 			printk( KERN_ERR \
2060 				"md: fatal superblock inconsistency in %s"
2061 				" -- removing from array\n",
2062 				bdevname(rdev->bdev,b));
2063 			kick_rdev_from_array(rdev);
2064 		}
2065 
2066 
2067 	super_types[mddev->major_version].
2068 		validate_super(mddev, freshest);
2069 
2070 	i = 0;
2071 	ITERATE_RDEV(mddev,rdev,tmp) {
2072 		if (rdev != freshest)
2073 			if (super_types[mddev->major_version].
2074 			    validate_super(mddev, rdev)) {
2075 				printk(KERN_WARNING "md: kicking non-fresh %s"
2076 					" from array!\n",
2077 					bdevname(rdev->bdev,b));
2078 				kick_rdev_from_array(rdev);
2079 				continue;
2080 			}
2081 		if (mddev->level == LEVEL_MULTIPATH) {
2082 			rdev->desc_nr = i++;
2083 			rdev->raid_disk = rdev->desc_nr;
2084 			set_bit(In_sync, &rdev->flags);
2085 		}
2086 	}
2087 
2088 
2089 
2090 	if (mddev->recovery_cp != MaxSector &&
2091 	    mddev->level >= 1)
2092 		printk(KERN_ERR "md: %s: raid array is not clean"
2093 		       " -- starting background reconstruction\n",
2094 		       mdname(mddev));
2095 
2096 }
2097 
2098 static ssize_t
2099 safe_delay_show(mddev_t *mddev, char *page)
2100 {
2101 	int msec = (mddev->safemode_delay*1000)/HZ;
2102 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2103 }
2104 static ssize_t
2105 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2106 {
2107 	int scale=1;
2108 	int dot=0;
2109 	int i;
2110 	unsigned long msec;
2111 	char buf[30];
2112 	char *e;
2113 	/* remove a period, and count digits after it */
2114 	if (len >= sizeof(buf))
2115 		return -EINVAL;
2116 	strlcpy(buf, cbuf, len);
2117 	buf[len] = 0;
2118 	for (i=0; i<len; i++) {
2119 		if (dot) {
2120 			if (isdigit(buf[i])) {
2121 				buf[i-1] = buf[i];
2122 				scale *= 10;
2123 			}
2124 			buf[i] = 0;
2125 		} else if (buf[i] == '.') {
2126 			dot=1;
2127 			buf[i] = 0;
2128 		}
2129 	}
2130 	msec = simple_strtoul(buf, &e, 10);
2131 	if (e == buf || (*e && *e != '\n'))
2132 		return -EINVAL;
2133 	msec = (msec * 1000) / scale;
2134 	if (msec == 0)
2135 		mddev->safemode_delay = 0;
2136 	else {
2137 		mddev->safemode_delay = (msec*HZ)/1000;
2138 		if (mddev->safemode_delay == 0)
2139 			mddev->safemode_delay = 1;
2140 	}
2141 	return len;
2142 }
2143 static struct md_sysfs_entry md_safe_delay =
2144 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2145 
2146 static ssize_t
2147 level_show(mddev_t *mddev, char *page)
2148 {
2149 	struct mdk_personality *p = mddev->pers;
2150 	if (p)
2151 		return sprintf(page, "%s\n", p->name);
2152 	else if (mddev->clevel[0])
2153 		return sprintf(page, "%s\n", mddev->clevel);
2154 	else if (mddev->level != LEVEL_NONE)
2155 		return sprintf(page, "%d\n", mddev->level);
2156 	else
2157 		return 0;
2158 }
2159 
2160 static ssize_t
2161 level_store(mddev_t *mddev, const char *buf, size_t len)
2162 {
2163 	int rv = len;
2164 	if (mddev->pers)
2165 		return -EBUSY;
2166 	if (len == 0)
2167 		return 0;
2168 	if (len >= sizeof(mddev->clevel))
2169 		return -ENOSPC;
2170 	strncpy(mddev->clevel, buf, len);
2171 	if (mddev->clevel[len-1] == '\n')
2172 		len--;
2173 	mddev->clevel[len] = 0;
2174 	mddev->level = LEVEL_NONE;
2175 	return rv;
2176 }
2177 
2178 static struct md_sysfs_entry md_level =
2179 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2180 
2181 
2182 static ssize_t
2183 layout_show(mddev_t *mddev, char *page)
2184 {
2185 	/* just a number, not meaningful for all levels */
2186 	return sprintf(page, "%d\n", mddev->layout);
2187 }
2188 
2189 static ssize_t
2190 layout_store(mddev_t *mddev, const char *buf, size_t len)
2191 {
2192 	char *e;
2193 	unsigned long n = simple_strtoul(buf, &e, 10);
2194 	if (mddev->pers)
2195 		return -EBUSY;
2196 
2197 	if (!*buf || (*e && *e != '\n'))
2198 		return -EINVAL;
2199 
2200 	mddev->layout = n;
2201 	return len;
2202 }
2203 static struct md_sysfs_entry md_layout =
2204 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2205 
2206 
2207 static ssize_t
2208 raid_disks_show(mddev_t *mddev, char *page)
2209 {
2210 	if (mddev->raid_disks == 0)
2211 		return 0;
2212 	return sprintf(page, "%d\n", mddev->raid_disks);
2213 }
2214 
2215 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2216 
2217 static ssize_t
2218 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2219 {
2220 	char *e;
2221 	int rv = 0;
2222 	unsigned long n = simple_strtoul(buf, &e, 10);
2223 
2224 	if (!*buf || (*e && *e != '\n'))
2225 		return -EINVAL;
2226 
2227 	if (mddev->pers)
2228 		rv = update_raid_disks(mddev, n);
2229 	else
2230 		mddev->raid_disks = n;
2231 	return rv ? rv : len;
2232 }
2233 static struct md_sysfs_entry md_raid_disks =
2234 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2235 
2236 static ssize_t
2237 chunk_size_show(mddev_t *mddev, char *page)
2238 {
2239 	return sprintf(page, "%d\n", mddev->chunk_size);
2240 }
2241 
2242 static ssize_t
2243 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2244 {
2245 	/* can only set chunk_size if array is not yet active */
2246 	char *e;
2247 	unsigned long n = simple_strtoul(buf, &e, 10);
2248 
2249 	if (mddev->pers)
2250 		return -EBUSY;
2251 	if (!*buf || (*e && *e != '\n'))
2252 		return -EINVAL;
2253 
2254 	mddev->chunk_size = n;
2255 	return len;
2256 }
2257 static struct md_sysfs_entry md_chunk_size =
2258 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2259 
2260 static ssize_t
2261 resync_start_show(mddev_t *mddev, char *page)
2262 {
2263 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2264 }
2265 
2266 static ssize_t
2267 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2268 {
2269 	/* can only set chunk_size if array is not yet active */
2270 	char *e;
2271 	unsigned long long n = simple_strtoull(buf, &e, 10);
2272 
2273 	if (mddev->pers)
2274 		return -EBUSY;
2275 	if (!*buf || (*e && *e != '\n'))
2276 		return -EINVAL;
2277 
2278 	mddev->recovery_cp = n;
2279 	return len;
2280 }
2281 static struct md_sysfs_entry md_resync_start =
2282 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2283 
2284 /*
2285  * The array state can be:
2286  *
2287  * clear
2288  *     No devices, no size, no level
2289  *     Equivalent to STOP_ARRAY ioctl
2290  * inactive
2291  *     May have some settings, but array is not active
2292  *        all IO results in error
2293  *     When written, doesn't tear down array, but just stops it
2294  * suspended (not supported yet)
2295  *     All IO requests will block. The array can be reconfigured.
2296  *     Writing this, if accepted, will block until array is quiessent
2297  * readonly
2298  *     no resync can happen.  no superblocks get written.
2299  *     write requests fail
2300  * read-auto
2301  *     like readonly, but behaves like 'clean' on a write request.
2302  *
2303  * clean - no pending writes, but otherwise active.
2304  *     When written to inactive array, starts without resync
2305  *     If a write request arrives then
2306  *       if metadata is known, mark 'dirty' and switch to 'active'.
2307  *       if not known, block and switch to write-pending
2308  *     If written to an active array that has pending writes, then fails.
2309  * active
2310  *     fully active: IO and resync can be happening.
2311  *     When written to inactive array, starts with resync
2312  *
2313  * write-pending
2314  *     clean, but writes are blocked waiting for 'active' to be written.
2315  *
2316  * active-idle
2317  *     like active, but no writes have been seen for a while (100msec).
2318  *
2319  */
2320 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2321 		   write_pending, active_idle, bad_word};
2322 static char *array_states[] = {
2323 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2324 	"write-pending", "active-idle", NULL };
2325 
2326 static int match_word(const char *word, char **list)
2327 {
2328 	int n;
2329 	for (n=0; list[n]; n++)
2330 		if (cmd_match(word, list[n]))
2331 			break;
2332 	return n;
2333 }
2334 
2335 static ssize_t
2336 array_state_show(mddev_t *mddev, char *page)
2337 {
2338 	enum array_state st = inactive;
2339 
2340 	if (mddev->pers)
2341 		switch(mddev->ro) {
2342 		case 1:
2343 			st = readonly;
2344 			break;
2345 		case 2:
2346 			st = read_auto;
2347 			break;
2348 		case 0:
2349 			if (mddev->in_sync)
2350 				st = clean;
2351 			else if (mddev->safemode)
2352 				st = active_idle;
2353 			else
2354 				st = active;
2355 		}
2356 	else {
2357 		if (list_empty(&mddev->disks) &&
2358 		    mddev->raid_disks == 0 &&
2359 		    mddev->size == 0)
2360 			st = clear;
2361 		else
2362 			st = inactive;
2363 	}
2364 	return sprintf(page, "%s\n", array_states[st]);
2365 }
2366 
2367 static int do_md_stop(mddev_t * mddev, int ro);
2368 static int do_md_run(mddev_t * mddev);
2369 static int restart_array(mddev_t *mddev);
2370 
2371 static ssize_t
2372 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2373 {
2374 	int err = -EINVAL;
2375 	enum array_state st = match_word(buf, array_states);
2376 	switch(st) {
2377 	case bad_word:
2378 		break;
2379 	case clear:
2380 		/* stopping an active array */
2381 		if (mddev->pers) {
2382 			if (atomic_read(&mddev->active) > 1)
2383 				return -EBUSY;
2384 			err = do_md_stop(mddev, 0);
2385 		}
2386 		break;
2387 	case inactive:
2388 		/* stopping an active array */
2389 		if (mddev->pers) {
2390 			if (atomic_read(&mddev->active) > 1)
2391 				return -EBUSY;
2392 			err = do_md_stop(mddev, 2);
2393 		}
2394 		break;
2395 	case suspended:
2396 		break; /* not supported yet */
2397 	case readonly:
2398 		if (mddev->pers)
2399 			err = do_md_stop(mddev, 1);
2400 		else {
2401 			mddev->ro = 1;
2402 			err = do_md_run(mddev);
2403 		}
2404 		break;
2405 	case read_auto:
2406 		/* stopping an active array */
2407 		if (mddev->pers) {
2408 			err = do_md_stop(mddev, 1);
2409 			if (err == 0)
2410 				mddev->ro = 2; /* FIXME mark devices writable */
2411 		} else {
2412 			mddev->ro = 2;
2413 			err = do_md_run(mddev);
2414 		}
2415 		break;
2416 	case clean:
2417 		if (mddev->pers) {
2418 			restart_array(mddev);
2419 			spin_lock_irq(&mddev->write_lock);
2420 			if (atomic_read(&mddev->writes_pending) == 0) {
2421 				mddev->in_sync = 1;
2422 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423 			}
2424 			spin_unlock_irq(&mddev->write_lock);
2425 		} else {
2426 			mddev->ro = 0;
2427 			mddev->recovery_cp = MaxSector;
2428 			err = do_md_run(mddev);
2429 		}
2430 		break;
2431 	case active:
2432 		if (mddev->pers) {
2433 			restart_array(mddev);
2434 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2435 			wake_up(&mddev->sb_wait);
2436 			err = 0;
2437 		} else {
2438 			mddev->ro = 0;
2439 			err = do_md_run(mddev);
2440 		}
2441 		break;
2442 	case write_pending:
2443 	case active_idle:
2444 		/* these cannot be set */
2445 		break;
2446 	}
2447 	if (err)
2448 		return err;
2449 	else
2450 		return len;
2451 }
2452 static struct md_sysfs_entry md_array_state =
2453 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2454 
2455 static ssize_t
2456 null_show(mddev_t *mddev, char *page)
2457 {
2458 	return -EINVAL;
2459 }
2460 
2461 static ssize_t
2462 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2463 {
2464 	/* buf must be %d:%d\n? giving major and minor numbers */
2465 	/* The new device is added to the array.
2466 	 * If the array has a persistent superblock, we read the
2467 	 * superblock to initialise info and check validity.
2468 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2469 	 * which mainly checks size.
2470 	 */
2471 	char *e;
2472 	int major = simple_strtoul(buf, &e, 10);
2473 	int minor;
2474 	dev_t dev;
2475 	mdk_rdev_t *rdev;
2476 	int err;
2477 
2478 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2479 		return -EINVAL;
2480 	minor = simple_strtoul(e+1, &e, 10);
2481 	if (*e && *e != '\n')
2482 		return -EINVAL;
2483 	dev = MKDEV(major, minor);
2484 	if (major != MAJOR(dev) ||
2485 	    minor != MINOR(dev))
2486 		return -EOVERFLOW;
2487 
2488 
2489 	if (mddev->persistent) {
2490 		rdev = md_import_device(dev, mddev->major_version,
2491 					mddev->minor_version);
2492 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2493 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2494 						       mdk_rdev_t, same_set);
2495 			err = super_types[mddev->major_version]
2496 				.load_super(rdev, rdev0, mddev->minor_version);
2497 			if (err < 0)
2498 				goto out;
2499 		}
2500 	} else
2501 		rdev = md_import_device(dev, -1, -1);
2502 
2503 	if (IS_ERR(rdev))
2504 		return PTR_ERR(rdev);
2505 	err = bind_rdev_to_array(rdev, mddev);
2506  out:
2507 	if (err)
2508 		export_rdev(rdev);
2509 	return err ? err : len;
2510 }
2511 
2512 static struct md_sysfs_entry md_new_device =
2513 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2514 
2515 static ssize_t
2516 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2517 {
2518 	char *end;
2519 	unsigned long chunk, end_chunk;
2520 
2521 	if (!mddev->bitmap)
2522 		goto out;
2523 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2524 	while (*buf) {
2525 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2526 		if (buf == end) break;
2527 		if (*end == '-') { /* range */
2528 			buf = end + 1;
2529 			end_chunk = simple_strtoul(buf, &end, 0);
2530 			if (buf == end) break;
2531 		}
2532 		if (*end && !isspace(*end)) break;
2533 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2534 		buf = end;
2535 		while (isspace(*buf)) buf++;
2536 	}
2537 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2538 out:
2539 	return len;
2540 }
2541 
2542 static struct md_sysfs_entry md_bitmap =
2543 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2544 
2545 static ssize_t
2546 size_show(mddev_t *mddev, char *page)
2547 {
2548 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2549 }
2550 
2551 static int update_size(mddev_t *mddev, unsigned long size);
2552 
2553 static ssize_t
2554 size_store(mddev_t *mddev, const char *buf, size_t len)
2555 {
2556 	/* If array is inactive, we can reduce the component size, but
2557 	 * not increase it (except from 0).
2558 	 * If array is active, we can try an on-line resize
2559 	 */
2560 	char *e;
2561 	int err = 0;
2562 	unsigned long long size = simple_strtoull(buf, &e, 10);
2563 	if (!*buf || *buf == '\n' ||
2564 	    (*e && *e != '\n'))
2565 		return -EINVAL;
2566 
2567 	if (mddev->pers) {
2568 		err = update_size(mddev, size);
2569 		md_update_sb(mddev, 1);
2570 	} else {
2571 		if (mddev->size == 0 ||
2572 		    mddev->size > size)
2573 			mddev->size = size;
2574 		else
2575 			err = -ENOSPC;
2576 	}
2577 	return err ? err : len;
2578 }
2579 
2580 static struct md_sysfs_entry md_size =
2581 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2582 
2583 
2584 /* Metdata version.
2585  * This is either 'none' for arrays with externally managed metadata,
2586  * or N.M for internally known formats
2587  */
2588 static ssize_t
2589 metadata_show(mddev_t *mddev, char *page)
2590 {
2591 	if (mddev->persistent)
2592 		return sprintf(page, "%d.%d\n",
2593 			       mddev->major_version, mddev->minor_version);
2594 	else
2595 		return sprintf(page, "none\n");
2596 }
2597 
2598 static ssize_t
2599 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2600 {
2601 	int major, minor;
2602 	char *e;
2603 	if (!list_empty(&mddev->disks))
2604 		return -EBUSY;
2605 
2606 	if (cmd_match(buf, "none")) {
2607 		mddev->persistent = 0;
2608 		mddev->major_version = 0;
2609 		mddev->minor_version = 90;
2610 		return len;
2611 	}
2612 	major = simple_strtoul(buf, &e, 10);
2613 	if (e==buf || *e != '.')
2614 		return -EINVAL;
2615 	buf = e+1;
2616 	minor = simple_strtoul(buf, &e, 10);
2617 	if (e==buf || (*e && *e != '\n') )
2618 		return -EINVAL;
2619 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2620 	    super_types[major].name == NULL)
2621 		return -ENOENT;
2622 	mddev->major_version = major;
2623 	mddev->minor_version = minor;
2624 	mddev->persistent = 1;
2625 	return len;
2626 }
2627 
2628 static struct md_sysfs_entry md_metadata =
2629 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2630 
2631 static ssize_t
2632 action_show(mddev_t *mddev, char *page)
2633 {
2634 	char *type = "idle";
2635 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2636 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2637 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2638 			type = "reshape";
2639 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2640 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2641 				type = "resync";
2642 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2643 				type = "check";
2644 			else
2645 				type = "repair";
2646 		} else
2647 			type = "recover";
2648 	}
2649 	return sprintf(page, "%s\n", type);
2650 }
2651 
2652 static ssize_t
2653 action_store(mddev_t *mddev, const char *page, size_t len)
2654 {
2655 	if (!mddev->pers || !mddev->pers->sync_request)
2656 		return -EINVAL;
2657 
2658 	if (cmd_match(page, "idle")) {
2659 		if (mddev->sync_thread) {
2660 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2661 			md_unregister_thread(mddev->sync_thread);
2662 			mddev->sync_thread = NULL;
2663 			mddev->recovery = 0;
2664 		}
2665 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2666 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2667 		return -EBUSY;
2668 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2669 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2670 	else if (cmd_match(page, "reshape")) {
2671 		int err;
2672 		if (mddev->pers->start_reshape == NULL)
2673 			return -EINVAL;
2674 		err = mddev->pers->start_reshape(mddev);
2675 		if (err)
2676 			return err;
2677 	} else {
2678 		if (cmd_match(page, "check"))
2679 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2680 		else if (!cmd_match(page, "repair"))
2681 			return -EINVAL;
2682 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2683 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2684 	}
2685 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2686 	md_wakeup_thread(mddev->thread);
2687 	return len;
2688 }
2689 
2690 static ssize_t
2691 mismatch_cnt_show(mddev_t *mddev, char *page)
2692 {
2693 	return sprintf(page, "%llu\n",
2694 		       (unsigned long long) mddev->resync_mismatches);
2695 }
2696 
2697 static struct md_sysfs_entry md_scan_mode =
2698 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2699 
2700 
2701 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2702 
2703 static ssize_t
2704 sync_min_show(mddev_t *mddev, char *page)
2705 {
2706 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2707 		       mddev->sync_speed_min ? "local": "system");
2708 }
2709 
2710 static ssize_t
2711 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2712 {
2713 	int min;
2714 	char *e;
2715 	if (strncmp(buf, "system", 6)==0) {
2716 		mddev->sync_speed_min = 0;
2717 		return len;
2718 	}
2719 	min = simple_strtoul(buf, &e, 10);
2720 	if (buf == e || (*e && *e != '\n') || min <= 0)
2721 		return -EINVAL;
2722 	mddev->sync_speed_min = min;
2723 	return len;
2724 }
2725 
2726 static struct md_sysfs_entry md_sync_min =
2727 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2728 
2729 static ssize_t
2730 sync_max_show(mddev_t *mddev, char *page)
2731 {
2732 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2733 		       mddev->sync_speed_max ? "local": "system");
2734 }
2735 
2736 static ssize_t
2737 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2738 {
2739 	int max;
2740 	char *e;
2741 	if (strncmp(buf, "system", 6)==0) {
2742 		mddev->sync_speed_max = 0;
2743 		return len;
2744 	}
2745 	max = simple_strtoul(buf, &e, 10);
2746 	if (buf == e || (*e && *e != '\n') || max <= 0)
2747 		return -EINVAL;
2748 	mddev->sync_speed_max = max;
2749 	return len;
2750 }
2751 
2752 static struct md_sysfs_entry md_sync_max =
2753 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2754 
2755 
2756 static ssize_t
2757 sync_speed_show(mddev_t *mddev, char *page)
2758 {
2759 	unsigned long resync, dt, db;
2760 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2761 	dt = ((jiffies - mddev->resync_mark) / HZ);
2762 	if (!dt) dt++;
2763 	db = resync - (mddev->resync_mark_cnt);
2764 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2765 }
2766 
2767 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2768 
2769 static ssize_t
2770 sync_completed_show(mddev_t *mddev, char *page)
2771 {
2772 	unsigned long max_blocks, resync;
2773 
2774 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2775 		max_blocks = mddev->resync_max_sectors;
2776 	else
2777 		max_blocks = mddev->size << 1;
2778 
2779 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2780 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2781 }
2782 
2783 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2784 
2785 static ssize_t
2786 suspend_lo_show(mddev_t *mddev, char *page)
2787 {
2788 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2789 }
2790 
2791 static ssize_t
2792 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2793 {
2794 	char *e;
2795 	unsigned long long new = simple_strtoull(buf, &e, 10);
2796 
2797 	if (mddev->pers->quiesce == NULL)
2798 		return -EINVAL;
2799 	if (buf == e || (*e && *e != '\n'))
2800 		return -EINVAL;
2801 	if (new >= mddev->suspend_hi ||
2802 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2803 		mddev->suspend_lo = new;
2804 		mddev->pers->quiesce(mddev, 2);
2805 		return len;
2806 	} else
2807 		return -EINVAL;
2808 }
2809 static struct md_sysfs_entry md_suspend_lo =
2810 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2811 
2812 
2813 static ssize_t
2814 suspend_hi_show(mddev_t *mddev, char *page)
2815 {
2816 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2817 }
2818 
2819 static ssize_t
2820 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2821 {
2822 	char *e;
2823 	unsigned long long new = simple_strtoull(buf, &e, 10);
2824 
2825 	if (mddev->pers->quiesce == NULL)
2826 		return -EINVAL;
2827 	if (buf == e || (*e && *e != '\n'))
2828 		return -EINVAL;
2829 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2830 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2831 		mddev->suspend_hi = new;
2832 		mddev->pers->quiesce(mddev, 1);
2833 		mddev->pers->quiesce(mddev, 0);
2834 		return len;
2835 	} else
2836 		return -EINVAL;
2837 }
2838 static struct md_sysfs_entry md_suspend_hi =
2839 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2840 
2841 
2842 static struct attribute *md_default_attrs[] = {
2843 	&md_level.attr,
2844 	&md_layout.attr,
2845 	&md_raid_disks.attr,
2846 	&md_chunk_size.attr,
2847 	&md_size.attr,
2848 	&md_resync_start.attr,
2849 	&md_metadata.attr,
2850 	&md_new_device.attr,
2851 	&md_safe_delay.attr,
2852 	&md_array_state.attr,
2853 	NULL,
2854 };
2855 
2856 static struct attribute *md_redundancy_attrs[] = {
2857 	&md_scan_mode.attr,
2858 	&md_mismatches.attr,
2859 	&md_sync_min.attr,
2860 	&md_sync_max.attr,
2861 	&md_sync_speed.attr,
2862 	&md_sync_completed.attr,
2863 	&md_suspend_lo.attr,
2864 	&md_suspend_hi.attr,
2865 	&md_bitmap.attr,
2866 	NULL,
2867 };
2868 static struct attribute_group md_redundancy_group = {
2869 	.name = NULL,
2870 	.attrs = md_redundancy_attrs,
2871 };
2872 
2873 
2874 static ssize_t
2875 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2876 {
2877 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2878 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2879 	ssize_t rv;
2880 
2881 	if (!entry->show)
2882 		return -EIO;
2883 	rv = mddev_lock(mddev);
2884 	if (!rv) {
2885 		rv = entry->show(mddev, page);
2886 		mddev_unlock(mddev);
2887 	}
2888 	return rv;
2889 }
2890 
2891 static ssize_t
2892 md_attr_store(struct kobject *kobj, struct attribute *attr,
2893 	      const char *page, size_t length)
2894 {
2895 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2896 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2897 	ssize_t rv;
2898 
2899 	if (!entry->store)
2900 		return -EIO;
2901 	if (!capable(CAP_SYS_ADMIN))
2902 		return -EACCES;
2903 	rv = mddev_lock(mddev);
2904 	if (!rv) {
2905 		rv = entry->store(mddev, page, length);
2906 		mddev_unlock(mddev);
2907 	}
2908 	return rv;
2909 }
2910 
2911 static void md_free(struct kobject *ko)
2912 {
2913 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2914 	kfree(mddev);
2915 }
2916 
2917 static struct sysfs_ops md_sysfs_ops = {
2918 	.show	= md_attr_show,
2919 	.store	= md_attr_store,
2920 };
2921 static struct kobj_type md_ktype = {
2922 	.release	= md_free,
2923 	.sysfs_ops	= &md_sysfs_ops,
2924 	.default_attrs	= md_default_attrs,
2925 };
2926 
2927 int mdp_major = 0;
2928 
2929 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2930 {
2931 	static DEFINE_MUTEX(disks_mutex);
2932 	mddev_t *mddev = mddev_find(dev);
2933 	struct gendisk *disk;
2934 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2935 	int shift = partitioned ? MdpMinorShift : 0;
2936 	int unit = MINOR(dev) >> shift;
2937 
2938 	if (!mddev)
2939 		return NULL;
2940 
2941 	mutex_lock(&disks_mutex);
2942 	if (mddev->gendisk) {
2943 		mutex_unlock(&disks_mutex);
2944 		mddev_put(mddev);
2945 		return NULL;
2946 	}
2947 	disk = alloc_disk(1 << shift);
2948 	if (!disk) {
2949 		mutex_unlock(&disks_mutex);
2950 		mddev_put(mddev);
2951 		return NULL;
2952 	}
2953 	disk->major = MAJOR(dev);
2954 	disk->first_minor = unit << shift;
2955 	if (partitioned)
2956 		sprintf(disk->disk_name, "md_d%d", unit);
2957 	else
2958 		sprintf(disk->disk_name, "md%d", unit);
2959 	disk->fops = &md_fops;
2960 	disk->private_data = mddev;
2961 	disk->queue = mddev->queue;
2962 	add_disk(disk);
2963 	mddev->gendisk = disk;
2964 	mutex_unlock(&disks_mutex);
2965 	mddev->kobj.parent = &disk->kobj;
2966 	mddev->kobj.k_name = NULL;
2967 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2968 	mddev->kobj.ktype = &md_ktype;
2969 	kobject_register(&mddev->kobj);
2970 	return NULL;
2971 }
2972 
2973 static void md_safemode_timeout(unsigned long data)
2974 {
2975 	mddev_t *mddev = (mddev_t *) data;
2976 
2977 	mddev->safemode = 1;
2978 	md_wakeup_thread(mddev->thread);
2979 }
2980 
2981 static int start_dirty_degraded;
2982 
2983 static int do_md_run(mddev_t * mddev)
2984 {
2985 	int err;
2986 	int chunk_size;
2987 	struct list_head *tmp;
2988 	mdk_rdev_t *rdev;
2989 	struct gendisk *disk;
2990 	struct mdk_personality *pers;
2991 	char b[BDEVNAME_SIZE];
2992 
2993 	if (list_empty(&mddev->disks))
2994 		/* cannot run an array with no devices.. */
2995 		return -EINVAL;
2996 
2997 	if (mddev->pers)
2998 		return -EBUSY;
2999 
3000 	/*
3001 	 * Analyze all RAID superblock(s)
3002 	 */
3003 	if (!mddev->raid_disks)
3004 		analyze_sbs(mddev);
3005 
3006 	chunk_size = mddev->chunk_size;
3007 
3008 	if (chunk_size) {
3009 		if (chunk_size > MAX_CHUNK_SIZE) {
3010 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3011 				chunk_size, MAX_CHUNK_SIZE);
3012 			return -EINVAL;
3013 		}
3014 		/*
3015 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3016 		 */
3017 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3018 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3019 			return -EINVAL;
3020 		}
3021 		if (chunk_size < PAGE_SIZE) {
3022 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3023 				chunk_size, PAGE_SIZE);
3024 			return -EINVAL;
3025 		}
3026 
3027 		/* devices must have minimum size of one chunk */
3028 		ITERATE_RDEV(mddev,rdev,tmp) {
3029 			if (test_bit(Faulty, &rdev->flags))
3030 				continue;
3031 			if (rdev->size < chunk_size / 1024) {
3032 				printk(KERN_WARNING
3033 					"md: Dev %s smaller than chunk_size:"
3034 					" %lluk < %dk\n",
3035 					bdevname(rdev->bdev,b),
3036 					(unsigned long long)rdev->size,
3037 					chunk_size / 1024);
3038 				return -EINVAL;
3039 			}
3040 		}
3041 	}
3042 
3043 #ifdef CONFIG_KMOD
3044 	if (mddev->level != LEVEL_NONE)
3045 		request_module("md-level-%d", mddev->level);
3046 	else if (mddev->clevel[0])
3047 		request_module("md-%s", mddev->clevel);
3048 #endif
3049 
3050 	/*
3051 	 * Drop all container device buffers, from now on
3052 	 * the only valid external interface is through the md
3053 	 * device.
3054 	 * Also find largest hardsector size
3055 	 */
3056 	ITERATE_RDEV(mddev,rdev,tmp) {
3057 		if (test_bit(Faulty, &rdev->flags))
3058 			continue;
3059 		sync_blockdev(rdev->bdev);
3060 		invalidate_bdev(rdev->bdev, 0);
3061 	}
3062 
3063 	md_probe(mddev->unit, NULL, NULL);
3064 	disk = mddev->gendisk;
3065 	if (!disk)
3066 		return -ENOMEM;
3067 
3068 	spin_lock(&pers_lock);
3069 	pers = find_pers(mddev->level, mddev->clevel);
3070 	if (!pers || !try_module_get(pers->owner)) {
3071 		spin_unlock(&pers_lock);
3072 		if (mddev->level != LEVEL_NONE)
3073 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3074 			       mddev->level);
3075 		else
3076 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3077 			       mddev->clevel);
3078 		return -EINVAL;
3079 	}
3080 	mddev->pers = pers;
3081 	spin_unlock(&pers_lock);
3082 	mddev->level = pers->level;
3083 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3084 
3085 	if (mddev->reshape_position != MaxSector &&
3086 	    pers->start_reshape == NULL) {
3087 		/* This personality cannot handle reshaping... */
3088 		mddev->pers = NULL;
3089 		module_put(pers->owner);
3090 		return -EINVAL;
3091 	}
3092 
3093 	if (pers->sync_request) {
3094 		/* Warn if this is a potentially silly
3095 		 * configuration.
3096 		 */
3097 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3098 		mdk_rdev_t *rdev2;
3099 		struct list_head *tmp2;
3100 		int warned = 0;
3101 		ITERATE_RDEV(mddev, rdev, tmp) {
3102 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3103 				if (rdev < rdev2 &&
3104 				    rdev->bdev->bd_contains ==
3105 				    rdev2->bdev->bd_contains) {
3106 					printk(KERN_WARNING
3107 					       "%s: WARNING: %s appears to be"
3108 					       " on the same physical disk as"
3109 					       " %s.\n",
3110 					       mdname(mddev),
3111 					       bdevname(rdev->bdev,b),
3112 					       bdevname(rdev2->bdev,b2));
3113 					warned = 1;
3114 				}
3115 			}
3116 		}
3117 		if (warned)
3118 			printk(KERN_WARNING
3119 			       "True protection against single-disk"
3120 			       " failure might be compromised.\n");
3121 	}
3122 
3123 	mddev->recovery = 0;
3124 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3125 	mddev->barriers_work = 1;
3126 	mddev->ok_start_degraded = start_dirty_degraded;
3127 
3128 	if (start_readonly)
3129 		mddev->ro = 2; /* read-only, but switch on first write */
3130 
3131 	err = mddev->pers->run(mddev);
3132 	if (!err && mddev->pers->sync_request) {
3133 		err = bitmap_create(mddev);
3134 		if (err) {
3135 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3136 			       mdname(mddev), err);
3137 			mddev->pers->stop(mddev);
3138 		}
3139 	}
3140 	if (err) {
3141 		printk(KERN_ERR "md: pers->run() failed ...\n");
3142 		module_put(mddev->pers->owner);
3143 		mddev->pers = NULL;
3144 		bitmap_destroy(mddev);
3145 		return err;
3146 	}
3147 	if (mddev->pers->sync_request)
3148 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3149 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
3150 		mddev->ro = 0;
3151 
3152  	atomic_set(&mddev->writes_pending,0);
3153 	mddev->safemode = 0;
3154 	mddev->safemode_timer.function = md_safemode_timeout;
3155 	mddev->safemode_timer.data = (unsigned long) mddev;
3156 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3157 	mddev->in_sync = 1;
3158 
3159 	ITERATE_RDEV(mddev,rdev,tmp)
3160 		if (rdev->raid_disk >= 0) {
3161 			char nm[20];
3162 			sprintf(nm, "rd%d", rdev->raid_disk);
3163 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3164 		}
3165 
3166 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3167 
3168 	if (mddev->flags)
3169 		md_update_sb(mddev, 0);
3170 
3171 	set_capacity(disk, mddev->array_size<<1);
3172 
3173 	/* If we call blk_queue_make_request here, it will
3174 	 * re-initialise max_sectors etc which may have been
3175 	 * refined inside -> run.  So just set the bits we need to set.
3176 	 * Most initialisation happended when we called
3177 	 * blk_queue_make_request(..., md_fail_request)
3178 	 * earlier.
3179 	 */
3180 	mddev->queue->queuedata = mddev;
3181 	mddev->queue->make_request_fn = mddev->pers->make_request;
3182 
3183 	/* If there is a partially-recovered drive we need to
3184 	 * start recovery here.  If we leave it to md_check_recovery,
3185 	 * it will remove the drives and not do the right thing
3186 	 */
3187 	if (mddev->degraded && !mddev->sync_thread) {
3188 		struct list_head *rtmp;
3189 		int spares = 0;
3190 		ITERATE_RDEV(mddev,rdev,rtmp)
3191 			if (rdev->raid_disk >= 0 &&
3192 			    !test_bit(In_sync, &rdev->flags) &&
3193 			    !test_bit(Faulty, &rdev->flags))
3194 				/* complete an interrupted recovery */
3195 				spares++;
3196 		if (spares && mddev->pers->sync_request) {
3197 			mddev->recovery = 0;
3198 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3199 			mddev->sync_thread = md_register_thread(md_do_sync,
3200 								mddev,
3201 								"%s_resync");
3202 			if (!mddev->sync_thread) {
3203 				printk(KERN_ERR "%s: could not start resync"
3204 				       " thread...\n",
3205 				       mdname(mddev));
3206 				/* leave the spares where they are, it shouldn't hurt */
3207 				mddev->recovery = 0;
3208 			}
3209 		}
3210 	}
3211 	md_wakeup_thread(mddev->thread);
3212 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3213 
3214 	mddev->changed = 1;
3215 	md_new_event(mddev);
3216 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3217 	return 0;
3218 }
3219 
3220 static int restart_array(mddev_t *mddev)
3221 {
3222 	struct gendisk *disk = mddev->gendisk;
3223 	int err;
3224 
3225 	/*
3226 	 * Complain if it has no devices
3227 	 */
3228 	err = -ENXIO;
3229 	if (list_empty(&mddev->disks))
3230 		goto out;
3231 
3232 	if (mddev->pers) {
3233 		err = -EBUSY;
3234 		if (!mddev->ro)
3235 			goto out;
3236 
3237 		mddev->safemode = 0;
3238 		mddev->ro = 0;
3239 		set_disk_ro(disk, 0);
3240 
3241 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3242 			mdname(mddev));
3243 		/*
3244 		 * Kick recovery or resync if necessary
3245 		 */
3246 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3247 		md_wakeup_thread(mddev->thread);
3248 		md_wakeup_thread(mddev->sync_thread);
3249 		err = 0;
3250 	} else
3251 		err = -EINVAL;
3252 
3253 out:
3254 	return err;
3255 }
3256 
3257 /* similar to deny_write_access, but accounts for our holding a reference
3258  * to the file ourselves */
3259 static int deny_bitmap_write_access(struct file * file)
3260 {
3261 	struct inode *inode = file->f_mapping->host;
3262 
3263 	spin_lock(&inode->i_lock);
3264 	if (atomic_read(&inode->i_writecount) > 1) {
3265 		spin_unlock(&inode->i_lock);
3266 		return -ETXTBSY;
3267 	}
3268 	atomic_set(&inode->i_writecount, -1);
3269 	spin_unlock(&inode->i_lock);
3270 
3271 	return 0;
3272 }
3273 
3274 static void restore_bitmap_write_access(struct file *file)
3275 {
3276 	struct inode *inode = file->f_mapping->host;
3277 
3278 	spin_lock(&inode->i_lock);
3279 	atomic_set(&inode->i_writecount, 1);
3280 	spin_unlock(&inode->i_lock);
3281 }
3282 
3283 /* mode:
3284  *   0 - completely stop and dis-assemble array
3285  *   1 - switch to readonly
3286  *   2 - stop but do not disassemble array
3287  */
3288 static int do_md_stop(mddev_t * mddev, int mode)
3289 {
3290 	int err = 0;
3291 	struct gendisk *disk = mddev->gendisk;
3292 
3293 	if (mddev->pers) {
3294 		if (atomic_read(&mddev->active)>2) {
3295 			printk("md: %s still in use.\n",mdname(mddev));
3296 			return -EBUSY;
3297 		}
3298 
3299 		if (mddev->sync_thread) {
3300 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3301 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3302 			md_unregister_thread(mddev->sync_thread);
3303 			mddev->sync_thread = NULL;
3304 		}
3305 
3306 		del_timer_sync(&mddev->safemode_timer);
3307 
3308 		invalidate_partition(disk, 0);
3309 
3310 		switch(mode) {
3311 		case 1: /* readonly */
3312 			err  = -ENXIO;
3313 			if (mddev->ro==1)
3314 				goto out;
3315 			mddev->ro = 1;
3316 			break;
3317 		case 0: /* disassemble */
3318 		case 2: /* stop */
3319 			bitmap_flush(mddev);
3320 			md_super_wait(mddev);
3321 			if (mddev->ro)
3322 				set_disk_ro(disk, 0);
3323 			blk_queue_make_request(mddev->queue, md_fail_request);
3324 			mddev->pers->stop(mddev);
3325 			mddev->queue->merge_bvec_fn = NULL;
3326 			mddev->queue->unplug_fn = NULL;
3327 			mddev->queue->issue_flush_fn = NULL;
3328 			if (mddev->pers->sync_request)
3329 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3330 
3331 			module_put(mddev->pers->owner);
3332 			mddev->pers = NULL;
3333 
3334 			set_capacity(disk, 0);
3335 			mddev->changed = 1;
3336 
3337 			if (mddev->ro)
3338 				mddev->ro = 0;
3339 		}
3340 		if (!mddev->in_sync || mddev->flags) {
3341 			/* mark array as shutdown cleanly */
3342 			mddev->in_sync = 1;
3343 			md_update_sb(mddev, 1);
3344 		}
3345 		if (mode == 1)
3346 			set_disk_ro(disk, 1);
3347 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3348 	}
3349 
3350 	/*
3351 	 * Free resources if final stop
3352 	 */
3353 	if (mode == 0) {
3354 		mdk_rdev_t *rdev;
3355 		struct list_head *tmp;
3356 
3357 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3358 
3359 		bitmap_destroy(mddev);
3360 		if (mddev->bitmap_file) {
3361 			restore_bitmap_write_access(mddev->bitmap_file);
3362 			fput(mddev->bitmap_file);
3363 			mddev->bitmap_file = NULL;
3364 		}
3365 		mddev->bitmap_offset = 0;
3366 
3367 		ITERATE_RDEV(mddev,rdev,tmp)
3368 			if (rdev->raid_disk >= 0) {
3369 				char nm[20];
3370 				sprintf(nm, "rd%d", rdev->raid_disk);
3371 				sysfs_remove_link(&mddev->kobj, nm);
3372 			}
3373 
3374 		export_array(mddev);
3375 
3376 		mddev->array_size = 0;
3377 		mddev->size = 0;
3378 		mddev->raid_disks = 0;
3379 		mddev->recovery_cp = 0;
3380 
3381 	} else if (mddev->pers)
3382 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3383 			mdname(mddev));
3384 	err = 0;
3385 	md_new_event(mddev);
3386 out:
3387 	return err;
3388 }
3389 
3390 #ifndef MODULE
3391 static void autorun_array(mddev_t *mddev)
3392 {
3393 	mdk_rdev_t *rdev;
3394 	struct list_head *tmp;
3395 	int err;
3396 
3397 	if (list_empty(&mddev->disks))
3398 		return;
3399 
3400 	printk(KERN_INFO "md: running: ");
3401 
3402 	ITERATE_RDEV(mddev,rdev,tmp) {
3403 		char b[BDEVNAME_SIZE];
3404 		printk("<%s>", bdevname(rdev->bdev,b));
3405 	}
3406 	printk("\n");
3407 
3408 	err = do_md_run (mddev);
3409 	if (err) {
3410 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3411 		do_md_stop (mddev, 0);
3412 	}
3413 }
3414 
3415 /*
3416  * lets try to run arrays based on all disks that have arrived
3417  * until now. (those are in pending_raid_disks)
3418  *
3419  * the method: pick the first pending disk, collect all disks with
3420  * the same UUID, remove all from the pending list and put them into
3421  * the 'same_array' list. Then order this list based on superblock
3422  * update time (freshest comes first), kick out 'old' disks and
3423  * compare superblocks. If everything's fine then run it.
3424  *
3425  * If "unit" is allocated, then bump its reference count
3426  */
3427 static void autorun_devices(int part)
3428 {
3429 	struct list_head *tmp;
3430 	mdk_rdev_t *rdev0, *rdev;
3431 	mddev_t *mddev;
3432 	char b[BDEVNAME_SIZE];
3433 
3434 	printk(KERN_INFO "md: autorun ...\n");
3435 	while (!list_empty(&pending_raid_disks)) {
3436 		int unit;
3437 		dev_t dev;
3438 		LIST_HEAD(candidates);
3439 		rdev0 = list_entry(pending_raid_disks.next,
3440 					 mdk_rdev_t, same_set);
3441 
3442 		printk(KERN_INFO "md: considering %s ...\n",
3443 			bdevname(rdev0->bdev,b));
3444 		INIT_LIST_HEAD(&candidates);
3445 		ITERATE_RDEV_PENDING(rdev,tmp)
3446 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3447 				printk(KERN_INFO "md:  adding %s ...\n",
3448 					bdevname(rdev->bdev,b));
3449 				list_move(&rdev->same_set, &candidates);
3450 			}
3451 		/*
3452 		 * now we have a set of devices, with all of them having
3453 		 * mostly sane superblocks. It's time to allocate the
3454 		 * mddev.
3455 		 */
3456 		if (part) {
3457 			dev = MKDEV(mdp_major,
3458 				    rdev0->preferred_minor << MdpMinorShift);
3459 			unit = MINOR(dev) >> MdpMinorShift;
3460 		} else {
3461 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3462 			unit = MINOR(dev);
3463 		}
3464 		if (rdev0->preferred_minor != unit) {
3465 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3466 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3467 			break;
3468 		}
3469 
3470 		md_probe(dev, NULL, NULL);
3471 		mddev = mddev_find(dev);
3472 		if (!mddev) {
3473 			printk(KERN_ERR
3474 				"md: cannot allocate memory for md drive.\n");
3475 			break;
3476 		}
3477 		if (mddev_lock(mddev))
3478 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3479 			       mdname(mddev));
3480 		else if (mddev->raid_disks || mddev->major_version
3481 			 || !list_empty(&mddev->disks)) {
3482 			printk(KERN_WARNING
3483 				"md: %s already running, cannot run %s\n",
3484 				mdname(mddev), bdevname(rdev0->bdev,b));
3485 			mddev_unlock(mddev);
3486 		} else {
3487 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3488 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3489 				list_del_init(&rdev->same_set);
3490 				if (bind_rdev_to_array(rdev, mddev))
3491 					export_rdev(rdev);
3492 			}
3493 			autorun_array(mddev);
3494 			mddev_unlock(mddev);
3495 		}
3496 		/* on success, candidates will be empty, on error
3497 		 * it won't...
3498 		 */
3499 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3500 			export_rdev(rdev);
3501 		mddev_put(mddev);
3502 	}
3503 	printk(KERN_INFO "md: ... autorun DONE.\n");
3504 }
3505 #endif /* !MODULE */
3506 
3507 static int get_version(void __user * arg)
3508 {
3509 	mdu_version_t ver;
3510 
3511 	ver.major = MD_MAJOR_VERSION;
3512 	ver.minor = MD_MINOR_VERSION;
3513 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3514 
3515 	if (copy_to_user(arg, &ver, sizeof(ver)))
3516 		return -EFAULT;
3517 
3518 	return 0;
3519 }
3520 
3521 static int get_array_info(mddev_t * mddev, void __user * arg)
3522 {
3523 	mdu_array_info_t info;
3524 	int nr,working,active,failed,spare;
3525 	mdk_rdev_t *rdev;
3526 	struct list_head *tmp;
3527 
3528 	nr=working=active=failed=spare=0;
3529 	ITERATE_RDEV(mddev,rdev,tmp) {
3530 		nr++;
3531 		if (test_bit(Faulty, &rdev->flags))
3532 			failed++;
3533 		else {
3534 			working++;
3535 			if (test_bit(In_sync, &rdev->flags))
3536 				active++;
3537 			else
3538 				spare++;
3539 		}
3540 	}
3541 
3542 	info.major_version = mddev->major_version;
3543 	info.minor_version = mddev->minor_version;
3544 	info.patch_version = MD_PATCHLEVEL_VERSION;
3545 	info.ctime         = mddev->ctime;
3546 	info.level         = mddev->level;
3547 	info.size          = mddev->size;
3548 	if (info.size != mddev->size) /* overflow */
3549 		info.size = -1;
3550 	info.nr_disks      = nr;
3551 	info.raid_disks    = mddev->raid_disks;
3552 	info.md_minor      = mddev->md_minor;
3553 	info.not_persistent= !mddev->persistent;
3554 
3555 	info.utime         = mddev->utime;
3556 	info.state         = 0;
3557 	if (mddev->in_sync)
3558 		info.state = (1<<MD_SB_CLEAN);
3559 	if (mddev->bitmap && mddev->bitmap_offset)
3560 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3561 	info.active_disks  = active;
3562 	info.working_disks = working;
3563 	info.failed_disks  = failed;
3564 	info.spare_disks   = spare;
3565 
3566 	info.layout        = mddev->layout;
3567 	info.chunk_size    = mddev->chunk_size;
3568 
3569 	if (copy_to_user(arg, &info, sizeof(info)))
3570 		return -EFAULT;
3571 
3572 	return 0;
3573 }
3574 
3575 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3576 {
3577 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3578 	char *ptr, *buf = NULL;
3579 	int err = -ENOMEM;
3580 
3581 	md_allow_write(mddev);
3582 
3583 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3584 	if (!file)
3585 		goto out;
3586 
3587 	/* bitmap disabled, zero the first byte and copy out */
3588 	if (!mddev->bitmap || !mddev->bitmap->file) {
3589 		file->pathname[0] = '\0';
3590 		goto copy_out;
3591 	}
3592 
3593 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3594 	if (!buf)
3595 		goto out;
3596 
3597 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3598 	if (!ptr)
3599 		goto out;
3600 
3601 	strcpy(file->pathname, ptr);
3602 
3603 copy_out:
3604 	err = 0;
3605 	if (copy_to_user(arg, file, sizeof(*file)))
3606 		err = -EFAULT;
3607 out:
3608 	kfree(buf);
3609 	kfree(file);
3610 	return err;
3611 }
3612 
3613 static int get_disk_info(mddev_t * mddev, void __user * arg)
3614 {
3615 	mdu_disk_info_t info;
3616 	unsigned int nr;
3617 	mdk_rdev_t *rdev;
3618 
3619 	if (copy_from_user(&info, arg, sizeof(info)))
3620 		return -EFAULT;
3621 
3622 	nr = info.number;
3623 
3624 	rdev = find_rdev_nr(mddev, nr);
3625 	if (rdev) {
3626 		info.major = MAJOR(rdev->bdev->bd_dev);
3627 		info.minor = MINOR(rdev->bdev->bd_dev);
3628 		info.raid_disk = rdev->raid_disk;
3629 		info.state = 0;
3630 		if (test_bit(Faulty, &rdev->flags))
3631 			info.state |= (1<<MD_DISK_FAULTY);
3632 		else if (test_bit(In_sync, &rdev->flags)) {
3633 			info.state |= (1<<MD_DISK_ACTIVE);
3634 			info.state |= (1<<MD_DISK_SYNC);
3635 		}
3636 		if (test_bit(WriteMostly, &rdev->flags))
3637 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3638 	} else {
3639 		info.major = info.minor = 0;
3640 		info.raid_disk = -1;
3641 		info.state = (1<<MD_DISK_REMOVED);
3642 	}
3643 
3644 	if (copy_to_user(arg, &info, sizeof(info)))
3645 		return -EFAULT;
3646 
3647 	return 0;
3648 }
3649 
3650 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3651 {
3652 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3653 	mdk_rdev_t *rdev;
3654 	dev_t dev = MKDEV(info->major,info->minor);
3655 
3656 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3657 		return -EOVERFLOW;
3658 
3659 	if (!mddev->raid_disks) {
3660 		int err;
3661 		/* expecting a device which has a superblock */
3662 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3663 		if (IS_ERR(rdev)) {
3664 			printk(KERN_WARNING
3665 				"md: md_import_device returned %ld\n",
3666 				PTR_ERR(rdev));
3667 			return PTR_ERR(rdev);
3668 		}
3669 		if (!list_empty(&mddev->disks)) {
3670 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3671 							mdk_rdev_t, same_set);
3672 			int err = super_types[mddev->major_version]
3673 				.load_super(rdev, rdev0, mddev->minor_version);
3674 			if (err < 0) {
3675 				printk(KERN_WARNING
3676 					"md: %s has different UUID to %s\n",
3677 					bdevname(rdev->bdev,b),
3678 					bdevname(rdev0->bdev,b2));
3679 				export_rdev(rdev);
3680 				return -EINVAL;
3681 			}
3682 		}
3683 		err = bind_rdev_to_array(rdev, mddev);
3684 		if (err)
3685 			export_rdev(rdev);
3686 		return err;
3687 	}
3688 
3689 	/*
3690 	 * add_new_disk can be used once the array is assembled
3691 	 * to add "hot spares".  They must already have a superblock
3692 	 * written
3693 	 */
3694 	if (mddev->pers) {
3695 		int err;
3696 		if (!mddev->pers->hot_add_disk) {
3697 			printk(KERN_WARNING
3698 				"%s: personality does not support diskops!\n",
3699 			       mdname(mddev));
3700 			return -EINVAL;
3701 		}
3702 		if (mddev->persistent)
3703 			rdev = md_import_device(dev, mddev->major_version,
3704 						mddev->minor_version);
3705 		else
3706 			rdev = md_import_device(dev, -1, -1);
3707 		if (IS_ERR(rdev)) {
3708 			printk(KERN_WARNING
3709 				"md: md_import_device returned %ld\n",
3710 				PTR_ERR(rdev));
3711 			return PTR_ERR(rdev);
3712 		}
3713 		/* set save_raid_disk if appropriate */
3714 		if (!mddev->persistent) {
3715 			if (info->state & (1<<MD_DISK_SYNC)  &&
3716 			    info->raid_disk < mddev->raid_disks)
3717 				rdev->raid_disk = info->raid_disk;
3718 			else
3719 				rdev->raid_disk = -1;
3720 		} else
3721 			super_types[mddev->major_version].
3722 				validate_super(mddev, rdev);
3723 		rdev->saved_raid_disk = rdev->raid_disk;
3724 
3725 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3726 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3727 			set_bit(WriteMostly, &rdev->flags);
3728 
3729 		rdev->raid_disk = -1;
3730 		err = bind_rdev_to_array(rdev, mddev);
3731 		if (!err && !mddev->pers->hot_remove_disk) {
3732 			/* If there is hot_add_disk but no hot_remove_disk
3733 			 * then added disks for geometry changes,
3734 			 * and should be added immediately.
3735 			 */
3736 			super_types[mddev->major_version].
3737 				validate_super(mddev, rdev);
3738 			err = mddev->pers->hot_add_disk(mddev, rdev);
3739 			if (err)
3740 				unbind_rdev_from_array(rdev);
3741 		}
3742 		if (err)
3743 			export_rdev(rdev);
3744 
3745 		md_update_sb(mddev, 1);
3746 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3747 		md_wakeup_thread(mddev->thread);
3748 		return err;
3749 	}
3750 
3751 	/* otherwise, add_new_disk is only allowed
3752 	 * for major_version==0 superblocks
3753 	 */
3754 	if (mddev->major_version != 0) {
3755 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3756 		       mdname(mddev));
3757 		return -EINVAL;
3758 	}
3759 
3760 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3761 		int err;
3762 		rdev = md_import_device (dev, -1, 0);
3763 		if (IS_ERR(rdev)) {
3764 			printk(KERN_WARNING
3765 				"md: error, md_import_device() returned %ld\n",
3766 				PTR_ERR(rdev));
3767 			return PTR_ERR(rdev);
3768 		}
3769 		rdev->desc_nr = info->number;
3770 		if (info->raid_disk < mddev->raid_disks)
3771 			rdev->raid_disk = info->raid_disk;
3772 		else
3773 			rdev->raid_disk = -1;
3774 
3775 		rdev->flags = 0;
3776 
3777 		if (rdev->raid_disk < mddev->raid_disks)
3778 			if (info->state & (1<<MD_DISK_SYNC))
3779 				set_bit(In_sync, &rdev->flags);
3780 
3781 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3782 			set_bit(WriteMostly, &rdev->flags);
3783 
3784 		if (!mddev->persistent) {
3785 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3786 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3787 		} else
3788 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3789 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3790 
3791 		err = bind_rdev_to_array(rdev, mddev);
3792 		if (err) {
3793 			export_rdev(rdev);
3794 			return err;
3795 		}
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3802 {
3803 	char b[BDEVNAME_SIZE];
3804 	mdk_rdev_t *rdev;
3805 
3806 	if (!mddev->pers)
3807 		return -ENODEV;
3808 
3809 	rdev = find_rdev(mddev, dev);
3810 	if (!rdev)
3811 		return -ENXIO;
3812 
3813 	if (rdev->raid_disk >= 0)
3814 		goto busy;
3815 
3816 	kick_rdev_from_array(rdev);
3817 	md_update_sb(mddev, 1);
3818 	md_new_event(mddev);
3819 
3820 	return 0;
3821 busy:
3822 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3823 		bdevname(rdev->bdev,b), mdname(mddev));
3824 	return -EBUSY;
3825 }
3826 
3827 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3828 {
3829 	char b[BDEVNAME_SIZE];
3830 	int err;
3831 	unsigned int size;
3832 	mdk_rdev_t *rdev;
3833 
3834 	if (!mddev->pers)
3835 		return -ENODEV;
3836 
3837 	if (mddev->major_version != 0) {
3838 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3839 			" version-0 superblocks.\n",
3840 			mdname(mddev));
3841 		return -EINVAL;
3842 	}
3843 	if (!mddev->pers->hot_add_disk) {
3844 		printk(KERN_WARNING
3845 			"%s: personality does not support diskops!\n",
3846 			mdname(mddev));
3847 		return -EINVAL;
3848 	}
3849 
3850 	rdev = md_import_device (dev, -1, 0);
3851 	if (IS_ERR(rdev)) {
3852 		printk(KERN_WARNING
3853 			"md: error, md_import_device() returned %ld\n",
3854 			PTR_ERR(rdev));
3855 		return -EINVAL;
3856 	}
3857 
3858 	if (mddev->persistent)
3859 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3860 	else
3861 		rdev->sb_offset =
3862 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3863 
3864 	size = calc_dev_size(rdev, mddev->chunk_size);
3865 	rdev->size = size;
3866 
3867 	if (test_bit(Faulty, &rdev->flags)) {
3868 		printk(KERN_WARNING
3869 			"md: can not hot-add faulty %s disk to %s!\n",
3870 			bdevname(rdev->bdev,b), mdname(mddev));
3871 		err = -EINVAL;
3872 		goto abort_export;
3873 	}
3874 	clear_bit(In_sync, &rdev->flags);
3875 	rdev->desc_nr = -1;
3876 	rdev->saved_raid_disk = -1;
3877 	err = bind_rdev_to_array(rdev, mddev);
3878 	if (err)
3879 		goto abort_export;
3880 
3881 	/*
3882 	 * The rest should better be atomic, we can have disk failures
3883 	 * noticed in interrupt contexts ...
3884 	 */
3885 
3886 	if (rdev->desc_nr == mddev->max_disks) {
3887 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3888 			mdname(mddev));
3889 		err = -EBUSY;
3890 		goto abort_unbind_export;
3891 	}
3892 
3893 	rdev->raid_disk = -1;
3894 
3895 	md_update_sb(mddev, 1);
3896 
3897 	/*
3898 	 * Kick recovery, maybe this spare has to be added to the
3899 	 * array immediately.
3900 	 */
3901 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3902 	md_wakeup_thread(mddev->thread);
3903 	md_new_event(mddev);
3904 	return 0;
3905 
3906 abort_unbind_export:
3907 	unbind_rdev_from_array(rdev);
3908 
3909 abort_export:
3910 	export_rdev(rdev);
3911 	return err;
3912 }
3913 
3914 static int set_bitmap_file(mddev_t *mddev, int fd)
3915 {
3916 	int err;
3917 
3918 	if (mddev->pers) {
3919 		if (!mddev->pers->quiesce)
3920 			return -EBUSY;
3921 		if (mddev->recovery || mddev->sync_thread)
3922 			return -EBUSY;
3923 		/* we should be able to change the bitmap.. */
3924 	}
3925 
3926 
3927 	if (fd >= 0) {
3928 		if (mddev->bitmap)
3929 			return -EEXIST; /* cannot add when bitmap is present */
3930 		mddev->bitmap_file = fget(fd);
3931 
3932 		if (mddev->bitmap_file == NULL) {
3933 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3934 			       mdname(mddev));
3935 			return -EBADF;
3936 		}
3937 
3938 		err = deny_bitmap_write_access(mddev->bitmap_file);
3939 		if (err) {
3940 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3941 			       mdname(mddev));
3942 			fput(mddev->bitmap_file);
3943 			mddev->bitmap_file = NULL;
3944 			return err;
3945 		}
3946 		mddev->bitmap_offset = 0; /* file overrides offset */
3947 	} else if (mddev->bitmap == NULL)
3948 		return -ENOENT; /* cannot remove what isn't there */
3949 	err = 0;
3950 	if (mddev->pers) {
3951 		mddev->pers->quiesce(mddev, 1);
3952 		if (fd >= 0)
3953 			err = bitmap_create(mddev);
3954 		if (fd < 0 || err) {
3955 			bitmap_destroy(mddev);
3956 			fd = -1; /* make sure to put the file */
3957 		}
3958 		mddev->pers->quiesce(mddev, 0);
3959 	}
3960 	if (fd < 0) {
3961 		if (mddev->bitmap_file) {
3962 			restore_bitmap_write_access(mddev->bitmap_file);
3963 			fput(mddev->bitmap_file);
3964 		}
3965 		mddev->bitmap_file = NULL;
3966 	}
3967 
3968 	return err;
3969 }
3970 
3971 /*
3972  * set_array_info is used two different ways
3973  * The original usage is when creating a new array.
3974  * In this usage, raid_disks is > 0 and it together with
3975  *  level, size, not_persistent,layout,chunksize determine the
3976  *  shape of the array.
3977  *  This will always create an array with a type-0.90.0 superblock.
3978  * The newer usage is when assembling an array.
3979  *  In this case raid_disks will be 0, and the major_version field is
3980  *  use to determine which style super-blocks are to be found on the devices.
3981  *  The minor and patch _version numbers are also kept incase the
3982  *  super_block handler wishes to interpret them.
3983  */
3984 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3985 {
3986 
3987 	if (info->raid_disks == 0) {
3988 		/* just setting version number for superblock loading */
3989 		if (info->major_version < 0 ||
3990 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3991 		    super_types[info->major_version].name == NULL) {
3992 			/* maybe try to auto-load a module? */
3993 			printk(KERN_INFO
3994 				"md: superblock version %d not known\n",
3995 				info->major_version);
3996 			return -EINVAL;
3997 		}
3998 		mddev->major_version = info->major_version;
3999 		mddev->minor_version = info->minor_version;
4000 		mddev->patch_version = info->patch_version;
4001 		mddev->persistent = !info->not_persistent;
4002 		return 0;
4003 	}
4004 	mddev->major_version = MD_MAJOR_VERSION;
4005 	mddev->minor_version = MD_MINOR_VERSION;
4006 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4007 	mddev->ctime         = get_seconds();
4008 
4009 	mddev->level         = info->level;
4010 	mddev->clevel[0]     = 0;
4011 	mddev->size          = info->size;
4012 	mddev->raid_disks    = info->raid_disks;
4013 	/* don't set md_minor, it is determined by which /dev/md* was
4014 	 * openned
4015 	 */
4016 	if (info->state & (1<<MD_SB_CLEAN))
4017 		mddev->recovery_cp = MaxSector;
4018 	else
4019 		mddev->recovery_cp = 0;
4020 	mddev->persistent    = ! info->not_persistent;
4021 
4022 	mddev->layout        = info->layout;
4023 	mddev->chunk_size    = info->chunk_size;
4024 
4025 	mddev->max_disks     = MD_SB_DISKS;
4026 
4027 	mddev->flags         = 0;
4028 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4029 
4030 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4031 	mddev->bitmap_offset = 0;
4032 
4033 	mddev->reshape_position = MaxSector;
4034 
4035 	/*
4036 	 * Generate a 128 bit UUID
4037 	 */
4038 	get_random_bytes(mddev->uuid, 16);
4039 
4040 	mddev->new_level = mddev->level;
4041 	mddev->new_chunk = mddev->chunk_size;
4042 	mddev->new_layout = mddev->layout;
4043 	mddev->delta_disks = 0;
4044 
4045 	return 0;
4046 }
4047 
4048 static int update_size(mddev_t *mddev, unsigned long size)
4049 {
4050 	mdk_rdev_t * rdev;
4051 	int rv;
4052 	struct list_head *tmp;
4053 	int fit = (size == 0);
4054 
4055 	if (mddev->pers->resize == NULL)
4056 		return -EINVAL;
4057 	/* The "size" is the amount of each device that is used.
4058 	 * This can only make sense for arrays with redundancy.
4059 	 * linear and raid0 always use whatever space is available
4060 	 * We can only consider changing the size if no resync
4061 	 * or reconstruction is happening, and if the new size
4062 	 * is acceptable. It must fit before the sb_offset or,
4063 	 * if that is <data_offset, it must fit before the
4064 	 * size of each device.
4065 	 * If size is zero, we find the largest size that fits.
4066 	 */
4067 	if (mddev->sync_thread)
4068 		return -EBUSY;
4069 	ITERATE_RDEV(mddev,rdev,tmp) {
4070 		sector_t avail;
4071 		avail = rdev->size * 2;
4072 
4073 		if (fit && (size == 0 || size > avail/2))
4074 			size = avail/2;
4075 		if (avail < ((sector_t)size << 1))
4076 			return -ENOSPC;
4077 	}
4078 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4079 	if (!rv) {
4080 		struct block_device *bdev;
4081 
4082 		bdev = bdget_disk(mddev->gendisk, 0);
4083 		if (bdev) {
4084 			mutex_lock(&bdev->bd_inode->i_mutex);
4085 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4086 			mutex_unlock(&bdev->bd_inode->i_mutex);
4087 			bdput(bdev);
4088 		}
4089 	}
4090 	return rv;
4091 }
4092 
4093 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4094 {
4095 	int rv;
4096 	/* change the number of raid disks */
4097 	if (mddev->pers->check_reshape == NULL)
4098 		return -EINVAL;
4099 	if (raid_disks <= 0 ||
4100 	    raid_disks >= mddev->max_disks)
4101 		return -EINVAL;
4102 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4103 		return -EBUSY;
4104 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4105 
4106 	rv = mddev->pers->check_reshape(mddev);
4107 	return rv;
4108 }
4109 
4110 
4111 /*
4112  * update_array_info is used to change the configuration of an
4113  * on-line array.
4114  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4115  * fields in the info are checked against the array.
4116  * Any differences that cannot be handled will cause an error.
4117  * Normally, only one change can be managed at a time.
4118  */
4119 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4120 {
4121 	int rv = 0;
4122 	int cnt = 0;
4123 	int state = 0;
4124 
4125 	/* calculate expected state,ignoring low bits */
4126 	if (mddev->bitmap && mddev->bitmap_offset)
4127 		state |= (1 << MD_SB_BITMAP_PRESENT);
4128 
4129 	if (mddev->major_version != info->major_version ||
4130 	    mddev->minor_version != info->minor_version ||
4131 /*	    mddev->patch_version != info->patch_version || */
4132 	    mddev->ctime         != info->ctime         ||
4133 	    mddev->level         != info->level         ||
4134 /*	    mddev->layout        != info->layout        || */
4135 	    !mddev->persistent	 != info->not_persistent||
4136 	    mddev->chunk_size    != info->chunk_size    ||
4137 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4138 	    ((state^info->state) & 0xfffffe00)
4139 		)
4140 		return -EINVAL;
4141 	/* Check there is only one change */
4142 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4143 	if (mddev->raid_disks != info->raid_disks) cnt++;
4144 	if (mddev->layout != info->layout) cnt++;
4145 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4146 	if (cnt == 0) return 0;
4147 	if (cnt > 1) return -EINVAL;
4148 
4149 	if (mddev->layout != info->layout) {
4150 		/* Change layout
4151 		 * we don't need to do anything at the md level, the
4152 		 * personality will take care of it all.
4153 		 */
4154 		if (mddev->pers->reconfig == NULL)
4155 			return -EINVAL;
4156 		else
4157 			return mddev->pers->reconfig(mddev, info->layout, -1);
4158 	}
4159 	if (info->size >= 0 && mddev->size != info->size)
4160 		rv = update_size(mddev, info->size);
4161 
4162 	if (mddev->raid_disks    != info->raid_disks)
4163 		rv = update_raid_disks(mddev, info->raid_disks);
4164 
4165 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4166 		if (mddev->pers->quiesce == NULL)
4167 			return -EINVAL;
4168 		if (mddev->recovery || mddev->sync_thread)
4169 			return -EBUSY;
4170 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4171 			/* add the bitmap */
4172 			if (mddev->bitmap)
4173 				return -EEXIST;
4174 			if (mddev->default_bitmap_offset == 0)
4175 				return -EINVAL;
4176 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4177 			mddev->pers->quiesce(mddev, 1);
4178 			rv = bitmap_create(mddev);
4179 			if (rv)
4180 				bitmap_destroy(mddev);
4181 			mddev->pers->quiesce(mddev, 0);
4182 		} else {
4183 			/* remove the bitmap */
4184 			if (!mddev->bitmap)
4185 				return -ENOENT;
4186 			if (mddev->bitmap->file)
4187 				return -EINVAL;
4188 			mddev->pers->quiesce(mddev, 1);
4189 			bitmap_destroy(mddev);
4190 			mddev->pers->quiesce(mddev, 0);
4191 			mddev->bitmap_offset = 0;
4192 		}
4193 	}
4194 	md_update_sb(mddev, 1);
4195 	return rv;
4196 }
4197 
4198 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4199 {
4200 	mdk_rdev_t *rdev;
4201 
4202 	if (mddev->pers == NULL)
4203 		return -ENODEV;
4204 
4205 	rdev = find_rdev(mddev, dev);
4206 	if (!rdev)
4207 		return -ENODEV;
4208 
4209 	md_error(mddev, rdev);
4210 	return 0;
4211 }
4212 
4213 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4214 {
4215 	mddev_t *mddev = bdev->bd_disk->private_data;
4216 
4217 	geo->heads = 2;
4218 	geo->sectors = 4;
4219 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4220 	return 0;
4221 }
4222 
4223 static int md_ioctl(struct inode *inode, struct file *file,
4224 			unsigned int cmd, unsigned long arg)
4225 {
4226 	int err = 0;
4227 	void __user *argp = (void __user *)arg;
4228 	mddev_t *mddev = NULL;
4229 
4230 	if (!capable(CAP_SYS_ADMIN))
4231 		return -EACCES;
4232 
4233 	/*
4234 	 * Commands dealing with the RAID driver but not any
4235 	 * particular array:
4236 	 */
4237 	switch (cmd)
4238 	{
4239 		case RAID_VERSION:
4240 			err = get_version(argp);
4241 			goto done;
4242 
4243 		case PRINT_RAID_DEBUG:
4244 			err = 0;
4245 			md_print_devices();
4246 			goto done;
4247 
4248 #ifndef MODULE
4249 		case RAID_AUTORUN:
4250 			err = 0;
4251 			autostart_arrays(arg);
4252 			goto done;
4253 #endif
4254 		default:;
4255 	}
4256 
4257 	/*
4258 	 * Commands creating/starting a new array:
4259 	 */
4260 
4261 	mddev = inode->i_bdev->bd_disk->private_data;
4262 
4263 	if (!mddev) {
4264 		BUG();
4265 		goto abort;
4266 	}
4267 
4268 	err = mddev_lock(mddev);
4269 	if (err) {
4270 		printk(KERN_INFO
4271 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4272 			err, cmd);
4273 		goto abort;
4274 	}
4275 
4276 	switch (cmd)
4277 	{
4278 		case SET_ARRAY_INFO:
4279 			{
4280 				mdu_array_info_t info;
4281 				if (!arg)
4282 					memset(&info, 0, sizeof(info));
4283 				else if (copy_from_user(&info, argp, sizeof(info))) {
4284 					err = -EFAULT;
4285 					goto abort_unlock;
4286 				}
4287 				if (mddev->pers) {
4288 					err = update_array_info(mddev, &info);
4289 					if (err) {
4290 						printk(KERN_WARNING "md: couldn't update"
4291 						       " array info. %d\n", err);
4292 						goto abort_unlock;
4293 					}
4294 					goto done_unlock;
4295 				}
4296 				if (!list_empty(&mddev->disks)) {
4297 					printk(KERN_WARNING
4298 					       "md: array %s already has disks!\n",
4299 					       mdname(mddev));
4300 					err = -EBUSY;
4301 					goto abort_unlock;
4302 				}
4303 				if (mddev->raid_disks) {
4304 					printk(KERN_WARNING
4305 					       "md: array %s already initialised!\n",
4306 					       mdname(mddev));
4307 					err = -EBUSY;
4308 					goto abort_unlock;
4309 				}
4310 				err = set_array_info(mddev, &info);
4311 				if (err) {
4312 					printk(KERN_WARNING "md: couldn't set"
4313 					       " array info. %d\n", err);
4314 					goto abort_unlock;
4315 				}
4316 			}
4317 			goto done_unlock;
4318 
4319 		default:;
4320 	}
4321 
4322 	/*
4323 	 * Commands querying/configuring an existing array:
4324 	 */
4325 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4326 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4327 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4328 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4329 	    		&& cmd != GET_BITMAP_FILE) {
4330 		err = -ENODEV;
4331 		goto abort_unlock;
4332 	}
4333 
4334 	/*
4335 	 * Commands even a read-only array can execute:
4336 	 */
4337 	switch (cmd)
4338 	{
4339 		case GET_ARRAY_INFO:
4340 			err = get_array_info(mddev, argp);
4341 			goto done_unlock;
4342 
4343 		case GET_BITMAP_FILE:
4344 			err = get_bitmap_file(mddev, argp);
4345 			goto done_unlock;
4346 
4347 		case GET_DISK_INFO:
4348 			err = get_disk_info(mddev, argp);
4349 			goto done_unlock;
4350 
4351 		case RESTART_ARRAY_RW:
4352 			err = restart_array(mddev);
4353 			goto done_unlock;
4354 
4355 		case STOP_ARRAY:
4356 			err = do_md_stop (mddev, 0);
4357 			goto done_unlock;
4358 
4359 		case STOP_ARRAY_RO:
4360 			err = do_md_stop (mddev, 1);
4361 			goto done_unlock;
4362 
4363 	/*
4364 	 * We have a problem here : there is no easy way to give a CHS
4365 	 * virtual geometry. We currently pretend that we have a 2 heads
4366 	 * 4 sectors (with a BIG number of cylinders...). This drives
4367 	 * dosfs just mad... ;-)
4368 	 */
4369 	}
4370 
4371 	/*
4372 	 * The remaining ioctls are changing the state of the
4373 	 * superblock, so we do not allow them on read-only arrays.
4374 	 * However non-MD ioctls (e.g. get-size) will still come through
4375 	 * here and hit the 'default' below, so only disallow
4376 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4377 	 */
4378 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4379 	    mddev->ro && mddev->pers) {
4380 		if (mddev->ro == 2) {
4381 			mddev->ro = 0;
4382 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4383 		md_wakeup_thread(mddev->thread);
4384 
4385 		} else {
4386 			err = -EROFS;
4387 			goto abort_unlock;
4388 		}
4389 	}
4390 
4391 	switch (cmd)
4392 	{
4393 		case ADD_NEW_DISK:
4394 		{
4395 			mdu_disk_info_t info;
4396 			if (copy_from_user(&info, argp, sizeof(info)))
4397 				err = -EFAULT;
4398 			else
4399 				err = add_new_disk(mddev, &info);
4400 			goto done_unlock;
4401 		}
4402 
4403 		case HOT_REMOVE_DISK:
4404 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4405 			goto done_unlock;
4406 
4407 		case HOT_ADD_DISK:
4408 			err = hot_add_disk(mddev, new_decode_dev(arg));
4409 			goto done_unlock;
4410 
4411 		case SET_DISK_FAULTY:
4412 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4413 			goto done_unlock;
4414 
4415 		case RUN_ARRAY:
4416 			err = do_md_run (mddev);
4417 			goto done_unlock;
4418 
4419 		case SET_BITMAP_FILE:
4420 			err = set_bitmap_file(mddev, (int)arg);
4421 			goto done_unlock;
4422 
4423 		default:
4424 			err = -EINVAL;
4425 			goto abort_unlock;
4426 	}
4427 
4428 done_unlock:
4429 abort_unlock:
4430 	mddev_unlock(mddev);
4431 
4432 	return err;
4433 done:
4434 	if (err)
4435 		MD_BUG();
4436 abort:
4437 	return err;
4438 }
4439 
4440 static int md_open(struct inode *inode, struct file *file)
4441 {
4442 	/*
4443 	 * Succeed if we can lock the mddev, which confirms that
4444 	 * it isn't being stopped right now.
4445 	 */
4446 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4447 	int err;
4448 
4449 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4450 		goto out;
4451 
4452 	err = 0;
4453 	mddev_get(mddev);
4454 	mddev_unlock(mddev);
4455 
4456 	check_disk_change(inode->i_bdev);
4457  out:
4458 	return err;
4459 }
4460 
4461 static int md_release(struct inode *inode, struct file * file)
4462 {
4463  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4464 
4465 	BUG_ON(!mddev);
4466 	mddev_put(mddev);
4467 
4468 	return 0;
4469 }
4470 
4471 static int md_media_changed(struct gendisk *disk)
4472 {
4473 	mddev_t *mddev = disk->private_data;
4474 
4475 	return mddev->changed;
4476 }
4477 
4478 static int md_revalidate(struct gendisk *disk)
4479 {
4480 	mddev_t *mddev = disk->private_data;
4481 
4482 	mddev->changed = 0;
4483 	return 0;
4484 }
4485 static struct block_device_operations md_fops =
4486 {
4487 	.owner		= THIS_MODULE,
4488 	.open		= md_open,
4489 	.release	= md_release,
4490 	.ioctl		= md_ioctl,
4491 	.getgeo		= md_getgeo,
4492 	.media_changed	= md_media_changed,
4493 	.revalidate_disk= md_revalidate,
4494 };
4495 
4496 static int md_thread(void * arg)
4497 {
4498 	mdk_thread_t *thread = arg;
4499 
4500 	/*
4501 	 * md_thread is a 'system-thread', it's priority should be very
4502 	 * high. We avoid resource deadlocks individually in each
4503 	 * raid personality. (RAID5 does preallocation) We also use RR and
4504 	 * the very same RT priority as kswapd, thus we will never get
4505 	 * into a priority inversion deadlock.
4506 	 *
4507 	 * we definitely have to have equal or higher priority than
4508 	 * bdflush, otherwise bdflush will deadlock if there are too
4509 	 * many dirty RAID5 blocks.
4510 	 */
4511 
4512 	current->flags |= PF_NOFREEZE;
4513 	allow_signal(SIGKILL);
4514 	while (!kthread_should_stop()) {
4515 
4516 		/* We need to wait INTERRUPTIBLE so that
4517 		 * we don't add to the load-average.
4518 		 * That means we need to be sure no signals are
4519 		 * pending
4520 		 */
4521 		if (signal_pending(current))
4522 			flush_signals(current);
4523 
4524 		wait_event_interruptible_timeout
4525 			(thread->wqueue,
4526 			 test_bit(THREAD_WAKEUP, &thread->flags)
4527 			 || kthread_should_stop(),
4528 			 thread->timeout);
4529 
4530 		clear_bit(THREAD_WAKEUP, &thread->flags);
4531 
4532 		thread->run(thread->mddev);
4533 	}
4534 
4535 	return 0;
4536 }
4537 
4538 void md_wakeup_thread(mdk_thread_t *thread)
4539 {
4540 	if (thread) {
4541 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4542 		set_bit(THREAD_WAKEUP, &thread->flags);
4543 		wake_up(&thread->wqueue);
4544 	}
4545 }
4546 
4547 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4548 				 const char *name)
4549 {
4550 	mdk_thread_t *thread;
4551 
4552 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4553 	if (!thread)
4554 		return NULL;
4555 
4556 	init_waitqueue_head(&thread->wqueue);
4557 
4558 	thread->run = run;
4559 	thread->mddev = mddev;
4560 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4561 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4562 	if (IS_ERR(thread->tsk)) {
4563 		kfree(thread);
4564 		return NULL;
4565 	}
4566 	return thread;
4567 }
4568 
4569 void md_unregister_thread(mdk_thread_t *thread)
4570 {
4571 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4572 
4573 	kthread_stop(thread->tsk);
4574 	kfree(thread);
4575 }
4576 
4577 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4578 {
4579 	if (!mddev) {
4580 		MD_BUG();
4581 		return;
4582 	}
4583 
4584 	if (!rdev || test_bit(Faulty, &rdev->flags))
4585 		return;
4586 /*
4587 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4588 		mdname(mddev),
4589 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4590 		__builtin_return_address(0),__builtin_return_address(1),
4591 		__builtin_return_address(2),__builtin_return_address(3));
4592 */
4593 	if (!mddev->pers)
4594 		return;
4595 	if (!mddev->pers->error_handler)
4596 		return;
4597 	mddev->pers->error_handler(mddev,rdev);
4598 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4599 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4600 	md_wakeup_thread(mddev->thread);
4601 	md_new_event_inintr(mddev);
4602 }
4603 
4604 /* seq_file implementation /proc/mdstat */
4605 
4606 static void status_unused(struct seq_file *seq)
4607 {
4608 	int i = 0;
4609 	mdk_rdev_t *rdev;
4610 	struct list_head *tmp;
4611 
4612 	seq_printf(seq, "unused devices: ");
4613 
4614 	ITERATE_RDEV_PENDING(rdev,tmp) {
4615 		char b[BDEVNAME_SIZE];
4616 		i++;
4617 		seq_printf(seq, "%s ",
4618 			      bdevname(rdev->bdev,b));
4619 	}
4620 	if (!i)
4621 		seq_printf(seq, "<none>");
4622 
4623 	seq_printf(seq, "\n");
4624 }
4625 
4626 
4627 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4628 {
4629 	sector_t max_blocks, resync, res;
4630 	unsigned long dt, db, rt;
4631 	int scale;
4632 	unsigned int per_milli;
4633 
4634 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4635 
4636 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4637 		max_blocks = mddev->resync_max_sectors >> 1;
4638 	else
4639 		max_blocks = mddev->size;
4640 
4641 	/*
4642 	 * Should not happen.
4643 	 */
4644 	if (!max_blocks) {
4645 		MD_BUG();
4646 		return;
4647 	}
4648 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4649 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4650 	 * u32, as those are the requirements for sector_div.
4651 	 * Thus 'scale' must be at least 10
4652 	 */
4653 	scale = 10;
4654 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4655 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4656 			scale++;
4657 	}
4658 	res = (resync>>scale)*1000;
4659 	sector_div(res, (u32)((max_blocks>>scale)+1));
4660 
4661 	per_milli = res;
4662 	{
4663 		int i, x = per_milli/50, y = 20-x;
4664 		seq_printf(seq, "[");
4665 		for (i = 0; i < x; i++)
4666 			seq_printf(seq, "=");
4667 		seq_printf(seq, ">");
4668 		for (i = 0; i < y; i++)
4669 			seq_printf(seq, ".");
4670 		seq_printf(seq, "] ");
4671 	}
4672 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4673 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4674 		    "reshape" :
4675 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4676 		     "check" :
4677 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4678 		      "resync" : "recovery"))),
4679 		   per_milli/10, per_milli % 10,
4680 		   (unsigned long long) resync,
4681 		   (unsigned long long) max_blocks);
4682 
4683 	/*
4684 	 * We do not want to overflow, so the order of operands and
4685 	 * the * 100 / 100 trick are important. We do a +1 to be
4686 	 * safe against division by zero. We only estimate anyway.
4687 	 *
4688 	 * dt: time from mark until now
4689 	 * db: blocks written from mark until now
4690 	 * rt: remaining time
4691 	 */
4692 	dt = ((jiffies - mddev->resync_mark) / HZ);
4693 	if (!dt) dt++;
4694 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4695 		- mddev->resync_mark_cnt;
4696 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4697 
4698 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4699 
4700 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4701 }
4702 
4703 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4704 {
4705 	struct list_head *tmp;
4706 	loff_t l = *pos;
4707 	mddev_t *mddev;
4708 
4709 	if (l >= 0x10000)
4710 		return NULL;
4711 	if (!l--)
4712 		/* header */
4713 		return (void*)1;
4714 
4715 	spin_lock(&all_mddevs_lock);
4716 	list_for_each(tmp,&all_mddevs)
4717 		if (!l--) {
4718 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4719 			mddev_get(mddev);
4720 			spin_unlock(&all_mddevs_lock);
4721 			return mddev;
4722 		}
4723 	spin_unlock(&all_mddevs_lock);
4724 	if (!l--)
4725 		return (void*)2;/* tail */
4726 	return NULL;
4727 }
4728 
4729 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4730 {
4731 	struct list_head *tmp;
4732 	mddev_t *next_mddev, *mddev = v;
4733 
4734 	++*pos;
4735 	if (v == (void*)2)
4736 		return NULL;
4737 
4738 	spin_lock(&all_mddevs_lock);
4739 	if (v == (void*)1)
4740 		tmp = all_mddevs.next;
4741 	else
4742 		tmp = mddev->all_mddevs.next;
4743 	if (tmp != &all_mddevs)
4744 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4745 	else {
4746 		next_mddev = (void*)2;
4747 		*pos = 0x10000;
4748 	}
4749 	spin_unlock(&all_mddevs_lock);
4750 
4751 	if (v != (void*)1)
4752 		mddev_put(mddev);
4753 	return next_mddev;
4754 
4755 }
4756 
4757 static void md_seq_stop(struct seq_file *seq, void *v)
4758 {
4759 	mddev_t *mddev = v;
4760 
4761 	if (mddev && v != (void*)1 && v != (void*)2)
4762 		mddev_put(mddev);
4763 }
4764 
4765 struct mdstat_info {
4766 	int event;
4767 };
4768 
4769 static int md_seq_show(struct seq_file *seq, void *v)
4770 {
4771 	mddev_t *mddev = v;
4772 	sector_t size;
4773 	struct list_head *tmp2;
4774 	mdk_rdev_t *rdev;
4775 	struct mdstat_info *mi = seq->private;
4776 	struct bitmap *bitmap;
4777 
4778 	if (v == (void*)1) {
4779 		struct mdk_personality *pers;
4780 		seq_printf(seq, "Personalities : ");
4781 		spin_lock(&pers_lock);
4782 		list_for_each_entry(pers, &pers_list, list)
4783 			seq_printf(seq, "[%s] ", pers->name);
4784 
4785 		spin_unlock(&pers_lock);
4786 		seq_printf(seq, "\n");
4787 		mi->event = atomic_read(&md_event_count);
4788 		return 0;
4789 	}
4790 	if (v == (void*)2) {
4791 		status_unused(seq);
4792 		return 0;
4793 	}
4794 
4795 	if (mddev_lock(mddev) < 0)
4796 		return -EINTR;
4797 
4798 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4799 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4800 						mddev->pers ? "" : "in");
4801 		if (mddev->pers) {
4802 			if (mddev->ro==1)
4803 				seq_printf(seq, " (read-only)");
4804 			if (mddev->ro==2)
4805 				seq_printf(seq, "(auto-read-only)");
4806 			seq_printf(seq, " %s", mddev->pers->name);
4807 		}
4808 
4809 		size = 0;
4810 		ITERATE_RDEV(mddev,rdev,tmp2) {
4811 			char b[BDEVNAME_SIZE];
4812 			seq_printf(seq, " %s[%d]",
4813 				bdevname(rdev->bdev,b), rdev->desc_nr);
4814 			if (test_bit(WriteMostly, &rdev->flags))
4815 				seq_printf(seq, "(W)");
4816 			if (test_bit(Faulty, &rdev->flags)) {
4817 				seq_printf(seq, "(F)");
4818 				continue;
4819 			} else if (rdev->raid_disk < 0)
4820 				seq_printf(seq, "(S)"); /* spare */
4821 			size += rdev->size;
4822 		}
4823 
4824 		if (!list_empty(&mddev->disks)) {
4825 			if (mddev->pers)
4826 				seq_printf(seq, "\n      %llu blocks",
4827 					(unsigned long long)mddev->array_size);
4828 			else
4829 				seq_printf(seq, "\n      %llu blocks",
4830 					(unsigned long long)size);
4831 		}
4832 		if (mddev->persistent) {
4833 			if (mddev->major_version != 0 ||
4834 			    mddev->minor_version != 90) {
4835 				seq_printf(seq," super %d.%d",
4836 					   mddev->major_version,
4837 					   mddev->minor_version);
4838 			}
4839 		} else
4840 			seq_printf(seq, " super non-persistent");
4841 
4842 		if (mddev->pers) {
4843 			mddev->pers->status (seq, mddev);
4844 	 		seq_printf(seq, "\n      ");
4845 			if (mddev->pers->sync_request) {
4846 				if (mddev->curr_resync > 2) {
4847 					status_resync (seq, mddev);
4848 					seq_printf(seq, "\n      ");
4849 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4850 					seq_printf(seq, "\tresync=DELAYED\n      ");
4851 				else if (mddev->recovery_cp < MaxSector)
4852 					seq_printf(seq, "\tresync=PENDING\n      ");
4853 			}
4854 		} else
4855 			seq_printf(seq, "\n       ");
4856 
4857 		if ((bitmap = mddev->bitmap)) {
4858 			unsigned long chunk_kb;
4859 			unsigned long flags;
4860 			spin_lock_irqsave(&bitmap->lock, flags);
4861 			chunk_kb = bitmap->chunksize >> 10;
4862 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4863 				"%lu%s chunk",
4864 				bitmap->pages - bitmap->missing_pages,
4865 				bitmap->pages,
4866 				(bitmap->pages - bitmap->missing_pages)
4867 					<< (PAGE_SHIFT - 10),
4868 				chunk_kb ? chunk_kb : bitmap->chunksize,
4869 				chunk_kb ? "KB" : "B");
4870 			if (bitmap->file) {
4871 				seq_printf(seq, ", file: ");
4872 				seq_path(seq, bitmap->file->f_path.mnt,
4873 					 bitmap->file->f_path.dentry," \t\n");
4874 			}
4875 
4876 			seq_printf(seq, "\n");
4877 			spin_unlock_irqrestore(&bitmap->lock, flags);
4878 		}
4879 
4880 		seq_printf(seq, "\n");
4881 	}
4882 	mddev_unlock(mddev);
4883 
4884 	return 0;
4885 }
4886 
4887 static struct seq_operations md_seq_ops = {
4888 	.start  = md_seq_start,
4889 	.next   = md_seq_next,
4890 	.stop   = md_seq_stop,
4891 	.show   = md_seq_show,
4892 };
4893 
4894 static int md_seq_open(struct inode *inode, struct file *file)
4895 {
4896 	int error;
4897 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4898 	if (mi == NULL)
4899 		return -ENOMEM;
4900 
4901 	error = seq_open(file, &md_seq_ops);
4902 	if (error)
4903 		kfree(mi);
4904 	else {
4905 		struct seq_file *p = file->private_data;
4906 		p->private = mi;
4907 		mi->event = atomic_read(&md_event_count);
4908 	}
4909 	return error;
4910 }
4911 
4912 static int md_seq_release(struct inode *inode, struct file *file)
4913 {
4914 	struct seq_file *m = file->private_data;
4915 	struct mdstat_info *mi = m->private;
4916 	m->private = NULL;
4917 	kfree(mi);
4918 	return seq_release(inode, file);
4919 }
4920 
4921 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4922 {
4923 	struct seq_file *m = filp->private_data;
4924 	struct mdstat_info *mi = m->private;
4925 	int mask;
4926 
4927 	poll_wait(filp, &md_event_waiters, wait);
4928 
4929 	/* always allow read */
4930 	mask = POLLIN | POLLRDNORM;
4931 
4932 	if (mi->event != atomic_read(&md_event_count))
4933 		mask |= POLLERR | POLLPRI;
4934 	return mask;
4935 }
4936 
4937 static const struct file_operations md_seq_fops = {
4938 	.owner		= THIS_MODULE,
4939 	.open           = md_seq_open,
4940 	.read           = seq_read,
4941 	.llseek         = seq_lseek,
4942 	.release	= md_seq_release,
4943 	.poll		= mdstat_poll,
4944 };
4945 
4946 int register_md_personality(struct mdk_personality *p)
4947 {
4948 	spin_lock(&pers_lock);
4949 	list_add_tail(&p->list, &pers_list);
4950 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4951 	spin_unlock(&pers_lock);
4952 	return 0;
4953 }
4954 
4955 int unregister_md_personality(struct mdk_personality *p)
4956 {
4957 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4958 	spin_lock(&pers_lock);
4959 	list_del_init(&p->list);
4960 	spin_unlock(&pers_lock);
4961 	return 0;
4962 }
4963 
4964 static int is_mddev_idle(mddev_t *mddev)
4965 {
4966 	mdk_rdev_t * rdev;
4967 	struct list_head *tmp;
4968 	int idle;
4969 	unsigned long curr_events;
4970 
4971 	idle = 1;
4972 	ITERATE_RDEV(mddev,rdev,tmp) {
4973 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4974 		curr_events = disk_stat_read(disk, sectors[0]) +
4975 				disk_stat_read(disk, sectors[1]) -
4976 				atomic_read(&disk->sync_io);
4977 		/* The difference between curr_events and last_events
4978 		 * will be affected by any new non-sync IO (making
4979 		 * curr_events bigger) and any difference in the amount of
4980 		 * in-flight syncio (making current_events bigger or smaller)
4981 		 * The amount in-flight is currently limited to
4982 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4983 		 * which is at most 4096 sectors.
4984 		 * These numbers are fairly fragile and should be made
4985 		 * more robust, probably by enforcing the
4986 		 * 'window size' that md_do_sync sort-of uses.
4987 		 *
4988 		 * Note: the following is an unsigned comparison.
4989 		 */
4990 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4991 			rdev->last_events = curr_events;
4992 			idle = 0;
4993 		}
4994 	}
4995 	return idle;
4996 }
4997 
4998 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4999 {
5000 	/* another "blocks" (512byte) blocks have been synced */
5001 	atomic_sub(blocks, &mddev->recovery_active);
5002 	wake_up(&mddev->recovery_wait);
5003 	if (!ok) {
5004 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5005 		md_wakeup_thread(mddev->thread);
5006 		// stop recovery, signal do_sync ....
5007 	}
5008 }
5009 
5010 
5011 /* md_write_start(mddev, bi)
5012  * If we need to update some array metadata (e.g. 'active' flag
5013  * in superblock) before writing, schedule a superblock update
5014  * and wait for it to complete.
5015  */
5016 void md_write_start(mddev_t *mddev, struct bio *bi)
5017 {
5018 	if (bio_data_dir(bi) != WRITE)
5019 		return;
5020 
5021 	BUG_ON(mddev->ro == 1);
5022 	if (mddev->ro == 2) {
5023 		/* need to switch to read/write */
5024 		mddev->ro = 0;
5025 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5026 		md_wakeup_thread(mddev->thread);
5027 	}
5028 	atomic_inc(&mddev->writes_pending);
5029 	if (mddev->in_sync) {
5030 		spin_lock_irq(&mddev->write_lock);
5031 		if (mddev->in_sync) {
5032 			mddev->in_sync = 0;
5033 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5034 			md_wakeup_thread(mddev->thread);
5035 		}
5036 		spin_unlock_irq(&mddev->write_lock);
5037 	}
5038 	wait_event(mddev->sb_wait, mddev->flags==0);
5039 }
5040 
5041 void md_write_end(mddev_t *mddev)
5042 {
5043 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5044 		if (mddev->safemode == 2)
5045 			md_wakeup_thread(mddev->thread);
5046 		else if (mddev->safemode_delay)
5047 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5048 	}
5049 }
5050 
5051 /* md_allow_write(mddev)
5052  * Calling this ensures that the array is marked 'active' so that writes
5053  * may proceed without blocking.  It is important to call this before
5054  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5055  * Must be called with mddev_lock held.
5056  */
5057 void md_allow_write(mddev_t *mddev)
5058 {
5059 	if (!mddev->pers)
5060 		return;
5061 	if (mddev->ro)
5062 		return;
5063 
5064 	spin_lock_irq(&mddev->write_lock);
5065 	if (mddev->in_sync) {
5066 		mddev->in_sync = 0;
5067 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5068 		if (mddev->safemode_delay &&
5069 		    mddev->safemode == 0)
5070 			mddev->safemode = 1;
5071 		spin_unlock_irq(&mddev->write_lock);
5072 		md_update_sb(mddev, 0);
5073 	} else
5074 		spin_unlock_irq(&mddev->write_lock);
5075 }
5076 EXPORT_SYMBOL_GPL(md_allow_write);
5077 
5078 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5079 
5080 #define SYNC_MARKS	10
5081 #define	SYNC_MARK_STEP	(3*HZ)
5082 void md_do_sync(mddev_t *mddev)
5083 {
5084 	mddev_t *mddev2;
5085 	unsigned int currspeed = 0,
5086 		 window;
5087 	sector_t max_sectors,j, io_sectors;
5088 	unsigned long mark[SYNC_MARKS];
5089 	sector_t mark_cnt[SYNC_MARKS];
5090 	int last_mark,m;
5091 	struct list_head *tmp;
5092 	sector_t last_check;
5093 	int skipped = 0;
5094 	struct list_head *rtmp;
5095 	mdk_rdev_t *rdev;
5096 	char *desc;
5097 
5098 	/* just incase thread restarts... */
5099 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5100 		return;
5101 	if (mddev->ro) /* never try to sync a read-only array */
5102 		return;
5103 
5104 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5105 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5106 			desc = "data-check";
5107 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5108 			desc = "requested-resync";
5109 		else
5110 			desc = "resync";
5111 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5112 		desc = "reshape";
5113 	else
5114 		desc = "recovery";
5115 
5116 	/* we overload curr_resync somewhat here.
5117 	 * 0 == not engaged in resync at all
5118 	 * 2 == checking that there is no conflict with another sync
5119 	 * 1 == like 2, but have yielded to allow conflicting resync to
5120 	 *		commense
5121 	 * other == active in resync - this many blocks
5122 	 *
5123 	 * Before starting a resync we must have set curr_resync to
5124 	 * 2, and then checked that every "conflicting" array has curr_resync
5125 	 * less than ours.  When we find one that is the same or higher
5126 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5127 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5128 	 * This will mean we have to start checking from the beginning again.
5129 	 *
5130 	 */
5131 
5132 	do {
5133 		mddev->curr_resync = 2;
5134 
5135 	try_again:
5136 		if (kthread_should_stop()) {
5137 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5138 			goto skip;
5139 		}
5140 		ITERATE_MDDEV(mddev2,tmp) {
5141 			if (mddev2 == mddev)
5142 				continue;
5143 			if (mddev2->curr_resync &&
5144 			    match_mddev_units(mddev,mddev2)) {
5145 				DEFINE_WAIT(wq);
5146 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5147 					/* arbitrarily yield */
5148 					mddev->curr_resync = 1;
5149 					wake_up(&resync_wait);
5150 				}
5151 				if (mddev > mddev2 && mddev->curr_resync == 1)
5152 					/* no need to wait here, we can wait the next
5153 					 * time 'round when curr_resync == 2
5154 					 */
5155 					continue;
5156 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5157 				if (!kthread_should_stop() &&
5158 				    mddev2->curr_resync >= mddev->curr_resync) {
5159 					printk(KERN_INFO "md: delaying %s of %s"
5160 					       " until %s has finished (they"
5161 					       " share one or more physical units)\n",
5162 					       desc, mdname(mddev), mdname(mddev2));
5163 					mddev_put(mddev2);
5164 					schedule();
5165 					finish_wait(&resync_wait, &wq);
5166 					goto try_again;
5167 				}
5168 				finish_wait(&resync_wait, &wq);
5169 			}
5170 		}
5171 	} while (mddev->curr_resync < 2);
5172 
5173 	j = 0;
5174 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5175 		/* resync follows the size requested by the personality,
5176 		 * which defaults to physical size, but can be virtual size
5177 		 */
5178 		max_sectors = mddev->resync_max_sectors;
5179 		mddev->resync_mismatches = 0;
5180 		/* we don't use the checkpoint if there's a bitmap */
5181 		if (!mddev->bitmap &&
5182 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5183 			j = mddev->recovery_cp;
5184 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5185 		max_sectors = mddev->size << 1;
5186 	else {
5187 		/* recovery follows the physical size of devices */
5188 		max_sectors = mddev->size << 1;
5189 		j = MaxSector;
5190 		ITERATE_RDEV(mddev,rdev,rtmp)
5191 			if (rdev->raid_disk >= 0 &&
5192 			    !test_bit(Faulty, &rdev->flags) &&
5193 			    !test_bit(In_sync, &rdev->flags) &&
5194 			    rdev->recovery_offset < j)
5195 				j = rdev->recovery_offset;
5196 	}
5197 
5198 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5199 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5200 		" %d KB/sec/disk.\n", speed_min(mddev));
5201 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5202 	       "(but not more than %d KB/sec) for %s.\n",
5203 	       speed_max(mddev), desc);
5204 
5205 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5206 
5207 	io_sectors = 0;
5208 	for (m = 0; m < SYNC_MARKS; m++) {
5209 		mark[m] = jiffies;
5210 		mark_cnt[m] = io_sectors;
5211 	}
5212 	last_mark = 0;
5213 	mddev->resync_mark = mark[last_mark];
5214 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5215 
5216 	/*
5217 	 * Tune reconstruction:
5218 	 */
5219 	window = 32*(PAGE_SIZE/512);
5220 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5221 		window/2,(unsigned long long) max_sectors/2);
5222 
5223 	atomic_set(&mddev->recovery_active, 0);
5224 	init_waitqueue_head(&mddev->recovery_wait);
5225 	last_check = 0;
5226 
5227 	if (j>2) {
5228 		printk(KERN_INFO
5229 		       "md: resuming %s of %s from checkpoint.\n",
5230 		       desc, mdname(mddev));
5231 		mddev->curr_resync = j;
5232 	}
5233 
5234 	while (j < max_sectors) {
5235 		sector_t sectors;
5236 
5237 		skipped = 0;
5238 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5239 					    currspeed < speed_min(mddev));
5240 		if (sectors == 0) {
5241 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5242 			goto out;
5243 		}
5244 
5245 		if (!skipped) { /* actual IO requested */
5246 			io_sectors += sectors;
5247 			atomic_add(sectors, &mddev->recovery_active);
5248 		}
5249 
5250 		j += sectors;
5251 		if (j>1) mddev->curr_resync = j;
5252 		mddev->curr_mark_cnt = io_sectors;
5253 		if (last_check == 0)
5254 			/* this is the earliers that rebuilt will be
5255 			 * visible in /proc/mdstat
5256 			 */
5257 			md_new_event(mddev);
5258 
5259 		if (last_check + window > io_sectors || j == max_sectors)
5260 			continue;
5261 
5262 		last_check = io_sectors;
5263 
5264 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5265 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5266 			break;
5267 
5268 	repeat:
5269 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5270 			/* step marks */
5271 			int next = (last_mark+1) % SYNC_MARKS;
5272 
5273 			mddev->resync_mark = mark[next];
5274 			mddev->resync_mark_cnt = mark_cnt[next];
5275 			mark[next] = jiffies;
5276 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5277 			last_mark = next;
5278 		}
5279 
5280 
5281 		if (kthread_should_stop()) {
5282 			/*
5283 			 * got a signal, exit.
5284 			 */
5285 			printk(KERN_INFO
5286 				"md: md_do_sync() got signal ... exiting\n");
5287 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5288 			goto out;
5289 		}
5290 
5291 		/*
5292 		 * this loop exits only if either when we are slower than
5293 		 * the 'hard' speed limit, or the system was IO-idle for
5294 		 * a jiffy.
5295 		 * the system might be non-idle CPU-wise, but we only care
5296 		 * about not overloading the IO subsystem. (things like an
5297 		 * e2fsck being done on the RAID array should execute fast)
5298 		 */
5299 		mddev->queue->unplug_fn(mddev->queue);
5300 		cond_resched();
5301 
5302 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5303 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5304 
5305 		if (currspeed > speed_min(mddev)) {
5306 			if ((currspeed > speed_max(mddev)) ||
5307 					!is_mddev_idle(mddev)) {
5308 				msleep(500);
5309 				goto repeat;
5310 			}
5311 		}
5312 	}
5313 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5314 	/*
5315 	 * this also signals 'finished resyncing' to md_stop
5316 	 */
5317  out:
5318 	mddev->queue->unplug_fn(mddev->queue);
5319 
5320 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5321 
5322 	/* tell personality that we are finished */
5323 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5324 
5325 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5326 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5327 	    mddev->curr_resync > 2) {
5328 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5329 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5330 				if (mddev->curr_resync >= mddev->recovery_cp) {
5331 					printk(KERN_INFO
5332 					       "md: checkpointing %s of %s.\n",
5333 					       desc, mdname(mddev));
5334 					mddev->recovery_cp = mddev->curr_resync;
5335 				}
5336 			} else
5337 				mddev->recovery_cp = MaxSector;
5338 		} else {
5339 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5340 				mddev->curr_resync = MaxSector;
5341 			ITERATE_RDEV(mddev,rdev,rtmp)
5342 				if (rdev->raid_disk >= 0 &&
5343 				    !test_bit(Faulty, &rdev->flags) &&
5344 				    !test_bit(In_sync, &rdev->flags) &&
5345 				    rdev->recovery_offset < mddev->curr_resync)
5346 					rdev->recovery_offset = mddev->curr_resync;
5347 		}
5348 	}
5349 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5350 
5351  skip:
5352 	mddev->curr_resync = 0;
5353 	wake_up(&resync_wait);
5354 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5355 	md_wakeup_thread(mddev->thread);
5356 }
5357 EXPORT_SYMBOL_GPL(md_do_sync);
5358 
5359 
5360 static int remove_and_add_spares(mddev_t *mddev)
5361 {
5362 	mdk_rdev_t *rdev;
5363 	struct list_head *rtmp;
5364 	int spares = 0;
5365 
5366 	ITERATE_RDEV(mddev,rdev,rtmp)
5367 		if (rdev->raid_disk >= 0 &&
5368 		    (test_bit(Faulty, &rdev->flags) ||
5369 		     ! test_bit(In_sync, &rdev->flags)) &&
5370 		    atomic_read(&rdev->nr_pending)==0) {
5371 			if (mddev->pers->hot_remove_disk(
5372 				    mddev, rdev->raid_disk)==0) {
5373 				char nm[20];
5374 				sprintf(nm,"rd%d", rdev->raid_disk);
5375 				sysfs_remove_link(&mddev->kobj, nm);
5376 				rdev->raid_disk = -1;
5377 			}
5378 		}
5379 
5380 	if (mddev->degraded) {
5381 		ITERATE_RDEV(mddev,rdev,rtmp)
5382 			if (rdev->raid_disk < 0
5383 			    && !test_bit(Faulty, &rdev->flags)) {
5384 				rdev->recovery_offset = 0;
5385 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5386 					char nm[20];
5387 					sprintf(nm, "rd%d", rdev->raid_disk);
5388 					sysfs_create_link(&mddev->kobj,
5389 							  &rdev->kobj, nm);
5390 					spares++;
5391 					md_new_event(mddev);
5392 				} else
5393 					break;
5394 			}
5395 	}
5396 	return spares;
5397 }
5398 /*
5399  * This routine is regularly called by all per-raid-array threads to
5400  * deal with generic issues like resync and super-block update.
5401  * Raid personalities that don't have a thread (linear/raid0) do not
5402  * need this as they never do any recovery or update the superblock.
5403  *
5404  * It does not do any resync itself, but rather "forks" off other threads
5405  * to do that as needed.
5406  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5407  * "->recovery" and create a thread at ->sync_thread.
5408  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5409  * and wakeups up this thread which will reap the thread and finish up.
5410  * This thread also removes any faulty devices (with nr_pending == 0).
5411  *
5412  * The overall approach is:
5413  *  1/ if the superblock needs updating, update it.
5414  *  2/ If a recovery thread is running, don't do anything else.
5415  *  3/ If recovery has finished, clean up, possibly marking spares active.
5416  *  4/ If there are any faulty devices, remove them.
5417  *  5/ If array is degraded, try to add spares devices
5418  *  6/ If array has spares or is not in-sync, start a resync thread.
5419  */
5420 void md_check_recovery(mddev_t *mddev)
5421 {
5422 	mdk_rdev_t *rdev;
5423 	struct list_head *rtmp;
5424 
5425 
5426 	if (mddev->bitmap)
5427 		bitmap_daemon_work(mddev->bitmap);
5428 
5429 	if (mddev->ro)
5430 		return;
5431 
5432 	if (signal_pending(current)) {
5433 		if (mddev->pers->sync_request) {
5434 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5435 			       mdname(mddev));
5436 			mddev->safemode = 2;
5437 		}
5438 		flush_signals(current);
5439 	}
5440 
5441 	if ( ! (
5442 		mddev->flags ||
5443 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5444 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5445 		(mddev->safemode == 1) ||
5446 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5447 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5448 		))
5449 		return;
5450 
5451 	if (mddev_trylock(mddev)) {
5452 		int spares = 0;
5453 
5454 		spin_lock_irq(&mddev->write_lock);
5455 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5456 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5457 			mddev->in_sync = 1;
5458 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5459 		}
5460 		if (mddev->safemode == 1)
5461 			mddev->safemode = 0;
5462 		spin_unlock_irq(&mddev->write_lock);
5463 
5464 		if (mddev->flags)
5465 			md_update_sb(mddev, 0);
5466 
5467 
5468 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5469 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5470 			/* resync/recovery still happening */
5471 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5472 			goto unlock;
5473 		}
5474 		if (mddev->sync_thread) {
5475 			/* resync has finished, collect result */
5476 			md_unregister_thread(mddev->sync_thread);
5477 			mddev->sync_thread = NULL;
5478 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5479 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5480 				/* success...*/
5481 				/* activate any spares */
5482 				mddev->pers->spare_active(mddev);
5483 			}
5484 			md_update_sb(mddev, 1);
5485 
5486 			/* if array is no-longer degraded, then any saved_raid_disk
5487 			 * information must be scrapped
5488 			 */
5489 			if (!mddev->degraded)
5490 				ITERATE_RDEV(mddev,rdev,rtmp)
5491 					rdev->saved_raid_disk = -1;
5492 
5493 			mddev->recovery = 0;
5494 			/* flag recovery needed just to double check */
5495 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5496 			md_new_event(mddev);
5497 			goto unlock;
5498 		}
5499 		/* Clear some bits that don't mean anything, but
5500 		 * might be left set
5501 		 */
5502 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5503 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5504 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5505 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5506 
5507 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5508 			goto unlock;
5509 		/* no recovery is running.
5510 		 * remove any failed drives, then
5511 		 * add spares if possible.
5512 		 * Spare are also removed and re-added, to allow
5513 		 * the personality to fail the re-add.
5514 		 */
5515 
5516 		if (mddev->reshape_position != MaxSector) {
5517 			if (mddev->pers->check_reshape(mddev) != 0)
5518 				/* Cannot proceed */
5519 				goto unlock;
5520 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5521 		} else if ((spares = remove_and_add_spares(mddev))) {
5522 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5523 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5524 		} else if (mddev->recovery_cp < MaxSector) {
5525 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5526 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5527 			/* nothing to be done ... */
5528 			goto unlock;
5529 
5530 		if (mddev->pers->sync_request) {
5531 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5532 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5533 				/* We are adding a device or devices to an array
5534 				 * which has the bitmap stored on all devices.
5535 				 * So make sure all bitmap pages get written
5536 				 */
5537 				bitmap_write_all(mddev->bitmap);
5538 			}
5539 			mddev->sync_thread = md_register_thread(md_do_sync,
5540 								mddev,
5541 								"%s_resync");
5542 			if (!mddev->sync_thread) {
5543 				printk(KERN_ERR "%s: could not start resync"
5544 					" thread...\n",
5545 					mdname(mddev));
5546 				/* leave the spares where they are, it shouldn't hurt */
5547 				mddev->recovery = 0;
5548 			} else
5549 				md_wakeup_thread(mddev->sync_thread);
5550 			md_new_event(mddev);
5551 		}
5552 	unlock:
5553 		mddev_unlock(mddev);
5554 	}
5555 }
5556 
5557 static int md_notify_reboot(struct notifier_block *this,
5558 			    unsigned long code, void *x)
5559 {
5560 	struct list_head *tmp;
5561 	mddev_t *mddev;
5562 
5563 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5564 
5565 		printk(KERN_INFO "md: stopping all md devices.\n");
5566 
5567 		ITERATE_MDDEV(mddev,tmp)
5568 			if (mddev_trylock(mddev)) {
5569 				do_md_stop (mddev, 1);
5570 				mddev_unlock(mddev);
5571 			}
5572 		/*
5573 		 * certain more exotic SCSI devices are known to be
5574 		 * volatile wrt too early system reboots. While the
5575 		 * right place to handle this issue is the given
5576 		 * driver, we do want to have a safe RAID driver ...
5577 		 */
5578 		mdelay(1000*1);
5579 	}
5580 	return NOTIFY_DONE;
5581 }
5582 
5583 static struct notifier_block md_notifier = {
5584 	.notifier_call	= md_notify_reboot,
5585 	.next		= NULL,
5586 	.priority	= INT_MAX, /* before any real devices */
5587 };
5588 
5589 static void md_geninit(void)
5590 {
5591 	struct proc_dir_entry *p;
5592 
5593 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5594 
5595 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5596 	if (p)
5597 		p->proc_fops = &md_seq_fops;
5598 }
5599 
5600 static int __init md_init(void)
5601 {
5602 	if (register_blkdev(MAJOR_NR, "md"))
5603 		return -1;
5604 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5605 		unregister_blkdev(MAJOR_NR, "md");
5606 		return -1;
5607 	}
5608 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5609 			    md_probe, NULL, NULL);
5610 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5611 			    md_probe, NULL, NULL);
5612 
5613 	register_reboot_notifier(&md_notifier);
5614 	raid_table_header = register_sysctl_table(raid_root_table);
5615 
5616 	md_geninit();
5617 	return (0);
5618 }
5619 
5620 
5621 #ifndef MODULE
5622 
5623 /*
5624  * Searches all registered partitions for autorun RAID arrays
5625  * at boot time.
5626  */
5627 static dev_t detected_devices[128];
5628 static int dev_cnt;
5629 
5630 void md_autodetect_dev(dev_t dev)
5631 {
5632 	if (dev_cnt >= 0 && dev_cnt < 127)
5633 		detected_devices[dev_cnt++] = dev;
5634 }
5635 
5636 
5637 static void autostart_arrays(int part)
5638 {
5639 	mdk_rdev_t *rdev;
5640 	int i;
5641 
5642 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5643 
5644 	for (i = 0; i < dev_cnt; i++) {
5645 		dev_t dev = detected_devices[i];
5646 
5647 		rdev = md_import_device(dev,0, 0);
5648 		if (IS_ERR(rdev))
5649 			continue;
5650 
5651 		if (test_bit(Faulty, &rdev->flags)) {
5652 			MD_BUG();
5653 			continue;
5654 		}
5655 		list_add(&rdev->same_set, &pending_raid_disks);
5656 	}
5657 	dev_cnt = 0;
5658 
5659 	autorun_devices(part);
5660 }
5661 
5662 #endif /* !MODULE */
5663 
5664 static __exit void md_exit(void)
5665 {
5666 	mddev_t *mddev;
5667 	struct list_head *tmp;
5668 
5669 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5670 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5671 
5672 	unregister_blkdev(MAJOR_NR,"md");
5673 	unregister_blkdev(mdp_major, "mdp");
5674 	unregister_reboot_notifier(&md_notifier);
5675 	unregister_sysctl_table(raid_table_header);
5676 	remove_proc_entry("mdstat", NULL);
5677 	ITERATE_MDDEV(mddev,tmp) {
5678 		struct gendisk *disk = mddev->gendisk;
5679 		if (!disk)
5680 			continue;
5681 		export_array(mddev);
5682 		del_gendisk(disk);
5683 		put_disk(disk);
5684 		mddev->gendisk = NULL;
5685 		mddev_put(mddev);
5686 	}
5687 }
5688 
5689 module_init(md_init)
5690 module_exit(md_exit)
5691 
5692 static int get_ro(char *buffer, struct kernel_param *kp)
5693 {
5694 	return sprintf(buffer, "%d", start_readonly);
5695 }
5696 static int set_ro(const char *val, struct kernel_param *kp)
5697 {
5698 	char *e;
5699 	int num = simple_strtoul(val, &e, 10);
5700 	if (*val && (*e == '\0' || *e == '\n')) {
5701 		start_readonly = num;
5702 		return 0;
5703 	}
5704 	return -EINVAL;
5705 }
5706 
5707 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5708 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5709 
5710 
5711 EXPORT_SYMBOL(register_md_personality);
5712 EXPORT_SYMBOL(unregister_md_personality);
5713 EXPORT_SYMBOL(md_error);
5714 EXPORT_SYMBOL(md_done_sync);
5715 EXPORT_SYMBOL(md_write_start);
5716 EXPORT_SYMBOL(md_write_end);
5717 EXPORT_SYMBOL(md_register_thread);
5718 EXPORT_SYMBOL(md_unregister_thread);
5719 EXPORT_SYMBOL(md_wakeup_thread);
5720 EXPORT_SYMBOL(md_check_recovery);
5721 MODULE_LICENSE("GPL");
5722 MODULE_ALIAS("md");
5723 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5724