xref: /linux/drivers/md/bcache/btree.c (revision 4e1ebae3ee4e0ce384c33832f66e417a965b64bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23 
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40 
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90 
91 #define MAX_NEED_GC		64
92 #define MAX_SAVE_PRIO		72
93 #define MAX_GC_TIMES		100
94 #define MIN_GC_NODES		100
95 #define GC_SLEEP_MS		100
96 
97 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
98 
99 #define PTR_HASH(c, k)							\
100 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101 
102 #define insert_lock(s, b)	((b)->level <= (s)->lock)
103 
104 
105 static inline struct bset *write_block(struct btree *b)
106 {
107 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
108 }
109 
110 static void bch_btree_init_next(struct btree *b)
111 {
112 	/* If not a leaf node, always sort */
113 	if (b->level && b->keys.nsets)
114 		bch_btree_sort(&b->keys, &b->c->sort);
115 	else
116 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
117 
118 	if (b->written < btree_blocks(b))
119 		bch_bset_init_next(&b->keys, write_block(b),
120 				   bset_magic(&b->c->sb));
121 
122 }
123 
124 /* Btree key manipulation */
125 
126 void bkey_put(struct cache_set *c, struct bkey *k)
127 {
128 	unsigned int i;
129 
130 	for (i = 0; i < KEY_PTRS(k); i++)
131 		if (ptr_available(c, k, i))
132 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
133 }
134 
135 /* Btree IO */
136 
137 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
138 {
139 	uint64_t crc = b->key.ptr[0];
140 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
141 
142 	crc = bch_crc64_update(crc, data, end - data);
143 	return crc ^ 0xffffffffffffffffULL;
144 }
145 
146 void bch_btree_node_read_done(struct btree *b)
147 {
148 	const char *err = "bad btree header";
149 	struct bset *i = btree_bset_first(b);
150 	struct btree_iter *iter;
151 
152 	/*
153 	 * c->fill_iter can allocate an iterator with more memory space
154 	 * than static MAX_BSETS.
155 	 * See the comment arount cache_set->fill_iter.
156 	 */
157 	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
158 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
159 	iter->used = 0;
160 
161 #ifdef CONFIG_BCACHE_DEBUG
162 	iter->b = &b->keys;
163 #endif
164 
165 	if (!i->seq)
166 		goto err;
167 
168 	for (;
169 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
170 	     i = write_block(b)) {
171 		err = "unsupported bset version";
172 		if (i->version > BCACHE_BSET_VERSION)
173 			goto err;
174 
175 		err = "bad btree header";
176 		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
177 		    btree_blocks(b))
178 			goto err;
179 
180 		err = "bad magic";
181 		if (i->magic != bset_magic(&b->c->sb))
182 			goto err;
183 
184 		err = "bad checksum";
185 		switch (i->version) {
186 		case 0:
187 			if (i->csum != csum_set(i))
188 				goto err;
189 			break;
190 		case BCACHE_BSET_VERSION:
191 			if (i->csum != btree_csum_set(b, i))
192 				goto err;
193 			break;
194 		}
195 
196 		err = "empty set";
197 		if (i != b->keys.set[0].data && !i->keys)
198 			goto err;
199 
200 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
201 
202 		b->written += set_blocks(i, block_bytes(b->c->cache));
203 	}
204 
205 	err = "corrupted btree";
206 	for (i = write_block(b);
207 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
208 	     i = ((void *) i) + block_bytes(b->c->cache))
209 		if (i->seq == b->keys.set[0].data->seq)
210 			goto err;
211 
212 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
213 
214 	i = b->keys.set[0].data;
215 	err = "short btree key";
216 	if (b->keys.set[0].size &&
217 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
218 		goto err;
219 
220 	if (b->written < btree_blocks(b))
221 		bch_bset_init_next(&b->keys, write_block(b),
222 				   bset_magic(&b->c->sb));
223 out:
224 	mempool_free(iter, &b->c->fill_iter);
225 	return;
226 err:
227 	set_btree_node_io_error(b);
228 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
229 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
230 			    bset_block_offset(b, i), i->keys);
231 	goto out;
232 }
233 
234 static void btree_node_read_endio(struct bio *bio)
235 {
236 	struct closure *cl = bio->bi_private;
237 
238 	closure_put(cl);
239 }
240 
241 static void bch_btree_node_read(struct btree *b)
242 {
243 	uint64_t start_time = local_clock();
244 	struct closure cl;
245 	struct bio *bio;
246 
247 	trace_bcache_btree_read(b);
248 
249 	closure_init_stack(&cl);
250 
251 	bio = bch_bbio_alloc(b->c);
252 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
253 	bio->bi_end_io	= btree_node_read_endio;
254 	bio->bi_private	= &cl;
255 	bio->bi_opf = REQ_OP_READ | REQ_META;
256 
257 	bch_bio_map(bio, b->keys.set[0].data);
258 
259 	bch_submit_bbio(bio, b->c, &b->key, 0);
260 	closure_sync(&cl);
261 
262 	if (bio->bi_status)
263 		set_btree_node_io_error(b);
264 
265 	bch_bbio_free(bio, b->c);
266 
267 	if (btree_node_io_error(b))
268 		goto err;
269 
270 	bch_btree_node_read_done(b);
271 	bch_time_stats_update(&b->c->btree_read_time, start_time);
272 
273 	return;
274 err:
275 	bch_cache_set_error(b->c, "io error reading bucket %zu",
276 			    PTR_BUCKET_NR(b->c, &b->key, 0));
277 }
278 
279 static void btree_complete_write(struct btree *b, struct btree_write *w)
280 {
281 	if (w->prio_blocked &&
282 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
283 		wake_up_allocators(b->c);
284 
285 	if (w->journal) {
286 		atomic_dec_bug(w->journal);
287 		__closure_wake_up(&b->c->journal.wait);
288 	}
289 
290 	w->prio_blocked	= 0;
291 	w->journal	= NULL;
292 }
293 
294 static void btree_node_write_unlock(struct closure *cl)
295 {
296 	struct btree *b = container_of(cl, struct btree, io);
297 
298 	up(&b->io_mutex);
299 }
300 
301 static void __btree_node_write_done(struct closure *cl)
302 {
303 	struct btree *b = container_of(cl, struct btree, io);
304 	struct btree_write *w = btree_prev_write(b);
305 
306 	bch_bbio_free(b->bio, b->c);
307 	b->bio = NULL;
308 	btree_complete_write(b, w);
309 
310 	if (btree_node_dirty(b))
311 		schedule_delayed_work(&b->work, 30 * HZ);
312 
313 	closure_return_with_destructor(cl, btree_node_write_unlock);
314 }
315 
316 static void btree_node_write_done(struct closure *cl)
317 {
318 	struct btree *b = container_of(cl, struct btree, io);
319 
320 	bio_free_pages(b->bio);
321 	__btree_node_write_done(cl);
322 }
323 
324 static void btree_node_write_endio(struct bio *bio)
325 {
326 	struct closure *cl = bio->bi_private;
327 	struct btree *b = container_of(cl, struct btree, io);
328 
329 	if (bio->bi_status)
330 		set_btree_node_io_error(b);
331 
332 	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
333 	closure_put(cl);
334 }
335 
336 static void do_btree_node_write(struct btree *b)
337 {
338 	struct closure *cl = &b->io;
339 	struct bset *i = btree_bset_last(b);
340 	BKEY_PADDED(key) k;
341 
342 	i->version	= BCACHE_BSET_VERSION;
343 	i->csum		= btree_csum_set(b, i);
344 
345 	BUG_ON(b->bio);
346 	b->bio = bch_bbio_alloc(b->c);
347 
348 	b->bio->bi_end_io	= btree_node_write_endio;
349 	b->bio->bi_private	= cl;
350 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
351 	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
352 	bch_bio_map(b->bio, i);
353 
354 	/*
355 	 * If we're appending to a leaf node, we don't technically need FUA -
356 	 * this write just needs to be persisted before the next journal write,
357 	 * which will be marked FLUSH|FUA.
358 	 *
359 	 * Similarly if we're writing a new btree root - the pointer is going to
360 	 * be in the next journal entry.
361 	 *
362 	 * But if we're writing a new btree node (that isn't a root) or
363 	 * appending to a non leaf btree node, we need either FUA or a flush
364 	 * when we write the parent with the new pointer. FUA is cheaper than a
365 	 * flush, and writes appending to leaf nodes aren't blocking anything so
366 	 * just make all btree node writes FUA to keep things sane.
367 	 */
368 
369 	bkey_copy(&k.key, &b->key);
370 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
371 		       bset_sector_offset(&b->keys, i));
372 
373 	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
374 		struct bio_vec *bv;
375 		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
376 		struct bvec_iter_all iter_all;
377 
378 		bio_for_each_segment_all(bv, b->bio, iter_all) {
379 			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
380 			addr += PAGE_SIZE;
381 		}
382 
383 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
384 
385 		continue_at(cl, btree_node_write_done, NULL);
386 	} else {
387 		/*
388 		 * No problem for multipage bvec since the bio is
389 		 * just allocated
390 		 */
391 		b->bio->bi_vcnt = 0;
392 		bch_bio_map(b->bio, i);
393 
394 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
395 
396 		closure_sync(cl);
397 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
398 	}
399 }
400 
401 void __bch_btree_node_write(struct btree *b, struct closure *parent)
402 {
403 	struct bset *i = btree_bset_last(b);
404 
405 	lockdep_assert_held(&b->write_lock);
406 
407 	trace_bcache_btree_write(b);
408 
409 	BUG_ON(current->bio_list);
410 	BUG_ON(b->written >= btree_blocks(b));
411 	BUG_ON(b->written && !i->keys);
412 	BUG_ON(btree_bset_first(b)->seq != i->seq);
413 	bch_check_keys(&b->keys, "writing");
414 
415 	cancel_delayed_work(&b->work);
416 
417 	/* If caller isn't waiting for write, parent refcount is cache set */
418 	down(&b->io_mutex);
419 	closure_init(&b->io, parent ?: &b->c->cl);
420 
421 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
422 	change_bit(BTREE_NODE_write_idx, &b->flags);
423 
424 	do_btree_node_write(b);
425 
426 	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->sb.block_size,
427 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
428 
429 	b->written += set_blocks(i, block_bytes(b->c->cache));
430 }
431 
432 void bch_btree_node_write(struct btree *b, struct closure *parent)
433 {
434 	unsigned int nsets = b->keys.nsets;
435 
436 	lockdep_assert_held(&b->lock);
437 
438 	__bch_btree_node_write(b, parent);
439 
440 	/*
441 	 * do verify if there was more than one set initially (i.e. we did a
442 	 * sort) and we sorted down to a single set:
443 	 */
444 	if (nsets && !b->keys.nsets)
445 		bch_btree_verify(b);
446 
447 	bch_btree_init_next(b);
448 }
449 
450 static void bch_btree_node_write_sync(struct btree *b)
451 {
452 	struct closure cl;
453 
454 	closure_init_stack(&cl);
455 
456 	mutex_lock(&b->write_lock);
457 	bch_btree_node_write(b, &cl);
458 	mutex_unlock(&b->write_lock);
459 
460 	closure_sync(&cl);
461 }
462 
463 static void btree_node_write_work(struct work_struct *w)
464 {
465 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
466 
467 	mutex_lock(&b->write_lock);
468 	if (btree_node_dirty(b))
469 		__bch_btree_node_write(b, NULL);
470 	mutex_unlock(&b->write_lock);
471 }
472 
473 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
474 {
475 	struct bset *i = btree_bset_last(b);
476 	struct btree_write *w = btree_current_write(b);
477 
478 	lockdep_assert_held(&b->write_lock);
479 
480 	BUG_ON(!b->written);
481 	BUG_ON(!i->keys);
482 
483 	if (!btree_node_dirty(b))
484 		schedule_delayed_work(&b->work, 30 * HZ);
485 
486 	set_btree_node_dirty(b);
487 
488 	/*
489 	 * w->journal is always the oldest journal pin of all bkeys
490 	 * in the leaf node, to make sure the oldest jset seq won't
491 	 * be increased before this btree node is flushed.
492 	 */
493 	if (journal_ref) {
494 		if (w->journal &&
495 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
496 			atomic_dec_bug(w->journal);
497 			w->journal = NULL;
498 		}
499 
500 		if (!w->journal) {
501 			w->journal = journal_ref;
502 			atomic_inc(w->journal);
503 		}
504 	}
505 
506 	/* Force write if set is too big */
507 	if (set_bytes(i) > PAGE_SIZE - 48 &&
508 	    !current->bio_list)
509 		bch_btree_node_write(b, NULL);
510 }
511 
512 /*
513  * Btree in memory cache - allocation/freeing
514  * mca -> memory cache
515  */
516 
517 #define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
518 			  ? c->root->level : 1) * 8 + 16)
519 #define mca_can_free(c)						\
520 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
521 
522 static void mca_data_free(struct btree *b)
523 {
524 	BUG_ON(b->io_mutex.count != 1);
525 
526 	bch_btree_keys_free(&b->keys);
527 
528 	b->c->btree_cache_used--;
529 	list_move(&b->list, &b->c->btree_cache_freed);
530 }
531 
532 static void mca_bucket_free(struct btree *b)
533 {
534 	BUG_ON(btree_node_dirty(b));
535 
536 	b->key.ptr[0] = 0;
537 	hlist_del_init_rcu(&b->hash);
538 	list_move(&b->list, &b->c->btree_cache_freeable);
539 }
540 
541 static unsigned int btree_order(struct bkey *k)
542 {
543 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
544 }
545 
546 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
547 {
548 	if (!bch_btree_keys_alloc(&b->keys,
549 				  max_t(unsigned int,
550 					ilog2(b->c->btree_pages),
551 					btree_order(k)),
552 				  gfp)) {
553 		b->c->btree_cache_used++;
554 		list_move(&b->list, &b->c->btree_cache);
555 	} else {
556 		list_move(&b->list, &b->c->btree_cache_freed);
557 	}
558 }
559 
560 static struct btree *mca_bucket_alloc(struct cache_set *c,
561 				      struct bkey *k, gfp_t gfp)
562 {
563 	/*
564 	 * kzalloc() is necessary here for initialization,
565 	 * see code comments in bch_btree_keys_init().
566 	 */
567 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
568 
569 	if (!b)
570 		return NULL;
571 
572 	init_rwsem(&b->lock);
573 	lockdep_set_novalidate_class(&b->lock);
574 	mutex_init(&b->write_lock);
575 	lockdep_set_novalidate_class(&b->write_lock);
576 	INIT_LIST_HEAD(&b->list);
577 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
578 	b->c = c;
579 	sema_init(&b->io_mutex, 1);
580 
581 	mca_data_alloc(b, k, gfp);
582 	return b;
583 }
584 
585 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
586 {
587 	struct closure cl;
588 
589 	closure_init_stack(&cl);
590 	lockdep_assert_held(&b->c->bucket_lock);
591 
592 	if (!down_write_trylock(&b->lock))
593 		return -ENOMEM;
594 
595 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
596 
597 	if (b->keys.page_order < min_order)
598 		goto out_unlock;
599 
600 	if (!flush) {
601 		if (btree_node_dirty(b))
602 			goto out_unlock;
603 
604 		if (down_trylock(&b->io_mutex))
605 			goto out_unlock;
606 		up(&b->io_mutex);
607 	}
608 
609 retry:
610 	/*
611 	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
612 	 * __bch_btree_node_write(). To avoid an extra flush, acquire
613 	 * b->write_lock before checking BTREE_NODE_dirty bit.
614 	 */
615 	mutex_lock(&b->write_lock);
616 	/*
617 	 * If this btree node is selected in btree_flush_write() by journal
618 	 * code, delay and retry until the node is flushed by journal code
619 	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
620 	 */
621 	if (btree_node_journal_flush(b)) {
622 		pr_debug("bnode %p is flushing by journal, retry\n", b);
623 		mutex_unlock(&b->write_lock);
624 		udelay(1);
625 		goto retry;
626 	}
627 
628 	if (btree_node_dirty(b))
629 		__bch_btree_node_write(b, &cl);
630 	mutex_unlock(&b->write_lock);
631 
632 	closure_sync(&cl);
633 
634 	/* wait for any in flight btree write */
635 	down(&b->io_mutex);
636 	up(&b->io_mutex);
637 
638 	return 0;
639 out_unlock:
640 	rw_unlock(true, b);
641 	return -ENOMEM;
642 }
643 
644 static unsigned long bch_mca_scan(struct shrinker *shrink,
645 				  struct shrink_control *sc)
646 {
647 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
648 	struct btree *b, *t;
649 	unsigned long i, nr = sc->nr_to_scan;
650 	unsigned long freed = 0;
651 	unsigned int btree_cache_used;
652 
653 	if (c->shrinker_disabled)
654 		return SHRINK_STOP;
655 
656 	if (c->btree_cache_alloc_lock)
657 		return SHRINK_STOP;
658 
659 	/* Return -1 if we can't do anything right now */
660 	if (sc->gfp_mask & __GFP_IO)
661 		mutex_lock(&c->bucket_lock);
662 	else if (!mutex_trylock(&c->bucket_lock))
663 		return -1;
664 
665 	/*
666 	 * It's _really_ critical that we don't free too many btree nodes - we
667 	 * have to always leave ourselves a reserve. The reserve is how we
668 	 * guarantee that allocating memory for a new btree node can always
669 	 * succeed, so that inserting keys into the btree can always succeed and
670 	 * IO can always make forward progress:
671 	 */
672 	nr /= c->btree_pages;
673 	if (nr == 0)
674 		nr = 1;
675 	nr = min_t(unsigned long, nr, mca_can_free(c));
676 
677 	i = 0;
678 	btree_cache_used = c->btree_cache_used;
679 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
680 		if (nr <= 0)
681 			goto out;
682 
683 		if (!mca_reap(b, 0, false)) {
684 			mca_data_free(b);
685 			rw_unlock(true, b);
686 			freed++;
687 		}
688 		nr--;
689 		i++;
690 	}
691 
692 	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
693 		if (nr <= 0 || i >= btree_cache_used)
694 			goto out;
695 
696 		if (!mca_reap(b, 0, false)) {
697 			mca_bucket_free(b);
698 			mca_data_free(b);
699 			rw_unlock(true, b);
700 			freed++;
701 		}
702 
703 		nr--;
704 		i++;
705 	}
706 out:
707 	mutex_unlock(&c->bucket_lock);
708 	return freed * c->btree_pages;
709 }
710 
711 static unsigned long bch_mca_count(struct shrinker *shrink,
712 				   struct shrink_control *sc)
713 {
714 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
715 
716 	if (c->shrinker_disabled)
717 		return 0;
718 
719 	if (c->btree_cache_alloc_lock)
720 		return 0;
721 
722 	return mca_can_free(c) * c->btree_pages;
723 }
724 
725 void bch_btree_cache_free(struct cache_set *c)
726 {
727 	struct btree *b;
728 	struct closure cl;
729 
730 	closure_init_stack(&cl);
731 
732 	if (c->shrink.list.next)
733 		unregister_shrinker(&c->shrink);
734 
735 	mutex_lock(&c->bucket_lock);
736 
737 #ifdef CONFIG_BCACHE_DEBUG
738 	if (c->verify_data)
739 		list_move(&c->verify_data->list, &c->btree_cache);
740 
741 	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->sb)));
742 #endif
743 
744 	list_splice(&c->btree_cache_freeable,
745 		    &c->btree_cache);
746 
747 	while (!list_empty(&c->btree_cache)) {
748 		b = list_first_entry(&c->btree_cache, struct btree, list);
749 
750 		/*
751 		 * This function is called by cache_set_free(), no I/O
752 		 * request on cache now, it is unnecessary to acquire
753 		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
754 		 */
755 		if (btree_node_dirty(b)) {
756 			btree_complete_write(b, btree_current_write(b));
757 			clear_bit(BTREE_NODE_dirty, &b->flags);
758 		}
759 		mca_data_free(b);
760 	}
761 
762 	while (!list_empty(&c->btree_cache_freed)) {
763 		b = list_first_entry(&c->btree_cache_freed,
764 				     struct btree, list);
765 		list_del(&b->list);
766 		cancel_delayed_work_sync(&b->work);
767 		kfree(b);
768 	}
769 
770 	mutex_unlock(&c->bucket_lock);
771 }
772 
773 int bch_btree_cache_alloc(struct cache_set *c)
774 {
775 	unsigned int i;
776 
777 	for (i = 0; i < mca_reserve(c); i++)
778 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
779 			return -ENOMEM;
780 
781 	list_splice_init(&c->btree_cache,
782 			 &c->btree_cache_freeable);
783 
784 #ifdef CONFIG_BCACHE_DEBUG
785 	mutex_init(&c->verify_lock);
786 
787 	c->verify_ondisk = (void *)
788 		__get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(meta_bucket_pages(&c->sb)));
789 	if (!c->verify_ondisk) {
790 		/*
791 		 * Don't worry about the mca_rereserve buckets
792 		 * allocated in previous for-loop, they will be
793 		 * handled properly in bch_cache_set_unregister().
794 		 */
795 		return -ENOMEM;
796 	}
797 
798 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
799 
800 	if (c->verify_data &&
801 	    c->verify_data->keys.set->data)
802 		list_del_init(&c->verify_data->list);
803 	else
804 		c->verify_data = NULL;
805 #endif
806 
807 	c->shrink.count_objects = bch_mca_count;
808 	c->shrink.scan_objects = bch_mca_scan;
809 	c->shrink.seeks = 4;
810 	c->shrink.batch = c->btree_pages * 2;
811 
812 	if (register_shrinker(&c->shrink))
813 		pr_warn("bcache: %s: could not register shrinker\n",
814 				__func__);
815 
816 	return 0;
817 }
818 
819 /* Btree in memory cache - hash table */
820 
821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
822 {
823 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
824 }
825 
826 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
827 {
828 	struct btree *b;
829 
830 	rcu_read_lock();
831 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
832 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
833 			goto out;
834 	b = NULL;
835 out:
836 	rcu_read_unlock();
837 	return b;
838 }
839 
840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
841 {
842 	spin_lock(&c->btree_cannibalize_lock);
843 	if (likely(c->btree_cache_alloc_lock == NULL)) {
844 		c->btree_cache_alloc_lock = current;
845 	} else if (c->btree_cache_alloc_lock != current) {
846 		if (op)
847 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
848 					TASK_UNINTERRUPTIBLE);
849 		spin_unlock(&c->btree_cannibalize_lock);
850 		return -EINTR;
851 	}
852 	spin_unlock(&c->btree_cannibalize_lock);
853 
854 	return 0;
855 }
856 
857 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
858 				     struct bkey *k)
859 {
860 	struct btree *b;
861 
862 	trace_bcache_btree_cache_cannibalize(c);
863 
864 	if (mca_cannibalize_lock(c, op))
865 		return ERR_PTR(-EINTR);
866 
867 	list_for_each_entry_reverse(b, &c->btree_cache, list)
868 		if (!mca_reap(b, btree_order(k), false))
869 			return b;
870 
871 	list_for_each_entry_reverse(b, &c->btree_cache, list)
872 		if (!mca_reap(b, btree_order(k), true))
873 			return b;
874 
875 	WARN(1, "btree cache cannibalize failed\n");
876 	return ERR_PTR(-ENOMEM);
877 }
878 
879 /*
880  * We can only have one thread cannibalizing other cached btree nodes at a time,
881  * or we'll deadlock. We use an open coded mutex to ensure that, which a
882  * cannibalize_bucket() will take. This means every time we unlock the root of
883  * the btree, we need to release this lock if we have it held.
884  */
885 static void bch_cannibalize_unlock(struct cache_set *c)
886 {
887 	spin_lock(&c->btree_cannibalize_lock);
888 	if (c->btree_cache_alloc_lock == current) {
889 		c->btree_cache_alloc_lock = NULL;
890 		wake_up(&c->btree_cache_wait);
891 	}
892 	spin_unlock(&c->btree_cannibalize_lock);
893 }
894 
895 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
896 			       struct bkey *k, int level)
897 {
898 	struct btree *b;
899 
900 	BUG_ON(current->bio_list);
901 
902 	lockdep_assert_held(&c->bucket_lock);
903 
904 	if (mca_find(c, k))
905 		return NULL;
906 
907 	/* btree_free() doesn't free memory; it sticks the node on the end of
908 	 * the list. Check if there's any freed nodes there:
909 	 */
910 	list_for_each_entry(b, &c->btree_cache_freeable, list)
911 		if (!mca_reap(b, btree_order(k), false))
912 			goto out;
913 
914 	/* We never free struct btree itself, just the memory that holds the on
915 	 * disk node. Check the freed list before allocating a new one:
916 	 */
917 	list_for_each_entry(b, &c->btree_cache_freed, list)
918 		if (!mca_reap(b, 0, false)) {
919 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
920 			if (!b->keys.set[0].data)
921 				goto err;
922 			else
923 				goto out;
924 		}
925 
926 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
927 	if (!b)
928 		goto err;
929 
930 	BUG_ON(!down_write_trylock(&b->lock));
931 	if (!b->keys.set->data)
932 		goto err;
933 out:
934 	BUG_ON(b->io_mutex.count != 1);
935 
936 	bkey_copy(&b->key, k);
937 	list_move(&b->list, &c->btree_cache);
938 	hlist_del_init_rcu(&b->hash);
939 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
940 
941 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
942 	b->parent	= (void *) ~0UL;
943 	b->flags	= 0;
944 	b->written	= 0;
945 	b->level	= level;
946 
947 	if (!b->level)
948 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
949 				    &b->c->expensive_debug_checks);
950 	else
951 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
952 				    &b->c->expensive_debug_checks);
953 
954 	return b;
955 err:
956 	if (b)
957 		rw_unlock(true, b);
958 
959 	b = mca_cannibalize(c, op, k);
960 	if (!IS_ERR(b))
961 		goto out;
962 
963 	return b;
964 }
965 
966 /*
967  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
968  * in from disk if necessary.
969  *
970  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
971  *
972  * The btree node will have either a read or a write lock held, depending on
973  * level and op->lock.
974  */
975 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
976 				 struct bkey *k, int level, bool write,
977 				 struct btree *parent)
978 {
979 	int i = 0;
980 	struct btree *b;
981 
982 	BUG_ON(level < 0);
983 retry:
984 	b = mca_find(c, k);
985 
986 	if (!b) {
987 		if (current->bio_list)
988 			return ERR_PTR(-EAGAIN);
989 
990 		mutex_lock(&c->bucket_lock);
991 		b = mca_alloc(c, op, k, level);
992 		mutex_unlock(&c->bucket_lock);
993 
994 		if (!b)
995 			goto retry;
996 		if (IS_ERR(b))
997 			return b;
998 
999 		bch_btree_node_read(b);
1000 
1001 		if (!write)
1002 			downgrade_write(&b->lock);
1003 	} else {
1004 		rw_lock(write, b, level);
1005 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1006 			rw_unlock(write, b);
1007 			goto retry;
1008 		}
1009 		BUG_ON(b->level != level);
1010 	}
1011 
1012 	if (btree_node_io_error(b)) {
1013 		rw_unlock(write, b);
1014 		return ERR_PTR(-EIO);
1015 	}
1016 
1017 	BUG_ON(!b->written);
1018 
1019 	b->parent = parent;
1020 
1021 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1022 		prefetch(b->keys.set[i].tree);
1023 		prefetch(b->keys.set[i].data);
1024 	}
1025 
1026 	for (; i <= b->keys.nsets; i++)
1027 		prefetch(b->keys.set[i].data);
1028 
1029 	return b;
1030 }
1031 
1032 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1033 {
1034 	struct btree *b;
1035 
1036 	mutex_lock(&parent->c->bucket_lock);
1037 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1038 	mutex_unlock(&parent->c->bucket_lock);
1039 
1040 	if (!IS_ERR_OR_NULL(b)) {
1041 		b->parent = parent;
1042 		bch_btree_node_read(b);
1043 		rw_unlock(true, b);
1044 	}
1045 }
1046 
1047 /* Btree alloc */
1048 
1049 static void btree_node_free(struct btree *b)
1050 {
1051 	trace_bcache_btree_node_free(b);
1052 
1053 	BUG_ON(b == b->c->root);
1054 
1055 retry:
1056 	mutex_lock(&b->write_lock);
1057 	/*
1058 	 * If the btree node is selected and flushing in btree_flush_write(),
1059 	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1060 	 * then it is safe to free the btree node here. Otherwise this btree
1061 	 * node will be in race condition.
1062 	 */
1063 	if (btree_node_journal_flush(b)) {
1064 		mutex_unlock(&b->write_lock);
1065 		pr_debug("bnode %p journal_flush set, retry\n", b);
1066 		udelay(1);
1067 		goto retry;
1068 	}
1069 
1070 	if (btree_node_dirty(b)) {
1071 		btree_complete_write(b, btree_current_write(b));
1072 		clear_bit(BTREE_NODE_dirty, &b->flags);
1073 	}
1074 
1075 	mutex_unlock(&b->write_lock);
1076 
1077 	cancel_delayed_work(&b->work);
1078 
1079 	mutex_lock(&b->c->bucket_lock);
1080 	bch_bucket_free(b->c, &b->key);
1081 	mca_bucket_free(b);
1082 	mutex_unlock(&b->c->bucket_lock);
1083 }
1084 
1085 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1086 				     int level, bool wait,
1087 				     struct btree *parent)
1088 {
1089 	BKEY_PADDED(key) k;
1090 	struct btree *b = ERR_PTR(-EAGAIN);
1091 
1092 	mutex_lock(&c->bucket_lock);
1093 retry:
1094 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1095 		goto err;
1096 
1097 	bkey_put(c, &k.key);
1098 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1099 
1100 	b = mca_alloc(c, op, &k.key, level);
1101 	if (IS_ERR(b))
1102 		goto err_free;
1103 
1104 	if (!b) {
1105 		cache_bug(c,
1106 			"Tried to allocate bucket that was in btree cache");
1107 		goto retry;
1108 	}
1109 
1110 	b->parent = parent;
1111 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1112 
1113 	mutex_unlock(&c->bucket_lock);
1114 
1115 	trace_bcache_btree_node_alloc(b);
1116 	return b;
1117 err_free:
1118 	bch_bucket_free(c, &k.key);
1119 err:
1120 	mutex_unlock(&c->bucket_lock);
1121 
1122 	trace_bcache_btree_node_alloc_fail(c);
1123 	return b;
1124 }
1125 
1126 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1127 					  struct btree_op *op, int level,
1128 					  struct btree *parent)
1129 {
1130 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1131 }
1132 
1133 static struct btree *btree_node_alloc_replacement(struct btree *b,
1134 						  struct btree_op *op)
1135 {
1136 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1137 
1138 	if (!IS_ERR_OR_NULL(n)) {
1139 		mutex_lock(&n->write_lock);
1140 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1141 		bkey_copy_key(&n->key, &b->key);
1142 		mutex_unlock(&n->write_lock);
1143 	}
1144 
1145 	return n;
1146 }
1147 
1148 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1149 {
1150 	unsigned int i;
1151 
1152 	mutex_lock(&b->c->bucket_lock);
1153 
1154 	atomic_inc(&b->c->prio_blocked);
1155 
1156 	bkey_copy(k, &b->key);
1157 	bkey_copy_key(k, &ZERO_KEY);
1158 
1159 	for (i = 0; i < KEY_PTRS(k); i++)
1160 		SET_PTR_GEN(k, i,
1161 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1162 					PTR_BUCKET(b->c, &b->key, i)));
1163 
1164 	mutex_unlock(&b->c->bucket_lock);
1165 }
1166 
1167 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1168 {
1169 	struct cache_set *c = b->c;
1170 	struct cache *ca = c->cache;
1171 	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1172 
1173 	mutex_lock(&c->bucket_lock);
1174 
1175 	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1176 		if (op)
1177 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1178 					TASK_UNINTERRUPTIBLE);
1179 		mutex_unlock(&c->bucket_lock);
1180 		return -EINTR;
1181 	}
1182 
1183 	mutex_unlock(&c->bucket_lock);
1184 
1185 	return mca_cannibalize_lock(b->c, op);
1186 }
1187 
1188 /* Garbage collection */
1189 
1190 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1191 				    struct bkey *k)
1192 {
1193 	uint8_t stale = 0;
1194 	unsigned int i;
1195 	struct bucket *g;
1196 
1197 	/*
1198 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1199 	 * freed, but since ptr_bad() returns true we'll never actually use them
1200 	 * for anything and thus we don't want mark their pointers here
1201 	 */
1202 	if (!bkey_cmp(k, &ZERO_KEY))
1203 		return stale;
1204 
1205 	for (i = 0; i < KEY_PTRS(k); i++) {
1206 		if (!ptr_available(c, k, i))
1207 			continue;
1208 
1209 		g = PTR_BUCKET(c, k, i);
1210 
1211 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1212 			g->last_gc = PTR_GEN(k, i);
1213 
1214 		if (ptr_stale(c, k, i)) {
1215 			stale = max(stale, ptr_stale(c, k, i));
1216 			continue;
1217 		}
1218 
1219 		cache_bug_on(GC_MARK(g) &&
1220 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1221 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1222 			     GC_MARK(g), level);
1223 
1224 		if (level)
1225 			SET_GC_MARK(g, GC_MARK_METADATA);
1226 		else if (KEY_DIRTY(k))
1227 			SET_GC_MARK(g, GC_MARK_DIRTY);
1228 		else if (!GC_MARK(g))
1229 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1230 
1231 		/* guard against overflow */
1232 		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1233 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1234 					     MAX_GC_SECTORS_USED));
1235 
1236 		BUG_ON(!GC_SECTORS_USED(g));
1237 	}
1238 
1239 	return stale;
1240 }
1241 
1242 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1243 
1244 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1245 {
1246 	unsigned int i;
1247 
1248 	for (i = 0; i < KEY_PTRS(k); i++)
1249 		if (ptr_available(c, k, i) &&
1250 		    !ptr_stale(c, k, i)) {
1251 			struct bucket *b = PTR_BUCKET(c, k, i);
1252 
1253 			b->gen = PTR_GEN(k, i);
1254 
1255 			if (level && bkey_cmp(k, &ZERO_KEY))
1256 				b->prio = BTREE_PRIO;
1257 			else if (!level && b->prio == BTREE_PRIO)
1258 				b->prio = INITIAL_PRIO;
1259 		}
1260 
1261 	__bch_btree_mark_key(c, level, k);
1262 }
1263 
1264 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1265 {
1266 	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1267 }
1268 
1269 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1270 {
1271 	uint8_t stale = 0;
1272 	unsigned int keys = 0, good_keys = 0;
1273 	struct bkey *k;
1274 	struct btree_iter iter;
1275 	struct bset_tree *t;
1276 
1277 	gc->nodes++;
1278 
1279 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1280 		stale = max(stale, btree_mark_key(b, k));
1281 		keys++;
1282 
1283 		if (bch_ptr_bad(&b->keys, k))
1284 			continue;
1285 
1286 		gc->key_bytes += bkey_u64s(k);
1287 		gc->nkeys++;
1288 		good_keys++;
1289 
1290 		gc->data += KEY_SIZE(k);
1291 	}
1292 
1293 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1294 		btree_bug_on(t->size &&
1295 			     bset_written(&b->keys, t) &&
1296 			     bkey_cmp(&b->key, &t->end) < 0,
1297 			     b, "found short btree key in gc");
1298 
1299 	if (b->c->gc_always_rewrite)
1300 		return true;
1301 
1302 	if (stale > 10)
1303 		return true;
1304 
1305 	if ((keys - good_keys) * 2 > keys)
1306 		return true;
1307 
1308 	return false;
1309 }
1310 
1311 #define GC_MERGE_NODES	4U
1312 
1313 struct gc_merge_info {
1314 	struct btree	*b;
1315 	unsigned int	keys;
1316 };
1317 
1318 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1319 				 struct keylist *insert_keys,
1320 				 atomic_t *journal_ref,
1321 				 struct bkey *replace_key);
1322 
1323 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1324 			     struct gc_stat *gc, struct gc_merge_info *r)
1325 {
1326 	unsigned int i, nodes = 0, keys = 0, blocks;
1327 	struct btree *new_nodes[GC_MERGE_NODES];
1328 	struct keylist keylist;
1329 	struct closure cl;
1330 	struct bkey *k;
1331 
1332 	bch_keylist_init(&keylist);
1333 
1334 	if (btree_check_reserve(b, NULL))
1335 		return 0;
1336 
1337 	memset(new_nodes, 0, sizeof(new_nodes));
1338 	closure_init_stack(&cl);
1339 
1340 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1341 		keys += r[nodes++].keys;
1342 
1343 	blocks = btree_default_blocks(b->c) * 2 / 3;
1344 
1345 	if (nodes < 2 ||
1346 	    __set_blocks(b->keys.set[0].data, keys,
1347 			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1348 		return 0;
1349 
1350 	for (i = 0; i < nodes; i++) {
1351 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1352 		if (IS_ERR_OR_NULL(new_nodes[i]))
1353 			goto out_nocoalesce;
1354 	}
1355 
1356 	/*
1357 	 * We have to check the reserve here, after we've allocated our new
1358 	 * nodes, to make sure the insert below will succeed - we also check
1359 	 * before as an optimization to potentially avoid a bunch of expensive
1360 	 * allocs/sorts
1361 	 */
1362 	if (btree_check_reserve(b, NULL))
1363 		goto out_nocoalesce;
1364 
1365 	for (i = 0; i < nodes; i++)
1366 		mutex_lock(&new_nodes[i]->write_lock);
1367 
1368 	for (i = nodes - 1; i > 0; --i) {
1369 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1370 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1371 		struct bkey *k, *last = NULL;
1372 
1373 		keys = 0;
1374 
1375 		if (i > 1) {
1376 			for (k = n2->start;
1377 			     k < bset_bkey_last(n2);
1378 			     k = bkey_next(k)) {
1379 				if (__set_blocks(n1, n1->keys + keys +
1380 						 bkey_u64s(k),
1381 						 block_bytes(b->c->cache)) > blocks)
1382 					break;
1383 
1384 				last = k;
1385 				keys += bkey_u64s(k);
1386 			}
1387 		} else {
1388 			/*
1389 			 * Last node we're not getting rid of - we're getting
1390 			 * rid of the node at r[0]. Have to try and fit all of
1391 			 * the remaining keys into this node; we can't ensure
1392 			 * they will always fit due to rounding and variable
1393 			 * length keys (shouldn't be possible in practice,
1394 			 * though)
1395 			 */
1396 			if (__set_blocks(n1, n1->keys + n2->keys,
1397 					 block_bytes(b->c->cache)) >
1398 			    btree_blocks(new_nodes[i]))
1399 				goto out_unlock_nocoalesce;
1400 
1401 			keys = n2->keys;
1402 			/* Take the key of the node we're getting rid of */
1403 			last = &r->b->key;
1404 		}
1405 
1406 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1407 		       btree_blocks(new_nodes[i]));
1408 
1409 		if (last)
1410 			bkey_copy_key(&new_nodes[i]->key, last);
1411 
1412 		memcpy(bset_bkey_last(n1),
1413 		       n2->start,
1414 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1415 
1416 		n1->keys += keys;
1417 		r[i].keys = n1->keys;
1418 
1419 		memmove(n2->start,
1420 			bset_bkey_idx(n2, keys),
1421 			(void *) bset_bkey_last(n2) -
1422 			(void *) bset_bkey_idx(n2, keys));
1423 
1424 		n2->keys -= keys;
1425 
1426 		if (__bch_keylist_realloc(&keylist,
1427 					  bkey_u64s(&new_nodes[i]->key)))
1428 			goto out_unlock_nocoalesce;
1429 
1430 		bch_btree_node_write(new_nodes[i], &cl);
1431 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1432 	}
1433 
1434 	for (i = 0; i < nodes; i++)
1435 		mutex_unlock(&new_nodes[i]->write_lock);
1436 
1437 	closure_sync(&cl);
1438 
1439 	/* We emptied out this node */
1440 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1441 	btree_node_free(new_nodes[0]);
1442 	rw_unlock(true, new_nodes[0]);
1443 	new_nodes[0] = NULL;
1444 
1445 	for (i = 0; i < nodes; i++) {
1446 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1447 			goto out_nocoalesce;
1448 
1449 		make_btree_freeing_key(r[i].b, keylist.top);
1450 		bch_keylist_push(&keylist);
1451 	}
1452 
1453 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1454 	BUG_ON(!bch_keylist_empty(&keylist));
1455 
1456 	for (i = 0; i < nodes; i++) {
1457 		btree_node_free(r[i].b);
1458 		rw_unlock(true, r[i].b);
1459 
1460 		r[i].b = new_nodes[i];
1461 	}
1462 
1463 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1464 	r[nodes - 1].b = ERR_PTR(-EINTR);
1465 
1466 	trace_bcache_btree_gc_coalesce(nodes);
1467 	gc->nodes--;
1468 
1469 	bch_keylist_free(&keylist);
1470 
1471 	/* Invalidated our iterator */
1472 	return -EINTR;
1473 
1474 out_unlock_nocoalesce:
1475 	for (i = 0; i < nodes; i++)
1476 		mutex_unlock(&new_nodes[i]->write_lock);
1477 
1478 out_nocoalesce:
1479 	closure_sync(&cl);
1480 
1481 	while ((k = bch_keylist_pop(&keylist)))
1482 		if (!bkey_cmp(k, &ZERO_KEY))
1483 			atomic_dec(&b->c->prio_blocked);
1484 	bch_keylist_free(&keylist);
1485 
1486 	for (i = 0; i < nodes; i++)
1487 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1488 			btree_node_free(new_nodes[i]);
1489 			rw_unlock(true, new_nodes[i]);
1490 		}
1491 	return 0;
1492 }
1493 
1494 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1495 				 struct btree *replace)
1496 {
1497 	struct keylist keys;
1498 	struct btree *n;
1499 
1500 	if (btree_check_reserve(b, NULL))
1501 		return 0;
1502 
1503 	n = btree_node_alloc_replacement(replace, NULL);
1504 
1505 	/* recheck reserve after allocating replacement node */
1506 	if (btree_check_reserve(b, NULL)) {
1507 		btree_node_free(n);
1508 		rw_unlock(true, n);
1509 		return 0;
1510 	}
1511 
1512 	bch_btree_node_write_sync(n);
1513 
1514 	bch_keylist_init(&keys);
1515 	bch_keylist_add(&keys, &n->key);
1516 
1517 	make_btree_freeing_key(replace, keys.top);
1518 	bch_keylist_push(&keys);
1519 
1520 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1521 	BUG_ON(!bch_keylist_empty(&keys));
1522 
1523 	btree_node_free(replace);
1524 	rw_unlock(true, n);
1525 
1526 	/* Invalidated our iterator */
1527 	return -EINTR;
1528 }
1529 
1530 static unsigned int btree_gc_count_keys(struct btree *b)
1531 {
1532 	struct bkey *k;
1533 	struct btree_iter iter;
1534 	unsigned int ret = 0;
1535 
1536 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1537 		ret += bkey_u64s(k);
1538 
1539 	return ret;
1540 }
1541 
1542 static size_t btree_gc_min_nodes(struct cache_set *c)
1543 {
1544 	size_t min_nodes;
1545 
1546 	/*
1547 	 * Since incremental GC would stop 100ms when front
1548 	 * side I/O comes, so when there are many btree nodes,
1549 	 * if GC only processes constant (100) nodes each time,
1550 	 * GC would last a long time, and the front side I/Os
1551 	 * would run out of the buckets (since no new bucket
1552 	 * can be allocated during GC), and be blocked again.
1553 	 * So GC should not process constant nodes, but varied
1554 	 * nodes according to the number of btree nodes, which
1555 	 * realized by dividing GC into constant(100) times,
1556 	 * so when there are many btree nodes, GC can process
1557 	 * more nodes each time, otherwise, GC will process less
1558 	 * nodes each time (but no less than MIN_GC_NODES)
1559 	 */
1560 	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1561 	if (min_nodes < MIN_GC_NODES)
1562 		min_nodes = MIN_GC_NODES;
1563 
1564 	return min_nodes;
1565 }
1566 
1567 
1568 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1569 			    struct closure *writes, struct gc_stat *gc)
1570 {
1571 	int ret = 0;
1572 	bool should_rewrite;
1573 	struct bkey *k;
1574 	struct btree_iter iter;
1575 	struct gc_merge_info r[GC_MERGE_NODES];
1576 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1577 
1578 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1579 
1580 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1581 		i->b = ERR_PTR(-EINTR);
1582 
1583 	while (1) {
1584 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1585 		if (k) {
1586 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1587 						  true, b);
1588 			if (IS_ERR(r->b)) {
1589 				ret = PTR_ERR(r->b);
1590 				break;
1591 			}
1592 
1593 			r->keys = btree_gc_count_keys(r->b);
1594 
1595 			ret = btree_gc_coalesce(b, op, gc, r);
1596 			if (ret)
1597 				break;
1598 		}
1599 
1600 		if (!last->b)
1601 			break;
1602 
1603 		if (!IS_ERR(last->b)) {
1604 			should_rewrite = btree_gc_mark_node(last->b, gc);
1605 			if (should_rewrite) {
1606 				ret = btree_gc_rewrite_node(b, op, last->b);
1607 				if (ret)
1608 					break;
1609 			}
1610 
1611 			if (last->b->level) {
1612 				ret = btree_gc_recurse(last->b, op, writes, gc);
1613 				if (ret)
1614 					break;
1615 			}
1616 
1617 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1618 
1619 			/*
1620 			 * Must flush leaf nodes before gc ends, since replace
1621 			 * operations aren't journalled
1622 			 */
1623 			mutex_lock(&last->b->write_lock);
1624 			if (btree_node_dirty(last->b))
1625 				bch_btree_node_write(last->b, writes);
1626 			mutex_unlock(&last->b->write_lock);
1627 			rw_unlock(true, last->b);
1628 		}
1629 
1630 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1631 		r->b = NULL;
1632 
1633 		if (atomic_read(&b->c->search_inflight) &&
1634 		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1635 			gc->nodes_pre =  gc->nodes;
1636 			ret = -EAGAIN;
1637 			break;
1638 		}
1639 
1640 		if (need_resched()) {
1641 			ret = -EAGAIN;
1642 			break;
1643 		}
1644 	}
1645 
1646 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1647 		if (!IS_ERR_OR_NULL(i->b)) {
1648 			mutex_lock(&i->b->write_lock);
1649 			if (btree_node_dirty(i->b))
1650 				bch_btree_node_write(i->b, writes);
1651 			mutex_unlock(&i->b->write_lock);
1652 			rw_unlock(true, i->b);
1653 		}
1654 
1655 	return ret;
1656 }
1657 
1658 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1659 			     struct closure *writes, struct gc_stat *gc)
1660 {
1661 	struct btree *n = NULL;
1662 	int ret = 0;
1663 	bool should_rewrite;
1664 
1665 	should_rewrite = btree_gc_mark_node(b, gc);
1666 	if (should_rewrite) {
1667 		n = btree_node_alloc_replacement(b, NULL);
1668 
1669 		if (!IS_ERR_OR_NULL(n)) {
1670 			bch_btree_node_write_sync(n);
1671 
1672 			bch_btree_set_root(n);
1673 			btree_node_free(b);
1674 			rw_unlock(true, n);
1675 
1676 			return -EINTR;
1677 		}
1678 	}
1679 
1680 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1681 
1682 	if (b->level) {
1683 		ret = btree_gc_recurse(b, op, writes, gc);
1684 		if (ret)
1685 			return ret;
1686 	}
1687 
1688 	bkey_copy_key(&b->c->gc_done, &b->key);
1689 
1690 	return ret;
1691 }
1692 
1693 static void btree_gc_start(struct cache_set *c)
1694 {
1695 	struct cache *ca;
1696 	struct bucket *b;
1697 
1698 	if (!c->gc_mark_valid)
1699 		return;
1700 
1701 	mutex_lock(&c->bucket_lock);
1702 
1703 	c->gc_mark_valid = 0;
1704 	c->gc_done = ZERO_KEY;
1705 
1706 	ca = c->cache;
1707 	for_each_bucket(b, ca) {
1708 		b->last_gc = b->gen;
1709 		if (!atomic_read(&b->pin)) {
1710 			SET_GC_MARK(b, 0);
1711 			SET_GC_SECTORS_USED(b, 0);
1712 		}
1713 	}
1714 
1715 	mutex_unlock(&c->bucket_lock);
1716 }
1717 
1718 static void bch_btree_gc_finish(struct cache_set *c)
1719 {
1720 	struct bucket *b;
1721 	struct cache *ca;
1722 	unsigned int i, j;
1723 	uint64_t *k;
1724 
1725 	mutex_lock(&c->bucket_lock);
1726 
1727 	set_gc_sectors(c);
1728 	c->gc_mark_valid = 1;
1729 	c->need_gc	= 0;
1730 
1731 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1732 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1733 			    GC_MARK_METADATA);
1734 
1735 	/* don't reclaim buckets to which writeback keys point */
1736 	rcu_read_lock();
1737 	for (i = 0; i < c->devices_max_used; i++) {
1738 		struct bcache_device *d = c->devices[i];
1739 		struct cached_dev *dc;
1740 		struct keybuf_key *w, *n;
1741 
1742 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1743 			continue;
1744 		dc = container_of(d, struct cached_dev, disk);
1745 
1746 		spin_lock(&dc->writeback_keys.lock);
1747 		rbtree_postorder_for_each_entry_safe(w, n,
1748 					&dc->writeback_keys.keys, node)
1749 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1750 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1751 					    GC_MARK_DIRTY);
1752 		spin_unlock(&dc->writeback_keys.lock);
1753 	}
1754 	rcu_read_unlock();
1755 
1756 	c->avail_nbuckets = 0;
1757 
1758 	ca = c->cache;
1759 	ca->invalidate_needs_gc = 0;
1760 
1761 	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1762 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1763 
1764 	for (k = ca->prio_buckets;
1765 	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1766 		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1767 
1768 	for_each_bucket(b, ca) {
1769 		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1770 
1771 		if (atomic_read(&b->pin))
1772 			continue;
1773 
1774 		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1775 
1776 		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1777 			c->avail_nbuckets++;
1778 	}
1779 
1780 	mutex_unlock(&c->bucket_lock);
1781 }
1782 
1783 static void bch_btree_gc(struct cache_set *c)
1784 {
1785 	int ret;
1786 	struct gc_stat stats;
1787 	struct closure writes;
1788 	struct btree_op op;
1789 	uint64_t start_time = local_clock();
1790 
1791 	trace_bcache_gc_start(c);
1792 
1793 	memset(&stats, 0, sizeof(struct gc_stat));
1794 	closure_init_stack(&writes);
1795 	bch_btree_op_init(&op, SHRT_MAX);
1796 
1797 	btree_gc_start(c);
1798 
1799 	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1800 	do {
1801 		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1802 		closure_sync(&writes);
1803 		cond_resched();
1804 
1805 		if (ret == -EAGAIN)
1806 			schedule_timeout_interruptible(msecs_to_jiffies
1807 						       (GC_SLEEP_MS));
1808 		else if (ret)
1809 			pr_warn("gc failed!\n");
1810 	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1811 
1812 	bch_btree_gc_finish(c);
1813 	wake_up_allocators(c);
1814 
1815 	bch_time_stats_update(&c->btree_gc_time, start_time);
1816 
1817 	stats.key_bytes *= sizeof(uint64_t);
1818 	stats.data	<<= 9;
1819 	bch_update_bucket_in_use(c, &stats);
1820 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1821 
1822 	trace_bcache_gc_end(c);
1823 
1824 	bch_moving_gc(c);
1825 }
1826 
1827 static bool gc_should_run(struct cache_set *c)
1828 {
1829 	struct cache *ca = c->cache;
1830 
1831 	if (ca->invalidate_needs_gc)
1832 		return true;
1833 
1834 	if (atomic_read(&c->sectors_to_gc) < 0)
1835 		return true;
1836 
1837 	return false;
1838 }
1839 
1840 static int bch_gc_thread(void *arg)
1841 {
1842 	struct cache_set *c = arg;
1843 
1844 	while (1) {
1845 		wait_event_interruptible(c->gc_wait,
1846 			   kthread_should_stop() ||
1847 			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1848 			   gc_should_run(c));
1849 
1850 		if (kthread_should_stop() ||
1851 		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1852 			break;
1853 
1854 		set_gc_sectors(c);
1855 		bch_btree_gc(c);
1856 	}
1857 
1858 	wait_for_kthread_stop();
1859 	return 0;
1860 }
1861 
1862 int bch_gc_thread_start(struct cache_set *c)
1863 {
1864 	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1865 	return PTR_ERR_OR_ZERO(c->gc_thread);
1866 }
1867 
1868 /* Initial partial gc */
1869 
1870 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1871 {
1872 	int ret = 0;
1873 	struct bkey *k, *p = NULL;
1874 	struct btree_iter iter;
1875 
1876 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1877 		bch_initial_mark_key(b->c, b->level, k);
1878 
1879 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1880 
1881 	if (b->level) {
1882 		bch_btree_iter_init(&b->keys, &iter, NULL);
1883 
1884 		do {
1885 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1886 						       bch_ptr_bad);
1887 			if (k) {
1888 				btree_node_prefetch(b, k);
1889 				/*
1890 				 * initiallize c->gc_stats.nodes
1891 				 * for incremental GC
1892 				 */
1893 				b->c->gc_stats.nodes++;
1894 			}
1895 
1896 			if (p)
1897 				ret = bcache_btree(check_recurse, p, b, op);
1898 
1899 			p = k;
1900 		} while (p && !ret);
1901 	}
1902 
1903 	return ret;
1904 }
1905 
1906 
1907 static int bch_btree_check_thread(void *arg)
1908 {
1909 	int ret;
1910 	struct btree_check_info *info = arg;
1911 	struct btree_check_state *check_state = info->state;
1912 	struct cache_set *c = check_state->c;
1913 	struct btree_iter iter;
1914 	struct bkey *k, *p;
1915 	int cur_idx, prev_idx, skip_nr;
1916 
1917 	k = p = NULL;
1918 	cur_idx = prev_idx = 0;
1919 	ret = 0;
1920 
1921 	/* root node keys are checked before thread created */
1922 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1923 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1924 	BUG_ON(!k);
1925 
1926 	p = k;
1927 	while (k) {
1928 		/*
1929 		 * Fetch a root node key index, skip the keys which
1930 		 * should be fetched by other threads, then check the
1931 		 * sub-tree indexed by the fetched key.
1932 		 */
1933 		spin_lock(&check_state->idx_lock);
1934 		cur_idx = check_state->key_idx;
1935 		check_state->key_idx++;
1936 		spin_unlock(&check_state->idx_lock);
1937 
1938 		skip_nr = cur_idx - prev_idx;
1939 
1940 		while (skip_nr) {
1941 			k = bch_btree_iter_next_filter(&iter,
1942 						       &c->root->keys,
1943 						       bch_ptr_bad);
1944 			if (k)
1945 				p = k;
1946 			else {
1947 				/*
1948 				 * No more keys to check in root node,
1949 				 * current checking threads are enough,
1950 				 * stop creating more.
1951 				 */
1952 				atomic_set(&check_state->enough, 1);
1953 				/* Update check_state->enough earlier */
1954 				smp_mb__after_atomic();
1955 				goto out;
1956 			}
1957 			skip_nr--;
1958 			cond_resched();
1959 		}
1960 
1961 		if (p) {
1962 			struct btree_op op;
1963 
1964 			btree_node_prefetch(c->root, p);
1965 			c->gc_stats.nodes++;
1966 			bch_btree_op_init(&op, 0);
1967 			ret = bcache_btree(check_recurse, p, c->root, &op);
1968 			if (ret)
1969 				goto out;
1970 		}
1971 		p = NULL;
1972 		prev_idx = cur_idx;
1973 		cond_resched();
1974 	}
1975 
1976 out:
1977 	info->result = ret;
1978 	/* update check_state->started among all CPUs */
1979 	smp_mb__before_atomic();
1980 	if (atomic_dec_and_test(&check_state->started))
1981 		wake_up(&check_state->wait);
1982 
1983 	return ret;
1984 }
1985 
1986 
1987 
1988 static int bch_btree_chkthread_nr(void)
1989 {
1990 	int n = num_online_cpus()/2;
1991 
1992 	if (n == 0)
1993 		n = 1;
1994 	else if (n > BCH_BTR_CHKTHREAD_MAX)
1995 		n = BCH_BTR_CHKTHREAD_MAX;
1996 
1997 	return n;
1998 }
1999 
2000 int bch_btree_check(struct cache_set *c)
2001 {
2002 	int ret = 0;
2003 	int i;
2004 	struct bkey *k = NULL;
2005 	struct btree_iter iter;
2006 	struct btree_check_state *check_state;
2007 	char name[32];
2008 
2009 	/* check and mark root node keys */
2010 	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2011 		bch_initial_mark_key(c, c->root->level, k);
2012 
2013 	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2014 
2015 	if (c->root->level == 0)
2016 		return 0;
2017 
2018 	check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2019 	if (!check_state)
2020 		return -ENOMEM;
2021 
2022 	check_state->c = c;
2023 	check_state->total_threads = bch_btree_chkthread_nr();
2024 	check_state->key_idx = 0;
2025 	spin_lock_init(&check_state->idx_lock);
2026 	atomic_set(&check_state->started, 0);
2027 	atomic_set(&check_state->enough, 0);
2028 	init_waitqueue_head(&check_state->wait);
2029 
2030 	/*
2031 	 * Run multiple threads to check btree nodes in parallel,
2032 	 * if check_state->enough is non-zero, it means current
2033 	 * running check threads are enough, unncessary to create
2034 	 * more.
2035 	 */
2036 	for (i = 0; i < check_state->total_threads; i++) {
2037 		/* fetch latest check_state->enough earlier */
2038 		smp_mb__before_atomic();
2039 		if (atomic_read(&check_state->enough))
2040 			break;
2041 
2042 		check_state->infos[i].result = 0;
2043 		check_state->infos[i].state = check_state;
2044 		snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2045 		atomic_inc(&check_state->started);
2046 
2047 		check_state->infos[i].thread =
2048 			kthread_run(bch_btree_check_thread,
2049 				    &check_state->infos[i],
2050 				    name);
2051 		if (IS_ERR(check_state->infos[i].thread)) {
2052 			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2053 			for (--i; i >= 0; i--)
2054 				kthread_stop(check_state->infos[i].thread);
2055 			ret = -ENOMEM;
2056 			goto out;
2057 		}
2058 	}
2059 
2060 	wait_event_interruptible(check_state->wait,
2061 				 atomic_read(&check_state->started) == 0 ||
2062 				  test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2063 
2064 	for (i = 0; i < check_state->total_threads; i++) {
2065 		if (check_state->infos[i].result) {
2066 			ret = check_state->infos[i].result;
2067 			goto out;
2068 		}
2069 	}
2070 
2071 out:
2072 	kfree(check_state);
2073 	return ret;
2074 }
2075 
2076 void bch_initial_gc_finish(struct cache_set *c)
2077 {
2078 	struct cache *ca = c->cache;
2079 	struct bucket *b;
2080 
2081 	bch_btree_gc_finish(c);
2082 
2083 	mutex_lock(&c->bucket_lock);
2084 
2085 	/*
2086 	 * We need to put some unused buckets directly on the prio freelist in
2087 	 * order to get the allocator thread started - it needs freed buckets in
2088 	 * order to rewrite the prios and gens, and it needs to rewrite prios
2089 	 * and gens in order to free buckets.
2090 	 *
2091 	 * This is only safe for buckets that have no live data in them, which
2092 	 * there should always be some of.
2093 	 */
2094 	for_each_bucket(b, ca) {
2095 		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2096 		    fifo_full(&ca->free[RESERVE_BTREE]))
2097 			break;
2098 
2099 		if (bch_can_invalidate_bucket(ca, b) &&
2100 		    !GC_MARK(b)) {
2101 			__bch_invalidate_one_bucket(ca, b);
2102 			if (!fifo_push(&ca->free[RESERVE_PRIO],
2103 			   b - ca->buckets))
2104 				fifo_push(&ca->free[RESERVE_BTREE],
2105 					  b - ca->buckets);
2106 		}
2107 	}
2108 
2109 	mutex_unlock(&c->bucket_lock);
2110 }
2111 
2112 /* Btree insertion */
2113 
2114 static bool btree_insert_key(struct btree *b, struct bkey *k,
2115 			     struct bkey *replace_key)
2116 {
2117 	unsigned int status;
2118 
2119 	BUG_ON(bkey_cmp(k, &b->key) > 0);
2120 
2121 	status = bch_btree_insert_key(&b->keys, k, replace_key);
2122 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2123 		bch_check_keys(&b->keys, "%u for %s", status,
2124 			       replace_key ? "replace" : "insert");
2125 
2126 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2127 					      status);
2128 		return true;
2129 	} else
2130 		return false;
2131 }
2132 
2133 static size_t insert_u64s_remaining(struct btree *b)
2134 {
2135 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2136 
2137 	/*
2138 	 * Might land in the middle of an existing extent and have to split it
2139 	 */
2140 	if (b->keys.ops->is_extents)
2141 		ret -= KEY_MAX_U64S;
2142 
2143 	return max(ret, 0L);
2144 }
2145 
2146 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2147 				  struct keylist *insert_keys,
2148 				  struct bkey *replace_key)
2149 {
2150 	bool ret = false;
2151 	int oldsize = bch_count_data(&b->keys);
2152 
2153 	while (!bch_keylist_empty(insert_keys)) {
2154 		struct bkey *k = insert_keys->keys;
2155 
2156 		if (bkey_u64s(k) > insert_u64s_remaining(b))
2157 			break;
2158 
2159 		if (bkey_cmp(k, &b->key) <= 0) {
2160 			if (!b->level)
2161 				bkey_put(b->c, k);
2162 
2163 			ret |= btree_insert_key(b, k, replace_key);
2164 			bch_keylist_pop_front(insert_keys);
2165 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2166 			BKEY_PADDED(key) temp;
2167 			bkey_copy(&temp.key, insert_keys->keys);
2168 
2169 			bch_cut_back(&b->key, &temp.key);
2170 			bch_cut_front(&b->key, insert_keys->keys);
2171 
2172 			ret |= btree_insert_key(b, &temp.key, replace_key);
2173 			break;
2174 		} else {
2175 			break;
2176 		}
2177 	}
2178 
2179 	if (!ret)
2180 		op->insert_collision = true;
2181 
2182 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2183 
2184 	BUG_ON(bch_count_data(&b->keys) < oldsize);
2185 	return ret;
2186 }
2187 
2188 static int btree_split(struct btree *b, struct btree_op *op,
2189 		       struct keylist *insert_keys,
2190 		       struct bkey *replace_key)
2191 {
2192 	bool split;
2193 	struct btree *n1, *n2 = NULL, *n3 = NULL;
2194 	uint64_t start_time = local_clock();
2195 	struct closure cl;
2196 	struct keylist parent_keys;
2197 
2198 	closure_init_stack(&cl);
2199 	bch_keylist_init(&parent_keys);
2200 
2201 	if (btree_check_reserve(b, op)) {
2202 		if (!b->level)
2203 			return -EINTR;
2204 		else
2205 			WARN(1, "insufficient reserve for split\n");
2206 	}
2207 
2208 	n1 = btree_node_alloc_replacement(b, op);
2209 	if (IS_ERR(n1))
2210 		goto err;
2211 
2212 	split = set_blocks(btree_bset_first(n1),
2213 			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2214 
2215 	if (split) {
2216 		unsigned int keys = 0;
2217 
2218 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2219 
2220 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2221 		if (IS_ERR(n2))
2222 			goto err_free1;
2223 
2224 		if (!b->parent) {
2225 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2226 			if (IS_ERR(n3))
2227 				goto err_free2;
2228 		}
2229 
2230 		mutex_lock(&n1->write_lock);
2231 		mutex_lock(&n2->write_lock);
2232 
2233 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2234 
2235 		/*
2236 		 * Has to be a linear search because we don't have an auxiliary
2237 		 * search tree yet
2238 		 */
2239 
2240 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2241 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2242 							keys));
2243 
2244 		bkey_copy_key(&n1->key,
2245 			      bset_bkey_idx(btree_bset_first(n1), keys));
2246 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2247 
2248 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2249 		btree_bset_first(n1)->keys = keys;
2250 
2251 		memcpy(btree_bset_first(n2)->start,
2252 		       bset_bkey_last(btree_bset_first(n1)),
2253 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2254 
2255 		bkey_copy_key(&n2->key, &b->key);
2256 
2257 		bch_keylist_add(&parent_keys, &n2->key);
2258 		bch_btree_node_write(n2, &cl);
2259 		mutex_unlock(&n2->write_lock);
2260 		rw_unlock(true, n2);
2261 	} else {
2262 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2263 
2264 		mutex_lock(&n1->write_lock);
2265 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2266 	}
2267 
2268 	bch_keylist_add(&parent_keys, &n1->key);
2269 	bch_btree_node_write(n1, &cl);
2270 	mutex_unlock(&n1->write_lock);
2271 
2272 	if (n3) {
2273 		/* Depth increases, make a new root */
2274 		mutex_lock(&n3->write_lock);
2275 		bkey_copy_key(&n3->key, &MAX_KEY);
2276 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2277 		bch_btree_node_write(n3, &cl);
2278 		mutex_unlock(&n3->write_lock);
2279 
2280 		closure_sync(&cl);
2281 		bch_btree_set_root(n3);
2282 		rw_unlock(true, n3);
2283 	} else if (!b->parent) {
2284 		/* Root filled up but didn't need to be split */
2285 		closure_sync(&cl);
2286 		bch_btree_set_root(n1);
2287 	} else {
2288 		/* Split a non root node */
2289 		closure_sync(&cl);
2290 		make_btree_freeing_key(b, parent_keys.top);
2291 		bch_keylist_push(&parent_keys);
2292 
2293 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2294 		BUG_ON(!bch_keylist_empty(&parent_keys));
2295 	}
2296 
2297 	btree_node_free(b);
2298 	rw_unlock(true, n1);
2299 
2300 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2301 
2302 	return 0;
2303 err_free2:
2304 	bkey_put(b->c, &n2->key);
2305 	btree_node_free(n2);
2306 	rw_unlock(true, n2);
2307 err_free1:
2308 	bkey_put(b->c, &n1->key);
2309 	btree_node_free(n1);
2310 	rw_unlock(true, n1);
2311 err:
2312 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2313 
2314 	if (n3 == ERR_PTR(-EAGAIN) ||
2315 	    n2 == ERR_PTR(-EAGAIN) ||
2316 	    n1 == ERR_PTR(-EAGAIN))
2317 		return -EAGAIN;
2318 
2319 	return -ENOMEM;
2320 }
2321 
2322 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2323 				 struct keylist *insert_keys,
2324 				 atomic_t *journal_ref,
2325 				 struct bkey *replace_key)
2326 {
2327 	struct closure cl;
2328 
2329 	BUG_ON(b->level && replace_key);
2330 
2331 	closure_init_stack(&cl);
2332 
2333 	mutex_lock(&b->write_lock);
2334 
2335 	if (write_block(b) != btree_bset_last(b) &&
2336 	    b->keys.last_set_unwritten)
2337 		bch_btree_init_next(b); /* just wrote a set */
2338 
2339 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2340 		mutex_unlock(&b->write_lock);
2341 		goto split;
2342 	}
2343 
2344 	BUG_ON(write_block(b) != btree_bset_last(b));
2345 
2346 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2347 		if (!b->level)
2348 			bch_btree_leaf_dirty(b, journal_ref);
2349 		else
2350 			bch_btree_node_write(b, &cl);
2351 	}
2352 
2353 	mutex_unlock(&b->write_lock);
2354 
2355 	/* wait for btree node write if necessary, after unlock */
2356 	closure_sync(&cl);
2357 
2358 	return 0;
2359 split:
2360 	if (current->bio_list) {
2361 		op->lock = b->c->root->level + 1;
2362 		return -EAGAIN;
2363 	} else if (op->lock <= b->c->root->level) {
2364 		op->lock = b->c->root->level + 1;
2365 		return -EINTR;
2366 	} else {
2367 		/* Invalidated all iterators */
2368 		int ret = btree_split(b, op, insert_keys, replace_key);
2369 
2370 		if (bch_keylist_empty(insert_keys))
2371 			return 0;
2372 		else if (!ret)
2373 			return -EINTR;
2374 		return ret;
2375 	}
2376 }
2377 
2378 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2379 			       struct bkey *check_key)
2380 {
2381 	int ret = -EINTR;
2382 	uint64_t btree_ptr = b->key.ptr[0];
2383 	unsigned long seq = b->seq;
2384 	struct keylist insert;
2385 	bool upgrade = op->lock == -1;
2386 
2387 	bch_keylist_init(&insert);
2388 
2389 	if (upgrade) {
2390 		rw_unlock(false, b);
2391 		rw_lock(true, b, b->level);
2392 
2393 		if (b->key.ptr[0] != btree_ptr ||
2394 		    b->seq != seq + 1) {
2395 			op->lock = b->level;
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	SET_KEY_PTRS(check_key, 1);
2401 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2402 
2403 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2404 
2405 	bch_keylist_add(&insert, check_key);
2406 
2407 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2408 
2409 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2410 out:
2411 	if (upgrade)
2412 		downgrade_write(&b->lock);
2413 	return ret;
2414 }
2415 
2416 struct btree_insert_op {
2417 	struct btree_op	op;
2418 	struct keylist	*keys;
2419 	atomic_t	*journal_ref;
2420 	struct bkey	*replace_key;
2421 };
2422 
2423 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2424 {
2425 	struct btree_insert_op *op = container_of(b_op,
2426 					struct btree_insert_op, op);
2427 
2428 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2429 					op->journal_ref, op->replace_key);
2430 	if (ret && !bch_keylist_empty(op->keys))
2431 		return ret;
2432 	else
2433 		return MAP_DONE;
2434 }
2435 
2436 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2437 		     atomic_t *journal_ref, struct bkey *replace_key)
2438 {
2439 	struct btree_insert_op op;
2440 	int ret = 0;
2441 
2442 	BUG_ON(current->bio_list);
2443 	BUG_ON(bch_keylist_empty(keys));
2444 
2445 	bch_btree_op_init(&op.op, 0);
2446 	op.keys		= keys;
2447 	op.journal_ref	= journal_ref;
2448 	op.replace_key	= replace_key;
2449 
2450 	while (!ret && !bch_keylist_empty(keys)) {
2451 		op.op.lock = 0;
2452 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2453 					       &START_KEY(keys->keys),
2454 					       btree_insert_fn);
2455 	}
2456 
2457 	if (ret) {
2458 		struct bkey *k;
2459 
2460 		pr_err("error %i\n", ret);
2461 
2462 		while ((k = bch_keylist_pop(keys)))
2463 			bkey_put(c, k);
2464 	} else if (op.op.insert_collision)
2465 		ret = -ESRCH;
2466 
2467 	return ret;
2468 }
2469 
2470 void bch_btree_set_root(struct btree *b)
2471 {
2472 	unsigned int i;
2473 	struct closure cl;
2474 
2475 	closure_init_stack(&cl);
2476 
2477 	trace_bcache_btree_set_root(b);
2478 
2479 	BUG_ON(!b->written);
2480 
2481 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2482 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2483 
2484 	mutex_lock(&b->c->bucket_lock);
2485 	list_del_init(&b->list);
2486 	mutex_unlock(&b->c->bucket_lock);
2487 
2488 	b->c->root = b;
2489 
2490 	bch_journal_meta(b->c, &cl);
2491 	closure_sync(&cl);
2492 }
2493 
2494 /* Map across nodes or keys */
2495 
2496 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2497 				       struct bkey *from,
2498 				       btree_map_nodes_fn *fn, int flags)
2499 {
2500 	int ret = MAP_CONTINUE;
2501 
2502 	if (b->level) {
2503 		struct bkey *k;
2504 		struct btree_iter iter;
2505 
2506 		bch_btree_iter_init(&b->keys, &iter, from);
2507 
2508 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2509 						       bch_ptr_bad))) {
2510 			ret = bcache_btree(map_nodes_recurse, k, b,
2511 				    op, from, fn, flags);
2512 			from = NULL;
2513 
2514 			if (ret != MAP_CONTINUE)
2515 				return ret;
2516 		}
2517 	}
2518 
2519 	if (!b->level || flags == MAP_ALL_NODES)
2520 		ret = fn(op, b);
2521 
2522 	return ret;
2523 }
2524 
2525 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2526 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2527 {
2528 	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2529 }
2530 
2531 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2532 				      struct bkey *from, btree_map_keys_fn *fn,
2533 				      int flags)
2534 {
2535 	int ret = MAP_CONTINUE;
2536 	struct bkey *k;
2537 	struct btree_iter iter;
2538 
2539 	bch_btree_iter_init(&b->keys, &iter, from);
2540 
2541 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2542 		ret = !b->level
2543 			? fn(op, b, k)
2544 			: bcache_btree(map_keys_recurse, k,
2545 				       b, op, from, fn, flags);
2546 		from = NULL;
2547 
2548 		if (ret != MAP_CONTINUE)
2549 			return ret;
2550 	}
2551 
2552 	if (!b->level && (flags & MAP_END_KEY))
2553 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2554 				     KEY_OFFSET(&b->key), 0));
2555 
2556 	return ret;
2557 }
2558 
2559 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2560 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2561 {
2562 	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2563 }
2564 
2565 /* Keybuf code */
2566 
2567 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2568 {
2569 	/* Overlapping keys compare equal */
2570 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2571 		return -1;
2572 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2573 		return 1;
2574 	return 0;
2575 }
2576 
2577 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2578 					    struct keybuf_key *r)
2579 {
2580 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2581 }
2582 
2583 struct refill {
2584 	struct btree_op	op;
2585 	unsigned int	nr_found;
2586 	struct keybuf	*buf;
2587 	struct bkey	*end;
2588 	keybuf_pred_fn	*pred;
2589 };
2590 
2591 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2592 			    struct bkey *k)
2593 {
2594 	struct refill *refill = container_of(op, struct refill, op);
2595 	struct keybuf *buf = refill->buf;
2596 	int ret = MAP_CONTINUE;
2597 
2598 	if (bkey_cmp(k, refill->end) > 0) {
2599 		ret = MAP_DONE;
2600 		goto out;
2601 	}
2602 
2603 	if (!KEY_SIZE(k)) /* end key */
2604 		goto out;
2605 
2606 	if (refill->pred(buf, k)) {
2607 		struct keybuf_key *w;
2608 
2609 		spin_lock(&buf->lock);
2610 
2611 		w = array_alloc(&buf->freelist);
2612 		if (!w) {
2613 			spin_unlock(&buf->lock);
2614 			return MAP_DONE;
2615 		}
2616 
2617 		w->private = NULL;
2618 		bkey_copy(&w->key, k);
2619 
2620 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2621 			array_free(&buf->freelist, w);
2622 		else
2623 			refill->nr_found++;
2624 
2625 		if (array_freelist_empty(&buf->freelist))
2626 			ret = MAP_DONE;
2627 
2628 		spin_unlock(&buf->lock);
2629 	}
2630 out:
2631 	buf->last_scanned = *k;
2632 	return ret;
2633 }
2634 
2635 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2636 		       struct bkey *end, keybuf_pred_fn *pred)
2637 {
2638 	struct bkey start = buf->last_scanned;
2639 	struct refill refill;
2640 
2641 	cond_resched();
2642 
2643 	bch_btree_op_init(&refill.op, -1);
2644 	refill.nr_found	= 0;
2645 	refill.buf	= buf;
2646 	refill.end	= end;
2647 	refill.pred	= pred;
2648 
2649 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2650 			   refill_keybuf_fn, MAP_END_KEY);
2651 
2652 	trace_bcache_keyscan(refill.nr_found,
2653 			     KEY_INODE(&start), KEY_OFFSET(&start),
2654 			     KEY_INODE(&buf->last_scanned),
2655 			     KEY_OFFSET(&buf->last_scanned));
2656 
2657 	spin_lock(&buf->lock);
2658 
2659 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2660 		struct keybuf_key *w;
2661 
2662 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2663 		buf->start	= START_KEY(&w->key);
2664 
2665 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2666 		buf->end	= w->key;
2667 	} else {
2668 		buf->start	= MAX_KEY;
2669 		buf->end	= MAX_KEY;
2670 	}
2671 
2672 	spin_unlock(&buf->lock);
2673 }
2674 
2675 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2676 {
2677 	rb_erase(&w->node, &buf->keys);
2678 	array_free(&buf->freelist, w);
2679 }
2680 
2681 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2682 {
2683 	spin_lock(&buf->lock);
2684 	__bch_keybuf_del(buf, w);
2685 	spin_unlock(&buf->lock);
2686 }
2687 
2688 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2689 				  struct bkey *end)
2690 {
2691 	bool ret = false;
2692 	struct keybuf_key *p, *w, s;
2693 
2694 	s.key = *start;
2695 
2696 	if (bkey_cmp(end, &buf->start) <= 0 ||
2697 	    bkey_cmp(start, &buf->end) >= 0)
2698 		return false;
2699 
2700 	spin_lock(&buf->lock);
2701 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2702 
2703 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2704 		p = w;
2705 		w = RB_NEXT(w, node);
2706 
2707 		if (p->private)
2708 			ret = true;
2709 		else
2710 			__bch_keybuf_del(buf, p);
2711 	}
2712 
2713 	spin_unlock(&buf->lock);
2714 	return ret;
2715 }
2716 
2717 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2718 {
2719 	struct keybuf_key *w;
2720 
2721 	spin_lock(&buf->lock);
2722 
2723 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2724 
2725 	while (w && w->private)
2726 		w = RB_NEXT(w, node);
2727 
2728 	if (w)
2729 		w->private = ERR_PTR(-EINTR);
2730 
2731 	spin_unlock(&buf->lock);
2732 	return w;
2733 }
2734 
2735 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2736 					  struct keybuf *buf,
2737 					  struct bkey *end,
2738 					  keybuf_pred_fn *pred)
2739 {
2740 	struct keybuf_key *ret;
2741 
2742 	while (1) {
2743 		ret = bch_keybuf_next(buf);
2744 		if (ret)
2745 			break;
2746 
2747 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2748 			pr_debug("scan finished\n");
2749 			break;
2750 		}
2751 
2752 		bch_refill_keybuf(c, buf, end, pred);
2753 	}
2754 
2755 	return ret;
2756 }
2757 
2758 void bch_keybuf_init(struct keybuf *buf)
2759 {
2760 	buf->last_scanned	= MAX_KEY;
2761 	buf->keys		= RB_ROOT;
2762 
2763 	spin_lock_init(&buf->lock);
2764 	array_allocator_init(&buf->freelist);
2765 }
2766