1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !bioset_initialized(&mddev->bio_set)) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !bioset_initialized(&mddev->sync_set)) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 static bool is_suspended(struct mddev *mddev, struct bio *bio) 270 { 271 if (mddev->suspended) 272 return true; 273 if (bio_data_dir(bio) != WRITE) 274 return false; 275 if (mddev->suspend_lo >= mddev->suspend_hi) 276 return false; 277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 278 return false; 279 if (bio_end_sector(bio) < mddev->suspend_lo) 280 return false; 281 return true; 282 } 283 284 void md_handle_request(struct mddev *mddev, struct bio *bio) 285 { 286 check_suspended: 287 rcu_read_lock(); 288 if (is_suspended(mddev, bio)) { 289 DEFINE_WAIT(__wait); 290 for (;;) { 291 prepare_to_wait(&mddev->sb_wait, &__wait, 292 TASK_UNINTERRUPTIBLE); 293 if (!is_suspended(mddev, bio)) 294 break; 295 rcu_read_unlock(); 296 schedule(); 297 rcu_read_lock(); 298 } 299 finish_wait(&mddev->sb_wait, &__wait); 300 } 301 atomic_inc(&mddev->active_io); 302 rcu_read_unlock(); 303 304 if (!mddev->pers->make_request(mddev, bio)) { 305 atomic_dec(&mddev->active_io); 306 wake_up(&mddev->sb_wait); 307 goto check_suspended; 308 } 309 310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 311 wake_up(&mddev->sb_wait); 312 } 313 EXPORT_SYMBOL(md_handle_request); 314 315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 316 { 317 const int rw = bio_data_dir(bio); 318 struct mddev *mddev = q->queuedata; 319 unsigned int sectors; 320 int cpu; 321 322 blk_queue_split(q, &bio); 323 324 if (mddev == NULL || mddev->pers == NULL) { 325 bio_io_error(bio); 326 return BLK_QC_T_NONE; 327 } 328 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 329 if (bio_sectors(bio) != 0) 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 return BLK_QC_T_NONE; 333 } 334 335 /* 336 * save the sectors now since our bio can 337 * go away inside make_request 338 */ 339 sectors = bio_sectors(bio); 340 /* bio could be mergeable after passing to underlayer */ 341 bio->bi_opf &= ~REQ_NOMERGE; 342 343 md_handle_request(mddev, bio); 344 345 cpu = part_stat_lock(); 346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 348 part_stat_unlock(); 349 350 return BLK_QC_T_NONE; 351 } 352 353 /* mddev_suspend makes sure no new requests are submitted 354 * to the device, and that any requests that have been submitted 355 * are completely handled. 356 * Once mddev_detach() is called and completes, the module will be 357 * completely unused. 358 */ 359 void mddev_suspend(struct mddev *mddev) 360 { 361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 362 lockdep_assert_held(&mddev->reconfig_mutex); 363 if (mddev->suspended++) 364 return; 365 synchronize_rcu(); 366 wake_up(&mddev->sb_wait); 367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 368 smp_mb__after_atomic(); 369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 370 mddev->pers->quiesce(mddev, 1); 371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 373 374 del_timer_sync(&mddev->safemode_timer); 375 } 376 EXPORT_SYMBOL_GPL(mddev_suspend); 377 378 void mddev_resume(struct mddev *mddev) 379 { 380 lockdep_assert_held(&mddev->reconfig_mutex); 381 if (--mddev->suspended) 382 return; 383 wake_up(&mddev->sb_wait); 384 mddev->pers->quiesce(mddev, 0); 385 386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 387 md_wakeup_thread(mddev->thread); 388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 389 } 390 EXPORT_SYMBOL_GPL(mddev_resume); 391 392 int mddev_congested(struct mddev *mddev, int bits) 393 { 394 struct md_personality *pers = mddev->pers; 395 int ret = 0; 396 397 rcu_read_lock(); 398 if (mddev->suspended) 399 ret = 1; 400 else if (pers && pers->congested) 401 ret = pers->congested(mddev, bits); 402 rcu_read_unlock(); 403 return ret; 404 } 405 EXPORT_SYMBOL_GPL(mddev_congested); 406 static int md_congested(void *data, int bits) 407 { 408 struct mddev *mddev = data; 409 return mddev_congested(mddev, bits); 410 } 411 412 /* 413 * Generic flush handling for md 414 */ 415 416 static void md_end_flush(struct bio *bio) 417 { 418 struct md_rdev *rdev = bio->bi_private; 419 struct mddev *mddev = rdev->mddev; 420 421 rdev_dec_pending(rdev, mddev); 422 423 if (atomic_dec_and_test(&mddev->flush_pending)) { 424 /* The pre-request flush has finished */ 425 queue_work(md_wq, &mddev->flush_work); 426 } 427 bio_put(bio); 428 } 429 430 static void md_submit_flush_data(struct work_struct *ws); 431 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 435 struct md_rdev *rdev; 436 437 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 438 atomic_set(&mddev->flush_pending, 1); 439 rcu_read_lock(); 440 rdev_for_each_rcu(rdev, mddev) 441 if (rdev->raid_disk >= 0 && 442 !test_bit(Faulty, &rdev->flags)) { 443 /* Take two references, one is dropped 444 * when request finishes, one after 445 * we reclaim rcu_read_lock 446 */ 447 struct bio *bi; 448 atomic_inc(&rdev->nr_pending); 449 atomic_inc(&rdev->nr_pending); 450 rcu_read_unlock(); 451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 452 bi->bi_end_io = md_end_flush; 453 bi->bi_private = rdev; 454 bio_set_dev(bi, rdev->bdev); 455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 456 atomic_inc(&mddev->flush_pending); 457 submit_bio(bi); 458 rcu_read_lock(); 459 rdev_dec_pending(rdev, mddev); 460 } 461 rcu_read_unlock(); 462 if (atomic_dec_and_test(&mddev->flush_pending)) 463 queue_work(md_wq, &mddev->flush_work); 464 } 465 466 static void md_submit_flush_data(struct work_struct *ws) 467 { 468 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 469 struct bio *bio = mddev->flush_bio; 470 471 /* 472 * must reset flush_bio before calling into md_handle_request to avoid a 473 * deadlock, because other bios passed md_handle_request suspend check 474 * could wait for this and below md_handle_request could wait for those 475 * bios because of suspend check 476 */ 477 mddev->flush_bio = NULL; 478 wake_up(&mddev->sb_wait); 479 480 if (bio->bi_iter.bi_size == 0) 481 /* an empty barrier - all done */ 482 bio_endio(bio); 483 else { 484 bio->bi_opf &= ~REQ_PREFLUSH; 485 md_handle_request(mddev, bio); 486 } 487 } 488 489 void md_flush_request(struct mddev *mddev, struct bio *bio) 490 { 491 spin_lock_irq(&mddev->lock); 492 wait_event_lock_irq(mddev->sb_wait, 493 !mddev->flush_bio, 494 mddev->lock); 495 mddev->flush_bio = bio; 496 spin_unlock_irq(&mddev->lock); 497 498 INIT_WORK(&mddev->flush_work, submit_flushes); 499 queue_work(md_wq, &mddev->flush_work); 500 } 501 EXPORT_SYMBOL(md_flush_request); 502 503 static inline struct mddev *mddev_get(struct mddev *mddev) 504 { 505 atomic_inc(&mddev->active); 506 return mddev; 507 } 508 509 static void mddev_delayed_delete(struct work_struct *ws); 510 511 static void mddev_put(struct mddev *mddev) 512 { 513 struct bio_set bs, sync_bs; 514 515 memset(&bs, 0, sizeof(bs)); 516 memset(&sync_bs, 0, sizeof(sync_bs)); 517 518 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 519 return; 520 if (!mddev->raid_disks && list_empty(&mddev->disks) && 521 mddev->ctime == 0 && !mddev->hold_active) { 522 /* Array is not configured at all, and not held active, 523 * so destroy it */ 524 list_del_init(&mddev->all_mddevs); 525 bs = mddev->bio_set; 526 sync_bs = mddev->sync_set; 527 memset(&mddev->bio_set, 0, sizeof(mddev->bio_set)); 528 memset(&mddev->sync_set, 0, sizeof(mddev->sync_set)); 529 if (mddev->gendisk) { 530 /* We did a probe so need to clean up. Call 531 * queue_work inside the spinlock so that 532 * flush_workqueue() after mddev_find will 533 * succeed in waiting for the work to be done. 534 */ 535 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 536 queue_work(md_misc_wq, &mddev->del_work); 537 } else 538 kfree(mddev); 539 } 540 spin_unlock(&all_mddevs_lock); 541 bioset_exit(&bs); 542 bioset_exit(&sync_bs); 543 } 544 545 static void md_safemode_timeout(struct timer_list *t); 546 547 void mddev_init(struct mddev *mddev) 548 { 549 mutex_init(&mddev->open_mutex); 550 mutex_init(&mddev->reconfig_mutex); 551 mutex_init(&mddev->bitmap_info.mutex); 552 INIT_LIST_HEAD(&mddev->disks); 553 INIT_LIST_HEAD(&mddev->all_mddevs); 554 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 555 atomic_set(&mddev->active, 1); 556 atomic_set(&mddev->openers, 0); 557 atomic_set(&mddev->active_io, 0); 558 spin_lock_init(&mddev->lock); 559 atomic_set(&mddev->flush_pending, 0); 560 init_waitqueue_head(&mddev->sb_wait); 561 init_waitqueue_head(&mddev->recovery_wait); 562 mddev->reshape_position = MaxSector; 563 mddev->reshape_backwards = 0; 564 mddev->last_sync_action = "none"; 565 mddev->resync_min = 0; 566 mddev->resync_max = MaxSector; 567 mddev->level = LEVEL_NONE; 568 } 569 EXPORT_SYMBOL_GPL(mddev_init); 570 571 static struct mddev *mddev_find(dev_t unit) 572 { 573 struct mddev *mddev, *new = NULL; 574 575 if (unit && MAJOR(unit) != MD_MAJOR) 576 unit &= ~((1<<MdpMinorShift)-1); 577 578 retry: 579 spin_lock(&all_mddevs_lock); 580 581 if (unit) { 582 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 583 if (mddev->unit == unit) { 584 mddev_get(mddev); 585 spin_unlock(&all_mddevs_lock); 586 kfree(new); 587 return mddev; 588 } 589 590 if (new) { 591 list_add(&new->all_mddevs, &all_mddevs); 592 spin_unlock(&all_mddevs_lock); 593 new->hold_active = UNTIL_IOCTL; 594 return new; 595 } 596 } else if (new) { 597 /* find an unused unit number */ 598 static int next_minor = 512; 599 int start = next_minor; 600 int is_free = 0; 601 int dev = 0; 602 while (!is_free) { 603 dev = MKDEV(MD_MAJOR, next_minor); 604 next_minor++; 605 if (next_minor > MINORMASK) 606 next_minor = 0; 607 if (next_minor == start) { 608 /* Oh dear, all in use. */ 609 spin_unlock(&all_mddevs_lock); 610 kfree(new); 611 return NULL; 612 } 613 614 is_free = 1; 615 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 616 if (mddev->unit == dev) { 617 is_free = 0; 618 break; 619 } 620 } 621 new->unit = dev; 622 new->md_minor = MINOR(dev); 623 new->hold_active = UNTIL_STOP; 624 list_add(&new->all_mddevs, &all_mddevs); 625 spin_unlock(&all_mddevs_lock); 626 return new; 627 } 628 spin_unlock(&all_mddevs_lock); 629 630 new = kzalloc(sizeof(*new), GFP_KERNEL); 631 if (!new) 632 return NULL; 633 634 new->unit = unit; 635 if (MAJOR(unit) == MD_MAJOR) 636 new->md_minor = MINOR(unit); 637 else 638 new->md_minor = MINOR(unit) >> MdpMinorShift; 639 640 mddev_init(new); 641 642 goto retry; 643 } 644 645 static struct attribute_group md_redundancy_group; 646 647 void mddev_unlock(struct mddev *mddev) 648 { 649 if (mddev->to_remove) { 650 /* These cannot be removed under reconfig_mutex as 651 * an access to the files will try to take reconfig_mutex 652 * while holding the file unremovable, which leads to 653 * a deadlock. 654 * So hold set sysfs_active while the remove in happeing, 655 * and anything else which might set ->to_remove or my 656 * otherwise change the sysfs namespace will fail with 657 * -EBUSY if sysfs_active is still set. 658 * We set sysfs_active under reconfig_mutex and elsewhere 659 * test it under the same mutex to ensure its correct value 660 * is seen. 661 */ 662 struct attribute_group *to_remove = mddev->to_remove; 663 mddev->to_remove = NULL; 664 mddev->sysfs_active = 1; 665 mutex_unlock(&mddev->reconfig_mutex); 666 667 if (mddev->kobj.sd) { 668 if (to_remove != &md_redundancy_group) 669 sysfs_remove_group(&mddev->kobj, to_remove); 670 if (mddev->pers == NULL || 671 mddev->pers->sync_request == NULL) { 672 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 673 if (mddev->sysfs_action) 674 sysfs_put(mddev->sysfs_action); 675 mddev->sysfs_action = NULL; 676 } 677 } 678 mddev->sysfs_active = 0; 679 } else 680 mutex_unlock(&mddev->reconfig_mutex); 681 682 /* As we've dropped the mutex we need a spinlock to 683 * make sure the thread doesn't disappear 684 */ 685 spin_lock(&pers_lock); 686 md_wakeup_thread(mddev->thread); 687 wake_up(&mddev->sb_wait); 688 spin_unlock(&pers_lock); 689 } 690 EXPORT_SYMBOL_GPL(mddev_unlock); 691 692 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 693 { 694 struct md_rdev *rdev; 695 696 rdev_for_each_rcu(rdev, mddev) 697 if (rdev->desc_nr == nr) 698 return rdev; 699 700 return NULL; 701 } 702 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 703 704 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 705 { 706 struct md_rdev *rdev; 707 708 rdev_for_each(rdev, mddev) 709 if (rdev->bdev->bd_dev == dev) 710 return rdev; 711 712 return NULL; 713 } 714 715 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 716 { 717 struct md_rdev *rdev; 718 719 rdev_for_each_rcu(rdev, mddev) 720 if (rdev->bdev->bd_dev == dev) 721 return rdev; 722 723 return NULL; 724 } 725 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 726 727 static struct md_personality *find_pers(int level, char *clevel) 728 { 729 struct md_personality *pers; 730 list_for_each_entry(pers, &pers_list, list) { 731 if (level != LEVEL_NONE && pers->level == level) 732 return pers; 733 if (strcmp(pers->name, clevel)==0) 734 return pers; 735 } 736 return NULL; 737 } 738 739 /* return the offset of the super block in 512byte sectors */ 740 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 741 { 742 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 743 return MD_NEW_SIZE_SECTORS(num_sectors); 744 } 745 746 static int alloc_disk_sb(struct md_rdev *rdev) 747 { 748 rdev->sb_page = alloc_page(GFP_KERNEL); 749 if (!rdev->sb_page) 750 return -ENOMEM; 751 return 0; 752 } 753 754 void md_rdev_clear(struct md_rdev *rdev) 755 { 756 if (rdev->sb_page) { 757 put_page(rdev->sb_page); 758 rdev->sb_loaded = 0; 759 rdev->sb_page = NULL; 760 rdev->sb_start = 0; 761 rdev->sectors = 0; 762 } 763 if (rdev->bb_page) { 764 put_page(rdev->bb_page); 765 rdev->bb_page = NULL; 766 } 767 badblocks_exit(&rdev->badblocks); 768 } 769 EXPORT_SYMBOL_GPL(md_rdev_clear); 770 771 static void super_written(struct bio *bio) 772 { 773 struct md_rdev *rdev = bio->bi_private; 774 struct mddev *mddev = rdev->mddev; 775 776 if (bio->bi_status) { 777 pr_err("md: super_written gets error=%d\n", bio->bi_status); 778 md_error(mddev, rdev); 779 if (!test_bit(Faulty, &rdev->flags) 780 && (bio->bi_opf & MD_FAILFAST)) { 781 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 782 set_bit(LastDev, &rdev->flags); 783 } 784 } else 785 clear_bit(LastDev, &rdev->flags); 786 787 if (atomic_dec_and_test(&mddev->pending_writes)) 788 wake_up(&mddev->sb_wait); 789 rdev_dec_pending(rdev, mddev); 790 bio_put(bio); 791 } 792 793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 794 sector_t sector, int size, struct page *page) 795 { 796 /* write first size bytes of page to sector of rdev 797 * Increment mddev->pending_writes before returning 798 * and decrement it on completion, waking up sb_wait 799 * if zero is reached. 800 * If an error occurred, call md_error 801 */ 802 struct bio *bio; 803 int ff = 0; 804 805 if (!page) 806 return; 807 808 if (test_bit(Faulty, &rdev->flags)) 809 return; 810 811 bio = md_bio_alloc_sync(mddev); 812 813 atomic_inc(&rdev->nr_pending); 814 815 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 816 bio->bi_iter.bi_sector = sector; 817 bio_add_page(bio, page, size, 0); 818 bio->bi_private = rdev; 819 bio->bi_end_io = super_written; 820 821 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 822 test_bit(FailFast, &rdev->flags) && 823 !test_bit(LastDev, &rdev->flags)) 824 ff = MD_FAILFAST; 825 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 826 827 atomic_inc(&mddev->pending_writes); 828 submit_bio(bio); 829 } 830 831 int md_super_wait(struct mddev *mddev) 832 { 833 /* wait for all superblock writes that were scheduled to complete */ 834 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 835 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 836 return -EAGAIN; 837 return 0; 838 } 839 840 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 841 struct page *page, int op, int op_flags, bool metadata_op) 842 { 843 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 844 int ret; 845 846 if (metadata_op && rdev->meta_bdev) 847 bio_set_dev(bio, rdev->meta_bdev); 848 else 849 bio_set_dev(bio, rdev->bdev); 850 bio_set_op_attrs(bio, op, op_flags); 851 if (metadata_op) 852 bio->bi_iter.bi_sector = sector + rdev->sb_start; 853 else if (rdev->mddev->reshape_position != MaxSector && 854 (rdev->mddev->reshape_backwards == 855 (sector >= rdev->mddev->reshape_position))) 856 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 857 else 858 bio->bi_iter.bi_sector = sector + rdev->data_offset; 859 bio_add_page(bio, page, size, 0); 860 861 submit_bio_wait(bio); 862 863 ret = !bio->bi_status; 864 bio_put(bio); 865 return ret; 866 } 867 EXPORT_SYMBOL_GPL(sync_page_io); 868 869 static int read_disk_sb(struct md_rdev *rdev, int size) 870 { 871 char b[BDEVNAME_SIZE]; 872 873 if (rdev->sb_loaded) 874 return 0; 875 876 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 877 goto fail; 878 rdev->sb_loaded = 1; 879 return 0; 880 881 fail: 882 pr_err("md: disabled device %s, could not read superblock.\n", 883 bdevname(rdev->bdev,b)); 884 return -EINVAL; 885 } 886 887 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 888 { 889 return sb1->set_uuid0 == sb2->set_uuid0 && 890 sb1->set_uuid1 == sb2->set_uuid1 && 891 sb1->set_uuid2 == sb2->set_uuid2 && 892 sb1->set_uuid3 == sb2->set_uuid3; 893 } 894 895 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 896 { 897 int ret; 898 mdp_super_t *tmp1, *tmp2; 899 900 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 901 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 902 903 if (!tmp1 || !tmp2) { 904 ret = 0; 905 goto abort; 906 } 907 908 *tmp1 = *sb1; 909 *tmp2 = *sb2; 910 911 /* 912 * nr_disks is not constant 913 */ 914 tmp1->nr_disks = 0; 915 tmp2->nr_disks = 0; 916 917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 918 abort: 919 kfree(tmp1); 920 kfree(tmp2); 921 return ret; 922 } 923 924 static u32 md_csum_fold(u32 csum) 925 { 926 csum = (csum & 0xffff) + (csum >> 16); 927 return (csum & 0xffff) + (csum >> 16); 928 } 929 930 static unsigned int calc_sb_csum(mdp_super_t *sb) 931 { 932 u64 newcsum = 0; 933 u32 *sb32 = (u32*)sb; 934 int i; 935 unsigned int disk_csum, csum; 936 937 disk_csum = sb->sb_csum; 938 sb->sb_csum = 0; 939 940 for (i = 0; i < MD_SB_BYTES/4 ; i++) 941 newcsum += sb32[i]; 942 csum = (newcsum & 0xffffffff) + (newcsum>>32); 943 944 #ifdef CONFIG_ALPHA 945 /* This used to use csum_partial, which was wrong for several 946 * reasons including that different results are returned on 947 * different architectures. It isn't critical that we get exactly 948 * the same return value as before (we always csum_fold before 949 * testing, and that removes any differences). However as we 950 * know that csum_partial always returned a 16bit value on 951 * alphas, do a fold to maximise conformity to previous behaviour. 952 */ 953 sb->sb_csum = md_csum_fold(disk_csum); 954 #else 955 sb->sb_csum = disk_csum; 956 #endif 957 return csum; 958 } 959 960 /* 961 * Handle superblock details. 962 * We want to be able to handle multiple superblock formats 963 * so we have a common interface to them all, and an array of 964 * different handlers. 965 * We rely on user-space to write the initial superblock, and support 966 * reading and updating of superblocks. 967 * Interface methods are: 968 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 969 * loads and validates a superblock on dev. 970 * if refdev != NULL, compare superblocks on both devices 971 * Return: 972 * 0 - dev has a superblock that is compatible with refdev 973 * 1 - dev has a superblock that is compatible and newer than refdev 974 * so dev should be used as the refdev in future 975 * -EINVAL superblock incompatible or invalid 976 * -othererror e.g. -EIO 977 * 978 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 979 * Verify that dev is acceptable into mddev. 980 * The first time, mddev->raid_disks will be 0, and data from 981 * dev should be merged in. Subsequent calls check that dev 982 * is new enough. Return 0 or -EINVAL 983 * 984 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 985 * Update the superblock for rdev with data in mddev 986 * This does not write to disc. 987 * 988 */ 989 990 struct super_type { 991 char *name; 992 struct module *owner; 993 int (*load_super)(struct md_rdev *rdev, 994 struct md_rdev *refdev, 995 int minor_version); 996 int (*validate_super)(struct mddev *mddev, 997 struct md_rdev *rdev); 998 void (*sync_super)(struct mddev *mddev, 999 struct md_rdev *rdev); 1000 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1001 sector_t num_sectors); 1002 int (*allow_new_offset)(struct md_rdev *rdev, 1003 unsigned long long new_offset); 1004 }; 1005 1006 /* 1007 * Check that the given mddev has no bitmap. 1008 * 1009 * This function is called from the run method of all personalities that do not 1010 * support bitmaps. It prints an error message and returns non-zero if mddev 1011 * has a bitmap. Otherwise, it returns 0. 1012 * 1013 */ 1014 int md_check_no_bitmap(struct mddev *mddev) 1015 { 1016 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1017 return 0; 1018 pr_warn("%s: bitmaps are not supported for %s\n", 1019 mdname(mddev), mddev->pers->name); 1020 return 1; 1021 } 1022 EXPORT_SYMBOL(md_check_no_bitmap); 1023 1024 /* 1025 * load_super for 0.90.0 1026 */ 1027 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1028 { 1029 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1030 mdp_super_t *sb; 1031 int ret; 1032 1033 /* 1034 * Calculate the position of the superblock (512byte sectors), 1035 * it's at the end of the disk. 1036 * 1037 * It also happens to be a multiple of 4Kb. 1038 */ 1039 rdev->sb_start = calc_dev_sboffset(rdev); 1040 1041 ret = read_disk_sb(rdev, MD_SB_BYTES); 1042 if (ret) 1043 return ret; 1044 1045 ret = -EINVAL; 1046 1047 bdevname(rdev->bdev, b); 1048 sb = page_address(rdev->sb_page); 1049 1050 if (sb->md_magic != MD_SB_MAGIC) { 1051 pr_warn("md: invalid raid superblock magic on %s\n", b); 1052 goto abort; 1053 } 1054 1055 if (sb->major_version != 0 || 1056 sb->minor_version < 90 || 1057 sb->minor_version > 91) { 1058 pr_warn("Bad version number %d.%d on %s\n", 1059 sb->major_version, sb->minor_version, b); 1060 goto abort; 1061 } 1062 1063 if (sb->raid_disks <= 0) 1064 goto abort; 1065 1066 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1067 pr_warn("md: invalid superblock checksum on %s\n", b); 1068 goto abort; 1069 } 1070 1071 rdev->preferred_minor = sb->md_minor; 1072 rdev->data_offset = 0; 1073 rdev->new_data_offset = 0; 1074 rdev->sb_size = MD_SB_BYTES; 1075 rdev->badblocks.shift = -1; 1076 1077 if (sb->level == LEVEL_MULTIPATH) 1078 rdev->desc_nr = -1; 1079 else 1080 rdev->desc_nr = sb->this_disk.number; 1081 1082 if (!refdev) { 1083 ret = 1; 1084 } else { 1085 __u64 ev1, ev2; 1086 mdp_super_t *refsb = page_address(refdev->sb_page); 1087 if (!md_uuid_equal(refsb, sb)) { 1088 pr_warn("md: %s has different UUID to %s\n", 1089 b, bdevname(refdev->bdev,b2)); 1090 goto abort; 1091 } 1092 if (!md_sb_equal(refsb, sb)) { 1093 pr_warn("md: %s has same UUID but different superblock to %s\n", 1094 b, bdevname(refdev->bdev, b2)); 1095 goto abort; 1096 } 1097 ev1 = md_event(sb); 1098 ev2 = md_event(refsb); 1099 if (ev1 > ev2) 1100 ret = 1; 1101 else 1102 ret = 0; 1103 } 1104 rdev->sectors = rdev->sb_start; 1105 /* Limit to 4TB as metadata cannot record more than that. 1106 * (not needed for Linear and RAID0 as metadata doesn't 1107 * record this size) 1108 */ 1109 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1110 sb->level >= 1) 1111 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1112 1113 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1114 /* "this cannot possibly happen" ... */ 1115 ret = -EINVAL; 1116 1117 abort: 1118 return ret; 1119 } 1120 1121 /* 1122 * validate_super for 0.90.0 1123 */ 1124 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1125 { 1126 mdp_disk_t *desc; 1127 mdp_super_t *sb = page_address(rdev->sb_page); 1128 __u64 ev1 = md_event(sb); 1129 1130 rdev->raid_disk = -1; 1131 clear_bit(Faulty, &rdev->flags); 1132 clear_bit(In_sync, &rdev->flags); 1133 clear_bit(Bitmap_sync, &rdev->flags); 1134 clear_bit(WriteMostly, &rdev->flags); 1135 1136 if (mddev->raid_disks == 0) { 1137 mddev->major_version = 0; 1138 mddev->minor_version = sb->minor_version; 1139 mddev->patch_version = sb->patch_version; 1140 mddev->external = 0; 1141 mddev->chunk_sectors = sb->chunk_size >> 9; 1142 mddev->ctime = sb->ctime; 1143 mddev->utime = sb->utime; 1144 mddev->level = sb->level; 1145 mddev->clevel[0] = 0; 1146 mddev->layout = sb->layout; 1147 mddev->raid_disks = sb->raid_disks; 1148 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1149 mddev->events = ev1; 1150 mddev->bitmap_info.offset = 0; 1151 mddev->bitmap_info.space = 0; 1152 /* bitmap can use 60 K after the 4K superblocks */ 1153 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1154 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1155 mddev->reshape_backwards = 0; 1156 1157 if (mddev->minor_version >= 91) { 1158 mddev->reshape_position = sb->reshape_position; 1159 mddev->delta_disks = sb->delta_disks; 1160 mddev->new_level = sb->new_level; 1161 mddev->new_layout = sb->new_layout; 1162 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1163 if (mddev->delta_disks < 0) 1164 mddev->reshape_backwards = 1; 1165 } else { 1166 mddev->reshape_position = MaxSector; 1167 mddev->delta_disks = 0; 1168 mddev->new_level = mddev->level; 1169 mddev->new_layout = mddev->layout; 1170 mddev->new_chunk_sectors = mddev->chunk_sectors; 1171 } 1172 1173 if (sb->state & (1<<MD_SB_CLEAN)) 1174 mddev->recovery_cp = MaxSector; 1175 else { 1176 if (sb->events_hi == sb->cp_events_hi && 1177 sb->events_lo == sb->cp_events_lo) { 1178 mddev->recovery_cp = sb->recovery_cp; 1179 } else 1180 mddev->recovery_cp = 0; 1181 } 1182 1183 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1184 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1185 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1186 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1187 1188 mddev->max_disks = MD_SB_DISKS; 1189 1190 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1191 mddev->bitmap_info.file == NULL) { 1192 mddev->bitmap_info.offset = 1193 mddev->bitmap_info.default_offset; 1194 mddev->bitmap_info.space = 1195 mddev->bitmap_info.default_space; 1196 } 1197 1198 } else if (mddev->pers == NULL) { 1199 /* Insist on good event counter while assembling, except 1200 * for spares (which don't need an event count) */ 1201 ++ev1; 1202 if (sb->disks[rdev->desc_nr].state & ( 1203 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1204 if (ev1 < mddev->events) 1205 return -EINVAL; 1206 } else if (mddev->bitmap) { 1207 /* if adding to array with a bitmap, then we can accept an 1208 * older device ... but not too old. 1209 */ 1210 if (ev1 < mddev->bitmap->events_cleared) 1211 return 0; 1212 if (ev1 < mddev->events) 1213 set_bit(Bitmap_sync, &rdev->flags); 1214 } else { 1215 if (ev1 < mddev->events) 1216 /* just a hot-add of a new device, leave raid_disk at -1 */ 1217 return 0; 1218 } 1219 1220 if (mddev->level != LEVEL_MULTIPATH) { 1221 desc = sb->disks + rdev->desc_nr; 1222 1223 if (desc->state & (1<<MD_DISK_FAULTY)) 1224 set_bit(Faulty, &rdev->flags); 1225 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1226 desc->raid_disk < mddev->raid_disks */) { 1227 set_bit(In_sync, &rdev->flags); 1228 rdev->raid_disk = desc->raid_disk; 1229 rdev->saved_raid_disk = desc->raid_disk; 1230 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1231 /* active but not in sync implies recovery up to 1232 * reshape position. We don't know exactly where 1233 * that is, so set to zero for now */ 1234 if (mddev->minor_version >= 91) { 1235 rdev->recovery_offset = 0; 1236 rdev->raid_disk = desc->raid_disk; 1237 } 1238 } 1239 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1240 set_bit(WriteMostly, &rdev->flags); 1241 if (desc->state & (1<<MD_DISK_FAILFAST)) 1242 set_bit(FailFast, &rdev->flags); 1243 } else /* MULTIPATH are always insync */ 1244 set_bit(In_sync, &rdev->flags); 1245 return 0; 1246 } 1247 1248 /* 1249 * sync_super for 0.90.0 1250 */ 1251 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1252 { 1253 mdp_super_t *sb; 1254 struct md_rdev *rdev2; 1255 int next_spare = mddev->raid_disks; 1256 1257 /* make rdev->sb match mddev data.. 1258 * 1259 * 1/ zero out disks 1260 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1261 * 3/ any empty disks < next_spare become removed 1262 * 1263 * disks[0] gets initialised to REMOVED because 1264 * we cannot be sure from other fields if it has 1265 * been initialised or not. 1266 */ 1267 int i; 1268 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1269 1270 rdev->sb_size = MD_SB_BYTES; 1271 1272 sb = page_address(rdev->sb_page); 1273 1274 memset(sb, 0, sizeof(*sb)); 1275 1276 sb->md_magic = MD_SB_MAGIC; 1277 sb->major_version = mddev->major_version; 1278 sb->patch_version = mddev->patch_version; 1279 sb->gvalid_words = 0; /* ignored */ 1280 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1281 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1282 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1283 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1284 1285 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1286 sb->level = mddev->level; 1287 sb->size = mddev->dev_sectors / 2; 1288 sb->raid_disks = mddev->raid_disks; 1289 sb->md_minor = mddev->md_minor; 1290 sb->not_persistent = 0; 1291 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1292 sb->state = 0; 1293 sb->events_hi = (mddev->events>>32); 1294 sb->events_lo = (u32)mddev->events; 1295 1296 if (mddev->reshape_position == MaxSector) 1297 sb->minor_version = 90; 1298 else { 1299 sb->minor_version = 91; 1300 sb->reshape_position = mddev->reshape_position; 1301 sb->new_level = mddev->new_level; 1302 sb->delta_disks = mddev->delta_disks; 1303 sb->new_layout = mddev->new_layout; 1304 sb->new_chunk = mddev->new_chunk_sectors << 9; 1305 } 1306 mddev->minor_version = sb->minor_version; 1307 if (mddev->in_sync) 1308 { 1309 sb->recovery_cp = mddev->recovery_cp; 1310 sb->cp_events_hi = (mddev->events>>32); 1311 sb->cp_events_lo = (u32)mddev->events; 1312 if (mddev->recovery_cp == MaxSector) 1313 sb->state = (1<< MD_SB_CLEAN); 1314 } else 1315 sb->recovery_cp = 0; 1316 1317 sb->layout = mddev->layout; 1318 sb->chunk_size = mddev->chunk_sectors << 9; 1319 1320 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1321 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1322 1323 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1324 rdev_for_each(rdev2, mddev) { 1325 mdp_disk_t *d; 1326 int desc_nr; 1327 int is_active = test_bit(In_sync, &rdev2->flags); 1328 1329 if (rdev2->raid_disk >= 0 && 1330 sb->minor_version >= 91) 1331 /* we have nowhere to store the recovery_offset, 1332 * but if it is not below the reshape_position, 1333 * we can piggy-back on that. 1334 */ 1335 is_active = 1; 1336 if (rdev2->raid_disk < 0 || 1337 test_bit(Faulty, &rdev2->flags)) 1338 is_active = 0; 1339 if (is_active) 1340 desc_nr = rdev2->raid_disk; 1341 else 1342 desc_nr = next_spare++; 1343 rdev2->desc_nr = desc_nr; 1344 d = &sb->disks[rdev2->desc_nr]; 1345 nr_disks++; 1346 d->number = rdev2->desc_nr; 1347 d->major = MAJOR(rdev2->bdev->bd_dev); 1348 d->minor = MINOR(rdev2->bdev->bd_dev); 1349 if (is_active) 1350 d->raid_disk = rdev2->raid_disk; 1351 else 1352 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1353 if (test_bit(Faulty, &rdev2->flags)) 1354 d->state = (1<<MD_DISK_FAULTY); 1355 else if (is_active) { 1356 d->state = (1<<MD_DISK_ACTIVE); 1357 if (test_bit(In_sync, &rdev2->flags)) 1358 d->state |= (1<<MD_DISK_SYNC); 1359 active++; 1360 working++; 1361 } else { 1362 d->state = 0; 1363 spare++; 1364 working++; 1365 } 1366 if (test_bit(WriteMostly, &rdev2->flags)) 1367 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1368 if (test_bit(FailFast, &rdev2->flags)) 1369 d->state |= (1<<MD_DISK_FAILFAST); 1370 } 1371 /* now set the "removed" and "faulty" bits on any missing devices */ 1372 for (i=0 ; i < mddev->raid_disks ; i++) { 1373 mdp_disk_t *d = &sb->disks[i]; 1374 if (d->state == 0 && d->number == 0) { 1375 d->number = i; 1376 d->raid_disk = i; 1377 d->state = (1<<MD_DISK_REMOVED); 1378 d->state |= (1<<MD_DISK_FAULTY); 1379 failed++; 1380 } 1381 } 1382 sb->nr_disks = nr_disks; 1383 sb->active_disks = active; 1384 sb->working_disks = working; 1385 sb->failed_disks = failed; 1386 sb->spare_disks = spare; 1387 1388 sb->this_disk = sb->disks[rdev->desc_nr]; 1389 sb->sb_csum = calc_sb_csum(sb); 1390 } 1391 1392 /* 1393 * rdev_size_change for 0.90.0 1394 */ 1395 static unsigned long long 1396 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1397 { 1398 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1399 return 0; /* component must fit device */ 1400 if (rdev->mddev->bitmap_info.offset) 1401 return 0; /* can't move bitmap */ 1402 rdev->sb_start = calc_dev_sboffset(rdev); 1403 if (!num_sectors || num_sectors > rdev->sb_start) 1404 num_sectors = rdev->sb_start; 1405 /* Limit to 4TB as metadata cannot record more than that. 1406 * 4TB == 2^32 KB, or 2*2^32 sectors. 1407 */ 1408 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1409 rdev->mddev->level >= 1) 1410 num_sectors = (sector_t)(2ULL << 32) - 2; 1411 do { 1412 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1413 rdev->sb_page); 1414 } while (md_super_wait(rdev->mddev) < 0); 1415 return num_sectors; 1416 } 1417 1418 static int 1419 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1420 { 1421 /* non-zero offset changes not possible with v0.90 */ 1422 return new_offset == 0; 1423 } 1424 1425 /* 1426 * version 1 superblock 1427 */ 1428 1429 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1430 { 1431 __le32 disk_csum; 1432 u32 csum; 1433 unsigned long long newcsum; 1434 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1435 __le32 *isuper = (__le32*)sb; 1436 1437 disk_csum = sb->sb_csum; 1438 sb->sb_csum = 0; 1439 newcsum = 0; 1440 for (; size >= 4; size -= 4) 1441 newcsum += le32_to_cpu(*isuper++); 1442 1443 if (size == 2) 1444 newcsum += le16_to_cpu(*(__le16*) isuper); 1445 1446 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1447 sb->sb_csum = disk_csum; 1448 return cpu_to_le32(csum); 1449 } 1450 1451 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1452 { 1453 struct mdp_superblock_1 *sb; 1454 int ret; 1455 sector_t sb_start; 1456 sector_t sectors; 1457 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1458 int bmask; 1459 1460 /* 1461 * Calculate the position of the superblock in 512byte sectors. 1462 * It is always aligned to a 4K boundary and 1463 * depeding on minor_version, it can be: 1464 * 0: At least 8K, but less than 12K, from end of device 1465 * 1: At start of device 1466 * 2: 4K from start of device. 1467 */ 1468 switch(minor_version) { 1469 case 0: 1470 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1471 sb_start -= 8*2; 1472 sb_start &= ~(sector_t)(4*2-1); 1473 break; 1474 case 1: 1475 sb_start = 0; 1476 break; 1477 case 2: 1478 sb_start = 8; 1479 break; 1480 default: 1481 return -EINVAL; 1482 } 1483 rdev->sb_start = sb_start; 1484 1485 /* superblock is rarely larger than 1K, but it can be larger, 1486 * and it is safe to read 4k, so we do that 1487 */ 1488 ret = read_disk_sb(rdev, 4096); 1489 if (ret) return ret; 1490 1491 sb = page_address(rdev->sb_page); 1492 1493 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1494 sb->major_version != cpu_to_le32(1) || 1495 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1496 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1497 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1498 return -EINVAL; 1499 1500 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1501 pr_warn("md: invalid superblock checksum on %s\n", 1502 bdevname(rdev->bdev,b)); 1503 return -EINVAL; 1504 } 1505 if (le64_to_cpu(sb->data_size) < 10) { 1506 pr_warn("md: data_size too small on %s\n", 1507 bdevname(rdev->bdev,b)); 1508 return -EINVAL; 1509 } 1510 if (sb->pad0 || 1511 sb->pad3[0] || 1512 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1513 /* Some padding is non-zero, might be a new feature */ 1514 return -EINVAL; 1515 1516 rdev->preferred_minor = 0xffff; 1517 rdev->data_offset = le64_to_cpu(sb->data_offset); 1518 rdev->new_data_offset = rdev->data_offset; 1519 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1520 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1521 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1522 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1523 1524 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1525 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1526 if (rdev->sb_size & bmask) 1527 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1528 1529 if (minor_version 1530 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1531 return -EINVAL; 1532 if (minor_version 1533 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1534 return -EINVAL; 1535 1536 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1537 rdev->desc_nr = -1; 1538 else 1539 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1540 1541 if (!rdev->bb_page) { 1542 rdev->bb_page = alloc_page(GFP_KERNEL); 1543 if (!rdev->bb_page) 1544 return -ENOMEM; 1545 } 1546 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1547 rdev->badblocks.count == 0) { 1548 /* need to load the bad block list. 1549 * Currently we limit it to one page. 1550 */ 1551 s32 offset; 1552 sector_t bb_sector; 1553 u64 *bbp; 1554 int i; 1555 int sectors = le16_to_cpu(sb->bblog_size); 1556 if (sectors > (PAGE_SIZE / 512)) 1557 return -EINVAL; 1558 offset = le32_to_cpu(sb->bblog_offset); 1559 if (offset == 0) 1560 return -EINVAL; 1561 bb_sector = (long long)offset; 1562 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1563 rdev->bb_page, REQ_OP_READ, 0, true)) 1564 return -EIO; 1565 bbp = (u64 *)page_address(rdev->bb_page); 1566 rdev->badblocks.shift = sb->bblog_shift; 1567 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1568 u64 bb = le64_to_cpu(*bbp); 1569 int count = bb & (0x3ff); 1570 u64 sector = bb >> 10; 1571 sector <<= sb->bblog_shift; 1572 count <<= sb->bblog_shift; 1573 if (bb + 1 == 0) 1574 break; 1575 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1576 return -EINVAL; 1577 } 1578 } else if (sb->bblog_offset != 0) 1579 rdev->badblocks.shift = 0; 1580 1581 if ((le32_to_cpu(sb->feature_map) & 1582 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1583 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1584 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1585 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1586 } 1587 1588 if (!refdev) { 1589 ret = 1; 1590 } else { 1591 __u64 ev1, ev2; 1592 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1593 1594 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1595 sb->level != refsb->level || 1596 sb->layout != refsb->layout || 1597 sb->chunksize != refsb->chunksize) { 1598 pr_warn("md: %s has strangely different superblock to %s\n", 1599 bdevname(rdev->bdev,b), 1600 bdevname(refdev->bdev,b2)); 1601 return -EINVAL; 1602 } 1603 ev1 = le64_to_cpu(sb->events); 1604 ev2 = le64_to_cpu(refsb->events); 1605 1606 if (ev1 > ev2) 1607 ret = 1; 1608 else 1609 ret = 0; 1610 } 1611 if (minor_version) { 1612 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1613 sectors -= rdev->data_offset; 1614 } else 1615 sectors = rdev->sb_start; 1616 if (sectors < le64_to_cpu(sb->data_size)) 1617 return -EINVAL; 1618 rdev->sectors = le64_to_cpu(sb->data_size); 1619 return ret; 1620 } 1621 1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1623 { 1624 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1625 __u64 ev1 = le64_to_cpu(sb->events); 1626 1627 rdev->raid_disk = -1; 1628 clear_bit(Faulty, &rdev->flags); 1629 clear_bit(In_sync, &rdev->flags); 1630 clear_bit(Bitmap_sync, &rdev->flags); 1631 clear_bit(WriteMostly, &rdev->flags); 1632 1633 if (mddev->raid_disks == 0) { 1634 mddev->major_version = 1; 1635 mddev->patch_version = 0; 1636 mddev->external = 0; 1637 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1638 mddev->ctime = le64_to_cpu(sb->ctime); 1639 mddev->utime = le64_to_cpu(sb->utime); 1640 mddev->level = le32_to_cpu(sb->level); 1641 mddev->clevel[0] = 0; 1642 mddev->layout = le32_to_cpu(sb->layout); 1643 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1644 mddev->dev_sectors = le64_to_cpu(sb->size); 1645 mddev->events = ev1; 1646 mddev->bitmap_info.offset = 0; 1647 mddev->bitmap_info.space = 0; 1648 /* Default location for bitmap is 1K after superblock 1649 * using 3K - total of 4K 1650 */ 1651 mddev->bitmap_info.default_offset = 1024 >> 9; 1652 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1653 mddev->reshape_backwards = 0; 1654 1655 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1656 memcpy(mddev->uuid, sb->set_uuid, 16); 1657 1658 mddev->max_disks = (4096-256)/2; 1659 1660 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1661 mddev->bitmap_info.file == NULL) { 1662 mddev->bitmap_info.offset = 1663 (__s32)le32_to_cpu(sb->bitmap_offset); 1664 /* Metadata doesn't record how much space is available. 1665 * For 1.0, we assume we can use up to the superblock 1666 * if before, else to 4K beyond superblock. 1667 * For others, assume no change is possible. 1668 */ 1669 if (mddev->minor_version > 0) 1670 mddev->bitmap_info.space = 0; 1671 else if (mddev->bitmap_info.offset > 0) 1672 mddev->bitmap_info.space = 1673 8 - mddev->bitmap_info.offset; 1674 else 1675 mddev->bitmap_info.space = 1676 -mddev->bitmap_info.offset; 1677 } 1678 1679 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1680 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1681 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1682 mddev->new_level = le32_to_cpu(sb->new_level); 1683 mddev->new_layout = le32_to_cpu(sb->new_layout); 1684 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1685 if (mddev->delta_disks < 0 || 1686 (mddev->delta_disks == 0 && 1687 (le32_to_cpu(sb->feature_map) 1688 & MD_FEATURE_RESHAPE_BACKWARDS))) 1689 mddev->reshape_backwards = 1; 1690 } else { 1691 mddev->reshape_position = MaxSector; 1692 mddev->delta_disks = 0; 1693 mddev->new_level = mddev->level; 1694 mddev->new_layout = mddev->layout; 1695 mddev->new_chunk_sectors = mddev->chunk_sectors; 1696 } 1697 1698 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1699 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1700 1701 if (le32_to_cpu(sb->feature_map) & 1702 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1703 if (le32_to_cpu(sb->feature_map) & 1704 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1705 return -EINVAL; 1706 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1707 (le32_to_cpu(sb->feature_map) & 1708 MD_FEATURE_MULTIPLE_PPLS)) 1709 return -EINVAL; 1710 set_bit(MD_HAS_PPL, &mddev->flags); 1711 } 1712 } else if (mddev->pers == NULL) { 1713 /* Insist of good event counter while assembling, except for 1714 * spares (which don't need an event count) */ 1715 ++ev1; 1716 if (rdev->desc_nr >= 0 && 1717 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1718 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1719 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1720 if (ev1 < mddev->events) 1721 return -EINVAL; 1722 } else if (mddev->bitmap) { 1723 /* If adding to array with a bitmap, then we can accept an 1724 * older device, but not too old. 1725 */ 1726 if (ev1 < mddev->bitmap->events_cleared) 1727 return 0; 1728 if (ev1 < mddev->events) 1729 set_bit(Bitmap_sync, &rdev->flags); 1730 } else { 1731 if (ev1 < mddev->events) 1732 /* just a hot-add of a new device, leave raid_disk at -1 */ 1733 return 0; 1734 } 1735 if (mddev->level != LEVEL_MULTIPATH) { 1736 int role; 1737 if (rdev->desc_nr < 0 || 1738 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1739 role = MD_DISK_ROLE_SPARE; 1740 rdev->desc_nr = -1; 1741 } else 1742 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1743 switch(role) { 1744 case MD_DISK_ROLE_SPARE: /* spare */ 1745 break; 1746 case MD_DISK_ROLE_FAULTY: /* faulty */ 1747 set_bit(Faulty, &rdev->flags); 1748 break; 1749 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1750 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1751 /* journal device without journal feature */ 1752 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1753 return -EINVAL; 1754 } 1755 set_bit(Journal, &rdev->flags); 1756 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1757 rdev->raid_disk = 0; 1758 break; 1759 default: 1760 rdev->saved_raid_disk = role; 1761 if ((le32_to_cpu(sb->feature_map) & 1762 MD_FEATURE_RECOVERY_OFFSET)) { 1763 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1764 if (!(le32_to_cpu(sb->feature_map) & 1765 MD_FEATURE_RECOVERY_BITMAP)) 1766 rdev->saved_raid_disk = -1; 1767 } else 1768 set_bit(In_sync, &rdev->flags); 1769 rdev->raid_disk = role; 1770 break; 1771 } 1772 if (sb->devflags & WriteMostly1) 1773 set_bit(WriteMostly, &rdev->flags); 1774 if (sb->devflags & FailFast1) 1775 set_bit(FailFast, &rdev->flags); 1776 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1777 set_bit(Replacement, &rdev->flags); 1778 } else /* MULTIPATH are always insync */ 1779 set_bit(In_sync, &rdev->flags); 1780 1781 return 0; 1782 } 1783 1784 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1785 { 1786 struct mdp_superblock_1 *sb; 1787 struct md_rdev *rdev2; 1788 int max_dev, i; 1789 /* make rdev->sb match mddev and rdev data. */ 1790 1791 sb = page_address(rdev->sb_page); 1792 1793 sb->feature_map = 0; 1794 sb->pad0 = 0; 1795 sb->recovery_offset = cpu_to_le64(0); 1796 memset(sb->pad3, 0, sizeof(sb->pad3)); 1797 1798 sb->utime = cpu_to_le64((__u64)mddev->utime); 1799 sb->events = cpu_to_le64(mddev->events); 1800 if (mddev->in_sync) 1801 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1802 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1803 sb->resync_offset = cpu_to_le64(MaxSector); 1804 else 1805 sb->resync_offset = cpu_to_le64(0); 1806 1807 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1808 1809 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1810 sb->size = cpu_to_le64(mddev->dev_sectors); 1811 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1812 sb->level = cpu_to_le32(mddev->level); 1813 sb->layout = cpu_to_le32(mddev->layout); 1814 if (test_bit(FailFast, &rdev->flags)) 1815 sb->devflags |= FailFast1; 1816 else 1817 sb->devflags &= ~FailFast1; 1818 1819 if (test_bit(WriteMostly, &rdev->flags)) 1820 sb->devflags |= WriteMostly1; 1821 else 1822 sb->devflags &= ~WriteMostly1; 1823 sb->data_offset = cpu_to_le64(rdev->data_offset); 1824 sb->data_size = cpu_to_le64(rdev->sectors); 1825 1826 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1827 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1828 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1829 } 1830 1831 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1832 !test_bit(In_sync, &rdev->flags)) { 1833 sb->feature_map |= 1834 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1835 sb->recovery_offset = 1836 cpu_to_le64(rdev->recovery_offset); 1837 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1838 sb->feature_map |= 1839 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1840 } 1841 /* Note: recovery_offset and journal_tail share space */ 1842 if (test_bit(Journal, &rdev->flags)) 1843 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1844 if (test_bit(Replacement, &rdev->flags)) 1845 sb->feature_map |= 1846 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1847 1848 if (mddev->reshape_position != MaxSector) { 1849 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1850 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1851 sb->new_layout = cpu_to_le32(mddev->new_layout); 1852 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1853 sb->new_level = cpu_to_le32(mddev->new_level); 1854 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1855 if (mddev->delta_disks == 0 && 1856 mddev->reshape_backwards) 1857 sb->feature_map 1858 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1859 if (rdev->new_data_offset != rdev->data_offset) { 1860 sb->feature_map 1861 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1862 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1863 - rdev->data_offset)); 1864 } 1865 } 1866 1867 if (mddev_is_clustered(mddev)) 1868 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1869 1870 if (rdev->badblocks.count == 0) 1871 /* Nothing to do for bad blocks*/ ; 1872 else if (sb->bblog_offset == 0) 1873 /* Cannot record bad blocks on this device */ 1874 md_error(mddev, rdev); 1875 else { 1876 struct badblocks *bb = &rdev->badblocks; 1877 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1878 u64 *p = bb->page; 1879 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1880 if (bb->changed) { 1881 unsigned seq; 1882 1883 retry: 1884 seq = read_seqbegin(&bb->lock); 1885 1886 memset(bbp, 0xff, PAGE_SIZE); 1887 1888 for (i = 0 ; i < bb->count ; i++) { 1889 u64 internal_bb = p[i]; 1890 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1891 | BB_LEN(internal_bb)); 1892 bbp[i] = cpu_to_le64(store_bb); 1893 } 1894 bb->changed = 0; 1895 if (read_seqretry(&bb->lock, seq)) 1896 goto retry; 1897 1898 bb->sector = (rdev->sb_start + 1899 (int)le32_to_cpu(sb->bblog_offset)); 1900 bb->size = le16_to_cpu(sb->bblog_size); 1901 } 1902 } 1903 1904 max_dev = 0; 1905 rdev_for_each(rdev2, mddev) 1906 if (rdev2->desc_nr+1 > max_dev) 1907 max_dev = rdev2->desc_nr+1; 1908 1909 if (max_dev > le32_to_cpu(sb->max_dev)) { 1910 int bmask; 1911 sb->max_dev = cpu_to_le32(max_dev); 1912 rdev->sb_size = max_dev * 2 + 256; 1913 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1914 if (rdev->sb_size & bmask) 1915 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1916 } else 1917 max_dev = le32_to_cpu(sb->max_dev); 1918 1919 for (i=0; i<max_dev;i++) 1920 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1921 1922 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1923 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1924 1925 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1926 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1927 sb->feature_map |= 1928 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1929 else 1930 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1931 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1932 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1933 } 1934 1935 rdev_for_each(rdev2, mddev) { 1936 i = rdev2->desc_nr; 1937 if (test_bit(Faulty, &rdev2->flags)) 1938 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1939 else if (test_bit(In_sync, &rdev2->flags)) 1940 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1941 else if (test_bit(Journal, &rdev2->flags)) 1942 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1943 else if (rdev2->raid_disk >= 0) 1944 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1945 else 1946 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1947 } 1948 1949 sb->sb_csum = calc_sb_1_csum(sb); 1950 } 1951 1952 static unsigned long long 1953 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1954 { 1955 struct mdp_superblock_1 *sb; 1956 sector_t max_sectors; 1957 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1958 return 0; /* component must fit device */ 1959 if (rdev->data_offset != rdev->new_data_offset) 1960 return 0; /* too confusing */ 1961 if (rdev->sb_start < rdev->data_offset) { 1962 /* minor versions 1 and 2; superblock before data */ 1963 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1964 max_sectors -= rdev->data_offset; 1965 if (!num_sectors || num_sectors > max_sectors) 1966 num_sectors = max_sectors; 1967 } else if (rdev->mddev->bitmap_info.offset) { 1968 /* minor version 0 with bitmap we can't move */ 1969 return 0; 1970 } else { 1971 /* minor version 0; superblock after data */ 1972 sector_t sb_start; 1973 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1974 sb_start &= ~(sector_t)(4*2 - 1); 1975 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1976 if (!num_sectors || num_sectors > max_sectors) 1977 num_sectors = max_sectors; 1978 rdev->sb_start = sb_start; 1979 } 1980 sb = page_address(rdev->sb_page); 1981 sb->data_size = cpu_to_le64(num_sectors); 1982 sb->super_offset = cpu_to_le64(rdev->sb_start); 1983 sb->sb_csum = calc_sb_1_csum(sb); 1984 do { 1985 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1986 rdev->sb_page); 1987 } while (md_super_wait(rdev->mddev) < 0); 1988 return num_sectors; 1989 1990 } 1991 1992 static int 1993 super_1_allow_new_offset(struct md_rdev *rdev, 1994 unsigned long long new_offset) 1995 { 1996 /* All necessary checks on new >= old have been done */ 1997 struct bitmap *bitmap; 1998 if (new_offset >= rdev->data_offset) 1999 return 1; 2000 2001 /* with 1.0 metadata, there is no metadata to tread on 2002 * so we can always move back */ 2003 if (rdev->mddev->minor_version == 0) 2004 return 1; 2005 2006 /* otherwise we must be sure not to step on 2007 * any metadata, so stay: 2008 * 36K beyond start of superblock 2009 * beyond end of badblocks 2010 * beyond write-intent bitmap 2011 */ 2012 if (rdev->sb_start + (32+4)*2 > new_offset) 2013 return 0; 2014 bitmap = rdev->mddev->bitmap; 2015 if (bitmap && !rdev->mddev->bitmap_info.file && 2016 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2017 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2018 return 0; 2019 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2020 return 0; 2021 2022 return 1; 2023 } 2024 2025 static struct super_type super_types[] = { 2026 [0] = { 2027 .name = "0.90.0", 2028 .owner = THIS_MODULE, 2029 .load_super = super_90_load, 2030 .validate_super = super_90_validate, 2031 .sync_super = super_90_sync, 2032 .rdev_size_change = super_90_rdev_size_change, 2033 .allow_new_offset = super_90_allow_new_offset, 2034 }, 2035 [1] = { 2036 .name = "md-1", 2037 .owner = THIS_MODULE, 2038 .load_super = super_1_load, 2039 .validate_super = super_1_validate, 2040 .sync_super = super_1_sync, 2041 .rdev_size_change = super_1_rdev_size_change, 2042 .allow_new_offset = super_1_allow_new_offset, 2043 }, 2044 }; 2045 2046 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2047 { 2048 if (mddev->sync_super) { 2049 mddev->sync_super(mddev, rdev); 2050 return; 2051 } 2052 2053 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2054 2055 super_types[mddev->major_version].sync_super(mddev, rdev); 2056 } 2057 2058 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2059 { 2060 struct md_rdev *rdev, *rdev2; 2061 2062 rcu_read_lock(); 2063 rdev_for_each_rcu(rdev, mddev1) { 2064 if (test_bit(Faulty, &rdev->flags) || 2065 test_bit(Journal, &rdev->flags) || 2066 rdev->raid_disk == -1) 2067 continue; 2068 rdev_for_each_rcu(rdev2, mddev2) { 2069 if (test_bit(Faulty, &rdev2->flags) || 2070 test_bit(Journal, &rdev2->flags) || 2071 rdev2->raid_disk == -1) 2072 continue; 2073 if (rdev->bdev->bd_contains == 2074 rdev2->bdev->bd_contains) { 2075 rcu_read_unlock(); 2076 return 1; 2077 } 2078 } 2079 } 2080 rcu_read_unlock(); 2081 return 0; 2082 } 2083 2084 static LIST_HEAD(pending_raid_disks); 2085 2086 /* 2087 * Try to register data integrity profile for an mddev 2088 * 2089 * This is called when an array is started and after a disk has been kicked 2090 * from the array. It only succeeds if all working and active component devices 2091 * are integrity capable with matching profiles. 2092 */ 2093 int md_integrity_register(struct mddev *mddev) 2094 { 2095 struct md_rdev *rdev, *reference = NULL; 2096 2097 if (list_empty(&mddev->disks)) 2098 return 0; /* nothing to do */ 2099 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2100 return 0; /* shouldn't register, or already is */ 2101 rdev_for_each(rdev, mddev) { 2102 /* skip spares and non-functional disks */ 2103 if (test_bit(Faulty, &rdev->flags)) 2104 continue; 2105 if (rdev->raid_disk < 0) 2106 continue; 2107 if (!reference) { 2108 /* Use the first rdev as the reference */ 2109 reference = rdev; 2110 continue; 2111 } 2112 /* does this rdev's profile match the reference profile? */ 2113 if (blk_integrity_compare(reference->bdev->bd_disk, 2114 rdev->bdev->bd_disk) < 0) 2115 return -EINVAL; 2116 } 2117 if (!reference || !bdev_get_integrity(reference->bdev)) 2118 return 0; 2119 /* 2120 * All component devices are integrity capable and have matching 2121 * profiles, register the common profile for the md device. 2122 */ 2123 blk_integrity_register(mddev->gendisk, 2124 bdev_get_integrity(reference->bdev)); 2125 2126 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2127 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2128 pr_err("md: failed to create integrity pool for %s\n", 2129 mdname(mddev)); 2130 return -EINVAL; 2131 } 2132 return 0; 2133 } 2134 EXPORT_SYMBOL(md_integrity_register); 2135 2136 /* 2137 * Attempt to add an rdev, but only if it is consistent with the current 2138 * integrity profile 2139 */ 2140 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2141 { 2142 struct blk_integrity *bi_rdev; 2143 struct blk_integrity *bi_mddev; 2144 char name[BDEVNAME_SIZE]; 2145 2146 if (!mddev->gendisk) 2147 return 0; 2148 2149 bi_rdev = bdev_get_integrity(rdev->bdev); 2150 bi_mddev = blk_get_integrity(mddev->gendisk); 2151 2152 if (!bi_mddev) /* nothing to do */ 2153 return 0; 2154 2155 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2156 pr_err("%s: incompatible integrity profile for %s\n", 2157 mdname(mddev), bdevname(rdev->bdev, name)); 2158 return -ENXIO; 2159 } 2160 2161 return 0; 2162 } 2163 EXPORT_SYMBOL(md_integrity_add_rdev); 2164 2165 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2166 { 2167 char b[BDEVNAME_SIZE]; 2168 struct kobject *ko; 2169 int err; 2170 2171 /* prevent duplicates */ 2172 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2173 return -EEXIST; 2174 2175 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2176 mddev->pers) 2177 return -EROFS; 2178 2179 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2180 if (!test_bit(Journal, &rdev->flags) && 2181 rdev->sectors && 2182 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2183 if (mddev->pers) { 2184 /* Cannot change size, so fail 2185 * If mddev->level <= 0, then we don't care 2186 * about aligning sizes (e.g. linear) 2187 */ 2188 if (mddev->level > 0) 2189 return -ENOSPC; 2190 } else 2191 mddev->dev_sectors = rdev->sectors; 2192 } 2193 2194 /* Verify rdev->desc_nr is unique. 2195 * If it is -1, assign a free number, else 2196 * check number is not in use 2197 */ 2198 rcu_read_lock(); 2199 if (rdev->desc_nr < 0) { 2200 int choice = 0; 2201 if (mddev->pers) 2202 choice = mddev->raid_disks; 2203 while (md_find_rdev_nr_rcu(mddev, choice)) 2204 choice++; 2205 rdev->desc_nr = choice; 2206 } else { 2207 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2208 rcu_read_unlock(); 2209 return -EBUSY; 2210 } 2211 } 2212 rcu_read_unlock(); 2213 if (!test_bit(Journal, &rdev->flags) && 2214 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2215 pr_warn("md: %s: array is limited to %d devices\n", 2216 mdname(mddev), mddev->max_disks); 2217 return -EBUSY; 2218 } 2219 bdevname(rdev->bdev,b); 2220 strreplace(b, '/', '!'); 2221 2222 rdev->mddev = mddev; 2223 pr_debug("md: bind<%s>\n", b); 2224 2225 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2226 goto fail; 2227 2228 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2229 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2230 /* failure here is OK */; 2231 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2232 2233 list_add_rcu(&rdev->same_set, &mddev->disks); 2234 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2235 2236 /* May as well allow recovery to be retried once */ 2237 mddev->recovery_disabled++; 2238 2239 return 0; 2240 2241 fail: 2242 pr_warn("md: failed to register dev-%s for %s\n", 2243 b, mdname(mddev)); 2244 return err; 2245 } 2246 2247 static void md_delayed_delete(struct work_struct *ws) 2248 { 2249 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2250 kobject_del(&rdev->kobj); 2251 kobject_put(&rdev->kobj); 2252 } 2253 2254 static void unbind_rdev_from_array(struct md_rdev *rdev) 2255 { 2256 char b[BDEVNAME_SIZE]; 2257 2258 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2259 list_del_rcu(&rdev->same_set); 2260 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2261 rdev->mddev = NULL; 2262 sysfs_remove_link(&rdev->kobj, "block"); 2263 sysfs_put(rdev->sysfs_state); 2264 rdev->sysfs_state = NULL; 2265 rdev->badblocks.count = 0; 2266 /* We need to delay this, otherwise we can deadlock when 2267 * writing to 'remove' to "dev/state". We also need 2268 * to delay it due to rcu usage. 2269 */ 2270 synchronize_rcu(); 2271 INIT_WORK(&rdev->del_work, md_delayed_delete); 2272 kobject_get(&rdev->kobj); 2273 queue_work(md_misc_wq, &rdev->del_work); 2274 } 2275 2276 /* 2277 * prevent the device from being mounted, repartitioned or 2278 * otherwise reused by a RAID array (or any other kernel 2279 * subsystem), by bd_claiming the device. 2280 */ 2281 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2282 { 2283 int err = 0; 2284 struct block_device *bdev; 2285 char b[BDEVNAME_SIZE]; 2286 2287 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2288 shared ? (struct md_rdev *)lock_rdev : rdev); 2289 if (IS_ERR(bdev)) { 2290 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2291 return PTR_ERR(bdev); 2292 } 2293 rdev->bdev = bdev; 2294 return err; 2295 } 2296 2297 static void unlock_rdev(struct md_rdev *rdev) 2298 { 2299 struct block_device *bdev = rdev->bdev; 2300 rdev->bdev = NULL; 2301 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2302 } 2303 2304 void md_autodetect_dev(dev_t dev); 2305 2306 static void export_rdev(struct md_rdev *rdev) 2307 { 2308 char b[BDEVNAME_SIZE]; 2309 2310 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2311 md_rdev_clear(rdev); 2312 #ifndef MODULE 2313 if (test_bit(AutoDetected, &rdev->flags)) 2314 md_autodetect_dev(rdev->bdev->bd_dev); 2315 #endif 2316 unlock_rdev(rdev); 2317 kobject_put(&rdev->kobj); 2318 } 2319 2320 void md_kick_rdev_from_array(struct md_rdev *rdev) 2321 { 2322 unbind_rdev_from_array(rdev); 2323 export_rdev(rdev); 2324 } 2325 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2326 2327 static void export_array(struct mddev *mddev) 2328 { 2329 struct md_rdev *rdev; 2330 2331 while (!list_empty(&mddev->disks)) { 2332 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2333 same_set); 2334 md_kick_rdev_from_array(rdev); 2335 } 2336 mddev->raid_disks = 0; 2337 mddev->major_version = 0; 2338 } 2339 2340 static bool set_in_sync(struct mddev *mddev) 2341 { 2342 lockdep_assert_held(&mddev->lock); 2343 if (!mddev->in_sync) { 2344 mddev->sync_checkers++; 2345 spin_unlock(&mddev->lock); 2346 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2347 spin_lock(&mddev->lock); 2348 if (!mddev->in_sync && 2349 percpu_ref_is_zero(&mddev->writes_pending)) { 2350 mddev->in_sync = 1; 2351 /* 2352 * Ensure ->in_sync is visible before we clear 2353 * ->sync_checkers. 2354 */ 2355 smp_mb(); 2356 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2357 sysfs_notify_dirent_safe(mddev->sysfs_state); 2358 } 2359 if (--mddev->sync_checkers == 0) 2360 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2361 } 2362 if (mddev->safemode == 1) 2363 mddev->safemode = 0; 2364 return mddev->in_sync; 2365 } 2366 2367 static void sync_sbs(struct mddev *mddev, int nospares) 2368 { 2369 /* Update each superblock (in-memory image), but 2370 * if we are allowed to, skip spares which already 2371 * have the right event counter, or have one earlier 2372 * (which would mean they aren't being marked as dirty 2373 * with the rest of the array) 2374 */ 2375 struct md_rdev *rdev; 2376 rdev_for_each(rdev, mddev) { 2377 if (rdev->sb_events == mddev->events || 2378 (nospares && 2379 rdev->raid_disk < 0 && 2380 rdev->sb_events+1 == mddev->events)) { 2381 /* Don't update this superblock */ 2382 rdev->sb_loaded = 2; 2383 } else { 2384 sync_super(mddev, rdev); 2385 rdev->sb_loaded = 1; 2386 } 2387 } 2388 } 2389 2390 static bool does_sb_need_changing(struct mddev *mddev) 2391 { 2392 struct md_rdev *rdev; 2393 struct mdp_superblock_1 *sb; 2394 int role; 2395 2396 /* Find a good rdev */ 2397 rdev_for_each(rdev, mddev) 2398 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2399 break; 2400 2401 /* No good device found. */ 2402 if (!rdev) 2403 return false; 2404 2405 sb = page_address(rdev->sb_page); 2406 /* Check if a device has become faulty or a spare become active */ 2407 rdev_for_each(rdev, mddev) { 2408 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2409 /* Device activated? */ 2410 if (role == 0xffff && rdev->raid_disk >=0 && 2411 !test_bit(Faulty, &rdev->flags)) 2412 return true; 2413 /* Device turned faulty? */ 2414 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2415 return true; 2416 } 2417 2418 /* Check if any mddev parameters have changed */ 2419 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2420 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2421 (mddev->layout != le32_to_cpu(sb->layout)) || 2422 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2423 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2424 return true; 2425 2426 return false; 2427 } 2428 2429 void md_update_sb(struct mddev *mddev, int force_change) 2430 { 2431 struct md_rdev *rdev; 2432 int sync_req; 2433 int nospares = 0; 2434 int any_badblocks_changed = 0; 2435 int ret = -1; 2436 2437 if (mddev->ro) { 2438 if (force_change) 2439 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2440 return; 2441 } 2442 2443 repeat: 2444 if (mddev_is_clustered(mddev)) { 2445 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2446 force_change = 1; 2447 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2448 nospares = 1; 2449 ret = md_cluster_ops->metadata_update_start(mddev); 2450 /* Has someone else has updated the sb */ 2451 if (!does_sb_need_changing(mddev)) { 2452 if (ret == 0) 2453 md_cluster_ops->metadata_update_cancel(mddev); 2454 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2455 BIT(MD_SB_CHANGE_DEVS) | 2456 BIT(MD_SB_CHANGE_CLEAN)); 2457 return; 2458 } 2459 } 2460 2461 /* 2462 * First make sure individual recovery_offsets are correct 2463 * curr_resync_completed can only be used during recovery. 2464 * During reshape/resync it might use array-addresses rather 2465 * that device addresses. 2466 */ 2467 rdev_for_each(rdev, mddev) { 2468 if (rdev->raid_disk >= 0 && 2469 mddev->delta_disks >= 0 && 2470 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2471 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2472 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2473 !test_bit(Journal, &rdev->flags) && 2474 !test_bit(In_sync, &rdev->flags) && 2475 mddev->curr_resync_completed > rdev->recovery_offset) 2476 rdev->recovery_offset = mddev->curr_resync_completed; 2477 2478 } 2479 if (!mddev->persistent) { 2480 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2481 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2482 if (!mddev->external) { 2483 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2484 rdev_for_each(rdev, mddev) { 2485 if (rdev->badblocks.changed) { 2486 rdev->badblocks.changed = 0; 2487 ack_all_badblocks(&rdev->badblocks); 2488 md_error(mddev, rdev); 2489 } 2490 clear_bit(Blocked, &rdev->flags); 2491 clear_bit(BlockedBadBlocks, &rdev->flags); 2492 wake_up(&rdev->blocked_wait); 2493 } 2494 } 2495 wake_up(&mddev->sb_wait); 2496 return; 2497 } 2498 2499 spin_lock(&mddev->lock); 2500 2501 mddev->utime = ktime_get_real_seconds(); 2502 2503 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2504 force_change = 1; 2505 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2506 /* just a clean<-> dirty transition, possibly leave spares alone, 2507 * though if events isn't the right even/odd, we will have to do 2508 * spares after all 2509 */ 2510 nospares = 1; 2511 if (force_change) 2512 nospares = 0; 2513 if (mddev->degraded) 2514 /* If the array is degraded, then skipping spares is both 2515 * dangerous and fairly pointless. 2516 * Dangerous because a device that was removed from the array 2517 * might have a event_count that still looks up-to-date, 2518 * so it can be re-added without a resync. 2519 * Pointless because if there are any spares to skip, 2520 * then a recovery will happen and soon that array won't 2521 * be degraded any more and the spare can go back to sleep then. 2522 */ 2523 nospares = 0; 2524 2525 sync_req = mddev->in_sync; 2526 2527 /* If this is just a dirty<->clean transition, and the array is clean 2528 * and 'events' is odd, we can roll back to the previous clean state */ 2529 if (nospares 2530 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2531 && mddev->can_decrease_events 2532 && mddev->events != 1) { 2533 mddev->events--; 2534 mddev->can_decrease_events = 0; 2535 } else { 2536 /* otherwise we have to go forward and ... */ 2537 mddev->events ++; 2538 mddev->can_decrease_events = nospares; 2539 } 2540 2541 /* 2542 * This 64-bit counter should never wrap. 2543 * Either we are in around ~1 trillion A.C., assuming 2544 * 1 reboot per second, or we have a bug... 2545 */ 2546 WARN_ON(mddev->events == 0); 2547 2548 rdev_for_each(rdev, mddev) { 2549 if (rdev->badblocks.changed) 2550 any_badblocks_changed++; 2551 if (test_bit(Faulty, &rdev->flags)) 2552 set_bit(FaultRecorded, &rdev->flags); 2553 } 2554 2555 sync_sbs(mddev, nospares); 2556 spin_unlock(&mddev->lock); 2557 2558 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2559 mdname(mddev), mddev->in_sync); 2560 2561 if (mddev->queue) 2562 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2563 rewrite: 2564 bitmap_update_sb(mddev->bitmap); 2565 rdev_for_each(rdev, mddev) { 2566 char b[BDEVNAME_SIZE]; 2567 2568 if (rdev->sb_loaded != 1) 2569 continue; /* no noise on spare devices */ 2570 2571 if (!test_bit(Faulty, &rdev->flags)) { 2572 md_super_write(mddev,rdev, 2573 rdev->sb_start, rdev->sb_size, 2574 rdev->sb_page); 2575 pr_debug("md: (write) %s's sb offset: %llu\n", 2576 bdevname(rdev->bdev, b), 2577 (unsigned long long)rdev->sb_start); 2578 rdev->sb_events = mddev->events; 2579 if (rdev->badblocks.size) { 2580 md_super_write(mddev, rdev, 2581 rdev->badblocks.sector, 2582 rdev->badblocks.size << 9, 2583 rdev->bb_page); 2584 rdev->badblocks.size = 0; 2585 } 2586 2587 } else 2588 pr_debug("md: %s (skipping faulty)\n", 2589 bdevname(rdev->bdev, b)); 2590 2591 if (mddev->level == LEVEL_MULTIPATH) 2592 /* only need to write one superblock... */ 2593 break; 2594 } 2595 if (md_super_wait(mddev) < 0) 2596 goto rewrite; 2597 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2598 2599 if (mddev_is_clustered(mddev) && ret == 0) 2600 md_cluster_ops->metadata_update_finish(mddev); 2601 2602 if (mddev->in_sync != sync_req || 2603 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2604 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2605 /* have to write it out again */ 2606 goto repeat; 2607 wake_up(&mddev->sb_wait); 2608 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2609 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2610 2611 rdev_for_each(rdev, mddev) { 2612 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2613 clear_bit(Blocked, &rdev->flags); 2614 2615 if (any_badblocks_changed) 2616 ack_all_badblocks(&rdev->badblocks); 2617 clear_bit(BlockedBadBlocks, &rdev->flags); 2618 wake_up(&rdev->blocked_wait); 2619 } 2620 } 2621 EXPORT_SYMBOL(md_update_sb); 2622 2623 static int add_bound_rdev(struct md_rdev *rdev) 2624 { 2625 struct mddev *mddev = rdev->mddev; 2626 int err = 0; 2627 bool add_journal = test_bit(Journal, &rdev->flags); 2628 2629 if (!mddev->pers->hot_remove_disk || add_journal) { 2630 /* If there is hot_add_disk but no hot_remove_disk 2631 * then added disks for geometry changes, 2632 * and should be added immediately. 2633 */ 2634 super_types[mddev->major_version]. 2635 validate_super(mddev, rdev); 2636 if (add_journal) 2637 mddev_suspend(mddev); 2638 err = mddev->pers->hot_add_disk(mddev, rdev); 2639 if (add_journal) 2640 mddev_resume(mddev); 2641 if (err) { 2642 md_kick_rdev_from_array(rdev); 2643 return err; 2644 } 2645 } 2646 sysfs_notify_dirent_safe(rdev->sysfs_state); 2647 2648 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2649 if (mddev->degraded) 2650 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2652 md_new_event(mddev); 2653 md_wakeup_thread(mddev->thread); 2654 return 0; 2655 } 2656 2657 /* words written to sysfs files may, or may not, be \n terminated. 2658 * We want to accept with case. For this we use cmd_match. 2659 */ 2660 static int cmd_match(const char *cmd, const char *str) 2661 { 2662 /* See if cmd, written into a sysfs file, matches 2663 * str. They must either be the same, or cmd can 2664 * have a trailing newline 2665 */ 2666 while (*cmd && *str && *cmd == *str) { 2667 cmd++; 2668 str++; 2669 } 2670 if (*cmd == '\n') 2671 cmd++; 2672 if (*str || *cmd) 2673 return 0; 2674 return 1; 2675 } 2676 2677 struct rdev_sysfs_entry { 2678 struct attribute attr; 2679 ssize_t (*show)(struct md_rdev *, char *); 2680 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2681 }; 2682 2683 static ssize_t 2684 state_show(struct md_rdev *rdev, char *page) 2685 { 2686 char *sep = ","; 2687 size_t len = 0; 2688 unsigned long flags = READ_ONCE(rdev->flags); 2689 2690 if (test_bit(Faulty, &flags) || 2691 (!test_bit(ExternalBbl, &flags) && 2692 rdev->badblocks.unacked_exist)) 2693 len += sprintf(page+len, "faulty%s", sep); 2694 if (test_bit(In_sync, &flags)) 2695 len += sprintf(page+len, "in_sync%s", sep); 2696 if (test_bit(Journal, &flags)) 2697 len += sprintf(page+len, "journal%s", sep); 2698 if (test_bit(WriteMostly, &flags)) 2699 len += sprintf(page+len, "write_mostly%s", sep); 2700 if (test_bit(Blocked, &flags) || 2701 (rdev->badblocks.unacked_exist 2702 && !test_bit(Faulty, &flags))) 2703 len += sprintf(page+len, "blocked%s", sep); 2704 if (!test_bit(Faulty, &flags) && 2705 !test_bit(Journal, &flags) && 2706 !test_bit(In_sync, &flags)) 2707 len += sprintf(page+len, "spare%s", sep); 2708 if (test_bit(WriteErrorSeen, &flags)) 2709 len += sprintf(page+len, "write_error%s", sep); 2710 if (test_bit(WantReplacement, &flags)) 2711 len += sprintf(page+len, "want_replacement%s", sep); 2712 if (test_bit(Replacement, &flags)) 2713 len += sprintf(page+len, "replacement%s", sep); 2714 if (test_bit(ExternalBbl, &flags)) 2715 len += sprintf(page+len, "external_bbl%s", sep); 2716 if (test_bit(FailFast, &flags)) 2717 len += sprintf(page+len, "failfast%s", sep); 2718 2719 if (len) 2720 len -= strlen(sep); 2721 2722 return len+sprintf(page+len, "\n"); 2723 } 2724 2725 static ssize_t 2726 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2727 { 2728 /* can write 2729 * faulty - simulates an error 2730 * remove - disconnects the device 2731 * writemostly - sets write_mostly 2732 * -writemostly - clears write_mostly 2733 * blocked - sets the Blocked flags 2734 * -blocked - clears the Blocked and possibly simulates an error 2735 * insync - sets Insync providing device isn't active 2736 * -insync - clear Insync for a device with a slot assigned, 2737 * so that it gets rebuilt based on bitmap 2738 * write_error - sets WriteErrorSeen 2739 * -write_error - clears WriteErrorSeen 2740 * {,-}failfast - set/clear FailFast 2741 */ 2742 int err = -EINVAL; 2743 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2744 md_error(rdev->mddev, rdev); 2745 if (test_bit(Faulty, &rdev->flags)) 2746 err = 0; 2747 else 2748 err = -EBUSY; 2749 } else if (cmd_match(buf, "remove")) { 2750 if (rdev->mddev->pers) { 2751 clear_bit(Blocked, &rdev->flags); 2752 remove_and_add_spares(rdev->mddev, rdev); 2753 } 2754 if (rdev->raid_disk >= 0) 2755 err = -EBUSY; 2756 else { 2757 struct mddev *mddev = rdev->mddev; 2758 err = 0; 2759 if (mddev_is_clustered(mddev)) 2760 err = md_cluster_ops->remove_disk(mddev, rdev); 2761 2762 if (err == 0) { 2763 md_kick_rdev_from_array(rdev); 2764 if (mddev->pers) { 2765 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2766 md_wakeup_thread(mddev->thread); 2767 } 2768 md_new_event(mddev); 2769 } 2770 } 2771 } else if (cmd_match(buf, "writemostly")) { 2772 set_bit(WriteMostly, &rdev->flags); 2773 err = 0; 2774 } else if (cmd_match(buf, "-writemostly")) { 2775 clear_bit(WriteMostly, &rdev->flags); 2776 err = 0; 2777 } else if (cmd_match(buf, "blocked")) { 2778 set_bit(Blocked, &rdev->flags); 2779 err = 0; 2780 } else if (cmd_match(buf, "-blocked")) { 2781 if (!test_bit(Faulty, &rdev->flags) && 2782 !test_bit(ExternalBbl, &rdev->flags) && 2783 rdev->badblocks.unacked_exist) { 2784 /* metadata handler doesn't understand badblocks, 2785 * so we need to fail the device 2786 */ 2787 md_error(rdev->mddev, rdev); 2788 } 2789 clear_bit(Blocked, &rdev->flags); 2790 clear_bit(BlockedBadBlocks, &rdev->flags); 2791 wake_up(&rdev->blocked_wait); 2792 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2793 md_wakeup_thread(rdev->mddev->thread); 2794 2795 err = 0; 2796 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2797 set_bit(In_sync, &rdev->flags); 2798 err = 0; 2799 } else if (cmd_match(buf, "failfast")) { 2800 set_bit(FailFast, &rdev->flags); 2801 err = 0; 2802 } else if (cmd_match(buf, "-failfast")) { 2803 clear_bit(FailFast, &rdev->flags); 2804 err = 0; 2805 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2806 !test_bit(Journal, &rdev->flags)) { 2807 if (rdev->mddev->pers == NULL) { 2808 clear_bit(In_sync, &rdev->flags); 2809 rdev->saved_raid_disk = rdev->raid_disk; 2810 rdev->raid_disk = -1; 2811 err = 0; 2812 } 2813 } else if (cmd_match(buf, "write_error")) { 2814 set_bit(WriteErrorSeen, &rdev->flags); 2815 err = 0; 2816 } else if (cmd_match(buf, "-write_error")) { 2817 clear_bit(WriteErrorSeen, &rdev->flags); 2818 err = 0; 2819 } else if (cmd_match(buf, "want_replacement")) { 2820 /* Any non-spare device that is not a replacement can 2821 * become want_replacement at any time, but we then need to 2822 * check if recovery is needed. 2823 */ 2824 if (rdev->raid_disk >= 0 && 2825 !test_bit(Journal, &rdev->flags) && 2826 !test_bit(Replacement, &rdev->flags)) 2827 set_bit(WantReplacement, &rdev->flags); 2828 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2829 md_wakeup_thread(rdev->mddev->thread); 2830 err = 0; 2831 } else if (cmd_match(buf, "-want_replacement")) { 2832 /* Clearing 'want_replacement' is always allowed. 2833 * Once replacements starts it is too late though. 2834 */ 2835 err = 0; 2836 clear_bit(WantReplacement, &rdev->flags); 2837 } else if (cmd_match(buf, "replacement")) { 2838 /* Can only set a device as a replacement when array has not 2839 * yet been started. Once running, replacement is automatic 2840 * from spares, or by assigning 'slot'. 2841 */ 2842 if (rdev->mddev->pers) 2843 err = -EBUSY; 2844 else { 2845 set_bit(Replacement, &rdev->flags); 2846 err = 0; 2847 } 2848 } else if (cmd_match(buf, "-replacement")) { 2849 /* Similarly, can only clear Replacement before start */ 2850 if (rdev->mddev->pers) 2851 err = -EBUSY; 2852 else { 2853 clear_bit(Replacement, &rdev->flags); 2854 err = 0; 2855 } 2856 } else if (cmd_match(buf, "re-add")) { 2857 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2858 /* clear_bit is performed _after_ all the devices 2859 * have their local Faulty bit cleared. If any writes 2860 * happen in the meantime in the local node, they 2861 * will land in the local bitmap, which will be synced 2862 * by this node eventually 2863 */ 2864 if (!mddev_is_clustered(rdev->mddev) || 2865 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2866 clear_bit(Faulty, &rdev->flags); 2867 err = add_bound_rdev(rdev); 2868 } 2869 } else 2870 err = -EBUSY; 2871 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2872 set_bit(ExternalBbl, &rdev->flags); 2873 rdev->badblocks.shift = 0; 2874 err = 0; 2875 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2876 clear_bit(ExternalBbl, &rdev->flags); 2877 err = 0; 2878 } 2879 if (!err) 2880 sysfs_notify_dirent_safe(rdev->sysfs_state); 2881 return err ? err : len; 2882 } 2883 static struct rdev_sysfs_entry rdev_state = 2884 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2885 2886 static ssize_t 2887 errors_show(struct md_rdev *rdev, char *page) 2888 { 2889 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2890 } 2891 2892 static ssize_t 2893 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2894 { 2895 unsigned int n; 2896 int rv; 2897 2898 rv = kstrtouint(buf, 10, &n); 2899 if (rv < 0) 2900 return rv; 2901 atomic_set(&rdev->corrected_errors, n); 2902 return len; 2903 } 2904 static struct rdev_sysfs_entry rdev_errors = 2905 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2906 2907 static ssize_t 2908 slot_show(struct md_rdev *rdev, char *page) 2909 { 2910 if (test_bit(Journal, &rdev->flags)) 2911 return sprintf(page, "journal\n"); 2912 else if (rdev->raid_disk < 0) 2913 return sprintf(page, "none\n"); 2914 else 2915 return sprintf(page, "%d\n", rdev->raid_disk); 2916 } 2917 2918 static ssize_t 2919 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2920 { 2921 int slot; 2922 int err; 2923 2924 if (test_bit(Journal, &rdev->flags)) 2925 return -EBUSY; 2926 if (strncmp(buf, "none", 4)==0) 2927 slot = -1; 2928 else { 2929 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2930 if (err < 0) 2931 return err; 2932 } 2933 if (rdev->mddev->pers && slot == -1) { 2934 /* Setting 'slot' on an active array requires also 2935 * updating the 'rd%d' link, and communicating 2936 * with the personality with ->hot_*_disk. 2937 * For now we only support removing 2938 * failed/spare devices. This normally happens automatically, 2939 * but not when the metadata is externally managed. 2940 */ 2941 if (rdev->raid_disk == -1) 2942 return -EEXIST; 2943 /* personality does all needed checks */ 2944 if (rdev->mddev->pers->hot_remove_disk == NULL) 2945 return -EINVAL; 2946 clear_bit(Blocked, &rdev->flags); 2947 remove_and_add_spares(rdev->mddev, rdev); 2948 if (rdev->raid_disk >= 0) 2949 return -EBUSY; 2950 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2951 md_wakeup_thread(rdev->mddev->thread); 2952 } else if (rdev->mddev->pers) { 2953 /* Activating a spare .. or possibly reactivating 2954 * if we ever get bitmaps working here. 2955 */ 2956 int err; 2957 2958 if (rdev->raid_disk != -1) 2959 return -EBUSY; 2960 2961 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2962 return -EBUSY; 2963 2964 if (rdev->mddev->pers->hot_add_disk == NULL) 2965 return -EINVAL; 2966 2967 if (slot >= rdev->mddev->raid_disks && 2968 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2969 return -ENOSPC; 2970 2971 rdev->raid_disk = slot; 2972 if (test_bit(In_sync, &rdev->flags)) 2973 rdev->saved_raid_disk = slot; 2974 else 2975 rdev->saved_raid_disk = -1; 2976 clear_bit(In_sync, &rdev->flags); 2977 clear_bit(Bitmap_sync, &rdev->flags); 2978 err = rdev->mddev->pers-> 2979 hot_add_disk(rdev->mddev, rdev); 2980 if (err) { 2981 rdev->raid_disk = -1; 2982 return err; 2983 } else 2984 sysfs_notify_dirent_safe(rdev->sysfs_state); 2985 if (sysfs_link_rdev(rdev->mddev, rdev)) 2986 /* failure here is OK */; 2987 /* don't wakeup anyone, leave that to userspace. */ 2988 } else { 2989 if (slot >= rdev->mddev->raid_disks && 2990 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2991 return -ENOSPC; 2992 rdev->raid_disk = slot; 2993 /* assume it is working */ 2994 clear_bit(Faulty, &rdev->flags); 2995 clear_bit(WriteMostly, &rdev->flags); 2996 set_bit(In_sync, &rdev->flags); 2997 sysfs_notify_dirent_safe(rdev->sysfs_state); 2998 } 2999 return len; 3000 } 3001 3002 static struct rdev_sysfs_entry rdev_slot = 3003 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3004 3005 static ssize_t 3006 offset_show(struct md_rdev *rdev, char *page) 3007 { 3008 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3009 } 3010 3011 static ssize_t 3012 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3013 { 3014 unsigned long long offset; 3015 if (kstrtoull(buf, 10, &offset) < 0) 3016 return -EINVAL; 3017 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3018 return -EBUSY; 3019 if (rdev->sectors && rdev->mddev->external) 3020 /* Must set offset before size, so overlap checks 3021 * can be sane */ 3022 return -EBUSY; 3023 rdev->data_offset = offset; 3024 rdev->new_data_offset = offset; 3025 return len; 3026 } 3027 3028 static struct rdev_sysfs_entry rdev_offset = 3029 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3030 3031 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3032 { 3033 return sprintf(page, "%llu\n", 3034 (unsigned long long)rdev->new_data_offset); 3035 } 3036 3037 static ssize_t new_offset_store(struct md_rdev *rdev, 3038 const char *buf, size_t len) 3039 { 3040 unsigned long long new_offset; 3041 struct mddev *mddev = rdev->mddev; 3042 3043 if (kstrtoull(buf, 10, &new_offset) < 0) 3044 return -EINVAL; 3045 3046 if (mddev->sync_thread || 3047 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3048 return -EBUSY; 3049 if (new_offset == rdev->data_offset) 3050 /* reset is always permitted */ 3051 ; 3052 else if (new_offset > rdev->data_offset) { 3053 /* must not push array size beyond rdev_sectors */ 3054 if (new_offset - rdev->data_offset 3055 + mddev->dev_sectors > rdev->sectors) 3056 return -E2BIG; 3057 } 3058 /* Metadata worries about other space details. */ 3059 3060 /* decreasing the offset is inconsistent with a backwards 3061 * reshape. 3062 */ 3063 if (new_offset < rdev->data_offset && 3064 mddev->reshape_backwards) 3065 return -EINVAL; 3066 /* Increasing offset is inconsistent with forwards 3067 * reshape. reshape_direction should be set to 3068 * 'backwards' first. 3069 */ 3070 if (new_offset > rdev->data_offset && 3071 !mddev->reshape_backwards) 3072 return -EINVAL; 3073 3074 if (mddev->pers && mddev->persistent && 3075 !super_types[mddev->major_version] 3076 .allow_new_offset(rdev, new_offset)) 3077 return -E2BIG; 3078 rdev->new_data_offset = new_offset; 3079 if (new_offset > rdev->data_offset) 3080 mddev->reshape_backwards = 1; 3081 else if (new_offset < rdev->data_offset) 3082 mddev->reshape_backwards = 0; 3083 3084 return len; 3085 } 3086 static struct rdev_sysfs_entry rdev_new_offset = 3087 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3088 3089 static ssize_t 3090 rdev_size_show(struct md_rdev *rdev, char *page) 3091 { 3092 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3093 } 3094 3095 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3096 { 3097 /* check if two start/length pairs overlap */ 3098 if (s1+l1 <= s2) 3099 return 0; 3100 if (s2+l2 <= s1) 3101 return 0; 3102 return 1; 3103 } 3104 3105 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3106 { 3107 unsigned long long blocks; 3108 sector_t new; 3109 3110 if (kstrtoull(buf, 10, &blocks) < 0) 3111 return -EINVAL; 3112 3113 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3114 return -EINVAL; /* sector conversion overflow */ 3115 3116 new = blocks * 2; 3117 if (new != blocks * 2) 3118 return -EINVAL; /* unsigned long long to sector_t overflow */ 3119 3120 *sectors = new; 3121 return 0; 3122 } 3123 3124 static ssize_t 3125 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3126 { 3127 struct mddev *my_mddev = rdev->mddev; 3128 sector_t oldsectors = rdev->sectors; 3129 sector_t sectors; 3130 3131 if (test_bit(Journal, &rdev->flags)) 3132 return -EBUSY; 3133 if (strict_blocks_to_sectors(buf, §ors) < 0) 3134 return -EINVAL; 3135 if (rdev->data_offset != rdev->new_data_offset) 3136 return -EINVAL; /* too confusing */ 3137 if (my_mddev->pers && rdev->raid_disk >= 0) { 3138 if (my_mddev->persistent) { 3139 sectors = super_types[my_mddev->major_version]. 3140 rdev_size_change(rdev, sectors); 3141 if (!sectors) 3142 return -EBUSY; 3143 } else if (!sectors) 3144 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3145 rdev->data_offset; 3146 if (!my_mddev->pers->resize) 3147 /* Cannot change size for RAID0 or Linear etc */ 3148 return -EINVAL; 3149 } 3150 if (sectors < my_mddev->dev_sectors) 3151 return -EINVAL; /* component must fit device */ 3152 3153 rdev->sectors = sectors; 3154 if (sectors > oldsectors && my_mddev->external) { 3155 /* Need to check that all other rdevs with the same 3156 * ->bdev do not overlap. 'rcu' is sufficient to walk 3157 * the rdev lists safely. 3158 * This check does not provide a hard guarantee, it 3159 * just helps avoid dangerous mistakes. 3160 */ 3161 struct mddev *mddev; 3162 int overlap = 0; 3163 struct list_head *tmp; 3164 3165 rcu_read_lock(); 3166 for_each_mddev(mddev, tmp) { 3167 struct md_rdev *rdev2; 3168 3169 rdev_for_each(rdev2, mddev) 3170 if (rdev->bdev == rdev2->bdev && 3171 rdev != rdev2 && 3172 overlaps(rdev->data_offset, rdev->sectors, 3173 rdev2->data_offset, 3174 rdev2->sectors)) { 3175 overlap = 1; 3176 break; 3177 } 3178 if (overlap) { 3179 mddev_put(mddev); 3180 break; 3181 } 3182 } 3183 rcu_read_unlock(); 3184 if (overlap) { 3185 /* Someone else could have slipped in a size 3186 * change here, but doing so is just silly. 3187 * We put oldsectors back because we *know* it is 3188 * safe, and trust userspace not to race with 3189 * itself 3190 */ 3191 rdev->sectors = oldsectors; 3192 return -EBUSY; 3193 } 3194 } 3195 return len; 3196 } 3197 3198 static struct rdev_sysfs_entry rdev_size = 3199 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3200 3201 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3202 { 3203 unsigned long long recovery_start = rdev->recovery_offset; 3204 3205 if (test_bit(In_sync, &rdev->flags) || 3206 recovery_start == MaxSector) 3207 return sprintf(page, "none\n"); 3208 3209 return sprintf(page, "%llu\n", recovery_start); 3210 } 3211 3212 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3213 { 3214 unsigned long long recovery_start; 3215 3216 if (cmd_match(buf, "none")) 3217 recovery_start = MaxSector; 3218 else if (kstrtoull(buf, 10, &recovery_start)) 3219 return -EINVAL; 3220 3221 if (rdev->mddev->pers && 3222 rdev->raid_disk >= 0) 3223 return -EBUSY; 3224 3225 rdev->recovery_offset = recovery_start; 3226 if (recovery_start == MaxSector) 3227 set_bit(In_sync, &rdev->flags); 3228 else 3229 clear_bit(In_sync, &rdev->flags); 3230 return len; 3231 } 3232 3233 static struct rdev_sysfs_entry rdev_recovery_start = 3234 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3235 3236 /* sysfs access to bad-blocks list. 3237 * We present two files. 3238 * 'bad-blocks' lists sector numbers and lengths of ranges that 3239 * are recorded as bad. The list is truncated to fit within 3240 * the one-page limit of sysfs. 3241 * Writing "sector length" to this file adds an acknowledged 3242 * bad block list. 3243 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3244 * been acknowledged. Writing to this file adds bad blocks 3245 * without acknowledging them. This is largely for testing. 3246 */ 3247 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3248 { 3249 return badblocks_show(&rdev->badblocks, page, 0); 3250 } 3251 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3252 { 3253 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3254 /* Maybe that ack was all we needed */ 3255 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3256 wake_up(&rdev->blocked_wait); 3257 return rv; 3258 } 3259 static struct rdev_sysfs_entry rdev_bad_blocks = 3260 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3261 3262 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3263 { 3264 return badblocks_show(&rdev->badblocks, page, 1); 3265 } 3266 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3267 { 3268 return badblocks_store(&rdev->badblocks, page, len, 1); 3269 } 3270 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3271 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3272 3273 static ssize_t 3274 ppl_sector_show(struct md_rdev *rdev, char *page) 3275 { 3276 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3277 } 3278 3279 static ssize_t 3280 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3281 { 3282 unsigned long long sector; 3283 3284 if (kstrtoull(buf, 10, §or) < 0) 3285 return -EINVAL; 3286 if (sector != (sector_t)sector) 3287 return -EINVAL; 3288 3289 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3290 rdev->raid_disk >= 0) 3291 return -EBUSY; 3292 3293 if (rdev->mddev->persistent) { 3294 if (rdev->mddev->major_version == 0) 3295 return -EINVAL; 3296 if ((sector > rdev->sb_start && 3297 sector - rdev->sb_start > S16_MAX) || 3298 (sector < rdev->sb_start && 3299 rdev->sb_start - sector > -S16_MIN)) 3300 return -EINVAL; 3301 rdev->ppl.offset = sector - rdev->sb_start; 3302 } else if (!rdev->mddev->external) { 3303 return -EBUSY; 3304 } 3305 rdev->ppl.sector = sector; 3306 return len; 3307 } 3308 3309 static struct rdev_sysfs_entry rdev_ppl_sector = 3310 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3311 3312 static ssize_t 3313 ppl_size_show(struct md_rdev *rdev, char *page) 3314 { 3315 return sprintf(page, "%u\n", rdev->ppl.size); 3316 } 3317 3318 static ssize_t 3319 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3320 { 3321 unsigned int size; 3322 3323 if (kstrtouint(buf, 10, &size) < 0) 3324 return -EINVAL; 3325 3326 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3327 rdev->raid_disk >= 0) 3328 return -EBUSY; 3329 3330 if (rdev->mddev->persistent) { 3331 if (rdev->mddev->major_version == 0) 3332 return -EINVAL; 3333 if (size > U16_MAX) 3334 return -EINVAL; 3335 } else if (!rdev->mddev->external) { 3336 return -EBUSY; 3337 } 3338 rdev->ppl.size = size; 3339 return len; 3340 } 3341 3342 static struct rdev_sysfs_entry rdev_ppl_size = 3343 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3344 3345 static struct attribute *rdev_default_attrs[] = { 3346 &rdev_state.attr, 3347 &rdev_errors.attr, 3348 &rdev_slot.attr, 3349 &rdev_offset.attr, 3350 &rdev_new_offset.attr, 3351 &rdev_size.attr, 3352 &rdev_recovery_start.attr, 3353 &rdev_bad_blocks.attr, 3354 &rdev_unack_bad_blocks.attr, 3355 &rdev_ppl_sector.attr, 3356 &rdev_ppl_size.attr, 3357 NULL, 3358 }; 3359 static ssize_t 3360 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3361 { 3362 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3363 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3364 3365 if (!entry->show) 3366 return -EIO; 3367 if (!rdev->mddev) 3368 return -EBUSY; 3369 return entry->show(rdev, page); 3370 } 3371 3372 static ssize_t 3373 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3374 const char *page, size_t length) 3375 { 3376 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3377 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3378 ssize_t rv; 3379 struct mddev *mddev = rdev->mddev; 3380 3381 if (!entry->store) 3382 return -EIO; 3383 if (!capable(CAP_SYS_ADMIN)) 3384 return -EACCES; 3385 rv = mddev ? mddev_lock(mddev): -EBUSY; 3386 if (!rv) { 3387 if (rdev->mddev == NULL) 3388 rv = -EBUSY; 3389 else 3390 rv = entry->store(rdev, page, length); 3391 mddev_unlock(mddev); 3392 } 3393 return rv; 3394 } 3395 3396 static void rdev_free(struct kobject *ko) 3397 { 3398 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3399 kfree(rdev); 3400 } 3401 static const struct sysfs_ops rdev_sysfs_ops = { 3402 .show = rdev_attr_show, 3403 .store = rdev_attr_store, 3404 }; 3405 static struct kobj_type rdev_ktype = { 3406 .release = rdev_free, 3407 .sysfs_ops = &rdev_sysfs_ops, 3408 .default_attrs = rdev_default_attrs, 3409 }; 3410 3411 int md_rdev_init(struct md_rdev *rdev) 3412 { 3413 rdev->desc_nr = -1; 3414 rdev->saved_raid_disk = -1; 3415 rdev->raid_disk = -1; 3416 rdev->flags = 0; 3417 rdev->data_offset = 0; 3418 rdev->new_data_offset = 0; 3419 rdev->sb_events = 0; 3420 rdev->last_read_error = 0; 3421 rdev->sb_loaded = 0; 3422 rdev->bb_page = NULL; 3423 atomic_set(&rdev->nr_pending, 0); 3424 atomic_set(&rdev->read_errors, 0); 3425 atomic_set(&rdev->corrected_errors, 0); 3426 3427 INIT_LIST_HEAD(&rdev->same_set); 3428 init_waitqueue_head(&rdev->blocked_wait); 3429 3430 /* Add space to store bad block list. 3431 * This reserves the space even on arrays where it cannot 3432 * be used - I wonder if that matters 3433 */ 3434 return badblocks_init(&rdev->badblocks, 0); 3435 } 3436 EXPORT_SYMBOL_GPL(md_rdev_init); 3437 /* 3438 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3439 * 3440 * mark the device faulty if: 3441 * 3442 * - the device is nonexistent (zero size) 3443 * - the device has no valid superblock 3444 * 3445 * a faulty rdev _never_ has rdev->sb set. 3446 */ 3447 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3448 { 3449 char b[BDEVNAME_SIZE]; 3450 int err; 3451 struct md_rdev *rdev; 3452 sector_t size; 3453 3454 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3455 if (!rdev) 3456 return ERR_PTR(-ENOMEM); 3457 3458 err = md_rdev_init(rdev); 3459 if (err) 3460 goto abort_free; 3461 err = alloc_disk_sb(rdev); 3462 if (err) 3463 goto abort_free; 3464 3465 err = lock_rdev(rdev, newdev, super_format == -2); 3466 if (err) 3467 goto abort_free; 3468 3469 kobject_init(&rdev->kobj, &rdev_ktype); 3470 3471 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3472 if (!size) { 3473 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3474 bdevname(rdev->bdev,b)); 3475 err = -EINVAL; 3476 goto abort_free; 3477 } 3478 3479 if (super_format >= 0) { 3480 err = super_types[super_format]. 3481 load_super(rdev, NULL, super_minor); 3482 if (err == -EINVAL) { 3483 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3484 bdevname(rdev->bdev,b), 3485 super_format, super_minor); 3486 goto abort_free; 3487 } 3488 if (err < 0) { 3489 pr_warn("md: could not read %s's sb, not importing!\n", 3490 bdevname(rdev->bdev,b)); 3491 goto abort_free; 3492 } 3493 } 3494 3495 return rdev; 3496 3497 abort_free: 3498 if (rdev->bdev) 3499 unlock_rdev(rdev); 3500 md_rdev_clear(rdev); 3501 kfree(rdev); 3502 return ERR_PTR(err); 3503 } 3504 3505 /* 3506 * Check a full RAID array for plausibility 3507 */ 3508 3509 static void analyze_sbs(struct mddev *mddev) 3510 { 3511 int i; 3512 struct md_rdev *rdev, *freshest, *tmp; 3513 char b[BDEVNAME_SIZE]; 3514 3515 freshest = NULL; 3516 rdev_for_each_safe(rdev, tmp, mddev) 3517 switch (super_types[mddev->major_version]. 3518 load_super(rdev, freshest, mddev->minor_version)) { 3519 case 1: 3520 freshest = rdev; 3521 break; 3522 case 0: 3523 break; 3524 default: 3525 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3526 bdevname(rdev->bdev,b)); 3527 md_kick_rdev_from_array(rdev); 3528 } 3529 3530 super_types[mddev->major_version]. 3531 validate_super(mddev, freshest); 3532 3533 i = 0; 3534 rdev_for_each_safe(rdev, tmp, mddev) { 3535 if (mddev->max_disks && 3536 (rdev->desc_nr >= mddev->max_disks || 3537 i > mddev->max_disks)) { 3538 pr_warn("md: %s: %s: only %d devices permitted\n", 3539 mdname(mddev), bdevname(rdev->bdev, b), 3540 mddev->max_disks); 3541 md_kick_rdev_from_array(rdev); 3542 continue; 3543 } 3544 if (rdev != freshest) { 3545 if (super_types[mddev->major_version]. 3546 validate_super(mddev, rdev)) { 3547 pr_warn("md: kicking non-fresh %s from array!\n", 3548 bdevname(rdev->bdev,b)); 3549 md_kick_rdev_from_array(rdev); 3550 continue; 3551 } 3552 } 3553 if (mddev->level == LEVEL_MULTIPATH) { 3554 rdev->desc_nr = i++; 3555 rdev->raid_disk = rdev->desc_nr; 3556 set_bit(In_sync, &rdev->flags); 3557 } else if (rdev->raid_disk >= 3558 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3559 !test_bit(Journal, &rdev->flags)) { 3560 rdev->raid_disk = -1; 3561 clear_bit(In_sync, &rdev->flags); 3562 } 3563 } 3564 } 3565 3566 /* Read a fixed-point number. 3567 * Numbers in sysfs attributes should be in "standard" units where 3568 * possible, so time should be in seconds. 3569 * However we internally use a a much smaller unit such as 3570 * milliseconds or jiffies. 3571 * This function takes a decimal number with a possible fractional 3572 * component, and produces an integer which is the result of 3573 * multiplying that number by 10^'scale'. 3574 * all without any floating-point arithmetic. 3575 */ 3576 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3577 { 3578 unsigned long result = 0; 3579 long decimals = -1; 3580 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3581 if (*cp == '.') 3582 decimals = 0; 3583 else if (decimals < scale) { 3584 unsigned int value; 3585 value = *cp - '0'; 3586 result = result * 10 + value; 3587 if (decimals >= 0) 3588 decimals++; 3589 } 3590 cp++; 3591 } 3592 if (*cp == '\n') 3593 cp++; 3594 if (*cp) 3595 return -EINVAL; 3596 if (decimals < 0) 3597 decimals = 0; 3598 while (decimals < scale) { 3599 result *= 10; 3600 decimals ++; 3601 } 3602 *res = result; 3603 return 0; 3604 } 3605 3606 static ssize_t 3607 safe_delay_show(struct mddev *mddev, char *page) 3608 { 3609 int msec = (mddev->safemode_delay*1000)/HZ; 3610 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3611 } 3612 static ssize_t 3613 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3614 { 3615 unsigned long msec; 3616 3617 if (mddev_is_clustered(mddev)) { 3618 pr_warn("md: Safemode is disabled for clustered mode\n"); 3619 return -EINVAL; 3620 } 3621 3622 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3623 return -EINVAL; 3624 if (msec == 0) 3625 mddev->safemode_delay = 0; 3626 else { 3627 unsigned long old_delay = mddev->safemode_delay; 3628 unsigned long new_delay = (msec*HZ)/1000; 3629 3630 if (new_delay == 0) 3631 new_delay = 1; 3632 mddev->safemode_delay = new_delay; 3633 if (new_delay < old_delay || old_delay == 0) 3634 mod_timer(&mddev->safemode_timer, jiffies+1); 3635 } 3636 return len; 3637 } 3638 static struct md_sysfs_entry md_safe_delay = 3639 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3640 3641 static ssize_t 3642 level_show(struct mddev *mddev, char *page) 3643 { 3644 struct md_personality *p; 3645 int ret; 3646 spin_lock(&mddev->lock); 3647 p = mddev->pers; 3648 if (p) 3649 ret = sprintf(page, "%s\n", p->name); 3650 else if (mddev->clevel[0]) 3651 ret = sprintf(page, "%s\n", mddev->clevel); 3652 else if (mddev->level != LEVEL_NONE) 3653 ret = sprintf(page, "%d\n", mddev->level); 3654 else 3655 ret = 0; 3656 spin_unlock(&mddev->lock); 3657 return ret; 3658 } 3659 3660 static ssize_t 3661 level_store(struct mddev *mddev, const char *buf, size_t len) 3662 { 3663 char clevel[16]; 3664 ssize_t rv; 3665 size_t slen = len; 3666 struct md_personality *pers, *oldpers; 3667 long level; 3668 void *priv, *oldpriv; 3669 struct md_rdev *rdev; 3670 3671 if (slen == 0 || slen >= sizeof(clevel)) 3672 return -EINVAL; 3673 3674 rv = mddev_lock(mddev); 3675 if (rv) 3676 return rv; 3677 3678 if (mddev->pers == NULL) { 3679 strncpy(mddev->clevel, buf, slen); 3680 if (mddev->clevel[slen-1] == '\n') 3681 slen--; 3682 mddev->clevel[slen] = 0; 3683 mddev->level = LEVEL_NONE; 3684 rv = len; 3685 goto out_unlock; 3686 } 3687 rv = -EROFS; 3688 if (mddev->ro) 3689 goto out_unlock; 3690 3691 /* request to change the personality. Need to ensure: 3692 * - array is not engaged in resync/recovery/reshape 3693 * - old personality can be suspended 3694 * - new personality will access other array. 3695 */ 3696 3697 rv = -EBUSY; 3698 if (mddev->sync_thread || 3699 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3700 mddev->reshape_position != MaxSector || 3701 mddev->sysfs_active) 3702 goto out_unlock; 3703 3704 rv = -EINVAL; 3705 if (!mddev->pers->quiesce) { 3706 pr_warn("md: %s: %s does not support online personality change\n", 3707 mdname(mddev), mddev->pers->name); 3708 goto out_unlock; 3709 } 3710 3711 /* Now find the new personality */ 3712 strncpy(clevel, buf, slen); 3713 if (clevel[slen-1] == '\n') 3714 slen--; 3715 clevel[slen] = 0; 3716 if (kstrtol(clevel, 10, &level)) 3717 level = LEVEL_NONE; 3718 3719 if (request_module("md-%s", clevel) != 0) 3720 request_module("md-level-%s", clevel); 3721 spin_lock(&pers_lock); 3722 pers = find_pers(level, clevel); 3723 if (!pers || !try_module_get(pers->owner)) { 3724 spin_unlock(&pers_lock); 3725 pr_warn("md: personality %s not loaded\n", clevel); 3726 rv = -EINVAL; 3727 goto out_unlock; 3728 } 3729 spin_unlock(&pers_lock); 3730 3731 if (pers == mddev->pers) { 3732 /* Nothing to do! */ 3733 module_put(pers->owner); 3734 rv = len; 3735 goto out_unlock; 3736 } 3737 if (!pers->takeover) { 3738 module_put(pers->owner); 3739 pr_warn("md: %s: %s does not support personality takeover\n", 3740 mdname(mddev), clevel); 3741 rv = -EINVAL; 3742 goto out_unlock; 3743 } 3744 3745 rdev_for_each(rdev, mddev) 3746 rdev->new_raid_disk = rdev->raid_disk; 3747 3748 /* ->takeover must set new_* and/or delta_disks 3749 * if it succeeds, and may set them when it fails. 3750 */ 3751 priv = pers->takeover(mddev); 3752 if (IS_ERR(priv)) { 3753 mddev->new_level = mddev->level; 3754 mddev->new_layout = mddev->layout; 3755 mddev->new_chunk_sectors = mddev->chunk_sectors; 3756 mddev->raid_disks -= mddev->delta_disks; 3757 mddev->delta_disks = 0; 3758 mddev->reshape_backwards = 0; 3759 module_put(pers->owner); 3760 pr_warn("md: %s: %s would not accept array\n", 3761 mdname(mddev), clevel); 3762 rv = PTR_ERR(priv); 3763 goto out_unlock; 3764 } 3765 3766 /* Looks like we have a winner */ 3767 mddev_suspend(mddev); 3768 mddev_detach(mddev); 3769 3770 spin_lock(&mddev->lock); 3771 oldpers = mddev->pers; 3772 oldpriv = mddev->private; 3773 mddev->pers = pers; 3774 mddev->private = priv; 3775 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3776 mddev->level = mddev->new_level; 3777 mddev->layout = mddev->new_layout; 3778 mddev->chunk_sectors = mddev->new_chunk_sectors; 3779 mddev->delta_disks = 0; 3780 mddev->reshape_backwards = 0; 3781 mddev->degraded = 0; 3782 spin_unlock(&mddev->lock); 3783 3784 if (oldpers->sync_request == NULL && 3785 mddev->external) { 3786 /* We are converting from a no-redundancy array 3787 * to a redundancy array and metadata is managed 3788 * externally so we need to be sure that writes 3789 * won't block due to a need to transition 3790 * clean->dirty 3791 * until external management is started. 3792 */ 3793 mddev->in_sync = 0; 3794 mddev->safemode_delay = 0; 3795 mddev->safemode = 0; 3796 } 3797 3798 oldpers->free(mddev, oldpriv); 3799 3800 if (oldpers->sync_request == NULL && 3801 pers->sync_request != NULL) { 3802 /* need to add the md_redundancy_group */ 3803 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3804 pr_warn("md: cannot register extra attributes for %s\n", 3805 mdname(mddev)); 3806 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3807 } 3808 if (oldpers->sync_request != NULL && 3809 pers->sync_request == NULL) { 3810 /* need to remove the md_redundancy_group */ 3811 if (mddev->to_remove == NULL) 3812 mddev->to_remove = &md_redundancy_group; 3813 } 3814 3815 module_put(oldpers->owner); 3816 3817 rdev_for_each(rdev, mddev) { 3818 if (rdev->raid_disk < 0) 3819 continue; 3820 if (rdev->new_raid_disk >= mddev->raid_disks) 3821 rdev->new_raid_disk = -1; 3822 if (rdev->new_raid_disk == rdev->raid_disk) 3823 continue; 3824 sysfs_unlink_rdev(mddev, rdev); 3825 } 3826 rdev_for_each(rdev, mddev) { 3827 if (rdev->raid_disk < 0) 3828 continue; 3829 if (rdev->new_raid_disk == rdev->raid_disk) 3830 continue; 3831 rdev->raid_disk = rdev->new_raid_disk; 3832 if (rdev->raid_disk < 0) 3833 clear_bit(In_sync, &rdev->flags); 3834 else { 3835 if (sysfs_link_rdev(mddev, rdev)) 3836 pr_warn("md: cannot register rd%d for %s after level change\n", 3837 rdev->raid_disk, mdname(mddev)); 3838 } 3839 } 3840 3841 if (pers->sync_request == NULL) { 3842 /* this is now an array without redundancy, so 3843 * it must always be in_sync 3844 */ 3845 mddev->in_sync = 1; 3846 del_timer_sync(&mddev->safemode_timer); 3847 } 3848 blk_set_stacking_limits(&mddev->queue->limits); 3849 pers->run(mddev); 3850 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3851 mddev_resume(mddev); 3852 if (!mddev->thread) 3853 md_update_sb(mddev, 1); 3854 sysfs_notify(&mddev->kobj, NULL, "level"); 3855 md_new_event(mddev); 3856 rv = len; 3857 out_unlock: 3858 mddev_unlock(mddev); 3859 return rv; 3860 } 3861 3862 static struct md_sysfs_entry md_level = 3863 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3864 3865 static ssize_t 3866 layout_show(struct mddev *mddev, char *page) 3867 { 3868 /* just a number, not meaningful for all levels */ 3869 if (mddev->reshape_position != MaxSector && 3870 mddev->layout != mddev->new_layout) 3871 return sprintf(page, "%d (%d)\n", 3872 mddev->new_layout, mddev->layout); 3873 return sprintf(page, "%d\n", mddev->layout); 3874 } 3875 3876 static ssize_t 3877 layout_store(struct mddev *mddev, const char *buf, size_t len) 3878 { 3879 unsigned int n; 3880 int err; 3881 3882 err = kstrtouint(buf, 10, &n); 3883 if (err < 0) 3884 return err; 3885 err = mddev_lock(mddev); 3886 if (err) 3887 return err; 3888 3889 if (mddev->pers) { 3890 if (mddev->pers->check_reshape == NULL) 3891 err = -EBUSY; 3892 else if (mddev->ro) 3893 err = -EROFS; 3894 else { 3895 mddev->new_layout = n; 3896 err = mddev->pers->check_reshape(mddev); 3897 if (err) 3898 mddev->new_layout = mddev->layout; 3899 } 3900 } else { 3901 mddev->new_layout = n; 3902 if (mddev->reshape_position == MaxSector) 3903 mddev->layout = n; 3904 } 3905 mddev_unlock(mddev); 3906 return err ?: len; 3907 } 3908 static struct md_sysfs_entry md_layout = 3909 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3910 3911 static ssize_t 3912 raid_disks_show(struct mddev *mddev, char *page) 3913 { 3914 if (mddev->raid_disks == 0) 3915 return 0; 3916 if (mddev->reshape_position != MaxSector && 3917 mddev->delta_disks != 0) 3918 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3919 mddev->raid_disks - mddev->delta_disks); 3920 return sprintf(page, "%d\n", mddev->raid_disks); 3921 } 3922 3923 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3924 3925 static ssize_t 3926 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3927 { 3928 unsigned int n; 3929 int err; 3930 3931 err = kstrtouint(buf, 10, &n); 3932 if (err < 0) 3933 return err; 3934 3935 err = mddev_lock(mddev); 3936 if (err) 3937 return err; 3938 if (mddev->pers) 3939 err = update_raid_disks(mddev, n); 3940 else if (mddev->reshape_position != MaxSector) { 3941 struct md_rdev *rdev; 3942 int olddisks = mddev->raid_disks - mddev->delta_disks; 3943 3944 err = -EINVAL; 3945 rdev_for_each(rdev, mddev) { 3946 if (olddisks < n && 3947 rdev->data_offset < rdev->new_data_offset) 3948 goto out_unlock; 3949 if (olddisks > n && 3950 rdev->data_offset > rdev->new_data_offset) 3951 goto out_unlock; 3952 } 3953 err = 0; 3954 mddev->delta_disks = n - olddisks; 3955 mddev->raid_disks = n; 3956 mddev->reshape_backwards = (mddev->delta_disks < 0); 3957 } else 3958 mddev->raid_disks = n; 3959 out_unlock: 3960 mddev_unlock(mddev); 3961 return err ? err : len; 3962 } 3963 static struct md_sysfs_entry md_raid_disks = 3964 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3965 3966 static ssize_t 3967 chunk_size_show(struct mddev *mddev, char *page) 3968 { 3969 if (mddev->reshape_position != MaxSector && 3970 mddev->chunk_sectors != mddev->new_chunk_sectors) 3971 return sprintf(page, "%d (%d)\n", 3972 mddev->new_chunk_sectors << 9, 3973 mddev->chunk_sectors << 9); 3974 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3975 } 3976 3977 static ssize_t 3978 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3979 { 3980 unsigned long n; 3981 int err; 3982 3983 err = kstrtoul(buf, 10, &n); 3984 if (err < 0) 3985 return err; 3986 3987 err = mddev_lock(mddev); 3988 if (err) 3989 return err; 3990 if (mddev->pers) { 3991 if (mddev->pers->check_reshape == NULL) 3992 err = -EBUSY; 3993 else if (mddev->ro) 3994 err = -EROFS; 3995 else { 3996 mddev->new_chunk_sectors = n >> 9; 3997 err = mddev->pers->check_reshape(mddev); 3998 if (err) 3999 mddev->new_chunk_sectors = mddev->chunk_sectors; 4000 } 4001 } else { 4002 mddev->new_chunk_sectors = n >> 9; 4003 if (mddev->reshape_position == MaxSector) 4004 mddev->chunk_sectors = n >> 9; 4005 } 4006 mddev_unlock(mddev); 4007 return err ?: len; 4008 } 4009 static struct md_sysfs_entry md_chunk_size = 4010 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4011 4012 static ssize_t 4013 resync_start_show(struct mddev *mddev, char *page) 4014 { 4015 if (mddev->recovery_cp == MaxSector) 4016 return sprintf(page, "none\n"); 4017 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4018 } 4019 4020 static ssize_t 4021 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4022 { 4023 unsigned long long n; 4024 int err; 4025 4026 if (cmd_match(buf, "none")) 4027 n = MaxSector; 4028 else { 4029 err = kstrtoull(buf, 10, &n); 4030 if (err < 0) 4031 return err; 4032 if (n != (sector_t)n) 4033 return -EINVAL; 4034 } 4035 4036 err = mddev_lock(mddev); 4037 if (err) 4038 return err; 4039 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4040 err = -EBUSY; 4041 4042 if (!err) { 4043 mddev->recovery_cp = n; 4044 if (mddev->pers) 4045 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4046 } 4047 mddev_unlock(mddev); 4048 return err ?: len; 4049 } 4050 static struct md_sysfs_entry md_resync_start = 4051 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4052 resync_start_show, resync_start_store); 4053 4054 /* 4055 * The array state can be: 4056 * 4057 * clear 4058 * No devices, no size, no level 4059 * Equivalent to STOP_ARRAY ioctl 4060 * inactive 4061 * May have some settings, but array is not active 4062 * all IO results in error 4063 * When written, doesn't tear down array, but just stops it 4064 * suspended (not supported yet) 4065 * All IO requests will block. The array can be reconfigured. 4066 * Writing this, if accepted, will block until array is quiescent 4067 * readonly 4068 * no resync can happen. no superblocks get written. 4069 * write requests fail 4070 * read-auto 4071 * like readonly, but behaves like 'clean' on a write request. 4072 * 4073 * clean - no pending writes, but otherwise active. 4074 * When written to inactive array, starts without resync 4075 * If a write request arrives then 4076 * if metadata is known, mark 'dirty' and switch to 'active'. 4077 * if not known, block and switch to write-pending 4078 * If written to an active array that has pending writes, then fails. 4079 * active 4080 * fully active: IO and resync can be happening. 4081 * When written to inactive array, starts with resync 4082 * 4083 * write-pending 4084 * clean, but writes are blocked waiting for 'active' to be written. 4085 * 4086 * active-idle 4087 * like active, but no writes have been seen for a while (100msec). 4088 * 4089 */ 4090 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4091 write_pending, active_idle, bad_word}; 4092 static char *array_states[] = { 4093 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4094 "write-pending", "active-idle", NULL }; 4095 4096 static int match_word(const char *word, char **list) 4097 { 4098 int n; 4099 for (n=0; list[n]; n++) 4100 if (cmd_match(word, list[n])) 4101 break; 4102 return n; 4103 } 4104 4105 static ssize_t 4106 array_state_show(struct mddev *mddev, char *page) 4107 { 4108 enum array_state st = inactive; 4109 4110 if (mddev->pers) 4111 switch(mddev->ro) { 4112 case 1: 4113 st = readonly; 4114 break; 4115 case 2: 4116 st = read_auto; 4117 break; 4118 case 0: 4119 spin_lock(&mddev->lock); 4120 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4121 st = write_pending; 4122 else if (mddev->in_sync) 4123 st = clean; 4124 else if (mddev->safemode) 4125 st = active_idle; 4126 else 4127 st = active; 4128 spin_unlock(&mddev->lock); 4129 } 4130 else { 4131 if (list_empty(&mddev->disks) && 4132 mddev->raid_disks == 0 && 4133 mddev->dev_sectors == 0) 4134 st = clear; 4135 else 4136 st = inactive; 4137 } 4138 return sprintf(page, "%s\n", array_states[st]); 4139 } 4140 4141 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4142 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4143 static int do_md_run(struct mddev *mddev); 4144 static int restart_array(struct mddev *mddev); 4145 4146 static ssize_t 4147 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4148 { 4149 int err = 0; 4150 enum array_state st = match_word(buf, array_states); 4151 4152 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4153 /* don't take reconfig_mutex when toggling between 4154 * clean and active 4155 */ 4156 spin_lock(&mddev->lock); 4157 if (st == active) { 4158 restart_array(mddev); 4159 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4160 md_wakeup_thread(mddev->thread); 4161 wake_up(&mddev->sb_wait); 4162 } else /* st == clean */ { 4163 restart_array(mddev); 4164 if (!set_in_sync(mddev)) 4165 err = -EBUSY; 4166 } 4167 if (!err) 4168 sysfs_notify_dirent_safe(mddev->sysfs_state); 4169 spin_unlock(&mddev->lock); 4170 return err ?: len; 4171 } 4172 err = mddev_lock(mddev); 4173 if (err) 4174 return err; 4175 err = -EINVAL; 4176 switch(st) { 4177 case bad_word: 4178 break; 4179 case clear: 4180 /* stopping an active array */ 4181 err = do_md_stop(mddev, 0, NULL); 4182 break; 4183 case inactive: 4184 /* stopping an active array */ 4185 if (mddev->pers) 4186 err = do_md_stop(mddev, 2, NULL); 4187 else 4188 err = 0; /* already inactive */ 4189 break; 4190 case suspended: 4191 break; /* not supported yet */ 4192 case readonly: 4193 if (mddev->pers) 4194 err = md_set_readonly(mddev, NULL); 4195 else { 4196 mddev->ro = 1; 4197 set_disk_ro(mddev->gendisk, 1); 4198 err = do_md_run(mddev); 4199 } 4200 break; 4201 case read_auto: 4202 if (mddev->pers) { 4203 if (mddev->ro == 0) 4204 err = md_set_readonly(mddev, NULL); 4205 else if (mddev->ro == 1) 4206 err = restart_array(mddev); 4207 if (err == 0) { 4208 mddev->ro = 2; 4209 set_disk_ro(mddev->gendisk, 0); 4210 } 4211 } else { 4212 mddev->ro = 2; 4213 err = do_md_run(mddev); 4214 } 4215 break; 4216 case clean: 4217 if (mddev->pers) { 4218 err = restart_array(mddev); 4219 if (err) 4220 break; 4221 spin_lock(&mddev->lock); 4222 if (!set_in_sync(mddev)) 4223 err = -EBUSY; 4224 spin_unlock(&mddev->lock); 4225 } else 4226 err = -EINVAL; 4227 break; 4228 case active: 4229 if (mddev->pers) { 4230 err = restart_array(mddev); 4231 if (err) 4232 break; 4233 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4234 wake_up(&mddev->sb_wait); 4235 err = 0; 4236 } else { 4237 mddev->ro = 0; 4238 set_disk_ro(mddev->gendisk, 0); 4239 err = do_md_run(mddev); 4240 } 4241 break; 4242 case write_pending: 4243 case active_idle: 4244 /* these cannot be set */ 4245 break; 4246 } 4247 4248 if (!err) { 4249 if (mddev->hold_active == UNTIL_IOCTL) 4250 mddev->hold_active = 0; 4251 sysfs_notify_dirent_safe(mddev->sysfs_state); 4252 } 4253 mddev_unlock(mddev); 4254 return err ?: len; 4255 } 4256 static struct md_sysfs_entry md_array_state = 4257 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4258 4259 static ssize_t 4260 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4261 return sprintf(page, "%d\n", 4262 atomic_read(&mddev->max_corr_read_errors)); 4263 } 4264 4265 static ssize_t 4266 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4267 { 4268 unsigned int n; 4269 int rv; 4270 4271 rv = kstrtouint(buf, 10, &n); 4272 if (rv < 0) 4273 return rv; 4274 atomic_set(&mddev->max_corr_read_errors, n); 4275 return len; 4276 } 4277 4278 static struct md_sysfs_entry max_corr_read_errors = 4279 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4280 max_corrected_read_errors_store); 4281 4282 static ssize_t 4283 null_show(struct mddev *mddev, char *page) 4284 { 4285 return -EINVAL; 4286 } 4287 4288 static ssize_t 4289 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4290 { 4291 /* buf must be %d:%d\n? giving major and minor numbers */ 4292 /* The new device is added to the array. 4293 * If the array has a persistent superblock, we read the 4294 * superblock to initialise info and check validity. 4295 * Otherwise, only checking done is that in bind_rdev_to_array, 4296 * which mainly checks size. 4297 */ 4298 char *e; 4299 int major = simple_strtoul(buf, &e, 10); 4300 int minor; 4301 dev_t dev; 4302 struct md_rdev *rdev; 4303 int err; 4304 4305 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4306 return -EINVAL; 4307 minor = simple_strtoul(e+1, &e, 10); 4308 if (*e && *e != '\n') 4309 return -EINVAL; 4310 dev = MKDEV(major, minor); 4311 if (major != MAJOR(dev) || 4312 minor != MINOR(dev)) 4313 return -EOVERFLOW; 4314 4315 flush_workqueue(md_misc_wq); 4316 4317 err = mddev_lock(mddev); 4318 if (err) 4319 return err; 4320 if (mddev->persistent) { 4321 rdev = md_import_device(dev, mddev->major_version, 4322 mddev->minor_version); 4323 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4324 struct md_rdev *rdev0 4325 = list_entry(mddev->disks.next, 4326 struct md_rdev, same_set); 4327 err = super_types[mddev->major_version] 4328 .load_super(rdev, rdev0, mddev->minor_version); 4329 if (err < 0) 4330 goto out; 4331 } 4332 } else if (mddev->external) 4333 rdev = md_import_device(dev, -2, -1); 4334 else 4335 rdev = md_import_device(dev, -1, -1); 4336 4337 if (IS_ERR(rdev)) { 4338 mddev_unlock(mddev); 4339 return PTR_ERR(rdev); 4340 } 4341 err = bind_rdev_to_array(rdev, mddev); 4342 out: 4343 if (err) 4344 export_rdev(rdev); 4345 mddev_unlock(mddev); 4346 if (!err) 4347 md_new_event(mddev); 4348 return err ? err : len; 4349 } 4350 4351 static struct md_sysfs_entry md_new_device = 4352 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4353 4354 static ssize_t 4355 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4356 { 4357 char *end; 4358 unsigned long chunk, end_chunk; 4359 int err; 4360 4361 err = mddev_lock(mddev); 4362 if (err) 4363 return err; 4364 if (!mddev->bitmap) 4365 goto out; 4366 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4367 while (*buf) { 4368 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4369 if (buf == end) break; 4370 if (*end == '-') { /* range */ 4371 buf = end + 1; 4372 end_chunk = simple_strtoul(buf, &end, 0); 4373 if (buf == end) break; 4374 } 4375 if (*end && !isspace(*end)) break; 4376 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4377 buf = skip_spaces(end); 4378 } 4379 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4380 out: 4381 mddev_unlock(mddev); 4382 return len; 4383 } 4384 4385 static struct md_sysfs_entry md_bitmap = 4386 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4387 4388 static ssize_t 4389 size_show(struct mddev *mddev, char *page) 4390 { 4391 return sprintf(page, "%llu\n", 4392 (unsigned long long)mddev->dev_sectors / 2); 4393 } 4394 4395 static int update_size(struct mddev *mddev, sector_t num_sectors); 4396 4397 static ssize_t 4398 size_store(struct mddev *mddev, const char *buf, size_t len) 4399 { 4400 /* If array is inactive, we can reduce the component size, but 4401 * not increase it (except from 0). 4402 * If array is active, we can try an on-line resize 4403 */ 4404 sector_t sectors; 4405 int err = strict_blocks_to_sectors(buf, §ors); 4406 4407 if (err < 0) 4408 return err; 4409 err = mddev_lock(mddev); 4410 if (err) 4411 return err; 4412 if (mddev->pers) { 4413 err = update_size(mddev, sectors); 4414 if (err == 0) 4415 md_update_sb(mddev, 1); 4416 } else { 4417 if (mddev->dev_sectors == 0 || 4418 mddev->dev_sectors > sectors) 4419 mddev->dev_sectors = sectors; 4420 else 4421 err = -ENOSPC; 4422 } 4423 mddev_unlock(mddev); 4424 return err ? err : len; 4425 } 4426 4427 static struct md_sysfs_entry md_size = 4428 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4429 4430 /* Metadata version. 4431 * This is one of 4432 * 'none' for arrays with no metadata (good luck...) 4433 * 'external' for arrays with externally managed metadata, 4434 * or N.M for internally known formats 4435 */ 4436 static ssize_t 4437 metadata_show(struct mddev *mddev, char *page) 4438 { 4439 if (mddev->persistent) 4440 return sprintf(page, "%d.%d\n", 4441 mddev->major_version, mddev->minor_version); 4442 else if (mddev->external) 4443 return sprintf(page, "external:%s\n", mddev->metadata_type); 4444 else 4445 return sprintf(page, "none\n"); 4446 } 4447 4448 static ssize_t 4449 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4450 { 4451 int major, minor; 4452 char *e; 4453 int err; 4454 /* Changing the details of 'external' metadata is 4455 * always permitted. Otherwise there must be 4456 * no devices attached to the array. 4457 */ 4458 4459 err = mddev_lock(mddev); 4460 if (err) 4461 return err; 4462 err = -EBUSY; 4463 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4464 ; 4465 else if (!list_empty(&mddev->disks)) 4466 goto out_unlock; 4467 4468 err = 0; 4469 if (cmd_match(buf, "none")) { 4470 mddev->persistent = 0; 4471 mddev->external = 0; 4472 mddev->major_version = 0; 4473 mddev->minor_version = 90; 4474 goto out_unlock; 4475 } 4476 if (strncmp(buf, "external:", 9) == 0) { 4477 size_t namelen = len-9; 4478 if (namelen >= sizeof(mddev->metadata_type)) 4479 namelen = sizeof(mddev->metadata_type)-1; 4480 strncpy(mddev->metadata_type, buf+9, namelen); 4481 mddev->metadata_type[namelen] = 0; 4482 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4483 mddev->metadata_type[--namelen] = 0; 4484 mddev->persistent = 0; 4485 mddev->external = 1; 4486 mddev->major_version = 0; 4487 mddev->minor_version = 90; 4488 goto out_unlock; 4489 } 4490 major = simple_strtoul(buf, &e, 10); 4491 err = -EINVAL; 4492 if (e==buf || *e != '.') 4493 goto out_unlock; 4494 buf = e+1; 4495 minor = simple_strtoul(buf, &e, 10); 4496 if (e==buf || (*e && *e != '\n') ) 4497 goto out_unlock; 4498 err = -ENOENT; 4499 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4500 goto out_unlock; 4501 mddev->major_version = major; 4502 mddev->minor_version = minor; 4503 mddev->persistent = 1; 4504 mddev->external = 0; 4505 err = 0; 4506 out_unlock: 4507 mddev_unlock(mddev); 4508 return err ?: len; 4509 } 4510 4511 static struct md_sysfs_entry md_metadata = 4512 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4513 4514 static ssize_t 4515 action_show(struct mddev *mddev, char *page) 4516 { 4517 char *type = "idle"; 4518 unsigned long recovery = mddev->recovery; 4519 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4520 type = "frozen"; 4521 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4522 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4523 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4524 type = "reshape"; 4525 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4526 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4527 type = "resync"; 4528 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4529 type = "check"; 4530 else 4531 type = "repair"; 4532 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4533 type = "recover"; 4534 else if (mddev->reshape_position != MaxSector) 4535 type = "reshape"; 4536 } 4537 return sprintf(page, "%s\n", type); 4538 } 4539 4540 static ssize_t 4541 action_store(struct mddev *mddev, const char *page, size_t len) 4542 { 4543 if (!mddev->pers || !mddev->pers->sync_request) 4544 return -EINVAL; 4545 4546 4547 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4548 if (cmd_match(page, "frozen")) 4549 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4550 else 4551 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4552 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4553 mddev_lock(mddev) == 0) { 4554 flush_workqueue(md_misc_wq); 4555 if (mddev->sync_thread) { 4556 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4557 md_reap_sync_thread(mddev); 4558 } 4559 mddev_unlock(mddev); 4560 } 4561 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4562 return -EBUSY; 4563 else if (cmd_match(page, "resync")) 4564 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4565 else if (cmd_match(page, "recover")) { 4566 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4567 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4568 } else if (cmd_match(page, "reshape")) { 4569 int err; 4570 if (mddev->pers->start_reshape == NULL) 4571 return -EINVAL; 4572 err = mddev_lock(mddev); 4573 if (!err) { 4574 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4575 err = -EBUSY; 4576 else { 4577 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4578 err = mddev->pers->start_reshape(mddev); 4579 } 4580 mddev_unlock(mddev); 4581 } 4582 if (err) 4583 return err; 4584 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4585 } else { 4586 if (cmd_match(page, "check")) 4587 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4588 else if (!cmd_match(page, "repair")) 4589 return -EINVAL; 4590 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4591 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4592 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4593 } 4594 if (mddev->ro == 2) { 4595 /* A write to sync_action is enough to justify 4596 * canceling read-auto mode 4597 */ 4598 mddev->ro = 0; 4599 md_wakeup_thread(mddev->sync_thread); 4600 } 4601 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4602 md_wakeup_thread(mddev->thread); 4603 sysfs_notify_dirent_safe(mddev->sysfs_action); 4604 return len; 4605 } 4606 4607 static struct md_sysfs_entry md_scan_mode = 4608 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4609 4610 static ssize_t 4611 last_sync_action_show(struct mddev *mddev, char *page) 4612 { 4613 return sprintf(page, "%s\n", mddev->last_sync_action); 4614 } 4615 4616 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4617 4618 static ssize_t 4619 mismatch_cnt_show(struct mddev *mddev, char *page) 4620 { 4621 return sprintf(page, "%llu\n", 4622 (unsigned long long) 4623 atomic64_read(&mddev->resync_mismatches)); 4624 } 4625 4626 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4627 4628 static ssize_t 4629 sync_min_show(struct mddev *mddev, char *page) 4630 { 4631 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4632 mddev->sync_speed_min ? "local": "system"); 4633 } 4634 4635 static ssize_t 4636 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4637 { 4638 unsigned int min; 4639 int rv; 4640 4641 if (strncmp(buf, "system", 6)==0) { 4642 min = 0; 4643 } else { 4644 rv = kstrtouint(buf, 10, &min); 4645 if (rv < 0) 4646 return rv; 4647 if (min == 0) 4648 return -EINVAL; 4649 } 4650 mddev->sync_speed_min = min; 4651 return len; 4652 } 4653 4654 static struct md_sysfs_entry md_sync_min = 4655 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4656 4657 static ssize_t 4658 sync_max_show(struct mddev *mddev, char *page) 4659 { 4660 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4661 mddev->sync_speed_max ? "local": "system"); 4662 } 4663 4664 static ssize_t 4665 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4666 { 4667 unsigned int max; 4668 int rv; 4669 4670 if (strncmp(buf, "system", 6)==0) { 4671 max = 0; 4672 } else { 4673 rv = kstrtouint(buf, 10, &max); 4674 if (rv < 0) 4675 return rv; 4676 if (max == 0) 4677 return -EINVAL; 4678 } 4679 mddev->sync_speed_max = max; 4680 return len; 4681 } 4682 4683 static struct md_sysfs_entry md_sync_max = 4684 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4685 4686 static ssize_t 4687 degraded_show(struct mddev *mddev, char *page) 4688 { 4689 return sprintf(page, "%d\n", mddev->degraded); 4690 } 4691 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4692 4693 static ssize_t 4694 sync_force_parallel_show(struct mddev *mddev, char *page) 4695 { 4696 return sprintf(page, "%d\n", mddev->parallel_resync); 4697 } 4698 4699 static ssize_t 4700 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4701 { 4702 long n; 4703 4704 if (kstrtol(buf, 10, &n)) 4705 return -EINVAL; 4706 4707 if (n != 0 && n != 1) 4708 return -EINVAL; 4709 4710 mddev->parallel_resync = n; 4711 4712 if (mddev->sync_thread) 4713 wake_up(&resync_wait); 4714 4715 return len; 4716 } 4717 4718 /* force parallel resync, even with shared block devices */ 4719 static struct md_sysfs_entry md_sync_force_parallel = 4720 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4721 sync_force_parallel_show, sync_force_parallel_store); 4722 4723 static ssize_t 4724 sync_speed_show(struct mddev *mddev, char *page) 4725 { 4726 unsigned long resync, dt, db; 4727 if (mddev->curr_resync == 0) 4728 return sprintf(page, "none\n"); 4729 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4730 dt = (jiffies - mddev->resync_mark) / HZ; 4731 if (!dt) dt++; 4732 db = resync - mddev->resync_mark_cnt; 4733 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4734 } 4735 4736 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4737 4738 static ssize_t 4739 sync_completed_show(struct mddev *mddev, char *page) 4740 { 4741 unsigned long long max_sectors, resync; 4742 4743 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4744 return sprintf(page, "none\n"); 4745 4746 if (mddev->curr_resync == 1 || 4747 mddev->curr_resync == 2) 4748 return sprintf(page, "delayed\n"); 4749 4750 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4751 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4752 max_sectors = mddev->resync_max_sectors; 4753 else 4754 max_sectors = mddev->dev_sectors; 4755 4756 resync = mddev->curr_resync_completed; 4757 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4758 } 4759 4760 static struct md_sysfs_entry md_sync_completed = 4761 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4762 4763 static ssize_t 4764 min_sync_show(struct mddev *mddev, char *page) 4765 { 4766 return sprintf(page, "%llu\n", 4767 (unsigned long long)mddev->resync_min); 4768 } 4769 static ssize_t 4770 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4771 { 4772 unsigned long long min; 4773 int err; 4774 4775 if (kstrtoull(buf, 10, &min)) 4776 return -EINVAL; 4777 4778 spin_lock(&mddev->lock); 4779 err = -EINVAL; 4780 if (min > mddev->resync_max) 4781 goto out_unlock; 4782 4783 err = -EBUSY; 4784 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4785 goto out_unlock; 4786 4787 /* Round down to multiple of 4K for safety */ 4788 mddev->resync_min = round_down(min, 8); 4789 err = 0; 4790 4791 out_unlock: 4792 spin_unlock(&mddev->lock); 4793 return err ?: len; 4794 } 4795 4796 static struct md_sysfs_entry md_min_sync = 4797 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4798 4799 static ssize_t 4800 max_sync_show(struct mddev *mddev, char *page) 4801 { 4802 if (mddev->resync_max == MaxSector) 4803 return sprintf(page, "max\n"); 4804 else 4805 return sprintf(page, "%llu\n", 4806 (unsigned long long)mddev->resync_max); 4807 } 4808 static ssize_t 4809 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4810 { 4811 int err; 4812 spin_lock(&mddev->lock); 4813 if (strncmp(buf, "max", 3) == 0) 4814 mddev->resync_max = MaxSector; 4815 else { 4816 unsigned long long max; 4817 int chunk; 4818 4819 err = -EINVAL; 4820 if (kstrtoull(buf, 10, &max)) 4821 goto out_unlock; 4822 if (max < mddev->resync_min) 4823 goto out_unlock; 4824 4825 err = -EBUSY; 4826 if (max < mddev->resync_max && 4827 mddev->ro == 0 && 4828 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4829 goto out_unlock; 4830 4831 /* Must be a multiple of chunk_size */ 4832 chunk = mddev->chunk_sectors; 4833 if (chunk) { 4834 sector_t temp = max; 4835 4836 err = -EINVAL; 4837 if (sector_div(temp, chunk)) 4838 goto out_unlock; 4839 } 4840 mddev->resync_max = max; 4841 } 4842 wake_up(&mddev->recovery_wait); 4843 err = 0; 4844 out_unlock: 4845 spin_unlock(&mddev->lock); 4846 return err ?: len; 4847 } 4848 4849 static struct md_sysfs_entry md_max_sync = 4850 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4851 4852 static ssize_t 4853 suspend_lo_show(struct mddev *mddev, char *page) 4854 { 4855 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4856 } 4857 4858 static ssize_t 4859 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4860 { 4861 unsigned long long new; 4862 int err; 4863 4864 err = kstrtoull(buf, 10, &new); 4865 if (err < 0) 4866 return err; 4867 if (new != (sector_t)new) 4868 return -EINVAL; 4869 4870 err = mddev_lock(mddev); 4871 if (err) 4872 return err; 4873 err = -EINVAL; 4874 if (mddev->pers == NULL || 4875 mddev->pers->quiesce == NULL) 4876 goto unlock; 4877 mddev_suspend(mddev); 4878 mddev->suspend_lo = new; 4879 mddev_resume(mddev); 4880 4881 err = 0; 4882 unlock: 4883 mddev_unlock(mddev); 4884 return err ?: len; 4885 } 4886 static struct md_sysfs_entry md_suspend_lo = 4887 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4888 4889 static ssize_t 4890 suspend_hi_show(struct mddev *mddev, char *page) 4891 { 4892 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4893 } 4894 4895 static ssize_t 4896 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4897 { 4898 unsigned long long new; 4899 int err; 4900 4901 err = kstrtoull(buf, 10, &new); 4902 if (err < 0) 4903 return err; 4904 if (new != (sector_t)new) 4905 return -EINVAL; 4906 4907 err = mddev_lock(mddev); 4908 if (err) 4909 return err; 4910 err = -EINVAL; 4911 if (mddev->pers == NULL) 4912 goto unlock; 4913 4914 mddev_suspend(mddev); 4915 mddev->suspend_hi = new; 4916 mddev_resume(mddev); 4917 4918 err = 0; 4919 unlock: 4920 mddev_unlock(mddev); 4921 return err ?: len; 4922 } 4923 static struct md_sysfs_entry md_suspend_hi = 4924 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4925 4926 static ssize_t 4927 reshape_position_show(struct mddev *mddev, char *page) 4928 { 4929 if (mddev->reshape_position != MaxSector) 4930 return sprintf(page, "%llu\n", 4931 (unsigned long long)mddev->reshape_position); 4932 strcpy(page, "none\n"); 4933 return 5; 4934 } 4935 4936 static ssize_t 4937 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4938 { 4939 struct md_rdev *rdev; 4940 unsigned long long new; 4941 int err; 4942 4943 err = kstrtoull(buf, 10, &new); 4944 if (err < 0) 4945 return err; 4946 if (new != (sector_t)new) 4947 return -EINVAL; 4948 err = mddev_lock(mddev); 4949 if (err) 4950 return err; 4951 err = -EBUSY; 4952 if (mddev->pers) 4953 goto unlock; 4954 mddev->reshape_position = new; 4955 mddev->delta_disks = 0; 4956 mddev->reshape_backwards = 0; 4957 mddev->new_level = mddev->level; 4958 mddev->new_layout = mddev->layout; 4959 mddev->new_chunk_sectors = mddev->chunk_sectors; 4960 rdev_for_each(rdev, mddev) 4961 rdev->new_data_offset = rdev->data_offset; 4962 err = 0; 4963 unlock: 4964 mddev_unlock(mddev); 4965 return err ?: len; 4966 } 4967 4968 static struct md_sysfs_entry md_reshape_position = 4969 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4970 reshape_position_store); 4971 4972 static ssize_t 4973 reshape_direction_show(struct mddev *mddev, char *page) 4974 { 4975 return sprintf(page, "%s\n", 4976 mddev->reshape_backwards ? "backwards" : "forwards"); 4977 } 4978 4979 static ssize_t 4980 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4981 { 4982 int backwards = 0; 4983 int err; 4984 4985 if (cmd_match(buf, "forwards")) 4986 backwards = 0; 4987 else if (cmd_match(buf, "backwards")) 4988 backwards = 1; 4989 else 4990 return -EINVAL; 4991 if (mddev->reshape_backwards == backwards) 4992 return len; 4993 4994 err = mddev_lock(mddev); 4995 if (err) 4996 return err; 4997 /* check if we are allowed to change */ 4998 if (mddev->delta_disks) 4999 err = -EBUSY; 5000 else if (mddev->persistent && 5001 mddev->major_version == 0) 5002 err = -EINVAL; 5003 else 5004 mddev->reshape_backwards = backwards; 5005 mddev_unlock(mddev); 5006 return err ?: len; 5007 } 5008 5009 static struct md_sysfs_entry md_reshape_direction = 5010 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5011 reshape_direction_store); 5012 5013 static ssize_t 5014 array_size_show(struct mddev *mddev, char *page) 5015 { 5016 if (mddev->external_size) 5017 return sprintf(page, "%llu\n", 5018 (unsigned long long)mddev->array_sectors/2); 5019 else 5020 return sprintf(page, "default\n"); 5021 } 5022 5023 static ssize_t 5024 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5025 { 5026 sector_t sectors; 5027 int err; 5028 5029 err = mddev_lock(mddev); 5030 if (err) 5031 return err; 5032 5033 /* cluster raid doesn't support change array_sectors */ 5034 if (mddev_is_clustered(mddev)) { 5035 mddev_unlock(mddev); 5036 return -EINVAL; 5037 } 5038 5039 if (strncmp(buf, "default", 7) == 0) { 5040 if (mddev->pers) 5041 sectors = mddev->pers->size(mddev, 0, 0); 5042 else 5043 sectors = mddev->array_sectors; 5044 5045 mddev->external_size = 0; 5046 } else { 5047 if (strict_blocks_to_sectors(buf, §ors) < 0) 5048 err = -EINVAL; 5049 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5050 err = -E2BIG; 5051 else 5052 mddev->external_size = 1; 5053 } 5054 5055 if (!err) { 5056 mddev->array_sectors = sectors; 5057 if (mddev->pers) { 5058 set_capacity(mddev->gendisk, mddev->array_sectors); 5059 revalidate_disk(mddev->gendisk); 5060 } 5061 } 5062 mddev_unlock(mddev); 5063 return err ?: len; 5064 } 5065 5066 static struct md_sysfs_entry md_array_size = 5067 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5068 array_size_store); 5069 5070 static ssize_t 5071 consistency_policy_show(struct mddev *mddev, char *page) 5072 { 5073 int ret; 5074 5075 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5076 ret = sprintf(page, "journal\n"); 5077 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5078 ret = sprintf(page, "ppl\n"); 5079 } else if (mddev->bitmap) { 5080 ret = sprintf(page, "bitmap\n"); 5081 } else if (mddev->pers) { 5082 if (mddev->pers->sync_request) 5083 ret = sprintf(page, "resync\n"); 5084 else 5085 ret = sprintf(page, "none\n"); 5086 } else { 5087 ret = sprintf(page, "unknown\n"); 5088 } 5089 5090 return ret; 5091 } 5092 5093 static ssize_t 5094 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5095 { 5096 int err = 0; 5097 5098 if (mddev->pers) { 5099 if (mddev->pers->change_consistency_policy) 5100 err = mddev->pers->change_consistency_policy(mddev, buf); 5101 else 5102 err = -EBUSY; 5103 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5104 set_bit(MD_HAS_PPL, &mddev->flags); 5105 } else { 5106 err = -EINVAL; 5107 } 5108 5109 return err ? err : len; 5110 } 5111 5112 static struct md_sysfs_entry md_consistency_policy = 5113 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5114 consistency_policy_store); 5115 5116 static struct attribute *md_default_attrs[] = { 5117 &md_level.attr, 5118 &md_layout.attr, 5119 &md_raid_disks.attr, 5120 &md_chunk_size.attr, 5121 &md_size.attr, 5122 &md_resync_start.attr, 5123 &md_metadata.attr, 5124 &md_new_device.attr, 5125 &md_safe_delay.attr, 5126 &md_array_state.attr, 5127 &md_reshape_position.attr, 5128 &md_reshape_direction.attr, 5129 &md_array_size.attr, 5130 &max_corr_read_errors.attr, 5131 &md_consistency_policy.attr, 5132 NULL, 5133 }; 5134 5135 static struct attribute *md_redundancy_attrs[] = { 5136 &md_scan_mode.attr, 5137 &md_last_scan_mode.attr, 5138 &md_mismatches.attr, 5139 &md_sync_min.attr, 5140 &md_sync_max.attr, 5141 &md_sync_speed.attr, 5142 &md_sync_force_parallel.attr, 5143 &md_sync_completed.attr, 5144 &md_min_sync.attr, 5145 &md_max_sync.attr, 5146 &md_suspend_lo.attr, 5147 &md_suspend_hi.attr, 5148 &md_bitmap.attr, 5149 &md_degraded.attr, 5150 NULL, 5151 }; 5152 static struct attribute_group md_redundancy_group = { 5153 .name = NULL, 5154 .attrs = md_redundancy_attrs, 5155 }; 5156 5157 static ssize_t 5158 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5159 { 5160 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5161 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5162 ssize_t rv; 5163 5164 if (!entry->show) 5165 return -EIO; 5166 spin_lock(&all_mddevs_lock); 5167 if (list_empty(&mddev->all_mddevs)) { 5168 spin_unlock(&all_mddevs_lock); 5169 return -EBUSY; 5170 } 5171 mddev_get(mddev); 5172 spin_unlock(&all_mddevs_lock); 5173 5174 rv = entry->show(mddev, page); 5175 mddev_put(mddev); 5176 return rv; 5177 } 5178 5179 static ssize_t 5180 md_attr_store(struct kobject *kobj, struct attribute *attr, 5181 const char *page, size_t length) 5182 { 5183 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5184 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5185 ssize_t rv; 5186 5187 if (!entry->store) 5188 return -EIO; 5189 if (!capable(CAP_SYS_ADMIN)) 5190 return -EACCES; 5191 spin_lock(&all_mddevs_lock); 5192 if (list_empty(&mddev->all_mddevs)) { 5193 spin_unlock(&all_mddevs_lock); 5194 return -EBUSY; 5195 } 5196 mddev_get(mddev); 5197 spin_unlock(&all_mddevs_lock); 5198 rv = entry->store(mddev, page, length); 5199 mddev_put(mddev); 5200 return rv; 5201 } 5202 5203 static void md_free(struct kobject *ko) 5204 { 5205 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5206 5207 if (mddev->sysfs_state) 5208 sysfs_put(mddev->sysfs_state); 5209 5210 if (mddev->gendisk) 5211 del_gendisk(mddev->gendisk); 5212 if (mddev->queue) 5213 blk_cleanup_queue(mddev->queue); 5214 if (mddev->gendisk) 5215 put_disk(mddev->gendisk); 5216 percpu_ref_exit(&mddev->writes_pending); 5217 5218 kfree(mddev); 5219 } 5220 5221 static const struct sysfs_ops md_sysfs_ops = { 5222 .show = md_attr_show, 5223 .store = md_attr_store, 5224 }; 5225 static struct kobj_type md_ktype = { 5226 .release = md_free, 5227 .sysfs_ops = &md_sysfs_ops, 5228 .default_attrs = md_default_attrs, 5229 }; 5230 5231 int mdp_major = 0; 5232 5233 static void mddev_delayed_delete(struct work_struct *ws) 5234 { 5235 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5236 5237 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5238 kobject_del(&mddev->kobj); 5239 kobject_put(&mddev->kobj); 5240 } 5241 5242 static void no_op(struct percpu_ref *r) {} 5243 5244 int mddev_init_writes_pending(struct mddev *mddev) 5245 { 5246 if (mddev->writes_pending.percpu_count_ptr) 5247 return 0; 5248 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5249 return -ENOMEM; 5250 /* We want to start with the refcount at zero */ 5251 percpu_ref_put(&mddev->writes_pending); 5252 return 0; 5253 } 5254 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5255 5256 static int md_alloc(dev_t dev, char *name) 5257 { 5258 /* 5259 * If dev is zero, name is the name of a device to allocate with 5260 * an arbitrary minor number. It will be "md_???" 5261 * If dev is non-zero it must be a device number with a MAJOR of 5262 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5263 * the device is being created by opening a node in /dev. 5264 * If "name" is not NULL, the device is being created by 5265 * writing to /sys/module/md_mod/parameters/new_array. 5266 */ 5267 static DEFINE_MUTEX(disks_mutex); 5268 struct mddev *mddev = mddev_find(dev); 5269 struct gendisk *disk; 5270 int partitioned; 5271 int shift; 5272 int unit; 5273 int error; 5274 5275 if (!mddev) 5276 return -ENODEV; 5277 5278 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5279 shift = partitioned ? MdpMinorShift : 0; 5280 unit = MINOR(mddev->unit) >> shift; 5281 5282 /* wait for any previous instance of this device to be 5283 * completely removed (mddev_delayed_delete). 5284 */ 5285 flush_workqueue(md_misc_wq); 5286 5287 mutex_lock(&disks_mutex); 5288 error = -EEXIST; 5289 if (mddev->gendisk) 5290 goto abort; 5291 5292 if (name && !dev) { 5293 /* Need to ensure that 'name' is not a duplicate. 5294 */ 5295 struct mddev *mddev2; 5296 spin_lock(&all_mddevs_lock); 5297 5298 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5299 if (mddev2->gendisk && 5300 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5301 spin_unlock(&all_mddevs_lock); 5302 goto abort; 5303 } 5304 spin_unlock(&all_mddevs_lock); 5305 } 5306 if (name && dev) 5307 /* 5308 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5309 */ 5310 mddev->hold_active = UNTIL_STOP; 5311 5312 error = -ENOMEM; 5313 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5314 if (!mddev->queue) 5315 goto abort; 5316 mddev->queue->queuedata = mddev; 5317 5318 blk_queue_make_request(mddev->queue, md_make_request); 5319 blk_set_stacking_limits(&mddev->queue->limits); 5320 5321 disk = alloc_disk(1 << shift); 5322 if (!disk) { 5323 blk_cleanup_queue(mddev->queue); 5324 mddev->queue = NULL; 5325 goto abort; 5326 } 5327 disk->major = MAJOR(mddev->unit); 5328 disk->first_minor = unit << shift; 5329 if (name) 5330 strcpy(disk->disk_name, name); 5331 else if (partitioned) 5332 sprintf(disk->disk_name, "md_d%d", unit); 5333 else 5334 sprintf(disk->disk_name, "md%d", unit); 5335 disk->fops = &md_fops; 5336 disk->private_data = mddev; 5337 disk->queue = mddev->queue; 5338 blk_queue_write_cache(mddev->queue, true, true); 5339 /* Allow extended partitions. This makes the 5340 * 'mdp' device redundant, but we can't really 5341 * remove it now. 5342 */ 5343 disk->flags |= GENHD_FL_EXT_DEVT; 5344 mddev->gendisk = disk; 5345 /* As soon as we call add_disk(), another thread could get 5346 * through to md_open, so make sure it doesn't get too far 5347 */ 5348 mutex_lock(&mddev->open_mutex); 5349 add_disk(disk); 5350 5351 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5352 &disk_to_dev(disk)->kobj, "%s", "md"); 5353 if (error) { 5354 /* This isn't possible, but as kobject_init_and_add is marked 5355 * __must_check, we must do something with the result 5356 */ 5357 pr_debug("md: cannot register %s/md - name in use\n", 5358 disk->disk_name); 5359 error = 0; 5360 } 5361 if (mddev->kobj.sd && 5362 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5363 pr_debug("pointless warning\n"); 5364 mutex_unlock(&mddev->open_mutex); 5365 abort: 5366 mutex_unlock(&disks_mutex); 5367 if (!error && mddev->kobj.sd) { 5368 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5369 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5370 } 5371 mddev_put(mddev); 5372 return error; 5373 } 5374 5375 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5376 { 5377 if (create_on_open) 5378 md_alloc(dev, NULL); 5379 return NULL; 5380 } 5381 5382 static int add_named_array(const char *val, const struct kernel_param *kp) 5383 { 5384 /* 5385 * val must be "md_*" or "mdNNN". 5386 * For "md_*" we allocate an array with a large free minor number, and 5387 * set the name to val. val must not already be an active name. 5388 * For "mdNNN" we allocate an array with the minor number NNN 5389 * which must not already be in use. 5390 */ 5391 int len = strlen(val); 5392 char buf[DISK_NAME_LEN]; 5393 unsigned long devnum; 5394 5395 while (len && val[len-1] == '\n') 5396 len--; 5397 if (len >= DISK_NAME_LEN) 5398 return -E2BIG; 5399 strlcpy(buf, val, len+1); 5400 if (strncmp(buf, "md_", 3) == 0) 5401 return md_alloc(0, buf); 5402 if (strncmp(buf, "md", 2) == 0 && 5403 isdigit(buf[2]) && 5404 kstrtoul(buf+2, 10, &devnum) == 0 && 5405 devnum <= MINORMASK) 5406 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5407 5408 return -EINVAL; 5409 } 5410 5411 static void md_safemode_timeout(struct timer_list *t) 5412 { 5413 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5414 5415 mddev->safemode = 1; 5416 if (mddev->external) 5417 sysfs_notify_dirent_safe(mddev->sysfs_state); 5418 5419 md_wakeup_thread(mddev->thread); 5420 } 5421 5422 static int start_dirty_degraded; 5423 5424 int md_run(struct mddev *mddev) 5425 { 5426 int err; 5427 struct md_rdev *rdev; 5428 struct md_personality *pers; 5429 5430 if (list_empty(&mddev->disks)) 5431 /* cannot run an array with no devices.. */ 5432 return -EINVAL; 5433 5434 if (mddev->pers) 5435 return -EBUSY; 5436 /* Cannot run until previous stop completes properly */ 5437 if (mddev->sysfs_active) 5438 return -EBUSY; 5439 5440 /* 5441 * Analyze all RAID superblock(s) 5442 */ 5443 if (!mddev->raid_disks) { 5444 if (!mddev->persistent) 5445 return -EINVAL; 5446 analyze_sbs(mddev); 5447 } 5448 5449 if (mddev->level != LEVEL_NONE) 5450 request_module("md-level-%d", mddev->level); 5451 else if (mddev->clevel[0]) 5452 request_module("md-%s", mddev->clevel); 5453 5454 /* 5455 * Drop all container device buffers, from now on 5456 * the only valid external interface is through the md 5457 * device. 5458 */ 5459 mddev->has_superblocks = false; 5460 rdev_for_each(rdev, mddev) { 5461 if (test_bit(Faulty, &rdev->flags)) 5462 continue; 5463 sync_blockdev(rdev->bdev); 5464 invalidate_bdev(rdev->bdev); 5465 if (mddev->ro != 1 && 5466 (bdev_read_only(rdev->bdev) || 5467 bdev_read_only(rdev->meta_bdev))) { 5468 mddev->ro = 1; 5469 if (mddev->gendisk) 5470 set_disk_ro(mddev->gendisk, 1); 5471 } 5472 5473 if (rdev->sb_page) 5474 mddev->has_superblocks = true; 5475 5476 /* perform some consistency tests on the device. 5477 * We don't want the data to overlap the metadata, 5478 * Internal Bitmap issues have been handled elsewhere. 5479 */ 5480 if (rdev->meta_bdev) { 5481 /* Nothing to check */; 5482 } else if (rdev->data_offset < rdev->sb_start) { 5483 if (mddev->dev_sectors && 5484 rdev->data_offset + mddev->dev_sectors 5485 > rdev->sb_start) { 5486 pr_warn("md: %s: data overlaps metadata\n", 5487 mdname(mddev)); 5488 return -EINVAL; 5489 } 5490 } else { 5491 if (rdev->sb_start + rdev->sb_size/512 5492 > rdev->data_offset) { 5493 pr_warn("md: %s: metadata overlaps data\n", 5494 mdname(mddev)); 5495 return -EINVAL; 5496 } 5497 } 5498 sysfs_notify_dirent_safe(rdev->sysfs_state); 5499 } 5500 5501 if (!bioset_initialized(&mddev->bio_set)) { 5502 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5503 if (err) 5504 return err; 5505 } 5506 if (!bioset_initialized(&mddev->sync_set)) { 5507 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5508 if (err) 5509 goto abort; 5510 } 5511 5512 spin_lock(&pers_lock); 5513 pers = find_pers(mddev->level, mddev->clevel); 5514 if (!pers || !try_module_get(pers->owner)) { 5515 spin_unlock(&pers_lock); 5516 if (mddev->level != LEVEL_NONE) 5517 pr_warn("md: personality for level %d is not loaded!\n", 5518 mddev->level); 5519 else 5520 pr_warn("md: personality for level %s is not loaded!\n", 5521 mddev->clevel); 5522 err = -EINVAL; 5523 goto abort; 5524 } 5525 spin_unlock(&pers_lock); 5526 if (mddev->level != pers->level) { 5527 mddev->level = pers->level; 5528 mddev->new_level = pers->level; 5529 } 5530 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5531 5532 if (mddev->reshape_position != MaxSector && 5533 pers->start_reshape == NULL) { 5534 /* This personality cannot handle reshaping... */ 5535 module_put(pers->owner); 5536 err = -EINVAL; 5537 goto abort; 5538 } 5539 5540 if (pers->sync_request) { 5541 /* Warn if this is a potentially silly 5542 * configuration. 5543 */ 5544 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5545 struct md_rdev *rdev2; 5546 int warned = 0; 5547 5548 rdev_for_each(rdev, mddev) 5549 rdev_for_each(rdev2, mddev) { 5550 if (rdev < rdev2 && 5551 rdev->bdev->bd_contains == 5552 rdev2->bdev->bd_contains) { 5553 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5554 mdname(mddev), 5555 bdevname(rdev->bdev,b), 5556 bdevname(rdev2->bdev,b2)); 5557 warned = 1; 5558 } 5559 } 5560 5561 if (warned) 5562 pr_warn("True protection against single-disk failure might be compromised.\n"); 5563 } 5564 5565 mddev->recovery = 0; 5566 /* may be over-ridden by personality */ 5567 mddev->resync_max_sectors = mddev->dev_sectors; 5568 5569 mddev->ok_start_degraded = start_dirty_degraded; 5570 5571 if (start_readonly && mddev->ro == 0) 5572 mddev->ro = 2; /* read-only, but switch on first write */ 5573 5574 err = pers->run(mddev); 5575 if (err) 5576 pr_warn("md: pers->run() failed ...\n"); 5577 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5578 WARN_ONCE(!mddev->external_size, 5579 "%s: default size too small, but 'external_size' not in effect?\n", 5580 __func__); 5581 pr_warn("md: invalid array_size %llu > default size %llu\n", 5582 (unsigned long long)mddev->array_sectors / 2, 5583 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5584 err = -EINVAL; 5585 } 5586 if (err == 0 && pers->sync_request && 5587 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5588 struct bitmap *bitmap; 5589 5590 bitmap = bitmap_create(mddev, -1); 5591 if (IS_ERR(bitmap)) { 5592 err = PTR_ERR(bitmap); 5593 pr_warn("%s: failed to create bitmap (%d)\n", 5594 mdname(mddev), err); 5595 } else 5596 mddev->bitmap = bitmap; 5597 5598 } 5599 if (err) { 5600 mddev_detach(mddev); 5601 if (mddev->private) 5602 pers->free(mddev, mddev->private); 5603 mddev->private = NULL; 5604 module_put(pers->owner); 5605 bitmap_destroy(mddev); 5606 goto abort; 5607 } 5608 if (mddev->queue) { 5609 bool nonrot = true; 5610 5611 rdev_for_each(rdev, mddev) { 5612 if (rdev->raid_disk >= 0 && 5613 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5614 nonrot = false; 5615 break; 5616 } 5617 } 5618 if (mddev->degraded) 5619 nonrot = false; 5620 if (nonrot) 5621 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5622 else 5623 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5624 mddev->queue->backing_dev_info->congested_data = mddev; 5625 mddev->queue->backing_dev_info->congested_fn = md_congested; 5626 } 5627 if (pers->sync_request) { 5628 if (mddev->kobj.sd && 5629 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5630 pr_warn("md: cannot register extra attributes for %s\n", 5631 mdname(mddev)); 5632 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5633 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5634 mddev->ro = 0; 5635 5636 atomic_set(&mddev->max_corr_read_errors, 5637 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5638 mddev->safemode = 0; 5639 if (mddev_is_clustered(mddev)) 5640 mddev->safemode_delay = 0; 5641 else 5642 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5643 mddev->in_sync = 1; 5644 smp_wmb(); 5645 spin_lock(&mddev->lock); 5646 mddev->pers = pers; 5647 spin_unlock(&mddev->lock); 5648 rdev_for_each(rdev, mddev) 5649 if (rdev->raid_disk >= 0) 5650 if (sysfs_link_rdev(mddev, rdev)) 5651 /* failure here is OK */; 5652 5653 if (mddev->degraded && !mddev->ro) 5654 /* This ensures that recovering status is reported immediately 5655 * via sysfs - until a lack of spares is confirmed. 5656 */ 5657 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5658 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5659 5660 if (mddev->sb_flags) 5661 md_update_sb(mddev, 0); 5662 5663 md_new_event(mddev); 5664 sysfs_notify_dirent_safe(mddev->sysfs_state); 5665 sysfs_notify_dirent_safe(mddev->sysfs_action); 5666 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5667 return 0; 5668 5669 abort: 5670 bioset_exit(&mddev->bio_set); 5671 bioset_exit(&mddev->sync_set); 5672 5673 return err; 5674 } 5675 EXPORT_SYMBOL_GPL(md_run); 5676 5677 static int do_md_run(struct mddev *mddev) 5678 { 5679 int err; 5680 5681 err = md_run(mddev); 5682 if (err) 5683 goto out; 5684 err = bitmap_load(mddev); 5685 if (err) { 5686 bitmap_destroy(mddev); 5687 goto out; 5688 } 5689 5690 if (mddev_is_clustered(mddev)) 5691 md_allow_write(mddev); 5692 5693 /* run start up tasks that require md_thread */ 5694 md_start(mddev); 5695 5696 md_wakeup_thread(mddev->thread); 5697 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5698 5699 set_capacity(mddev->gendisk, mddev->array_sectors); 5700 revalidate_disk(mddev->gendisk); 5701 mddev->changed = 1; 5702 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5703 out: 5704 return err; 5705 } 5706 5707 int md_start(struct mddev *mddev) 5708 { 5709 int ret = 0; 5710 5711 if (mddev->pers->start) { 5712 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5713 md_wakeup_thread(mddev->thread); 5714 ret = mddev->pers->start(mddev); 5715 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5716 md_wakeup_thread(mddev->sync_thread); 5717 } 5718 return ret; 5719 } 5720 EXPORT_SYMBOL_GPL(md_start); 5721 5722 static int restart_array(struct mddev *mddev) 5723 { 5724 struct gendisk *disk = mddev->gendisk; 5725 struct md_rdev *rdev; 5726 bool has_journal = false; 5727 bool has_readonly = false; 5728 5729 /* Complain if it has no devices */ 5730 if (list_empty(&mddev->disks)) 5731 return -ENXIO; 5732 if (!mddev->pers) 5733 return -EINVAL; 5734 if (!mddev->ro) 5735 return -EBUSY; 5736 5737 rcu_read_lock(); 5738 rdev_for_each_rcu(rdev, mddev) { 5739 if (test_bit(Journal, &rdev->flags) && 5740 !test_bit(Faulty, &rdev->flags)) 5741 has_journal = true; 5742 if (bdev_read_only(rdev->bdev)) 5743 has_readonly = true; 5744 } 5745 rcu_read_unlock(); 5746 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5747 /* Don't restart rw with journal missing/faulty */ 5748 return -EINVAL; 5749 if (has_readonly) 5750 return -EROFS; 5751 5752 mddev->safemode = 0; 5753 mddev->ro = 0; 5754 set_disk_ro(disk, 0); 5755 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5756 /* Kick recovery or resync if necessary */ 5757 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5758 md_wakeup_thread(mddev->thread); 5759 md_wakeup_thread(mddev->sync_thread); 5760 sysfs_notify_dirent_safe(mddev->sysfs_state); 5761 return 0; 5762 } 5763 5764 static void md_clean(struct mddev *mddev) 5765 { 5766 mddev->array_sectors = 0; 5767 mddev->external_size = 0; 5768 mddev->dev_sectors = 0; 5769 mddev->raid_disks = 0; 5770 mddev->recovery_cp = 0; 5771 mddev->resync_min = 0; 5772 mddev->resync_max = MaxSector; 5773 mddev->reshape_position = MaxSector; 5774 mddev->external = 0; 5775 mddev->persistent = 0; 5776 mddev->level = LEVEL_NONE; 5777 mddev->clevel[0] = 0; 5778 mddev->flags = 0; 5779 mddev->sb_flags = 0; 5780 mddev->ro = 0; 5781 mddev->metadata_type[0] = 0; 5782 mddev->chunk_sectors = 0; 5783 mddev->ctime = mddev->utime = 0; 5784 mddev->layout = 0; 5785 mddev->max_disks = 0; 5786 mddev->events = 0; 5787 mddev->can_decrease_events = 0; 5788 mddev->delta_disks = 0; 5789 mddev->reshape_backwards = 0; 5790 mddev->new_level = LEVEL_NONE; 5791 mddev->new_layout = 0; 5792 mddev->new_chunk_sectors = 0; 5793 mddev->curr_resync = 0; 5794 atomic64_set(&mddev->resync_mismatches, 0); 5795 mddev->suspend_lo = mddev->suspend_hi = 0; 5796 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5797 mddev->recovery = 0; 5798 mddev->in_sync = 0; 5799 mddev->changed = 0; 5800 mddev->degraded = 0; 5801 mddev->safemode = 0; 5802 mddev->private = NULL; 5803 mddev->cluster_info = NULL; 5804 mddev->bitmap_info.offset = 0; 5805 mddev->bitmap_info.default_offset = 0; 5806 mddev->bitmap_info.default_space = 0; 5807 mddev->bitmap_info.chunksize = 0; 5808 mddev->bitmap_info.daemon_sleep = 0; 5809 mddev->bitmap_info.max_write_behind = 0; 5810 mddev->bitmap_info.nodes = 0; 5811 } 5812 5813 static void __md_stop_writes(struct mddev *mddev) 5814 { 5815 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5816 flush_workqueue(md_misc_wq); 5817 if (mddev->sync_thread) { 5818 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5819 md_reap_sync_thread(mddev); 5820 } 5821 5822 del_timer_sync(&mddev->safemode_timer); 5823 5824 if (mddev->pers && mddev->pers->quiesce) { 5825 mddev->pers->quiesce(mddev, 1); 5826 mddev->pers->quiesce(mddev, 0); 5827 } 5828 bitmap_flush(mddev); 5829 5830 if (mddev->ro == 0 && 5831 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5832 mddev->sb_flags)) { 5833 /* mark array as shutdown cleanly */ 5834 if (!mddev_is_clustered(mddev)) 5835 mddev->in_sync = 1; 5836 md_update_sb(mddev, 1); 5837 } 5838 } 5839 5840 void md_stop_writes(struct mddev *mddev) 5841 { 5842 mddev_lock_nointr(mddev); 5843 __md_stop_writes(mddev); 5844 mddev_unlock(mddev); 5845 } 5846 EXPORT_SYMBOL_GPL(md_stop_writes); 5847 5848 static void mddev_detach(struct mddev *mddev) 5849 { 5850 bitmap_wait_behind_writes(mddev); 5851 if (mddev->pers && mddev->pers->quiesce) { 5852 mddev->pers->quiesce(mddev, 1); 5853 mddev->pers->quiesce(mddev, 0); 5854 } 5855 md_unregister_thread(&mddev->thread); 5856 if (mddev->queue) 5857 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5858 } 5859 5860 static void __md_stop(struct mddev *mddev) 5861 { 5862 struct md_personality *pers = mddev->pers; 5863 bitmap_destroy(mddev); 5864 mddev_detach(mddev); 5865 /* Ensure ->event_work is done */ 5866 flush_workqueue(md_misc_wq); 5867 spin_lock(&mddev->lock); 5868 mddev->pers = NULL; 5869 spin_unlock(&mddev->lock); 5870 pers->free(mddev, mddev->private); 5871 mddev->private = NULL; 5872 if (pers->sync_request && mddev->to_remove == NULL) 5873 mddev->to_remove = &md_redundancy_group; 5874 module_put(pers->owner); 5875 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5876 } 5877 5878 void md_stop(struct mddev *mddev) 5879 { 5880 /* stop the array and free an attached data structures. 5881 * This is called from dm-raid 5882 */ 5883 __md_stop(mddev); 5884 bioset_exit(&mddev->bio_set); 5885 bioset_exit(&mddev->sync_set); 5886 } 5887 5888 EXPORT_SYMBOL_GPL(md_stop); 5889 5890 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5891 { 5892 int err = 0; 5893 int did_freeze = 0; 5894 5895 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5896 did_freeze = 1; 5897 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5898 md_wakeup_thread(mddev->thread); 5899 } 5900 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5901 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5902 if (mddev->sync_thread) 5903 /* Thread might be blocked waiting for metadata update 5904 * which will now never happen */ 5905 wake_up_process(mddev->sync_thread->tsk); 5906 5907 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5908 return -EBUSY; 5909 mddev_unlock(mddev); 5910 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5911 &mddev->recovery)); 5912 wait_event(mddev->sb_wait, 5913 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5914 mddev_lock_nointr(mddev); 5915 5916 mutex_lock(&mddev->open_mutex); 5917 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5918 mddev->sync_thread || 5919 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5920 pr_warn("md: %s still in use.\n",mdname(mddev)); 5921 if (did_freeze) { 5922 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5923 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5924 md_wakeup_thread(mddev->thread); 5925 } 5926 err = -EBUSY; 5927 goto out; 5928 } 5929 if (mddev->pers) { 5930 __md_stop_writes(mddev); 5931 5932 err = -ENXIO; 5933 if (mddev->ro==1) 5934 goto out; 5935 mddev->ro = 1; 5936 set_disk_ro(mddev->gendisk, 1); 5937 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5938 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5939 md_wakeup_thread(mddev->thread); 5940 sysfs_notify_dirent_safe(mddev->sysfs_state); 5941 err = 0; 5942 } 5943 out: 5944 mutex_unlock(&mddev->open_mutex); 5945 return err; 5946 } 5947 5948 /* mode: 5949 * 0 - completely stop and dis-assemble array 5950 * 2 - stop but do not disassemble array 5951 */ 5952 static int do_md_stop(struct mddev *mddev, int mode, 5953 struct block_device *bdev) 5954 { 5955 struct gendisk *disk = mddev->gendisk; 5956 struct md_rdev *rdev; 5957 int did_freeze = 0; 5958 5959 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5960 did_freeze = 1; 5961 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5962 md_wakeup_thread(mddev->thread); 5963 } 5964 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5965 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5966 if (mddev->sync_thread) 5967 /* Thread might be blocked waiting for metadata update 5968 * which will now never happen */ 5969 wake_up_process(mddev->sync_thread->tsk); 5970 5971 mddev_unlock(mddev); 5972 wait_event(resync_wait, (mddev->sync_thread == NULL && 5973 !test_bit(MD_RECOVERY_RUNNING, 5974 &mddev->recovery))); 5975 mddev_lock_nointr(mddev); 5976 5977 mutex_lock(&mddev->open_mutex); 5978 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5979 mddev->sysfs_active || 5980 mddev->sync_thread || 5981 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5982 pr_warn("md: %s still in use.\n",mdname(mddev)); 5983 mutex_unlock(&mddev->open_mutex); 5984 if (did_freeze) { 5985 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5986 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5987 md_wakeup_thread(mddev->thread); 5988 } 5989 return -EBUSY; 5990 } 5991 if (mddev->pers) { 5992 if (mddev->ro) 5993 set_disk_ro(disk, 0); 5994 5995 __md_stop_writes(mddev); 5996 __md_stop(mddev); 5997 mddev->queue->backing_dev_info->congested_fn = NULL; 5998 5999 /* tell userspace to handle 'inactive' */ 6000 sysfs_notify_dirent_safe(mddev->sysfs_state); 6001 6002 rdev_for_each(rdev, mddev) 6003 if (rdev->raid_disk >= 0) 6004 sysfs_unlink_rdev(mddev, rdev); 6005 6006 set_capacity(disk, 0); 6007 mutex_unlock(&mddev->open_mutex); 6008 mddev->changed = 1; 6009 revalidate_disk(disk); 6010 6011 if (mddev->ro) 6012 mddev->ro = 0; 6013 } else 6014 mutex_unlock(&mddev->open_mutex); 6015 /* 6016 * Free resources if final stop 6017 */ 6018 if (mode == 0) { 6019 pr_info("md: %s stopped.\n", mdname(mddev)); 6020 6021 if (mddev->bitmap_info.file) { 6022 struct file *f = mddev->bitmap_info.file; 6023 spin_lock(&mddev->lock); 6024 mddev->bitmap_info.file = NULL; 6025 spin_unlock(&mddev->lock); 6026 fput(f); 6027 } 6028 mddev->bitmap_info.offset = 0; 6029 6030 export_array(mddev); 6031 6032 md_clean(mddev); 6033 if (mddev->hold_active == UNTIL_STOP) 6034 mddev->hold_active = 0; 6035 } 6036 md_new_event(mddev); 6037 sysfs_notify_dirent_safe(mddev->sysfs_state); 6038 return 0; 6039 } 6040 6041 #ifndef MODULE 6042 static void autorun_array(struct mddev *mddev) 6043 { 6044 struct md_rdev *rdev; 6045 int err; 6046 6047 if (list_empty(&mddev->disks)) 6048 return; 6049 6050 pr_info("md: running: "); 6051 6052 rdev_for_each(rdev, mddev) { 6053 char b[BDEVNAME_SIZE]; 6054 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6055 } 6056 pr_cont("\n"); 6057 6058 err = do_md_run(mddev); 6059 if (err) { 6060 pr_warn("md: do_md_run() returned %d\n", err); 6061 do_md_stop(mddev, 0, NULL); 6062 } 6063 } 6064 6065 /* 6066 * lets try to run arrays based on all disks that have arrived 6067 * until now. (those are in pending_raid_disks) 6068 * 6069 * the method: pick the first pending disk, collect all disks with 6070 * the same UUID, remove all from the pending list and put them into 6071 * the 'same_array' list. Then order this list based on superblock 6072 * update time (freshest comes first), kick out 'old' disks and 6073 * compare superblocks. If everything's fine then run it. 6074 * 6075 * If "unit" is allocated, then bump its reference count 6076 */ 6077 static void autorun_devices(int part) 6078 { 6079 struct md_rdev *rdev0, *rdev, *tmp; 6080 struct mddev *mddev; 6081 char b[BDEVNAME_SIZE]; 6082 6083 pr_info("md: autorun ...\n"); 6084 while (!list_empty(&pending_raid_disks)) { 6085 int unit; 6086 dev_t dev; 6087 LIST_HEAD(candidates); 6088 rdev0 = list_entry(pending_raid_disks.next, 6089 struct md_rdev, same_set); 6090 6091 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6092 INIT_LIST_HEAD(&candidates); 6093 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6094 if (super_90_load(rdev, rdev0, 0) >= 0) { 6095 pr_debug("md: adding %s ...\n", 6096 bdevname(rdev->bdev,b)); 6097 list_move(&rdev->same_set, &candidates); 6098 } 6099 /* 6100 * now we have a set of devices, with all of them having 6101 * mostly sane superblocks. It's time to allocate the 6102 * mddev. 6103 */ 6104 if (part) { 6105 dev = MKDEV(mdp_major, 6106 rdev0->preferred_minor << MdpMinorShift); 6107 unit = MINOR(dev) >> MdpMinorShift; 6108 } else { 6109 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6110 unit = MINOR(dev); 6111 } 6112 if (rdev0->preferred_minor != unit) { 6113 pr_warn("md: unit number in %s is bad: %d\n", 6114 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6115 break; 6116 } 6117 6118 md_probe(dev, NULL, NULL); 6119 mddev = mddev_find(dev); 6120 if (!mddev || !mddev->gendisk) { 6121 if (mddev) 6122 mddev_put(mddev); 6123 break; 6124 } 6125 if (mddev_lock(mddev)) 6126 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6127 else if (mddev->raid_disks || mddev->major_version 6128 || !list_empty(&mddev->disks)) { 6129 pr_warn("md: %s already running, cannot run %s\n", 6130 mdname(mddev), bdevname(rdev0->bdev,b)); 6131 mddev_unlock(mddev); 6132 } else { 6133 pr_debug("md: created %s\n", mdname(mddev)); 6134 mddev->persistent = 1; 6135 rdev_for_each_list(rdev, tmp, &candidates) { 6136 list_del_init(&rdev->same_set); 6137 if (bind_rdev_to_array(rdev, mddev)) 6138 export_rdev(rdev); 6139 } 6140 autorun_array(mddev); 6141 mddev_unlock(mddev); 6142 } 6143 /* on success, candidates will be empty, on error 6144 * it won't... 6145 */ 6146 rdev_for_each_list(rdev, tmp, &candidates) { 6147 list_del_init(&rdev->same_set); 6148 export_rdev(rdev); 6149 } 6150 mddev_put(mddev); 6151 } 6152 pr_info("md: ... autorun DONE.\n"); 6153 } 6154 #endif /* !MODULE */ 6155 6156 static int get_version(void __user *arg) 6157 { 6158 mdu_version_t ver; 6159 6160 ver.major = MD_MAJOR_VERSION; 6161 ver.minor = MD_MINOR_VERSION; 6162 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6163 6164 if (copy_to_user(arg, &ver, sizeof(ver))) 6165 return -EFAULT; 6166 6167 return 0; 6168 } 6169 6170 static int get_array_info(struct mddev *mddev, void __user *arg) 6171 { 6172 mdu_array_info_t info; 6173 int nr,working,insync,failed,spare; 6174 struct md_rdev *rdev; 6175 6176 nr = working = insync = failed = spare = 0; 6177 rcu_read_lock(); 6178 rdev_for_each_rcu(rdev, mddev) { 6179 nr++; 6180 if (test_bit(Faulty, &rdev->flags)) 6181 failed++; 6182 else { 6183 working++; 6184 if (test_bit(In_sync, &rdev->flags)) 6185 insync++; 6186 else if (test_bit(Journal, &rdev->flags)) 6187 /* TODO: add journal count to md_u.h */ 6188 ; 6189 else 6190 spare++; 6191 } 6192 } 6193 rcu_read_unlock(); 6194 6195 info.major_version = mddev->major_version; 6196 info.minor_version = mddev->minor_version; 6197 info.patch_version = MD_PATCHLEVEL_VERSION; 6198 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6199 info.level = mddev->level; 6200 info.size = mddev->dev_sectors / 2; 6201 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6202 info.size = -1; 6203 info.nr_disks = nr; 6204 info.raid_disks = mddev->raid_disks; 6205 info.md_minor = mddev->md_minor; 6206 info.not_persistent= !mddev->persistent; 6207 6208 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6209 info.state = 0; 6210 if (mddev->in_sync) 6211 info.state = (1<<MD_SB_CLEAN); 6212 if (mddev->bitmap && mddev->bitmap_info.offset) 6213 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6214 if (mddev_is_clustered(mddev)) 6215 info.state |= (1<<MD_SB_CLUSTERED); 6216 info.active_disks = insync; 6217 info.working_disks = working; 6218 info.failed_disks = failed; 6219 info.spare_disks = spare; 6220 6221 info.layout = mddev->layout; 6222 info.chunk_size = mddev->chunk_sectors << 9; 6223 6224 if (copy_to_user(arg, &info, sizeof(info))) 6225 return -EFAULT; 6226 6227 return 0; 6228 } 6229 6230 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6231 { 6232 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6233 char *ptr; 6234 int err; 6235 6236 file = kzalloc(sizeof(*file), GFP_NOIO); 6237 if (!file) 6238 return -ENOMEM; 6239 6240 err = 0; 6241 spin_lock(&mddev->lock); 6242 /* bitmap enabled */ 6243 if (mddev->bitmap_info.file) { 6244 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6245 sizeof(file->pathname)); 6246 if (IS_ERR(ptr)) 6247 err = PTR_ERR(ptr); 6248 else 6249 memmove(file->pathname, ptr, 6250 sizeof(file->pathname)-(ptr-file->pathname)); 6251 } 6252 spin_unlock(&mddev->lock); 6253 6254 if (err == 0 && 6255 copy_to_user(arg, file, sizeof(*file))) 6256 err = -EFAULT; 6257 6258 kfree(file); 6259 return err; 6260 } 6261 6262 static int get_disk_info(struct mddev *mddev, void __user * arg) 6263 { 6264 mdu_disk_info_t info; 6265 struct md_rdev *rdev; 6266 6267 if (copy_from_user(&info, arg, sizeof(info))) 6268 return -EFAULT; 6269 6270 rcu_read_lock(); 6271 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6272 if (rdev) { 6273 info.major = MAJOR(rdev->bdev->bd_dev); 6274 info.minor = MINOR(rdev->bdev->bd_dev); 6275 info.raid_disk = rdev->raid_disk; 6276 info.state = 0; 6277 if (test_bit(Faulty, &rdev->flags)) 6278 info.state |= (1<<MD_DISK_FAULTY); 6279 else if (test_bit(In_sync, &rdev->flags)) { 6280 info.state |= (1<<MD_DISK_ACTIVE); 6281 info.state |= (1<<MD_DISK_SYNC); 6282 } 6283 if (test_bit(Journal, &rdev->flags)) 6284 info.state |= (1<<MD_DISK_JOURNAL); 6285 if (test_bit(WriteMostly, &rdev->flags)) 6286 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6287 if (test_bit(FailFast, &rdev->flags)) 6288 info.state |= (1<<MD_DISK_FAILFAST); 6289 } else { 6290 info.major = info.minor = 0; 6291 info.raid_disk = -1; 6292 info.state = (1<<MD_DISK_REMOVED); 6293 } 6294 rcu_read_unlock(); 6295 6296 if (copy_to_user(arg, &info, sizeof(info))) 6297 return -EFAULT; 6298 6299 return 0; 6300 } 6301 6302 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6303 { 6304 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6305 struct md_rdev *rdev; 6306 dev_t dev = MKDEV(info->major,info->minor); 6307 6308 if (mddev_is_clustered(mddev) && 6309 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6310 pr_warn("%s: Cannot add to clustered mddev.\n", 6311 mdname(mddev)); 6312 return -EINVAL; 6313 } 6314 6315 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6316 return -EOVERFLOW; 6317 6318 if (!mddev->raid_disks) { 6319 int err; 6320 /* expecting a device which has a superblock */ 6321 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6322 if (IS_ERR(rdev)) { 6323 pr_warn("md: md_import_device returned %ld\n", 6324 PTR_ERR(rdev)); 6325 return PTR_ERR(rdev); 6326 } 6327 if (!list_empty(&mddev->disks)) { 6328 struct md_rdev *rdev0 6329 = list_entry(mddev->disks.next, 6330 struct md_rdev, same_set); 6331 err = super_types[mddev->major_version] 6332 .load_super(rdev, rdev0, mddev->minor_version); 6333 if (err < 0) { 6334 pr_warn("md: %s has different UUID to %s\n", 6335 bdevname(rdev->bdev,b), 6336 bdevname(rdev0->bdev,b2)); 6337 export_rdev(rdev); 6338 return -EINVAL; 6339 } 6340 } 6341 err = bind_rdev_to_array(rdev, mddev); 6342 if (err) 6343 export_rdev(rdev); 6344 return err; 6345 } 6346 6347 /* 6348 * add_new_disk can be used once the array is assembled 6349 * to add "hot spares". They must already have a superblock 6350 * written 6351 */ 6352 if (mddev->pers) { 6353 int err; 6354 if (!mddev->pers->hot_add_disk) { 6355 pr_warn("%s: personality does not support diskops!\n", 6356 mdname(mddev)); 6357 return -EINVAL; 6358 } 6359 if (mddev->persistent) 6360 rdev = md_import_device(dev, mddev->major_version, 6361 mddev->minor_version); 6362 else 6363 rdev = md_import_device(dev, -1, -1); 6364 if (IS_ERR(rdev)) { 6365 pr_warn("md: md_import_device returned %ld\n", 6366 PTR_ERR(rdev)); 6367 return PTR_ERR(rdev); 6368 } 6369 /* set saved_raid_disk if appropriate */ 6370 if (!mddev->persistent) { 6371 if (info->state & (1<<MD_DISK_SYNC) && 6372 info->raid_disk < mddev->raid_disks) { 6373 rdev->raid_disk = info->raid_disk; 6374 set_bit(In_sync, &rdev->flags); 6375 clear_bit(Bitmap_sync, &rdev->flags); 6376 } else 6377 rdev->raid_disk = -1; 6378 rdev->saved_raid_disk = rdev->raid_disk; 6379 } else 6380 super_types[mddev->major_version]. 6381 validate_super(mddev, rdev); 6382 if ((info->state & (1<<MD_DISK_SYNC)) && 6383 rdev->raid_disk != info->raid_disk) { 6384 /* This was a hot-add request, but events doesn't 6385 * match, so reject it. 6386 */ 6387 export_rdev(rdev); 6388 return -EINVAL; 6389 } 6390 6391 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6392 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6393 set_bit(WriteMostly, &rdev->flags); 6394 else 6395 clear_bit(WriteMostly, &rdev->flags); 6396 if (info->state & (1<<MD_DISK_FAILFAST)) 6397 set_bit(FailFast, &rdev->flags); 6398 else 6399 clear_bit(FailFast, &rdev->flags); 6400 6401 if (info->state & (1<<MD_DISK_JOURNAL)) { 6402 struct md_rdev *rdev2; 6403 bool has_journal = false; 6404 6405 /* make sure no existing journal disk */ 6406 rdev_for_each(rdev2, mddev) { 6407 if (test_bit(Journal, &rdev2->flags)) { 6408 has_journal = true; 6409 break; 6410 } 6411 } 6412 if (has_journal || mddev->bitmap) { 6413 export_rdev(rdev); 6414 return -EBUSY; 6415 } 6416 set_bit(Journal, &rdev->flags); 6417 } 6418 /* 6419 * check whether the device shows up in other nodes 6420 */ 6421 if (mddev_is_clustered(mddev)) { 6422 if (info->state & (1 << MD_DISK_CANDIDATE)) 6423 set_bit(Candidate, &rdev->flags); 6424 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6425 /* --add initiated by this node */ 6426 err = md_cluster_ops->add_new_disk(mddev, rdev); 6427 if (err) { 6428 export_rdev(rdev); 6429 return err; 6430 } 6431 } 6432 } 6433 6434 rdev->raid_disk = -1; 6435 err = bind_rdev_to_array(rdev, mddev); 6436 6437 if (err) 6438 export_rdev(rdev); 6439 6440 if (mddev_is_clustered(mddev)) { 6441 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6442 if (!err) { 6443 err = md_cluster_ops->new_disk_ack(mddev, 6444 err == 0); 6445 if (err) 6446 md_kick_rdev_from_array(rdev); 6447 } 6448 } else { 6449 if (err) 6450 md_cluster_ops->add_new_disk_cancel(mddev); 6451 else 6452 err = add_bound_rdev(rdev); 6453 } 6454 6455 } else if (!err) 6456 err = add_bound_rdev(rdev); 6457 6458 return err; 6459 } 6460 6461 /* otherwise, add_new_disk is only allowed 6462 * for major_version==0 superblocks 6463 */ 6464 if (mddev->major_version != 0) { 6465 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6466 return -EINVAL; 6467 } 6468 6469 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6470 int err; 6471 rdev = md_import_device(dev, -1, 0); 6472 if (IS_ERR(rdev)) { 6473 pr_warn("md: error, md_import_device() returned %ld\n", 6474 PTR_ERR(rdev)); 6475 return PTR_ERR(rdev); 6476 } 6477 rdev->desc_nr = info->number; 6478 if (info->raid_disk < mddev->raid_disks) 6479 rdev->raid_disk = info->raid_disk; 6480 else 6481 rdev->raid_disk = -1; 6482 6483 if (rdev->raid_disk < mddev->raid_disks) 6484 if (info->state & (1<<MD_DISK_SYNC)) 6485 set_bit(In_sync, &rdev->flags); 6486 6487 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6488 set_bit(WriteMostly, &rdev->flags); 6489 if (info->state & (1<<MD_DISK_FAILFAST)) 6490 set_bit(FailFast, &rdev->flags); 6491 6492 if (!mddev->persistent) { 6493 pr_debug("md: nonpersistent superblock ...\n"); 6494 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6495 } else 6496 rdev->sb_start = calc_dev_sboffset(rdev); 6497 rdev->sectors = rdev->sb_start; 6498 6499 err = bind_rdev_to_array(rdev, mddev); 6500 if (err) { 6501 export_rdev(rdev); 6502 return err; 6503 } 6504 } 6505 6506 return 0; 6507 } 6508 6509 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6510 { 6511 char b[BDEVNAME_SIZE]; 6512 struct md_rdev *rdev; 6513 6514 rdev = find_rdev(mddev, dev); 6515 if (!rdev) 6516 return -ENXIO; 6517 6518 if (rdev->raid_disk < 0) 6519 goto kick_rdev; 6520 6521 clear_bit(Blocked, &rdev->flags); 6522 remove_and_add_spares(mddev, rdev); 6523 6524 if (rdev->raid_disk >= 0) 6525 goto busy; 6526 6527 kick_rdev: 6528 if (mddev_is_clustered(mddev)) 6529 md_cluster_ops->remove_disk(mddev, rdev); 6530 6531 md_kick_rdev_from_array(rdev); 6532 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6533 if (mddev->thread) 6534 md_wakeup_thread(mddev->thread); 6535 else 6536 md_update_sb(mddev, 1); 6537 md_new_event(mddev); 6538 6539 return 0; 6540 busy: 6541 pr_debug("md: cannot remove active disk %s from %s ...\n", 6542 bdevname(rdev->bdev,b), mdname(mddev)); 6543 return -EBUSY; 6544 } 6545 6546 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6547 { 6548 char b[BDEVNAME_SIZE]; 6549 int err; 6550 struct md_rdev *rdev; 6551 6552 if (!mddev->pers) 6553 return -ENODEV; 6554 6555 if (mddev->major_version != 0) { 6556 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6557 mdname(mddev)); 6558 return -EINVAL; 6559 } 6560 if (!mddev->pers->hot_add_disk) { 6561 pr_warn("%s: personality does not support diskops!\n", 6562 mdname(mddev)); 6563 return -EINVAL; 6564 } 6565 6566 rdev = md_import_device(dev, -1, 0); 6567 if (IS_ERR(rdev)) { 6568 pr_warn("md: error, md_import_device() returned %ld\n", 6569 PTR_ERR(rdev)); 6570 return -EINVAL; 6571 } 6572 6573 if (mddev->persistent) 6574 rdev->sb_start = calc_dev_sboffset(rdev); 6575 else 6576 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6577 6578 rdev->sectors = rdev->sb_start; 6579 6580 if (test_bit(Faulty, &rdev->flags)) { 6581 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6582 bdevname(rdev->bdev,b), mdname(mddev)); 6583 err = -EINVAL; 6584 goto abort_export; 6585 } 6586 6587 clear_bit(In_sync, &rdev->flags); 6588 rdev->desc_nr = -1; 6589 rdev->saved_raid_disk = -1; 6590 err = bind_rdev_to_array(rdev, mddev); 6591 if (err) 6592 goto abort_export; 6593 6594 /* 6595 * The rest should better be atomic, we can have disk failures 6596 * noticed in interrupt contexts ... 6597 */ 6598 6599 rdev->raid_disk = -1; 6600 6601 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6602 if (!mddev->thread) 6603 md_update_sb(mddev, 1); 6604 /* 6605 * Kick recovery, maybe this spare has to be added to the 6606 * array immediately. 6607 */ 6608 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6609 md_wakeup_thread(mddev->thread); 6610 md_new_event(mddev); 6611 return 0; 6612 6613 abort_export: 6614 export_rdev(rdev); 6615 return err; 6616 } 6617 6618 static int set_bitmap_file(struct mddev *mddev, int fd) 6619 { 6620 int err = 0; 6621 6622 if (mddev->pers) { 6623 if (!mddev->pers->quiesce || !mddev->thread) 6624 return -EBUSY; 6625 if (mddev->recovery || mddev->sync_thread) 6626 return -EBUSY; 6627 /* we should be able to change the bitmap.. */ 6628 } 6629 6630 if (fd >= 0) { 6631 struct inode *inode; 6632 struct file *f; 6633 6634 if (mddev->bitmap || mddev->bitmap_info.file) 6635 return -EEXIST; /* cannot add when bitmap is present */ 6636 f = fget(fd); 6637 6638 if (f == NULL) { 6639 pr_warn("%s: error: failed to get bitmap file\n", 6640 mdname(mddev)); 6641 return -EBADF; 6642 } 6643 6644 inode = f->f_mapping->host; 6645 if (!S_ISREG(inode->i_mode)) { 6646 pr_warn("%s: error: bitmap file must be a regular file\n", 6647 mdname(mddev)); 6648 err = -EBADF; 6649 } else if (!(f->f_mode & FMODE_WRITE)) { 6650 pr_warn("%s: error: bitmap file must open for write\n", 6651 mdname(mddev)); 6652 err = -EBADF; 6653 } else if (atomic_read(&inode->i_writecount) != 1) { 6654 pr_warn("%s: error: bitmap file is already in use\n", 6655 mdname(mddev)); 6656 err = -EBUSY; 6657 } 6658 if (err) { 6659 fput(f); 6660 return err; 6661 } 6662 mddev->bitmap_info.file = f; 6663 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6664 } else if (mddev->bitmap == NULL) 6665 return -ENOENT; /* cannot remove what isn't there */ 6666 err = 0; 6667 if (mddev->pers) { 6668 if (fd >= 0) { 6669 struct bitmap *bitmap; 6670 6671 bitmap = bitmap_create(mddev, -1); 6672 mddev_suspend(mddev); 6673 if (!IS_ERR(bitmap)) { 6674 mddev->bitmap = bitmap; 6675 err = bitmap_load(mddev); 6676 } else 6677 err = PTR_ERR(bitmap); 6678 if (err) { 6679 bitmap_destroy(mddev); 6680 fd = -1; 6681 } 6682 mddev_resume(mddev); 6683 } else if (fd < 0) { 6684 mddev_suspend(mddev); 6685 bitmap_destroy(mddev); 6686 mddev_resume(mddev); 6687 } 6688 } 6689 if (fd < 0) { 6690 struct file *f = mddev->bitmap_info.file; 6691 if (f) { 6692 spin_lock(&mddev->lock); 6693 mddev->bitmap_info.file = NULL; 6694 spin_unlock(&mddev->lock); 6695 fput(f); 6696 } 6697 } 6698 6699 return err; 6700 } 6701 6702 /* 6703 * set_array_info is used two different ways 6704 * The original usage is when creating a new array. 6705 * In this usage, raid_disks is > 0 and it together with 6706 * level, size, not_persistent,layout,chunksize determine the 6707 * shape of the array. 6708 * This will always create an array with a type-0.90.0 superblock. 6709 * The newer usage is when assembling an array. 6710 * In this case raid_disks will be 0, and the major_version field is 6711 * use to determine which style super-blocks are to be found on the devices. 6712 * The minor and patch _version numbers are also kept incase the 6713 * super_block handler wishes to interpret them. 6714 */ 6715 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6716 { 6717 6718 if (info->raid_disks == 0) { 6719 /* just setting version number for superblock loading */ 6720 if (info->major_version < 0 || 6721 info->major_version >= ARRAY_SIZE(super_types) || 6722 super_types[info->major_version].name == NULL) { 6723 /* maybe try to auto-load a module? */ 6724 pr_warn("md: superblock version %d not known\n", 6725 info->major_version); 6726 return -EINVAL; 6727 } 6728 mddev->major_version = info->major_version; 6729 mddev->minor_version = info->minor_version; 6730 mddev->patch_version = info->patch_version; 6731 mddev->persistent = !info->not_persistent; 6732 /* ensure mddev_put doesn't delete this now that there 6733 * is some minimal configuration. 6734 */ 6735 mddev->ctime = ktime_get_real_seconds(); 6736 return 0; 6737 } 6738 mddev->major_version = MD_MAJOR_VERSION; 6739 mddev->minor_version = MD_MINOR_VERSION; 6740 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6741 mddev->ctime = ktime_get_real_seconds(); 6742 6743 mddev->level = info->level; 6744 mddev->clevel[0] = 0; 6745 mddev->dev_sectors = 2 * (sector_t)info->size; 6746 mddev->raid_disks = info->raid_disks; 6747 /* don't set md_minor, it is determined by which /dev/md* was 6748 * openned 6749 */ 6750 if (info->state & (1<<MD_SB_CLEAN)) 6751 mddev->recovery_cp = MaxSector; 6752 else 6753 mddev->recovery_cp = 0; 6754 mddev->persistent = ! info->not_persistent; 6755 mddev->external = 0; 6756 6757 mddev->layout = info->layout; 6758 mddev->chunk_sectors = info->chunk_size >> 9; 6759 6760 if (mddev->persistent) { 6761 mddev->max_disks = MD_SB_DISKS; 6762 mddev->flags = 0; 6763 mddev->sb_flags = 0; 6764 } 6765 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6766 6767 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6768 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6769 mddev->bitmap_info.offset = 0; 6770 6771 mddev->reshape_position = MaxSector; 6772 6773 /* 6774 * Generate a 128 bit UUID 6775 */ 6776 get_random_bytes(mddev->uuid, 16); 6777 6778 mddev->new_level = mddev->level; 6779 mddev->new_chunk_sectors = mddev->chunk_sectors; 6780 mddev->new_layout = mddev->layout; 6781 mddev->delta_disks = 0; 6782 mddev->reshape_backwards = 0; 6783 6784 return 0; 6785 } 6786 6787 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6788 { 6789 lockdep_assert_held(&mddev->reconfig_mutex); 6790 6791 if (mddev->external_size) 6792 return; 6793 6794 mddev->array_sectors = array_sectors; 6795 } 6796 EXPORT_SYMBOL(md_set_array_sectors); 6797 6798 static int update_size(struct mddev *mddev, sector_t num_sectors) 6799 { 6800 struct md_rdev *rdev; 6801 int rv; 6802 int fit = (num_sectors == 0); 6803 sector_t old_dev_sectors = mddev->dev_sectors; 6804 6805 if (mddev->pers->resize == NULL) 6806 return -EINVAL; 6807 /* The "num_sectors" is the number of sectors of each device that 6808 * is used. This can only make sense for arrays with redundancy. 6809 * linear and raid0 always use whatever space is available. We can only 6810 * consider changing this number if no resync or reconstruction is 6811 * happening, and if the new size is acceptable. It must fit before the 6812 * sb_start or, if that is <data_offset, it must fit before the size 6813 * of each device. If num_sectors is zero, we find the largest size 6814 * that fits. 6815 */ 6816 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6817 mddev->sync_thread) 6818 return -EBUSY; 6819 if (mddev->ro) 6820 return -EROFS; 6821 6822 rdev_for_each(rdev, mddev) { 6823 sector_t avail = rdev->sectors; 6824 6825 if (fit && (num_sectors == 0 || num_sectors > avail)) 6826 num_sectors = avail; 6827 if (avail < num_sectors) 6828 return -ENOSPC; 6829 } 6830 rv = mddev->pers->resize(mddev, num_sectors); 6831 if (!rv) { 6832 if (mddev_is_clustered(mddev)) 6833 md_cluster_ops->update_size(mddev, old_dev_sectors); 6834 else if (mddev->queue) { 6835 set_capacity(mddev->gendisk, mddev->array_sectors); 6836 revalidate_disk(mddev->gendisk); 6837 } 6838 } 6839 return rv; 6840 } 6841 6842 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6843 { 6844 int rv; 6845 struct md_rdev *rdev; 6846 /* change the number of raid disks */ 6847 if (mddev->pers->check_reshape == NULL) 6848 return -EINVAL; 6849 if (mddev->ro) 6850 return -EROFS; 6851 if (raid_disks <= 0 || 6852 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6853 return -EINVAL; 6854 if (mddev->sync_thread || 6855 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6856 mddev->reshape_position != MaxSector) 6857 return -EBUSY; 6858 6859 rdev_for_each(rdev, mddev) { 6860 if (mddev->raid_disks < raid_disks && 6861 rdev->data_offset < rdev->new_data_offset) 6862 return -EINVAL; 6863 if (mddev->raid_disks > raid_disks && 6864 rdev->data_offset > rdev->new_data_offset) 6865 return -EINVAL; 6866 } 6867 6868 mddev->delta_disks = raid_disks - mddev->raid_disks; 6869 if (mddev->delta_disks < 0) 6870 mddev->reshape_backwards = 1; 6871 else if (mddev->delta_disks > 0) 6872 mddev->reshape_backwards = 0; 6873 6874 rv = mddev->pers->check_reshape(mddev); 6875 if (rv < 0) { 6876 mddev->delta_disks = 0; 6877 mddev->reshape_backwards = 0; 6878 } 6879 return rv; 6880 } 6881 6882 /* 6883 * update_array_info is used to change the configuration of an 6884 * on-line array. 6885 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6886 * fields in the info are checked against the array. 6887 * Any differences that cannot be handled will cause an error. 6888 * Normally, only one change can be managed at a time. 6889 */ 6890 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6891 { 6892 int rv = 0; 6893 int cnt = 0; 6894 int state = 0; 6895 6896 /* calculate expected state,ignoring low bits */ 6897 if (mddev->bitmap && mddev->bitmap_info.offset) 6898 state |= (1 << MD_SB_BITMAP_PRESENT); 6899 6900 if (mddev->major_version != info->major_version || 6901 mddev->minor_version != info->minor_version || 6902 /* mddev->patch_version != info->patch_version || */ 6903 mddev->ctime != info->ctime || 6904 mddev->level != info->level || 6905 /* mddev->layout != info->layout || */ 6906 mddev->persistent != !info->not_persistent || 6907 mddev->chunk_sectors != info->chunk_size >> 9 || 6908 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6909 ((state^info->state) & 0xfffffe00) 6910 ) 6911 return -EINVAL; 6912 /* Check there is only one change */ 6913 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6914 cnt++; 6915 if (mddev->raid_disks != info->raid_disks) 6916 cnt++; 6917 if (mddev->layout != info->layout) 6918 cnt++; 6919 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6920 cnt++; 6921 if (cnt == 0) 6922 return 0; 6923 if (cnt > 1) 6924 return -EINVAL; 6925 6926 if (mddev->layout != info->layout) { 6927 /* Change layout 6928 * we don't need to do anything at the md level, the 6929 * personality will take care of it all. 6930 */ 6931 if (mddev->pers->check_reshape == NULL) 6932 return -EINVAL; 6933 else { 6934 mddev->new_layout = info->layout; 6935 rv = mddev->pers->check_reshape(mddev); 6936 if (rv) 6937 mddev->new_layout = mddev->layout; 6938 return rv; 6939 } 6940 } 6941 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6942 rv = update_size(mddev, (sector_t)info->size * 2); 6943 6944 if (mddev->raid_disks != info->raid_disks) 6945 rv = update_raid_disks(mddev, info->raid_disks); 6946 6947 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6948 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6949 rv = -EINVAL; 6950 goto err; 6951 } 6952 if (mddev->recovery || mddev->sync_thread) { 6953 rv = -EBUSY; 6954 goto err; 6955 } 6956 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6957 struct bitmap *bitmap; 6958 /* add the bitmap */ 6959 if (mddev->bitmap) { 6960 rv = -EEXIST; 6961 goto err; 6962 } 6963 if (mddev->bitmap_info.default_offset == 0) { 6964 rv = -EINVAL; 6965 goto err; 6966 } 6967 mddev->bitmap_info.offset = 6968 mddev->bitmap_info.default_offset; 6969 mddev->bitmap_info.space = 6970 mddev->bitmap_info.default_space; 6971 bitmap = bitmap_create(mddev, -1); 6972 mddev_suspend(mddev); 6973 if (!IS_ERR(bitmap)) { 6974 mddev->bitmap = bitmap; 6975 rv = bitmap_load(mddev); 6976 } else 6977 rv = PTR_ERR(bitmap); 6978 if (rv) 6979 bitmap_destroy(mddev); 6980 mddev_resume(mddev); 6981 } else { 6982 /* remove the bitmap */ 6983 if (!mddev->bitmap) { 6984 rv = -ENOENT; 6985 goto err; 6986 } 6987 if (mddev->bitmap->storage.file) { 6988 rv = -EINVAL; 6989 goto err; 6990 } 6991 if (mddev->bitmap_info.nodes) { 6992 /* hold PW on all the bitmap lock */ 6993 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6994 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6995 rv = -EPERM; 6996 md_cluster_ops->unlock_all_bitmaps(mddev); 6997 goto err; 6998 } 6999 7000 mddev->bitmap_info.nodes = 0; 7001 md_cluster_ops->leave(mddev); 7002 } 7003 mddev_suspend(mddev); 7004 bitmap_destroy(mddev); 7005 mddev_resume(mddev); 7006 mddev->bitmap_info.offset = 0; 7007 } 7008 } 7009 md_update_sb(mddev, 1); 7010 return rv; 7011 err: 7012 return rv; 7013 } 7014 7015 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7016 { 7017 struct md_rdev *rdev; 7018 int err = 0; 7019 7020 if (mddev->pers == NULL) 7021 return -ENODEV; 7022 7023 rcu_read_lock(); 7024 rdev = md_find_rdev_rcu(mddev, dev); 7025 if (!rdev) 7026 err = -ENODEV; 7027 else { 7028 md_error(mddev, rdev); 7029 if (!test_bit(Faulty, &rdev->flags)) 7030 err = -EBUSY; 7031 } 7032 rcu_read_unlock(); 7033 return err; 7034 } 7035 7036 /* 7037 * We have a problem here : there is no easy way to give a CHS 7038 * virtual geometry. We currently pretend that we have a 2 heads 7039 * 4 sectors (with a BIG number of cylinders...). This drives 7040 * dosfs just mad... ;-) 7041 */ 7042 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7043 { 7044 struct mddev *mddev = bdev->bd_disk->private_data; 7045 7046 geo->heads = 2; 7047 geo->sectors = 4; 7048 geo->cylinders = mddev->array_sectors / 8; 7049 return 0; 7050 } 7051 7052 static inline bool md_ioctl_valid(unsigned int cmd) 7053 { 7054 switch (cmd) { 7055 case ADD_NEW_DISK: 7056 case BLKROSET: 7057 case GET_ARRAY_INFO: 7058 case GET_BITMAP_FILE: 7059 case GET_DISK_INFO: 7060 case HOT_ADD_DISK: 7061 case HOT_REMOVE_DISK: 7062 case RAID_AUTORUN: 7063 case RAID_VERSION: 7064 case RESTART_ARRAY_RW: 7065 case RUN_ARRAY: 7066 case SET_ARRAY_INFO: 7067 case SET_BITMAP_FILE: 7068 case SET_DISK_FAULTY: 7069 case STOP_ARRAY: 7070 case STOP_ARRAY_RO: 7071 case CLUSTERED_DISK_NACK: 7072 return true; 7073 default: 7074 return false; 7075 } 7076 } 7077 7078 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7079 unsigned int cmd, unsigned long arg) 7080 { 7081 int err = 0; 7082 void __user *argp = (void __user *)arg; 7083 struct mddev *mddev = NULL; 7084 int ro; 7085 bool did_set_md_closing = false; 7086 7087 if (!md_ioctl_valid(cmd)) 7088 return -ENOTTY; 7089 7090 switch (cmd) { 7091 case RAID_VERSION: 7092 case GET_ARRAY_INFO: 7093 case GET_DISK_INFO: 7094 break; 7095 default: 7096 if (!capable(CAP_SYS_ADMIN)) 7097 return -EACCES; 7098 } 7099 7100 /* 7101 * Commands dealing with the RAID driver but not any 7102 * particular array: 7103 */ 7104 switch (cmd) { 7105 case RAID_VERSION: 7106 err = get_version(argp); 7107 goto out; 7108 7109 #ifndef MODULE 7110 case RAID_AUTORUN: 7111 err = 0; 7112 autostart_arrays(arg); 7113 goto out; 7114 #endif 7115 default:; 7116 } 7117 7118 /* 7119 * Commands creating/starting a new array: 7120 */ 7121 7122 mddev = bdev->bd_disk->private_data; 7123 7124 if (!mddev) { 7125 BUG(); 7126 goto out; 7127 } 7128 7129 /* Some actions do not requires the mutex */ 7130 switch (cmd) { 7131 case GET_ARRAY_INFO: 7132 if (!mddev->raid_disks && !mddev->external) 7133 err = -ENODEV; 7134 else 7135 err = get_array_info(mddev, argp); 7136 goto out; 7137 7138 case GET_DISK_INFO: 7139 if (!mddev->raid_disks && !mddev->external) 7140 err = -ENODEV; 7141 else 7142 err = get_disk_info(mddev, argp); 7143 goto out; 7144 7145 case SET_DISK_FAULTY: 7146 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7147 goto out; 7148 7149 case GET_BITMAP_FILE: 7150 err = get_bitmap_file(mddev, argp); 7151 goto out; 7152 7153 } 7154 7155 if (cmd == ADD_NEW_DISK) 7156 /* need to ensure md_delayed_delete() has completed */ 7157 flush_workqueue(md_misc_wq); 7158 7159 if (cmd == HOT_REMOVE_DISK) 7160 /* need to ensure recovery thread has run */ 7161 wait_event_interruptible_timeout(mddev->sb_wait, 7162 !test_bit(MD_RECOVERY_NEEDED, 7163 &mddev->recovery), 7164 msecs_to_jiffies(5000)); 7165 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7166 /* Need to flush page cache, and ensure no-one else opens 7167 * and writes 7168 */ 7169 mutex_lock(&mddev->open_mutex); 7170 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7171 mutex_unlock(&mddev->open_mutex); 7172 err = -EBUSY; 7173 goto out; 7174 } 7175 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7176 set_bit(MD_CLOSING, &mddev->flags); 7177 did_set_md_closing = true; 7178 mutex_unlock(&mddev->open_mutex); 7179 sync_blockdev(bdev); 7180 } 7181 err = mddev_lock(mddev); 7182 if (err) { 7183 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7184 err, cmd); 7185 goto out; 7186 } 7187 7188 if (cmd == SET_ARRAY_INFO) { 7189 mdu_array_info_t info; 7190 if (!arg) 7191 memset(&info, 0, sizeof(info)); 7192 else if (copy_from_user(&info, argp, sizeof(info))) { 7193 err = -EFAULT; 7194 goto unlock; 7195 } 7196 if (mddev->pers) { 7197 err = update_array_info(mddev, &info); 7198 if (err) { 7199 pr_warn("md: couldn't update array info. %d\n", err); 7200 goto unlock; 7201 } 7202 goto unlock; 7203 } 7204 if (!list_empty(&mddev->disks)) { 7205 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7206 err = -EBUSY; 7207 goto unlock; 7208 } 7209 if (mddev->raid_disks) { 7210 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7211 err = -EBUSY; 7212 goto unlock; 7213 } 7214 err = set_array_info(mddev, &info); 7215 if (err) { 7216 pr_warn("md: couldn't set array info. %d\n", err); 7217 goto unlock; 7218 } 7219 goto unlock; 7220 } 7221 7222 /* 7223 * Commands querying/configuring an existing array: 7224 */ 7225 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7226 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7227 if ((!mddev->raid_disks && !mddev->external) 7228 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7229 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7230 && cmd != GET_BITMAP_FILE) { 7231 err = -ENODEV; 7232 goto unlock; 7233 } 7234 7235 /* 7236 * Commands even a read-only array can execute: 7237 */ 7238 switch (cmd) { 7239 case RESTART_ARRAY_RW: 7240 err = restart_array(mddev); 7241 goto unlock; 7242 7243 case STOP_ARRAY: 7244 err = do_md_stop(mddev, 0, bdev); 7245 goto unlock; 7246 7247 case STOP_ARRAY_RO: 7248 err = md_set_readonly(mddev, bdev); 7249 goto unlock; 7250 7251 case HOT_REMOVE_DISK: 7252 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7253 goto unlock; 7254 7255 case ADD_NEW_DISK: 7256 /* We can support ADD_NEW_DISK on read-only arrays 7257 * only if we are re-adding a preexisting device. 7258 * So require mddev->pers and MD_DISK_SYNC. 7259 */ 7260 if (mddev->pers) { 7261 mdu_disk_info_t info; 7262 if (copy_from_user(&info, argp, sizeof(info))) 7263 err = -EFAULT; 7264 else if (!(info.state & (1<<MD_DISK_SYNC))) 7265 /* Need to clear read-only for this */ 7266 break; 7267 else 7268 err = add_new_disk(mddev, &info); 7269 goto unlock; 7270 } 7271 break; 7272 7273 case BLKROSET: 7274 if (get_user(ro, (int __user *)(arg))) { 7275 err = -EFAULT; 7276 goto unlock; 7277 } 7278 err = -EINVAL; 7279 7280 /* if the bdev is going readonly the value of mddev->ro 7281 * does not matter, no writes are coming 7282 */ 7283 if (ro) 7284 goto unlock; 7285 7286 /* are we are already prepared for writes? */ 7287 if (mddev->ro != 1) 7288 goto unlock; 7289 7290 /* transitioning to readauto need only happen for 7291 * arrays that call md_write_start 7292 */ 7293 if (mddev->pers) { 7294 err = restart_array(mddev); 7295 if (err == 0) { 7296 mddev->ro = 2; 7297 set_disk_ro(mddev->gendisk, 0); 7298 } 7299 } 7300 goto unlock; 7301 } 7302 7303 /* 7304 * The remaining ioctls are changing the state of the 7305 * superblock, so we do not allow them on read-only arrays. 7306 */ 7307 if (mddev->ro && mddev->pers) { 7308 if (mddev->ro == 2) { 7309 mddev->ro = 0; 7310 sysfs_notify_dirent_safe(mddev->sysfs_state); 7311 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7312 /* mddev_unlock will wake thread */ 7313 /* If a device failed while we were read-only, we 7314 * need to make sure the metadata is updated now. 7315 */ 7316 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7317 mddev_unlock(mddev); 7318 wait_event(mddev->sb_wait, 7319 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7320 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7321 mddev_lock_nointr(mddev); 7322 } 7323 } else { 7324 err = -EROFS; 7325 goto unlock; 7326 } 7327 } 7328 7329 switch (cmd) { 7330 case ADD_NEW_DISK: 7331 { 7332 mdu_disk_info_t info; 7333 if (copy_from_user(&info, argp, sizeof(info))) 7334 err = -EFAULT; 7335 else 7336 err = add_new_disk(mddev, &info); 7337 goto unlock; 7338 } 7339 7340 case CLUSTERED_DISK_NACK: 7341 if (mddev_is_clustered(mddev)) 7342 md_cluster_ops->new_disk_ack(mddev, false); 7343 else 7344 err = -EINVAL; 7345 goto unlock; 7346 7347 case HOT_ADD_DISK: 7348 err = hot_add_disk(mddev, new_decode_dev(arg)); 7349 goto unlock; 7350 7351 case RUN_ARRAY: 7352 err = do_md_run(mddev); 7353 goto unlock; 7354 7355 case SET_BITMAP_FILE: 7356 err = set_bitmap_file(mddev, (int)arg); 7357 goto unlock; 7358 7359 default: 7360 err = -EINVAL; 7361 goto unlock; 7362 } 7363 7364 unlock: 7365 if (mddev->hold_active == UNTIL_IOCTL && 7366 err != -EINVAL) 7367 mddev->hold_active = 0; 7368 mddev_unlock(mddev); 7369 out: 7370 if(did_set_md_closing) 7371 clear_bit(MD_CLOSING, &mddev->flags); 7372 return err; 7373 } 7374 #ifdef CONFIG_COMPAT 7375 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7376 unsigned int cmd, unsigned long arg) 7377 { 7378 switch (cmd) { 7379 case HOT_REMOVE_DISK: 7380 case HOT_ADD_DISK: 7381 case SET_DISK_FAULTY: 7382 case SET_BITMAP_FILE: 7383 /* These take in integer arg, do not convert */ 7384 break; 7385 default: 7386 arg = (unsigned long)compat_ptr(arg); 7387 break; 7388 } 7389 7390 return md_ioctl(bdev, mode, cmd, arg); 7391 } 7392 #endif /* CONFIG_COMPAT */ 7393 7394 static int md_open(struct block_device *bdev, fmode_t mode) 7395 { 7396 /* 7397 * Succeed if we can lock the mddev, which confirms that 7398 * it isn't being stopped right now. 7399 */ 7400 struct mddev *mddev = mddev_find(bdev->bd_dev); 7401 int err; 7402 7403 if (!mddev) 7404 return -ENODEV; 7405 7406 if (mddev->gendisk != bdev->bd_disk) { 7407 /* we are racing with mddev_put which is discarding this 7408 * bd_disk. 7409 */ 7410 mddev_put(mddev); 7411 /* Wait until bdev->bd_disk is definitely gone */ 7412 flush_workqueue(md_misc_wq); 7413 /* Then retry the open from the top */ 7414 return -ERESTARTSYS; 7415 } 7416 BUG_ON(mddev != bdev->bd_disk->private_data); 7417 7418 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7419 goto out; 7420 7421 if (test_bit(MD_CLOSING, &mddev->flags)) { 7422 mutex_unlock(&mddev->open_mutex); 7423 err = -ENODEV; 7424 goto out; 7425 } 7426 7427 err = 0; 7428 atomic_inc(&mddev->openers); 7429 mutex_unlock(&mddev->open_mutex); 7430 7431 check_disk_change(bdev); 7432 out: 7433 if (err) 7434 mddev_put(mddev); 7435 return err; 7436 } 7437 7438 static void md_release(struct gendisk *disk, fmode_t mode) 7439 { 7440 struct mddev *mddev = disk->private_data; 7441 7442 BUG_ON(!mddev); 7443 atomic_dec(&mddev->openers); 7444 mddev_put(mddev); 7445 } 7446 7447 static int md_media_changed(struct gendisk *disk) 7448 { 7449 struct mddev *mddev = disk->private_data; 7450 7451 return mddev->changed; 7452 } 7453 7454 static int md_revalidate(struct gendisk *disk) 7455 { 7456 struct mddev *mddev = disk->private_data; 7457 7458 mddev->changed = 0; 7459 return 0; 7460 } 7461 static const struct block_device_operations md_fops = 7462 { 7463 .owner = THIS_MODULE, 7464 .open = md_open, 7465 .release = md_release, 7466 .ioctl = md_ioctl, 7467 #ifdef CONFIG_COMPAT 7468 .compat_ioctl = md_compat_ioctl, 7469 #endif 7470 .getgeo = md_getgeo, 7471 .media_changed = md_media_changed, 7472 .revalidate_disk= md_revalidate, 7473 }; 7474 7475 static int md_thread(void *arg) 7476 { 7477 struct md_thread *thread = arg; 7478 7479 /* 7480 * md_thread is a 'system-thread', it's priority should be very 7481 * high. We avoid resource deadlocks individually in each 7482 * raid personality. (RAID5 does preallocation) We also use RR and 7483 * the very same RT priority as kswapd, thus we will never get 7484 * into a priority inversion deadlock. 7485 * 7486 * we definitely have to have equal or higher priority than 7487 * bdflush, otherwise bdflush will deadlock if there are too 7488 * many dirty RAID5 blocks. 7489 */ 7490 7491 allow_signal(SIGKILL); 7492 while (!kthread_should_stop()) { 7493 7494 /* We need to wait INTERRUPTIBLE so that 7495 * we don't add to the load-average. 7496 * That means we need to be sure no signals are 7497 * pending 7498 */ 7499 if (signal_pending(current)) 7500 flush_signals(current); 7501 7502 wait_event_interruptible_timeout 7503 (thread->wqueue, 7504 test_bit(THREAD_WAKEUP, &thread->flags) 7505 || kthread_should_stop() || kthread_should_park(), 7506 thread->timeout); 7507 7508 clear_bit(THREAD_WAKEUP, &thread->flags); 7509 if (kthread_should_park()) 7510 kthread_parkme(); 7511 if (!kthread_should_stop()) 7512 thread->run(thread); 7513 } 7514 7515 return 0; 7516 } 7517 7518 void md_wakeup_thread(struct md_thread *thread) 7519 { 7520 if (thread) { 7521 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7522 set_bit(THREAD_WAKEUP, &thread->flags); 7523 wake_up(&thread->wqueue); 7524 } 7525 } 7526 EXPORT_SYMBOL(md_wakeup_thread); 7527 7528 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7529 struct mddev *mddev, const char *name) 7530 { 7531 struct md_thread *thread; 7532 7533 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7534 if (!thread) 7535 return NULL; 7536 7537 init_waitqueue_head(&thread->wqueue); 7538 7539 thread->run = run; 7540 thread->mddev = mddev; 7541 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7542 thread->tsk = kthread_run(md_thread, thread, 7543 "%s_%s", 7544 mdname(thread->mddev), 7545 name); 7546 if (IS_ERR(thread->tsk)) { 7547 kfree(thread); 7548 return NULL; 7549 } 7550 return thread; 7551 } 7552 EXPORT_SYMBOL(md_register_thread); 7553 7554 void md_unregister_thread(struct md_thread **threadp) 7555 { 7556 struct md_thread *thread = *threadp; 7557 if (!thread) 7558 return; 7559 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7560 /* Locking ensures that mddev_unlock does not wake_up a 7561 * non-existent thread 7562 */ 7563 spin_lock(&pers_lock); 7564 *threadp = NULL; 7565 spin_unlock(&pers_lock); 7566 7567 kthread_stop(thread->tsk); 7568 kfree(thread); 7569 } 7570 EXPORT_SYMBOL(md_unregister_thread); 7571 7572 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7573 { 7574 if (!rdev || test_bit(Faulty, &rdev->flags)) 7575 return; 7576 7577 if (!mddev->pers || !mddev->pers->error_handler) 7578 return; 7579 mddev->pers->error_handler(mddev,rdev); 7580 if (mddev->degraded) 7581 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7582 sysfs_notify_dirent_safe(rdev->sysfs_state); 7583 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7584 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7585 md_wakeup_thread(mddev->thread); 7586 if (mddev->event_work.func) 7587 queue_work(md_misc_wq, &mddev->event_work); 7588 md_new_event(mddev); 7589 } 7590 EXPORT_SYMBOL(md_error); 7591 7592 /* seq_file implementation /proc/mdstat */ 7593 7594 static void status_unused(struct seq_file *seq) 7595 { 7596 int i = 0; 7597 struct md_rdev *rdev; 7598 7599 seq_printf(seq, "unused devices: "); 7600 7601 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7602 char b[BDEVNAME_SIZE]; 7603 i++; 7604 seq_printf(seq, "%s ", 7605 bdevname(rdev->bdev,b)); 7606 } 7607 if (!i) 7608 seq_printf(seq, "<none>"); 7609 7610 seq_printf(seq, "\n"); 7611 } 7612 7613 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7614 { 7615 sector_t max_sectors, resync, res; 7616 unsigned long dt, db; 7617 sector_t rt; 7618 int scale; 7619 unsigned int per_milli; 7620 7621 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7622 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7623 max_sectors = mddev->resync_max_sectors; 7624 else 7625 max_sectors = mddev->dev_sectors; 7626 7627 resync = mddev->curr_resync; 7628 if (resync <= 3) { 7629 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7630 /* Still cleaning up */ 7631 resync = max_sectors; 7632 } else if (resync > max_sectors) 7633 resync = max_sectors; 7634 else 7635 resync -= atomic_read(&mddev->recovery_active); 7636 7637 if (resync == 0) { 7638 if (mddev->recovery_cp < MaxSector) { 7639 seq_printf(seq, "\tresync=PENDING"); 7640 return 1; 7641 } 7642 return 0; 7643 } 7644 if (resync < 3) { 7645 seq_printf(seq, "\tresync=DELAYED"); 7646 return 1; 7647 } 7648 7649 WARN_ON(max_sectors == 0); 7650 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7651 * in a sector_t, and (max_sectors>>scale) will fit in a 7652 * u32, as those are the requirements for sector_div. 7653 * Thus 'scale' must be at least 10 7654 */ 7655 scale = 10; 7656 if (sizeof(sector_t) > sizeof(unsigned long)) { 7657 while ( max_sectors/2 > (1ULL<<(scale+32))) 7658 scale++; 7659 } 7660 res = (resync>>scale)*1000; 7661 sector_div(res, (u32)((max_sectors>>scale)+1)); 7662 7663 per_milli = res; 7664 { 7665 int i, x = per_milli/50, y = 20-x; 7666 seq_printf(seq, "["); 7667 for (i = 0; i < x; i++) 7668 seq_printf(seq, "="); 7669 seq_printf(seq, ">"); 7670 for (i = 0; i < y; i++) 7671 seq_printf(seq, "."); 7672 seq_printf(seq, "] "); 7673 } 7674 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7675 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7676 "reshape" : 7677 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7678 "check" : 7679 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7680 "resync" : "recovery"))), 7681 per_milli/10, per_milli % 10, 7682 (unsigned long long) resync/2, 7683 (unsigned long long) max_sectors/2); 7684 7685 /* 7686 * dt: time from mark until now 7687 * db: blocks written from mark until now 7688 * rt: remaining time 7689 * 7690 * rt is a sector_t, so could be 32bit or 64bit. 7691 * So we divide before multiply in case it is 32bit and close 7692 * to the limit. 7693 * We scale the divisor (db) by 32 to avoid losing precision 7694 * near the end of resync when the number of remaining sectors 7695 * is close to 'db'. 7696 * We then divide rt by 32 after multiplying by db to compensate. 7697 * The '+1' avoids division by zero if db is very small. 7698 */ 7699 dt = ((jiffies - mddev->resync_mark) / HZ); 7700 if (!dt) dt++; 7701 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7702 - mddev->resync_mark_cnt; 7703 7704 rt = max_sectors - resync; /* number of remaining sectors */ 7705 sector_div(rt, db/32+1); 7706 rt *= dt; 7707 rt >>= 5; 7708 7709 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7710 ((unsigned long)rt % 60)/6); 7711 7712 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7713 return 1; 7714 } 7715 7716 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7717 { 7718 struct list_head *tmp; 7719 loff_t l = *pos; 7720 struct mddev *mddev; 7721 7722 if (l >= 0x10000) 7723 return NULL; 7724 if (!l--) 7725 /* header */ 7726 return (void*)1; 7727 7728 spin_lock(&all_mddevs_lock); 7729 list_for_each(tmp,&all_mddevs) 7730 if (!l--) { 7731 mddev = list_entry(tmp, struct mddev, all_mddevs); 7732 mddev_get(mddev); 7733 spin_unlock(&all_mddevs_lock); 7734 return mddev; 7735 } 7736 spin_unlock(&all_mddevs_lock); 7737 if (!l--) 7738 return (void*)2;/* tail */ 7739 return NULL; 7740 } 7741 7742 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7743 { 7744 struct list_head *tmp; 7745 struct mddev *next_mddev, *mddev = v; 7746 7747 ++*pos; 7748 if (v == (void*)2) 7749 return NULL; 7750 7751 spin_lock(&all_mddevs_lock); 7752 if (v == (void*)1) 7753 tmp = all_mddevs.next; 7754 else 7755 tmp = mddev->all_mddevs.next; 7756 if (tmp != &all_mddevs) 7757 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7758 else { 7759 next_mddev = (void*)2; 7760 *pos = 0x10000; 7761 } 7762 spin_unlock(&all_mddevs_lock); 7763 7764 if (v != (void*)1) 7765 mddev_put(mddev); 7766 return next_mddev; 7767 7768 } 7769 7770 static void md_seq_stop(struct seq_file *seq, void *v) 7771 { 7772 struct mddev *mddev = v; 7773 7774 if (mddev && v != (void*)1 && v != (void*)2) 7775 mddev_put(mddev); 7776 } 7777 7778 static int md_seq_show(struct seq_file *seq, void *v) 7779 { 7780 struct mddev *mddev = v; 7781 sector_t sectors; 7782 struct md_rdev *rdev; 7783 7784 if (v == (void*)1) { 7785 struct md_personality *pers; 7786 seq_printf(seq, "Personalities : "); 7787 spin_lock(&pers_lock); 7788 list_for_each_entry(pers, &pers_list, list) 7789 seq_printf(seq, "[%s] ", pers->name); 7790 7791 spin_unlock(&pers_lock); 7792 seq_printf(seq, "\n"); 7793 seq->poll_event = atomic_read(&md_event_count); 7794 return 0; 7795 } 7796 if (v == (void*)2) { 7797 status_unused(seq); 7798 return 0; 7799 } 7800 7801 spin_lock(&mddev->lock); 7802 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7803 seq_printf(seq, "%s : %sactive", mdname(mddev), 7804 mddev->pers ? "" : "in"); 7805 if (mddev->pers) { 7806 if (mddev->ro==1) 7807 seq_printf(seq, " (read-only)"); 7808 if (mddev->ro==2) 7809 seq_printf(seq, " (auto-read-only)"); 7810 seq_printf(seq, " %s", mddev->pers->name); 7811 } 7812 7813 sectors = 0; 7814 rcu_read_lock(); 7815 rdev_for_each_rcu(rdev, mddev) { 7816 char b[BDEVNAME_SIZE]; 7817 seq_printf(seq, " %s[%d]", 7818 bdevname(rdev->bdev,b), rdev->desc_nr); 7819 if (test_bit(WriteMostly, &rdev->flags)) 7820 seq_printf(seq, "(W)"); 7821 if (test_bit(Journal, &rdev->flags)) 7822 seq_printf(seq, "(J)"); 7823 if (test_bit(Faulty, &rdev->flags)) { 7824 seq_printf(seq, "(F)"); 7825 continue; 7826 } 7827 if (rdev->raid_disk < 0) 7828 seq_printf(seq, "(S)"); /* spare */ 7829 if (test_bit(Replacement, &rdev->flags)) 7830 seq_printf(seq, "(R)"); 7831 sectors += rdev->sectors; 7832 } 7833 rcu_read_unlock(); 7834 7835 if (!list_empty(&mddev->disks)) { 7836 if (mddev->pers) 7837 seq_printf(seq, "\n %llu blocks", 7838 (unsigned long long) 7839 mddev->array_sectors / 2); 7840 else 7841 seq_printf(seq, "\n %llu blocks", 7842 (unsigned long long)sectors / 2); 7843 } 7844 if (mddev->persistent) { 7845 if (mddev->major_version != 0 || 7846 mddev->minor_version != 90) { 7847 seq_printf(seq," super %d.%d", 7848 mddev->major_version, 7849 mddev->minor_version); 7850 } 7851 } else if (mddev->external) 7852 seq_printf(seq, " super external:%s", 7853 mddev->metadata_type); 7854 else 7855 seq_printf(seq, " super non-persistent"); 7856 7857 if (mddev->pers) { 7858 mddev->pers->status(seq, mddev); 7859 seq_printf(seq, "\n "); 7860 if (mddev->pers->sync_request) { 7861 if (status_resync(seq, mddev)) 7862 seq_printf(seq, "\n "); 7863 } 7864 } else 7865 seq_printf(seq, "\n "); 7866 7867 bitmap_status(seq, mddev->bitmap); 7868 7869 seq_printf(seq, "\n"); 7870 } 7871 spin_unlock(&mddev->lock); 7872 7873 return 0; 7874 } 7875 7876 static const struct seq_operations md_seq_ops = { 7877 .start = md_seq_start, 7878 .next = md_seq_next, 7879 .stop = md_seq_stop, 7880 .show = md_seq_show, 7881 }; 7882 7883 static int md_seq_open(struct inode *inode, struct file *file) 7884 { 7885 struct seq_file *seq; 7886 int error; 7887 7888 error = seq_open(file, &md_seq_ops); 7889 if (error) 7890 return error; 7891 7892 seq = file->private_data; 7893 seq->poll_event = atomic_read(&md_event_count); 7894 return error; 7895 } 7896 7897 static int md_unloading; 7898 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7899 { 7900 struct seq_file *seq = filp->private_data; 7901 __poll_t mask; 7902 7903 if (md_unloading) 7904 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7905 poll_wait(filp, &md_event_waiters, wait); 7906 7907 /* always allow read */ 7908 mask = EPOLLIN | EPOLLRDNORM; 7909 7910 if (seq->poll_event != atomic_read(&md_event_count)) 7911 mask |= EPOLLERR | EPOLLPRI; 7912 return mask; 7913 } 7914 7915 static const struct file_operations md_seq_fops = { 7916 .owner = THIS_MODULE, 7917 .open = md_seq_open, 7918 .read = seq_read, 7919 .llseek = seq_lseek, 7920 .release = seq_release, 7921 .poll = mdstat_poll, 7922 }; 7923 7924 int register_md_personality(struct md_personality *p) 7925 { 7926 pr_debug("md: %s personality registered for level %d\n", 7927 p->name, p->level); 7928 spin_lock(&pers_lock); 7929 list_add_tail(&p->list, &pers_list); 7930 spin_unlock(&pers_lock); 7931 return 0; 7932 } 7933 EXPORT_SYMBOL(register_md_personality); 7934 7935 int unregister_md_personality(struct md_personality *p) 7936 { 7937 pr_debug("md: %s personality unregistered\n", p->name); 7938 spin_lock(&pers_lock); 7939 list_del_init(&p->list); 7940 spin_unlock(&pers_lock); 7941 return 0; 7942 } 7943 EXPORT_SYMBOL(unregister_md_personality); 7944 7945 int register_md_cluster_operations(struct md_cluster_operations *ops, 7946 struct module *module) 7947 { 7948 int ret = 0; 7949 spin_lock(&pers_lock); 7950 if (md_cluster_ops != NULL) 7951 ret = -EALREADY; 7952 else { 7953 md_cluster_ops = ops; 7954 md_cluster_mod = module; 7955 } 7956 spin_unlock(&pers_lock); 7957 return ret; 7958 } 7959 EXPORT_SYMBOL(register_md_cluster_operations); 7960 7961 int unregister_md_cluster_operations(void) 7962 { 7963 spin_lock(&pers_lock); 7964 md_cluster_ops = NULL; 7965 spin_unlock(&pers_lock); 7966 return 0; 7967 } 7968 EXPORT_SYMBOL(unregister_md_cluster_operations); 7969 7970 int md_setup_cluster(struct mddev *mddev, int nodes) 7971 { 7972 if (!md_cluster_ops) 7973 request_module("md-cluster"); 7974 spin_lock(&pers_lock); 7975 /* ensure module won't be unloaded */ 7976 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7977 pr_warn("can't find md-cluster module or get it's reference.\n"); 7978 spin_unlock(&pers_lock); 7979 return -ENOENT; 7980 } 7981 spin_unlock(&pers_lock); 7982 7983 return md_cluster_ops->join(mddev, nodes); 7984 } 7985 7986 void md_cluster_stop(struct mddev *mddev) 7987 { 7988 if (!md_cluster_ops) 7989 return; 7990 md_cluster_ops->leave(mddev); 7991 module_put(md_cluster_mod); 7992 } 7993 7994 static int is_mddev_idle(struct mddev *mddev, int init) 7995 { 7996 struct md_rdev *rdev; 7997 int idle; 7998 int curr_events; 7999 8000 idle = 1; 8001 rcu_read_lock(); 8002 rdev_for_each_rcu(rdev, mddev) { 8003 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8004 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 8005 (int)part_stat_read(&disk->part0, sectors[1]) - 8006 atomic_read(&disk->sync_io); 8007 /* sync IO will cause sync_io to increase before the disk_stats 8008 * as sync_io is counted when a request starts, and 8009 * disk_stats is counted when it completes. 8010 * So resync activity will cause curr_events to be smaller than 8011 * when there was no such activity. 8012 * non-sync IO will cause disk_stat to increase without 8013 * increasing sync_io so curr_events will (eventually) 8014 * be larger than it was before. Once it becomes 8015 * substantially larger, the test below will cause 8016 * the array to appear non-idle, and resync will slow 8017 * down. 8018 * If there is a lot of outstanding resync activity when 8019 * we set last_event to curr_events, then all that activity 8020 * completing might cause the array to appear non-idle 8021 * and resync will be slowed down even though there might 8022 * not have been non-resync activity. This will only 8023 * happen once though. 'last_events' will soon reflect 8024 * the state where there is little or no outstanding 8025 * resync requests, and further resync activity will 8026 * always make curr_events less than last_events. 8027 * 8028 */ 8029 if (init || curr_events - rdev->last_events > 64) { 8030 rdev->last_events = curr_events; 8031 idle = 0; 8032 } 8033 } 8034 rcu_read_unlock(); 8035 return idle; 8036 } 8037 8038 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8039 { 8040 /* another "blocks" (512byte) blocks have been synced */ 8041 atomic_sub(blocks, &mddev->recovery_active); 8042 wake_up(&mddev->recovery_wait); 8043 if (!ok) { 8044 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8045 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8046 md_wakeup_thread(mddev->thread); 8047 // stop recovery, signal do_sync .... 8048 } 8049 } 8050 EXPORT_SYMBOL(md_done_sync); 8051 8052 /* md_write_start(mddev, bi) 8053 * If we need to update some array metadata (e.g. 'active' flag 8054 * in superblock) before writing, schedule a superblock update 8055 * and wait for it to complete. 8056 * A return value of 'false' means that the write wasn't recorded 8057 * and cannot proceed as the array is being suspend. 8058 */ 8059 bool md_write_start(struct mddev *mddev, struct bio *bi) 8060 { 8061 int did_change = 0; 8062 8063 if (bio_data_dir(bi) != WRITE) 8064 return true; 8065 8066 BUG_ON(mddev->ro == 1); 8067 if (mddev->ro == 2) { 8068 /* need to switch to read/write */ 8069 mddev->ro = 0; 8070 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8071 md_wakeup_thread(mddev->thread); 8072 md_wakeup_thread(mddev->sync_thread); 8073 did_change = 1; 8074 } 8075 rcu_read_lock(); 8076 percpu_ref_get(&mddev->writes_pending); 8077 smp_mb(); /* Match smp_mb in set_in_sync() */ 8078 if (mddev->safemode == 1) 8079 mddev->safemode = 0; 8080 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8081 if (mddev->in_sync || mddev->sync_checkers) { 8082 spin_lock(&mddev->lock); 8083 if (mddev->in_sync) { 8084 mddev->in_sync = 0; 8085 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8086 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8087 md_wakeup_thread(mddev->thread); 8088 did_change = 1; 8089 } 8090 spin_unlock(&mddev->lock); 8091 } 8092 rcu_read_unlock(); 8093 if (did_change) 8094 sysfs_notify_dirent_safe(mddev->sysfs_state); 8095 if (!mddev->has_superblocks) 8096 return true; 8097 wait_event(mddev->sb_wait, 8098 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8099 mddev->suspended); 8100 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8101 percpu_ref_put(&mddev->writes_pending); 8102 return false; 8103 } 8104 return true; 8105 } 8106 EXPORT_SYMBOL(md_write_start); 8107 8108 /* md_write_inc can only be called when md_write_start() has 8109 * already been called at least once of the current request. 8110 * It increments the counter and is useful when a single request 8111 * is split into several parts. Each part causes an increment and 8112 * so needs a matching md_write_end(). 8113 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8114 * a spinlocked region. 8115 */ 8116 void md_write_inc(struct mddev *mddev, struct bio *bi) 8117 { 8118 if (bio_data_dir(bi) != WRITE) 8119 return; 8120 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8121 percpu_ref_get(&mddev->writes_pending); 8122 } 8123 EXPORT_SYMBOL(md_write_inc); 8124 8125 void md_write_end(struct mddev *mddev) 8126 { 8127 percpu_ref_put(&mddev->writes_pending); 8128 8129 if (mddev->safemode == 2) 8130 md_wakeup_thread(mddev->thread); 8131 else if (mddev->safemode_delay) 8132 /* The roundup() ensures this only performs locking once 8133 * every ->safemode_delay jiffies 8134 */ 8135 mod_timer(&mddev->safemode_timer, 8136 roundup(jiffies, mddev->safemode_delay) + 8137 mddev->safemode_delay); 8138 } 8139 8140 EXPORT_SYMBOL(md_write_end); 8141 8142 /* md_allow_write(mddev) 8143 * Calling this ensures that the array is marked 'active' so that writes 8144 * may proceed without blocking. It is important to call this before 8145 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8146 * Must be called with mddev_lock held. 8147 */ 8148 void md_allow_write(struct mddev *mddev) 8149 { 8150 if (!mddev->pers) 8151 return; 8152 if (mddev->ro) 8153 return; 8154 if (!mddev->pers->sync_request) 8155 return; 8156 8157 spin_lock(&mddev->lock); 8158 if (mddev->in_sync) { 8159 mddev->in_sync = 0; 8160 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8161 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8162 if (mddev->safemode_delay && 8163 mddev->safemode == 0) 8164 mddev->safemode = 1; 8165 spin_unlock(&mddev->lock); 8166 md_update_sb(mddev, 0); 8167 sysfs_notify_dirent_safe(mddev->sysfs_state); 8168 /* wait for the dirty state to be recorded in the metadata */ 8169 wait_event(mddev->sb_wait, 8170 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8171 } else 8172 spin_unlock(&mddev->lock); 8173 } 8174 EXPORT_SYMBOL_GPL(md_allow_write); 8175 8176 #define SYNC_MARKS 10 8177 #define SYNC_MARK_STEP (3*HZ) 8178 #define UPDATE_FREQUENCY (5*60*HZ) 8179 void md_do_sync(struct md_thread *thread) 8180 { 8181 struct mddev *mddev = thread->mddev; 8182 struct mddev *mddev2; 8183 unsigned int currspeed = 0, 8184 window; 8185 sector_t max_sectors,j, io_sectors, recovery_done; 8186 unsigned long mark[SYNC_MARKS]; 8187 unsigned long update_time; 8188 sector_t mark_cnt[SYNC_MARKS]; 8189 int last_mark,m; 8190 struct list_head *tmp; 8191 sector_t last_check; 8192 int skipped = 0; 8193 struct md_rdev *rdev; 8194 char *desc, *action = NULL; 8195 struct blk_plug plug; 8196 int ret; 8197 8198 /* just incase thread restarts... */ 8199 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8200 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8201 return; 8202 if (mddev->ro) {/* never try to sync a read-only array */ 8203 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8204 return; 8205 } 8206 8207 if (mddev_is_clustered(mddev)) { 8208 ret = md_cluster_ops->resync_start(mddev); 8209 if (ret) 8210 goto skip; 8211 8212 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8213 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8214 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8215 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8216 && ((unsigned long long)mddev->curr_resync_completed 8217 < (unsigned long long)mddev->resync_max_sectors)) 8218 goto skip; 8219 } 8220 8221 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8222 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8223 desc = "data-check"; 8224 action = "check"; 8225 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8226 desc = "requested-resync"; 8227 action = "repair"; 8228 } else 8229 desc = "resync"; 8230 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8231 desc = "reshape"; 8232 else 8233 desc = "recovery"; 8234 8235 mddev->last_sync_action = action ?: desc; 8236 8237 /* we overload curr_resync somewhat here. 8238 * 0 == not engaged in resync at all 8239 * 2 == checking that there is no conflict with another sync 8240 * 1 == like 2, but have yielded to allow conflicting resync to 8241 * commense 8242 * other == active in resync - this many blocks 8243 * 8244 * Before starting a resync we must have set curr_resync to 8245 * 2, and then checked that every "conflicting" array has curr_resync 8246 * less than ours. When we find one that is the same or higher 8247 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8248 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8249 * This will mean we have to start checking from the beginning again. 8250 * 8251 */ 8252 8253 do { 8254 int mddev2_minor = -1; 8255 mddev->curr_resync = 2; 8256 8257 try_again: 8258 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8259 goto skip; 8260 for_each_mddev(mddev2, tmp) { 8261 if (mddev2 == mddev) 8262 continue; 8263 if (!mddev->parallel_resync 8264 && mddev2->curr_resync 8265 && match_mddev_units(mddev, mddev2)) { 8266 DEFINE_WAIT(wq); 8267 if (mddev < mddev2 && mddev->curr_resync == 2) { 8268 /* arbitrarily yield */ 8269 mddev->curr_resync = 1; 8270 wake_up(&resync_wait); 8271 } 8272 if (mddev > mddev2 && mddev->curr_resync == 1) 8273 /* no need to wait here, we can wait the next 8274 * time 'round when curr_resync == 2 8275 */ 8276 continue; 8277 /* We need to wait 'interruptible' so as not to 8278 * contribute to the load average, and not to 8279 * be caught by 'softlockup' 8280 */ 8281 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8282 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8283 mddev2->curr_resync >= mddev->curr_resync) { 8284 if (mddev2_minor != mddev2->md_minor) { 8285 mddev2_minor = mddev2->md_minor; 8286 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8287 desc, mdname(mddev), 8288 mdname(mddev2)); 8289 } 8290 mddev_put(mddev2); 8291 if (signal_pending(current)) 8292 flush_signals(current); 8293 schedule(); 8294 finish_wait(&resync_wait, &wq); 8295 goto try_again; 8296 } 8297 finish_wait(&resync_wait, &wq); 8298 } 8299 } 8300 } while (mddev->curr_resync < 2); 8301 8302 j = 0; 8303 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8304 /* resync follows the size requested by the personality, 8305 * which defaults to physical size, but can be virtual size 8306 */ 8307 max_sectors = mddev->resync_max_sectors; 8308 atomic64_set(&mddev->resync_mismatches, 0); 8309 /* we don't use the checkpoint if there's a bitmap */ 8310 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8311 j = mddev->resync_min; 8312 else if (!mddev->bitmap) 8313 j = mddev->recovery_cp; 8314 8315 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8316 max_sectors = mddev->resync_max_sectors; 8317 else { 8318 /* recovery follows the physical size of devices */ 8319 max_sectors = mddev->dev_sectors; 8320 j = MaxSector; 8321 rcu_read_lock(); 8322 rdev_for_each_rcu(rdev, mddev) 8323 if (rdev->raid_disk >= 0 && 8324 !test_bit(Journal, &rdev->flags) && 8325 !test_bit(Faulty, &rdev->flags) && 8326 !test_bit(In_sync, &rdev->flags) && 8327 rdev->recovery_offset < j) 8328 j = rdev->recovery_offset; 8329 rcu_read_unlock(); 8330 8331 /* If there is a bitmap, we need to make sure all 8332 * writes that started before we added a spare 8333 * complete before we start doing a recovery. 8334 * Otherwise the write might complete and (via 8335 * bitmap_endwrite) set a bit in the bitmap after the 8336 * recovery has checked that bit and skipped that 8337 * region. 8338 */ 8339 if (mddev->bitmap) { 8340 mddev->pers->quiesce(mddev, 1); 8341 mddev->pers->quiesce(mddev, 0); 8342 } 8343 } 8344 8345 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8346 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8347 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8348 speed_max(mddev), desc); 8349 8350 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8351 8352 io_sectors = 0; 8353 for (m = 0; m < SYNC_MARKS; m++) { 8354 mark[m] = jiffies; 8355 mark_cnt[m] = io_sectors; 8356 } 8357 last_mark = 0; 8358 mddev->resync_mark = mark[last_mark]; 8359 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8360 8361 /* 8362 * Tune reconstruction: 8363 */ 8364 window = 32*(PAGE_SIZE/512); 8365 pr_debug("md: using %dk window, over a total of %lluk.\n", 8366 window/2, (unsigned long long)max_sectors/2); 8367 8368 atomic_set(&mddev->recovery_active, 0); 8369 last_check = 0; 8370 8371 if (j>2) { 8372 pr_debug("md: resuming %s of %s from checkpoint.\n", 8373 desc, mdname(mddev)); 8374 mddev->curr_resync = j; 8375 } else 8376 mddev->curr_resync = 3; /* no longer delayed */ 8377 mddev->curr_resync_completed = j; 8378 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8379 md_new_event(mddev); 8380 update_time = jiffies; 8381 8382 blk_start_plug(&plug); 8383 while (j < max_sectors) { 8384 sector_t sectors; 8385 8386 skipped = 0; 8387 8388 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8389 ((mddev->curr_resync > mddev->curr_resync_completed && 8390 (mddev->curr_resync - mddev->curr_resync_completed) 8391 > (max_sectors >> 4)) || 8392 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8393 (j - mddev->curr_resync_completed)*2 8394 >= mddev->resync_max - mddev->curr_resync_completed || 8395 mddev->curr_resync_completed > mddev->resync_max 8396 )) { 8397 /* time to update curr_resync_completed */ 8398 wait_event(mddev->recovery_wait, 8399 atomic_read(&mddev->recovery_active) == 0); 8400 mddev->curr_resync_completed = j; 8401 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8402 j > mddev->recovery_cp) 8403 mddev->recovery_cp = j; 8404 update_time = jiffies; 8405 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8406 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8407 } 8408 8409 while (j >= mddev->resync_max && 8410 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8411 /* As this condition is controlled by user-space, 8412 * we can block indefinitely, so use '_interruptible' 8413 * to avoid triggering warnings. 8414 */ 8415 flush_signals(current); /* just in case */ 8416 wait_event_interruptible(mddev->recovery_wait, 8417 mddev->resync_max > j 8418 || test_bit(MD_RECOVERY_INTR, 8419 &mddev->recovery)); 8420 } 8421 8422 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8423 break; 8424 8425 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8426 if (sectors == 0) { 8427 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8428 break; 8429 } 8430 8431 if (!skipped) { /* actual IO requested */ 8432 io_sectors += sectors; 8433 atomic_add(sectors, &mddev->recovery_active); 8434 } 8435 8436 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8437 break; 8438 8439 j += sectors; 8440 if (j > max_sectors) 8441 /* when skipping, extra large numbers can be returned. */ 8442 j = max_sectors; 8443 if (j > 2) 8444 mddev->curr_resync = j; 8445 mddev->curr_mark_cnt = io_sectors; 8446 if (last_check == 0) 8447 /* this is the earliest that rebuild will be 8448 * visible in /proc/mdstat 8449 */ 8450 md_new_event(mddev); 8451 8452 if (last_check + window > io_sectors || j == max_sectors) 8453 continue; 8454 8455 last_check = io_sectors; 8456 repeat: 8457 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8458 /* step marks */ 8459 int next = (last_mark+1) % SYNC_MARKS; 8460 8461 mddev->resync_mark = mark[next]; 8462 mddev->resync_mark_cnt = mark_cnt[next]; 8463 mark[next] = jiffies; 8464 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8465 last_mark = next; 8466 } 8467 8468 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8469 break; 8470 8471 /* 8472 * this loop exits only if either when we are slower than 8473 * the 'hard' speed limit, or the system was IO-idle for 8474 * a jiffy. 8475 * the system might be non-idle CPU-wise, but we only care 8476 * about not overloading the IO subsystem. (things like an 8477 * e2fsck being done on the RAID array should execute fast) 8478 */ 8479 cond_resched(); 8480 8481 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8482 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8483 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8484 8485 if (currspeed > speed_min(mddev)) { 8486 if (currspeed > speed_max(mddev)) { 8487 msleep(500); 8488 goto repeat; 8489 } 8490 if (!is_mddev_idle(mddev, 0)) { 8491 /* 8492 * Give other IO more of a chance. 8493 * The faster the devices, the less we wait. 8494 */ 8495 wait_event(mddev->recovery_wait, 8496 !atomic_read(&mddev->recovery_active)); 8497 } 8498 } 8499 } 8500 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8501 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8502 ? "interrupted" : "done"); 8503 /* 8504 * this also signals 'finished resyncing' to md_stop 8505 */ 8506 blk_finish_plug(&plug); 8507 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8508 8509 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8510 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8511 mddev->curr_resync > 3) { 8512 mddev->curr_resync_completed = mddev->curr_resync; 8513 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8514 } 8515 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8516 8517 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8518 mddev->curr_resync > 3) { 8519 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8520 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8521 if (mddev->curr_resync >= mddev->recovery_cp) { 8522 pr_debug("md: checkpointing %s of %s.\n", 8523 desc, mdname(mddev)); 8524 if (test_bit(MD_RECOVERY_ERROR, 8525 &mddev->recovery)) 8526 mddev->recovery_cp = 8527 mddev->curr_resync_completed; 8528 else 8529 mddev->recovery_cp = 8530 mddev->curr_resync; 8531 } 8532 } else 8533 mddev->recovery_cp = MaxSector; 8534 } else { 8535 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8536 mddev->curr_resync = MaxSector; 8537 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8538 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8539 rcu_read_lock(); 8540 rdev_for_each_rcu(rdev, mddev) 8541 if (rdev->raid_disk >= 0 && 8542 mddev->delta_disks >= 0 && 8543 !test_bit(Journal, &rdev->flags) && 8544 !test_bit(Faulty, &rdev->flags) && 8545 !test_bit(In_sync, &rdev->flags) && 8546 rdev->recovery_offset < mddev->curr_resync) 8547 rdev->recovery_offset = mddev->curr_resync; 8548 rcu_read_unlock(); 8549 } 8550 } 8551 } 8552 skip: 8553 /* set CHANGE_PENDING here since maybe another update is needed, 8554 * so other nodes are informed. It should be harmless for normal 8555 * raid */ 8556 set_mask_bits(&mddev->sb_flags, 0, 8557 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8558 8559 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8560 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8561 mddev->delta_disks > 0 && 8562 mddev->pers->finish_reshape && 8563 mddev->pers->size && 8564 mddev->queue) { 8565 mddev_lock_nointr(mddev); 8566 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8567 mddev_unlock(mddev); 8568 set_capacity(mddev->gendisk, mddev->array_sectors); 8569 revalidate_disk(mddev->gendisk); 8570 } 8571 8572 spin_lock(&mddev->lock); 8573 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8574 /* We completed so min/max setting can be forgotten if used. */ 8575 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8576 mddev->resync_min = 0; 8577 mddev->resync_max = MaxSector; 8578 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8579 mddev->resync_min = mddev->curr_resync_completed; 8580 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8581 mddev->curr_resync = 0; 8582 spin_unlock(&mddev->lock); 8583 8584 wake_up(&resync_wait); 8585 md_wakeup_thread(mddev->thread); 8586 return; 8587 } 8588 EXPORT_SYMBOL_GPL(md_do_sync); 8589 8590 static int remove_and_add_spares(struct mddev *mddev, 8591 struct md_rdev *this) 8592 { 8593 struct md_rdev *rdev; 8594 int spares = 0; 8595 int removed = 0; 8596 bool remove_some = false; 8597 8598 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8599 /* Mustn't remove devices when resync thread is running */ 8600 return 0; 8601 8602 rdev_for_each(rdev, mddev) { 8603 if ((this == NULL || rdev == this) && 8604 rdev->raid_disk >= 0 && 8605 !test_bit(Blocked, &rdev->flags) && 8606 test_bit(Faulty, &rdev->flags) && 8607 atomic_read(&rdev->nr_pending)==0) { 8608 /* Faulty non-Blocked devices with nr_pending == 0 8609 * never get nr_pending incremented, 8610 * never get Faulty cleared, and never get Blocked set. 8611 * So we can synchronize_rcu now rather than once per device 8612 */ 8613 remove_some = true; 8614 set_bit(RemoveSynchronized, &rdev->flags); 8615 } 8616 } 8617 8618 if (remove_some) 8619 synchronize_rcu(); 8620 rdev_for_each(rdev, mddev) { 8621 if ((this == NULL || rdev == this) && 8622 rdev->raid_disk >= 0 && 8623 !test_bit(Blocked, &rdev->flags) && 8624 ((test_bit(RemoveSynchronized, &rdev->flags) || 8625 (!test_bit(In_sync, &rdev->flags) && 8626 !test_bit(Journal, &rdev->flags))) && 8627 atomic_read(&rdev->nr_pending)==0)) { 8628 if (mddev->pers->hot_remove_disk( 8629 mddev, rdev) == 0) { 8630 sysfs_unlink_rdev(mddev, rdev); 8631 rdev->raid_disk = -1; 8632 removed++; 8633 } 8634 } 8635 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8636 clear_bit(RemoveSynchronized, &rdev->flags); 8637 } 8638 8639 if (removed && mddev->kobj.sd) 8640 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8641 8642 if (this && removed) 8643 goto no_add; 8644 8645 rdev_for_each(rdev, mddev) { 8646 if (this && this != rdev) 8647 continue; 8648 if (test_bit(Candidate, &rdev->flags)) 8649 continue; 8650 if (rdev->raid_disk >= 0 && 8651 !test_bit(In_sync, &rdev->flags) && 8652 !test_bit(Journal, &rdev->flags) && 8653 !test_bit(Faulty, &rdev->flags)) 8654 spares++; 8655 if (rdev->raid_disk >= 0) 8656 continue; 8657 if (test_bit(Faulty, &rdev->flags)) 8658 continue; 8659 if (!test_bit(Journal, &rdev->flags)) { 8660 if (mddev->ro && 8661 ! (rdev->saved_raid_disk >= 0 && 8662 !test_bit(Bitmap_sync, &rdev->flags))) 8663 continue; 8664 8665 rdev->recovery_offset = 0; 8666 } 8667 if (mddev->pers-> 8668 hot_add_disk(mddev, rdev) == 0) { 8669 if (sysfs_link_rdev(mddev, rdev)) 8670 /* failure here is OK */; 8671 if (!test_bit(Journal, &rdev->flags)) 8672 spares++; 8673 md_new_event(mddev); 8674 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8675 } 8676 } 8677 no_add: 8678 if (removed) 8679 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8680 return spares; 8681 } 8682 8683 static void md_start_sync(struct work_struct *ws) 8684 { 8685 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8686 8687 mddev->sync_thread = md_register_thread(md_do_sync, 8688 mddev, 8689 "resync"); 8690 if (!mddev->sync_thread) { 8691 pr_warn("%s: could not start resync thread...\n", 8692 mdname(mddev)); 8693 /* leave the spares where they are, it shouldn't hurt */ 8694 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8695 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8696 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8697 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8698 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8699 wake_up(&resync_wait); 8700 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8701 &mddev->recovery)) 8702 if (mddev->sysfs_action) 8703 sysfs_notify_dirent_safe(mddev->sysfs_action); 8704 } else 8705 md_wakeup_thread(mddev->sync_thread); 8706 sysfs_notify_dirent_safe(mddev->sysfs_action); 8707 md_new_event(mddev); 8708 } 8709 8710 /* 8711 * This routine is regularly called by all per-raid-array threads to 8712 * deal with generic issues like resync and super-block update. 8713 * Raid personalities that don't have a thread (linear/raid0) do not 8714 * need this as they never do any recovery or update the superblock. 8715 * 8716 * It does not do any resync itself, but rather "forks" off other threads 8717 * to do that as needed. 8718 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8719 * "->recovery" and create a thread at ->sync_thread. 8720 * When the thread finishes it sets MD_RECOVERY_DONE 8721 * and wakeups up this thread which will reap the thread and finish up. 8722 * This thread also removes any faulty devices (with nr_pending == 0). 8723 * 8724 * The overall approach is: 8725 * 1/ if the superblock needs updating, update it. 8726 * 2/ If a recovery thread is running, don't do anything else. 8727 * 3/ If recovery has finished, clean up, possibly marking spares active. 8728 * 4/ If there are any faulty devices, remove them. 8729 * 5/ If array is degraded, try to add spares devices 8730 * 6/ If array has spares or is not in-sync, start a resync thread. 8731 */ 8732 void md_check_recovery(struct mddev *mddev) 8733 { 8734 if (mddev->suspended) 8735 return; 8736 8737 if (mddev->bitmap) 8738 bitmap_daemon_work(mddev); 8739 8740 if (signal_pending(current)) { 8741 if (mddev->pers->sync_request && !mddev->external) { 8742 pr_debug("md: %s in immediate safe mode\n", 8743 mdname(mddev)); 8744 mddev->safemode = 2; 8745 } 8746 flush_signals(current); 8747 } 8748 8749 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8750 return; 8751 if ( ! ( 8752 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8753 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8754 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8755 (mddev->external == 0 && mddev->safemode == 1) || 8756 (mddev->safemode == 2 8757 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8758 )) 8759 return; 8760 8761 if (mddev_trylock(mddev)) { 8762 int spares = 0; 8763 8764 if (!mddev->external && mddev->safemode == 1) 8765 mddev->safemode = 0; 8766 8767 if (mddev->ro) { 8768 struct md_rdev *rdev; 8769 if (!mddev->external && mddev->in_sync) 8770 /* 'Blocked' flag not needed as failed devices 8771 * will be recorded if array switched to read/write. 8772 * Leaving it set will prevent the device 8773 * from being removed. 8774 */ 8775 rdev_for_each(rdev, mddev) 8776 clear_bit(Blocked, &rdev->flags); 8777 /* On a read-only array we can: 8778 * - remove failed devices 8779 * - add already-in_sync devices if the array itself 8780 * is in-sync. 8781 * As we only add devices that are already in-sync, 8782 * we can activate the spares immediately. 8783 */ 8784 remove_and_add_spares(mddev, NULL); 8785 /* There is no thread, but we need to call 8786 * ->spare_active and clear saved_raid_disk 8787 */ 8788 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8789 md_reap_sync_thread(mddev); 8790 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8791 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8792 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8793 goto unlock; 8794 } 8795 8796 if (mddev_is_clustered(mddev)) { 8797 struct md_rdev *rdev; 8798 /* kick the device if another node issued a 8799 * remove disk. 8800 */ 8801 rdev_for_each(rdev, mddev) { 8802 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8803 rdev->raid_disk < 0) 8804 md_kick_rdev_from_array(rdev); 8805 } 8806 } 8807 8808 if (!mddev->external && !mddev->in_sync) { 8809 spin_lock(&mddev->lock); 8810 set_in_sync(mddev); 8811 spin_unlock(&mddev->lock); 8812 } 8813 8814 if (mddev->sb_flags) 8815 md_update_sb(mddev, 0); 8816 8817 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8818 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8819 /* resync/recovery still happening */ 8820 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8821 goto unlock; 8822 } 8823 if (mddev->sync_thread) { 8824 md_reap_sync_thread(mddev); 8825 goto unlock; 8826 } 8827 /* Set RUNNING before clearing NEEDED to avoid 8828 * any transients in the value of "sync_action". 8829 */ 8830 mddev->curr_resync_completed = 0; 8831 spin_lock(&mddev->lock); 8832 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8833 spin_unlock(&mddev->lock); 8834 /* Clear some bits that don't mean anything, but 8835 * might be left set 8836 */ 8837 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8838 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8839 8840 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8841 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8842 goto not_running; 8843 /* no recovery is running. 8844 * remove any failed drives, then 8845 * add spares if possible. 8846 * Spares are also removed and re-added, to allow 8847 * the personality to fail the re-add. 8848 */ 8849 8850 if (mddev->reshape_position != MaxSector) { 8851 if (mddev->pers->check_reshape == NULL || 8852 mddev->pers->check_reshape(mddev) != 0) 8853 /* Cannot proceed */ 8854 goto not_running; 8855 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8856 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8857 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8858 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8859 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8860 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8861 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8862 } else if (mddev->recovery_cp < MaxSector) { 8863 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8864 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8865 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8866 /* nothing to be done ... */ 8867 goto not_running; 8868 8869 if (mddev->pers->sync_request) { 8870 if (spares) { 8871 /* We are adding a device or devices to an array 8872 * which has the bitmap stored on all devices. 8873 * So make sure all bitmap pages get written 8874 */ 8875 bitmap_write_all(mddev->bitmap); 8876 } 8877 INIT_WORK(&mddev->del_work, md_start_sync); 8878 queue_work(md_misc_wq, &mddev->del_work); 8879 goto unlock; 8880 } 8881 not_running: 8882 if (!mddev->sync_thread) { 8883 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8884 wake_up(&resync_wait); 8885 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8886 &mddev->recovery)) 8887 if (mddev->sysfs_action) 8888 sysfs_notify_dirent_safe(mddev->sysfs_action); 8889 } 8890 unlock: 8891 wake_up(&mddev->sb_wait); 8892 mddev_unlock(mddev); 8893 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8894 /* Write superblock - thread that called mddev_suspend() 8895 * holds reconfig_mutex for us. 8896 */ 8897 set_bit(MD_UPDATING_SB, &mddev->flags); 8898 smp_mb__after_atomic(); 8899 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8900 md_update_sb(mddev, 0); 8901 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8902 wake_up(&mddev->sb_wait); 8903 } 8904 } 8905 EXPORT_SYMBOL(md_check_recovery); 8906 8907 void md_reap_sync_thread(struct mddev *mddev) 8908 { 8909 struct md_rdev *rdev; 8910 8911 /* resync has finished, collect result */ 8912 md_unregister_thread(&mddev->sync_thread); 8913 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8914 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8915 /* success...*/ 8916 /* activate any spares */ 8917 if (mddev->pers->spare_active(mddev)) { 8918 sysfs_notify(&mddev->kobj, NULL, 8919 "degraded"); 8920 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8921 } 8922 } 8923 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8924 mddev->pers->finish_reshape) 8925 mddev->pers->finish_reshape(mddev); 8926 8927 /* If array is no-longer degraded, then any saved_raid_disk 8928 * information must be scrapped. 8929 */ 8930 if (!mddev->degraded) 8931 rdev_for_each(rdev, mddev) 8932 rdev->saved_raid_disk = -1; 8933 8934 md_update_sb(mddev, 1); 8935 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8936 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8937 * clustered raid */ 8938 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8939 md_cluster_ops->resync_finish(mddev); 8940 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8941 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8942 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8943 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8944 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8945 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8946 wake_up(&resync_wait); 8947 /* flag recovery needed just to double check */ 8948 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8949 sysfs_notify_dirent_safe(mddev->sysfs_action); 8950 md_new_event(mddev); 8951 if (mddev->event_work.func) 8952 queue_work(md_misc_wq, &mddev->event_work); 8953 } 8954 EXPORT_SYMBOL(md_reap_sync_thread); 8955 8956 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8957 { 8958 sysfs_notify_dirent_safe(rdev->sysfs_state); 8959 wait_event_timeout(rdev->blocked_wait, 8960 !test_bit(Blocked, &rdev->flags) && 8961 !test_bit(BlockedBadBlocks, &rdev->flags), 8962 msecs_to_jiffies(5000)); 8963 rdev_dec_pending(rdev, mddev); 8964 } 8965 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8966 8967 void md_finish_reshape(struct mddev *mddev) 8968 { 8969 /* called be personality module when reshape completes. */ 8970 struct md_rdev *rdev; 8971 8972 rdev_for_each(rdev, mddev) { 8973 if (rdev->data_offset > rdev->new_data_offset) 8974 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8975 else 8976 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8977 rdev->data_offset = rdev->new_data_offset; 8978 } 8979 } 8980 EXPORT_SYMBOL(md_finish_reshape); 8981 8982 /* Bad block management */ 8983 8984 /* Returns 1 on success, 0 on failure */ 8985 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8986 int is_new) 8987 { 8988 struct mddev *mddev = rdev->mddev; 8989 int rv; 8990 if (is_new) 8991 s += rdev->new_data_offset; 8992 else 8993 s += rdev->data_offset; 8994 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8995 if (rv == 0) { 8996 /* Make sure they get written out promptly */ 8997 if (test_bit(ExternalBbl, &rdev->flags)) 8998 sysfs_notify(&rdev->kobj, NULL, 8999 "unacknowledged_bad_blocks"); 9000 sysfs_notify_dirent_safe(rdev->sysfs_state); 9001 set_mask_bits(&mddev->sb_flags, 0, 9002 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9003 md_wakeup_thread(rdev->mddev->thread); 9004 return 1; 9005 } else 9006 return 0; 9007 } 9008 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9009 9010 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9011 int is_new) 9012 { 9013 int rv; 9014 if (is_new) 9015 s += rdev->new_data_offset; 9016 else 9017 s += rdev->data_offset; 9018 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9019 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9020 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9021 return rv; 9022 } 9023 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9024 9025 static int md_notify_reboot(struct notifier_block *this, 9026 unsigned long code, void *x) 9027 { 9028 struct list_head *tmp; 9029 struct mddev *mddev; 9030 int need_delay = 0; 9031 9032 for_each_mddev(mddev, tmp) { 9033 if (mddev_trylock(mddev)) { 9034 if (mddev->pers) 9035 __md_stop_writes(mddev); 9036 if (mddev->persistent) 9037 mddev->safemode = 2; 9038 mddev_unlock(mddev); 9039 } 9040 need_delay = 1; 9041 } 9042 /* 9043 * certain more exotic SCSI devices are known to be 9044 * volatile wrt too early system reboots. While the 9045 * right place to handle this issue is the given 9046 * driver, we do want to have a safe RAID driver ... 9047 */ 9048 if (need_delay) 9049 mdelay(1000*1); 9050 9051 return NOTIFY_DONE; 9052 } 9053 9054 static struct notifier_block md_notifier = { 9055 .notifier_call = md_notify_reboot, 9056 .next = NULL, 9057 .priority = INT_MAX, /* before any real devices */ 9058 }; 9059 9060 static void md_geninit(void) 9061 { 9062 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9063 9064 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9065 } 9066 9067 static int __init md_init(void) 9068 { 9069 int ret = -ENOMEM; 9070 9071 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9072 if (!md_wq) 9073 goto err_wq; 9074 9075 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9076 if (!md_misc_wq) 9077 goto err_misc_wq; 9078 9079 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9080 goto err_md; 9081 9082 if ((ret = register_blkdev(0, "mdp")) < 0) 9083 goto err_mdp; 9084 mdp_major = ret; 9085 9086 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9087 md_probe, NULL, NULL); 9088 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9089 md_probe, NULL, NULL); 9090 9091 register_reboot_notifier(&md_notifier); 9092 raid_table_header = register_sysctl_table(raid_root_table); 9093 9094 md_geninit(); 9095 return 0; 9096 9097 err_mdp: 9098 unregister_blkdev(MD_MAJOR, "md"); 9099 err_md: 9100 destroy_workqueue(md_misc_wq); 9101 err_misc_wq: 9102 destroy_workqueue(md_wq); 9103 err_wq: 9104 return ret; 9105 } 9106 9107 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9108 { 9109 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9110 struct md_rdev *rdev2; 9111 int role, ret; 9112 char b[BDEVNAME_SIZE]; 9113 9114 /* 9115 * If size is changed in another node then we need to 9116 * do resize as well. 9117 */ 9118 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9119 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9120 if (ret) 9121 pr_info("md-cluster: resize failed\n"); 9122 else 9123 bitmap_update_sb(mddev->bitmap); 9124 } 9125 9126 /* Check for change of roles in the active devices */ 9127 rdev_for_each(rdev2, mddev) { 9128 if (test_bit(Faulty, &rdev2->flags)) 9129 continue; 9130 9131 /* Check if the roles changed */ 9132 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9133 9134 if (test_bit(Candidate, &rdev2->flags)) { 9135 if (role == 0xfffe) { 9136 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9137 md_kick_rdev_from_array(rdev2); 9138 continue; 9139 } 9140 else 9141 clear_bit(Candidate, &rdev2->flags); 9142 } 9143 9144 if (role != rdev2->raid_disk) { 9145 /* got activated */ 9146 if (rdev2->raid_disk == -1 && role != 0xffff) { 9147 rdev2->saved_raid_disk = role; 9148 ret = remove_and_add_spares(mddev, rdev2); 9149 pr_info("Activated spare: %s\n", 9150 bdevname(rdev2->bdev,b)); 9151 /* wakeup mddev->thread here, so array could 9152 * perform resync with the new activated disk */ 9153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9154 md_wakeup_thread(mddev->thread); 9155 9156 } 9157 /* device faulty 9158 * We just want to do the minimum to mark the disk 9159 * as faulty. The recovery is performed by the 9160 * one who initiated the error. 9161 */ 9162 if ((role == 0xfffe) || (role == 0xfffd)) { 9163 md_error(mddev, rdev2); 9164 clear_bit(Blocked, &rdev2->flags); 9165 } 9166 } 9167 } 9168 9169 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9170 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9171 9172 /* Finally set the event to be up to date */ 9173 mddev->events = le64_to_cpu(sb->events); 9174 } 9175 9176 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9177 { 9178 int err; 9179 struct page *swapout = rdev->sb_page; 9180 struct mdp_superblock_1 *sb; 9181 9182 /* Store the sb page of the rdev in the swapout temporary 9183 * variable in case we err in the future 9184 */ 9185 rdev->sb_page = NULL; 9186 err = alloc_disk_sb(rdev); 9187 if (err == 0) { 9188 ClearPageUptodate(rdev->sb_page); 9189 rdev->sb_loaded = 0; 9190 err = super_types[mddev->major_version]. 9191 load_super(rdev, NULL, mddev->minor_version); 9192 } 9193 if (err < 0) { 9194 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9195 __func__, __LINE__, rdev->desc_nr, err); 9196 if (rdev->sb_page) 9197 put_page(rdev->sb_page); 9198 rdev->sb_page = swapout; 9199 rdev->sb_loaded = 1; 9200 return err; 9201 } 9202 9203 sb = page_address(rdev->sb_page); 9204 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9205 * is not set 9206 */ 9207 9208 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9209 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9210 9211 /* The other node finished recovery, call spare_active to set 9212 * device In_sync and mddev->degraded 9213 */ 9214 if (rdev->recovery_offset == MaxSector && 9215 !test_bit(In_sync, &rdev->flags) && 9216 mddev->pers->spare_active(mddev)) 9217 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9218 9219 put_page(swapout); 9220 return 0; 9221 } 9222 9223 void md_reload_sb(struct mddev *mddev, int nr) 9224 { 9225 struct md_rdev *rdev; 9226 int err; 9227 9228 /* Find the rdev */ 9229 rdev_for_each_rcu(rdev, mddev) { 9230 if (rdev->desc_nr == nr) 9231 break; 9232 } 9233 9234 if (!rdev || rdev->desc_nr != nr) { 9235 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9236 return; 9237 } 9238 9239 err = read_rdev(mddev, rdev); 9240 if (err < 0) 9241 return; 9242 9243 check_sb_changes(mddev, rdev); 9244 9245 /* Read all rdev's to update recovery_offset */ 9246 rdev_for_each_rcu(rdev, mddev) { 9247 if (!test_bit(Faulty, &rdev->flags)) 9248 read_rdev(mddev, rdev); 9249 } 9250 } 9251 EXPORT_SYMBOL(md_reload_sb); 9252 9253 #ifndef MODULE 9254 9255 /* 9256 * Searches all registered partitions for autorun RAID arrays 9257 * at boot time. 9258 */ 9259 9260 static DEFINE_MUTEX(detected_devices_mutex); 9261 static LIST_HEAD(all_detected_devices); 9262 struct detected_devices_node { 9263 struct list_head list; 9264 dev_t dev; 9265 }; 9266 9267 void md_autodetect_dev(dev_t dev) 9268 { 9269 struct detected_devices_node *node_detected_dev; 9270 9271 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9272 if (node_detected_dev) { 9273 node_detected_dev->dev = dev; 9274 mutex_lock(&detected_devices_mutex); 9275 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9276 mutex_unlock(&detected_devices_mutex); 9277 } 9278 } 9279 9280 static void autostart_arrays(int part) 9281 { 9282 struct md_rdev *rdev; 9283 struct detected_devices_node *node_detected_dev; 9284 dev_t dev; 9285 int i_scanned, i_passed; 9286 9287 i_scanned = 0; 9288 i_passed = 0; 9289 9290 pr_info("md: Autodetecting RAID arrays.\n"); 9291 9292 mutex_lock(&detected_devices_mutex); 9293 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9294 i_scanned++; 9295 node_detected_dev = list_entry(all_detected_devices.next, 9296 struct detected_devices_node, list); 9297 list_del(&node_detected_dev->list); 9298 dev = node_detected_dev->dev; 9299 kfree(node_detected_dev); 9300 mutex_unlock(&detected_devices_mutex); 9301 rdev = md_import_device(dev,0, 90); 9302 mutex_lock(&detected_devices_mutex); 9303 if (IS_ERR(rdev)) 9304 continue; 9305 9306 if (test_bit(Faulty, &rdev->flags)) 9307 continue; 9308 9309 set_bit(AutoDetected, &rdev->flags); 9310 list_add(&rdev->same_set, &pending_raid_disks); 9311 i_passed++; 9312 } 9313 mutex_unlock(&detected_devices_mutex); 9314 9315 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9316 9317 autorun_devices(part); 9318 } 9319 9320 #endif /* !MODULE */ 9321 9322 static __exit void md_exit(void) 9323 { 9324 struct mddev *mddev; 9325 struct list_head *tmp; 9326 int delay = 1; 9327 9328 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9329 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9330 9331 unregister_blkdev(MD_MAJOR,"md"); 9332 unregister_blkdev(mdp_major, "mdp"); 9333 unregister_reboot_notifier(&md_notifier); 9334 unregister_sysctl_table(raid_table_header); 9335 9336 /* We cannot unload the modules while some process is 9337 * waiting for us in select() or poll() - wake them up 9338 */ 9339 md_unloading = 1; 9340 while (waitqueue_active(&md_event_waiters)) { 9341 /* not safe to leave yet */ 9342 wake_up(&md_event_waiters); 9343 msleep(delay); 9344 delay += delay; 9345 } 9346 remove_proc_entry("mdstat", NULL); 9347 9348 for_each_mddev(mddev, tmp) { 9349 export_array(mddev); 9350 mddev->ctime = 0; 9351 mddev->hold_active = 0; 9352 /* 9353 * for_each_mddev() will call mddev_put() at the end of each 9354 * iteration. As the mddev is now fully clear, this will 9355 * schedule the mddev for destruction by a workqueue, and the 9356 * destroy_workqueue() below will wait for that to complete. 9357 */ 9358 } 9359 destroy_workqueue(md_misc_wq); 9360 destroy_workqueue(md_wq); 9361 } 9362 9363 subsys_initcall(md_init); 9364 module_exit(md_exit) 9365 9366 static int get_ro(char *buffer, const struct kernel_param *kp) 9367 { 9368 return sprintf(buffer, "%d", start_readonly); 9369 } 9370 static int set_ro(const char *val, const struct kernel_param *kp) 9371 { 9372 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9373 } 9374 9375 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9376 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9377 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9378 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9379 9380 MODULE_LICENSE("GPL"); 9381 MODULE_DESCRIPTION("MD RAID framework"); 9382 MODULE_ALIAS("md"); 9383 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9384