xref: /linux/drivers/md/dm.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pr.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 static struct workqueue_struct *deferred_remove_workqueue;
58 
59 /*
60  * One of these is allocated per bio.
61  */
62 struct dm_io {
63 	struct mapped_device *md;
64 	int error;
65 	atomic_t io_count;
66 	struct bio *bio;
67 	unsigned long start_time;
68 	spinlock_t endio_lock;
69 	struct dm_stats_aux stats_aux;
70 };
71 
72 #define MINOR_ALLOCED ((void *)-1)
73 
74 /*
75  * Bits for the md->flags field.
76  */
77 #define DMF_BLOCK_IO_FOR_SUSPEND 0
78 #define DMF_SUSPENDED 1
79 #define DMF_FROZEN 2
80 #define DMF_FREEING 3
81 #define DMF_DELETING 4
82 #define DMF_NOFLUSH_SUSPENDING 5
83 #define DMF_DEFERRED_REMOVE 6
84 #define DMF_SUSPENDED_INTERNALLY 7
85 
86 #define DM_NUMA_NODE NUMA_NO_NODE
87 static int dm_numa_node = DM_NUMA_NODE;
88 
89 /*
90  * For mempools pre-allocation at the table loading time.
91  */
92 struct dm_md_mempools {
93 	mempool_t *io_pool;
94 	struct bio_set *bs;
95 };
96 
97 struct table_device {
98 	struct list_head list;
99 	atomic_t count;
100 	struct dm_dev dm_dev;
101 };
102 
103 static struct kmem_cache *_io_cache;
104 static struct kmem_cache *_rq_tio_cache;
105 static struct kmem_cache *_rq_cache;
106 
107 /*
108  * Bio-based DM's mempools' reserved IOs set by the user.
109  */
110 #define RESERVED_BIO_BASED_IOS		16
111 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
112 
113 static int __dm_get_module_param_int(int *module_param, int min, int max)
114 {
115 	int param = ACCESS_ONCE(*module_param);
116 	int modified_param = 0;
117 	bool modified = true;
118 
119 	if (param < min)
120 		modified_param = min;
121 	else if (param > max)
122 		modified_param = max;
123 	else
124 		modified = false;
125 
126 	if (modified) {
127 		(void)cmpxchg(module_param, param, modified_param);
128 		param = modified_param;
129 	}
130 
131 	return param;
132 }
133 
134 unsigned __dm_get_module_param(unsigned *module_param,
135 			       unsigned def, unsigned max)
136 {
137 	unsigned param = ACCESS_ONCE(*module_param);
138 	unsigned modified_param = 0;
139 
140 	if (!param)
141 		modified_param = def;
142 	else if (param > max)
143 		modified_param = max;
144 
145 	if (modified_param) {
146 		(void)cmpxchg(module_param, param, modified_param);
147 		param = modified_param;
148 	}
149 
150 	return param;
151 }
152 
153 unsigned dm_get_reserved_bio_based_ios(void)
154 {
155 	return __dm_get_module_param(&reserved_bio_based_ios,
156 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
157 }
158 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
159 
160 static unsigned dm_get_numa_node(void)
161 {
162 	return __dm_get_module_param_int(&dm_numa_node,
163 					 DM_NUMA_NODE, num_online_nodes() - 1);
164 }
165 
166 static int __init local_init(void)
167 {
168 	int r = -ENOMEM;
169 
170 	/* allocate a slab for the dm_ios */
171 	_io_cache = KMEM_CACHE(dm_io, 0);
172 	if (!_io_cache)
173 		return r;
174 
175 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
176 	if (!_rq_tio_cache)
177 		goto out_free_io_cache;
178 
179 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
180 				      __alignof__(struct request), 0, NULL);
181 	if (!_rq_cache)
182 		goto out_free_rq_tio_cache;
183 
184 	r = dm_uevent_init();
185 	if (r)
186 		goto out_free_rq_cache;
187 
188 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
189 	if (!deferred_remove_workqueue) {
190 		r = -ENOMEM;
191 		goto out_uevent_exit;
192 	}
193 
194 	_major = major;
195 	r = register_blkdev(_major, _name);
196 	if (r < 0)
197 		goto out_free_workqueue;
198 
199 	if (!_major)
200 		_major = r;
201 
202 	return 0;
203 
204 out_free_workqueue:
205 	destroy_workqueue(deferred_remove_workqueue);
206 out_uevent_exit:
207 	dm_uevent_exit();
208 out_free_rq_cache:
209 	kmem_cache_destroy(_rq_cache);
210 out_free_rq_tio_cache:
211 	kmem_cache_destroy(_rq_tio_cache);
212 out_free_io_cache:
213 	kmem_cache_destroy(_io_cache);
214 
215 	return r;
216 }
217 
218 static void local_exit(void)
219 {
220 	flush_scheduled_work();
221 	destroy_workqueue(deferred_remove_workqueue);
222 
223 	kmem_cache_destroy(_rq_cache);
224 	kmem_cache_destroy(_rq_tio_cache);
225 	kmem_cache_destroy(_io_cache);
226 	unregister_blkdev(_major, _name);
227 	dm_uevent_exit();
228 
229 	_major = 0;
230 
231 	DMINFO("cleaned up");
232 }
233 
234 static int (*_inits[])(void) __initdata = {
235 	local_init,
236 	dm_target_init,
237 	dm_linear_init,
238 	dm_stripe_init,
239 	dm_io_init,
240 	dm_kcopyd_init,
241 	dm_interface_init,
242 	dm_statistics_init,
243 };
244 
245 static void (*_exits[])(void) = {
246 	local_exit,
247 	dm_target_exit,
248 	dm_linear_exit,
249 	dm_stripe_exit,
250 	dm_io_exit,
251 	dm_kcopyd_exit,
252 	dm_interface_exit,
253 	dm_statistics_exit,
254 };
255 
256 static int __init dm_init(void)
257 {
258 	const int count = ARRAY_SIZE(_inits);
259 
260 	int r, i;
261 
262 	for (i = 0; i < count; i++) {
263 		r = _inits[i]();
264 		if (r)
265 			goto bad;
266 	}
267 
268 	return 0;
269 
270       bad:
271 	while (i--)
272 		_exits[i]();
273 
274 	return r;
275 }
276 
277 static void __exit dm_exit(void)
278 {
279 	int i = ARRAY_SIZE(_exits);
280 
281 	while (i--)
282 		_exits[i]();
283 
284 	/*
285 	 * Should be empty by this point.
286 	 */
287 	idr_destroy(&_minor_idr);
288 }
289 
290 /*
291  * Block device functions
292  */
293 int dm_deleting_md(struct mapped_device *md)
294 {
295 	return test_bit(DMF_DELETING, &md->flags);
296 }
297 
298 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
299 {
300 	struct mapped_device *md;
301 
302 	spin_lock(&_minor_lock);
303 
304 	md = bdev->bd_disk->private_data;
305 	if (!md)
306 		goto out;
307 
308 	if (test_bit(DMF_FREEING, &md->flags) ||
309 	    dm_deleting_md(md)) {
310 		md = NULL;
311 		goto out;
312 	}
313 
314 	dm_get(md);
315 	atomic_inc(&md->open_count);
316 out:
317 	spin_unlock(&_minor_lock);
318 
319 	return md ? 0 : -ENXIO;
320 }
321 
322 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
323 {
324 	struct mapped_device *md;
325 
326 	spin_lock(&_minor_lock);
327 
328 	md = disk->private_data;
329 	if (WARN_ON(!md))
330 		goto out;
331 
332 	if (atomic_dec_and_test(&md->open_count) &&
333 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
334 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
335 
336 	dm_put(md);
337 out:
338 	spin_unlock(&_minor_lock);
339 }
340 
341 int dm_open_count(struct mapped_device *md)
342 {
343 	return atomic_read(&md->open_count);
344 }
345 
346 /*
347  * Guarantees nothing is using the device before it's deleted.
348  */
349 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
350 {
351 	int r = 0;
352 
353 	spin_lock(&_minor_lock);
354 
355 	if (dm_open_count(md)) {
356 		r = -EBUSY;
357 		if (mark_deferred)
358 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
359 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
360 		r = -EEXIST;
361 	else
362 		set_bit(DMF_DELETING, &md->flags);
363 
364 	spin_unlock(&_minor_lock);
365 
366 	return r;
367 }
368 
369 int dm_cancel_deferred_remove(struct mapped_device *md)
370 {
371 	int r = 0;
372 
373 	spin_lock(&_minor_lock);
374 
375 	if (test_bit(DMF_DELETING, &md->flags))
376 		r = -EBUSY;
377 	else
378 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
379 
380 	spin_unlock(&_minor_lock);
381 
382 	return r;
383 }
384 
385 static void do_deferred_remove(struct work_struct *w)
386 {
387 	dm_deferred_remove();
388 }
389 
390 sector_t dm_get_size(struct mapped_device *md)
391 {
392 	return get_capacity(md->disk);
393 }
394 
395 struct request_queue *dm_get_md_queue(struct mapped_device *md)
396 {
397 	return md->queue;
398 }
399 
400 struct dm_stats *dm_get_stats(struct mapped_device *md)
401 {
402 	return &md->stats;
403 }
404 
405 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406 {
407 	struct mapped_device *md = bdev->bd_disk->private_data;
408 
409 	return dm_get_geometry(md, geo);
410 }
411 
412 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
413 				  struct block_device **bdev,
414 				  fmode_t *mode)
415 {
416 	struct dm_target *tgt;
417 	struct dm_table *map;
418 	int srcu_idx, r;
419 
420 retry:
421 	r = -ENOTTY;
422 	map = dm_get_live_table(md, &srcu_idx);
423 	if (!map || !dm_table_get_size(map))
424 		goto out;
425 
426 	/* We only support devices that have a single target */
427 	if (dm_table_get_num_targets(map) != 1)
428 		goto out;
429 
430 	tgt = dm_table_get_target(map, 0);
431 	if (!tgt->type->prepare_ioctl)
432 		goto out;
433 
434 	if (dm_suspended_md(md)) {
435 		r = -EAGAIN;
436 		goto out;
437 	}
438 
439 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
440 	if (r < 0)
441 		goto out;
442 
443 	bdgrab(*bdev);
444 	dm_put_live_table(md, srcu_idx);
445 	return r;
446 
447 out:
448 	dm_put_live_table(md, srcu_idx);
449 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
450 		msleep(10);
451 		goto retry;
452 	}
453 	return r;
454 }
455 
456 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
457 			unsigned int cmd, unsigned long arg)
458 {
459 	struct mapped_device *md = bdev->bd_disk->private_data;
460 	int r;
461 
462 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
463 	if (r < 0)
464 		return r;
465 
466 	if (r > 0) {
467 		/*
468 		 * Target determined this ioctl is being issued against a
469 		 * subset of the parent bdev; require extra privileges.
470 		 */
471 		if (!capable(CAP_SYS_RAWIO)) {
472 			DMWARN_LIMIT(
473 	"%s: sending ioctl %x to DM device without required privilege.",
474 				current->comm, cmd);
475 			r = -ENOIOCTLCMD;
476 			goto out;
477 		}
478 	}
479 
480 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
481 out:
482 	bdput(bdev);
483 	return r;
484 }
485 
486 static struct dm_io *alloc_io(struct mapped_device *md)
487 {
488 	return mempool_alloc(md->io_pool, GFP_NOIO);
489 }
490 
491 static void free_io(struct mapped_device *md, struct dm_io *io)
492 {
493 	mempool_free(io, md->io_pool);
494 }
495 
496 static void free_tio(struct dm_target_io *tio)
497 {
498 	bio_put(&tio->clone);
499 }
500 
501 int md_in_flight(struct mapped_device *md)
502 {
503 	return atomic_read(&md->pending[READ]) +
504 	       atomic_read(&md->pending[WRITE]);
505 }
506 
507 static void start_io_acct(struct dm_io *io)
508 {
509 	struct mapped_device *md = io->md;
510 	struct bio *bio = io->bio;
511 	int cpu;
512 	int rw = bio_data_dir(bio);
513 
514 	io->start_time = jiffies;
515 
516 	cpu = part_stat_lock();
517 	part_round_stats(cpu, &dm_disk(md)->part0);
518 	part_stat_unlock();
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
520 		atomic_inc_return(&md->pending[rw]));
521 
522 	if (unlikely(dm_stats_used(&md->stats)))
523 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
524 				    bio->bi_iter.bi_sector, bio_sectors(bio),
525 				    false, 0, &io->stats_aux);
526 }
527 
528 static void end_io_acct(struct dm_io *io)
529 {
530 	struct mapped_device *md = io->md;
531 	struct bio *bio = io->bio;
532 	unsigned long duration = jiffies - io->start_time;
533 	int pending;
534 	int rw = bio_data_dir(bio);
535 
536 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
537 
538 	if (unlikely(dm_stats_used(&md->stats)))
539 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
540 				    bio->bi_iter.bi_sector, bio_sectors(bio),
541 				    true, duration, &io->stats_aux);
542 
543 	/*
544 	 * After this is decremented the bio must not be touched if it is
545 	 * a flush.
546 	 */
547 	pending = atomic_dec_return(&md->pending[rw]);
548 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
549 	pending += atomic_read(&md->pending[rw^0x1]);
550 
551 	/* nudge anyone waiting on suspend queue */
552 	if (!pending)
553 		wake_up(&md->wait);
554 }
555 
556 /*
557  * Add the bio to the list of deferred io.
558  */
559 static void queue_io(struct mapped_device *md, struct bio *bio)
560 {
561 	unsigned long flags;
562 
563 	spin_lock_irqsave(&md->deferred_lock, flags);
564 	bio_list_add(&md->deferred, bio);
565 	spin_unlock_irqrestore(&md->deferred_lock, flags);
566 	queue_work(md->wq, &md->work);
567 }
568 
569 /*
570  * Everyone (including functions in this file), should use this
571  * function to access the md->map field, and make sure they call
572  * dm_put_live_table() when finished.
573  */
574 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
575 {
576 	*srcu_idx = srcu_read_lock(&md->io_barrier);
577 
578 	return srcu_dereference(md->map, &md->io_barrier);
579 }
580 
581 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
582 {
583 	srcu_read_unlock(&md->io_barrier, srcu_idx);
584 }
585 
586 void dm_sync_table(struct mapped_device *md)
587 {
588 	synchronize_srcu(&md->io_barrier);
589 	synchronize_rcu_expedited();
590 }
591 
592 /*
593  * A fast alternative to dm_get_live_table/dm_put_live_table.
594  * The caller must not block between these two functions.
595  */
596 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
597 {
598 	rcu_read_lock();
599 	return rcu_dereference(md->map);
600 }
601 
602 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
603 {
604 	rcu_read_unlock();
605 }
606 
607 /*
608  * Open a table device so we can use it as a map destination.
609  */
610 static int open_table_device(struct table_device *td, dev_t dev,
611 			     struct mapped_device *md)
612 {
613 	static char *_claim_ptr = "I belong to device-mapper";
614 	struct block_device *bdev;
615 
616 	int r;
617 
618 	BUG_ON(td->dm_dev.bdev);
619 
620 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
621 	if (IS_ERR(bdev))
622 		return PTR_ERR(bdev);
623 
624 	r = bd_link_disk_holder(bdev, dm_disk(md));
625 	if (r) {
626 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
627 		return r;
628 	}
629 
630 	td->dm_dev.bdev = bdev;
631 	return 0;
632 }
633 
634 /*
635  * Close a table device that we've been using.
636  */
637 static void close_table_device(struct table_device *td, struct mapped_device *md)
638 {
639 	if (!td->dm_dev.bdev)
640 		return;
641 
642 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
643 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
644 	td->dm_dev.bdev = NULL;
645 }
646 
647 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
648 					      fmode_t mode) {
649 	struct table_device *td;
650 
651 	list_for_each_entry(td, l, list)
652 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
653 			return td;
654 
655 	return NULL;
656 }
657 
658 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
659 			struct dm_dev **result) {
660 	int r;
661 	struct table_device *td;
662 
663 	mutex_lock(&md->table_devices_lock);
664 	td = find_table_device(&md->table_devices, dev, mode);
665 	if (!td) {
666 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
667 		if (!td) {
668 			mutex_unlock(&md->table_devices_lock);
669 			return -ENOMEM;
670 		}
671 
672 		td->dm_dev.mode = mode;
673 		td->dm_dev.bdev = NULL;
674 
675 		if ((r = open_table_device(td, dev, md))) {
676 			mutex_unlock(&md->table_devices_lock);
677 			kfree(td);
678 			return r;
679 		}
680 
681 		format_dev_t(td->dm_dev.name, dev);
682 
683 		atomic_set(&td->count, 0);
684 		list_add(&td->list, &md->table_devices);
685 	}
686 	atomic_inc(&td->count);
687 	mutex_unlock(&md->table_devices_lock);
688 
689 	*result = &td->dm_dev;
690 	return 0;
691 }
692 EXPORT_SYMBOL_GPL(dm_get_table_device);
693 
694 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
695 {
696 	struct table_device *td = container_of(d, struct table_device, dm_dev);
697 
698 	mutex_lock(&md->table_devices_lock);
699 	if (atomic_dec_and_test(&td->count)) {
700 		close_table_device(td, md);
701 		list_del(&td->list);
702 		kfree(td);
703 	}
704 	mutex_unlock(&md->table_devices_lock);
705 }
706 EXPORT_SYMBOL(dm_put_table_device);
707 
708 static void free_table_devices(struct list_head *devices)
709 {
710 	struct list_head *tmp, *next;
711 
712 	list_for_each_safe(tmp, next, devices) {
713 		struct table_device *td = list_entry(tmp, struct table_device, list);
714 
715 		DMWARN("dm_destroy: %s still exists with %d references",
716 		       td->dm_dev.name, atomic_read(&td->count));
717 		kfree(td);
718 	}
719 }
720 
721 /*
722  * Get the geometry associated with a dm device
723  */
724 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
725 {
726 	*geo = md->geometry;
727 
728 	return 0;
729 }
730 
731 /*
732  * Set the geometry of a device.
733  */
734 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
735 {
736 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
737 
738 	if (geo->start > sz) {
739 		DMWARN("Start sector is beyond the geometry limits.");
740 		return -EINVAL;
741 	}
742 
743 	md->geometry = *geo;
744 
745 	return 0;
746 }
747 
748 /*-----------------------------------------------------------------
749  * CRUD START:
750  *   A more elegant soln is in the works that uses the queue
751  *   merge fn, unfortunately there are a couple of changes to
752  *   the block layer that I want to make for this.  So in the
753  *   interests of getting something for people to use I give
754  *   you this clearly demarcated crap.
755  *---------------------------------------------------------------*/
756 
757 static int __noflush_suspending(struct mapped_device *md)
758 {
759 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
760 }
761 
762 /*
763  * Decrements the number of outstanding ios that a bio has been
764  * cloned into, completing the original io if necc.
765  */
766 static void dec_pending(struct dm_io *io, int error)
767 {
768 	unsigned long flags;
769 	int io_error;
770 	struct bio *bio;
771 	struct mapped_device *md = io->md;
772 
773 	/* Push-back supersedes any I/O errors */
774 	if (unlikely(error)) {
775 		spin_lock_irqsave(&io->endio_lock, flags);
776 		if (!(io->error > 0 && __noflush_suspending(md)))
777 			io->error = error;
778 		spin_unlock_irqrestore(&io->endio_lock, flags);
779 	}
780 
781 	if (atomic_dec_and_test(&io->io_count)) {
782 		if (io->error == DM_ENDIO_REQUEUE) {
783 			/*
784 			 * Target requested pushing back the I/O.
785 			 */
786 			spin_lock_irqsave(&md->deferred_lock, flags);
787 			if (__noflush_suspending(md))
788 				bio_list_add_head(&md->deferred, io->bio);
789 			else
790 				/* noflush suspend was interrupted. */
791 				io->error = -EIO;
792 			spin_unlock_irqrestore(&md->deferred_lock, flags);
793 		}
794 
795 		io_error = io->error;
796 		bio = io->bio;
797 		end_io_acct(io);
798 		free_io(md, io);
799 
800 		if (io_error == DM_ENDIO_REQUEUE)
801 			return;
802 
803 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
804 			/*
805 			 * Preflush done for flush with data, reissue
806 			 * without REQ_PREFLUSH.
807 			 */
808 			bio->bi_opf &= ~REQ_PREFLUSH;
809 			queue_io(md, bio);
810 		} else {
811 			/* done with normal IO or empty flush */
812 			trace_block_bio_complete(md->queue, bio, io_error);
813 			bio->bi_error = io_error;
814 			bio_endio(bio);
815 		}
816 	}
817 }
818 
819 void disable_write_same(struct mapped_device *md)
820 {
821 	struct queue_limits *limits = dm_get_queue_limits(md);
822 
823 	/* device doesn't really support WRITE SAME, disable it */
824 	limits->max_write_same_sectors = 0;
825 }
826 
827 static void clone_endio(struct bio *bio)
828 {
829 	int error = bio->bi_error;
830 	int r = error;
831 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
832 	struct dm_io *io = tio->io;
833 	struct mapped_device *md = tio->io->md;
834 	dm_endio_fn endio = tio->ti->type->end_io;
835 
836 	if (endio) {
837 		r = endio(tio->ti, bio, error);
838 		if (r < 0 || r == DM_ENDIO_REQUEUE)
839 			/*
840 			 * error and requeue request are handled
841 			 * in dec_pending().
842 			 */
843 			error = r;
844 		else if (r == DM_ENDIO_INCOMPLETE)
845 			/* The target will handle the io */
846 			return;
847 		else if (r) {
848 			DMWARN("unimplemented target endio return value: %d", r);
849 			BUG();
850 		}
851 	}
852 
853 	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
854 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
855 		disable_write_same(md);
856 
857 	free_tio(tio);
858 	dec_pending(io, error);
859 }
860 
861 /*
862  * Return maximum size of I/O possible at the supplied sector up to the current
863  * target boundary.
864  */
865 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
866 {
867 	sector_t target_offset = dm_target_offset(ti, sector);
868 
869 	return ti->len - target_offset;
870 }
871 
872 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
873 {
874 	sector_t len = max_io_len_target_boundary(sector, ti);
875 	sector_t offset, max_len;
876 
877 	/*
878 	 * Does the target need to split even further?
879 	 */
880 	if (ti->max_io_len) {
881 		offset = dm_target_offset(ti, sector);
882 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
883 			max_len = sector_div(offset, ti->max_io_len);
884 		else
885 			max_len = offset & (ti->max_io_len - 1);
886 		max_len = ti->max_io_len - max_len;
887 
888 		if (len > max_len)
889 			len = max_len;
890 	}
891 
892 	return len;
893 }
894 
895 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
896 {
897 	if (len > UINT_MAX) {
898 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
899 		      (unsigned long long)len, UINT_MAX);
900 		ti->error = "Maximum size of target IO is too large";
901 		return -EINVAL;
902 	}
903 
904 	ti->max_io_len = (uint32_t) len;
905 
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
909 
910 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
911 				 void **kaddr, pfn_t *pfn, long size)
912 {
913 	struct mapped_device *md = bdev->bd_disk->private_data;
914 	struct dm_table *map;
915 	struct dm_target *ti;
916 	int srcu_idx;
917 	long len, ret = -EIO;
918 
919 	map = dm_get_live_table(md, &srcu_idx);
920 	if (!map)
921 		goto out;
922 
923 	ti = dm_table_find_target(map, sector);
924 	if (!dm_target_is_valid(ti))
925 		goto out;
926 
927 	len = max_io_len(sector, ti) << SECTOR_SHIFT;
928 	size = min(len, size);
929 
930 	if (ti->type->direct_access)
931 		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
932 out:
933 	dm_put_live_table(md, srcu_idx);
934 	return min(ret, size);
935 }
936 
937 /*
938  * A target may call dm_accept_partial_bio only from the map routine.  It is
939  * allowed for all bio types except REQ_PREFLUSH.
940  *
941  * dm_accept_partial_bio informs the dm that the target only wants to process
942  * additional n_sectors sectors of the bio and the rest of the data should be
943  * sent in a next bio.
944  *
945  * A diagram that explains the arithmetics:
946  * +--------------------+---------------+-------+
947  * |         1          |       2       |   3   |
948  * +--------------------+---------------+-------+
949  *
950  * <-------------- *tio->len_ptr --------------->
951  *                      <------- bi_size ------->
952  *                      <-- n_sectors -->
953  *
954  * Region 1 was already iterated over with bio_advance or similar function.
955  *	(it may be empty if the target doesn't use bio_advance)
956  * Region 2 is the remaining bio size that the target wants to process.
957  *	(it may be empty if region 1 is non-empty, although there is no reason
958  *	 to make it empty)
959  * The target requires that region 3 is to be sent in the next bio.
960  *
961  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
962  * the partially processed part (the sum of regions 1+2) must be the same for all
963  * copies of the bio.
964  */
965 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
966 {
967 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
968 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
969 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
970 	BUG_ON(bi_size > *tio->len_ptr);
971 	BUG_ON(n_sectors > bi_size);
972 	*tio->len_ptr -= bi_size - n_sectors;
973 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
974 }
975 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
976 
977 /*
978  * Flush current->bio_list when the target map method blocks.
979  * This fixes deadlocks in snapshot and possibly in other targets.
980  */
981 struct dm_offload {
982 	struct blk_plug plug;
983 	struct blk_plug_cb cb;
984 };
985 
986 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
987 {
988 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
989 	struct bio_list list;
990 	struct bio *bio;
991 
992 	INIT_LIST_HEAD(&o->cb.list);
993 
994 	if (unlikely(!current->bio_list))
995 		return;
996 
997 	list = *current->bio_list;
998 	bio_list_init(current->bio_list);
999 
1000 	while ((bio = bio_list_pop(&list))) {
1001 		struct bio_set *bs = bio->bi_pool;
1002 		if (unlikely(!bs) || bs == fs_bio_set) {
1003 			bio_list_add(current->bio_list, bio);
1004 			continue;
1005 		}
1006 
1007 		spin_lock(&bs->rescue_lock);
1008 		bio_list_add(&bs->rescue_list, bio);
1009 		queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010 		spin_unlock(&bs->rescue_lock);
1011 	}
1012 }
1013 
1014 static void dm_offload_start(struct dm_offload *o)
1015 {
1016 	blk_start_plug(&o->plug);
1017 	o->cb.callback = flush_current_bio_list;
1018 	list_add(&o->cb.list, &current->plug->cb_list);
1019 }
1020 
1021 static void dm_offload_end(struct dm_offload *o)
1022 {
1023 	list_del(&o->cb.list);
1024 	blk_finish_plug(&o->plug);
1025 }
1026 
1027 static void __map_bio(struct dm_target_io *tio)
1028 {
1029 	int r;
1030 	sector_t sector;
1031 	struct dm_offload o;
1032 	struct bio *clone = &tio->clone;
1033 	struct dm_target *ti = tio->ti;
1034 
1035 	clone->bi_end_io = clone_endio;
1036 
1037 	/*
1038 	 * Map the clone.  If r == 0 we don't need to do
1039 	 * anything, the target has assumed ownership of
1040 	 * this io.
1041 	 */
1042 	atomic_inc(&tio->io->io_count);
1043 	sector = clone->bi_iter.bi_sector;
1044 
1045 	dm_offload_start(&o);
1046 	r = ti->type->map(ti, clone);
1047 	dm_offload_end(&o);
1048 
1049 	if (r == DM_MAPIO_REMAPPED) {
1050 		/* the bio has been remapped so dispatch it */
1051 
1052 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1053 				      tio->io->bio->bi_bdev->bd_dev, sector);
1054 
1055 		generic_make_request(clone);
1056 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1057 		/* error the io and bail out, or requeue it if needed */
1058 		dec_pending(tio->io, r);
1059 		free_tio(tio);
1060 	} else if (r != DM_MAPIO_SUBMITTED) {
1061 		DMWARN("unimplemented target map return value: %d", r);
1062 		BUG();
1063 	}
1064 }
1065 
1066 struct clone_info {
1067 	struct mapped_device *md;
1068 	struct dm_table *map;
1069 	struct bio *bio;
1070 	struct dm_io *io;
1071 	sector_t sector;
1072 	unsigned sector_count;
1073 };
1074 
1075 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1076 {
1077 	bio->bi_iter.bi_sector = sector;
1078 	bio->bi_iter.bi_size = to_bytes(len);
1079 }
1080 
1081 /*
1082  * Creates a bio that consists of range of complete bvecs.
1083  */
1084 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1085 		     sector_t sector, unsigned len)
1086 {
1087 	struct bio *clone = &tio->clone;
1088 
1089 	__bio_clone_fast(clone, bio);
1090 
1091 	if (bio_integrity(bio)) {
1092 		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1093 		if (r < 0)
1094 			return r;
1095 	}
1096 
1097 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1098 	clone->bi_iter.bi_size = to_bytes(len);
1099 
1100 	if (bio_integrity(bio))
1101 		bio_integrity_trim(clone, 0, len);
1102 
1103 	return 0;
1104 }
1105 
1106 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1107 				      struct dm_target *ti,
1108 				      unsigned target_bio_nr)
1109 {
1110 	struct dm_target_io *tio;
1111 	struct bio *clone;
1112 
1113 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1114 	tio = container_of(clone, struct dm_target_io, clone);
1115 
1116 	tio->io = ci->io;
1117 	tio->ti = ti;
1118 	tio->target_bio_nr = target_bio_nr;
1119 
1120 	return tio;
1121 }
1122 
1123 static void __clone_and_map_simple_bio(struct clone_info *ci,
1124 				       struct dm_target *ti,
1125 				       unsigned target_bio_nr, unsigned *len)
1126 {
1127 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1128 	struct bio *clone = &tio->clone;
1129 
1130 	tio->len_ptr = len;
1131 
1132 	__bio_clone_fast(clone, ci->bio);
1133 	if (len)
1134 		bio_setup_sector(clone, ci->sector, *len);
1135 
1136 	__map_bio(tio);
1137 }
1138 
1139 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1140 				  unsigned num_bios, unsigned *len)
1141 {
1142 	unsigned target_bio_nr;
1143 
1144 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1145 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1146 }
1147 
1148 static int __send_empty_flush(struct clone_info *ci)
1149 {
1150 	unsigned target_nr = 0;
1151 	struct dm_target *ti;
1152 
1153 	BUG_ON(bio_has_data(ci->bio));
1154 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1155 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1156 
1157 	return 0;
1158 }
1159 
1160 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1161 				     sector_t sector, unsigned *len)
1162 {
1163 	struct bio *bio = ci->bio;
1164 	struct dm_target_io *tio;
1165 	unsigned target_bio_nr;
1166 	unsigned num_target_bios = 1;
1167 	int r = 0;
1168 
1169 	/*
1170 	 * Does the target want to receive duplicate copies of the bio?
1171 	 */
1172 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1173 		num_target_bios = ti->num_write_bios(ti, bio);
1174 
1175 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1176 		tio = alloc_tio(ci, ti, target_bio_nr);
1177 		tio->len_ptr = len;
1178 		r = clone_bio(tio, bio, sector, *len);
1179 		if (r < 0) {
1180 			free_tio(tio);
1181 			break;
1182 		}
1183 		__map_bio(tio);
1184 	}
1185 
1186 	return r;
1187 }
1188 
1189 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1190 
1191 static unsigned get_num_discard_bios(struct dm_target *ti)
1192 {
1193 	return ti->num_discard_bios;
1194 }
1195 
1196 static unsigned get_num_write_same_bios(struct dm_target *ti)
1197 {
1198 	return ti->num_write_same_bios;
1199 }
1200 
1201 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1202 
1203 static bool is_split_required_for_discard(struct dm_target *ti)
1204 {
1205 	return ti->split_discard_bios;
1206 }
1207 
1208 static int __send_changing_extent_only(struct clone_info *ci,
1209 				       get_num_bios_fn get_num_bios,
1210 				       is_split_required_fn is_split_required)
1211 {
1212 	struct dm_target *ti;
1213 	unsigned len;
1214 	unsigned num_bios;
1215 
1216 	do {
1217 		ti = dm_table_find_target(ci->map, ci->sector);
1218 		if (!dm_target_is_valid(ti))
1219 			return -EIO;
1220 
1221 		/*
1222 		 * Even though the device advertised support for this type of
1223 		 * request, that does not mean every target supports it, and
1224 		 * reconfiguration might also have changed that since the
1225 		 * check was performed.
1226 		 */
1227 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1228 		if (!num_bios)
1229 			return -EOPNOTSUPP;
1230 
1231 		if (is_split_required && !is_split_required(ti))
1232 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1233 		else
1234 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1235 
1236 		__send_duplicate_bios(ci, ti, num_bios, &len);
1237 
1238 		ci->sector += len;
1239 	} while (ci->sector_count -= len);
1240 
1241 	return 0;
1242 }
1243 
1244 static int __send_discard(struct clone_info *ci)
1245 {
1246 	return __send_changing_extent_only(ci, get_num_discard_bios,
1247 					   is_split_required_for_discard);
1248 }
1249 
1250 static int __send_write_same(struct clone_info *ci)
1251 {
1252 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1253 }
1254 
1255 /*
1256  * Select the correct strategy for processing a non-flush bio.
1257  */
1258 static int __split_and_process_non_flush(struct clone_info *ci)
1259 {
1260 	struct bio *bio = ci->bio;
1261 	struct dm_target *ti;
1262 	unsigned len;
1263 	int r;
1264 
1265 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1266 		return __send_discard(ci);
1267 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1268 		return __send_write_same(ci);
1269 
1270 	ti = dm_table_find_target(ci->map, ci->sector);
1271 	if (!dm_target_is_valid(ti))
1272 		return -EIO;
1273 
1274 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1275 
1276 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1277 	if (r < 0)
1278 		return r;
1279 
1280 	ci->sector += len;
1281 	ci->sector_count -= len;
1282 
1283 	return 0;
1284 }
1285 
1286 /*
1287  * Entry point to split a bio into clones and submit them to the targets.
1288  */
1289 static void __split_and_process_bio(struct mapped_device *md,
1290 				    struct dm_table *map, struct bio *bio)
1291 {
1292 	struct clone_info ci;
1293 	int error = 0;
1294 
1295 	if (unlikely(!map)) {
1296 		bio_io_error(bio);
1297 		return;
1298 	}
1299 
1300 	ci.map = map;
1301 	ci.md = md;
1302 	ci.io = alloc_io(md);
1303 	ci.io->error = 0;
1304 	atomic_set(&ci.io->io_count, 1);
1305 	ci.io->bio = bio;
1306 	ci.io->md = md;
1307 	spin_lock_init(&ci.io->endio_lock);
1308 	ci.sector = bio->bi_iter.bi_sector;
1309 
1310 	start_io_acct(ci.io);
1311 
1312 	if (bio->bi_opf & REQ_PREFLUSH) {
1313 		ci.bio = &ci.md->flush_bio;
1314 		ci.sector_count = 0;
1315 		error = __send_empty_flush(&ci);
1316 		/* dec_pending submits any data associated with flush */
1317 	} else {
1318 		ci.bio = bio;
1319 		ci.sector_count = bio_sectors(bio);
1320 		while (ci.sector_count && !error)
1321 			error = __split_and_process_non_flush(&ci);
1322 	}
1323 
1324 	/* drop the extra reference count */
1325 	dec_pending(ci.io, error);
1326 }
1327 /*-----------------------------------------------------------------
1328  * CRUD END
1329  *---------------------------------------------------------------*/
1330 
1331 /*
1332  * The request function that just remaps the bio built up by
1333  * dm_merge_bvec.
1334  */
1335 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1336 {
1337 	int rw = bio_data_dir(bio);
1338 	struct mapped_device *md = q->queuedata;
1339 	int srcu_idx;
1340 	struct dm_table *map;
1341 
1342 	map = dm_get_live_table(md, &srcu_idx);
1343 
1344 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1345 
1346 	/* if we're suspended, we have to queue this io for later */
1347 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1348 		dm_put_live_table(md, srcu_idx);
1349 
1350 		if (!(bio->bi_opf & REQ_RAHEAD))
1351 			queue_io(md, bio);
1352 		else
1353 			bio_io_error(bio);
1354 		return BLK_QC_T_NONE;
1355 	}
1356 
1357 	__split_and_process_bio(md, map, bio);
1358 	dm_put_live_table(md, srcu_idx);
1359 	return BLK_QC_T_NONE;
1360 }
1361 
1362 static int dm_any_congested(void *congested_data, int bdi_bits)
1363 {
1364 	int r = bdi_bits;
1365 	struct mapped_device *md = congested_data;
1366 	struct dm_table *map;
1367 
1368 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1369 		if (dm_request_based(md)) {
1370 			/*
1371 			 * With request-based DM we only need to check the
1372 			 * top-level queue for congestion.
1373 			 */
1374 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1375 		} else {
1376 			map = dm_get_live_table_fast(md);
1377 			if (map)
1378 				r = dm_table_any_congested(map, bdi_bits);
1379 			dm_put_live_table_fast(md);
1380 		}
1381 	}
1382 
1383 	return r;
1384 }
1385 
1386 /*-----------------------------------------------------------------
1387  * An IDR is used to keep track of allocated minor numbers.
1388  *---------------------------------------------------------------*/
1389 static void free_minor(int minor)
1390 {
1391 	spin_lock(&_minor_lock);
1392 	idr_remove(&_minor_idr, minor);
1393 	spin_unlock(&_minor_lock);
1394 }
1395 
1396 /*
1397  * See if the device with a specific minor # is free.
1398  */
1399 static int specific_minor(int minor)
1400 {
1401 	int r;
1402 
1403 	if (minor >= (1 << MINORBITS))
1404 		return -EINVAL;
1405 
1406 	idr_preload(GFP_KERNEL);
1407 	spin_lock(&_minor_lock);
1408 
1409 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1410 
1411 	spin_unlock(&_minor_lock);
1412 	idr_preload_end();
1413 	if (r < 0)
1414 		return r == -ENOSPC ? -EBUSY : r;
1415 	return 0;
1416 }
1417 
1418 static int next_free_minor(int *minor)
1419 {
1420 	int r;
1421 
1422 	idr_preload(GFP_KERNEL);
1423 	spin_lock(&_minor_lock);
1424 
1425 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1426 
1427 	spin_unlock(&_minor_lock);
1428 	idr_preload_end();
1429 	if (r < 0)
1430 		return r;
1431 	*minor = r;
1432 	return 0;
1433 }
1434 
1435 static const struct block_device_operations dm_blk_dops;
1436 
1437 static void dm_wq_work(struct work_struct *work);
1438 
1439 void dm_init_md_queue(struct mapped_device *md)
1440 {
1441 	/*
1442 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1443 	 * devices.  The type of this dm device may not have been decided yet.
1444 	 * The type is decided at the first table loading time.
1445 	 * To prevent problematic device stacking, clear the queue flag
1446 	 * for request stacking support until then.
1447 	 *
1448 	 * This queue is new, so no concurrency on the queue_flags.
1449 	 */
1450 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1451 
1452 	/*
1453 	 * Initialize data that will only be used by a non-blk-mq DM queue
1454 	 * - must do so here (in alloc_dev callchain) before queue is used
1455 	 */
1456 	md->queue->queuedata = md;
1457 	md->queue->backing_dev_info->congested_data = md;
1458 }
1459 
1460 void dm_init_normal_md_queue(struct mapped_device *md)
1461 {
1462 	md->use_blk_mq = false;
1463 	dm_init_md_queue(md);
1464 
1465 	/*
1466 	 * Initialize aspects of queue that aren't relevant for blk-mq
1467 	 */
1468 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1469 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1470 }
1471 
1472 static void cleanup_mapped_device(struct mapped_device *md)
1473 {
1474 	if (md->wq)
1475 		destroy_workqueue(md->wq);
1476 	if (md->kworker_task)
1477 		kthread_stop(md->kworker_task);
1478 	mempool_destroy(md->io_pool);
1479 	if (md->bs)
1480 		bioset_free(md->bs);
1481 
1482 	if (md->disk) {
1483 		spin_lock(&_minor_lock);
1484 		md->disk->private_data = NULL;
1485 		spin_unlock(&_minor_lock);
1486 		del_gendisk(md->disk);
1487 		put_disk(md->disk);
1488 	}
1489 
1490 	if (md->queue)
1491 		blk_cleanup_queue(md->queue);
1492 
1493 	cleanup_srcu_struct(&md->io_barrier);
1494 
1495 	if (md->bdev) {
1496 		bdput(md->bdev);
1497 		md->bdev = NULL;
1498 	}
1499 
1500 	dm_mq_cleanup_mapped_device(md);
1501 }
1502 
1503 /*
1504  * Allocate and initialise a blank device with a given minor.
1505  */
1506 static struct mapped_device *alloc_dev(int minor)
1507 {
1508 	int r, numa_node_id = dm_get_numa_node();
1509 	struct mapped_device *md;
1510 	void *old_md;
1511 
1512 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1513 	if (!md) {
1514 		DMWARN("unable to allocate device, out of memory.");
1515 		return NULL;
1516 	}
1517 
1518 	if (!try_module_get(THIS_MODULE))
1519 		goto bad_module_get;
1520 
1521 	/* get a minor number for the dev */
1522 	if (minor == DM_ANY_MINOR)
1523 		r = next_free_minor(&minor);
1524 	else
1525 		r = specific_minor(minor);
1526 	if (r < 0)
1527 		goto bad_minor;
1528 
1529 	r = init_srcu_struct(&md->io_barrier);
1530 	if (r < 0)
1531 		goto bad_io_barrier;
1532 
1533 	md->numa_node_id = numa_node_id;
1534 	md->use_blk_mq = dm_use_blk_mq_default();
1535 	md->init_tio_pdu = false;
1536 	md->type = DM_TYPE_NONE;
1537 	mutex_init(&md->suspend_lock);
1538 	mutex_init(&md->type_lock);
1539 	mutex_init(&md->table_devices_lock);
1540 	spin_lock_init(&md->deferred_lock);
1541 	atomic_set(&md->holders, 1);
1542 	atomic_set(&md->open_count, 0);
1543 	atomic_set(&md->event_nr, 0);
1544 	atomic_set(&md->uevent_seq, 0);
1545 	INIT_LIST_HEAD(&md->uevent_list);
1546 	INIT_LIST_HEAD(&md->table_devices);
1547 	spin_lock_init(&md->uevent_lock);
1548 
1549 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1550 	if (!md->queue)
1551 		goto bad;
1552 
1553 	dm_init_md_queue(md);
1554 
1555 	md->disk = alloc_disk_node(1, numa_node_id);
1556 	if (!md->disk)
1557 		goto bad;
1558 
1559 	atomic_set(&md->pending[0], 0);
1560 	atomic_set(&md->pending[1], 0);
1561 	init_waitqueue_head(&md->wait);
1562 	INIT_WORK(&md->work, dm_wq_work);
1563 	init_waitqueue_head(&md->eventq);
1564 	init_completion(&md->kobj_holder.completion);
1565 	md->kworker_task = NULL;
1566 
1567 	md->disk->major = _major;
1568 	md->disk->first_minor = minor;
1569 	md->disk->fops = &dm_blk_dops;
1570 	md->disk->queue = md->queue;
1571 	md->disk->private_data = md;
1572 	sprintf(md->disk->disk_name, "dm-%d", minor);
1573 	add_disk(md->disk);
1574 	format_dev_t(md->name, MKDEV(_major, minor));
1575 
1576 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1577 	if (!md->wq)
1578 		goto bad;
1579 
1580 	md->bdev = bdget_disk(md->disk, 0);
1581 	if (!md->bdev)
1582 		goto bad;
1583 
1584 	bio_init(&md->flush_bio, NULL, 0);
1585 	md->flush_bio.bi_bdev = md->bdev;
1586 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1587 
1588 	dm_stats_init(&md->stats);
1589 
1590 	/* Populate the mapping, nobody knows we exist yet */
1591 	spin_lock(&_minor_lock);
1592 	old_md = idr_replace(&_minor_idr, md, minor);
1593 	spin_unlock(&_minor_lock);
1594 
1595 	BUG_ON(old_md != MINOR_ALLOCED);
1596 
1597 	return md;
1598 
1599 bad:
1600 	cleanup_mapped_device(md);
1601 bad_io_barrier:
1602 	free_minor(minor);
1603 bad_minor:
1604 	module_put(THIS_MODULE);
1605 bad_module_get:
1606 	kfree(md);
1607 	return NULL;
1608 }
1609 
1610 static void unlock_fs(struct mapped_device *md);
1611 
1612 static void free_dev(struct mapped_device *md)
1613 {
1614 	int minor = MINOR(disk_devt(md->disk));
1615 
1616 	unlock_fs(md);
1617 
1618 	cleanup_mapped_device(md);
1619 
1620 	free_table_devices(&md->table_devices);
1621 	dm_stats_cleanup(&md->stats);
1622 	free_minor(minor);
1623 
1624 	module_put(THIS_MODULE);
1625 	kfree(md);
1626 }
1627 
1628 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1629 {
1630 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1631 
1632 	if (md->bs) {
1633 		/* The md already has necessary mempools. */
1634 		if (dm_table_bio_based(t)) {
1635 			/*
1636 			 * Reload bioset because front_pad may have changed
1637 			 * because a different table was loaded.
1638 			 */
1639 			bioset_free(md->bs);
1640 			md->bs = p->bs;
1641 			p->bs = NULL;
1642 		}
1643 		/*
1644 		 * There's no need to reload with request-based dm
1645 		 * because the size of front_pad doesn't change.
1646 		 * Note for future: If you are to reload bioset,
1647 		 * prep-ed requests in the queue may refer
1648 		 * to bio from the old bioset, so you must walk
1649 		 * through the queue to unprep.
1650 		 */
1651 		goto out;
1652 	}
1653 
1654 	BUG_ON(!p || md->io_pool || md->bs);
1655 
1656 	md->io_pool = p->io_pool;
1657 	p->io_pool = NULL;
1658 	md->bs = p->bs;
1659 	p->bs = NULL;
1660 
1661 out:
1662 	/* mempool bind completed, no longer need any mempools in the table */
1663 	dm_table_free_md_mempools(t);
1664 }
1665 
1666 /*
1667  * Bind a table to the device.
1668  */
1669 static void event_callback(void *context)
1670 {
1671 	unsigned long flags;
1672 	LIST_HEAD(uevents);
1673 	struct mapped_device *md = (struct mapped_device *) context;
1674 
1675 	spin_lock_irqsave(&md->uevent_lock, flags);
1676 	list_splice_init(&md->uevent_list, &uevents);
1677 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1678 
1679 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1680 
1681 	atomic_inc(&md->event_nr);
1682 	wake_up(&md->eventq);
1683 }
1684 
1685 /*
1686  * Protected by md->suspend_lock obtained by dm_swap_table().
1687  */
1688 static void __set_size(struct mapped_device *md, sector_t size)
1689 {
1690 	set_capacity(md->disk, size);
1691 
1692 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1693 }
1694 
1695 /*
1696  * Returns old map, which caller must destroy.
1697  */
1698 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1699 			       struct queue_limits *limits)
1700 {
1701 	struct dm_table *old_map;
1702 	struct request_queue *q = md->queue;
1703 	sector_t size;
1704 
1705 	lockdep_assert_held(&md->suspend_lock);
1706 
1707 	size = dm_table_get_size(t);
1708 
1709 	/*
1710 	 * Wipe any geometry if the size of the table changed.
1711 	 */
1712 	if (size != dm_get_size(md))
1713 		memset(&md->geometry, 0, sizeof(md->geometry));
1714 
1715 	__set_size(md, size);
1716 
1717 	dm_table_event_callback(t, event_callback, md);
1718 
1719 	/*
1720 	 * The queue hasn't been stopped yet, if the old table type wasn't
1721 	 * for request-based during suspension.  So stop it to prevent
1722 	 * I/O mapping before resume.
1723 	 * This must be done before setting the queue restrictions,
1724 	 * because request-based dm may be run just after the setting.
1725 	 */
1726 	if (dm_table_request_based(t)) {
1727 		dm_stop_queue(q);
1728 		/*
1729 		 * Leverage the fact that request-based DM targets are
1730 		 * immutable singletons and establish md->immutable_target
1731 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1732 		 */
1733 		md->immutable_target = dm_table_get_immutable_target(t);
1734 	}
1735 
1736 	__bind_mempools(md, t);
1737 
1738 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1739 	rcu_assign_pointer(md->map, (void *)t);
1740 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1741 
1742 	dm_table_set_restrictions(t, q, limits);
1743 	if (old_map)
1744 		dm_sync_table(md);
1745 
1746 	return old_map;
1747 }
1748 
1749 /*
1750  * Returns unbound table for the caller to free.
1751  */
1752 static struct dm_table *__unbind(struct mapped_device *md)
1753 {
1754 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1755 
1756 	if (!map)
1757 		return NULL;
1758 
1759 	dm_table_event_callback(map, NULL, NULL);
1760 	RCU_INIT_POINTER(md->map, NULL);
1761 	dm_sync_table(md);
1762 
1763 	return map;
1764 }
1765 
1766 /*
1767  * Constructor for a new device.
1768  */
1769 int dm_create(int minor, struct mapped_device **result)
1770 {
1771 	struct mapped_device *md;
1772 
1773 	md = alloc_dev(minor);
1774 	if (!md)
1775 		return -ENXIO;
1776 
1777 	dm_sysfs_init(md);
1778 
1779 	*result = md;
1780 	return 0;
1781 }
1782 
1783 /*
1784  * Functions to manage md->type.
1785  * All are required to hold md->type_lock.
1786  */
1787 void dm_lock_md_type(struct mapped_device *md)
1788 {
1789 	mutex_lock(&md->type_lock);
1790 }
1791 
1792 void dm_unlock_md_type(struct mapped_device *md)
1793 {
1794 	mutex_unlock(&md->type_lock);
1795 }
1796 
1797 void dm_set_md_type(struct mapped_device *md, unsigned type)
1798 {
1799 	BUG_ON(!mutex_is_locked(&md->type_lock));
1800 	md->type = type;
1801 }
1802 
1803 unsigned dm_get_md_type(struct mapped_device *md)
1804 {
1805 	return md->type;
1806 }
1807 
1808 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1809 {
1810 	return md->immutable_target_type;
1811 }
1812 
1813 /*
1814  * The queue_limits are only valid as long as you have a reference
1815  * count on 'md'.
1816  */
1817 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1818 {
1819 	BUG_ON(!atomic_read(&md->holders));
1820 	return &md->queue->limits;
1821 }
1822 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1823 
1824 /*
1825  * Setup the DM device's queue based on md's type
1826  */
1827 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1828 {
1829 	int r;
1830 	unsigned type = dm_get_md_type(md);
1831 
1832 	switch (type) {
1833 	case DM_TYPE_REQUEST_BASED:
1834 		r = dm_old_init_request_queue(md, t);
1835 		if (r) {
1836 			DMERR("Cannot initialize queue for request-based mapped device");
1837 			return r;
1838 		}
1839 		break;
1840 	case DM_TYPE_MQ_REQUEST_BASED:
1841 		r = dm_mq_init_request_queue(md, t);
1842 		if (r) {
1843 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1844 			return r;
1845 		}
1846 		break;
1847 	case DM_TYPE_BIO_BASED:
1848 	case DM_TYPE_DAX_BIO_BASED:
1849 		dm_init_normal_md_queue(md);
1850 		blk_queue_make_request(md->queue, dm_make_request);
1851 		/*
1852 		 * DM handles splitting bios as needed.  Free the bio_split bioset
1853 		 * since it won't be used (saves 1 process per bio-based DM device).
1854 		 */
1855 		bioset_free(md->queue->bio_split);
1856 		md->queue->bio_split = NULL;
1857 
1858 		if (type == DM_TYPE_DAX_BIO_BASED)
1859 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1860 		break;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 struct mapped_device *dm_get_md(dev_t dev)
1867 {
1868 	struct mapped_device *md;
1869 	unsigned minor = MINOR(dev);
1870 
1871 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1872 		return NULL;
1873 
1874 	spin_lock(&_minor_lock);
1875 
1876 	md = idr_find(&_minor_idr, minor);
1877 	if (md) {
1878 		if ((md == MINOR_ALLOCED ||
1879 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1880 		     dm_deleting_md(md) ||
1881 		     test_bit(DMF_FREEING, &md->flags))) {
1882 			md = NULL;
1883 			goto out;
1884 		}
1885 		dm_get(md);
1886 	}
1887 
1888 out:
1889 	spin_unlock(&_minor_lock);
1890 
1891 	return md;
1892 }
1893 EXPORT_SYMBOL_GPL(dm_get_md);
1894 
1895 void *dm_get_mdptr(struct mapped_device *md)
1896 {
1897 	return md->interface_ptr;
1898 }
1899 
1900 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1901 {
1902 	md->interface_ptr = ptr;
1903 }
1904 
1905 void dm_get(struct mapped_device *md)
1906 {
1907 	atomic_inc(&md->holders);
1908 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1909 }
1910 
1911 int dm_hold(struct mapped_device *md)
1912 {
1913 	spin_lock(&_minor_lock);
1914 	if (test_bit(DMF_FREEING, &md->flags)) {
1915 		spin_unlock(&_minor_lock);
1916 		return -EBUSY;
1917 	}
1918 	dm_get(md);
1919 	spin_unlock(&_minor_lock);
1920 	return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(dm_hold);
1923 
1924 const char *dm_device_name(struct mapped_device *md)
1925 {
1926 	return md->name;
1927 }
1928 EXPORT_SYMBOL_GPL(dm_device_name);
1929 
1930 static void __dm_destroy(struct mapped_device *md, bool wait)
1931 {
1932 	struct request_queue *q = dm_get_md_queue(md);
1933 	struct dm_table *map;
1934 	int srcu_idx;
1935 
1936 	might_sleep();
1937 
1938 	spin_lock(&_minor_lock);
1939 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1940 	set_bit(DMF_FREEING, &md->flags);
1941 	spin_unlock(&_minor_lock);
1942 
1943 	blk_set_queue_dying(q);
1944 
1945 	if (dm_request_based(md) && md->kworker_task)
1946 		kthread_flush_worker(&md->kworker);
1947 
1948 	/*
1949 	 * Take suspend_lock so that presuspend and postsuspend methods
1950 	 * do not race with internal suspend.
1951 	 */
1952 	mutex_lock(&md->suspend_lock);
1953 	map = dm_get_live_table(md, &srcu_idx);
1954 	if (!dm_suspended_md(md)) {
1955 		dm_table_presuspend_targets(map);
1956 		dm_table_postsuspend_targets(map);
1957 	}
1958 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1959 	dm_put_live_table(md, srcu_idx);
1960 	mutex_unlock(&md->suspend_lock);
1961 
1962 	/*
1963 	 * Rare, but there may be I/O requests still going to complete,
1964 	 * for example.  Wait for all references to disappear.
1965 	 * No one should increment the reference count of the mapped_device,
1966 	 * after the mapped_device state becomes DMF_FREEING.
1967 	 */
1968 	if (wait)
1969 		while (atomic_read(&md->holders))
1970 			msleep(1);
1971 	else if (atomic_read(&md->holders))
1972 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1973 		       dm_device_name(md), atomic_read(&md->holders));
1974 
1975 	dm_sysfs_exit(md);
1976 	dm_table_destroy(__unbind(md));
1977 	free_dev(md);
1978 }
1979 
1980 void dm_destroy(struct mapped_device *md)
1981 {
1982 	__dm_destroy(md, true);
1983 }
1984 
1985 void dm_destroy_immediate(struct mapped_device *md)
1986 {
1987 	__dm_destroy(md, false);
1988 }
1989 
1990 void dm_put(struct mapped_device *md)
1991 {
1992 	atomic_dec(&md->holders);
1993 }
1994 EXPORT_SYMBOL_GPL(dm_put);
1995 
1996 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
1997 {
1998 	int r = 0;
1999 	DEFINE_WAIT(wait);
2000 
2001 	while (1) {
2002 		prepare_to_wait(&md->wait, &wait, task_state);
2003 
2004 		if (!md_in_flight(md))
2005 			break;
2006 
2007 		if (signal_pending_state(task_state, current)) {
2008 			r = -EINTR;
2009 			break;
2010 		}
2011 
2012 		io_schedule();
2013 	}
2014 	finish_wait(&md->wait, &wait);
2015 
2016 	return r;
2017 }
2018 
2019 /*
2020  * Process the deferred bios
2021  */
2022 static void dm_wq_work(struct work_struct *work)
2023 {
2024 	struct mapped_device *md = container_of(work, struct mapped_device,
2025 						work);
2026 	struct bio *c;
2027 	int srcu_idx;
2028 	struct dm_table *map;
2029 
2030 	map = dm_get_live_table(md, &srcu_idx);
2031 
2032 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2033 		spin_lock_irq(&md->deferred_lock);
2034 		c = bio_list_pop(&md->deferred);
2035 		spin_unlock_irq(&md->deferred_lock);
2036 
2037 		if (!c)
2038 			break;
2039 
2040 		if (dm_request_based(md))
2041 			generic_make_request(c);
2042 		else
2043 			__split_and_process_bio(md, map, c);
2044 	}
2045 
2046 	dm_put_live_table(md, srcu_idx);
2047 }
2048 
2049 static void dm_queue_flush(struct mapped_device *md)
2050 {
2051 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2052 	smp_mb__after_atomic();
2053 	queue_work(md->wq, &md->work);
2054 }
2055 
2056 /*
2057  * Swap in a new table, returning the old one for the caller to destroy.
2058  */
2059 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2060 {
2061 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2062 	struct queue_limits limits;
2063 	int r;
2064 
2065 	mutex_lock(&md->suspend_lock);
2066 
2067 	/* device must be suspended */
2068 	if (!dm_suspended_md(md))
2069 		goto out;
2070 
2071 	/*
2072 	 * If the new table has no data devices, retain the existing limits.
2073 	 * This helps multipath with queue_if_no_path if all paths disappear,
2074 	 * then new I/O is queued based on these limits, and then some paths
2075 	 * reappear.
2076 	 */
2077 	if (dm_table_has_no_data_devices(table)) {
2078 		live_map = dm_get_live_table_fast(md);
2079 		if (live_map)
2080 			limits = md->queue->limits;
2081 		dm_put_live_table_fast(md);
2082 	}
2083 
2084 	if (!live_map) {
2085 		r = dm_calculate_queue_limits(table, &limits);
2086 		if (r) {
2087 			map = ERR_PTR(r);
2088 			goto out;
2089 		}
2090 	}
2091 
2092 	map = __bind(md, table, &limits);
2093 
2094 out:
2095 	mutex_unlock(&md->suspend_lock);
2096 	return map;
2097 }
2098 
2099 /*
2100  * Functions to lock and unlock any filesystem running on the
2101  * device.
2102  */
2103 static int lock_fs(struct mapped_device *md)
2104 {
2105 	int r;
2106 
2107 	WARN_ON(md->frozen_sb);
2108 
2109 	md->frozen_sb = freeze_bdev(md->bdev);
2110 	if (IS_ERR(md->frozen_sb)) {
2111 		r = PTR_ERR(md->frozen_sb);
2112 		md->frozen_sb = NULL;
2113 		return r;
2114 	}
2115 
2116 	set_bit(DMF_FROZEN, &md->flags);
2117 
2118 	return 0;
2119 }
2120 
2121 static void unlock_fs(struct mapped_device *md)
2122 {
2123 	if (!test_bit(DMF_FROZEN, &md->flags))
2124 		return;
2125 
2126 	thaw_bdev(md->bdev, md->frozen_sb);
2127 	md->frozen_sb = NULL;
2128 	clear_bit(DMF_FROZEN, &md->flags);
2129 }
2130 
2131 /*
2132  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2133  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2134  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2135  *
2136  * If __dm_suspend returns 0, the device is completely quiescent
2137  * now. There is no request-processing activity. All new requests
2138  * are being added to md->deferred list.
2139  *
2140  * Caller must hold md->suspend_lock
2141  */
2142 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2143 			unsigned suspend_flags, long task_state,
2144 			int dmf_suspended_flag)
2145 {
2146 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2147 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2148 	int r;
2149 
2150 	lockdep_assert_held(&md->suspend_lock);
2151 
2152 	/*
2153 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2154 	 * This flag is cleared before dm_suspend returns.
2155 	 */
2156 	if (noflush)
2157 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2158 
2159 	/*
2160 	 * This gets reverted if there's an error later and the targets
2161 	 * provide the .presuspend_undo hook.
2162 	 */
2163 	dm_table_presuspend_targets(map);
2164 
2165 	/*
2166 	 * Flush I/O to the device.
2167 	 * Any I/O submitted after lock_fs() may not be flushed.
2168 	 * noflush takes precedence over do_lockfs.
2169 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2170 	 */
2171 	if (!noflush && do_lockfs) {
2172 		r = lock_fs(md);
2173 		if (r) {
2174 			dm_table_presuspend_undo_targets(map);
2175 			return r;
2176 		}
2177 	}
2178 
2179 	/*
2180 	 * Here we must make sure that no processes are submitting requests
2181 	 * to target drivers i.e. no one may be executing
2182 	 * __split_and_process_bio. This is called from dm_request and
2183 	 * dm_wq_work.
2184 	 *
2185 	 * To get all processes out of __split_and_process_bio in dm_request,
2186 	 * we take the write lock. To prevent any process from reentering
2187 	 * __split_and_process_bio from dm_request and quiesce the thread
2188 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2189 	 * flush_workqueue(md->wq).
2190 	 */
2191 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2192 	if (map)
2193 		synchronize_srcu(&md->io_barrier);
2194 
2195 	/*
2196 	 * Stop md->queue before flushing md->wq in case request-based
2197 	 * dm defers requests to md->wq from md->queue.
2198 	 */
2199 	if (dm_request_based(md)) {
2200 		dm_stop_queue(md->queue);
2201 		if (md->kworker_task)
2202 			kthread_flush_worker(&md->kworker);
2203 	}
2204 
2205 	flush_workqueue(md->wq);
2206 
2207 	/*
2208 	 * At this point no more requests are entering target request routines.
2209 	 * We call dm_wait_for_completion to wait for all existing requests
2210 	 * to finish.
2211 	 */
2212 	r = dm_wait_for_completion(md, task_state);
2213 	if (!r)
2214 		set_bit(dmf_suspended_flag, &md->flags);
2215 
2216 	if (noflush)
2217 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2218 	if (map)
2219 		synchronize_srcu(&md->io_barrier);
2220 
2221 	/* were we interrupted ? */
2222 	if (r < 0) {
2223 		dm_queue_flush(md);
2224 
2225 		if (dm_request_based(md))
2226 			dm_start_queue(md->queue);
2227 
2228 		unlock_fs(md);
2229 		dm_table_presuspend_undo_targets(map);
2230 		/* pushback list is already flushed, so skip flush */
2231 	}
2232 
2233 	return r;
2234 }
2235 
2236 /*
2237  * We need to be able to change a mapping table under a mounted
2238  * filesystem.  For example we might want to move some data in
2239  * the background.  Before the table can be swapped with
2240  * dm_bind_table, dm_suspend must be called to flush any in
2241  * flight bios and ensure that any further io gets deferred.
2242  */
2243 /*
2244  * Suspend mechanism in request-based dm.
2245  *
2246  * 1. Flush all I/Os by lock_fs() if needed.
2247  * 2. Stop dispatching any I/O by stopping the request_queue.
2248  * 3. Wait for all in-flight I/Os to be completed or requeued.
2249  *
2250  * To abort suspend, start the request_queue.
2251  */
2252 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2253 {
2254 	struct dm_table *map = NULL;
2255 	int r = 0;
2256 
2257 retry:
2258 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2259 
2260 	if (dm_suspended_md(md)) {
2261 		r = -EINVAL;
2262 		goto out_unlock;
2263 	}
2264 
2265 	if (dm_suspended_internally_md(md)) {
2266 		/* already internally suspended, wait for internal resume */
2267 		mutex_unlock(&md->suspend_lock);
2268 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2269 		if (r)
2270 			return r;
2271 		goto retry;
2272 	}
2273 
2274 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2275 
2276 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2277 	if (r)
2278 		goto out_unlock;
2279 
2280 	dm_table_postsuspend_targets(map);
2281 
2282 out_unlock:
2283 	mutex_unlock(&md->suspend_lock);
2284 	return r;
2285 }
2286 
2287 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2288 {
2289 	if (map) {
2290 		int r = dm_table_resume_targets(map);
2291 		if (r)
2292 			return r;
2293 	}
2294 
2295 	dm_queue_flush(md);
2296 
2297 	/*
2298 	 * Flushing deferred I/Os must be done after targets are resumed
2299 	 * so that mapping of targets can work correctly.
2300 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2301 	 */
2302 	if (dm_request_based(md))
2303 		dm_start_queue(md->queue);
2304 
2305 	unlock_fs(md);
2306 
2307 	return 0;
2308 }
2309 
2310 int dm_resume(struct mapped_device *md)
2311 {
2312 	int r;
2313 	struct dm_table *map = NULL;
2314 
2315 retry:
2316 	r = -EINVAL;
2317 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2318 
2319 	if (!dm_suspended_md(md))
2320 		goto out;
2321 
2322 	if (dm_suspended_internally_md(md)) {
2323 		/* already internally suspended, wait for internal resume */
2324 		mutex_unlock(&md->suspend_lock);
2325 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2326 		if (r)
2327 			return r;
2328 		goto retry;
2329 	}
2330 
2331 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2332 	if (!map || !dm_table_get_size(map))
2333 		goto out;
2334 
2335 	r = __dm_resume(md, map);
2336 	if (r)
2337 		goto out;
2338 
2339 	clear_bit(DMF_SUSPENDED, &md->flags);
2340 out:
2341 	mutex_unlock(&md->suspend_lock);
2342 
2343 	return r;
2344 }
2345 
2346 /*
2347  * Internal suspend/resume works like userspace-driven suspend. It waits
2348  * until all bios finish and prevents issuing new bios to the target drivers.
2349  * It may be used only from the kernel.
2350  */
2351 
2352 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2353 {
2354 	struct dm_table *map = NULL;
2355 
2356 	if (md->internal_suspend_count++)
2357 		return; /* nested internal suspend */
2358 
2359 	if (dm_suspended_md(md)) {
2360 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2361 		return; /* nest suspend */
2362 	}
2363 
2364 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2365 
2366 	/*
2367 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2368 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2369 	 * would require changing .presuspend to return an error -- avoid this
2370 	 * until there is a need for more elaborate variants of internal suspend.
2371 	 */
2372 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2373 			    DMF_SUSPENDED_INTERNALLY);
2374 
2375 	dm_table_postsuspend_targets(map);
2376 }
2377 
2378 static void __dm_internal_resume(struct mapped_device *md)
2379 {
2380 	BUG_ON(!md->internal_suspend_count);
2381 
2382 	if (--md->internal_suspend_count)
2383 		return; /* resume from nested internal suspend */
2384 
2385 	if (dm_suspended_md(md))
2386 		goto done; /* resume from nested suspend */
2387 
2388 	/*
2389 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2390 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2391 	 */
2392 	(void) __dm_resume(md, NULL);
2393 
2394 done:
2395 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2396 	smp_mb__after_atomic();
2397 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2398 }
2399 
2400 void dm_internal_suspend_noflush(struct mapped_device *md)
2401 {
2402 	mutex_lock(&md->suspend_lock);
2403 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2404 	mutex_unlock(&md->suspend_lock);
2405 }
2406 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2407 
2408 void dm_internal_resume(struct mapped_device *md)
2409 {
2410 	mutex_lock(&md->suspend_lock);
2411 	__dm_internal_resume(md);
2412 	mutex_unlock(&md->suspend_lock);
2413 }
2414 EXPORT_SYMBOL_GPL(dm_internal_resume);
2415 
2416 /*
2417  * Fast variants of internal suspend/resume hold md->suspend_lock,
2418  * which prevents interaction with userspace-driven suspend.
2419  */
2420 
2421 void dm_internal_suspend_fast(struct mapped_device *md)
2422 {
2423 	mutex_lock(&md->suspend_lock);
2424 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2425 		return;
2426 
2427 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2428 	synchronize_srcu(&md->io_barrier);
2429 	flush_workqueue(md->wq);
2430 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2431 }
2432 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2433 
2434 void dm_internal_resume_fast(struct mapped_device *md)
2435 {
2436 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2437 		goto done;
2438 
2439 	dm_queue_flush(md);
2440 
2441 done:
2442 	mutex_unlock(&md->suspend_lock);
2443 }
2444 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2445 
2446 /*-----------------------------------------------------------------
2447  * Event notification.
2448  *---------------------------------------------------------------*/
2449 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2450 		       unsigned cookie)
2451 {
2452 	char udev_cookie[DM_COOKIE_LENGTH];
2453 	char *envp[] = { udev_cookie, NULL };
2454 
2455 	if (!cookie)
2456 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2457 	else {
2458 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2459 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2460 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2461 					  action, envp);
2462 	}
2463 }
2464 
2465 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2466 {
2467 	return atomic_add_return(1, &md->uevent_seq);
2468 }
2469 
2470 uint32_t dm_get_event_nr(struct mapped_device *md)
2471 {
2472 	return atomic_read(&md->event_nr);
2473 }
2474 
2475 int dm_wait_event(struct mapped_device *md, int event_nr)
2476 {
2477 	return wait_event_interruptible(md->eventq,
2478 			(event_nr != atomic_read(&md->event_nr)));
2479 }
2480 
2481 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2482 {
2483 	unsigned long flags;
2484 
2485 	spin_lock_irqsave(&md->uevent_lock, flags);
2486 	list_add(elist, &md->uevent_list);
2487 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2488 }
2489 
2490 /*
2491  * The gendisk is only valid as long as you have a reference
2492  * count on 'md'.
2493  */
2494 struct gendisk *dm_disk(struct mapped_device *md)
2495 {
2496 	return md->disk;
2497 }
2498 EXPORT_SYMBOL_GPL(dm_disk);
2499 
2500 struct kobject *dm_kobject(struct mapped_device *md)
2501 {
2502 	return &md->kobj_holder.kobj;
2503 }
2504 
2505 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2506 {
2507 	struct mapped_device *md;
2508 
2509 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2510 
2511 	if (test_bit(DMF_FREEING, &md->flags) ||
2512 	    dm_deleting_md(md))
2513 		return NULL;
2514 
2515 	dm_get(md);
2516 	return md;
2517 }
2518 
2519 int dm_suspended_md(struct mapped_device *md)
2520 {
2521 	return test_bit(DMF_SUSPENDED, &md->flags);
2522 }
2523 
2524 int dm_suspended_internally_md(struct mapped_device *md)
2525 {
2526 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2527 }
2528 
2529 int dm_test_deferred_remove_flag(struct mapped_device *md)
2530 {
2531 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2532 }
2533 
2534 int dm_suspended(struct dm_target *ti)
2535 {
2536 	return dm_suspended_md(dm_table_get_md(ti->table));
2537 }
2538 EXPORT_SYMBOL_GPL(dm_suspended);
2539 
2540 int dm_noflush_suspending(struct dm_target *ti)
2541 {
2542 	return __noflush_suspending(dm_table_get_md(ti->table));
2543 }
2544 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2545 
2546 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2547 					    unsigned integrity, unsigned per_io_data_size)
2548 {
2549 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2550 	unsigned int pool_size = 0;
2551 	unsigned int front_pad;
2552 
2553 	if (!pools)
2554 		return NULL;
2555 
2556 	switch (type) {
2557 	case DM_TYPE_BIO_BASED:
2558 	case DM_TYPE_DAX_BIO_BASED:
2559 		pool_size = dm_get_reserved_bio_based_ios();
2560 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2561 
2562 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2563 		if (!pools->io_pool)
2564 			goto out;
2565 		break;
2566 	case DM_TYPE_REQUEST_BASED:
2567 	case DM_TYPE_MQ_REQUEST_BASED:
2568 		pool_size = dm_get_reserved_rq_based_ios();
2569 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2570 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2571 		break;
2572 	default:
2573 		BUG();
2574 	}
2575 
2576 	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2577 	if (!pools->bs)
2578 		goto out;
2579 
2580 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2581 		goto out;
2582 
2583 	return pools;
2584 
2585 out:
2586 	dm_free_md_mempools(pools);
2587 
2588 	return NULL;
2589 }
2590 
2591 void dm_free_md_mempools(struct dm_md_mempools *pools)
2592 {
2593 	if (!pools)
2594 		return;
2595 
2596 	mempool_destroy(pools->io_pool);
2597 
2598 	if (pools->bs)
2599 		bioset_free(pools->bs);
2600 
2601 	kfree(pools);
2602 }
2603 
2604 struct dm_pr {
2605 	u64	old_key;
2606 	u64	new_key;
2607 	u32	flags;
2608 	bool	fail_early;
2609 };
2610 
2611 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2612 		      void *data)
2613 {
2614 	struct mapped_device *md = bdev->bd_disk->private_data;
2615 	struct dm_table *table;
2616 	struct dm_target *ti;
2617 	int ret = -ENOTTY, srcu_idx;
2618 
2619 	table = dm_get_live_table(md, &srcu_idx);
2620 	if (!table || !dm_table_get_size(table))
2621 		goto out;
2622 
2623 	/* We only support devices that have a single target */
2624 	if (dm_table_get_num_targets(table) != 1)
2625 		goto out;
2626 	ti = dm_table_get_target(table, 0);
2627 
2628 	ret = -EINVAL;
2629 	if (!ti->type->iterate_devices)
2630 		goto out;
2631 
2632 	ret = ti->type->iterate_devices(ti, fn, data);
2633 out:
2634 	dm_put_live_table(md, srcu_idx);
2635 	return ret;
2636 }
2637 
2638 /*
2639  * For register / unregister we need to manually call out to every path.
2640  */
2641 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2642 			    sector_t start, sector_t len, void *data)
2643 {
2644 	struct dm_pr *pr = data;
2645 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2646 
2647 	if (!ops || !ops->pr_register)
2648 		return -EOPNOTSUPP;
2649 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2650 }
2651 
2652 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2653 			  u32 flags)
2654 {
2655 	struct dm_pr pr = {
2656 		.old_key	= old_key,
2657 		.new_key	= new_key,
2658 		.flags		= flags,
2659 		.fail_early	= true,
2660 	};
2661 	int ret;
2662 
2663 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2664 	if (ret && new_key) {
2665 		/* unregister all paths if we failed to register any path */
2666 		pr.old_key = new_key;
2667 		pr.new_key = 0;
2668 		pr.flags = 0;
2669 		pr.fail_early = false;
2670 		dm_call_pr(bdev, __dm_pr_register, &pr);
2671 	}
2672 
2673 	return ret;
2674 }
2675 
2676 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2677 			 u32 flags)
2678 {
2679 	struct mapped_device *md = bdev->bd_disk->private_data;
2680 	const struct pr_ops *ops;
2681 	fmode_t mode;
2682 	int r;
2683 
2684 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2685 	if (r < 0)
2686 		return r;
2687 
2688 	ops = bdev->bd_disk->fops->pr_ops;
2689 	if (ops && ops->pr_reserve)
2690 		r = ops->pr_reserve(bdev, key, type, flags);
2691 	else
2692 		r = -EOPNOTSUPP;
2693 
2694 	bdput(bdev);
2695 	return r;
2696 }
2697 
2698 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2699 {
2700 	struct mapped_device *md = bdev->bd_disk->private_data;
2701 	const struct pr_ops *ops;
2702 	fmode_t mode;
2703 	int r;
2704 
2705 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2706 	if (r < 0)
2707 		return r;
2708 
2709 	ops = bdev->bd_disk->fops->pr_ops;
2710 	if (ops && ops->pr_release)
2711 		r = ops->pr_release(bdev, key, type);
2712 	else
2713 		r = -EOPNOTSUPP;
2714 
2715 	bdput(bdev);
2716 	return r;
2717 }
2718 
2719 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2720 			 enum pr_type type, bool abort)
2721 {
2722 	struct mapped_device *md = bdev->bd_disk->private_data;
2723 	const struct pr_ops *ops;
2724 	fmode_t mode;
2725 	int r;
2726 
2727 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2728 	if (r < 0)
2729 		return r;
2730 
2731 	ops = bdev->bd_disk->fops->pr_ops;
2732 	if (ops && ops->pr_preempt)
2733 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2734 	else
2735 		r = -EOPNOTSUPP;
2736 
2737 	bdput(bdev);
2738 	return r;
2739 }
2740 
2741 static int dm_pr_clear(struct block_device *bdev, u64 key)
2742 {
2743 	struct mapped_device *md = bdev->bd_disk->private_data;
2744 	const struct pr_ops *ops;
2745 	fmode_t mode;
2746 	int r;
2747 
2748 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2749 	if (r < 0)
2750 		return r;
2751 
2752 	ops = bdev->bd_disk->fops->pr_ops;
2753 	if (ops && ops->pr_clear)
2754 		r = ops->pr_clear(bdev, key);
2755 	else
2756 		r = -EOPNOTSUPP;
2757 
2758 	bdput(bdev);
2759 	return r;
2760 }
2761 
2762 static const struct pr_ops dm_pr_ops = {
2763 	.pr_register	= dm_pr_register,
2764 	.pr_reserve	= dm_pr_reserve,
2765 	.pr_release	= dm_pr_release,
2766 	.pr_preempt	= dm_pr_preempt,
2767 	.pr_clear	= dm_pr_clear,
2768 };
2769 
2770 static const struct block_device_operations dm_blk_dops = {
2771 	.open = dm_blk_open,
2772 	.release = dm_blk_close,
2773 	.ioctl = dm_blk_ioctl,
2774 	.direct_access = dm_blk_direct_access,
2775 	.getgeo = dm_blk_getgeo,
2776 	.pr_ops = &dm_pr_ops,
2777 	.owner = THIS_MODULE
2778 };
2779 
2780 /*
2781  * module hooks
2782  */
2783 module_init(dm_init);
2784 module_exit(dm_exit);
2785 
2786 module_param(major, uint, 0);
2787 MODULE_PARM_DESC(major, "The major number of the device mapper");
2788 
2789 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2790 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2791 
2792 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2793 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2794 
2795 MODULE_DESCRIPTION(DM_NAME " driver");
2796 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2797 MODULE_LICENSE("GPL");
2798