1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kthread.h> 37 #include <linux/linkage.h> 38 #include <linux/raid/md.h> 39 #include <linux/raid/bitmap.h> 40 #include <linux/sysctl.h> 41 #include <linux/buffer_head.h> /* for invalidate_bdev */ 42 #include <linux/poll.h> 43 #include <linux/mutex.h> 44 #include <linux/ctype.h> 45 #include <linux/freezer.h> 46 47 #include <linux/init.h> 48 49 #include <linux/file.h> 50 51 #ifdef CONFIG_KMOD 52 #include <linux/kmod.h> 53 #endif 54 55 #include <asm/unaligned.h> 56 57 #define MAJOR_NR MD_MAJOR 58 #define MD_DRIVER 59 60 /* 63 partitions with the alternate major number (mdp) */ 61 #define MdpMinorShift 6 62 63 #define DEBUG 0 64 #define dprintk(x...) ((void)(DEBUG && printk(x))) 65 66 67 #ifndef MODULE 68 static void autostart_arrays (int part); 69 #endif 70 71 static LIST_HEAD(pers_list); 72 static DEFINE_SPINLOCK(pers_lock); 73 74 static void md_print_devices(void); 75 76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 77 78 /* 79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 80 * is 1000 KB/sec, so the extra system load does not show up that much. 81 * Increase it if you want to have more _guaranteed_ speed. Note that 82 * the RAID driver will use the maximum available bandwidth if the IO 83 * subsystem is idle. There is also an 'absolute maximum' reconstruction 84 * speed limit - in case reconstruction slows down your system despite 85 * idle IO detection. 86 * 87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 88 * or /sys/block/mdX/md/sync_speed_{min,max} 89 */ 90 91 static int sysctl_speed_limit_min = 1000; 92 static int sysctl_speed_limit_max = 200000; 93 static inline int speed_min(mddev_t *mddev) 94 { 95 return mddev->sync_speed_min ? 96 mddev->sync_speed_min : sysctl_speed_limit_min; 97 } 98 99 static inline int speed_max(mddev_t *mddev) 100 { 101 return mddev->sync_speed_max ? 102 mddev->sync_speed_max : sysctl_speed_limit_max; 103 } 104 105 static struct ctl_table_header *raid_table_header; 106 107 static ctl_table raid_table[] = { 108 { 109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 110 .procname = "speed_limit_min", 111 .data = &sysctl_speed_limit_min, 112 .maxlen = sizeof(int), 113 .mode = S_IRUGO|S_IWUSR, 114 .proc_handler = &proc_dointvec, 115 }, 116 { 117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 118 .procname = "speed_limit_max", 119 .data = &sysctl_speed_limit_max, 120 .maxlen = sizeof(int), 121 .mode = S_IRUGO|S_IWUSR, 122 .proc_handler = &proc_dointvec, 123 }, 124 { .ctl_name = 0 } 125 }; 126 127 static ctl_table raid_dir_table[] = { 128 { 129 .ctl_name = DEV_RAID, 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { .ctl_name = 0 } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .ctl_name = CTL_DEV, 141 .procname = "dev", 142 .maxlen = 0, 143 .mode = 0555, 144 .child = raid_dir_table, 145 }, 146 { .ctl_name = 0 } 147 }; 148 149 static struct block_device_operations md_fops; 150 151 static int start_readonly; 152 153 /* 154 * We have a system wide 'event count' that is incremented 155 * on any 'interesting' event, and readers of /proc/mdstat 156 * can use 'poll' or 'select' to find out when the event 157 * count increases. 158 * 159 * Events are: 160 * start array, stop array, error, add device, remove device, 161 * start build, activate spare 162 */ 163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 164 static atomic_t md_event_count; 165 void md_new_event(mddev_t *mddev) 166 { 167 atomic_inc(&md_event_count); 168 wake_up(&md_event_waiters); 169 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 170 } 171 EXPORT_SYMBOL_GPL(md_new_event); 172 173 /* Alternate version that can be called from interrupts 174 * when calling sysfs_notify isn't needed. 175 */ 176 static void md_new_event_inintr(mddev_t *mddev) 177 { 178 atomic_inc(&md_event_count); 179 wake_up(&md_event_waiters); 180 } 181 182 /* 183 * Enables to iterate over all existing md arrays 184 * all_mddevs_lock protects this list. 185 */ 186 static LIST_HEAD(all_mddevs); 187 static DEFINE_SPINLOCK(all_mddevs_lock); 188 189 190 /* 191 * iterates through all used mddevs in the system. 192 * We take care to grab the all_mddevs_lock whenever navigating 193 * the list, and to always hold a refcount when unlocked. 194 * Any code which breaks out of this loop while own 195 * a reference to the current mddev and must mddev_put it. 196 */ 197 #define ITERATE_MDDEV(mddev,tmp) \ 198 \ 199 for (({ spin_lock(&all_mddevs_lock); \ 200 tmp = all_mddevs.next; \ 201 mddev = NULL;}); \ 202 ({ if (tmp != &all_mddevs) \ 203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 204 spin_unlock(&all_mddevs_lock); \ 205 if (mddev) mddev_put(mddev); \ 206 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 207 tmp != &all_mddevs;}); \ 208 ({ spin_lock(&all_mddevs_lock); \ 209 tmp = tmp->next;}) \ 210 ) 211 212 213 static int md_fail_request (request_queue_t *q, struct bio *bio) 214 { 215 bio_io_error(bio, bio->bi_size); 216 return 0; 217 } 218 219 static inline mddev_t *mddev_get(mddev_t *mddev) 220 { 221 atomic_inc(&mddev->active); 222 return mddev; 223 } 224 225 static void mddev_put(mddev_t *mddev) 226 { 227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 228 return; 229 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 230 list_del(&mddev->all_mddevs); 231 spin_unlock(&all_mddevs_lock); 232 blk_cleanup_queue(mddev->queue); 233 kobject_unregister(&mddev->kobj); 234 } else 235 spin_unlock(&all_mddevs_lock); 236 } 237 238 static mddev_t * mddev_find(dev_t unit) 239 { 240 mddev_t *mddev, *new = NULL; 241 242 retry: 243 spin_lock(&all_mddevs_lock); 244 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 245 if (mddev->unit == unit) { 246 mddev_get(mddev); 247 spin_unlock(&all_mddevs_lock); 248 kfree(new); 249 return mddev; 250 } 251 252 if (new) { 253 list_add(&new->all_mddevs, &all_mddevs); 254 spin_unlock(&all_mddevs_lock); 255 return new; 256 } 257 spin_unlock(&all_mddevs_lock); 258 259 new = kzalloc(sizeof(*new), GFP_KERNEL); 260 if (!new) 261 return NULL; 262 263 new->unit = unit; 264 if (MAJOR(unit) == MD_MAJOR) 265 new->md_minor = MINOR(unit); 266 else 267 new->md_minor = MINOR(unit) >> MdpMinorShift; 268 269 mutex_init(&new->reconfig_mutex); 270 INIT_LIST_HEAD(&new->disks); 271 INIT_LIST_HEAD(&new->all_mddevs); 272 init_timer(&new->safemode_timer); 273 atomic_set(&new->active, 1); 274 spin_lock_init(&new->write_lock); 275 init_waitqueue_head(&new->sb_wait); 276 277 new->queue = blk_alloc_queue(GFP_KERNEL); 278 if (!new->queue) { 279 kfree(new); 280 return NULL; 281 } 282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags); 283 284 blk_queue_make_request(new->queue, md_fail_request); 285 286 goto retry; 287 } 288 289 static inline int mddev_lock(mddev_t * mddev) 290 { 291 return mutex_lock_interruptible(&mddev->reconfig_mutex); 292 } 293 294 static inline int mddev_trylock(mddev_t * mddev) 295 { 296 return mutex_trylock(&mddev->reconfig_mutex); 297 } 298 299 static inline void mddev_unlock(mddev_t * mddev) 300 { 301 mutex_unlock(&mddev->reconfig_mutex); 302 303 md_wakeup_thread(mddev->thread); 304 } 305 306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 307 { 308 mdk_rdev_t * rdev; 309 struct list_head *tmp; 310 311 ITERATE_RDEV(mddev,rdev,tmp) { 312 if (rdev->desc_nr == nr) 313 return rdev; 314 } 315 return NULL; 316 } 317 318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 319 { 320 struct list_head *tmp; 321 mdk_rdev_t *rdev; 322 323 ITERATE_RDEV(mddev,rdev,tmp) { 324 if (rdev->bdev->bd_dev == dev) 325 return rdev; 326 } 327 return NULL; 328 } 329 330 static struct mdk_personality *find_pers(int level, char *clevel) 331 { 332 struct mdk_personality *pers; 333 list_for_each_entry(pers, &pers_list, list) { 334 if (level != LEVEL_NONE && pers->level == level) 335 return pers; 336 if (strcmp(pers->name, clevel)==0) 337 return pers; 338 } 339 return NULL; 340 } 341 342 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 343 { 344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 345 return MD_NEW_SIZE_BLOCKS(size); 346 } 347 348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 349 { 350 sector_t size; 351 352 size = rdev->sb_offset; 353 354 if (chunk_size) 355 size &= ~((sector_t)chunk_size/1024 - 1); 356 return size; 357 } 358 359 static int alloc_disk_sb(mdk_rdev_t * rdev) 360 { 361 if (rdev->sb_page) 362 MD_BUG(); 363 364 rdev->sb_page = alloc_page(GFP_KERNEL); 365 if (!rdev->sb_page) { 366 printk(KERN_ALERT "md: out of memory.\n"); 367 return -EINVAL; 368 } 369 370 return 0; 371 } 372 373 static void free_disk_sb(mdk_rdev_t * rdev) 374 { 375 if (rdev->sb_page) { 376 put_page(rdev->sb_page); 377 rdev->sb_loaded = 0; 378 rdev->sb_page = NULL; 379 rdev->sb_offset = 0; 380 rdev->size = 0; 381 } 382 } 383 384 385 static int super_written(struct bio *bio, unsigned int bytes_done, int error) 386 { 387 mdk_rdev_t *rdev = bio->bi_private; 388 mddev_t *mddev = rdev->mddev; 389 if (bio->bi_size) 390 return 1; 391 392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 393 printk("md: super_written gets error=%d, uptodate=%d\n", 394 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 396 md_error(mddev, rdev); 397 } 398 399 if (atomic_dec_and_test(&mddev->pending_writes)) 400 wake_up(&mddev->sb_wait); 401 bio_put(bio); 402 return 0; 403 } 404 405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error) 406 { 407 struct bio *bio2 = bio->bi_private; 408 mdk_rdev_t *rdev = bio2->bi_private; 409 mddev_t *mddev = rdev->mddev; 410 if (bio->bi_size) 411 return 1; 412 413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 414 error == -EOPNOTSUPP) { 415 unsigned long flags; 416 /* barriers don't appear to be supported :-( */ 417 set_bit(BarriersNotsupp, &rdev->flags); 418 mddev->barriers_work = 0; 419 spin_lock_irqsave(&mddev->write_lock, flags); 420 bio2->bi_next = mddev->biolist; 421 mddev->biolist = bio2; 422 spin_unlock_irqrestore(&mddev->write_lock, flags); 423 wake_up(&mddev->sb_wait); 424 bio_put(bio); 425 return 0; 426 } 427 bio_put(bio2); 428 bio->bi_private = rdev; 429 return super_written(bio, bytes_done, error); 430 } 431 432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 433 sector_t sector, int size, struct page *page) 434 { 435 /* write first size bytes of page to sector of rdev 436 * Increment mddev->pending_writes before returning 437 * and decrement it on completion, waking up sb_wait 438 * if zero is reached. 439 * If an error occurred, call md_error 440 * 441 * As we might need to resubmit the request if BIO_RW_BARRIER 442 * causes ENOTSUPP, we allocate a spare bio... 443 */ 444 struct bio *bio = bio_alloc(GFP_NOIO, 1); 445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 446 447 bio->bi_bdev = rdev->bdev; 448 bio->bi_sector = sector; 449 bio_add_page(bio, page, size, 0); 450 bio->bi_private = rdev; 451 bio->bi_end_io = super_written; 452 bio->bi_rw = rw; 453 454 atomic_inc(&mddev->pending_writes); 455 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 456 struct bio *rbio; 457 rw |= (1<<BIO_RW_BARRIER); 458 rbio = bio_clone(bio, GFP_NOIO); 459 rbio->bi_private = bio; 460 rbio->bi_end_io = super_written_barrier; 461 submit_bio(rw, rbio); 462 } else 463 submit_bio(rw, bio); 464 } 465 466 void md_super_wait(mddev_t *mddev) 467 { 468 /* wait for all superblock writes that were scheduled to complete. 469 * if any had to be retried (due to BARRIER problems), retry them 470 */ 471 DEFINE_WAIT(wq); 472 for(;;) { 473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 474 if (atomic_read(&mddev->pending_writes)==0) 475 break; 476 while (mddev->biolist) { 477 struct bio *bio; 478 spin_lock_irq(&mddev->write_lock); 479 bio = mddev->biolist; 480 mddev->biolist = bio->bi_next ; 481 bio->bi_next = NULL; 482 spin_unlock_irq(&mddev->write_lock); 483 submit_bio(bio->bi_rw, bio); 484 } 485 schedule(); 486 } 487 finish_wait(&mddev->sb_wait, &wq); 488 } 489 490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) 491 { 492 if (bio->bi_size) 493 return 1; 494 495 complete((struct completion*)bio->bi_private); 496 return 0; 497 } 498 499 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 500 struct page *page, int rw) 501 { 502 struct bio *bio = bio_alloc(GFP_NOIO, 1); 503 struct completion event; 504 int ret; 505 506 rw |= (1 << BIO_RW_SYNC); 507 508 bio->bi_bdev = bdev; 509 bio->bi_sector = sector; 510 bio_add_page(bio, page, size, 0); 511 init_completion(&event); 512 bio->bi_private = &event; 513 bio->bi_end_io = bi_complete; 514 submit_bio(rw, bio); 515 wait_for_completion(&event); 516 517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 518 bio_put(bio); 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(sync_page_io); 522 523 static int read_disk_sb(mdk_rdev_t * rdev, int size) 524 { 525 char b[BDEVNAME_SIZE]; 526 if (!rdev->sb_page) { 527 MD_BUG(); 528 return -EINVAL; 529 } 530 if (rdev->sb_loaded) 531 return 0; 532 533 534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 535 goto fail; 536 rdev->sb_loaded = 1; 537 return 0; 538 539 fail: 540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 541 bdevname(rdev->bdev,b)); 542 return -EINVAL; 543 } 544 545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 546 { 547 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 548 (sb1->set_uuid1 == sb2->set_uuid1) && 549 (sb1->set_uuid2 == sb2->set_uuid2) && 550 (sb1->set_uuid3 == sb2->set_uuid3)) 551 552 return 1; 553 554 return 0; 555 } 556 557 558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 559 { 560 int ret; 561 mdp_super_t *tmp1, *tmp2; 562 563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 565 566 if (!tmp1 || !tmp2) { 567 ret = 0; 568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 569 goto abort; 570 } 571 572 *tmp1 = *sb1; 573 *tmp2 = *sb2; 574 575 /* 576 * nr_disks is not constant 577 */ 578 tmp1->nr_disks = 0; 579 tmp2->nr_disks = 0; 580 581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 582 ret = 0; 583 else 584 ret = 1; 585 586 abort: 587 kfree(tmp1); 588 kfree(tmp2); 589 return ret; 590 } 591 592 static unsigned int calc_sb_csum(mdp_super_t * sb) 593 { 594 unsigned int disk_csum, csum; 595 596 disk_csum = sb->sb_csum; 597 sb->sb_csum = 0; 598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0); 599 sb->sb_csum = disk_csum; 600 return csum; 601 } 602 603 604 /* 605 * Handle superblock details. 606 * We want to be able to handle multiple superblock formats 607 * so we have a common interface to them all, and an array of 608 * different handlers. 609 * We rely on user-space to write the initial superblock, and support 610 * reading and updating of superblocks. 611 * Interface methods are: 612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 613 * loads and validates a superblock on dev. 614 * if refdev != NULL, compare superblocks on both devices 615 * Return: 616 * 0 - dev has a superblock that is compatible with refdev 617 * 1 - dev has a superblock that is compatible and newer than refdev 618 * so dev should be used as the refdev in future 619 * -EINVAL superblock incompatible or invalid 620 * -othererror e.g. -EIO 621 * 622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 623 * Verify that dev is acceptable into mddev. 624 * The first time, mddev->raid_disks will be 0, and data from 625 * dev should be merged in. Subsequent calls check that dev 626 * is new enough. Return 0 or -EINVAL 627 * 628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 629 * Update the superblock for rdev with data in mddev 630 * This does not write to disc. 631 * 632 */ 633 634 struct super_type { 635 char *name; 636 struct module *owner; 637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 640 }; 641 642 /* 643 * load_super for 0.90.0 644 */ 645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 646 { 647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 648 mdp_super_t *sb; 649 int ret; 650 sector_t sb_offset; 651 652 /* 653 * Calculate the position of the superblock, 654 * it's at the end of the disk. 655 * 656 * It also happens to be a multiple of 4Kb. 657 */ 658 sb_offset = calc_dev_sboffset(rdev->bdev); 659 rdev->sb_offset = sb_offset; 660 661 ret = read_disk_sb(rdev, MD_SB_BYTES); 662 if (ret) return ret; 663 664 ret = -EINVAL; 665 666 bdevname(rdev->bdev, b); 667 sb = (mdp_super_t*)page_address(rdev->sb_page); 668 669 if (sb->md_magic != MD_SB_MAGIC) { 670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 671 b); 672 goto abort; 673 } 674 675 if (sb->major_version != 0 || 676 sb->minor_version < 90 || 677 sb->minor_version > 91) { 678 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 679 sb->major_version, sb->minor_version, 680 b); 681 goto abort; 682 } 683 684 if (sb->raid_disks <= 0) 685 goto abort; 686 687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { 688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 689 b); 690 goto abort; 691 } 692 693 rdev->preferred_minor = sb->md_minor; 694 rdev->data_offset = 0; 695 rdev->sb_size = MD_SB_BYTES; 696 697 if (sb->level == LEVEL_MULTIPATH) 698 rdev->desc_nr = -1; 699 else 700 rdev->desc_nr = sb->this_disk.number; 701 702 if (refdev == 0) 703 ret = 1; 704 else { 705 __u64 ev1, ev2; 706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 707 if (!uuid_equal(refsb, sb)) { 708 printk(KERN_WARNING "md: %s has different UUID to %s\n", 709 b, bdevname(refdev->bdev,b2)); 710 goto abort; 711 } 712 if (!sb_equal(refsb, sb)) { 713 printk(KERN_WARNING "md: %s has same UUID" 714 " but different superblock to %s\n", 715 b, bdevname(refdev->bdev, b2)); 716 goto abort; 717 } 718 ev1 = md_event(sb); 719 ev2 = md_event(refsb); 720 if (ev1 > ev2) 721 ret = 1; 722 else 723 ret = 0; 724 } 725 rdev->size = calc_dev_size(rdev, sb->chunk_size); 726 727 if (rdev->size < sb->size && sb->level > 1) 728 /* "this cannot possibly happen" ... */ 729 ret = -EINVAL; 730 731 abort: 732 return ret; 733 } 734 735 /* 736 * validate_super for 0.90.0 737 */ 738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 739 { 740 mdp_disk_t *desc; 741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 742 __u64 ev1 = md_event(sb); 743 744 rdev->raid_disk = -1; 745 rdev->flags = 0; 746 if (mddev->raid_disks == 0) { 747 mddev->major_version = 0; 748 mddev->minor_version = sb->minor_version; 749 mddev->patch_version = sb->patch_version; 750 mddev->persistent = ! sb->not_persistent; 751 mddev->chunk_size = sb->chunk_size; 752 mddev->ctime = sb->ctime; 753 mddev->utime = sb->utime; 754 mddev->level = sb->level; 755 mddev->clevel[0] = 0; 756 mddev->layout = sb->layout; 757 mddev->raid_disks = sb->raid_disks; 758 mddev->size = sb->size; 759 mddev->events = ev1; 760 mddev->bitmap_offset = 0; 761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 762 763 if (mddev->minor_version >= 91) { 764 mddev->reshape_position = sb->reshape_position; 765 mddev->delta_disks = sb->delta_disks; 766 mddev->new_level = sb->new_level; 767 mddev->new_layout = sb->new_layout; 768 mddev->new_chunk = sb->new_chunk; 769 } else { 770 mddev->reshape_position = MaxSector; 771 mddev->delta_disks = 0; 772 mddev->new_level = mddev->level; 773 mddev->new_layout = mddev->layout; 774 mddev->new_chunk = mddev->chunk_size; 775 } 776 777 if (sb->state & (1<<MD_SB_CLEAN)) 778 mddev->recovery_cp = MaxSector; 779 else { 780 if (sb->events_hi == sb->cp_events_hi && 781 sb->events_lo == sb->cp_events_lo) { 782 mddev->recovery_cp = sb->recovery_cp; 783 } else 784 mddev->recovery_cp = 0; 785 } 786 787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 791 792 mddev->max_disks = MD_SB_DISKS; 793 794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 795 mddev->bitmap_file == NULL) { 796 if (mddev->level != 1 && mddev->level != 4 797 && mddev->level != 5 && mddev->level != 6 798 && mddev->level != 10) { 799 /* FIXME use a better test */ 800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 801 return -EINVAL; 802 } 803 mddev->bitmap_offset = mddev->default_bitmap_offset; 804 } 805 806 } else if (mddev->pers == NULL) { 807 /* Insist on good event counter while assembling */ 808 ++ev1; 809 if (ev1 < mddev->events) 810 return -EINVAL; 811 } else if (mddev->bitmap) { 812 /* if adding to array with a bitmap, then we can accept an 813 * older device ... but not too old. 814 */ 815 if (ev1 < mddev->bitmap->events_cleared) 816 return 0; 817 } else { 818 if (ev1 < mddev->events) 819 /* just a hot-add of a new device, leave raid_disk at -1 */ 820 return 0; 821 } 822 823 if (mddev->level != LEVEL_MULTIPATH) { 824 desc = sb->disks + rdev->desc_nr; 825 826 if (desc->state & (1<<MD_DISK_FAULTY)) 827 set_bit(Faulty, &rdev->flags); 828 else if (desc->state & (1<<MD_DISK_SYNC) /* && 829 desc->raid_disk < mddev->raid_disks */) { 830 set_bit(In_sync, &rdev->flags); 831 rdev->raid_disk = desc->raid_disk; 832 } 833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 834 set_bit(WriteMostly, &rdev->flags); 835 } else /* MULTIPATH are always insync */ 836 set_bit(In_sync, &rdev->flags); 837 return 0; 838 } 839 840 /* 841 * sync_super for 0.90.0 842 */ 843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 844 { 845 mdp_super_t *sb; 846 struct list_head *tmp; 847 mdk_rdev_t *rdev2; 848 int next_spare = mddev->raid_disks; 849 850 851 /* make rdev->sb match mddev data.. 852 * 853 * 1/ zero out disks 854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 855 * 3/ any empty disks < next_spare become removed 856 * 857 * disks[0] gets initialised to REMOVED because 858 * we cannot be sure from other fields if it has 859 * been initialised or not. 860 */ 861 int i; 862 int active=0, working=0,failed=0,spare=0,nr_disks=0; 863 864 rdev->sb_size = MD_SB_BYTES; 865 866 sb = (mdp_super_t*)page_address(rdev->sb_page); 867 868 memset(sb, 0, sizeof(*sb)); 869 870 sb->md_magic = MD_SB_MAGIC; 871 sb->major_version = mddev->major_version; 872 sb->patch_version = mddev->patch_version; 873 sb->gvalid_words = 0; /* ignored */ 874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 877 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 878 879 sb->ctime = mddev->ctime; 880 sb->level = mddev->level; 881 sb->size = mddev->size; 882 sb->raid_disks = mddev->raid_disks; 883 sb->md_minor = mddev->md_minor; 884 sb->not_persistent = !mddev->persistent; 885 sb->utime = mddev->utime; 886 sb->state = 0; 887 sb->events_hi = (mddev->events>>32); 888 sb->events_lo = (u32)mddev->events; 889 890 if (mddev->reshape_position == MaxSector) 891 sb->minor_version = 90; 892 else { 893 sb->minor_version = 91; 894 sb->reshape_position = mddev->reshape_position; 895 sb->new_level = mddev->new_level; 896 sb->delta_disks = mddev->delta_disks; 897 sb->new_layout = mddev->new_layout; 898 sb->new_chunk = mddev->new_chunk; 899 } 900 mddev->minor_version = sb->minor_version; 901 if (mddev->in_sync) 902 { 903 sb->recovery_cp = mddev->recovery_cp; 904 sb->cp_events_hi = (mddev->events>>32); 905 sb->cp_events_lo = (u32)mddev->events; 906 if (mddev->recovery_cp == MaxSector) 907 sb->state = (1<< MD_SB_CLEAN); 908 } else 909 sb->recovery_cp = 0; 910 911 sb->layout = mddev->layout; 912 sb->chunk_size = mddev->chunk_size; 913 914 if (mddev->bitmap && mddev->bitmap_file == NULL) 915 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 916 917 sb->disks[0].state = (1<<MD_DISK_REMOVED); 918 ITERATE_RDEV(mddev,rdev2,tmp) { 919 mdp_disk_t *d; 920 int desc_nr; 921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 922 && !test_bit(Faulty, &rdev2->flags)) 923 desc_nr = rdev2->raid_disk; 924 else 925 desc_nr = next_spare++; 926 rdev2->desc_nr = desc_nr; 927 d = &sb->disks[rdev2->desc_nr]; 928 nr_disks++; 929 d->number = rdev2->desc_nr; 930 d->major = MAJOR(rdev2->bdev->bd_dev); 931 d->minor = MINOR(rdev2->bdev->bd_dev); 932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 933 && !test_bit(Faulty, &rdev2->flags)) 934 d->raid_disk = rdev2->raid_disk; 935 else 936 d->raid_disk = rdev2->desc_nr; /* compatibility */ 937 if (test_bit(Faulty, &rdev2->flags)) 938 d->state = (1<<MD_DISK_FAULTY); 939 else if (test_bit(In_sync, &rdev2->flags)) { 940 d->state = (1<<MD_DISK_ACTIVE); 941 d->state |= (1<<MD_DISK_SYNC); 942 active++; 943 working++; 944 } else { 945 d->state = 0; 946 spare++; 947 working++; 948 } 949 if (test_bit(WriteMostly, &rdev2->flags)) 950 d->state |= (1<<MD_DISK_WRITEMOSTLY); 951 } 952 /* now set the "removed" and "faulty" bits on any missing devices */ 953 for (i=0 ; i < mddev->raid_disks ; i++) { 954 mdp_disk_t *d = &sb->disks[i]; 955 if (d->state == 0 && d->number == 0) { 956 d->number = i; 957 d->raid_disk = i; 958 d->state = (1<<MD_DISK_REMOVED); 959 d->state |= (1<<MD_DISK_FAULTY); 960 failed++; 961 } 962 } 963 sb->nr_disks = nr_disks; 964 sb->active_disks = active; 965 sb->working_disks = working; 966 sb->failed_disks = failed; 967 sb->spare_disks = spare; 968 969 sb->this_disk = sb->disks[rdev->desc_nr]; 970 sb->sb_csum = calc_sb_csum(sb); 971 } 972 973 /* 974 * version 1 superblock 975 */ 976 977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 978 { 979 __le32 disk_csum; 980 u32 csum; 981 unsigned long long newcsum; 982 int size = 256 + le32_to_cpu(sb->max_dev)*2; 983 __le32 *isuper = (__le32*)sb; 984 int i; 985 986 disk_csum = sb->sb_csum; 987 sb->sb_csum = 0; 988 newcsum = 0; 989 for (i=0; size>=4; size -= 4 ) 990 newcsum += le32_to_cpu(*isuper++); 991 992 if (size == 2) 993 newcsum += le16_to_cpu(*(__le16*) isuper); 994 995 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 996 sb->sb_csum = disk_csum; 997 return cpu_to_le32(csum); 998 } 999 1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1001 { 1002 struct mdp_superblock_1 *sb; 1003 int ret; 1004 sector_t sb_offset; 1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1006 int bmask; 1007 1008 /* 1009 * Calculate the position of the superblock. 1010 * It is always aligned to a 4K boundary and 1011 * depeding on minor_version, it can be: 1012 * 0: At least 8K, but less than 12K, from end of device 1013 * 1: At start of device 1014 * 2: 4K from start of device. 1015 */ 1016 switch(minor_version) { 1017 case 0: 1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1019 sb_offset -= 8*2; 1020 sb_offset &= ~(sector_t)(4*2-1); 1021 /* convert from sectors to K */ 1022 sb_offset /= 2; 1023 break; 1024 case 1: 1025 sb_offset = 0; 1026 break; 1027 case 2: 1028 sb_offset = 4; 1029 break; 1030 default: 1031 return -EINVAL; 1032 } 1033 rdev->sb_offset = sb_offset; 1034 1035 /* superblock is rarely larger than 1K, but it can be larger, 1036 * and it is safe to read 4k, so we do that 1037 */ 1038 ret = read_disk_sb(rdev, 4096); 1039 if (ret) return ret; 1040 1041 1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1043 1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1045 sb->major_version != cpu_to_le32(1) || 1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1049 return -EINVAL; 1050 1051 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1052 printk("md: invalid superblock checksum on %s\n", 1053 bdevname(rdev->bdev,b)); 1054 return -EINVAL; 1055 } 1056 if (le64_to_cpu(sb->data_size) < 10) { 1057 printk("md: data_size too small on %s\n", 1058 bdevname(rdev->bdev,b)); 1059 return -EINVAL; 1060 } 1061 rdev->preferred_minor = 0xffff; 1062 rdev->data_offset = le64_to_cpu(sb->data_offset); 1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1064 1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1067 if (rdev->sb_size & bmask) 1068 rdev-> sb_size = (rdev->sb_size | bmask)+1; 1069 1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1071 rdev->desc_nr = -1; 1072 else 1073 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1074 1075 if (refdev == 0) 1076 ret = 1; 1077 else { 1078 __u64 ev1, ev2; 1079 struct mdp_superblock_1 *refsb = 1080 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1081 1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1083 sb->level != refsb->level || 1084 sb->layout != refsb->layout || 1085 sb->chunksize != refsb->chunksize) { 1086 printk(KERN_WARNING "md: %s has strangely different" 1087 " superblock to %s\n", 1088 bdevname(rdev->bdev,b), 1089 bdevname(refdev->bdev,b2)); 1090 return -EINVAL; 1091 } 1092 ev1 = le64_to_cpu(sb->events); 1093 ev2 = le64_to_cpu(refsb->events); 1094 1095 if (ev1 > ev2) 1096 ret = 1; 1097 else 1098 ret = 0; 1099 } 1100 if (minor_version) 1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1102 else 1103 rdev->size = rdev->sb_offset; 1104 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1105 return -EINVAL; 1106 rdev->size = le64_to_cpu(sb->data_size)/2; 1107 if (le32_to_cpu(sb->chunksize)) 1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1109 1110 if (le64_to_cpu(sb->size) > rdev->size*2) 1111 return -EINVAL; 1112 return ret; 1113 } 1114 1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1116 { 1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1118 __u64 ev1 = le64_to_cpu(sb->events); 1119 1120 rdev->raid_disk = -1; 1121 rdev->flags = 0; 1122 if (mddev->raid_disks == 0) { 1123 mddev->major_version = 1; 1124 mddev->patch_version = 0; 1125 mddev->persistent = 1; 1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1129 mddev->level = le32_to_cpu(sb->level); 1130 mddev->clevel[0] = 0; 1131 mddev->layout = le32_to_cpu(sb->layout); 1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1133 mddev->size = le64_to_cpu(sb->size)/2; 1134 mddev->events = ev1; 1135 mddev->bitmap_offset = 0; 1136 mddev->default_bitmap_offset = 1024 >> 9; 1137 1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1139 memcpy(mddev->uuid, sb->set_uuid, 16); 1140 1141 mddev->max_disks = (4096-256)/2; 1142 1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1144 mddev->bitmap_file == NULL ) { 1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6 1146 && mddev->level != 10) { 1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 1148 return -EINVAL; 1149 } 1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1151 } 1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1155 mddev->new_level = le32_to_cpu(sb->new_level); 1156 mddev->new_layout = le32_to_cpu(sb->new_layout); 1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1158 } else { 1159 mddev->reshape_position = MaxSector; 1160 mddev->delta_disks = 0; 1161 mddev->new_level = mddev->level; 1162 mddev->new_layout = mddev->layout; 1163 mddev->new_chunk = mddev->chunk_size; 1164 } 1165 1166 } else if (mddev->pers == NULL) { 1167 /* Insist of good event counter while assembling */ 1168 ++ev1; 1169 if (ev1 < mddev->events) 1170 return -EINVAL; 1171 } else if (mddev->bitmap) { 1172 /* If adding to array with a bitmap, then we can accept an 1173 * older device, but not too old. 1174 */ 1175 if (ev1 < mddev->bitmap->events_cleared) 1176 return 0; 1177 } else { 1178 if (ev1 < mddev->events) 1179 /* just a hot-add of a new device, leave raid_disk at -1 */ 1180 return 0; 1181 } 1182 if (mddev->level != LEVEL_MULTIPATH) { 1183 int role; 1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1185 switch(role) { 1186 case 0xffff: /* spare */ 1187 break; 1188 case 0xfffe: /* faulty */ 1189 set_bit(Faulty, &rdev->flags); 1190 break; 1191 default: 1192 if ((le32_to_cpu(sb->feature_map) & 1193 MD_FEATURE_RECOVERY_OFFSET)) 1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1195 else 1196 set_bit(In_sync, &rdev->flags); 1197 rdev->raid_disk = role; 1198 break; 1199 } 1200 if (sb->devflags & WriteMostly1) 1201 set_bit(WriteMostly, &rdev->flags); 1202 } else /* MULTIPATH are always insync */ 1203 set_bit(In_sync, &rdev->flags); 1204 1205 return 0; 1206 } 1207 1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1209 { 1210 struct mdp_superblock_1 *sb; 1211 struct list_head *tmp; 1212 mdk_rdev_t *rdev2; 1213 int max_dev, i; 1214 /* make rdev->sb match mddev and rdev data. */ 1215 1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1217 1218 sb->feature_map = 0; 1219 sb->pad0 = 0; 1220 sb->recovery_offset = cpu_to_le64(0); 1221 memset(sb->pad1, 0, sizeof(sb->pad1)); 1222 memset(sb->pad2, 0, sizeof(sb->pad2)); 1223 memset(sb->pad3, 0, sizeof(sb->pad3)); 1224 1225 sb->utime = cpu_to_le64((__u64)mddev->utime); 1226 sb->events = cpu_to_le64(mddev->events); 1227 if (mddev->in_sync) 1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1229 else 1230 sb->resync_offset = cpu_to_le64(0); 1231 1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1233 1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1235 sb->size = cpu_to_le64(mddev->size<<1); 1236 1237 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1240 } 1241 1242 if (rdev->raid_disk >= 0 && 1243 !test_bit(In_sync, &rdev->flags) && 1244 rdev->recovery_offset > 0) { 1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1247 } 1248 1249 if (mddev->reshape_position != MaxSector) { 1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1252 sb->new_layout = cpu_to_le32(mddev->new_layout); 1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1254 sb->new_level = cpu_to_le32(mddev->new_level); 1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1256 } 1257 1258 max_dev = 0; 1259 ITERATE_RDEV(mddev,rdev2,tmp) 1260 if (rdev2->desc_nr+1 > max_dev) 1261 max_dev = rdev2->desc_nr+1; 1262 1263 sb->max_dev = cpu_to_le32(max_dev); 1264 for (i=0; i<max_dev;i++) 1265 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1266 1267 ITERATE_RDEV(mddev,rdev2,tmp) { 1268 i = rdev2->desc_nr; 1269 if (test_bit(Faulty, &rdev2->flags)) 1270 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1271 else if (test_bit(In_sync, &rdev2->flags)) 1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1275 else 1276 sb->dev_roles[i] = cpu_to_le16(0xffff); 1277 } 1278 1279 sb->sb_csum = calc_sb_1_csum(sb); 1280 } 1281 1282 1283 static struct super_type super_types[] = { 1284 [0] = { 1285 .name = "0.90.0", 1286 .owner = THIS_MODULE, 1287 .load_super = super_90_load, 1288 .validate_super = super_90_validate, 1289 .sync_super = super_90_sync, 1290 }, 1291 [1] = { 1292 .name = "md-1", 1293 .owner = THIS_MODULE, 1294 .load_super = super_1_load, 1295 .validate_super = super_1_validate, 1296 .sync_super = super_1_sync, 1297 }, 1298 }; 1299 1300 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1301 { 1302 struct list_head *tmp, *tmp2; 1303 mdk_rdev_t *rdev, *rdev2; 1304 1305 ITERATE_RDEV(mddev1,rdev,tmp) 1306 ITERATE_RDEV(mddev2, rdev2, tmp2) 1307 if (rdev->bdev->bd_contains == 1308 rdev2->bdev->bd_contains) 1309 return 1; 1310 1311 return 0; 1312 } 1313 1314 static LIST_HEAD(pending_raid_disks); 1315 1316 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1317 { 1318 char b[BDEVNAME_SIZE]; 1319 struct kobject *ko; 1320 char *s; 1321 1322 if (rdev->mddev) { 1323 MD_BUG(); 1324 return -EINVAL; 1325 } 1326 /* make sure rdev->size exceeds mddev->size */ 1327 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1328 if (mddev->pers) 1329 /* Cannot change size, so fail */ 1330 return -ENOSPC; 1331 else 1332 mddev->size = rdev->size; 1333 } 1334 1335 /* Verify rdev->desc_nr is unique. 1336 * If it is -1, assign a free number, else 1337 * check number is not in use 1338 */ 1339 if (rdev->desc_nr < 0) { 1340 int choice = 0; 1341 if (mddev->pers) choice = mddev->raid_disks; 1342 while (find_rdev_nr(mddev, choice)) 1343 choice++; 1344 rdev->desc_nr = choice; 1345 } else { 1346 if (find_rdev_nr(mddev, rdev->desc_nr)) 1347 return -EBUSY; 1348 } 1349 bdevname(rdev->bdev,b); 1350 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0) 1351 return -ENOMEM; 1352 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL) 1353 *s = '!'; 1354 1355 list_add(&rdev->same_set, &mddev->disks); 1356 rdev->mddev = mddev; 1357 printk(KERN_INFO "md: bind<%s>\n", b); 1358 1359 rdev->kobj.parent = &mddev->kobj; 1360 kobject_add(&rdev->kobj); 1361 1362 if (rdev->bdev->bd_part) 1363 ko = &rdev->bdev->bd_part->kobj; 1364 else 1365 ko = &rdev->bdev->bd_disk->kobj; 1366 sysfs_create_link(&rdev->kobj, ko, "block"); 1367 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk); 1368 return 0; 1369 } 1370 1371 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1372 { 1373 char b[BDEVNAME_SIZE]; 1374 if (!rdev->mddev) { 1375 MD_BUG(); 1376 return; 1377 } 1378 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1379 list_del_init(&rdev->same_set); 1380 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1381 rdev->mddev = NULL; 1382 sysfs_remove_link(&rdev->kobj, "block"); 1383 kobject_del(&rdev->kobj); 1384 } 1385 1386 /* 1387 * prevent the device from being mounted, repartitioned or 1388 * otherwise reused by a RAID array (or any other kernel 1389 * subsystem), by bd_claiming the device. 1390 */ 1391 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1392 { 1393 int err = 0; 1394 struct block_device *bdev; 1395 char b[BDEVNAME_SIZE]; 1396 1397 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1398 if (IS_ERR(bdev)) { 1399 printk(KERN_ERR "md: could not open %s.\n", 1400 __bdevname(dev, b)); 1401 return PTR_ERR(bdev); 1402 } 1403 err = bd_claim(bdev, rdev); 1404 if (err) { 1405 printk(KERN_ERR "md: could not bd_claim %s.\n", 1406 bdevname(bdev, b)); 1407 blkdev_put(bdev); 1408 return err; 1409 } 1410 rdev->bdev = bdev; 1411 return err; 1412 } 1413 1414 static void unlock_rdev(mdk_rdev_t *rdev) 1415 { 1416 struct block_device *bdev = rdev->bdev; 1417 rdev->bdev = NULL; 1418 if (!bdev) 1419 MD_BUG(); 1420 bd_release(bdev); 1421 blkdev_put(bdev); 1422 } 1423 1424 void md_autodetect_dev(dev_t dev); 1425 1426 static void export_rdev(mdk_rdev_t * rdev) 1427 { 1428 char b[BDEVNAME_SIZE]; 1429 printk(KERN_INFO "md: export_rdev(%s)\n", 1430 bdevname(rdev->bdev,b)); 1431 if (rdev->mddev) 1432 MD_BUG(); 1433 free_disk_sb(rdev); 1434 list_del_init(&rdev->same_set); 1435 #ifndef MODULE 1436 md_autodetect_dev(rdev->bdev->bd_dev); 1437 #endif 1438 unlock_rdev(rdev); 1439 kobject_put(&rdev->kobj); 1440 } 1441 1442 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1443 { 1444 unbind_rdev_from_array(rdev); 1445 export_rdev(rdev); 1446 } 1447 1448 static void export_array(mddev_t *mddev) 1449 { 1450 struct list_head *tmp; 1451 mdk_rdev_t *rdev; 1452 1453 ITERATE_RDEV(mddev,rdev,tmp) { 1454 if (!rdev->mddev) { 1455 MD_BUG(); 1456 continue; 1457 } 1458 kick_rdev_from_array(rdev); 1459 } 1460 if (!list_empty(&mddev->disks)) 1461 MD_BUG(); 1462 mddev->raid_disks = 0; 1463 mddev->major_version = 0; 1464 } 1465 1466 static void print_desc(mdp_disk_t *desc) 1467 { 1468 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1469 desc->major,desc->minor,desc->raid_disk,desc->state); 1470 } 1471 1472 static void print_sb(mdp_super_t *sb) 1473 { 1474 int i; 1475 1476 printk(KERN_INFO 1477 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1478 sb->major_version, sb->minor_version, sb->patch_version, 1479 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1480 sb->ctime); 1481 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1482 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1483 sb->md_minor, sb->layout, sb->chunk_size); 1484 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1485 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1486 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1487 sb->failed_disks, sb->spare_disks, 1488 sb->sb_csum, (unsigned long)sb->events_lo); 1489 1490 printk(KERN_INFO); 1491 for (i = 0; i < MD_SB_DISKS; i++) { 1492 mdp_disk_t *desc; 1493 1494 desc = sb->disks + i; 1495 if (desc->number || desc->major || desc->minor || 1496 desc->raid_disk || (desc->state && (desc->state != 4))) { 1497 printk(" D %2d: ", i); 1498 print_desc(desc); 1499 } 1500 } 1501 printk(KERN_INFO "md: THIS: "); 1502 print_desc(&sb->this_disk); 1503 1504 } 1505 1506 static void print_rdev(mdk_rdev_t *rdev) 1507 { 1508 char b[BDEVNAME_SIZE]; 1509 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1510 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1511 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1512 rdev->desc_nr); 1513 if (rdev->sb_loaded) { 1514 printk(KERN_INFO "md: rdev superblock:\n"); 1515 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1516 } else 1517 printk(KERN_INFO "md: no rdev superblock!\n"); 1518 } 1519 1520 static void md_print_devices(void) 1521 { 1522 struct list_head *tmp, *tmp2; 1523 mdk_rdev_t *rdev; 1524 mddev_t *mddev; 1525 char b[BDEVNAME_SIZE]; 1526 1527 printk("\n"); 1528 printk("md: **********************************\n"); 1529 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1530 printk("md: **********************************\n"); 1531 ITERATE_MDDEV(mddev,tmp) { 1532 1533 if (mddev->bitmap) 1534 bitmap_print_sb(mddev->bitmap); 1535 else 1536 printk("%s: ", mdname(mddev)); 1537 ITERATE_RDEV(mddev,rdev,tmp2) 1538 printk("<%s>", bdevname(rdev->bdev,b)); 1539 printk("\n"); 1540 1541 ITERATE_RDEV(mddev,rdev,tmp2) 1542 print_rdev(rdev); 1543 } 1544 printk("md: **********************************\n"); 1545 printk("\n"); 1546 } 1547 1548 1549 static void sync_sbs(mddev_t * mddev, int nospares) 1550 { 1551 /* Update each superblock (in-memory image), but 1552 * if we are allowed to, skip spares which already 1553 * have the right event counter, or have one earlier 1554 * (which would mean they aren't being marked as dirty 1555 * with the rest of the array) 1556 */ 1557 mdk_rdev_t *rdev; 1558 struct list_head *tmp; 1559 1560 ITERATE_RDEV(mddev,rdev,tmp) { 1561 if (rdev->sb_events == mddev->events || 1562 (nospares && 1563 rdev->raid_disk < 0 && 1564 (rdev->sb_events&1)==0 && 1565 rdev->sb_events+1 == mddev->events)) { 1566 /* Don't update this superblock */ 1567 rdev->sb_loaded = 2; 1568 } else { 1569 super_types[mddev->major_version]. 1570 sync_super(mddev, rdev); 1571 rdev->sb_loaded = 1; 1572 } 1573 } 1574 } 1575 1576 static void md_update_sb(mddev_t * mddev, int force_change) 1577 { 1578 int err; 1579 struct list_head *tmp; 1580 mdk_rdev_t *rdev; 1581 int sync_req; 1582 int nospares = 0; 1583 1584 repeat: 1585 spin_lock_irq(&mddev->write_lock); 1586 1587 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1588 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1589 force_change = 1; 1590 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1591 /* just a clean<-> dirty transition, possibly leave spares alone, 1592 * though if events isn't the right even/odd, we will have to do 1593 * spares after all 1594 */ 1595 nospares = 1; 1596 if (force_change) 1597 nospares = 0; 1598 if (mddev->degraded) 1599 /* If the array is degraded, then skipping spares is both 1600 * dangerous and fairly pointless. 1601 * Dangerous because a device that was removed from the array 1602 * might have a event_count that still looks up-to-date, 1603 * so it can be re-added without a resync. 1604 * Pointless because if there are any spares to skip, 1605 * then a recovery will happen and soon that array won't 1606 * be degraded any more and the spare can go back to sleep then. 1607 */ 1608 nospares = 0; 1609 1610 sync_req = mddev->in_sync; 1611 mddev->utime = get_seconds(); 1612 1613 /* If this is just a dirty<->clean transition, and the array is clean 1614 * and 'events' is odd, we can roll back to the previous clean state */ 1615 if (nospares 1616 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1617 && (mddev->events & 1) 1618 && mddev->events != 1) 1619 mddev->events--; 1620 else { 1621 /* otherwise we have to go forward and ... */ 1622 mddev->events ++; 1623 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1624 /* .. if the array isn't clean, insist on an odd 'events' */ 1625 if ((mddev->events&1)==0) { 1626 mddev->events++; 1627 nospares = 0; 1628 } 1629 } else { 1630 /* otherwise insist on an even 'events' (for clean states) */ 1631 if ((mddev->events&1)) { 1632 mddev->events++; 1633 nospares = 0; 1634 } 1635 } 1636 } 1637 1638 if (!mddev->events) { 1639 /* 1640 * oops, this 64-bit counter should never wrap. 1641 * Either we are in around ~1 trillion A.C., assuming 1642 * 1 reboot per second, or we have a bug: 1643 */ 1644 MD_BUG(); 1645 mddev->events --; 1646 } 1647 sync_sbs(mddev, nospares); 1648 1649 /* 1650 * do not write anything to disk if using 1651 * nonpersistent superblocks 1652 */ 1653 if (!mddev->persistent) { 1654 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1655 spin_unlock_irq(&mddev->write_lock); 1656 wake_up(&mddev->sb_wait); 1657 return; 1658 } 1659 spin_unlock_irq(&mddev->write_lock); 1660 1661 dprintk(KERN_INFO 1662 "md: updating %s RAID superblock on device (in sync %d)\n", 1663 mdname(mddev),mddev->in_sync); 1664 1665 err = bitmap_update_sb(mddev->bitmap); 1666 ITERATE_RDEV(mddev,rdev,tmp) { 1667 char b[BDEVNAME_SIZE]; 1668 dprintk(KERN_INFO "md: "); 1669 if (rdev->sb_loaded != 1) 1670 continue; /* no noise on spare devices */ 1671 if (test_bit(Faulty, &rdev->flags)) 1672 dprintk("(skipping faulty "); 1673 1674 dprintk("%s ", bdevname(rdev->bdev,b)); 1675 if (!test_bit(Faulty, &rdev->flags)) { 1676 md_super_write(mddev,rdev, 1677 rdev->sb_offset<<1, rdev->sb_size, 1678 rdev->sb_page); 1679 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1680 bdevname(rdev->bdev,b), 1681 (unsigned long long)rdev->sb_offset); 1682 rdev->sb_events = mddev->events; 1683 1684 } else 1685 dprintk(")\n"); 1686 if (mddev->level == LEVEL_MULTIPATH) 1687 /* only need to write one superblock... */ 1688 break; 1689 } 1690 md_super_wait(mddev); 1691 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1692 1693 spin_lock_irq(&mddev->write_lock); 1694 if (mddev->in_sync != sync_req || 1695 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1696 /* have to write it out again */ 1697 spin_unlock_irq(&mddev->write_lock); 1698 goto repeat; 1699 } 1700 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1701 spin_unlock_irq(&mddev->write_lock); 1702 wake_up(&mddev->sb_wait); 1703 1704 } 1705 1706 /* words written to sysfs files may, or my not, be \n terminated. 1707 * We want to accept with case. For this we use cmd_match. 1708 */ 1709 static int cmd_match(const char *cmd, const char *str) 1710 { 1711 /* See if cmd, written into a sysfs file, matches 1712 * str. They must either be the same, or cmd can 1713 * have a trailing newline 1714 */ 1715 while (*cmd && *str && *cmd == *str) { 1716 cmd++; 1717 str++; 1718 } 1719 if (*cmd == '\n') 1720 cmd++; 1721 if (*str || *cmd) 1722 return 0; 1723 return 1; 1724 } 1725 1726 struct rdev_sysfs_entry { 1727 struct attribute attr; 1728 ssize_t (*show)(mdk_rdev_t *, char *); 1729 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1730 }; 1731 1732 static ssize_t 1733 state_show(mdk_rdev_t *rdev, char *page) 1734 { 1735 char *sep = ""; 1736 int len=0; 1737 1738 if (test_bit(Faulty, &rdev->flags)) { 1739 len+= sprintf(page+len, "%sfaulty",sep); 1740 sep = ","; 1741 } 1742 if (test_bit(In_sync, &rdev->flags)) { 1743 len += sprintf(page+len, "%sin_sync",sep); 1744 sep = ","; 1745 } 1746 if (test_bit(WriteMostly, &rdev->flags)) { 1747 len += sprintf(page+len, "%swrite_mostly",sep); 1748 sep = ","; 1749 } 1750 if (!test_bit(Faulty, &rdev->flags) && 1751 !test_bit(In_sync, &rdev->flags)) { 1752 len += sprintf(page+len, "%sspare", sep); 1753 sep = ","; 1754 } 1755 return len+sprintf(page+len, "\n"); 1756 } 1757 1758 static ssize_t 1759 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1760 { 1761 /* can write 1762 * faulty - simulates and error 1763 * remove - disconnects the device 1764 * writemostly - sets write_mostly 1765 * -writemostly - clears write_mostly 1766 */ 1767 int err = -EINVAL; 1768 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1769 md_error(rdev->mddev, rdev); 1770 err = 0; 1771 } else if (cmd_match(buf, "remove")) { 1772 if (rdev->raid_disk >= 0) 1773 err = -EBUSY; 1774 else { 1775 mddev_t *mddev = rdev->mddev; 1776 kick_rdev_from_array(rdev); 1777 if (mddev->pers) 1778 md_update_sb(mddev, 1); 1779 md_new_event(mddev); 1780 err = 0; 1781 } 1782 } else if (cmd_match(buf, "writemostly")) { 1783 set_bit(WriteMostly, &rdev->flags); 1784 err = 0; 1785 } else if (cmd_match(buf, "-writemostly")) { 1786 clear_bit(WriteMostly, &rdev->flags); 1787 err = 0; 1788 } 1789 return err ? err : len; 1790 } 1791 static struct rdev_sysfs_entry rdev_state = 1792 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1793 1794 static ssize_t 1795 super_show(mdk_rdev_t *rdev, char *page) 1796 { 1797 if (rdev->sb_loaded && rdev->sb_size) { 1798 memcpy(page, page_address(rdev->sb_page), rdev->sb_size); 1799 return rdev->sb_size; 1800 } else 1801 return 0; 1802 } 1803 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); 1804 1805 static ssize_t 1806 errors_show(mdk_rdev_t *rdev, char *page) 1807 { 1808 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1809 } 1810 1811 static ssize_t 1812 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1813 { 1814 char *e; 1815 unsigned long n = simple_strtoul(buf, &e, 10); 1816 if (*buf && (*e == 0 || *e == '\n')) { 1817 atomic_set(&rdev->corrected_errors, n); 1818 return len; 1819 } 1820 return -EINVAL; 1821 } 1822 static struct rdev_sysfs_entry rdev_errors = 1823 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1824 1825 static ssize_t 1826 slot_show(mdk_rdev_t *rdev, char *page) 1827 { 1828 if (rdev->raid_disk < 0) 1829 return sprintf(page, "none\n"); 1830 else 1831 return sprintf(page, "%d\n", rdev->raid_disk); 1832 } 1833 1834 static ssize_t 1835 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1836 { 1837 char *e; 1838 int slot = simple_strtoul(buf, &e, 10); 1839 if (strncmp(buf, "none", 4)==0) 1840 slot = -1; 1841 else if (e==buf || (*e && *e!= '\n')) 1842 return -EINVAL; 1843 if (rdev->mddev->pers) 1844 /* Cannot set slot in active array (yet) */ 1845 return -EBUSY; 1846 if (slot >= rdev->mddev->raid_disks) 1847 return -ENOSPC; 1848 rdev->raid_disk = slot; 1849 /* assume it is working */ 1850 rdev->flags = 0; 1851 set_bit(In_sync, &rdev->flags); 1852 return len; 1853 } 1854 1855 1856 static struct rdev_sysfs_entry rdev_slot = 1857 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1858 1859 static ssize_t 1860 offset_show(mdk_rdev_t *rdev, char *page) 1861 { 1862 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1863 } 1864 1865 static ssize_t 1866 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1867 { 1868 char *e; 1869 unsigned long long offset = simple_strtoull(buf, &e, 10); 1870 if (e==buf || (*e && *e != '\n')) 1871 return -EINVAL; 1872 if (rdev->mddev->pers) 1873 return -EBUSY; 1874 rdev->data_offset = offset; 1875 return len; 1876 } 1877 1878 static struct rdev_sysfs_entry rdev_offset = 1879 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1880 1881 static ssize_t 1882 rdev_size_show(mdk_rdev_t *rdev, char *page) 1883 { 1884 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 1885 } 1886 1887 static ssize_t 1888 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1889 { 1890 char *e; 1891 unsigned long long size = simple_strtoull(buf, &e, 10); 1892 if (e==buf || (*e && *e != '\n')) 1893 return -EINVAL; 1894 if (rdev->mddev->pers) 1895 return -EBUSY; 1896 rdev->size = size; 1897 if (size < rdev->mddev->size || rdev->mddev->size == 0) 1898 rdev->mddev->size = size; 1899 return len; 1900 } 1901 1902 static struct rdev_sysfs_entry rdev_size = 1903 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 1904 1905 static struct attribute *rdev_default_attrs[] = { 1906 &rdev_state.attr, 1907 &rdev_super.attr, 1908 &rdev_errors.attr, 1909 &rdev_slot.attr, 1910 &rdev_offset.attr, 1911 &rdev_size.attr, 1912 NULL, 1913 }; 1914 static ssize_t 1915 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 1916 { 1917 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1918 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1919 1920 if (!entry->show) 1921 return -EIO; 1922 return entry->show(rdev, page); 1923 } 1924 1925 static ssize_t 1926 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 1927 const char *page, size_t length) 1928 { 1929 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1930 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1931 1932 if (!entry->store) 1933 return -EIO; 1934 if (!capable(CAP_SYS_ADMIN)) 1935 return -EACCES; 1936 return entry->store(rdev, page, length); 1937 } 1938 1939 static void rdev_free(struct kobject *ko) 1940 { 1941 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 1942 kfree(rdev); 1943 } 1944 static struct sysfs_ops rdev_sysfs_ops = { 1945 .show = rdev_attr_show, 1946 .store = rdev_attr_store, 1947 }; 1948 static struct kobj_type rdev_ktype = { 1949 .release = rdev_free, 1950 .sysfs_ops = &rdev_sysfs_ops, 1951 .default_attrs = rdev_default_attrs, 1952 }; 1953 1954 /* 1955 * Import a device. If 'super_format' >= 0, then sanity check the superblock 1956 * 1957 * mark the device faulty if: 1958 * 1959 * - the device is nonexistent (zero size) 1960 * - the device has no valid superblock 1961 * 1962 * a faulty rdev _never_ has rdev->sb set. 1963 */ 1964 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 1965 { 1966 char b[BDEVNAME_SIZE]; 1967 int err; 1968 mdk_rdev_t *rdev; 1969 sector_t size; 1970 1971 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 1972 if (!rdev) { 1973 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 1974 return ERR_PTR(-ENOMEM); 1975 } 1976 1977 if ((err = alloc_disk_sb(rdev))) 1978 goto abort_free; 1979 1980 err = lock_rdev(rdev, newdev); 1981 if (err) 1982 goto abort_free; 1983 1984 rdev->kobj.parent = NULL; 1985 rdev->kobj.ktype = &rdev_ktype; 1986 kobject_init(&rdev->kobj); 1987 1988 rdev->desc_nr = -1; 1989 rdev->saved_raid_disk = -1; 1990 rdev->raid_disk = -1; 1991 rdev->flags = 0; 1992 rdev->data_offset = 0; 1993 rdev->sb_events = 0; 1994 atomic_set(&rdev->nr_pending, 0); 1995 atomic_set(&rdev->read_errors, 0); 1996 atomic_set(&rdev->corrected_errors, 0); 1997 1998 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 1999 if (!size) { 2000 printk(KERN_WARNING 2001 "md: %s has zero or unknown size, marking faulty!\n", 2002 bdevname(rdev->bdev,b)); 2003 err = -EINVAL; 2004 goto abort_free; 2005 } 2006 2007 if (super_format >= 0) { 2008 err = super_types[super_format]. 2009 load_super(rdev, NULL, super_minor); 2010 if (err == -EINVAL) { 2011 printk(KERN_WARNING 2012 "md: %s has invalid sb, not importing!\n", 2013 bdevname(rdev->bdev,b)); 2014 goto abort_free; 2015 } 2016 if (err < 0) { 2017 printk(KERN_WARNING 2018 "md: could not read %s's sb, not importing!\n", 2019 bdevname(rdev->bdev,b)); 2020 goto abort_free; 2021 } 2022 } 2023 INIT_LIST_HEAD(&rdev->same_set); 2024 2025 return rdev; 2026 2027 abort_free: 2028 if (rdev->sb_page) { 2029 if (rdev->bdev) 2030 unlock_rdev(rdev); 2031 free_disk_sb(rdev); 2032 } 2033 kfree(rdev); 2034 return ERR_PTR(err); 2035 } 2036 2037 /* 2038 * Check a full RAID array for plausibility 2039 */ 2040 2041 2042 static void analyze_sbs(mddev_t * mddev) 2043 { 2044 int i; 2045 struct list_head *tmp; 2046 mdk_rdev_t *rdev, *freshest; 2047 char b[BDEVNAME_SIZE]; 2048 2049 freshest = NULL; 2050 ITERATE_RDEV(mddev,rdev,tmp) 2051 switch (super_types[mddev->major_version]. 2052 load_super(rdev, freshest, mddev->minor_version)) { 2053 case 1: 2054 freshest = rdev; 2055 break; 2056 case 0: 2057 break; 2058 default: 2059 printk( KERN_ERR \ 2060 "md: fatal superblock inconsistency in %s" 2061 " -- removing from array\n", 2062 bdevname(rdev->bdev,b)); 2063 kick_rdev_from_array(rdev); 2064 } 2065 2066 2067 super_types[mddev->major_version]. 2068 validate_super(mddev, freshest); 2069 2070 i = 0; 2071 ITERATE_RDEV(mddev,rdev,tmp) { 2072 if (rdev != freshest) 2073 if (super_types[mddev->major_version]. 2074 validate_super(mddev, rdev)) { 2075 printk(KERN_WARNING "md: kicking non-fresh %s" 2076 " from array!\n", 2077 bdevname(rdev->bdev,b)); 2078 kick_rdev_from_array(rdev); 2079 continue; 2080 } 2081 if (mddev->level == LEVEL_MULTIPATH) { 2082 rdev->desc_nr = i++; 2083 rdev->raid_disk = rdev->desc_nr; 2084 set_bit(In_sync, &rdev->flags); 2085 } 2086 } 2087 2088 2089 2090 if (mddev->recovery_cp != MaxSector && 2091 mddev->level >= 1) 2092 printk(KERN_ERR "md: %s: raid array is not clean" 2093 " -- starting background reconstruction\n", 2094 mdname(mddev)); 2095 2096 } 2097 2098 static ssize_t 2099 safe_delay_show(mddev_t *mddev, char *page) 2100 { 2101 int msec = (mddev->safemode_delay*1000)/HZ; 2102 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2103 } 2104 static ssize_t 2105 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2106 { 2107 int scale=1; 2108 int dot=0; 2109 int i; 2110 unsigned long msec; 2111 char buf[30]; 2112 char *e; 2113 /* remove a period, and count digits after it */ 2114 if (len >= sizeof(buf)) 2115 return -EINVAL; 2116 strlcpy(buf, cbuf, len); 2117 buf[len] = 0; 2118 for (i=0; i<len; i++) { 2119 if (dot) { 2120 if (isdigit(buf[i])) { 2121 buf[i-1] = buf[i]; 2122 scale *= 10; 2123 } 2124 buf[i] = 0; 2125 } else if (buf[i] == '.') { 2126 dot=1; 2127 buf[i] = 0; 2128 } 2129 } 2130 msec = simple_strtoul(buf, &e, 10); 2131 if (e == buf || (*e && *e != '\n')) 2132 return -EINVAL; 2133 msec = (msec * 1000) / scale; 2134 if (msec == 0) 2135 mddev->safemode_delay = 0; 2136 else { 2137 mddev->safemode_delay = (msec*HZ)/1000; 2138 if (mddev->safemode_delay == 0) 2139 mddev->safemode_delay = 1; 2140 } 2141 return len; 2142 } 2143 static struct md_sysfs_entry md_safe_delay = 2144 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2145 2146 static ssize_t 2147 level_show(mddev_t *mddev, char *page) 2148 { 2149 struct mdk_personality *p = mddev->pers; 2150 if (p) 2151 return sprintf(page, "%s\n", p->name); 2152 else if (mddev->clevel[0]) 2153 return sprintf(page, "%s\n", mddev->clevel); 2154 else if (mddev->level != LEVEL_NONE) 2155 return sprintf(page, "%d\n", mddev->level); 2156 else 2157 return 0; 2158 } 2159 2160 static ssize_t 2161 level_store(mddev_t *mddev, const char *buf, size_t len) 2162 { 2163 int rv = len; 2164 if (mddev->pers) 2165 return -EBUSY; 2166 if (len == 0) 2167 return 0; 2168 if (len >= sizeof(mddev->clevel)) 2169 return -ENOSPC; 2170 strncpy(mddev->clevel, buf, len); 2171 if (mddev->clevel[len-1] == '\n') 2172 len--; 2173 mddev->clevel[len] = 0; 2174 mddev->level = LEVEL_NONE; 2175 return rv; 2176 } 2177 2178 static struct md_sysfs_entry md_level = 2179 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2180 2181 2182 static ssize_t 2183 layout_show(mddev_t *mddev, char *page) 2184 { 2185 /* just a number, not meaningful for all levels */ 2186 return sprintf(page, "%d\n", mddev->layout); 2187 } 2188 2189 static ssize_t 2190 layout_store(mddev_t *mddev, const char *buf, size_t len) 2191 { 2192 char *e; 2193 unsigned long n = simple_strtoul(buf, &e, 10); 2194 if (mddev->pers) 2195 return -EBUSY; 2196 2197 if (!*buf || (*e && *e != '\n')) 2198 return -EINVAL; 2199 2200 mddev->layout = n; 2201 return len; 2202 } 2203 static struct md_sysfs_entry md_layout = 2204 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2205 2206 2207 static ssize_t 2208 raid_disks_show(mddev_t *mddev, char *page) 2209 { 2210 if (mddev->raid_disks == 0) 2211 return 0; 2212 return sprintf(page, "%d\n", mddev->raid_disks); 2213 } 2214 2215 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2216 2217 static ssize_t 2218 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2219 { 2220 char *e; 2221 int rv = 0; 2222 unsigned long n = simple_strtoul(buf, &e, 10); 2223 2224 if (!*buf || (*e && *e != '\n')) 2225 return -EINVAL; 2226 2227 if (mddev->pers) 2228 rv = update_raid_disks(mddev, n); 2229 else 2230 mddev->raid_disks = n; 2231 return rv ? rv : len; 2232 } 2233 static struct md_sysfs_entry md_raid_disks = 2234 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2235 2236 static ssize_t 2237 chunk_size_show(mddev_t *mddev, char *page) 2238 { 2239 return sprintf(page, "%d\n", mddev->chunk_size); 2240 } 2241 2242 static ssize_t 2243 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2244 { 2245 /* can only set chunk_size if array is not yet active */ 2246 char *e; 2247 unsigned long n = simple_strtoul(buf, &e, 10); 2248 2249 if (mddev->pers) 2250 return -EBUSY; 2251 if (!*buf || (*e && *e != '\n')) 2252 return -EINVAL; 2253 2254 mddev->chunk_size = n; 2255 return len; 2256 } 2257 static struct md_sysfs_entry md_chunk_size = 2258 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2259 2260 static ssize_t 2261 resync_start_show(mddev_t *mddev, char *page) 2262 { 2263 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2264 } 2265 2266 static ssize_t 2267 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2268 { 2269 /* can only set chunk_size if array is not yet active */ 2270 char *e; 2271 unsigned long long n = simple_strtoull(buf, &e, 10); 2272 2273 if (mddev->pers) 2274 return -EBUSY; 2275 if (!*buf || (*e && *e != '\n')) 2276 return -EINVAL; 2277 2278 mddev->recovery_cp = n; 2279 return len; 2280 } 2281 static struct md_sysfs_entry md_resync_start = 2282 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2283 2284 /* 2285 * The array state can be: 2286 * 2287 * clear 2288 * No devices, no size, no level 2289 * Equivalent to STOP_ARRAY ioctl 2290 * inactive 2291 * May have some settings, but array is not active 2292 * all IO results in error 2293 * When written, doesn't tear down array, but just stops it 2294 * suspended (not supported yet) 2295 * All IO requests will block. The array can be reconfigured. 2296 * Writing this, if accepted, will block until array is quiessent 2297 * readonly 2298 * no resync can happen. no superblocks get written. 2299 * write requests fail 2300 * read-auto 2301 * like readonly, but behaves like 'clean' on a write request. 2302 * 2303 * clean - no pending writes, but otherwise active. 2304 * When written to inactive array, starts without resync 2305 * If a write request arrives then 2306 * if metadata is known, mark 'dirty' and switch to 'active'. 2307 * if not known, block and switch to write-pending 2308 * If written to an active array that has pending writes, then fails. 2309 * active 2310 * fully active: IO and resync can be happening. 2311 * When written to inactive array, starts with resync 2312 * 2313 * write-pending 2314 * clean, but writes are blocked waiting for 'active' to be written. 2315 * 2316 * active-idle 2317 * like active, but no writes have been seen for a while (100msec). 2318 * 2319 */ 2320 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2321 write_pending, active_idle, bad_word}; 2322 static char *array_states[] = { 2323 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2324 "write-pending", "active-idle", NULL }; 2325 2326 static int match_word(const char *word, char **list) 2327 { 2328 int n; 2329 for (n=0; list[n]; n++) 2330 if (cmd_match(word, list[n])) 2331 break; 2332 return n; 2333 } 2334 2335 static ssize_t 2336 array_state_show(mddev_t *mddev, char *page) 2337 { 2338 enum array_state st = inactive; 2339 2340 if (mddev->pers) 2341 switch(mddev->ro) { 2342 case 1: 2343 st = readonly; 2344 break; 2345 case 2: 2346 st = read_auto; 2347 break; 2348 case 0: 2349 if (mddev->in_sync) 2350 st = clean; 2351 else if (mddev->safemode) 2352 st = active_idle; 2353 else 2354 st = active; 2355 } 2356 else { 2357 if (list_empty(&mddev->disks) && 2358 mddev->raid_disks == 0 && 2359 mddev->size == 0) 2360 st = clear; 2361 else 2362 st = inactive; 2363 } 2364 return sprintf(page, "%s\n", array_states[st]); 2365 } 2366 2367 static int do_md_stop(mddev_t * mddev, int ro); 2368 static int do_md_run(mddev_t * mddev); 2369 static int restart_array(mddev_t *mddev); 2370 2371 static ssize_t 2372 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2373 { 2374 int err = -EINVAL; 2375 enum array_state st = match_word(buf, array_states); 2376 switch(st) { 2377 case bad_word: 2378 break; 2379 case clear: 2380 /* stopping an active array */ 2381 if (mddev->pers) { 2382 if (atomic_read(&mddev->active) > 1) 2383 return -EBUSY; 2384 err = do_md_stop(mddev, 0); 2385 } 2386 break; 2387 case inactive: 2388 /* stopping an active array */ 2389 if (mddev->pers) { 2390 if (atomic_read(&mddev->active) > 1) 2391 return -EBUSY; 2392 err = do_md_stop(mddev, 2); 2393 } 2394 break; 2395 case suspended: 2396 break; /* not supported yet */ 2397 case readonly: 2398 if (mddev->pers) 2399 err = do_md_stop(mddev, 1); 2400 else { 2401 mddev->ro = 1; 2402 err = do_md_run(mddev); 2403 } 2404 break; 2405 case read_auto: 2406 /* stopping an active array */ 2407 if (mddev->pers) { 2408 err = do_md_stop(mddev, 1); 2409 if (err == 0) 2410 mddev->ro = 2; /* FIXME mark devices writable */ 2411 } else { 2412 mddev->ro = 2; 2413 err = do_md_run(mddev); 2414 } 2415 break; 2416 case clean: 2417 if (mddev->pers) { 2418 restart_array(mddev); 2419 spin_lock_irq(&mddev->write_lock); 2420 if (atomic_read(&mddev->writes_pending) == 0) { 2421 mddev->in_sync = 1; 2422 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 2423 } 2424 spin_unlock_irq(&mddev->write_lock); 2425 } else { 2426 mddev->ro = 0; 2427 mddev->recovery_cp = MaxSector; 2428 err = do_md_run(mddev); 2429 } 2430 break; 2431 case active: 2432 if (mddev->pers) { 2433 restart_array(mddev); 2434 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2435 wake_up(&mddev->sb_wait); 2436 err = 0; 2437 } else { 2438 mddev->ro = 0; 2439 err = do_md_run(mddev); 2440 } 2441 break; 2442 case write_pending: 2443 case active_idle: 2444 /* these cannot be set */ 2445 break; 2446 } 2447 if (err) 2448 return err; 2449 else 2450 return len; 2451 } 2452 static struct md_sysfs_entry md_array_state = 2453 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2454 2455 static ssize_t 2456 null_show(mddev_t *mddev, char *page) 2457 { 2458 return -EINVAL; 2459 } 2460 2461 static ssize_t 2462 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2463 { 2464 /* buf must be %d:%d\n? giving major and minor numbers */ 2465 /* The new device is added to the array. 2466 * If the array has a persistent superblock, we read the 2467 * superblock to initialise info and check validity. 2468 * Otherwise, only checking done is that in bind_rdev_to_array, 2469 * which mainly checks size. 2470 */ 2471 char *e; 2472 int major = simple_strtoul(buf, &e, 10); 2473 int minor; 2474 dev_t dev; 2475 mdk_rdev_t *rdev; 2476 int err; 2477 2478 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2479 return -EINVAL; 2480 minor = simple_strtoul(e+1, &e, 10); 2481 if (*e && *e != '\n') 2482 return -EINVAL; 2483 dev = MKDEV(major, minor); 2484 if (major != MAJOR(dev) || 2485 minor != MINOR(dev)) 2486 return -EOVERFLOW; 2487 2488 2489 if (mddev->persistent) { 2490 rdev = md_import_device(dev, mddev->major_version, 2491 mddev->minor_version); 2492 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2493 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2494 mdk_rdev_t, same_set); 2495 err = super_types[mddev->major_version] 2496 .load_super(rdev, rdev0, mddev->minor_version); 2497 if (err < 0) 2498 goto out; 2499 } 2500 } else 2501 rdev = md_import_device(dev, -1, -1); 2502 2503 if (IS_ERR(rdev)) 2504 return PTR_ERR(rdev); 2505 err = bind_rdev_to_array(rdev, mddev); 2506 out: 2507 if (err) 2508 export_rdev(rdev); 2509 return err ? err : len; 2510 } 2511 2512 static struct md_sysfs_entry md_new_device = 2513 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2514 2515 static ssize_t 2516 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2517 { 2518 char *end; 2519 unsigned long chunk, end_chunk; 2520 2521 if (!mddev->bitmap) 2522 goto out; 2523 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2524 while (*buf) { 2525 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2526 if (buf == end) break; 2527 if (*end == '-') { /* range */ 2528 buf = end + 1; 2529 end_chunk = simple_strtoul(buf, &end, 0); 2530 if (buf == end) break; 2531 } 2532 if (*end && !isspace(*end)) break; 2533 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2534 buf = end; 2535 while (isspace(*buf)) buf++; 2536 } 2537 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2538 out: 2539 return len; 2540 } 2541 2542 static struct md_sysfs_entry md_bitmap = 2543 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2544 2545 static ssize_t 2546 size_show(mddev_t *mddev, char *page) 2547 { 2548 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2549 } 2550 2551 static int update_size(mddev_t *mddev, unsigned long size); 2552 2553 static ssize_t 2554 size_store(mddev_t *mddev, const char *buf, size_t len) 2555 { 2556 /* If array is inactive, we can reduce the component size, but 2557 * not increase it (except from 0). 2558 * If array is active, we can try an on-line resize 2559 */ 2560 char *e; 2561 int err = 0; 2562 unsigned long long size = simple_strtoull(buf, &e, 10); 2563 if (!*buf || *buf == '\n' || 2564 (*e && *e != '\n')) 2565 return -EINVAL; 2566 2567 if (mddev->pers) { 2568 err = update_size(mddev, size); 2569 md_update_sb(mddev, 1); 2570 } else { 2571 if (mddev->size == 0 || 2572 mddev->size > size) 2573 mddev->size = size; 2574 else 2575 err = -ENOSPC; 2576 } 2577 return err ? err : len; 2578 } 2579 2580 static struct md_sysfs_entry md_size = 2581 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2582 2583 2584 /* Metdata version. 2585 * This is either 'none' for arrays with externally managed metadata, 2586 * or N.M for internally known formats 2587 */ 2588 static ssize_t 2589 metadata_show(mddev_t *mddev, char *page) 2590 { 2591 if (mddev->persistent) 2592 return sprintf(page, "%d.%d\n", 2593 mddev->major_version, mddev->minor_version); 2594 else 2595 return sprintf(page, "none\n"); 2596 } 2597 2598 static ssize_t 2599 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2600 { 2601 int major, minor; 2602 char *e; 2603 if (!list_empty(&mddev->disks)) 2604 return -EBUSY; 2605 2606 if (cmd_match(buf, "none")) { 2607 mddev->persistent = 0; 2608 mddev->major_version = 0; 2609 mddev->minor_version = 90; 2610 return len; 2611 } 2612 major = simple_strtoul(buf, &e, 10); 2613 if (e==buf || *e != '.') 2614 return -EINVAL; 2615 buf = e+1; 2616 minor = simple_strtoul(buf, &e, 10); 2617 if (e==buf || (*e && *e != '\n') ) 2618 return -EINVAL; 2619 if (major >= sizeof(super_types)/sizeof(super_types[0]) || 2620 super_types[major].name == NULL) 2621 return -ENOENT; 2622 mddev->major_version = major; 2623 mddev->minor_version = minor; 2624 mddev->persistent = 1; 2625 return len; 2626 } 2627 2628 static struct md_sysfs_entry md_metadata = 2629 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2630 2631 static ssize_t 2632 action_show(mddev_t *mddev, char *page) 2633 { 2634 char *type = "idle"; 2635 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2636 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) { 2637 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2638 type = "reshape"; 2639 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2640 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2641 type = "resync"; 2642 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2643 type = "check"; 2644 else 2645 type = "repair"; 2646 } else 2647 type = "recover"; 2648 } 2649 return sprintf(page, "%s\n", type); 2650 } 2651 2652 static ssize_t 2653 action_store(mddev_t *mddev, const char *page, size_t len) 2654 { 2655 if (!mddev->pers || !mddev->pers->sync_request) 2656 return -EINVAL; 2657 2658 if (cmd_match(page, "idle")) { 2659 if (mddev->sync_thread) { 2660 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2661 md_unregister_thread(mddev->sync_thread); 2662 mddev->sync_thread = NULL; 2663 mddev->recovery = 0; 2664 } 2665 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2666 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2667 return -EBUSY; 2668 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2669 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2670 else if (cmd_match(page, "reshape")) { 2671 int err; 2672 if (mddev->pers->start_reshape == NULL) 2673 return -EINVAL; 2674 err = mddev->pers->start_reshape(mddev); 2675 if (err) 2676 return err; 2677 } else { 2678 if (cmd_match(page, "check")) 2679 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2680 else if (!cmd_match(page, "repair")) 2681 return -EINVAL; 2682 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2683 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2684 } 2685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2686 md_wakeup_thread(mddev->thread); 2687 return len; 2688 } 2689 2690 static ssize_t 2691 mismatch_cnt_show(mddev_t *mddev, char *page) 2692 { 2693 return sprintf(page, "%llu\n", 2694 (unsigned long long) mddev->resync_mismatches); 2695 } 2696 2697 static struct md_sysfs_entry md_scan_mode = 2698 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2699 2700 2701 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2702 2703 static ssize_t 2704 sync_min_show(mddev_t *mddev, char *page) 2705 { 2706 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2707 mddev->sync_speed_min ? "local": "system"); 2708 } 2709 2710 static ssize_t 2711 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2712 { 2713 int min; 2714 char *e; 2715 if (strncmp(buf, "system", 6)==0) { 2716 mddev->sync_speed_min = 0; 2717 return len; 2718 } 2719 min = simple_strtoul(buf, &e, 10); 2720 if (buf == e || (*e && *e != '\n') || min <= 0) 2721 return -EINVAL; 2722 mddev->sync_speed_min = min; 2723 return len; 2724 } 2725 2726 static struct md_sysfs_entry md_sync_min = 2727 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2728 2729 static ssize_t 2730 sync_max_show(mddev_t *mddev, char *page) 2731 { 2732 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2733 mddev->sync_speed_max ? "local": "system"); 2734 } 2735 2736 static ssize_t 2737 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2738 { 2739 int max; 2740 char *e; 2741 if (strncmp(buf, "system", 6)==0) { 2742 mddev->sync_speed_max = 0; 2743 return len; 2744 } 2745 max = simple_strtoul(buf, &e, 10); 2746 if (buf == e || (*e && *e != '\n') || max <= 0) 2747 return -EINVAL; 2748 mddev->sync_speed_max = max; 2749 return len; 2750 } 2751 2752 static struct md_sysfs_entry md_sync_max = 2753 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 2754 2755 2756 static ssize_t 2757 sync_speed_show(mddev_t *mddev, char *page) 2758 { 2759 unsigned long resync, dt, db; 2760 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 2761 dt = ((jiffies - mddev->resync_mark) / HZ); 2762 if (!dt) dt++; 2763 db = resync - (mddev->resync_mark_cnt); 2764 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 2765 } 2766 2767 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 2768 2769 static ssize_t 2770 sync_completed_show(mddev_t *mddev, char *page) 2771 { 2772 unsigned long max_blocks, resync; 2773 2774 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2775 max_blocks = mddev->resync_max_sectors; 2776 else 2777 max_blocks = mddev->size << 1; 2778 2779 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 2780 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 2781 } 2782 2783 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 2784 2785 static ssize_t 2786 suspend_lo_show(mddev_t *mddev, char *page) 2787 { 2788 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 2789 } 2790 2791 static ssize_t 2792 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 2793 { 2794 char *e; 2795 unsigned long long new = simple_strtoull(buf, &e, 10); 2796 2797 if (mddev->pers->quiesce == NULL) 2798 return -EINVAL; 2799 if (buf == e || (*e && *e != '\n')) 2800 return -EINVAL; 2801 if (new >= mddev->suspend_hi || 2802 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 2803 mddev->suspend_lo = new; 2804 mddev->pers->quiesce(mddev, 2); 2805 return len; 2806 } else 2807 return -EINVAL; 2808 } 2809 static struct md_sysfs_entry md_suspend_lo = 2810 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 2811 2812 2813 static ssize_t 2814 suspend_hi_show(mddev_t *mddev, char *page) 2815 { 2816 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 2817 } 2818 2819 static ssize_t 2820 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 2821 { 2822 char *e; 2823 unsigned long long new = simple_strtoull(buf, &e, 10); 2824 2825 if (mddev->pers->quiesce == NULL) 2826 return -EINVAL; 2827 if (buf == e || (*e && *e != '\n')) 2828 return -EINVAL; 2829 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 2830 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 2831 mddev->suspend_hi = new; 2832 mddev->pers->quiesce(mddev, 1); 2833 mddev->pers->quiesce(mddev, 0); 2834 return len; 2835 } else 2836 return -EINVAL; 2837 } 2838 static struct md_sysfs_entry md_suspend_hi = 2839 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 2840 2841 2842 static struct attribute *md_default_attrs[] = { 2843 &md_level.attr, 2844 &md_layout.attr, 2845 &md_raid_disks.attr, 2846 &md_chunk_size.attr, 2847 &md_size.attr, 2848 &md_resync_start.attr, 2849 &md_metadata.attr, 2850 &md_new_device.attr, 2851 &md_safe_delay.attr, 2852 &md_array_state.attr, 2853 NULL, 2854 }; 2855 2856 static struct attribute *md_redundancy_attrs[] = { 2857 &md_scan_mode.attr, 2858 &md_mismatches.attr, 2859 &md_sync_min.attr, 2860 &md_sync_max.attr, 2861 &md_sync_speed.attr, 2862 &md_sync_completed.attr, 2863 &md_suspend_lo.attr, 2864 &md_suspend_hi.attr, 2865 &md_bitmap.attr, 2866 NULL, 2867 }; 2868 static struct attribute_group md_redundancy_group = { 2869 .name = NULL, 2870 .attrs = md_redundancy_attrs, 2871 }; 2872 2873 2874 static ssize_t 2875 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2876 { 2877 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2878 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2879 ssize_t rv; 2880 2881 if (!entry->show) 2882 return -EIO; 2883 rv = mddev_lock(mddev); 2884 if (!rv) { 2885 rv = entry->show(mddev, page); 2886 mddev_unlock(mddev); 2887 } 2888 return rv; 2889 } 2890 2891 static ssize_t 2892 md_attr_store(struct kobject *kobj, struct attribute *attr, 2893 const char *page, size_t length) 2894 { 2895 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2896 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2897 ssize_t rv; 2898 2899 if (!entry->store) 2900 return -EIO; 2901 if (!capable(CAP_SYS_ADMIN)) 2902 return -EACCES; 2903 rv = mddev_lock(mddev); 2904 if (!rv) { 2905 rv = entry->store(mddev, page, length); 2906 mddev_unlock(mddev); 2907 } 2908 return rv; 2909 } 2910 2911 static void md_free(struct kobject *ko) 2912 { 2913 mddev_t *mddev = container_of(ko, mddev_t, kobj); 2914 kfree(mddev); 2915 } 2916 2917 static struct sysfs_ops md_sysfs_ops = { 2918 .show = md_attr_show, 2919 .store = md_attr_store, 2920 }; 2921 static struct kobj_type md_ktype = { 2922 .release = md_free, 2923 .sysfs_ops = &md_sysfs_ops, 2924 .default_attrs = md_default_attrs, 2925 }; 2926 2927 int mdp_major = 0; 2928 2929 static struct kobject *md_probe(dev_t dev, int *part, void *data) 2930 { 2931 static DEFINE_MUTEX(disks_mutex); 2932 mddev_t *mddev = mddev_find(dev); 2933 struct gendisk *disk; 2934 int partitioned = (MAJOR(dev) != MD_MAJOR); 2935 int shift = partitioned ? MdpMinorShift : 0; 2936 int unit = MINOR(dev) >> shift; 2937 2938 if (!mddev) 2939 return NULL; 2940 2941 mutex_lock(&disks_mutex); 2942 if (mddev->gendisk) { 2943 mutex_unlock(&disks_mutex); 2944 mddev_put(mddev); 2945 return NULL; 2946 } 2947 disk = alloc_disk(1 << shift); 2948 if (!disk) { 2949 mutex_unlock(&disks_mutex); 2950 mddev_put(mddev); 2951 return NULL; 2952 } 2953 disk->major = MAJOR(dev); 2954 disk->first_minor = unit << shift; 2955 if (partitioned) 2956 sprintf(disk->disk_name, "md_d%d", unit); 2957 else 2958 sprintf(disk->disk_name, "md%d", unit); 2959 disk->fops = &md_fops; 2960 disk->private_data = mddev; 2961 disk->queue = mddev->queue; 2962 add_disk(disk); 2963 mddev->gendisk = disk; 2964 mutex_unlock(&disks_mutex); 2965 mddev->kobj.parent = &disk->kobj; 2966 mddev->kobj.k_name = NULL; 2967 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md"); 2968 mddev->kobj.ktype = &md_ktype; 2969 kobject_register(&mddev->kobj); 2970 return NULL; 2971 } 2972 2973 static void md_safemode_timeout(unsigned long data) 2974 { 2975 mddev_t *mddev = (mddev_t *) data; 2976 2977 mddev->safemode = 1; 2978 md_wakeup_thread(mddev->thread); 2979 } 2980 2981 static int start_dirty_degraded; 2982 2983 static int do_md_run(mddev_t * mddev) 2984 { 2985 int err; 2986 int chunk_size; 2987 struct list_head *tmp; 2988 mdk_rdev_t *rdev; 2989 struct gendisk *disk; 2990 struct mdk_personality *pers; 2991 char b[BDEVNAME_SIZE]; 2992 2993 if (list_empty(&mddev->disks)) 2994 /* cannot run an array with no devices.. */ 2995 return -EINVAL; 2996 2997 if (mddev->pers) 2998 return -EBUSY; 2999 3000 /* 3001 * Analyze all RAID superblock(s) 3002 */ 3003 if (!mddev->raid_disks) 3004 analyze_sbs(mddev); 3005 3006 chunk_size = mddev->chunk_size; 3007 3008 if (chunk_size) { 3009 if (chunk_size > MAX_CHUNK_SIZE) { 3010 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3011 chunk_size, MAX_CHUNK_SIZE); 3012 return -EINVAL; 3013 } 3014 /* 3015 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3016 */ 3017 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3018 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3019 return -EINVAL; 3020 } 3021 if (chunk_size < PAGE_SIZE) { 3022 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3023 chunk_size, PAGE_SIZE); 3024 return -EINVAL; 3025 } 3026 3027 /* devices must have minimum size of one chunk */ 3028 ITERATE_RDEV(mddev,rdev,tmp) { 3029 if (test_bit(Faulty, &rdev->flags)) 3030 continue; 3031 if (rdev->size < chunk_size / 1024) { 3032 printk(KERN_WARNING 3033 "md: Dev %s smaller than chunk_size:" 3034 " %lluk < %dk\n", 3035 bdevname(rdev->bdev,b), 3036 (unsigned long long)rdev->size, 3037 chunk_size / 1024); 3038 return -EINVAL; 3039 } 3040 } 3041 } 3042 3043 #ifdef CONFIG_KMOD 3044 if (mddev->level != LEVEL_NONE) 3045 request_module("md-level-%d", mddev->level); 3046 else if (mddev->clevel[0]) 3047 request_module("md-%s", mddev->clevel); 3048 #endif 3049 3050 /* 3051 * Drop all container device buffers, from now on 3052 * the only valid external interface is through the md 3053 * device. 3054 * Also find largest hardsector size 3055 */ 3056 ITERATE_RDEV(mddev,rdev,tmp) { 3057 if (test_bit(Faulty, &rdev->flags)) 3058 continue; 3059 sync_blockdev(rdev->bdev); 3060 invalidate_bdev(rdev->bdev, 0); 3061 } 3062 3063 md_probe(mddev->unit, NULL, NULL); 3064 disk = mddev->gendisk; 3065 if (!disk) 3066 return -ENOMEM; 3067 3068 spin_lock(&pers_lock); 3069 pers = find_pers(mddev->level, mddev->clevel); 3070 if (!pers || !try_module_get(pers->owner)) { 3071 spin_unlock(&pers_lock); 3072 if (mddev->level != LEVEL_NONE) 3073 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3074 mddev->level); 3075 else 3076 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3077 mddev->clevel); 3078 return -EINVAL; 3079 } 3080 mddev->pers = pers; 3081 spin_unlock(&pers_lock); 3082 mddev->level = pers->level; 3083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3084 3085 if (mddev->reshape_position != MaxSector && 3086 pers->start_reshape == NULL) { 3087 /* This personality cannot handle reshaping... */ 3088 mddev->pers = NULL; 3089 module_put(pers->owner); 3090 return -EINVAL; 3091 } 3092 3093 if (pers->sync_request) { 3094 /* Warn if this is a potentially silly 3095 * configuration. 3096 */ 3097 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3098 mdk_rdev_t *rdev2; 3099 struct list_head *tmp2; 3100 int warned = 0; 3101 ITERATE_RDEV(mddev, rdev, tmp) { 3102 ITERATE_RDEV(mddev, rdev2, tmp2) { 3103 if (rdev < rdev2 && 3104 rdev->bdev->bd_contains == 3105 rdev2->bdev->bd_contains) { 3106 printk(KERN_WARNING 3107 "%s: WARNING: %s appears to be" 3108 " on the same physical disk as" 3109 " %s.\n", 3110 mdname(mddev), 3111 bdevname(rdev->bdev,b), 3112 bdevname(rdev2->bdev,b2)); 3113 warned = 1; 3114 } 3115 } 3116 } 3117 if (warned) 3118 printk(KERN_WARNING 3119 "True protection against single-disk" 3120 " failure might be compromised.\n"); 3121 } 3122 3123 mddev->recovery = 0; 3124 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3125 mddev->barriers_work = 1; 3126 mddev->ok_start_degraded = start_dirty_degraded; 3127 3128 if (start_readonly) 3129 mddev->ro = 2; /* read-only, but switch on first write */ 3130 3131 err = mddev->pers->run(mddev); 3132 if (!err && mddev->pers->sync_request) { 3133 err = bitmap_create(mddev); 3134 if (err) { 3135 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3136 mdname(mddev), err); 3137 mddev->pers->stop(mddev); 3138 } 3139 } 3140 if (err) { 3141 printk(KERN_ERR "md: pers->run() failed ...\n"); 3142 module_put(mddev->pers->owner); 3143 mddev->pers = NULL; 3144 bitmap_destroy(mddev); 3145 return err; 3146 } 3147 if (mddev->pers->sync_request) 3148 sysfs_create_group(&mddev->kobj, &md_redundancy_group); 3149 else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3150 mddev->ro = 0; 3151 3152 atomic_set(&mddev->writes_pending,0); 3153 mddev->safemode = 0; 3154 mddev->safemode_timer.function = md_safemode_timeout; 3155 mddev->safemode_timer.data = (unsigned long) mddev; 3156 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3157 mddev->in_sync = 1; 3158 3159 ITERATE_RDEV(mddev,rdev,tmp) 3160 if (rdev->raid_disk >= 0) { 3161 char nm[20]; 3162 sprintf(nm, "rd%d", rdev->raid_disk); 3163 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 3164 } 3165 3166 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3167 3168 if (mddev->flags) 3169 md_update_sb(mddev, 0); 3170 3171 set_capacity(disk, mddev->array_size<<1); 3172 3173 /* If we call blk_queue_make_request here, it will 3174 * re-initialise max_sectors etc which may have been 3175 * refined inside -> run. So just set the bits we need to set. 3176 * Most initialisation happended when we called 3177 * blk_queue_make_request(..., md_fail_request) 3178 * earlier. 3179 */ 3180 mddev->queue->queuedata = mddev; 3181 mddev->queue->make_request_fn = mddev->pers->make_request; 3182 3183 /* If there is a partially-recovered drive we need to 3184 * start recovery here. If we leave it to md_check_recovery, 3185 * it will remove the drives and not do the right thing 3186 */ 3187 if (mddev->degraded && !mddev->sync_thread) { 3188 struct list_head *rtmp; 3189 int spares = 0; 3190 ITERATE_RDEV(mddev,rdev,rtmp) 3191 if (rdev->raid_disk >= 0 && 3192 !test_bit(In_sync, &rdev->flags) && 3193 !test_bit(Faulty, &rdev->flags)) 3194 /* complete an interrupted recovery */ 3195 spares++; 3196 if (spares && mddev->pers->sync_request) { 3197 mddev->recovery = 0; 3198 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3199 mddev->sync_thread = md_register_thread(md_do_sync, 3200 mddev, 3201 "%s_resync"); 3202 if (!mddev->sync_thread) { 3203 printk(KERN_ERR "%s: could not start resync" 3204 " thread...\n", 3205 mdname(mddev)); 3206 /* leave the spares where they are, it shouldn't hurt */ 3207 mddev->recovery = 0; 3208 } 3209 } 3210 } 3211 md_wakeup_thread(mddev->thread); 3212 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3213 3214 mddev->changed = 1; 3215 md_new_event(mddev); 3216 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE); 3217 return 0; 3218 } 3219 3220 static int restart_array(mddev_t *mddev) 3221 { 3222 struct gendisk *disk = mddev->gendisk; 3223 int err; 3224 3225 /* 3226 * Complain if it has no devices 3227 */ 3228 err = -ENXIO; 3229 if (list_empty(&mddev->disks)) 3230 goto out; 3231 3232 if (mddev->pers) { 3233 err = -EBUSY; 3234 if (!mddev->ro) 3235 goto out; 3236 3237 mddev->safemode = 0; 3238 mddev->ro = 0; 3239 set_disk_ro(disk, 0); 3240 3241 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3242 mdname(mddev)); 3243 /* 3244 * Kick recovery or resync if necessary 3245 */ 3246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3247 md_wakeup_thread(mddev->thread); 3248 md_wakeup_thread(mddev->sync_thread); 3249 err = 0; 3250 } else 3251 err = -EINVAL; 3252 3253 out: 3254 return err; 3255 } 3256 3257 /* similar to deny_write_access, but accounts for our holding a reference 3258 * to the file ourselves */ 3259 static int deny_bitmap_write_access(struct file * file) 3260 { 3261 struct inode *inode = file->f_mapping->host; 3262 3263 spin_lock(&inode->i_lock); 3264 if (atomic_read(&inode->i_writecount) > 1) { 3265 spin_unlock(&inode->i_lock); 3266 return -ETXTBSY; 3267 } 3268 atomic_set(&inode->i_writecount, -1); 3269 spin_unlock(&inode->i_lock); 3270 3271 return 0; 3272 } 3273 3274 static void restore_bitmap_write_access(struct file *file) 3275 { 3276 struct inode *inode = file->f_mapping->host; 3277 3278 spin_lock(&inode->i_lock); 3279 atomic_set(&inode->i_writecount, 1); 3280 spin_unlock(&inode->i_lock); 3281 } 3282 3283 /* mode: 3284 * 0 - completely stop and dis-assemble array 3285 * 1 - switch to readonly 3286 * 2 - stop but do not disassemble array 3287 */ 3288 static int do_md_stop(mddev_t * mddev, int mode) 3289 { 3290 int err = 0; 3291 struct gendisk *disk = mddev->gendisk; 3292 3293 if (mddev->pers) { 3294 if (atomic_read(&mddev->active)>2) { 3295 printk("md: %s still in use.\n",mdname(mddev)); 3296 return -EBUSY; 3297 } 3298 3299 if (mddev->sync_thread) { 3300 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3301 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3302 md_unregister_thread(mddev->sync_thread); 3303 mddev->sync_thread = NULL; 3304 } 3305 3306 del_timer_sync(&mddev->safemode_timer); 3307 3308 invalidate_partition(disk, 0); 3309 3310 switch(mode) { 3311 case 1: /* readonly */ 3312 err = -ENXIO; 3313 if (mddev->ro==1) 3314 goto out; 3315 mddev->ro = 1; 3316 break; 3317 case 0: /* disassemble */ 3318 case 2: /* stop */ 3319 bitmap_flush(mddev); 3320 md_super_wait(mddev); 3321 if (mddev->ro) 3322 set_disk_ro(disk, 0); 3323 blk_queue_make_request(mddev->queue, md_fail_request); 3324 mddev->pers->stop(mddev); 3325 mddev->queue->merge_bvec_fn = NULL; 3326 mddev->queue->unplug_fn = NULL; 3327 mddev->queue->issue_flush_fn = NULL; 3328 if (mddev->pers->sync_request) 3329 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3330 3331 module_put(mddev->pers->owner); 3332 mddev->pers = NULL; 3333 3334 set_capacity(disk, 0); 3335 mddev->changed = 1; 3336 3337 if (mddev->ro) 3338 mddev->ro = 0; 3339 } 3340 if (!mddev->in_sync || mddev->flags) { 3341 /* mark array as shutdown cleanly */ 3342 mddev->in_sync = 1; 3343 md_update_sb(mddev, 1); 3344 } 3345 if (mode == 1) 3346 set_disk_ro(disk, 1); 3347 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3348 } 3349 3350 /* 3351 * Free resources if final stop 3352 */ 3353 if (mode == 0) { 3354 mdk_rdev_t *rdev; 3355 struct list_head *tmp; 3356 3357 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3358 3359 bitmap_destroy(mddev); 3360 if (mddev->bitmap_file) { 3361 restore_bitmap_write_access(mddev->bitmap_file); 3362 fput(mddev->bitmap_file); 3363 mddev->bitmap_file = NULL; 3364 } 3365 mddev->bitmap_offset = 0; 3366 3367 ITERATE_RDEV(mddev,rdev,tmp) 3368 if (rdev->raid_disk >= 0) { 3369 char nm[20]; 3370 sprintf(nm, "rd%d", rdev->raid_disk); 3371 sysfs_remove_link(&mddev->kobj, nm); 3372 } 3373 3374 export_array(mddev); 3375 3376 mddev->array_size = 0; 3377 mddev->size = 0; 3378 mddev->raid_disks = 0; 3379 mddev->recovery_cp = 0; 3380 3381 } else if (mddev->pers) 3382 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3383 mdname(mddev)); 3384 err = 0; 3385 md_new_event(mddev); 3386 out: 3387 return err; 3388 } 3389 3390 #ifndef MODULE 3391 static void autorun_array(mddev_t *mddev) 3392 { 3393 mdk_rdev_t *rdev; 3394 struct list_head *tmp; 3395 int err; 3396 3397 if (list_empty(&mddev->disks)) 3398 return; 3399 3400 printk(KERN_INFO "md: running: "); 3401 3402 ITERATE_RDEV(mddev,rdev,tmp) { 3403 char b[BDEVNAME_SIZE]; 3404 printk("<%s>", bdevname(rdev->bdev,b)); 3405 } 3406 printk("\n"); 3407 3408 err = do_md_run (mddev); 3409 if (err) { 3410 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3411 do_md_stop (mddev, 0); 3412 } 3413 } 3414 3415 /* 3416 * lets try to run arrays based on all disks that have arrived 3417 * until now. (those are in pending_raid_disks) 3418 * 3419 * the method: pick the first pending disk, collect all disks with 3420 * the same UUID, remove all from the pending list and put them into 3421 * the 'same_array' list. Then order this list based on superblock 3422 * update time (freshest comes first), kick out 'old' disks and 3423 * compare superblocks. If everything's fine then run it. 3424 * 3425 * If "unit" is allocated, then bump its reference count 3426 */ 3427 static void autorun_devices(int part) 3428 { 3429 struct list_head *tmp; 3430 mdk_rdev_t *rdev0, *rdev; 3431 mddev_t *mddev; 3432 char b[BDEVNAME_SIZE]; 3433 3434 printk(KERN_INFO "md: autorun ...\n"); 3435 while (!list_empty(&pending_raid_disks)) { 3436 int unit; 3437 dev_t dev; 3438 LIST_HEAD(candidates); 3439 rdev0 = list_entry(pending_raid_disks.next, 3440 mdk_rdev_t, same_set); 3441 3442 printk(KERN_INFO "md: considering %s ...\n", 3443 bdevname(rdev0->bdev,b)); 3444 INIT_LIST_HEAD(&candidates); 3445 ITERATE_RDEV_PENDING(rdev,tmp) 3446 if (super_90_load(rdev, rdev0, 0) >= 0) { 3447 printk(KERN_INFO "md: adding %s ...\n", 3448 bdevname(rdev->bdev,b)); 3449 list_move(&rdev->same_set, &candidates); 3450 } 3451 /* 3452 * now we have a set of devices, with all of them having 3453 * mostly sane superblocks. It's time to allocate the 3454 * mddev. 3455 */ 3456 if (part) { 3457 dev = MKDEV(mdp_major, 3458 rdev0->preferred_minor << MdpMinorShift); 3459 unit = MINOR(dev) >> MdpMinorShift; 3460 } else { 3461 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3462 unit = MINOR(dev); 3463 } 3464 if (rdev0->preferred_minor != unit) { 3465 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3466 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3467 break; 3468 } 3469 3470 md_probe(dev, NULL, NULL); 3471 mddev = mddev_find(dev); 3472 if (!mddev) { 3473 printk(KERN_ERR 3474 "md: cannot allocate memory for md drive.\n"); 3475 break; 3476 } 3477 if (mddev_lock(mddev)) 3478 printk(KERN_WARNING "md: %s locked, cannot run\n", 3479 mdname(mddev)); 3480 else if (mddev->raid_disks || mddev->major_version 3481 || !list_empty(&mddev->disks)) { 3482 printk(KERN_WARNING 3483 "md: %s already running, cannot run %s\n", 3484 mdname(mddev), bdevname(rdev0->bdev,b)); 3485 mddev_unlock(mddev); 3486 } else { 3487 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3488 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 3489 list_del_init(&rdev->same_set); 3490 if (bind_rdev_to_array(rdev, mddev)) 3491 export_rdev(rdev); 3492 } 3493 autorun_array(mddev); 3494 mddev_unlock(mddev); 3495 } 3496 /* on success, candidates will be empty, on error 3497 * it won't... 3498 */ 3499 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 3500 export_rdev(rdev); 3501 mddev_put(mddev); 3502 } 3503 printk(KERN_INFO "md: ... autorun DONE.\n"); 3504 } 3505 #endif /* !MODULE */ 3506 3507 static int get_version(void __user * arg) 3508 { 3509 mdu_version_t ver; 3510 3511 ver.major = MD_MAJOR_VERSION; 3512 ver.minor = MD_MINOR_VERSION; 3513 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3514 3515 if (copy_to_user(arg, &ver, sizeof(ver))) 3516 return -EFAULT; 3517 3518 return 0; 3519 } 3520 3521 static int get_array_info(mddev_t * mddev, void __user * arg) 3522 { 3523 mdu_array_info_t info; 3524 int nr,working,active,failed,spare; 3525 mdk_rdev_t *rdev; 3526 struct list_head *tmp; 3527 3528 nr=working=active=failed=spare=0; 3529 ITERATE_RDEV(mddev,rdev,tmp) { 3530 nr++; 3531 if (test_bit(Faulty, &rdev->flags)) 3532 failed++; 3533 else { 3534 working++; 3535 if (test_bit(In_sync, &rdev->flags)) 3536 active++; 3537 else 3538 spare++; 3539 } 3540 } 3541 3542 info.major_version = mddev->major_version; 3543 info.minor_version = mddev->minor_version; 3544 info.patch_version = MD_PATCHLEVEL_VERSION; 3545 info.ctime = mddev->ctime; 3546 info.level = mddev->level; 3547 info.size = mddev->size; 3548 if (info.size != mddev->size) /* overflow */ 3549 info.size = -1; 3550 info.nr_disks = nr; 3551 info.raid_disks = mddev->raid_disks; 3552 info.md_minor = mddev->md_minor; 3553 info.not_persistent= !mddev->persistent; 3554 3555 info.utime = mddev->utime; 3556 info.state = 0; 3557 if (mddev->in_sync) 3558 info.state = (1<<MD_SB_CLEAN); 3559 if (mddev->bitmap && mddev->bitmap_offset) 3560 info.state = (1<<MD_SB_BITMAP_PRESENT); 3561 info.active_disks = active; 3562 info.working_disks = working; 3563 info.failed_disks = failed; 3564 info.spare_disks = spare; 3565 3566 info.layout = mddev->layout; 3567 info.chunk_size = mddev->chunk_size; 3568 3569 if (copy_to_user(arg, &info, sizeof(info))) 3570 return -EFAULT; 3571 3572 return 0; 3573 } 3574 3575 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3576 { 3577 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3578 char *ptr, *buf = NULL; 3579 int err = -ENOMEM; 3580 3581 md_allow_write(mddev); 3582 3583 file = kmalloc(sizeof(*file), GFP_KERNEL); 3584 if (!file) 3585 goto out; 3586 3587 /* bitmap disabled, zero the first byte and copy out */ 3588 if (!mddev->bitmap || !mddev->bitmap->file) { 3589 file->pathname[0] = '\0'; 3590 goto copy_out; 3591 } 3592 3593 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3594 if (!buf) 3595 goto out; 3596 3597 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3598 if (!ptr) 3599 goto out; 3600 3601 strcpy(file->pathname, ptr); 3602 3603 copy_out: 3604 err = 0; 3605 if (copy_to_user(arg, file, sizeof(*file))) 3606 err = -EFAULT; 3607 out: 3608 kfree(buf); 3609 kfree(file); 3610 return err; 3611 } 3612 3613 static int get_disk_info(mddev_t * mddev, void __user * arg) 3614 { 3615 mdu_disk_info_t info; 3616 unsigned int nr; 3617 mdk_rdev_t *rdev; 3618 3619 if (copy_from_user(&info, arg, sizeof(info))) 3620 return -EFAULT; 3621 3622 nr = info.number; 3623 3624 rdev = find_rdev_nr(mddev, nr); 3625 if (rdev) { 3626 info.major = MAJOR(rdev->bdev->bd_dev); 3627 info.minor = MINOR(rdev->bdev->bd_dev); 3628 info.raid_disk = rdev->raid_disk; 3629 info.state = 0; 3630 if (test_bit(Faulty, &rdev->flags)) 3631 info.state |= (1<<MD_DISK_FAULTY); 3632 else if (test_bit(In_sync, &rdev->flags)) { 3633 info.state |= (1<<MD_DISK_ACTIVE); 3634 info.state |= (1<<MD_DISK_SYNC); 3635 } 3636 if (test_bit(WriteMostly, &rdev->flags)) 3637 info.state |= (1<<MD_DISK_WRITEMOSTLY); 3638 } else { 3639 info.major = info.minor = 0; 3640 info.raid_disk = -1; 3641 info.state = (1<<MD_DISK_REMOVED); 3642 } 3643 3644 if (copy_to_user(arg, &info, sizeof(info))) 3645 return -EFAULT; 3646 3647 return 0; 3648 } 3649 3650 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 3651 { 3652 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3653 mdk_rdev_t *rdev; 3654 dev_t dev = MKDEV(info->major,info->minor); 3655 3656 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 3657 return -EOVERFLOW; 3658 3659 if (!mddev->raid_disks) { 3660 int err; 3661 /* expecting a device which has a superblock */ 3662 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 3663 if (IS_ERR(rdev)) { 3664 printk(KERN_WARNING 3665 "md: md_import_device returned %ld\n", 3666 PTR_ERR(rdev)); 3667 return PTR_ERR(rdev); 3668 } 3669 if (!list_empty(&mddev->disks)) { 3670 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3671 mdk_rdev_t, same_set); 3672 int err = super_types[mddev->major_version] 3673 .load_super(rdev, rdev0, mddev->minor_version); 3674 if (err < 0) { 3675 printk(KERN_WARNING 3676 "md: %s has different UUID to %s\n", 3677 bdevname(rdev->bdev,b), 3678 bdevname(rdev0->bdev,b2)); 3679 export_rdev(rdev); 3680 return -EINVAL; 3681 } 3682 } 3683 err = bind_rdev_to_array(rdev, mddev); 3684 if (err) 3685 export_rdev(rdev); 3686 return err; 3687 } 3688 3689 /* 3690 * add_new_disk can be used once the array is assembled 3691 * to add "hot spares". They must already have a superblock 3692 * written 3693 */ 3694 if (mddev->pers) { 3695 int err; 3696 if (!mddev->pers->hot_add_disk) { 3697 printk(KERN_WARNING 3698 "%s: personality does not support diskops!\n", 3699 mdname(mddev)); 3700 return -EINVAL; 3701 } 3702 if (mddev->persistent) 3703 rdev = md_import_device(dev, mddev->major_version, 3704 mddev->minor_version); 3705 else 3706 rdev = md_import_device(dev, -1, -1); 3707 if (IS_ERR(rdev)) { 3708 printk(KERN_WARNING 3709 "md: md_import_device returned %ld\n", 3710 PTR_ERR(rdev)); 3711 return PTR_ERR(rdev); 3712 } 3713 /* set save_raid_disk if appropriate */ 3714 if (!mddev->persistent) { 3715 if (info->state & (1<<MD_DISK_SYNC) && 3716 info->raid_disk < mddev->raid_disks) 3717 rdev->raid_disk = info->raid_disk; 3718 else 3719 rdev->raid_disk = -1; 3720 } else 3721 super_types[mddev->major_version]. 3722 validate_super(mddev, rdev); 3723 rdev->saved_raid_disk = rdev->raid_disk; 3724 3725 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 3726 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3727 set_bit(WriteMostly, &rdev->flags); 3728 3729 rdev->raid_disk = -1; 3730 err = bind_rdev_to_array(rdev, mddev); 3731 if (!err && !mddev->pers->hot_remove_disk) { 3732 /* If there is hot_add_disk but no hot_remove_disk 3733 * then added disks for geometry changes, 3734 * and should be added immediately. 3735 */ 3736 super_types[mddev->major_version]. 3737 validate_super(mddev, rdev); 3738 err = mddev->pers->hot_add_disk(mddev, rdev); 3739 if (err) 3740 unbind_rdev_from_array(rdev); 3741 } 3742 if (err) 3743 export_rdev(rdev); 3744 3745 md_update_sb(mddev, 1); 3746 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3747 md_wakeup_thread(mddev->thread); 3748 return err; 3749 } 3750 3751 /* otherwise, add_new_disk is only allowed 3752 * for major_version==0 superblocks 3753 */ 3754 if (mddev->major_version != 0) { 3755 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 3756 mdname(mddev)); 3757 return -EINVAL; 3758 } 3759 3760 if (!(info->state & (1<<MD_DISK_FAULTY))) { 3761 int err; 3762 rdev = md_import_device (dev, -1, 0); 3763 if (IS_ERR(rdev)) { 3764 printk(KERN_WARNING 3765 "md: error, md_import_device() returned %ld\n", 3766 PTR_ERR(rdev)); 3767 return PTR_ERR(rdev); 3768 } 3769 rdev->desc_nr = info->number; 3770 if (info->raid_disk < mddev->raid_disks) 3771 rdev->raid_disk = info->raid_disk; 3772 else 3773 rdev->raid_disk = -1; 3774 3775 rdev->flags = 0; 3776 3777 if (rdev->raid_disk < mddev->raid_disks) 3778 if (info->state & (1<<MD_DISK_SYNC)) 3779 set_bit(In_sync, &rdev->flags); 3780 3781 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3782 set_bit(WriteMostly, &rdev->flags); 3783 3784 if (!mddev->persistent) { 3785 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 3786 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3787 } else 3788 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3789 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 3790 3791 err = bind_rdev_to_array(rdev, mddev); 3792 if (err) { 3793 export_rdev(rdev); 3794 return err; 3795 } 3796 } 3797 3798 return 0; 3799 } 3800 3801 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 3802 { 3803 char b[BDEVNAME_SIZE]; 3804 mdk_rdev_t *rdev; 3805 3806 if (!mddev->pers) 3807 return -ENODEV; 3808 3809 rdev = find_rdev(mddev, dev); 3810 if (!rdev) 3811 return -ENXIO; 3812 3813 if (rdev->raid_disk >= 0) 3814 goto busy; 3815 3816 kick_rdev_from_array(rdev); 3817 md_update_sb(mddev, 1); 3818 md_new_event(mddev); 3819 3820 return 0; 3821 busy: 3822 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 3823 bdevname(rdev->bdev,b), mdname(mddev)); 3824 return -EBUSY; 3825 } 3826 3827 static int hot_add_disk(mddev_t * mddev, dev_t dev) 3828 { 3829 char b[BDEVNAME_SIZE]; 3830 int err; 3831 unsigned int size; 3832 mdk_rdev_t *rdev; 3833 3834 if (!mddev->pers) 3835 return -ENODEV; 3836 3837 if (mddev->major_version != 0) { 3838 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 3839 " version-0 superblocks.\n", 3840 mdname(mddev)); 3841 return -EINVAL; 3842 } 3843 if (!mddev->pers->hot_add_disk) { 3844 printk(KERN_WARNING 3845 "%s: personality does not support diskops!\n", 3846 mdname(mddev)); 3847 return -EINVAL; 3848 } 3849 3850 rdev = md_import_device (dev, -1, 0); 3851 if (IS_ERR(rdev)) { 3852 printk(KERN_WARNING 3853 "md: error, md_import_device() returned %ld\n", 3854 PTR_ERR(rdev)); 3855 return -EINVAL; 3856 } 3857 3858 if (mddev->persistent) 3859 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3860 else 3861 rdev->sb_offset = 3862 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3863 3864 size = calc_dev_size(rdev, mddev->chunk_size); 3865 rdev->size = size; 3866 3867 if (test_bit(Faulty, &rdev->flags)) { 3868 printk(KERN_WARNING 3869 "md: can not hot-add faulty %s disk to %s!\n", 3870 bdevname(rdev->bdev,b), mdname(mddev)); 3871 err = -EINVAL; 3872 goto abort_export; 3873 } 3874 clear_bit(In_sync, &rdev->flags); 3875 rdev->desc_nr = -1; 3876 rdev->saved_raid_disk = -1; 3877 err = bind_rdev_to_array(rdev, mddev); 3878 if (err) 3879 goto abort_export; 3880 3881 /* 3882 * The rest should better be atomic, we can have disk failures 3883 * noticed in interrupt contexts ... 3884 */ 3885 3886 if (rdev->desc_nr == mddev->max_disks) { 3887 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 3888 mdname(mddev)); 3889 err = -EBUSY; 3890 goto abort_unbind_export; 3891 } 3892 3893 rdev->raid_disk = -1; 3894 3895 md_update_sb(mddev, 1); 3896 3897 /* 3898 * Kick recovery, maybe this spare has to be added to the 3899 * array immediately. 3900 */ 3901 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3902 md_wakeup_thread(mddev->thread); 3903 md_new_event(mddev); 3904 return 0; 3905 3906 abort_unbind_export: 3907 unbind_rdev_from_array(rdev); 3908 3909 abort_export: 3910 export_rdev(rdev); 3911 return err; 3912 } 3913 3914 static int set_bitmap_file(mddev_t *mddev, int fd) 3915 { 3916 int err; 3917 3918 if (mddev->pers) { 3919 if (!mddev->pers->quiesce) 3920 return -EBUSY; 3921 if (mddev->recovery || mddev->sync_thread) 3922 return -EBUSY; 3923 /* we should be able to change the bitmap.. */ 3924 } 3925 3926 3927 if (fd >= 0) { 3928 if (mddev->bitmap) 3929 return -EEXIST; /* cannot add when bitmap is present */ 3930 mddev->bitmap_file = fget(fd); 3931 3932 if (mddev->bitmap_file == NULL) { 3933 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 3934 mdname(mddev)); 3935 return -EBADF; 3936 } 3937 3938 err = deny_bitmap_write_access(mddev->bitmap_file); 3939 if (err) { 3940 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 3941 mdname(mddev)); 3942 fput(mddev->bitmap_file); 3943 mddev->bitmap_file = NULL; 3944 return err; 3945 } 3946 mddev->bitmap_offset = 0; /* file overrides offset */ 3947 } else if (mddev->bitmap == NULL) 3948 return -ENOENT; /* cannot remove what isn't there */ 3949 err = 0; 3950 if (mddev->pers) { 3951 mddev->pers->quiesce(mddev, 1); 3952 if (fd >= 0) 3953 err = bitmap_create(mddev); 3954 if (fd < 0 || err) { 3955 bitmap_destroy(mddev); 3956 fd = -1; /* make sure to put the file */ 3957 } 3958 mddev->pers->quiesce(mddev, 0); 3959 } 3960 if (fd < 0) { 3961 if (mddev->bitmap_file) { 3962 restore_bitmap_write_access(mddev->bitmap_file); 3963 fput(mddev->bitmap_file); 3964 } 3965 mddev->bitmap_file = NULL; 3966 } 3967 3968 return err; 3969 } 3970 3971 /* 3972 * set_array_info is used two different ways 3973 * The original usage is when creating a new array. 3974 * In this usage, raid_disks is > 0 and it together with 3975 * level, size, not_persistent,layout,chunksize determine the 3976 * shape of the array. 3977 * This will always create an array with a type-0.90.0 superblock. 3978 * The newer usage is when assembling an array. 3979 * In this case raid_disks will be 0, and the major_version field is 3980 * use to determine which style super-blocks are to be found on the devices. 3981 * The minor and patch _version numbers are also kept incase the 3982 * super_block handler wishes to interpret them. 3983 */ 3984 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 3985 { 3986 3987 if (info->raid_disks == 0) { 3988 /* just setting version number for superblock loading */ 3989 if (info->major_version < 0 || 3990 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || 3991 super_types[info->major_version].name == NULL) { 3992 /* maybe try to auto-load a module? */ 3993 printk(KERN_INFO 3994 "md: superblock version %d not known\n", 3995 info->major_version); 3996 return -EINVAL; 3997 } 3998 mddev->major_version = info->major_version; 3999 mddev->minor_version = info->minor_version; 4000 mddev->patch_version = info->patch_version; 4001 mddev->persistent = !info->not_persistent; 4002 return 0; 4003 } 4004 mddev->major_version = MD_MAJOR_VERSION; 4005 mddev->minor_version = MD_MINOR_VERSION; 4006 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4007 mddev->ctime = get_seconds(); 4008 4009 mddev->level = info->level; 4010 mddev->clevel[0] = 0; 4011 mddev->size = info->size; 4012 mddev->raid_disks = info->raid_disks; 4013 /* don't set md_minor, it is determined by which /dev/md* was 4014 * openned 4015 */ 4016 if (info->state & (1<<MD_SB_CLEAN)) 4017 mddev->recovery_cp = MaxSector; 4018 else 4019 mddev->recovery_cp = 0; 4020 mddev->persistent = ! info->not_persistent; 4021 4022 mddev->layout = info->layout; 4023 mddev->chunk_size = info->chunk_size; 4024 4025 mddev->max_disks = MD_SB_DISKS; 4026 4027 mddev->flags = 0; 4028 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4029 4030 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4031 mddev->bitmap_offset = 0; 4032 4033 mddev->reshape_position = MaxSector; 4034 4035 /* 4036 * Generate a 128 bit UUID 4037 */ 4038 get_random_bytes(mddev->uuid, 16); 4039 4040 mddev->new_level = mddev->level; 4041 mddev->new_chunk = mddev->chunk_size; 4042 mddev->new_layout = mddev->layout; 4043 mddev->delta_disks = 0; 4044 4045 return 0; 4046 } 4047 4048 static int update_size(mddev_t *mddev, unsigned long size) 4049 { 4050 mdk_rdev_t * rdev; 4051 int rv; 4052 struct list_head *tmp; 4053 int fit = (size == 0); 4054 4055 if (mddev->pers->resize == NULL) 4056 return -EINVAL; 4057 /* The "size" is the amount of each device that is used. 4058 * This can only make sense for arrays with redundancy. 4059 * linear and raid0 always use whatever space is available 4060 * We can only consider changing the size if no resync 4061 * or reconstruction is happening, and if the new size 4062 * is acceptable. It must fit before the sb_offset or, 4063 * if that is <data_offset, it must fit before the 4064 * size of each device. 4065 * If size is zero, we find the largest size that fits. 4066 */ 4067 if (mddev->sync_thread) 4068 return -EBUSY; 4069 ITERATE_RDEV(mddev,rdev,tmp) { 4070 sector_t avail; 4071 avail = rdev->size * 2; 4072 4073 if (fit && (size == 0 || size > avail/2)) 4074 size = avail/2; 4075 if (avail < ((sector_t)size << 1)) 4076 return -ENOSPC; 4077 } 4078 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4079 if (!rv) { 4080 struct block_device *bdev; 4081 4082 bdev = bdget_disk(mddev->gendisk, 0); 4083 if (bdev) { 4084 mutex_lock(&bdev->bd_inode->i_mutex); 4085 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4086 mutex_unlock(&bdev->bd_inode->i_mutex); 4087 bdput(bdev); 4088 } 4089 } 4090 return rv; 4091 } 4092 4093 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4094 { 4095 int rv; 4096 /* change the number of raid disks */ 4097 if (mddev->pers->check_reshape == NULL) 4098 return -EINVAL; 4099 if (raid_disks <= 0 || 4100 raid_disks >= mddev->max_disks) 4101 return -EINVAL; 4102 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4103 return -EBUSY; 4104 mddev->delta_disks = raid_disks - mddev->raid_disks; 4105 4106 rv = mddev->pers->check_reshape(mddev); 4107 return rv; 4108 } 4109 4110 4111 /* 4112 * update_array_info is used to change the configuration of an 4113 * on-line array. 4114 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4115 * fields in the info are checked against the array. 4116 * Any differences that cannot be handled will cause an error. 4117 * Normally, only one change can be managed at a time. 4118 */ 4119 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4120 { 4121 int rv = 0; 4122 int cnt = 0; 4123 int state = 0; 4124 4125 /* calculate expected state,ignoring low bits */ 4126 if (mddev->bitmap && mddev->bitmap_offset) 4127 state |= (1 << MD_SB_BITMAP_PRESENT); 4128 4129 if (mddev->major_version != info->major_version || 4130 mddev->minor_version != info->minor_version || 4131 /* mddev->patch_version != info->patch_version || */ 4132 mddev->ctime != info->ctime || 4133 mddev->level != info->level || 4134 /* mddev->layout != info->layout || */ 4135 !mddev->persistent != info->not_persistent|| 4136 mddev->chunk_size != info->chunk_size || 4137 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4138 ((state^info->state) & 0xfffffe00) 4139 ) 4140 return -EINVAL; 4141 /* Check there is only one change */ 4142 if (info->size >= 0 && mddev->size != info->size) cnt++; 4143 if (mddev->raid_disks != info->raid_disks) cnt++; 4144 if (mddev->layout != info->layout) cnt++; 4145 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4146 if (cnt == 0) return 0; 4147 if (cnt > 1) return -EINVAL; 4148 4149 if (mddev->layout != info->layout) { 4150 /* Change layout 4151 * we don't need to do anything at the md level, the 4152 * personality will take care of it all. 4153 */ 4154 if (mddev->pers->reconfig == NULL) 4155 return -EINVAL; 4156 else 4157 return mddev->pers->reconfig(mddev, info->layout, -1); 4158 } 4159 if (info->size >= 0 && mddev->size != info->size) 4160 rv = update_size(mddev, info->size); 4161 4162 if (mddev->raid_disks != info->raid_disks) 4163 rv = update_raid_disks(mddev, info->raid_disks); 4164 4165 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4166 if (mddev->pers->quiesce == NULL) 4167 return -EINVAL; 4168 if (mddev->recovery || mddev->sync_thread) 4169 return -EBUSY; 4170 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4171 /* add the bitmap */ 4172 if (mddev->bitmap) 4173 return -EEXIST; 4174 if (mddev->default_bitmap_offset == 0) 4175 return -EINVAL; 4176 mddev->bitmap_offset = mddev->default_bitmap_offset; 4177 mddev->pers->quiesce(mddev, 1); 4178 rv = bitmap_create(mddev); 4179 if (rv) 4180 bitmap_destroy(mddev); 4181 mddev->pers->quiesce(mddev, 0); 4182 } else { 4183 /* remove the bitmap */ 4184 if (!mddev->bitmap) 4185 return -ENOENT; 4186 if (mddev->bitmap->file) 4187 return -EINVAL; 4188 mddev->pers->quiesce(mddev, 1); 4189 bitmap_destroy(mddev); 4190 mddev->pers->quiesce(mddev, 0); 4191 mddev->bitmap_offset = 0; 4192 } 4193 } 4194 md_update_sb(mddev, 1); 4195 return rv; 4196 } 4197 4198 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4199 { 4200 mdk_rdev_t *rdev; 4201 4202 if (mddev->pers == NULL) 4203 return -ENODEV; 4204 4205 rdev = find_rdev(mddev, dev); 4206 if (!rdev) 4207 return -ENODEV; 4208 4209 md_error(mddev, rdev); 4210 return 0; 4211 } 4212 4213 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4214 { 4215 mddev_t *mddev = bdev->bd_disk->private_data; 4216 4217 geo->heads = 2; 4218 geo->sectors = 4; 4219 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4220 return 0; 4221 } 4222 4223 static int md_ioctl(struct inode *inode, struct file *file, 4224 unsigned int cmd, unsigned long arg) 4225 { 4226 int err = 0; 4227 void __user *argp = (void __user *)arg; 4228 mddev_t *mddev = NULL; 4229 4230 if (!capable(CAP_SYS_ADMIN)) 4231 return -EACCES; 4232 4233 /* 4234 * Commands dealing with the RAID driver but not any 4235 * particular array: 4236 */ 4237 switch (cmd) 4238 { 4239 case RAID_VERSION: 4240 err = get_version(argp); 4241 goto done; 4242 4243 case PRINT_RAID_DEBUG: 4244 err = 0; 4245 md_print_devices(); 4246 goto done; 4247 4248 #ifndef MODULE 4249 case RAID_AUTORUN: 4250 err = 0; 4251 autostart_arrays(arg); 4252 goto done; 4253 #endif 4254 default:; 4255 } 4256 4257 /* 4258 * Commands creating/starting a new array: 4259 */ 4260 4261 mddev = inode->i_bdev->bd_disk->private_data; 4262 4263 if (!mddev) { 4264 BUG(); 4265 goto abort; 4266 } 4267 4268 err = mddev_lock(mddev); 4269 if (err) { 4270 printk(KERN_INFO 4271 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4272 err, cmd); 4273 goto abort; 4274 } 4275 4276 switch (cmd) 4277 { 4278 case SET_ARRAY_INFO: 4279 { 4280 mdu_array_info_t info; 4281 if (!arg) 4282 memset(&info, 0, sizeof(info)); 4283 else if (copy_from_user(&info, argp, sizeof(info))) { 4284 err = -EFAULT; 4285 goto abort_unlock; 4286 } 4287 if (mddev->pers) { 4288 err = update_array_info(mddev, &info); 4289 if (err) { 4290 printk(KERN_WARNING "md: couldn't update" 4291 " array info. %d\n", err); 4292 goto abort_unlock; 4293 } 4294 goto done_unlock; 4295 } 4296 if (!list_empty(&mddev->disks)) { 4297 printk(KERN_WARNING 4298 "md: array %s already has disks!\n", 4299 mdname(mddev)); 4300 err = -EBUSY; 4301 goto abort_unlock; 4302 } 4303 if (mddev->raid_disks) { 4304 printk(KERN_WARNING 4305 "md: array %s already initialised!\n", 4306 mdname(mddev)); 4307 err = -EBUSY; 4308 goto abort_unlock; 4309 } 4310 err = set_array_info(mddev, &info); 4311 if (err) { 4312 printk(KERN_WARNING "md: couldn't set" 4313 " array info. %d\n", err); 4314 goto abort_unlock; 4315 } 4316 } 4317 goto done_unlock; 4318 4319 default:; 4320 } 4321 4322 /* 4323 * Commands querying/configuring an existing array: 4324 */ 4325 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4326 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4327 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4328 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4329 && cmd != GET_BITMAP_FILE) { 4330 err = -ENODEV; 4331 goto abort_unlock; 4332 } 4333 4334 /* 4335 * Commands even a read-only array can execute: 4336 */ 4337 switch (cmd) 4338 { 4339 case GET_ARRAY_INFO: 4340 err = get_array_info(mddev, argp); 4341 goto done_unlock; 4342 4343 case GET_BITMAP_FILE: 4344 err = get_bitmap_file(mddev, argp); 4345 goto done_unlock; 4346 4347 case GET_DISK_INFO: 4348 err = get_disk_info(mddev, argp); 4349 goto done_unlock; 4350 4351 case RESTART_ARRAY_RW: 4352 err = restart_array(mddev); 4353 goto done_unlock; 4354 4355 case STOP_ARRAY: 4356 err = do_md_stop (mddev, 0); 4357 goto done_unlock; 4358 4359 case STOP_ARRAY_RO: 4360 err = do_md_stop (mddev, 1); 4361 goto done_unlock; 4362 4363 /* 4364 * We have a problem here : there is no easy way to give a CHS 4365 * virtual geometry. We currently pretend that we have a 2 heads 4366 * 4 sectors (with a BIG number of cylinders...). This drives 4367 * dosfs just mad... ;-) 4368 */ 4369 } 4370 4371 /* 4372 * The remaining ioctls are changing the state of the 4373 * superblock, so we do not allow them on read-only arrays. 4374 * However non-MD ioctls (e.g. get-size) will still come through 4375 * here and hit the 'default' below, so only disallow 4376 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4377 */ 4378 if (_IOC_TYPE(cmd) == MD_MAJOR && 4379 mddev->ro && mddev->pers) { 4380 if (mddev->ro == 2) { 4381 mddev->ro = 0; 4382 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4383 md_wakeup_thread(mddev->thread); 4384 4385 } else { 4386 err = -EROFS; 4387 goto abort_unlock; 4388 } 4389 } 4390 4391 switch (cmd) 4392 { 4393 case ADD_NEW_DISK: 4394 { 4395 mdu_disk_info_t info; 4396 if (copy_from_user(&info, argp, sizeof(info))) 4397 err = -EFAULT; 4398 else 4399 err = add_new_disk(mddev, &info); 4400 goto done_unlock; 4401 } 4402 4403 case HOT_REMOVE_DISK: 4404 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4405 goto done_unlock; 4406 4407 case HOT_ADD_DISK: 4408 err = hot_add_disk(mddev, new_decode_dev(arg)); 4409 goto done_unlock; 4410 4411 case SET_DISK_FAULTY: 4412 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4413 goto done_unlock; 4414 4415 case RUN_ARRAY: 4416 err = do_md_run (mddev); 4417 goto done_unlock; 4418 4419 case SET_BITMAP_FILE: 4420 err = set_bitmap_file(mddev, (int)arg); 4421 goto done_unlock; 4422 4423 default: 4424 err = -EINVAL; 4425 goto abort_unlock; 4426 } 4427 4428 done_unlock: 4429 abort_unlock: 4430 mddev_unlock(mddev); 4431 4432 return err; 4433 done: 4434 if (err) 4435 MD_BUG(); 4436 abort: 4437 return err; 4438 } 4439 4440 static int md_open(struct inode *inode, struct file *file) 4441 { 4442 /* 4443 * Succeed if we can lock the mddev, which confirms that 4444 * it isn't being stopped right now. 4445 */ 4446 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4447 int err; 4448 4449 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4450 goto out; 4451 4452 err = 0; 4453 mddev_get(mddev); 4454 mddev_unlock(mddev); 4455 4456 check_disk_change(inode->i_bdev); 4457 out: 4458 return err; 4459 } 4460 4461 static int md_release(struct inode *inode, struct file * file) 4462 { 4463 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4464 4465 BUG_ON(!mddev); 4466 mddev_put(mddev); 4467 4468 return 0; 4469 } 4470 4471 static int md_media_changed(struct gendisk *disk) 4472 { 4473 mddev_t *mddev = disk->private_data; 4474 4475 return mddev->changed; 4476 } 4477 4478 static int md_revalidate(struct gendisk *disk) 4479 { 4480 mddev_t *mddev = disk->private_data; 4481 4482 mddev->changed = 0; 4483 return 0; 4484 } 4485 static struct block_device_operations md_fops = 4486 { 4487 .owner = THIS_MODULE, 4488 .open = md_open, 4489 .release = md_release, 4490 .ioctl = md_ioctl, 4491 .getgeo = md_getgeo, 4492 .media_changed = md_media_changed, 4493 .revalidate_disk= md_revalidate, 4494 }; 4495 4496 static int md_thread(void * arg) 4497 { 4498 mdk_thread_t *thread = arg; 4499 4500 /* 4501 * md_thread is a 'system-thread', it's priority should be very 4502 * high. We avoid resource deadlocks individually in each 4503 * raid personality. (RAID5 does preallocation) We also use RR and 4504 * the very same RT priority as kswapd, thus we will never get 4505 * into a priority inversion deadlock. 4506 * 4507 * we definitely have to have equal or higher priority than 4508 * bdflush, otherwise bdflush will deadlock if there are too 4509 * many dirty RAID5 blocks. 4510 */ 4511 4512 current->flags |= PF_NOFREEZE; 4513 allow_signal(SIGKILL); 4514 while (!kthread_should_stop()) { 4515 4516 /* We need to wait INTERRUPTIBLE so that 4517 * we don't add to the load-average. 4518 * That means we need to be sure no signals are 4519 * pending 4520 */ 4521 if (signal_pending(current)) 4522 flush_signals(current); 4523 4524 wait_event_interruptible_timeout 4525 (thread->wqueue, 4526 test_bit(THREAD_WAKEUP, &thread->flags) 4527 || kthread_should_stop(), 4528 thread->timeout); 4529 4530 clear_bit(THREAD_WAKEUP, &thread->flags); 4531 4532 thread->run(thread->mddev); 4533 } 4534 4535 return 0; 4536 } 4537 4538 void md_wakeup_thread(mdk_thread_t *thread) 4539 { 4540 if (thread) { 4541 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4542 set_bit(THREAD_WAKEUP, &thread->flags); 4543 wake_up(&thread->wqueue); 4544 } 4545 } 4546 4547 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4548 const char *name) 4549 { 4550 mdk_thread_t *thread; 4551 4552 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4553 if (!thread) 4554 return NULL; 4555 4556 init_waitqueue_head(&thread->wqueue); 4557 4558 thread->run = run; 4559 thread->mddev = mddev; 4560 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4561 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4562 if (IS_ERR(thread->tsk)) { 4563 kfree(thread); 4564 return NULL; 4565 } 4566 return thread; 4567 } 4568 4569 void md_unregister_thread(mdk_thread_t *thread) 4570 { 4571 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); 4572 4573 kthread_stop(thread->tsk); 4574 kfree(thread); 4575 } 4576 4577 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4578 { 4579 if (!mddev) { 4580 MD_BUG(); 4581 return; 4582 } 4583 4584 if (!rdev || test_bit(Faulty, &rdev->flags)) 4585 return; 4586 /* 4587 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4588 mdname(mddev), 4589 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4590 __builtin_return_address(0),__builtin_return_address(1), 4591 __builtin_return_address(2),__builtin_return_address(3)); 4592 */ 4593 if (!mddev->pers) 4594 return; 4595 if (!mddev->pers->error_handler) 4596 return; 4597 mddev->pers->error_handler(mddev,rdev); 4598 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4599 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4600 md_wakeup_thread(mddev->thread); 4601 md_new_event_inintr(mddev); 4602 } 4603 4604 /* seq_file implementation /proc/mdstat */ 4605 4606 static void status_unused(struct seq_file *seq) 4607 { 4608 int i = 0; 4609 mdk_rdev_t *rdev; 4610 struct list_head *tmp; 4611 4612 seq_printf(seq, "unused devices: "); 4613 4614 ITERATE_RDEV_PENDING(rdev,tmp) { 4615 char b[BDEVNAME_SIZE]; 4616 i++; 4617 seq_printf(seq, "%s ", 4618 bdevname(rdev->bdev,b)); 4619 } 4620 if (!i) 4621 seq_printf(seq, "<none>"); 4622 4623 seq_printf(seq, "\n"); 4624 } 4625 4626 4627 static void status_resync(struct seq_file *seq, mddev_t * mddev) 4628 { 4629 sector_t max_blocks, resync, res; 4630 unsigned long dt, db, rt; 4631 int scale; 4632 unsigned int per_milli; 4633 4634 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 4635 4636 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4637 max_blocks = mddev->resync_max_sectors >> 1; 4638 else 4639 max_blocks = mddev->size; 4640 4641 /* 4642 * Should not happen. 4643 */ 4644 if (!max_blocks) { 4645 MD_BUG(); 4646 return; 4647 } 4648 /* Pick 'scale' such that (resync>>scale)*1000 will fit 4649 * in a sector_t, and (max_blocks>>scale) will fit in a 4650 * u32, as those are the requirements for sector_div. 4651 * Thus 'scale' must be at least 10 4652 */ 4653 scale = 10; 4654 if (sizeof(sector_t) > sizeof(unsigned long)) { 4655 while ( max_blocks/2 > (1ULL<<(scale+32))) 4656 scale++; 4657 } 4658 res = (resync>>scale)*1000; 4659 sector_div(res, (u32)((max_blocks>>scale)+1)); 4660 4661 per_milli = res; 4662 { 4663 int i, x = per_milli/50, y = 20-x; 4664 seq_printf(seq, "["); 4665 for (i = 0; i < x; i++) 4666 seq_printf(seq, "="); 4667 seq_printf(seq, ">"); 4668 for (i = 0; i < y; i++) 4669 seq_printf(seq, "."); 4670 seq_printf(seq, "] "); 4671 } 4672 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 4673 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 4674 "reshape" : 4675 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 4676 "check" : 4677 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 4678 "resync" : "recovery"))), 4679 per_milli/10, per_milli % 10, 4680 (unsigned long long) resync, 4681 (unsigned long long) max_blocks); 4682 4683 /* 4684 * We do not want to overflow, so the order of operands and 4685 * the * 100 / 100 trick are important. We do a +1 to be 4686 * safe against division by zero. We only estimate anyway. 4687 * 4688 * dt: time from mark until now 4689 * db: blocks written from mark until now 4690 * rt: remaining time 4691 */ 4692 dt = ((jiffies - mddev->resync_mark) / HZ); 4693 if (!dt) dt++; 4694 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 4695 - mddev->resync_mark_cnt; 4696 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 4697 4698 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 4699 4700 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 4701 } 4702 4703 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 4704 { 4705 struct list_head *tmp; 4706 loff_t l = *pos; 4707 mddev_t *mddev; 4708 4709 if (l >= 0x10000) 4710 return NULL; 4711 if (!l--) 4712 /* header */ 4713 return (void*)1; 4714 4715 spin_lock(&all_mddevs_lock); 4716 list_for_each(tmp,&all_mddevs) 4717 if (!l--) { 4718 mddev = list_entry(tmp, mddev_t, all_mddevs); 4719 mddev_get(mddev); 4720 spin_unlock(&all_mddevs_lock); 4721 return mddev; 4722 } 4723 spin_unlock(&all_mddevs_lock); 4724 if (!l--) 4725 return (void*)2;/* tail */ 4726 return NULL; 4727 } 4728 4729 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4730 { 4731 struct list_head *tmp; 4732 mddev_t *next_mddev, *mddev = v; 4733 4734 ++*pos; 4735 if (v == (void*)2) 4736 return NULL; 4737 4738 spin_lock(&all_mddevs_lock); 4739 if (v == (void*)1) 4740 tmp = all_mddevs.next; 4741 else 4742 tmp = mddev->all_mddevs.next; 4743 if (tmp != &all_mddevs) 4744 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 4745 else { 4746 next_mddev = (void*)2; 4747 *pos = 0x10000; 4748 } 4749 spin_unlock(&all_mddevs_lock); 4750 4751 if (v != (void*)1) 4752 mddev_put(mddev); 4753 return next_mddev; 4754 4755 } 4756 4757 static void md_seq_stop(struct seq_file *seq, void *v) 4758 { 4759 mddev_t *mddev = v; 4760 4761 if (mddev && v != (void*)1 && v != (void*)2) 4762 mddev_put(mddev); 4763 } 4764 4765 struct mdstat_info { 4766 int event; 4767 }; 4768 4769 static int md_seq_show(struct seq_file *seq, void *v) 4770 { 4771 mddev_t *mddev = v; 4772 sector_t size; 4773 struct list_head *tmp2; 4774 mdk_rdev_t *rdev; 4775 struct mdstat_info *mi = seq->private; 4776 struct bitmap *bitmap; 4777 4778 if (v == (void*)1) { 4779 struct mdk_personality *pers; 4780 seq_printf(seq, "Personalities : "); 4781 spin_lock(&pers_lock); 4782 list_for_each_entry(pers, &pers_list, list) 4783 seq_printf(seq, "[%s] ", pers->name); 4784 4785 spin_unlock(&pers_lock); 4786 seq_printf(seq, "\n"); 4787 mi->event = atomic_read(&md_event_count); 4788 return 0; 4789 } 4790 if (v == (void*)2) { 4791 status_unused(seq); 4792 return 0; 4793 } 4794 4795 if (mddev_lock(mddev) < 0) 4796 return -EINTR; 4797 4798 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 4799 seq_printf(seq, "%s : %sactive", mdname(mddev), 4800 mddev->pers ? "" : "in"); 4801 if (mddev->pers) { 4802 if (mddev->ro==1) 4803 seq_printf(seq, " (read-only)"); 4804 if (mddev->ro==2) 4805 seq_printf(seq, "(auto-read-only)"); 4806 seq_printf(seq, " %s", mddev->pers->name); 4807 } 4808 4809 size = 0; 4810 ITERATE_RDEV(mddev,rdev,tmp2) { 4811 char b[BDEVNAME_SIZE]; 4812 seq_printf(seq, " %s[%d]", 4813 bdevname(rdev->bdev,b), rdev->desc_nr); 4814 if (test_bit(WriteMostly, &rdev->flags)) 4815 seq_printf(seq, "(W)"); 4816 if (test_bit(Faulty, &rdev->flags)) { 4817 seq_printf(seq, "(F)"); 4818 continue; 4819 } else if (rdev->raid_disk < 0) 4820 seq_printf(seq, "(S)"); /* spare */ 4821 size += rdev->size; 4822 } 4823 4824 if (!list_empty(&mddev->disks)) { 4825 if (mddev->pers) 4826 seq_printf(seq, "\n %llu blocks", 4827 (unsigned long long)mddev->array_size); 4828 else 4829 seq_printf(seq, "\n %llu blocks", 4830 (unsigned long long)size); 4831 } 4832 if (mddev->persistent) { 4833 if (mddev->major_version != 0 || 4834 mddev->minor_version != 90) { 4835 seq_printf(seq," super %d.%d", 4836 mddev->major_version, 4837 mddev->minor_version); 4838 } 4839 } else 4840 seq_printf(seq, " super non-persistent"); 4841 4842 if (mddev->pers) { 4843 mddev->pers->status (seq, mddev); 4844 seq_printf(seq, "\n "); 4845 if (mddev->pers->sync_request) { 4846 if (mddev->curr_resync > 2) { 4847 status_resync (seq, mddev); 4848 seq_printf(seq, "\n "); 4849 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 4850 seq_printf(seq, "\tresync=DELAYED\n "); 4851 else if (mddev->recovery_cp < MaxSector) 4852 seq_printf(seq, "\tresync=PENDING\n "); 4853 } 4854 } else 4855 seq_printf(seq, "\n "); 4856 4857 if ((bitmap = mddev->bitmap)) { 4858 unsigned long chunk_kb; 4859 unsigned long flags; 4860 spin_lock_irqsave(&bitmap->lock, flags); 4861 chunk_kb = bitmap->chunksize >> 10; 4862 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 4863 "%lu%s chunk", 4864 bitmap->pages - bitmap->missing_pages, 4865 bitmap->pages, 4866 (bitmap->pages - bitmap->missing_pages) 4867 << (PAGE_SHIFT - 10), 4868 chunk_kb ? chunk_kb : bitmap->chunksize, 4869 chunk_kb ? "KB" : "B"); 4870 if (bitmap->file) { 4871 seq_printf(seq, ", file: "); 4872 seq_path(seq, bitmap->file->f_path.mnt, 4873 bitmap->file->f_path.dentry," \t\n"); 4874 } 4875 4876 seq_printf(seq, "\n"); 4877 spin_unlock_irqrestore(&bitmap->lock, flags); 4878 } 4879 4880 seq_printf(seq, "\n"); 4881 } 4882 mddev_unlock(mddev); 4883 4884 return 0; 4885 } 4886 4887 static struct seq_operations md_seq_ops = { 4888 .start = md_seq_start, 4889 .next = md_seq_next, 4890 .stop = md_seq_stop, 4891 .show = md_seq_show, 4892 }; 4893 4894 static int md_seq_open(struct inode *inode, struct file *file) 4895 { 4896 int error; 4897 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 4898 if (mi == NULL) 4899 return -ENOMEM; 4900 4901 error = seq_open(file, &md_seq_ops); 4902 if (error) 4903 kfree(mi); 4904 else { 4905 struct seq_file *p = file->private_data; 4906 p->private = mi; 4907 mi->event = atomic_read(&md_event_count); 4908 } 4909 return error; 4910 } 4911 4912 static int md_seq_release(struct inode *inode, struct file *file) 4913 { 4914 struct seq_file *m = file->private_data; 4915 struct mdstat_info *mi = m->private; 4916 m->private = NULL; 4917 kfree(mi); 4918 return seq_release(inode, file); 4919 } 4920 4921 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 4922 { 4923 struct seq_file *m = filp->private_data; 4924 struct mdstat_info *mi = m->private; 4925 int mask; 4926 4927 poll_wait(filp, &md_event_waiters, wait); 4928 4929 /* always allow read */ 4930 mask = POLLIN | POLLRDNORM; 4931 4932 if (mi->event != atomic_read(&md_event_count)) 4933 mask |= POLLERR | POLLPRI; 4934 return mask; 4935 } 4936 4937 static const struct file_operations md_seq_fops = { 4938 .owner = THIS_MODULE, 4939 .open = md_seq_open, 4940 .read = seq_read, 4941 .llseek = seq_lseek, 4942 .release = md_seq_release, 4943 .poll = mdstat_poll, 4944 }; 4945 4946 int register_md_personality(struct mdk_personality *p) 4947 { 4948 spin_lock(&pers_lock); 4949 list_add_tail(&p->list, &pers_list); 4950 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 4951 spin_unlock(&pers_lock); 4952 return 0; 4953 } 4954 4955 int unregister_md_personality(struct mdk_personality *p) 4956 { 4957 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 4958 spin_lock(&pers_lock); 4959 list_del_init(&p->list); 4960 spin_unlock(&pers_lock); 4961 return 0; 4962 } 4963 4964 static int is_mddev_idle(mddev_t *mddev) 4965 { 4966 mdk_rdev_t * rdev; 4967 struct list_head *tmp; 4968 int idle; 4969 unsigned long curr_events; 4970 4971 idle = 1; 4972 ITERATE_RDEV(mddev,rdev,tmp) { 4973 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 4974 curr_events = disk_stat_read(disk, sectors[0]) + 4975 disk_stat_read(disk, sectors[1]) - 4976 atomic_read(&disk->sync_io); 4977 /* The difference between curr_events and last_events 4978 * will be affected by any new non-sync IO (making 4979 * curr_events bigger) and any difference in the amount of 4980 * in-flight syncio (making current_events bigger or smaller) 4981 * The amount in-flight is currently limited to 4982 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6 4983 * which is at most 4096 sectors. 4984 * These numbers are fairly fragile and should be made 4985 * more robust, probably by enforcing the 4986 * 'window size' that md_do_sync sort-of uses. 4987 * 4988 * Note: the following is an unsigned comparison. 4989 */ 4990 if ((curr_events - rdev->last_events + 4096) > 8192) { 4991 rdev->last_events = curr_events; 4992 idle = 0; 4993 } 4994 } 4995 return idle; 4996 } 4997 4998 void md_done_sync(mddev_t *mddev, int blocks, int ok) 4999 { 5000 /* another "blocks" (512byte) blocks have been synced */ 5001 atomic_sub(blocks, &mddev->recovery_active); 5002 wake_up(&mddev->recovery_wait); 5003 if (!ok) { 5004 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5005 md_wakeup_thread(mddev->thread); 5006 // stop recovery, signal do_sync .... 5007 } 5008 } 5009 5010 5011 /* md_write_start(mddev, bi) 5012 * If we need to update some array metadata (e.g. 'active' flag 5013 * in superblock) before writing, schedule a superblock update 5014 * and wait for it to complete. 5015 */ 5016 void md_write_start(mddev_t *mddev, struct bio *bi) 5017 { 5018 if (bio_data_dir(bi) != WRITE) 5019 return; 5020 5021 BUG_ON(mddev->ro == 1); 5022 if (mddev->ro == 2) { 5023 /* need to switch to read/write */ 5024 mddev->ro = 0; 5025 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5026 md_wakeup_thread(mddev->thread); 5027 } 5028 atomic_inc(&mddev->writes_pending); 5029 if (mddev->in_sync) { 5030 spin_lock_irq(&mddev->write_lock); 5031 if (mddev->in_sync) { 5032 mddev->in_sync = 0; 5033 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5034 md_wakeup_thread(mddev->thread); 5035 } 5036 spin_unlock_irq(&mddev->write_lock); 5037 } 5038 wait_event(mddev->sb_wait, mddev->flags==0); 5039 } 5040 5041 void md_write_end(mddev_t *mddev) 5042 { 5043 if (atomic_dec_and_test(&mddev->writes_pending)) { 5044 if (mddev->safemode == 2) 5045 md_wakeup_thread(mddev->thread); 5046 else if (mddev->safemode_delay) 5047 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5048 } 5049 } 5050 5051 /* md_allow_write(mddev) 5052 * Calling this ensures that the array is marked 'active' so that writes 5053 * may proceed without blocking. It is important to call this before 5054 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5055 * Must be called with mddev_lock held. 5056 */ 5057 void md_allow_write(mddev_t *mddev) 5058 { 5059 if (!mddev->pers) 5060 return; 5061 if (mddev->ro) 5062 return; 5063 5064 spin_lock_irq(&mddev->write_lock); 5065 if (mddev->in_sync) { 5066 mddev->in_sync = 0; 5067 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5068 if (mddev->safemode_delay && 5069 mddev->safemode == 0) 5070 mddev->safemode = 1; 5071 spin_unlock_irq(&mddev->write_lock); 5072 md_update_sb(mddev, 0); 5073 } else 5074 spin_unlock_irq(&mddev->write_lock); 5075 } 5076 EXPORT_SYMBOL_GPL(md_allow_write); 5077 5078 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5079 5080 #define SYNC_MARKS 10 5081 #define SYNC_MARK_STEP (3*HZ) 5082 void md_do_sync(mddev_t *mddev) 5083 { 5084 mddev_t *mddev2; 5085 unsigned int currspeed = 0, 5086 window; 5087 sector_t max_sectors,j, io_sectors; 5088 unsigned long mark[SYNC_MARKS]; 5089 sector_t mark_cnt[SYNC_MARKS]; 5090 int last_mark,m; 5091 struct list_head *tmp; 5092 sector_t last_check; 5093 int skipped = 0; 5094 struct list_head *rtmp; 5095 mdk_rdev_t *rdev; 5096 char *desc; 5097 5098 /* just incase thread restarts... */ 5099 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5100 return; 5101 if (mddev->ro) /* never try to sync a read-only array */ 5102 return; 5103 5104 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5105 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5106 desc = "data-check"; 5107 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5108 desc = "requested-resync"; 5109 else 5110 desc = "resync"; 5111 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5112 desc = "reshape"; 5113 else 5114 desc = "recovery"; 5115 5116 /* we overload curr_resync somewhat here. 5117 * 0 == not engaged in resync at all 5118 * 2 == checking that there is no conflict with another sync 5119 * 1 == like 2, but have yielded to allow conflicting resync to 5120 * commense 5121 * other == active in resync - this many blocks 5122 * 5123 * Before starting a resync we must have set curr_resync to 5124 * 2, and then checked that every "conflicting" array has curr_resync 5125 * less than ours. When we find one that is the same or higher 5126 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5127 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5128 * This will mean we have to start checking from the beginning again. 5129 * 5130 */ 5131 5132 do { 5133 mddev->curr_resync = 2; 5134 5135 try_again: 5136 if (kthread_should_stop()) { 5137 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5138 goto skip; 5139 } 5140 ITERATE_MDDEV(mddev2,tmp) { 5141 if (mddev2 == mddev) 5142 continue; 5143 if (mddev2->curr_resync && 5144 match_mddev_units(mddev,mddev2)) { 5145 DEFINE_WAIT(wq); 5146 if (mddev < mddev2 && mddev->curr_resync == 2) { 5147 /* arbitrarily yield */ 5148 mddev->curr_resync = 1; 5149 wake_up(&resync_wait); 5150 } 5151 if (mddev > mddev2 && mddev->curr_resync == 1) 5152 /* no need to wait here, we can wait the next 5153 * time 'round when curr_resync == 2 5154 */ 5155 continue; 5156 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5157 if (!kthread_should_stop() && 5158 mddev2->curr_resync >= mddev->curr_resync) { 5159 printk(KERN_INFO "md: delaying %s of %s" 5160 " until %s has finished (they" 5161 " share one or more physical units)\n", 5162 desc, mdname(mddev), mdname(mddev2)); 5163 mddev_put(mddev2); 5164 schedule(); 5165 finish_wait(&resync_wait, &wq); 5166 goto try_again; 5167 } 5168 finish_wait(&resync_wait, &wq); 5169 } 5170 } 5171 } while (mddev->curr_resync < 2); 5172 5173 j = 0; 5174 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5175 /* resync follows the size requested by the personality, 5176 * which defaults to physical size, but can be virtual size 5177 */ 5178 max_sectors = mddev->resync_max_sectors; 5179 mddev->resync_mismatches = 0; 5180 /* we don't use the checkpoint if there's a bitmap */ 5181 if (!mddev->bitmap && 5182 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5183 j = mddev->recovery_cp; 5184 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5185 max_sectors = mddev->size << 1; 5186 else { 5187 /* recovery follows the physical size of devices */ 5188 max_sectors = mddev->size << 1; 5189 j = MaxSector; 5190 ITERATE_RDEV(mddev,rdev,rtmp) 5191 if (rdev->raid_disk >= 0 && 5192 !test_bit(Faulty, &rdev->flags) && 5193 !test_bit(In_sync, &rdev->flags) && 5194 rdev->recovery_offset < j) 5195 j = rdev->recovery_offset; 5196 } 5197 5198 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5199 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5200 " %d KB/sec/disk.\n", speed_min(mddev)); 5201 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5202 "(but not more than %d KB/sec) for %s.\n", 5203 speed_max(mddev), desc); 5204 5205 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5206 5207 io_sectors = 0; 5208 for (m = 0; m < SYNC_MARKS; m++) { 5209 mark[m] = jiffies; 5210 mark_cnt[m] = io_sectors; 5211 } 5212 last_mark = 0; 5213 mddev->resync_mark = mark[last_mark]; 5214 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5215 5216 /* 5217 * Tune reconstruction: 5218 */ 5219 window = 32*(PAGE_SIZE/512); 5220 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5221 window/2,(unsigned long long) max_sectors/2); 5222 5223 atomic_set(&mddev->recovery_active, 0); 5224 init_waitqueue_head(&mddev->recovery_wait); 5225 last_check = 0; 5226 5227 if (j>2) { 5228 printk(KERN_INFO 5229 "md: resuming %s of %s from checkpoint.\n", 5230 desc, mdname(mddev)); 5231 mddev->curr_resync = j; 5232 } 5233 5234 while (j < max_sectors) { 5235 sector_t sectors; 5236 5237 skipped = 0; 5238 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5239 currspeed < speed_min(mddev)); 5240 if (sectors == 0) { 5241 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5242 goto out; 5243 } 5244 5245 if (!skipped) { /* actual IO requested */ 5246 io_sectors += sectors; 5247 atomic_add(sectors, &mddev->recovery_active); 5248 } 5249 5250 j += sectors; 5251 if (j>1) mddev->curr_resync = j; 5252 mddev->curr_mark_cnt = io_sectors; 5253 if (last_check == 0) 5254 /* this is the earliers that rebuilt will be 5255 * visible in /proc/mdstat 5256 */ 5257 md_new_event(mddev); 5258 5259 if (last_check + window > io_sectors || j == max_sectors) 5260 continue; 5261 5262 last_check = io_sectors; 5263 5264 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5265 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5266 break; 5267 5268 repeat: 5269 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5270 /* step marks */ 5271 int next = (last_mark+1) % SYNC_MARKS; 5272 5273 mddev->resync_mark = mark[next]; 5274 mddev->resync_mark_cnt = mark_cnt[next]; 5275 mark[next] = jiffies; 5276 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5277 last_mark = next; 5278 } 5279 5280 5281 if (kthread_should_stop()) { 5282 /* 5283 * got a signal, exit. 5284 */ 5285 printk(KERN_INFO 5286 "md: md_do_sync() got signal ... exiting\n"); 5287 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5288 goto out; 5289 } 5290 5291 /* 5292 * this loop exits only if either when we are slower than 5293 * the 'hard' speed limit, or the system was IO-idle for 5294 * a jiffy. 5295 * the system might be non-idle CPU-wise, but we only care 5296 * about not overloading the IO subsystem. (things like an 5297 * e2fsck being done on the RAID array should execute fast) 5298 */ 5299 mddev->queue->unplug_fn(mddev->queue); 5300 cond_resched(); 5301 5302 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5303 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5304 5305 if (currspeed > speed_min(mddev)) { 5306 if ((currspeed > speed_max(mddev)) || 5307 !is_mddev_idle(mddev)) { 5308 msleep(500); 5309 goto repeat; 5310 } 5311 } 5312 } 5313 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5314 /* 5315 * this also signals 'finished resyncing' to md_stop 5316 */ 5317 out: 5318 mddev->queue->unplug_fn(mddev->queue); 5319 5320 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5321 5322 /* tell personality that we are finished */ 5323 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5324 5325 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5326 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5327 mddev->curr_resync > 2) { 5328 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5329 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5330 if (mddev->curr_resync >= mddev->recovery_cp) { 5331 printk(KERN_INFO 5332 "md: checkpointing %s of %s.\n", 5333 desc, mdname(mddev)); 5334 mddev->recovery_cp = mddev->curr_resync; 5335 } 5336 } else 5337 mddev->recovery_cp = MaxSector; 5338 } else { 5339 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5340 mddev->curr_resync = MaxSector; 5341 ITERATE_RDEV(mddev,rdev,rtmp) 5342 if (rdev->raid_disk >= 0 && 5343 !test_bit(Faulty, &rdev->flags) && 5344 !test_bit(In_sync, &rdev->flags) && 5345 rdev->recovery_offset < mddev->curr_resync) 5346 rdev->recovery_offset = mddev->curr_resync; 5347 } 5348 } 5349 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5350 5351 skip: 5352 mddev->curr_resync = 0; 5353 wake_up(&resync_wait); 5354 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5355 md_wakeup_thread(mddev->thread); 5356 } 5357 EXPORT_SYMBOL_GPL(md_do_sync); 5358 5359 5360 static int remove_and_add_spares(mddev_t *mddev) 5361 { 5362 mdk_rdev_t *rdev; 5363 struct list_head *rtmp; 5364 int spares = 0; 5365 5366 ITERATE_RDEV(mddev,rdev,rtmp) 5367 if (rdev->raid_disk >= 0 && 5368 (test_bit(Faulty, &rdev->flags) || 5369 ! test_bit(In_sync, &rdev->flags)) && 5370 atomic_read(&rdev->nr_pending)==0) { 5371 if (mddev->pers->hot_remove_disk( 5372 mddev, rdev->raid_disk)==0) { 5373 char nm[20]; 5374 sprintf(nm,"rd%d", rdev->raid_disk); 5375 sysfs_remove_link(&mddev->kobj, nm); 5376 rdev->raid_disk = -1; 5377 } 5378 } 5379 5380 if (mddev->degraded) { 5381 ITERATE_RDEV(mddev,rdev,rtmp) 5382 if (rdev->raid_disk < 0 5383 && !test_bit(Faulty, &rdev->flags)) { 5384 rdev->recovery_offset = 0; 5385 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5386 char nm[20]; 5387 sprintf(nm, "rd%d", rdev->raid_disk); 5388 sysfs_create_link(&mddev->kobj, 5389 &rdev->kobj, nm); 5390 spares++; 5391 md_new_event(mddev); 5392 } else 5393 break; 5394 } 5395 } 5396 return spares; 5397 } 5398 /* 5399 * This routine is regularly called by all per-raid-array threads to 5400 * deal with generic issues like resync and super-block update. 5401 * Raid personalities that don't have a thread (linear/raid0) do not 5402 * need this as they never do any recovery or update the superblock. 5403 * 5404 * It does not do any resync itself, but rather "forks" off other threads 5405 * to do that as needed. 5406 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5407 * "->recovery" and create a thread at ->sync_thread. 5408 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5409 * and wakeups up this thread which will reap the thread and finish up. 5410 * This thread also removes any faulty devices (with nr_pending == 0). 5411 * 5412 * The overall approach is: 5413 * 1/ if the superblock needs updating, update it. 5414 * 2/ If a recovery thread is running, don't do anything else. 5415 * 3/ If recovery has finished, clean up, possibly marking spares active. 5416 * 4/ If there are any faulty devices, remove them. 5417 * 5/ If array is degraded, try to add spares devices 5418 * 6/ If array has spares or is not in-sync, start a resync thread. 5419 */ 5420 void md_check_recovery(mddev_t *mddev) 5421 { 5422 mdk_rdev_t *rdev; 5423 struct list_head *rtmp; 5424 5425 5426 if (mddev->bitmap) 5427 bitmap_daemon_work(mddev->bitmap); 5428 5429 if (mddev->ro) 5430 return; 5431 5432 if (signal_pending(current)) { 5433 if (mddev->pers->sync_request) { 5434 printk(KERN_INFO "md: %s in immediate safe mode\n", 5435 mdname(mddev)); 5436 mddev->safemode = 2; 5437 } 5438 flush_signals(current); 5439 } 5440 5441 if ( ! ( 5442 mddev->flags || 5443 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5444 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5445 (mddev->safemode == 1) || 5446 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5447 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5448 )) 5449 return; 5450 5451 if (mddev_trylock(mddev)) { 5452 int spares = 0; 5453 5454 spin_lock_irq(&mddev->write_lock); 5455 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 5456 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 5457 mddev->in_sync = 1; 5458 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5459 } 5460 if (mddev->safemode == 1) 5461 mddev->safemode = 0; 5462 spin_unlock_irq(&mddev->write_lock); 5463 5464 if (mddev->flags) 5465 md_update_sb(mddev, 0); 5466 5467 5468 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5469 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5470 /* resync/recovery still happening */ 5471 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5472 goto unlock; 5473 } 5474 if (mddev->sync_thread) { 5475 /* resync has finished, collect result */ 5476 md_unregister_thread(mddev->sync_thread); 5477 mddev->sync_thread = NULL; 5478 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5479 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5480 /* success...*/ 5481 /* activate any spares */ 5482 mddev->pers->spare_active(mddev); 5483 } 5484 md_update_sb(mddev, 1); 5485 5486 /* if array is no-longer degraded, then any saved_raid_disk 5487 * information must be scrapped 5488 */ 5489 if (!mddev->degraded) 5490 ITERATE_RDEV(mddev,rdev,rtmp) 5491 rdev->saved_raid_disk = -1; 5492 5493 mddev->recovery = 0; 5494 /* flag recovery needed just to double check */ 5495 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5496 md_new_event(mddev); 5497 goto unlock; 5498 } 5499 /* Clear some bits that don't mean anything, but 5500 * might be left set 5501 */ 5502 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5503 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5504 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5505 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5506 5507 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5508 goto unlock; 5509 /* no recovery is running. 5510 * remove any failed drives, then 5511 * add spares if possible. 5512 * Spare are also removed and re-added, to allow 5513 * the personality to fail the re-add. 5514 */ 5515 5516 if (mddev->reshape_position != MaxSector) { 5517 if (mddev->pers->check_reshape(mddev) != 0) 5518 /* Cannot proceed */ 5519 goto unlock; 5520 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5521 } else if ((spares = remove_and_add_spares(mddev))) { 5522 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5523 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5524 } else if (mddev->recovery_cp < MaxSector) { 5525 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5526 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5527 /* nothing to be done ... */ 5528 goto unlock; 5529 5530 if (mddev->pers->sync_request) { 5531 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5532 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5533 /* We are adding a device or devices to an array 5534 * which has the bitmap stored on all devices. 5535 * So make sure all bitmap pages get written 5536 */ 5537 bitmap_write_all(mddev->bitmap); 5538 } 5539 mddev->sync_thread = md_register_thread(md_do_sync, 5540 mddev, 5541 "%s_resync"); 5542 if (!mddev->sync_thread) { 5543 printk(KERN_ERR "%s: could not start resync" 5544 " thread...\n", 5545 mdname(mddev)); 5546 /* leave the spares where they are, it shouldn't hurt */ 5547 mddev->recovery = 0; 5548 } else 5549 md_wakeup_thread(mddev->sync_thread); 5550 md_new_event(mddev); 5551 } 5552 unlock: 5553 mddev_unlock(mddev); 5554 } 5555 } 5556 5557 static int md_notify_reboot(struct notifier_block *this, 5558 unsigned long code, void *x) 5559 { 5560 struct list_head *tmp; 5561 mddev_t *mddev; 5562 5563 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 5564 5565 printk(KERN_INFO "md: stopping all md devices.\n"); 5566 5567 ITERATE_MDDEV(mddev,tmp) 5568 if (mddev_trylock(mddev)) { 5569 do_md_stop (mddev, 1); 5570 mddev_unlock(mddev); 5571 } 5572 /* 5573 * certain more exotic SCSI devices are known to be 5574 * volatile wrt too early system reboots. While the 5575 * right place to handle this issue is the given 5576 * driver, we do want to have a safe RAID driver ... 5577 */ 5578 mdelay(1000*1); 5579 } 5580 return NOTIFY_DONE; 5581 } 5582 5583 static struct notifier_block md_notifier = { 5584 .notifier_call = md_notify_reboot, 5585 .next = NULL, 5586 .priority = INT_MAX, /* before any real devices */ 5587 }; 5588 5589 static void md_geninit(void) 5590 { 5591 struct proc_dir_entry *p; 5592 5593 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 5594 5595 p = create_proc_entry("mdstat", S_IRUGO, NULL); 5596 if (p) 5597 p->proc_fops = &md_seq_fops; 5598 } 5599 5600 static int __init md_init(void) 5601 { 5602 if (register_blkdev(MAJOR_NR, "md")) 5603 return -1; 5604 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 5605 unregister_blkdev(MAJOR_NR, "md"); 5606 return -1; 5607 } 5608 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 5609 md_probe, NULL, NULL); 5610 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 5611 md_probe, NULL, NULL); 5612 5613 register_reboot_notifier(&md_notifier); 5614 raid_table_header = register_sysctl_table(raid_root_table); 5615 5616 md_geninit(); 5617 return (0); 5618 } 5619 5620 5621 #ifndef MODULE 5622 5623 /* 5624 * Searches all registered partitions for autorun RAID arrays 5625 * at boot time. 5626 */ 5627 static dev_t detected_devices[128]; 5628 static int dev_cnt; 5629 5630 void md_autodetect_dev(dev_t dev) 5631 { 5632 if (dev_cnt >= 0 && dev_cnt < 127) 5633 detected_devices[dev_cnt++] = dev; 5634 } 5635 5636 5637 static void autostart_arrays(int part) 5638 { 5639 mdk_rdev_t *rdev; 5640 int i; 5641 5642 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 5643 5644 for (i = 0; i < dev_cnt; i++) { 5645 dev_t dev = detected_devices[i]; 5646 5647 rdev = md_import_device(dev,0, 0); 5648 if (IS_ERR(rdev)) 5649 continue; 5650 5651 if (test_bit(Faulty, &rdev->flags)) { 5652 MD_BUG(); 5653 continue; 5654 } 5655 list_add(&rdev->same_set, &pending_raid_disks); 5656 } 5657 dev_cnt = 0; 5658 5659 autorun_devices(part); 5660 } 5661 5662 #endif /* !MODULE */ 5663 5664 static __exit void md_exit(void) 5665 { 5666 mddev_t *mddev; 5667 struct list_head *tmp; 5668 5669 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 5670 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 5671 5672 unregister_blkdev(MAJOR_NR,"md"); 5673 unregister_blkdev(mdp_major, "mdp"); 5674 unregister_reboot_notifier(&md_notifier); 5675 unregister_sysctl_table(raid_table_header); 5676 remove_proc_entry("mdstat", NULL); 5677 ITERATE_MDDEV(mddev,tmp) { 5678 struct gendisk *disk = mddev->gendisk; 5679 if (!disk) 5680 continue; 5681 export_array(mddev); 5682 del_gendisk(disk); 5683 put_disk(disk); 5684 mddev->gendisk = NULL; 5685 mddev_put(mddev); 5686 } 5687 } 5688 5689 module_init(md_init) 5690 module_exit(md_exit) 5691 5692 static int get_ro(char *buffer, struct kernel_param *kp) 5693 { 5694 return sprintf(buffer, "%d", start_readonly); 5695 } 5696 static int set_ro(const char *val, struct kernel_param *kp) 5697 { 5698 char *e; 5699 int num = simple_strtoul(val, &e, 10); 5700 if (*val && (*e == '\0' || *e == '\n')) { 5701 start_readonly = num; 5702 return 0; 5703 } 5704 return -EINVAL; 5705 } 5706 5707 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 5708 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 5709 5710 5711 EXPORT_SYMBOL(register_md_personality); 5712 EXPORT_SYMBOL(unregister_md_personality); 5713 EXPORT_SYMBOL(md_error); 5714 EXPORT_SYMBOL(md_done_sync); 5715 EXPORT_SYMBOL(md_write_start); 5716 EXPORT_SYMBOL(md_write_end); 5717 EXPORT_SYMBOL(md_register_thread); 5718 EXPORT_SYMBOL(md_unregister_thread); 5719 EXPORT_SYMBOL(md_wakeup_thread); 5720 EXPORT_SYMBOL(md_check_recovery); 5721 MODULE_LICENSE("GPL"); 5722 MODULE_ALIAS("md"); 5723 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 5724