1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pr.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 53 static void do_deferred_remove(struct work_struct *w); 54 55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 56 57 static struct workqueue_struct *deferred_remove_workqueue; 58 59 /* 60 * One of these is allocated per bio. 61 */ 62 struct dm_io { 63 struct mapped_device *md; 64 int error; 65 atomic_t io_count; 66 struct bio *bio; 67 unsigned long start_time; 68 spinlock_t endio_lock; 69 struct dm_stats_aux stats_aux; 70 }; 71 72 #define MINOR_ALLOCED ((void *)-1) 73 74 /* 75 * Bits for the md->flags field. 76 */ 77 #define DMF_BLOCK_IO_FOR_SUSPEND 0 78 #define DMF_SUSPENDED 1 79 #define DMF_FROZEN 2 80 #define DMF_FREEING 3 81 #define DMF_DELETING 4 82 #define DMF_NOFLUSH_SUSPENDING 5 83 #define DMF_DEFERRED_REMOVE 6 84 #define DMF_SUSPENDED_INTERNALLY 7 85 86 #define DM_NUMA_NODE NUMA_NO_NODE 87 static int dm_numa_node = DM_NUMA_NODE; 88 89 /* 90 * For mempools pre-allocation at the table loading time. 91 */ 92 struct dm_md_mempools { 93 mempool_t *io_pool; 94 struct bio_set *bs; 95 }; 96 97 struct table_device { 98 struct list_head list; 99 atomic_t count; 100 struct dm_dev dm_dev; 101 }; 102 103 static struct kmem_cache *_io_cache; 104 static struct kmem_cache *_rq_tio_cache; 105 static struct kmem_cache *_rq_cache; 106 107 /* 108 * Bio-based DM's mempools' reserved IOs set by the user. 109 */ 110 #define RESERVED_BIO_BASED_IOS 16 111 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 112 113 static int __dm_get_module_param_int(int *module_param, int min, int max) 114 { 115 int param = ACCESS_ONCE(*module_param); 116 int modified_param = 0; 117 bool modified = true; 118 119 if (param < min) 120 modified_param = min; 121 else if (param > max) 122 modified_param = max; 123 else 124 modified = false; 125 126 if (modified) { 127 (void)cmpxchg(module_param, param, modified_param); 128 param = modified_param; 129 } 130 131 return param; 132 } 133 134 unsigned __dm_get_module_param(unsigned *module_param, 135 unsigned def, unsigned max) 136 { 137 unsigned param = ACCESS_ONCE(*module_param); 138 unsigned modified_param = 0; 139 140 if (!param) 141 modified_param = def; 142 else if (param > max) 143 modified_param = max; 144 145 if (modified_param) { 146 (void)cmpxchg(module_param, param, modified_param); 147 param = modified_param; 148 } 149 150 return param; 151 } 152 153 unsigned dm_get_reserved_bio_based_ios(void) 154 { 155 return __dm_get_module_param(&reserved_bio_based_ios, 156 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 157 } 158 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 159 160 static unsigned dm_get_numa_node(void) 161 { 162 return __dm_get_module_param_int(&dm_numa_node, 163 DM_NUMA_NODE, num_online_nodes() - 1); 164 } 165 166 static int __init local_init(void) 167 { 168 int r = -ENOMEM; 169 170 /* allocate a slab for the dm_ios */ 171 _io_cache = KMEM_CACHE(dm_io, 0); 172 if (!_io_cache) 173 return r; 174 175 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 176 if (!_rq_tio_cache) 177 goto out_free_io_cache; 178 179 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 180 __alignof__(struct request), 0, NULL); 181 if (!_rq_cache) 182 goto out_free_rq_tio_cache; 183 184 r = dm_uevent_init(); 185 if (r) 186 goto out_free_rq_cache; 187 188 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 189 if (!deferred_remove_workqueue) { 190 r = -ENOMEM; 191 goto out_uevent_exit; 192 } 193 194 _major = major; 195 r = register_blkdev(_major, _name); 196 if (r < 0) 197 goto out_free_workqueue; 198 199 if (!_major) 200 _major = r; 201 202 return 0; 203 204 out_free_workqueue: 205 destroy_workqueue(deferred_remove_workqueue); 206 out_uevent_exit: 207 dm_uevent_exit(); 208 out_free_rq_cache: 209 kmem_cache_destroy(_rq_cache); 210 out_free_rq_tio_cache: 211 kmem_cache_destroy(_rq_tio_cache); 212 out_free_io_cache: 213 kmem_cache_destroy(_io_cache); 214 215 return r; 216 } 217 218 static void local_exit(void) 219 { 220 flush_scheduled_work(); 221 destroy_workqueue(deferred_remove_workqueue); 222 223 kmem_cache_destroy(_rq_cache); 224 kmem_cache_destroy(_rq_tio_cache); 225 kmem_cache_destroy(_io_cache); 226 unregister_blkdev(_major, _name); 227 dm_uevent_exit(); 228 229 _major = 0; 230 231 DMINFO("cleaned up"); 232 } 233 234 static int (*_inits[])(void) __initdata = { 235 local_init, 236 dm_target_init, 237 dm_linear_init, 238 dm_stripe_init, 239 dm_io_init, 240 dm_kcopyd_init, 241 dm_interface_init, 242 dm_statistics_init, 243 }; 244 245 static void (*_exits[])(void) = { 246 local_exit, 247 dm_target_exit, 248 dm_linear_exit, 249 dm_stripe_exit, 250 dm_io_exit, 251 dm_kcopyd_exit, 252 dm_interface_exit, 253 dm_statistics_exit, 254 }; 255 256 static int __init dm_init(void) 257 { 258 const int count = ARRAY_SIZE(_inits); 259 260 int r, i; 261 262 for (i = 0; i < count; i++) { 263 r = _inits[i](); 264 if (r) 265 goto bad; 266 } 267 268 return 0; 269 270 bad: 271 while (i--) 272 _exits[i](); 273 274 return r; 275 } 276 277 static void __exit dm_exit(void) 278 { 279 int i = ARRAY_SIZE(_exits); 280 281 while (i--) 282 _exits[i](); 283 284 /* 285 * Should be empty by this point. 286 */ 287 idr_destroy(&_minor_idr); 288 } 289 290 /* 291 * Block device functions 292 */ 293 int dm_deleting_md(struct mapped_device *md) 294 { 295 return test_bit(DMF_DELETING, &md->flags); 296 } 297 298 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 299 { 300 struct mapped_device *md; 301 302 spin_lock(&_minor_lock); 303 304 md = bdev->bd_disk->private_data; 305 if (!md) 306 goto out; 307 308 if (test_bit(DMF_FREEING, &md->flags) || 309 dm_deleting_md(md)) { 310 md = NULL; 311 goto out; 312 } 313 314 dm_get(md); 315 atomic_inc(&md->open_count); 316 out: 317 spin_unlock(&_minor_lock); 318 319 return md ? 0 : -ENXIO; 320 } 321 322 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 323 { 324 struct mapped_device *md; 325 326 spin_lock(&_minor_lock); 327 328 md = disk->private_data; 329 if (WARN_ON(!md)) 330 goto out; 331 332 if (atomic_dec_and_test(&md->open_count) && 333 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 334 queue_work(deferred_remove_workqueue, &deferred_remove_work); 335 336 dm_put(md); 337 out: 338 spin_unlock(&_minor_lock); 339 } 340 341 int dm_open_count(struct mapped_device *md) 342 { 343 return atomic_read(&md->open_count); 344 } 345 346 /* 347 * Guarantees nothing is using the device before it's deleted. 348 */ 349 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 350 { 351 int r = 0; 352 353 spin_lock(&_minor_lock); 354 355 if (dm_open_count(md)) { 356 r = -EBUSY; 357 if (mark_deferred) 358 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 359 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 360 r = -EEXIST; 361 else 362 set_bit(DMF_DELETING, &md->flags); 363 364 spin_unlock(&_minor_lock); 365 366 return r; 367 } 368 369 int dm_cancel_deferred_remove(struct mapped_device *md) 370 { 371 int r = 0; 372 373 spin_lock(&_minor_lock); 374 375 if (test_bit(DMF_DELETING, &md->flags)) 376 r = -EBUSY; 377 else 378 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 static void do_deferred_remove(struct work_struct *w) 386 { 387 dm_deferred_remove(); 388 } 389 390 sector_t dm_get_size(struct mapped_device *md) 391 { 392 return get_capacity(md->disk); 393 } 394 395 struct request_queue *dm_get_md_queue(struct mapped_device *md) 396 { 397 return md->queue; 398 } 399 400 struct dm_stats *dm_get_stats(struct mapped_device *md) 401 { 402 return &md->stats; 403 } 404 405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 406 { 407 struct mapped_device *md = bdev->bd_disk->private_data; 408 409 return dm_get_geometry(md, geo); 410 } 411 412 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 413 struct block_device **bdev, 414 fmode_t *mode) 415 { 416 struct dm_target *tgt; 417 struct dm_table *map; 418 int srcu_idx, r; 419 420 retry: 421 r = -ENOTTY; 422 map = dm_get_live_table(md, &srcu_idx); 423 if (!map || !dm_table_get_size(map)) 424 goto out; 425 426 /* We only support devices that have a single target */ 427 if (dm_table_get_num_targets(map) != 1) 428 goto out; 429 430 tgt = dm_table_get_target(map, 0); 431 if (!tgt->type->prepare_ioctl) 432 goto out; 433 434 if (dm_suspended_md(md)) { 435 r = -EAGAIN; 436 goto out; 437 } 438 439 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 440 if (r < 0) 441 goto out; 442 443 bdgrab(*bdev); 444 dm_put_live_table(md, srcu_idx); 445 return r; 446 447 out: 448 dm_put_live_table(md, srcu_idx); 449 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 450 msleep(10); 451 goto retry; 452 } 453 return r; 454 } 455 456 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 457 unsigned int cmd, unsigned long arg) 458 { 459 struct mapped_device *md = bdev->bd_disk->private_data; 460 int r; 461 462 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 463 if (r < 0) 464 return r; 465 466 if (r > 0) { 467 /* 468 * Target determined this ioctl is being issued against a 469 * subset of the parent bdev; require extra privileges. 470 */ 471 if (!capable(CAP_SYS_RAWIO)) { 472 DMWARN_LIMIT( 473 "%s: sending ioctl %x to DM device without required privilege.", 474 current->comm, cmd); 475 r = -ENOIOCTLCMD; 476 goto out; 477 } 478 } 479 480 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 481 out: 482 bdput(bdev); 483 return r; 484 } 485 486 static struct dm_io *alloc_io(struct mapped_device *md) 487 { 488 return mempool_alloc(md->io_pool, GFP_NOIO); 489 } 490 491 static void free_io(struct mapped_device *md, struct dm_io *io) 492 { 493 mempool_free(io, md->io_pool); 494 } 495 496 static void free_tio(struct dm_target_io *tio) 497 { 498 bio_put(&tio->clone); 499 } 500 501 int md_in_flight(struct mapped_device *md) 502 { 503 return atomic_read(&md->pending[READ]) + 504 atomic_read(&md->pending[WRITE]); 505 } 506 507 static void start_io_acct(struct dm_io *io) 508 { 509 struct mapped_device *md = io->md; 510 struct bio *bio = io->bio; 511 int cpu; 512 int rw = bio_data_dir(bio); 513 514 io->start_time = jiffies; 515 516 cpu = part_stat_lock(); 517 part_round_stats(cpu, &dm_disk(md)->part0); 518 part_stat_unlock(); 519 atomic_set(&dm_disk(md)->part0.in_flight[rw], 520 atomic_inc_return(&md->pending[rw])); 521 522 if (unlikely(dm_stats_used(&md->stats))) 523 dm_stats_account_io(&md->stats, bio_data_dir(bio), 524 bio->bi_iter.bi_sector, bio_sectors(bio), 525 false, 0, &io->stats_aux); 526 } 527 528 static void end_io_acct(struct dm_io *io) 529 { 530 struct mapped_device *md = io->md; 531 struct bio *bio = io->bio; 532 unsigned long duration = jiffies - io->start_time; 533 int pending; 534 int rw = bio_data_dir(bio); 535 536 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time); 537 538 if (unlikely(dm_stats_used(&md->stats))) 539 dm_stats_account_io(&md->stats, bio_data_dir(bio), 540 bio->bi_iter.bi_sector, bio_sectors(bio), 541 true, duration, &io->stats_aux); 542 543 /* 544 * After this is decremented the bio must not be touched if it is 545 * a flush. 546 */ 547 pending = atomic_dec_return(&md->pending[rw]); 548 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 549 pending += atomic_read(&md->pending[rw^0x1]); 550 551 /* nudge anyone waiting on suspend queue */ 552 if (!pending) 553 wake_up(&md->wait); 554 } 555 556 /* 557 * Add the bio to the list of deferred io. 558 */ 559 static void queue_io(struct mapped_device *md, struct bio *bio) 560 { 561 unsigned long flags; 562 563 spin_lock_irqsave(&md->deferred_lock, flags); 564 bio_list_add(&md->deferred, bio); 565 spin_unlock_irqrestore(&md->deferred_lock, flags); 566 queue_work(md->wq, &md->work); 567 } 568 569 /* 570 * Everyone (including functions in this file), should use this 571 * function to access the md->map field, and make sure they call 572 * dm_put_live_table() when finished. 573 */ 574 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 575 { 576 *srcu_idx = srcu_read_lock(&md->io_barrier); 577 578 return srcu_dereference(md->map, &md->io_barrier); 579 } 580 581 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 582 { 583 srcu_read_unlock(&md->io_barrier, srcu_idx); 584 } 585 586 void dm_sync_table(struct mapped_device *md) 587 { 588 synchronize_srcu(&md->io_barrier); 589 synchronize_rcu_expedited(); 590 } 591 592 /* 593 * A fast alternative to dm_get_live_table/dm_put_live_table. 594 * The caller must not block between these two functions. 595 */ 596 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 597 { 598 rcu_read_lock(); 599 return rcu_dereference(md->map); 600 } 601 602 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 603 { 604 rcu_read_unlock(); 605 } 606 607 /* 608 * Open a table device so we can use it as a map destination. 609 */ 610 static int open_table_device(struct table_device *td, dev_t dev, 611 struct mapped_device *md) 612 { 613 static char *_claim_ptr = "I belong to device-mapper"; 614 struct block_device *bdev; 615 616 int r; 617 618 BUG_ON(td->dm_dev.bdev); 619 620 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 621 if (IS_ERR(bdev)) 622 return PTR_ERR(bdev); 623 624 r = bd_link_disk_holder(bdev, dm_disk(md)); 625 if (r) { 626 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 627 return r; 628 } 629 630 td->dm_dev.bdev = bdev; 631 return 0; 632 } 633 634 /* 635 * Close a table device that we've been using. 636 */ 637 static void close_table_device(struct table_device *td, struct mapped_device *md) 638 { 639 if (!td->dm_dev.bdev) 640 return; 641 642 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 643 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 644 td->dm_dev.bdev = NULL; 645 } 646 647 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 648 fmode_t mode) { 649 struct table_device *td; 650 651 list_for_each_entry(td, l, list) 652 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 653 return td; 654 655 return NULL; 656 } 657 658 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 659 struct dm_dev **result) { 660 int r; 661 struct table_device *td; 662 663 mutex_lock(&md->table_devices_lock); 664 td = find_table_device(&md->table_devices, dev, mode); 665 if (!td) { 666 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 667 if (!td) { 668 mutex_unlock(&md->table_devices_lock); 669 return -ENOMEM; 670 } 671 672 td->dm_dev.mode = mode; 673 td->dm_dev.bdev = NULL; 674 675 if ((r = open_table_device(td, dev, md))) { 676 mutex_unlock(&md->table_devices_lock); 677 kfree(td); 678 return r; 679 } 680 681 format_dev_t(td->dm_dev.name, dev); 682 683 atomic_set(&td->count, 0); 684 list_add(&td->list, &md->table_devices); 685 } 686 atomic_inc(&td->count); 687 mutex_unlock(&md->table_devices_lock); 688 689 *result = &td->dm_dev; 690 return 0; 691 } 692 EXPORT_SYMBOL_GPL(dm_get_table_device); 693 694 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 695 { 696 struct table_device *td = container_of(d, struct table_device, dm_dev); 697 698 mutex_lock(&md->table_devices_lock); 699 if (atomic_dec_and_test(&td->count)) { 700 close_table_device(td, md); 701 list_del(&td->list); 702 kfree(td); 703 } 704 mutex_unlock(&md->table_devices_lock); 705 } 706 EXPORT_SYMBOL(dm_put_table_device); 707 708 static void free_table_devices(struct list_head *devices) 709 { 710 struct list_head *tmp, *next; 711 712 list_for_each_safe(tmp, next, devices) { 713 struct table_device *td = list_entry(tmp, struct table_device, list); 714 715 DMWARN("dm_destroy: %s still exists with %d references", 716 td->dm_dev.name, atomic_read(&td->count)); 717 kfree(td); 718 } 719 } 720 721 /* 722 * Get the geometry associated with a dm device 723 */ 724 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 725 { 726 *geo = md->geometry; 727 728 return 0; 729 } 730 731 /* 732 * Set the geometry of a device. 733 */ 734 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 735 { 736 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 737 738 if (geo->start > sz) { 739 DMWARN("Start sector is beyond the geometry limits."); 740 return -EINVAL; 741 } 742 743 md->geometry = *geo; 744 745 return 0; 746 } 747 748 /*----------------------------------------------------------------- 749 * CRUD START: 750 * A more elegant soln is in the works that uses the queue 751 * merge fn, unfortunately there are a couple of changes to 752 * the block layer that I want to make for this. So in the 753 * interests of getting something for people to use I give 754 * you this clearly demarcated crap. 755 *---------------------------------------------------------------*/ 756 757 static int __noflush_suspending(struct mapped_device *md) 758 { 759 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 760 } 761 762 /* 763 * Decrements the number of outstanding ios that a bio has been 764 * cloned into, completing the original io if necc. 765 */ 766 static void dec_pending(struct dm_io *io, int error) 767 { 768 unsigned long flags; 769 int io_error; 770 struct bio *bio; 771 struct mapped_device *md = io->md; 772 773 /* Push-back supersedes any I/O errors */ 774 if (unlikely(error)) { 775 spin_lock_irqsave(&io->endio_lock, flags); 776 if (!(io->error > 0 && __noflush_suspending(md))) 777 io->error = error; 778 spin_unlock_irqrestore(&io->endio_lock, flags); 779 } 780 781 if (atomic_dec_and_test(&io->io_count)) { 782 if (io->error == DM_ENDIO_REQUEUE) { 783 /* 784 * Target requested pushing back the I/O. 785 */ 786 spin_lock_irqsave(&md->deferred_lock, flags); 787 if (__noflush_suspending(md)) 788 bio_list_add_head(&md->deferred, io->bio); 789 else 790 /* noflush suspend was interrupted. */ 791 io->error = -EIO; 792 spin_unlock_irqrestore(&md->deferred_lock, flags); 793 } 794 795 io_error = io->error; 796 bio = io->bio; 797 end_io_acct(io); 798 free_io(md, io); 799 800 if (io_error == DM_ENDIO_REQUEUE) 801 return; 802 803 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 804 /* 805 * Preflush done for flush with data, reissue 806 * without REQ_PREFLUSH. 807 */ 808 bio->bi_opf &= ~REQ_PREFLUSH; 809 queue_io(md, bio); 810 } else { 811 /* done with normal IO or empty flush */ 812 trace_block_bio_complete(md->queue, bio, io_error); 813 bio->bi_error = io_error; 814 bio_endio(bio); 815 } 816 } 817 } 818 819 void disable_write_same(struct mapped_device *md) 820 { 821 struct queue_limits *limits = dm_get_queue_limits(md); 822 823 /* device doesn't really support WRITE SAME, disable it */ 824 limits->max_write_same_sectors = 0; 825 } 826 827 static void clone_endio(struct bio *bio) 828 { 829 int error = bio->bi_error; 830 int r = error; 831 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 832 struct dm_io *io = tio->io; 833 struct mapped_device *md = tio->io->md; 834 dm_endio_fn endio = tio->ti->type->end_io; 835 836 if (endio) { 837 r = endio(tio->ti, bio, error); 838 if (r < 0 || r == DM_ENDIO_REQUEUE) 839 /* 840 * error and requeue request are handled 841 * in dec_pending(). 842 */ 843 error = r; 844 else if (r == DM_ENDIO_INCOMPLETE) 845 /* The target will handle the io */ 846 return; 847 else if (r) { 848 DMWARN("unimplemented target endio return value: %d", r); 849 BUG(); 850 } 851 } 852 853 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) && 854 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)) 855 disable_write_same(md); 856 857 free_tio(tio); 858 dec_pending(io, error); 859 } 860 861 /* 862 * Return maximum size of I/O possible at the supplied sector up to the current 863 * target boundary. 864 */ 865 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 866 { 867 sector_t target_offset = dm_target_offset(ti, sector); 868 869 return ti->len - target_offset; 870 } 871 872 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 873 { 874 sector_t len = max_io_len_target_boundary(sector, ti); 875 sector_t offset, max_len; 876 877 /* 878 * Does the target need to split even further? 879 */ 880 if (ti->max_io_len) { 881 offset = dm_target_offset(ti, sector); 882 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 883 max_len = sector_div(offset, ti->max_io_len); 884 else 885 max_len = offset & (ti->max_io_len - 1); 886 max_len = ti->max_io_len - max_len; 887 888 if (len > max_len) 889 len = max_len; 890 } 891 892 return len; 893 } 894 895 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 896 { 897 if (len > UINT_MAX) { 898 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 899 (unsigned long long)len, UINT_MAX); 900 ti->error = "Maximum size of target IO is too large"; 901 return -EINVAL; 902 } 903 904 ti->max_io_len = (uint32_t) len; 905 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 909 910 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector, 911 void **kaddr, pfn_t *pfn, long size) 912 { 913 struct mapped_device *md = bdev->bd_disk->private_data; 914 struct dm_table *map; 915 struct dm_target *ti; 916 int srcu_idx; 917 long len, ret = -EIO; 918 919 map = dm_get_live_table(md, &srcu_idx); 920 if (!map) 921 goto out; 922 923 ti = dm_table_find_target(map, sector); 924 if (!dm_target_is_valid(ti)) 925 goto out; 926 927 len = max_io_len(sector, ti) << SECTOR_SHIFT; 928 size = min(len, size); 929 930 if (ti->type->direct_access) 931 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size); 932 out: 933 dm_put_live_table(md, srcu_idx); 934 return min(ret, size); 935 } 936 937 /* 938 * A target may call dm_accept_partial_bio only from the map routine. It is 939 * allowed for all bio types except REQ_PREFLUSH. 940 * 941 * dm_accept_partial_bio informs the dm that the target only wants to process 942 * additional n_sectors sectors of the bio and the rest of the data should be 943 * sent in a next bio. 944 * 945 * A diagram that explains the arithmetics: 946 * +--------------------+---------------+-------+ 947 * | 1 | 2 | 3 | 948 * +--------------------+---------------+-------+ 949 * 950 * <-------------- *tio->len_ptr ---------------> 951 * <------- bi_size -------> 952 * <-- n_sectors --> 953 * 954 * Region 1 was already iterated over with bio_advance or similar function. 955 * (it may be empty if the target doesn't use bio_advance) 956 * Region 2 is the remaining bio size that the target wants to process. 957 * (it may be empty if region 1 is non-empty, although there is no reason 958 * to make it empty) 959 * The target requires that region 3 is to be sent in the next bio. 960 * 961 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 962 * the partially processed part (the sum of regions 1+2) must be the same for all 963 * copies of the bio. 964 */ 965 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 966 { 967 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 968 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 969 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 970 BUG_ON(bi_size > *tio->len_ptr); 971 BUG_ON(n_sectors > bi_size); 972 *tio->len_ptr -= bi_size - n_sectors; 973 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 974 } 975 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 976 977 /* 978 * Flush current->bio_list when the target map method blocks. 979 * This fixes deadlocks in snapshot and possibly in other targets. 980 */ 981 struct dm_offload { 982 struct blk_plug plug; 983 struct blk_plug_cb cb; 984 }; 985 986 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule) 987 { 988 struct dm_offload *o = container_of(cb, struct dm_offload, cb); 989 struct bio_list list; 990 struct bio *bio; 991 992 INIT_LIST_HEAD(&o->cb.list); 993 994 if (unlikely(!current->bio_list)) 995 return; 996 997 list = *current->bio_list; 998 bio_list_init(current->bio_list); 999 1000 while ((bio = bio_list_pop(&list))) { 1001 struct bio_set *bs = bio->bi_pool; 1002 if (unlikely(!bs) || bs == fs_bio_set) { 1003 bio_list_add(current->bio_list, bio); 1004 continue; 1005 } 1006 1007 spin_lock(&bs->rescue_lock); 1008 bio_list_add(&bs->rescue_list, bio); 1009 queue_work(bs->rescue_workqueue, &bs->rescue_work); 1010 spin_unlock(&bs->rescue_lock); 1011 } 1012 } 1013 1014 static void dm_offload_start(struct dm_offload *o) 1015 { 1016 blk_start_plug(&o->plug); 1017 o->cb.callback = flush_current_bio_list; 1018 list_add(&o->cb.list, ¤t->plug->cb_list); 1019 } 1020 1021 static void dm_offload_end(struct dm_offload *o) 1022 { 1023 list_del(&o->cb.list); 1024 blk_finish_plug(&o->plug); 1025 } 1026 1027 static void __map_bio(struct dm_target_io *tio) 1028 { 1029 int r; 1030 sector_t sector; 1031 struct dm_offload o; 1032 struct bio *clone = &tio->clone; 1033 struct dm_target *ti = tio->ti; 1034 1035 clone->bi_end_io = clone_endio; 1036 1037 /* 1038 * Map the clone. If r == 0 we don't need to do 1039 * anything, the target has assumed ownership of 1040 * this io. 1041 */ 1042 atomic_inc(&tio->io->io_count); 1043 sector = clone->bi_iter.bi_sector; 1044 1045 dm_offload_start(&o); 1046 r = ti->type->map(ti, clone); 1047 dm_offload_end(&o); 1048 1049 if (r == DM_MAPIO_REMAPPED) { 1050 /* the bio has been remapped so dispatch it */ 1051 1052 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1053 tio->io->bio->bi_bdev->bd_dev, sector); 1054 1055 generic_make_request(clone); 1056 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1057 /* error the io and bail out, or requeue it if needed */ 1058 dec_pending(tio->io, r); 1059 free_tio(tio); 1060 } else if (r != DM_MAPIO_SUBMITTED) { 1061 DMWARN("unimplemented target map return value: %d", r); 1062 BUG(); 1063 } 1064 } 1065 1066 struct clone_info { 1067 struct mapped_device *md; 1068 struct dm_table *map; 1069 struct bio *bio; 1070 struct dm_io *io; 1071 sector_t sector; 1072 unsigned sector_count; 1073 }; 1074 1075 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1076 { 1077 bio->bi_iter.bi_sector = sector; 1078 bio->bi_iter.bi_size = to_bytes(len); 1079 } 1080 1081 /* 1082 * Creates a bio that consists of range of complete bvecs. 1083 */ 1084 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1085 sector_t sector, unsigned len) 1086 { 1087 struct bio *clone = &tio->clone; 1088 1089 __bio_clone_fast(clone, bio); 1090 1091 if (bio_integrity(bio)) { 1092 int r = bio_integrity_clone(clone, bio, GFP_NOIO); 1093 if (r < 0) 1094 return r; 1095 } 1096 1097 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1098 clone->bi_iter.bi_size = to_bytes(len); 1099 1100 if (bio_integrity(bio)) 1101 bio_integrity_trim(clone, 0, len); 1102 1103 return 0; 1104 } 1105 1106 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1107 struct dm_target *ti, 1108 unsigned target_bio_nr) 1109 { 1110 struct dm_target_io *tio; 1111 struct bio *clone; 1112 1113 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs); 1114 tio = container_of(clone, struct dm_target_io, clone); 1115 1116 tio->io = ci->io; 1117 tio->ti = ti; 1118 tio->target_bio_nr = target_bio_nr; 1119 1120 return tio; 1121 } 1122 1123 static void __clone_and_map_simple_bio(struct clone_info *ci, 1124 struct dm_target *ti, 1125 unsigned target_bio_nr, unsigned *len) 1126 { 1127 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr); 1128 struct bio *clone = &tio->clone; 1129 1130 tio->len_ptr = len; 1131 1132 __bio_clone_fast(clone, ci->bio); 1133 if (len) 1134 bio_setup_sector(clone, ci->sector, *len); 1135 1136 __map_bio(tio); 1137 } 1138 1139 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1140 unsigned num_bios, unsigned *len) 1141 { 1142 unsigned target_bio_nr; 1143 1144 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1145 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1146 } 1147 1148 static int __send_empty_flush(struct clone_info *ci) 1149 { 1150 unsigned target_nr = 0; 1151 struct dm_target *ti; 1152 1153 BUG_ON(bio_has_data(ci->bio)); 1154 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1155 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1156 1157 return 0; 1158 } 1159 1160 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1161 sector_t sector, unsigned *len) 1162 { 1163 struct bio *bio = ci->bio; 1164 struct dm_target_io *tio; 1165 unsigned target_bio_nr; 1166 unsigned num_target_bios = 1; 1167 int r = 0; 1168 1169 /* 1170 * Does the target want to receive duplicate copies of the bio? 1171 */ 1172 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1173 num_target_bios = ti->num_write_bios(ti, bio); 1174 1175 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1176 tio = alloc_tio(ci, ti, target_bio_nr); 1177 tio->len_ptr = len; 1178 r = clone_bio(tio, bio, sector, *len); 1179 if (r < 0) { 1180 free_tio(tio); 1181 break; 1182 } 1183 __map_bio(tio); 1184 } 1185 1186 return r; 1187 } 1188 1189 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1190 1191 static unsigned get_num_discard_bios(struct dm_target *ti) 1192 { 1193 return ti->num_discard_bios; 1194 } 1195 1196 static unsigned get_num_write_same_bios(struct dm_target *ti) 1197 { 1198 return ti->num_write_same_bios; 1199 } 1200 1201 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1202 1203 static bool is_split_required_for_discard(struct dm_target *ti) 1204 { 1205 return ti->split_discard_bios; 1206 } 1207 1208 static int __send_changing_extent_only(struct clone_info *ci, 1209 get_num_bios_fn get_num_bios, 1210 is_split_required_fn is_split_required) 1211 { 1212 struct dm_target *ti; 1213 unsigned len; 1214 unsigned num_bios; 1215 1216 do { 1217 ti = dm_table_find_target(ci->map, ci->sector); 1218 if (!dm_target_is_valid(ti)) 1219 return -EIO; 1220 1221 /* 1222 * Even though the device advertised support for this type of 1223 * request, that does not mean every target supports it, and 1224 * reconfiguration might also have changed that since the 1225 * check was performed. 1226 */ 1227 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1228 if (!num_bios) 1229 return -EOPNOTSUPP; 1230 1231 if (is_split_required && !is_split_required(ti)) 1232 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1233 else 1234 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1235 1236 __send_duplicate_bios(ci, ti, num_bios, &len); 1237 1238 ci->sector += len; 1239 } while (ci->sector_count -= len); 1240 1241 return 0; 1242 } 1243 1244 static int __send_discard(struct clone_info *ci) 1245 { 1246 return __send_changing_extent_only(ci, get_num_discard_bios, 1247 is_split_required_for_discard); 1248 } 1249 1250 static int __send_write_same(struct clone_info *ci) 1251 { 1252 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1253 } 1254 1255 /* 1256 * Select the correct strategy for processing a non-flush bio. 1257 */ 1258 static int __split_and_process_non_flush(struct clone_info *ci) 1259 { 1260 struct bio *bio = ci->bio; 1261 struct dm_target *ti; 1262 unsigned len; 1263 int r; 1264 1265 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1266 return __send_discard(ci); 1267 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1268 return __send_write_same(ci); 1269 1270 ti = dm_table_find_target(ci->map, ci->sector); 1271 if (!dm_target_is_valid(ti)) 1272 return -EIO; 1273 1274 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1275 1276 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1277 if (r < 0) 1278 return r; 1279 1280 ci->sector += len; 1281 ci->sector_count -= len; 1282 1283 return 0; 1284 } 1285 1286 /* 1287 * Entry point to split a bio into clones and submit them to the targets. 1288 */ 1289 static void __split_and_process_bio(struct mapped_device *md, 1290 struct dm_table *map, struct bio *bio) 1291 { 1292 struct clone_info ci; 1293 int error = 0; 1294 1295 if (unlikely(!map)) { 1296 bio_io_error(bio); 1297 return; 1298 } 1299 1300 ci.map = map; 1301 ci.md = md; 1302 ci.io = alloc_io(md); 1303 ci.io->error = 0; 1304 atomic_set(&ci.io->io_count, 1); 1305 ci.io->bio = bio; 1306 ci.io->md = md; 1307 spin_lock_init(&ci.io->endio_lock); 1308 ci.sector = bio->bi_iter.bi_sector; 1309 1310 start_io_acct(ci.io); 1311 1312 if (bio->bi_opf & REQ_PREFLUSH) { 1313 ci.bio = &ci.md->flush_bio; 1314 ci.sector_count = 0; 1315 error = __send_empty_flush(&ci); 1316 /* dec_pending submits any data associated with flush */ 1317 } else { 1318 ci.bio = bio; 1319 ci.sector_count = bio_sectors(bio); 1320 while (ci.sector_count && !error) 1321 error = __split_and_process_non_flush(&ci); 1322 } 1323 1324 /* drop the extra reference count */ 1325 dec_pending(ci.io, error); 1326 } 1327 /*----------------------------------------------------------------- 1328 * CRUD END 1329 *---------------------------------------------------------------*/ 1330 1331 /* 1332 * The request function that just remaps the bio built up by 1333 * dm_merge_bvec. 1334 */ 1335 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1336 { 1337 int rw = bio_data_dir(bio); 1338 struct mapped_device *md = q->queuedata; 1339 int srcu_idx; 1340 struct dm_table *map; 1341 1342 map = dm_get_live_table(md, &srcu_idx); 1343 1344 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0); 1345 1346 /* if we're suspended, we have to queue this io for later */ 1347 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1348 dm_put_live_table(md, srcu_idx); 1349 1350 if (!(bio->bi_opf & REQ_RAHEAD)) 1351 queue_io(md, bio); 1352 else 1353 bio_io_error(bio); 1354 return BLK_QC_T_NONE; 1355 } 1356 1357 __split_and_process_bio(md, map, bio); 1358 dm_put_live_table(md, srcu_idx); 1359 return BLK_QC_T_NONE; 1360 } 1361 1362 static int dm_any_congested(void *congested_data, int bdi_bits) 1363 { 1364 int r = bdi_bits; 1365 struct mapped_device *md = congested_data; 1366 struct dm_table *map; 1367 1368 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1369 if (dm_request_based(md)) { 1370 /* 1371 * With request-based DM we only need to check the 1372 * top-level queue for congestion. 1373 */ 1374 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1375 } else { 1376 map = dm_get_live_table_fast(md); 1377 if (map) 1378 r = dm_table_any_congested(map, bdi_bits); 1379 dm_put_live_table_fast(md); 1380 } 1381 } 1382 1383 return r; 1384 } 1385 1386 /*----------------------------------------------------------------- 1387 * An IDR is used to keep track of allocated minor numbers. 1388 *---------------------------------------------------------------*/ 1389 static void free_minor(int minor) 1390 { 1391 spin_lock(&_minor_lock); 1392 idr_remove(&_minor_idr, minor); 1393 spin_unlock(&_minor_lock); 1394 } 1395 1396 /* 1397 * See if the device with a specific minor # is free. 1398 */ 1399 static int specific_minor(int minor) 1400 { 1401 int r; 1402 1403 if (minor >= (1 << MINORBITS)) 1404 return -EINVAL; 1405 1406 idr_preload(GFP_KERNEL); 1407 spin_lock(&_minor_lock); 1408 1409 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1410 1411 spin_unlock(&_minor_lock); 1412 idr_preload_end(); 1413 if (r < 0) 1414 return r == -ENOSPC ? -EBUSY : r; 1415 return 0; 1416 } 1417 1418 static int next_free_minor(int *minor) 1419 { 1420 int r; 1421 1422 idr_preload(GFP_KERNEL); 1423 spin_lock(&_minor_lock); 1424 1425 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1426 1427 spin_unlock(&_minor_lock); 1428 idr_preload_end(); 1429 if (r < 0) 1430 return r; 1431 *minor = r; 1432 return 0; 1433 } 1434 1435 static const struct block_device_operations dm_blk_dops; 1436 1437 static void dm_wq_work(struct work_struct *work); 1438 1439 void dm_init_md_queue(struct mapped_device *md) 1440 { 1441 /* 1442 * Request-based dm devices cannot be stacked on top of bio-based dm 1443 * devices. The type of this dm device may not have been decided yet. 1444 * The type is decided at the first table loading time. 1445 * To prevent problematic device stacking, clear the queue flag 1446 * for request stacking support until then. 1447 * 1448 * This queue is new, so no concurrency on the queue_flags. 1449 */ 1450 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1451 1452 /* 1453 * Initialize data that will only be used by a non-blk-mq DM queue 1454 * - must do so here (in alloc_dev callchain) before queue is used 1455 */ 1456 md->queue->queuedata = md; 1457 md->queue->backing_dev_info->congested_data = md; 1458 } 1459 1460 void dm_init_normal_md_queue(struct mapped_device *md) 1461 { 1462 md->use_blk_mq = false; 1463 dm_init_md_queue(md); 1464 1465 /* 1466 * Initialize aspects of queue that aren't relevant for blk-mq 1467 */ 1468 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1469 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1470 } 1471 1472 static void cleanup_mapped_device(struct mapped_device *md) 1473 { 1474 if (md->wq) 1475 destroy_workqueue(md->wq); 1476 if (md->kworker_task) 1477 kthread_stop(md->kworker_task); 1478 mempool_destroy(md->io_pool); 1479 if (md->bs) 1480 bioset_free(md->bs); 1481 1482 if (md->disk) { 1483 spin_lock(&_minor_lock); 1484 md->disk->private_data = NULL; 1485 spin_unlock(&_minor_lock); 1486 del_gendisk(md->disk); 1487 put_disk(md->disk); 1488 } 1489 1490 if (md->queue) 1491 blk_cleanup_queue(md->queue); 1492 1493 cleanup_srcu_struct(&md->io_barrier); 1494 1495 if (md->bdev) { 1496 bdput(md->bdev); 1497 md->bdev = NULL; 1498 } 1499 1500 dm_mq_cleanup_mapped_device(md); 1501 } 1502 1503 /* 1504 * Allocate and initialise a blank device with a given minor. 1505 */ 1506 static struct mapped_device *alloc_dev(int minor) 1507 { 1508 int r, numa_node_id = dm_get_numa_node(); 1509 struct mapped_device *md; 1510 void *old_md; 1511 1512 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1513 if (!md) { 1514 DMWARN("unable to allocate device, out of memory."); 1515 return NULL; 1516 } 1517 1518 if (!try_module_get(THIS_MODULE)) 1519 goto bad_module_get; 1520 1521 /* get a minor number for the dev */ 1522 if (minor == DM_ANY_MINOR) 1523 r = next_free_minor(&minor); 1524 else 1525 r = specific_minor(minor); 1526 if (r < 0) 1527 goto bad_minor; 1528 1529 r = init_srcu_struct(&md->io_barrier); 1530 if (r < 0) 1531 goto bad_io_barrier; 1532 1533 md->numa_node_id = numa_node_id; 1534 md->use_blk_mq = dm_use_blk_mq_default(); 1535 md->init_tio_pdu = false; 1536 md->type = DM_TYPE_NONE; 1537 mutex_init(&md->suspend_lock); 1538 mutex_init(&md->type_lock); 1539 mutex_init(&md->table_devices_lock); 1540 spin_lock_init(&md->deferred_lock); 1541 atomic_set(&md->holders, 1); 1542 atomic_set(&md->open_count, 0); 1543 atomic_set(&md->event_nr, 0); 1544 atomic_set(&md->uevent_seq, 0); 1545 INIT_LIST_HEAD(&md->uevent_list); 1546 INIT_LIST_HEAD(&md->table_devices); 1547 spin_lock_init(&md->uevent_lock); 1548 1549 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1550 if (!md->queue) 1551 goto bad; 1552 1553 dm_init_md_queue(md); 1554 1555 md->disk = alloc_disk_node(1, numa_node_id); 1556 if (!md->disk) 1557 goto bad; 1558 1559 atomic_set(&md->pending[0], 0); 1560 atomic_set(&md->pending[1], 0); 1561 init_waitqueue_head(&md->wait); 1562 INIT_WORK(&md->work, dm_wq_work); 1563 init_waitqueue_head(&md->eventq); 1564 init_completion(&md->kobj_holder.completion); 1565 md->kworker_task = NULL; 1566 1567 md->disk->major = _major; 1568 md->disk->first_minor = minor; 1569 md->disk->fops = &dm_blk_dops; 1570 md->disk->queue = md->queue; 1571 md->disk->private_data = md; 1572 sprintf(md->disk->disk_name, "dm-%d", minor); 1573 add_disk(md->disk); 1574 format_dev_t(md->name, MKDEV(_major, minor)); 1575 1576 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1577 if (!md->wq) 1578 goto bad; 1579 1580 md->bdev = bdget_disk(md->disk, 0); 1581 if (!md->bdev) 1582 goto bad; 1583 1584 bio_init(&md->flush_bio, NULL, 0); 1585 md->flush_bio.bi_bdev = md->bdev; 1586 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 1587 1588 dm_stats_init(&md->stats); 1589 1590 /* Populate the mapping, nobody knows we exist yet */ 1591 spin_lock(&_minor_lock); 1592 old_md = idr_replace(&_minor_idr, md, minor); 1593 spin_unlock(&_minor_lock); 1594 1595 BUG_ON(old_md != MINOR_ALLOCED); 1596 1597 return md; 1598 1599 bad: 1600 cleanup_mapped_device(md); 1601 bad_io_barrier: 1602 free_minor(minor); 1603 bad_minor: 1604 module_put(THIS_MODULE); 1605 bad_module_get: 1606 kfree(md); 1607 return NULL; 1608 } 1609 1610 static void unlock_fs(struct mapped_device *md); 1611 1612 static void free_dev(struct mapped_device *md) 1613 { 1614 int minor = MINOR(disk_devt(md->disk)); 1615 1616 unlock_fs(md); 1617 1618 cleanup_mapped_device(md); 1619 1620 free_table_devices(&md->table_devices); 1621 dm_stats_cleanup(&md->stats); 1622 free_minor(minor); 1623 1624 module_put(THIS_MODULE); 1625 kfree(md); 1626 } 1627 1628 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1629 { 1630 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1631 1632 if (md->bs) { 1633 /* The md already has necessary mempools. */ 1634 if (dm_table_bio_based(t)) { 1635 /* 1636 * Reload bioset because front_pad may have changed 1637 * because a different table was loaded. 1638 */ 1639 bioset_free(md->bs); 1640 md->bs = p->bs; 1641 p->bs = NULL; 1642 } 1643 /* 1644 * There's no need to reload with request-based dm 1645 * because the size of front_pad doesn't change. 1646 * Note for future: If you are to reload bioset, 1647 * prep-ed requests in the queue may refer 1648 * to bio from the old bioset, so you must walk 1649 * through the queue to unprep. 1650 */ 1651 goto out; 1652 } 1653 1654 BUG_ON(!p || md->io_pool || md->bs); 1655 1656 md->io_pool = p->io_pool; 1657 p->io_pool = NULL; 1658 md->bs = p->bs; 1659 p->bs = NULL; 1660 1661 out: 1662 /* mempool bind completed, no longer need any mempools in the table */ 1663 dm_table_free_md_mempools(t); 1664 } 1665 1666 /* 1667 * Bind a table to the device. 1668 */ 1669 static void event_callback(void *context) 1670 { 1671 unsigned long flags; 1672 LIST_HEAD(uevents); 1673 struct mapped_device *md = (struct mapped_device *) context; 1674 1675 spin_lock_irqsave(&md->uevent_lock, flags); 1676 list_splice_init(&md->uevent_list, &uevents); 1677 spin_unlock_irqrestore(&md->uevent_lock, flags); 1678 1679 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1680 1681 atomic_inc(&md->event_nr); 1682 wake_up(&md->eventq); 1683 } 1684 1685 /* 1686 * Protected by md->suspend_lock obtained by dm_swap_table(). 1687 */ 1688 static void __set_size(struct mapped_device *md, sector_t size) 1689 { 1690 set_capacity(md->disk, size); 1691 1692 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1693 } 1694 1695 /* 1696 * Returns old map, which caller must destroy. 1697 */ 1698 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 1699 struct queue_limits *limits) 1700 { 1701 struct dm_table *old_map; 1702 struct request_queue *q = md->queue; 1703 sector_t size; 1704 1705 lockdep_assert_held(&md->suspend_lock); 1706 1707 size = dm_table_get_size(t); 1708 1709 /* 1710 * Wipe any geometry if the size of the table changed. 1711 */ 1712 if (size != dm_get_size(md)) 1713 memset(&md->geometry, 0, sizeof(md->geometry)); 1714 1715 __set_size(md, size); 1716 1717 dm_table_event_callback(t, event_callback, md); 1718 1719 /* 1720 * The queue hasn't been stopped yet, if the old table type wasn't 1721 * for request-based during suspension. So stop it to prevent 1722 * I/O mapping before resume. 1723 * This must be done before setting the queue restrictions, 1724 * because request-based dm may be run just after the setting. 1725 */ 1726 if (dm_table_request_based(t)) { 1727 dm_stop_queue(q); 1728 /* 1729 * Leverage the fact that request-based DM targets are 1730 * immutable singletons and establish md->immutable_target 1731 * - used to optimize both dm_request_fn and dm_mq_queue_rq 1732 */ 1733 md->immutable_target = dm_table_get_immutable_target(t); 1734 } 1735 1736 __bind_mempools(md, t); 1737 1738 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 1739 rcu_assign_pointer(md->map, (void *)t); 1740 md->immutable_target_type = dm_table_get_immutable_target_type(t); 1741 1742 dm_table_set_restrictions(t, q, limits); 1743 if (old_map) 1744 dm_sync_table(md); 1745 1746 return old_map; 1747 } 1748 1749 /* 1750 * Returns unbound table for the caller to free. 1751 */ 1752 static struct dm_table *__unbind(struct mapped_device *md) 1753 { 1754 struct dm_table *map = rcu_dereference_protected(md->map, 1); 1755 1756 if (!map) 1757 return NULL; 1758 1759 dm_table_event_callback(map, NULL, NULL); 1760 RCU_INIT_POINTER(md->map, NULL); 1761 dm_sync_table(md); 1762 1763 return map; 1764 } 1765 1766 /* 1767 * Constructor for a new device. 1768 */ 1769 int dm_create(int minor, struct mapped_device **result) 1770 { 1771 struct mapped_device *md; 1772 1773 md = alloc_dev(minor); 1774 if (!md) 1775 return -ENXIO; 1776 1777 dm_sysfs_init(md); 1778 1779 *result = md; 1780 return 0; 1781 } 1782 1783 /* 1784 * Functions to manage md->type. 1785 * All are required to hold md->type_lock. 1786 */ 1787 void dm_lock_md_type(struct mapped_device *md) 1788 { 1789 mutex_lock(&md->type_lock); 1790 } 1791 1792 void dm_unlock_md_type(struct mapped_device *md) 1793 { 1794 mutex_unlock(&md->type_lock); 1795 } 1796 1797 void dm_set_md_type(struct mapped_device *md, unsigned type) 1798 { 1799 BUG_ON(!mutex_is_locked(&md->type_lock)); 1800 md->type = type; 1801 } 1802 1803 unsigned dm_get_md_type(struct mapped_device *md) 1804 { 1805 return md->type; 1806 } 1807 1808 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 1809 { 1810 return md->immutable_target_type; 1811 } 1812 1813 /* 1814 * The queue_limits are only valid as long as you have a reference 1815 * count on 'md'. 1816 */ 1817 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1818 { 1819 BUG_ON(!atomic_read(&md->holders)); 1820 return &md->queue->limits; 1821 } 1822 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 1823 1824 /* 1825 * Setup the DM device's queue based on md's type 1826 */ 1827 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 1828 { 1829 int r; 1830 unsigned type = dm_get_md_type(md); 1831 1832 switch (type) { 1833 case DM_TYPE_REQUEST_BASED: 1834 r = dm_old_init_request_queue(md, t); 1835 if (r) { 1836 DMERR("Cannot initialize queue for request-based mapped device"); 1837 return r; 1838 } 1839 break; 1840 case DM_TYPE_MQ_REQUEST_BASED: 1841 r = dm_mq_init_request_queue(md, t); 1842 if (r) { 1843 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 1844 return r; 1845 } 1846 break; 1847 case DM_TYPE_BIO_BASED: 1848 case DM_TYPE_DAX_BIO_BASED: 1849 dm_init_normal_md_queue(md); 1850 blk_queue_make_request(md->queue, dm_make_request); 1851 /* 1852 * DM handles splitting bios as needed. Free the bio_split bioset 1853 * since it won't be used (saves 1 process per bio-based DM device). 1854 */ 1855 bioset_free(md->queue->bio_split); 1856 md->queue->bio_split = NULL; 1857 1858 if (type == DM_TYPE_DAX_BIO_BASED) 1859 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue); 1860 break; 1861 } 1862 1863 return 0; 1864 } 1865 1866 struct mapped_device *dm_get_md(dev_t dev) 1867 { 1868 struct mapped_device *md; 1869 unsigned minor = MINOR(dev); 1870 1871 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1872 return NULL; 1873 1874 spin_lock(&_minor_lock); 1875 1876 md = idr_find(&_minor_idr, minor); 1877 if (md) { 1878 if ((md == MINOR_ALLOCED || 1879 (MINOR(disk_devt(dm_disk(md))) != minor) || 1880 dm_deleting_md(md) || 1881 test_bit(DMF_FREEING, &md->flags))) { 1882 md = NULL; 1883 goto out; 1884 } 1885 dm_get(md); 1886 } 1887 1888 out: 1889 spin_unlock(&_minor_lock); 1890 1891 return md; 1892 } 1893 EXPORT_SYMBOL_GPL(dm_get_md); 1894 1895 void *dm_get_mdptr(struct mapped_device *md) 1896 { 1897 return md->interface_ptr; 1898 } 1899 1900 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1901 { 1902 md->interface_ptr = ptr; 1903 } 1904 1905 void dm_get(struct mapped_device *md) 1906 { 1907 atomic_inc(&md->holders); 1908 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1909 } 1910 1911 int dm_hold(struct mapped_device *md) 1912 { 1913 spin_lock(&_minor_lock); 1914 if (test_bit(DMF_FREEING, &md->flags)) { 1915 spin_unlock(&_minor_lock); 1916 return -EBUSY; 1917 } 1918 dm_get(md); 1919 spin_unlock(&_minor_lock); 1920 return 0; 1921 } 1922 EXPORT_SYMBOL_GPL(dm_hold); 1923 1924 const char *dm_device_name(struct mapped_device *md) 1925 { 1926 return md->name; 1927 } 1928 EXPORT_SYMBOL_GPL(dm_device_name); 1929 1930 static void __dm_destroy(struct mapped_device *md, bool wait) 1931 { 1932 struct request_queue *q = dm_get_md_queue(md); 1933 struct dm_table *map; 1934 int srcu_idx; 1935 1936 might_sleep(); 1937 1938 spin_lock(&_minor_lock); 1939 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 1940 set_bit(DMF_FREEING, &md->flags); 1941 spin_unlock(&_minor_lock); 1942 1943 blk_set_queue_dying(q); 1944 1945 if (dm_request_based(md) && md->kworker_task) 1946 kthread_flush_worker(&md->kworker); 1947 1948 /* 1949 * Take suspend_lock so that presuspend and postsuspend methods 1950 * do not race with internal suspend. 1951 */ 1952 mutex_lock(&md->suspend_lock); 1953 map = dm_get_live_table(md, &srcu_idx); 1954 if (!dm_suspended_md(md)) { 1955 dm_table_presuspend_targets(map); 1956 dm_table_postsuspend_targets(map); 1957 } 1958 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 1959 dm_put_live_table(md, srcu_idx); 1960 mutex_unlock(&md->suspend_lock); 1961 1962 /* 1963 * Rare, but there may be I/O requests still going to complete, 1964 * for example. Wait for all references to disappear. 1965 * No one should increment the reference count of the mapped_device, 1966 * after the mapped_device state becomes DMF_FREEING. 1967 */ 1968 if (wait) 1969 while (atomic_read(&md->holders)) 1970 msleep(1); 1971 else if (atomic_read(&md->holders)) 1972 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 1973 dm_device_name(md), atomic_read(&md->holders)); 1974 1975 dm_sysfs_exit(md); 1976 dm_table_destroy(__unbind(md)); 1977 free_dev(md); 1978 } 1979 1980 void dm_destroy(struct mapped_device *md) 1981 { 1982 __dm_destroy(md, true); 1983 } 1984 1985 void dm_destroy_immediate(struct mapped_device *md) 1986 { 1987 __dm_destroy(md, false); 1988 } 1989 1990 void dm_put(struct mapped_device *md) 1991 { 1992 atomic_dec(&md->holders); 1993 } 1994 EXPORT_SYMBOL_GPL(dm_put); 1995 1996 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 1997 { 1998 int r = 0; 1999 DEFINE_WAIT(wait); 2000 2001 while (1) { 2002 prepare_to_wait(&md->wait, &wait, task_state); 2003 2004 if (!md_in_flight(md)) 2005 break; 2006 2007 if (signal_pending_state(task_state, current)) { 2008 r = -EINTR; 2009 break; 2010 } 2011 2012 io_schedule(); 2013 } 2014 finish_wait(&md->wait, &wait); 2015 2016 return r; 2017 } 2018 2019 /* 2020 * Process the deferred bios 2021 */ 2022 static void dm_wq_work(struct work_struct *work) 2023 { 2024 struct mapped_device *md = container_of(work, struct mapped_device, 2025 work); 2026 struct bio *c; 2027 int srcu_idx; 2028 struct dm_table *map; 2029 2030 map = dm_get_live_table(md, &srcu_idx); 2031 2032 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2033 spin_lock_irq(&md->deferred_lock); 2034 c = bio_list_pop(&md->deferred); 2035 spin_unlock_irq(&md->deferred_lock); 2036 2037 if (!c) 2038 break; 2039 2040 if (dm_request_based(md)) 2041 generic_make_request(c); 2042 else 2043 __split_and_process_bio(md, map, c); 2044 } 2045 2046 dm_put_live_table(md, srcu_idx); 2047 } 2048 2049 static void dm_queue_flush(struct mapped_device *md) 2050 { 2051 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2052 smp_mb__after_atomic(); 2053 queue_work(md->wq, &md->work); 2054 } 2055 2056 /* 2057 * Swap in a new table, returning the old one for the caller to destroy. 2058 */ 2059 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2060 { 2061 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2062 struct queue_limits limits; 2063 int r; 2064 2065 mutex_lock(&md->suspend_lock); 2066 2067 /* device must be suspended */ 2068 if (!dm_suspended_md(md)) 2069 goto out; 2070 2071 /* 2072 * If the new table has no data devices, retain the existing limits. 2073 * This helps multipath with queue_if_no_path if all paths disappear, 2074 * then new I/O is queued based on these limits, and then some paths 2075 * reappear. 2076 */ 2077 if (dm_table_has_no_data_devices(table)) { 2078 live_map = dm_get_live_table_fast(md); 2079 if (live_map) 2080 limits = md->queue->limits; 2081 dm_put_live_table_fast(md); 2082 } 2083 2084 if (!live_map) { 2085 r = dm_calculate_queue_limits(table, &limits); 2086 if (r) { 2087 map = ERR_PTR(r); 2088 goto out; 2089 } 2090 } 2091 2092 map = __bind(md, table, &limits); 2093 2094 out: 2095 mutex_unlock(&md->suspend_lock); 2096 return map; 2097 } 2098 2099 /* 2100 * Functions to lock and unlock any filesystem running on the 2101 * device. 2102 */ 2103 static int lock_fs(struct mapped_device *md) 2104 { 2105 int r; 2106 2107 WARN_ON(md->frozen_sb); 2108 2109 md->frozen_sb = freeze_bdev(md->bdev); 2110 if (IS_ERR(md->frozen_sb)) { 2111 r = PTR_ERR(md->frozen_sb); 2112 md->frozen_sb = NULL; 2113 return r; 2114 } 2115 2116 set_bit(DMF_FROZEN, &md->flags); 2117 2118 return 0; 2119 } 2120 2121 static void unlock_fs(struct mapped_device *md) 2122 { 2123 if (!test_bit(DMF_FROZEN, &md->flags)) 2124 return; 2125 2126 thaw_bdev(md->bdev, md->frozen_sb); 2127 md->frozen_sb = NULL; 2128 clear_bit(DMF_FROZEN, &md->flags); 2129 } 2130 2131 /* 2132 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2133 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2134 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2135 * 2136 * If __dm_suspend returns 0, the device is completely quiescent 2137 * now. There is no request-processing activity. All new requests 2138 * are being added to md->deferred list. 2139 * 2140 * Caller must hold md->suspend_lock 2141 */ 2142 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2143 unsigned suspend_flags, long task_state, 2144 int dmf_suspended_flag) 2145 { 2146 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2147 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2148 int r; 2149 2150 lockdep_assert_held(&md->suspend_lock); 2151 2152 /* 2153 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2154 * This flag is cleared before dm_suspend returns. 2155 */ 2156 if (noflush) 2157 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2158 2159 /* 2160 * This gets reverted if there's an error later and the targets 2161 * provide the .presuspend_undo hook. 2162 */ 2163 dm_table_presuspend_targets(map); 2164 2165 /* 2166 * Flush I/O to the device. 2167 * Any I/O submitted after lock_fs() may not be flushed. 2168 * noflush takes precedence over do_lockfs. 2169 * (lock_fs() flushes I/Os and waits for them to complete.) 2170 */ 2171 if (!noflush && do_lockfs) { 2172 r = lock_fs(md); 2173 if (r) { 2174 dm_table_presuspend_undo_targets(map); 2175 return r; 2176 } 2177 } 2178 2179 /* 2180 * Here we must make sure that no processes are submitting requests 2181 * to target drivers i.e. no one may be executing 2182 * __split_and_process_bio. This is called from dm_request and 2183 * dm_wq_work. 2184 * 2185 * To get all processes out of __split_and_process_bio in dm_request, 2186 * we take the write lock. To prevent any process from reentering 2187 * __split_and_process_bio from dm_request and quiesce the thread 2188 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2189 * flush_workqueue(md->wq). 2190 */ 2191 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2192 if (map) 2193 synchronize_srcu(&md->io_barrier); 2194 2195 /* 2196 * Stop md->queue before flushing md->wq in case request-based 2197 * dm defers requests to md->wq from md->queue. 2198 */ 2199 if (dm_request_based(md)) { 2200 dm_stop_queue(md->queue); 2201 if (md->kworker_task) 2202 kthread_flush_worker(&md->kworker); 2203 } 2204 2205 flush_workqueue(md->wq); 2206 2207 /* 2208 * At this point no more requests are entering target request routines. 2209 * We call dm_wait_for_completion to wait for all existing requests 2210 * to finish. 2211 */ 2212 r = dm_wait_for_completion(md, task_state); 2213 if (!r) 2214 set_bit(dmf_suspended_flag, &md->flags); 2215 2216 if (noflush) 2217 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2218 if (map) 2219 synchronize_srcu(&md->io_barrier); 2220 2221 /* were we interrupted ? */ 2222 if (r < 0) { 2223 dm_queue_flush(md); 2224 2225 if (dm_request_based(md)) 2226 dm_start_queue(md->queue); 2227 2228 unlock_fs(md); 2229 dm_table_presuspend_undo_targets(map); 2230 /* pushback list is already flushed, so skip flush */ 2231 } 2232 2233 return r; 2234 } 2235 2236 /* 2237 * We need to be able to change a mapping table under a mounted 2238 * filesystem. For example we might want to move some data in 2239 * the background. Before the table can be swapped with 2240 * dm_bind_table, dm_suspend must be called to flush any in 2241 * flight bios and ensure that any further io gets deferred. 2242 */ 2243 /* 2244 * Suspend mechanism in request-based dm. 2245 * 2246 * 1. Flush all I/Os by lock_fs() if needed. 2247 * 2. Stop dispatching any I/O by stopping the request_queue. 2248 * 3. Wait for all in-flight I/Os to be completed or requeued. 2249 * 2250 * To abort suspend, start the request_queue. 2251 */ 2252 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2253 { 2254 struct dm_table *map = NULL; 2255 int r = 0; 2256 2257 retry: 2258 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2259 2260 if (dm_suspended_md(md)) { 2261 r = -EINVAL; 2262 goto out_unlock; 2263 } 2264 2265 if (dm_suspended_internally_md(md)) { 2266 /* already internally suspended, wait for internal resume */ 2267 mutex_unlock(&md->suspend_lock); 2268 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2269 if (r) 2270 return r; 2271 goto retry; 2272 } 2273 2274 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2275 2276 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2277 if (r) 2278 goto out_unlock; 2279 2280 dm_table_postsuspend_targets(map); 2281 2282 out_unlock: 2283 mutex_unlock(&md->suspend_lock); 2284 return r; 2285 } 2286 2287 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2288 { 2289 if (map) { 2290 int r = dm_table_resume_targets(map); 2291 if (r) 2292 return r; 2293 } 2294 2295 dm_queue_flush(md); 2296 2297 /* 2298 * Flushing deferred I/Os must be done after targets are resumed 2299 * so that mapping of targets can work correctly. 2300 * Request-based dm is queueing the deferred I/Os in its request_queue. 2301 */ 2302 if (dm_request_based(md)) 2303 dm_start_queue(md->queue); 2304 2305 unlock_fs(md); 2306 2307 return 0; 2308 } 2309 2310 int dm_resume(struct mapped_device *md) 2311 { 2312 int r; 2313 struct dm_table *map = NULL; 2314 2315 retry: 2316 r = -EINVAL; 2317 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2318 2319 if (!dm_suspended_md(md)) 2320 goto out; 2321 2322 if (dm_suspended_internally_md(md)) { 2323 /* already internally suspended, wait for internal resume */ 2324 mutex_unlock(&md->suspend_lock); 2325 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2326 if (r) 2327 return r; 2328 goto retry; 2329 } 2330 2331 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2332 if (!map || !dm_table_get_size(map)) 2333 goto out; 2334 2335 r = __dm_resume(md, map); 2336 if (r) 2337 goto out; 2338 2339 clear_bit(DMF_SUSPENDED, &md->flags); 2340 out: 2341 mutex_unlock(&md->suspend_lock); 2342 2343 return r; 2344 } 2345 2346 /* 2347 * Internal suspend/resume works like userspace-driven suspend. It waits 2348 * until all bios finish and prevents issuing new bios to the target drivers. 2349 * It may be used only from the kernel. 2350 */ 2351 2352 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2353 { 2354 struct dm_table *map = NULL; 2355 2356 if (md->internal_suspend_count++) 2357 return; /* nested internal suspend */ 2358 2359 if (dm_suspended_md(md)) { 2360 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2361 return; /* nest suspend */ 2362 } 2363 2364 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2365 2366 /* 2367 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2368 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2369 * would require changing .presuspend to return an error -- avoid this 2370 * until there is a need for more elaborate variants of internal suspend. 2371 */ 2372 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2373 DMF_SUSPENDED_INTERNALLY); 2374 2375 dm_table_postsuspend_targets(map); 2376 } 2377 2378 static void __dm_internal_resume(struct mapped_device *md) 2379 { 2380 BUG_ON(!md->internal_suspend_count); 2381 2382 if (--md->internal_suspend_count) 2383 return; /* resume from nested internal suspend */ 2384 2385 if (dm_suspended_md(md)) 2386 goto done; /* resume from nested suspend */ 2387 2388 /* 2389 * NOTE: existing callers don't need to call dm_table_resume_targets 2390 * (which may fail -- so best to avoid it for now by passing NULL map) 2391 */ 2392 (void) __dm_resume(md, NULL); 2393 2394 done: 2395 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2396 smp_mb__after_atomic(); 2397 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2398 } 2399 2400 void dm_internal_suspend_noflush(struct mapped_device *md) 2401 { 2402 mutex_lock(&md->suspend_lock); 2403 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2404 mutex_unlock(&md->suspend_lock); 2405 } 2406 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2407 2408 void dm_internal_resume(struct mapped_device *md) 2409 { 2410 mutex_lock(&md->suspend_lock); 2411 __dm_internal_resume(md); 2412 mutex_unlock(&md->suspend_lock); 2413 } 2414 EXPORT_SYMBOL_GPL(dm_internal_resume); 2415 2416 /* 2417 * Fast variants of internal suspend/resume hold md->suspend_lock, 2418 * which prevents interaction with userspace-driven suspend. 2419 */ 2420 2421 void dm_internal_suspend_fast(struct mapped_device *md) 2422 { 2423 mutex_lock(&md->suspend_lock); 2424 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2425 return; 2426 2427 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2428 synchronize_srcu(&md->io_barrier); 2429 flush_workqueue(md->wq); 2430 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2431 } 2432 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2433 2434 void dm_internal_resume_fast(struct mapped_device *md) 2435 { 2436 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2437 goto done; 2438 2439 dm_queue_flush(md); 2440 2441 done: 2442 mutex_unlock(&md->suspend_lock); 2443 } 2444 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2445 2446 /*----------------------------------------------------------------- 2447 * Event notification. 2448 *---------------------------------------------------------------*/ 2449 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2450 unsigned cookie) 2451 { 2452 char udev_cookie[DM_COOKIE_LENGTH]; 2453 char *envp[] = { udev_cookie, NULL }; 2454 2455 if (!cookie) 2456 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2457 else { 2458 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2459 DM_COOKIE_ENV_VAR_NAME, cookie); 2460 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2461 action, envp); 2462 } 2463 } 2464 2465 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2466 { 2467 return atomic_add_return(1, &md->uevent_seq); 2468 } 2469 2470 uint32_t dm_get_event_nr(struct mapped_device *md) 2471 { 2472 return atomic_read(&md->event_nr); 2473 } 2474 2475 int dm_wait_event(struct mapped_device *md, int event_nr) 2476 { 2477 return wait_event_interruptible(md->eventq, 2478 (event_nr != atomic_read(&md->event_nr))); 2479 } 2480 2481 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2482 { 2483 unsigned long flags; 2484 2485 spin_lock_irqsave(&md->uevent_lock, flags); 2486 list_add(elist, &md->uevent_list); 2487 spin_unlock_irqrestore(&md->uevent_lock, flags); 2488 } 2489 2490 /* 2491 * The gendisk is only valid as long as you have a reference 2492 * count on 'md'. 2493 */ 2494 struct gendisk *dm_disk(struct mapped_device *md) 2495 { 2496 return md->disk; 2497 } 2498 EXPORT_SYMBOL_GPL(dm_disk); 2499 2500 struct kobject *dm_kobject(struct mapped_device *md) 2501 { 2502 return &md->kobj_holder.kobj; 2503 } 2504 2505 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2506 { 2507 struct mapped_device *md; 2508 2509 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2510 2511 if (test_bit(DMF_FREEING, &md->flags) || 2512 dm_deleting_md(md)) 2513 return NULL; 2514 2515 dm_get(md); 2516 return md; 2517 } 2518 2519 int dm_suspended_md(struct mapped_device *md) 2520 { 2521 return test_bit(DMF_SUSPENDED, &md->flags); 2522 } 2523 2524 int dm_suspended_internally_md(struct mapped_device *md) 2525 { 2526 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2527 } 2528 2529 int dm_test_deferred_remove_flag(struct mapped_device *md) 2530 { 2531 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2532 } 2533 2534 int dm_suspended(struct dm_target *ti) 2535 { 2536 return dm_suspended_md(dm_table_get_md(ti->table)); 2537 } 2538 EXPORT_SYMBOL_GPL(dm_suspended); 2539 2540 int dm_noflush_suspending(struct dm_target *ti) 2541 { 2542 return __noflush_suspending(dm_table_get_md(ti->table)); 2543 } 2544 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2545 2546 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type, 2547 unsigned integrity, unsigned per_io_data_size) 2548 { 2549 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2550 unsigned int pool_size = 0; 2551 unsigned int front_pad; 2552 2553 if (!pools) 2554 return NULL; 2555 2556 switch (type) { 2557 case DM_TYPE_BIO_BASED: 2558 case DM_TYPE_DAX_BIO_BASED: 2559 pool_size = dm_get_reserved_bio_based_ios(); 2560 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2561 2562 pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache); 2563 if (!pools->io_pool) 2564 goto out; 2565 break; 2566 case DM_TYPE_REQUEST_BASED: 2567 case DM_TYPE_MQ_REQUEST_BASED: 2568 pool_size = dm_get_reserved_rq_based_ios(); 2569 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2570 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2571 break; 2572 default: 2573 BUG(); 2574 } 2575 2576 pools->bs = bioset_create_nobvec(pool_size, front_pad); 2577 if (!pools->bs) 2578 goto out; 2579 2580 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2581 goto out; 2582 2583 return pools; 2584 2585 out: 2586 dm_free_md_mempools(pools); 2587 2588 return NULL; 2589 } 2590 2591 void dm_free_md_mempools(struct dm_md_mempools *pools) 2592 { 2593 if (!pools) 2594 return; 2595 2596 mempool_destroy(pools->io_pool); 2597 2598 if (pools->bs) 2599 bioset_free(pools->bs); 2600 2601 kfree(pools); 2602 } 2603 2604 struct dm_pr { 2605 u64 old_key; 2606 u64 new_key; 2607 u32 flags; 2608 bool fail_early; 2609 }; 2610 2611 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2612 void *data) 2613 { 2614 struct mapped_device *md = bdev->bd_disk->private_data; 2615 struct dm_table *table; 2616 struct dm_target *ti; 2617 int ret = -ENOTTY, srcu_idx; 2618 2619 table = dm_get_live_table(md, &srcu_idx); 2620 if (!table || !dm_table_get_size(table)) 2621 goto out; 2622 2623 /* We only support devices that have a single target */ 2624 if (dm_table_get_num_targets(table) != 1) 2625 goto out; 2626 ti = dm_table_get_target(table, 0); 2627 2628 ret = -EINVAL; 2629 if (!ti->type->iterate_devices) 2630 goto out; 2631 2632 ret = ti->type->iterate_devices(ti, fn, data); 2633 out: 2634 dm_put_live_table(md, srcu_idx); 2635 return ret; 2636 } 2637 2638 /* 2639 * For register / unregister we need to manually call out to every path. 2640 */ 2641 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2642 sector_t start, sector_t len, void *data) 2643 { 2644 struct dm_pr *pr = data; 2645 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2646 2647 if (!ops || !ops->pr_register) 2648 return -EOPNOTSUPP; 2649 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2650 } 2651 2652 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2653 u32 flags) 2654 { 2655 struct dm_pr pr = { 2656 .old_key = old_key, 2657 .new_key = new_key, 2658 .flags = flags, 2659 .fail_early = true, 2660 }; 2661 int ret; 2662 2663 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2664 if (ret && new_key) { 2665 /* unregister all paths if we failed to register any path */ 2666 pr.old_key = new_key; 2667 pr.new_key = 0; 2668 pr.flags = 0; 2669 pr.fail_early = false; 2670 dm_call_pr(bdev, __dm_pr_register, &pr); 2671 } 2672 2673 return ret; 2674 } 2675 2676 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 2677 u32 flags) 2678 { 2679 struct mapped_device *md = bdev->bd_disk->private_data; 2680 const struct pr_ops *ops; 2681 fmode_t mode; 2682 int r; 2683 2684 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2685 if (r < 0) 2686 return r; 2687 2688 ops = bdev->bd_disk->fops->pr_ops; 2689 if (ops && ops->pr_reserve) 2690 r = ops->pr_reserve(bdev, key, type, flags); 2691 else 2692 r = -EOPNOTSUPP; 2693 2694 bdput(bdev); 2695 return r; 2696 } 2697 2698 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2699 { 2700 struct mapped_device *md = bdev->bd_disk->private_data; 2701 const struct pr_ops *ops; 2702 fmode_t mode; 2703 int r; 2704 2705 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2706 if (r < 0) 2707 return r; 2708 2709 ops = bdev->bd_disk->fops->pr_ops; 2710 if (ops && ops->pr_release) 2711 r = ops->pr_release(bdev, key, type); 2712 else 2713 r = -EOPNOTSUPP; 2714 2715 bdput(bdev); 2716 return r; 2717 } 2718 2719 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 2720 enum pr_type type, bool abort) 2721 { 2722 struct mapped_device *md = bdev->bd_disk->private_data; 2723 const struct pr_ops *ops; 2724 fmode_t mode; 2725 int r; 2726 2727 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2728 if (r < 0) 2729 return r; 2730 2731 ops = bdev->bd_disk->fops->pr_ops; 2732 if (ops && ops->pr_preempt) 2733 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 2734 else 2735 r = -EOPNOTSUPP; 2736 2737 bdput(bdev); 2738 return r; 2739 } 2740 2741 static int dm_pr_clear(struct block_device *bdev, u64 key) 2742 { 2743 struct mapped_device *md = bdev->bd_disk->private_data; 2744 const struct pr_ops *ops; 2745 fmode_t mode; 2746 int r; 2747 2748 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 2749 if (r < 0) 2750 return r; 2751 2752 ops = bdev->bd_disk->fops->pr_ops; 2753 if (ops && ops->pr_clear) 2754 r = ops->pr_clear(bdev, key); 2755 else 2756 r = -EOPNOTSUPP; 2757 2758 bdput(bdev); 2759 return r; 2760 } 2761 2762 static const struct pr_ops dm_pr_ops = { 2763 .pr_register = dm_pr_register, 2764 .pr_reserve = dm_pr_reserve, 2765 .pr_release = dm_pr_release, 2766 .pr_preempt = dm_pr_preempt, 2767 .pr_clear = dm_pr_clear, 2768 }; 2769 2770 static const struct block_device_operations dm_blk_dops = { 2771 .open = dm_blk_open, 2772 .release = dm_blk_close, 2773 .ioctl = dm_blk_ioctl, 2774 .direct_access = dm_blk_direct_access, 2775 .getgeo = dm_blk_getgeo, 2776 .pr_ops = &dm_pr_ops, 2777 .owner = THIS_MODULE 2778 }; 2779 2780 /* 2781 * module hooks 2782 */ 2783 module_init(dm_init); 2784 module_exit(dm_exit); 2785 2786 module_param(major, uint, 0); 2787 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2788 2789 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 2790 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 2791 2792 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 2793 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 2794 2795 MODULE_DESCRIPTION(DM_NAME " driver"); 2796 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2797 MODULE_LICENSE("GPL"); 2798