1 /* 2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/acpi.h> 19 #include <linux/bitmap.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/interrupt.h> 23 #include <linux/irqdomain.h> 24 #include <linux/acpi_iort.h> 25 #include <linux/log2.h> 26 #include <linux/mm.h> 27 #include <linux/msi.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_pci.h> 32 #include <linux/of_platform.h> 33 #include <linux/percpu.h> 34 #include <linux/slab.h> 35 36 #include <linux/irqchip.h> 37 #include <linux/irqchip/arm-gic-v3.h> 38 39 #include <asm/cacheflush.h> 40 #include <asm/cputype.h> 41 #include <asm/exception.h> 42 43 #include "irq-gic-common.h" 44 45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) 46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) 47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) 48 49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) 50 51 /* 52 * Collection structure - just an ID, and a redistributor address to 53 * ping. We use one per CPU as a bag of interrupts assigned to this 54 * CPU. 55 */ 56 struct its_collection { 57 u64 target_address; 58 u16 col_id; 59 }; 60 61 /* 62 * The ITS_BASER structure - contains memory information, cached 63 * value of BASER register configuration and ITS page size. 64 */ 65 struct its_baser { 66 void *base; 67 u64 val; 68 u32 order; 69 u32 psz; 70 }; 71 72 /* 73 * The ITS structure - contains most of the infrastructure, with the 74 * top-level MSI domain, the command queue, the collections, and the 75 * list of devices writing to it. 76 */ 77 struct its_node { 78 raw_spinlock_t lock; 79 struct list_head entry; 80 void __iomem *base; 81 phys_addr_t phys_base; 82 struct its_cmd_block *cmd_base; 83 struct its_cmd_block *cmd_write; 84 struct its_baser tables[GITS_BASER_NR_REGS]; 85 struct its_collection *collections; 86 struct list_head its_device_list; 87 u64 flags; 88 u32 ite_size; 89 u32 device_ids; 90 int numa_node; 91 }; 92 93 #define ITS_ITT_ALIGN SZ_256 94 95 /* Convert page order to size in bytes */ 96 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) 97 98 struct event_lpi_map { 99 unsigned long *lpi_map; 100 u16 *col_map; 101 irq_hw_number_t lpi_base; 102 int nr_lpis; 103 }; 104 105 /* 106 * The ITS view of a device - belongs to an ITS, a collection, owns an 107 * interrupt translation table, and a list of interrupts. 108 */ 109 struct its_device { 110 struct list_head entry; 111 struct its_node *its; 112 struct event_lpi_map event_map; 113 void *itt; 114 u32 nr_ites; 115 u32 device_id; 116 }; 117 118 static LIST_HEAD(its_nodes); 119 static DEFINE_SPINLOCK(its_lock); 120 static struct rdists *gic_rdists; 121 static struct irq_domain *its_parent; 122 123 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) 124 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) 125 126 static struct its_collection *dev_event_to_col(struct its_device *its_dev, 127 u32 event) 128 { 129 struct its_node *its = its_dev->its; 130 131 return its->collections + its_dev->event_map.col_map[event]; 132 } 133 134 /* 135 * ITS command descriptors - parameters to be encoded in a command 136 * block. 137 */ 138 struct its_cmd_desc { 139 union { 140 struct { 141 struct its_device *dev; 142 u32 event_id; 143 } its_inv_cmd; 144 145 struct { 146 struct its_device *dev; 147 u32 event_id; 148 } its_int_cmd; 149 150 struct { 151 struct its_device *dev; 152 int valid; 153 } its_mapd_cmd; 154 155 struct { 156 struct its_collection *col; 157 int valid; 158 } its_mapc_cmd; 159 160 struct { 161 struct its_device *dev; 162 u32 phys_id; 163 u32 event_id; 164 } its_mapvi_cmd; 165 166 struct { 167 struct its_device *dev; 168 struct its_collection *col; 169 u32 event_id; 170 } its_movi_cmd; 171 172 struct { 173 struct its_device *dev; 174 u32 event_id; 175 } its_discard_cmd; 176 177 struct { 178 struct its_collection *col; 179 } its_invall_cmd; 180 }; 181 }; 182 183 /* 184 * The ITS command block, which is what the ITS actually parses. 185 */ 186 struct its_cmd_block { 187 u64 raw_cmd[4]; 188 }; 189 190 #define ITS_CMD_QUEUE_SZ SZ_64K 191 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) 192 193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *, 194 struct its_cmd_desc *); 195 196 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) 197 { 198 cmd->raw_cmd[0] &= ~0xffUL; 199 cmd->raw_cmd[0] |= cmd_nr; 200 } 201 202 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) 203 { 204 cmd->raw_cmd[0] &= BIT_ULL(32) - 1; 205 cmd->raw_cmd[0] |= ((u64)devid) << 32; 206 } 207 208 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) 209 { 210 cmd->raw_cmd[1] &= ~0xffffffffUL; 211 cmd->raw_cmd[1] |= id; 212 } 213 214 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) 215 { 216 cmd->raw_cmd[1] &= 0xffffffffUL; 217 cmd->raw_cmd[1] |= ((u64)phys_id) << 32; 218 } 219 220 static void its_encode_size(struct its_cmd_block *cmd, u8 size) 221 { 222 cmd->raw_cmd[1] &= ~0x1fUL; 223 cmd->raw_cmd[1] |= size & 0x1f; 224 } 225 226 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) 227 { 228 cmd->raw_cmd[2] &= ~0xffffffffffffUL; 229 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL; 230 } 231 232 static void its_encode_valid(struct its_cmd_block *cmd, int valid) 233 { 234 cmd->raw_cmd[2] &= ~(1UL << 63); 235 cmd->raw_cmd[2] |= ((u64)!!valid) << 63; 236 } 237 238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) 239 { 240 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16); 241 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16)); 242 } 243 244 static void its_encode_collection(struct its_cmd_block *cmd, u16 col) 245 { 246 cmd->raw_cmd[2] &= ~0xffffUL; 247 cmd->raw_cmd[2] |= col; 248 } 249 250 static inline void its_fixup_cmd(struct its_cmd_block *cmd) 251 { 252 /* Let's fixup BE commands */ 253 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]); 254 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]); 255 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]); 256 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]); 257 } 258 259 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd, 260 struct its_cmd_desc *desc) 261 { 262 unsigned long itt_addr; 263 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); 264 265 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); 266 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); 267 268 its_encode_cmd(cmd, GITS_CMD_MAPD); 269 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); 270 its_encode_size(cmd, size - 1); 271 its_encode_itt(cmd, itt_addr); 272 its_encode_valid(cmd, desc->its_mapd_cmd.valid); 273 274 its_fixup_cmd(cmd); 275 276 return NULL; 277 } 278 279 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd, 280 struct its_cmd_desc *desc) 281 { 282 its_encode_cmd(cmd, GITS_CMD_MAPC); 283 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 284 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); 285 its_encode_valid(cmd, desc->its_mapc_cmd.valid); 286 287 its_fixup_cmd(cmd); 288 289 return desc->its_mapc_cmd.col; 290 } 291 292 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd, 293 struct its_cmd_desc *desc) 294 { 295 struct its_collection *col; 296 297 col = dev_event_to_col(desc->its_mapvi_cmd.dev, 298 desc->its_mapvi_cmd.event_id); 299 300 its_encode_cmd(cmd, GITS_CMD_MAPVI); 301 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id); 302 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id); 303 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id); 304 its_encode_collection(cmd, col->col_id); 305 306 its_fixup_cmd(cmd); 307 308 return col; 309 } 310 311 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd, 312 struct its_cmd_desc *desc) 313 { 314 struct its_collection *col; 315 316 col = dev_event_to_col(desc->its_movi_cmd.dev, 317 desc->its_movi_cmd.event_id); 318 319 its_encode_cmd(cmd, GITS_CMD_MOVI); 320 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); 321 its_encode_event_id(cmd, desc->its_movi_cmd.event_id); 322 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); 323 324 its_fixup_cmd(cmd); 325 326 return col; 327 } 328 329 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd, 330 struct its_cmd_desc *desc) 331 { 332 struct its_collection *col; 333 334 col = dev_event_to_col(desc->its_discard_cmd.dev, 335 desc->its_discard_cmd.event_id); 336 337 its_encode_cmd(cmd, GITS_CMD_DISCARD); 338 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); 339 its_encode_event_id(cmd, desc->its_discard_cmd.event_id); 340 341 its_fixup_cmd(cmd); 342 343 return col; 344 } 345 346 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd, 347 struct its_cmd_desc *desc) 348 { 349 struct its_collection *col; 350 351 col = dev_event_to_col(desc->its_inv_cmd.dev, 352 desc->its_inv_cmd.event_id); 353 354 its_encode_cmd(cmd, GITS_CMD_INV); 355 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); 356 its_encode_event_id(cmd, desc->its_inv_cmd.event_id); 357 358 its_fixup_cmd(cmd); 359 360 return col; 361 } 362 363 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd, 364 struct its_cmd_desc *desc) 365 { 366 its_encode_cmd(cmd, GITS_CMD_INVALL); 367 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); 368 369 its_fixup_cmd(cmd); 370 371 return NULL; 372 } 373 374 static u64 its_cmd_ptr_to_offset(struct its_node *its, 375 struct its_cmd_block *ptr) 376 { 377 return (ptr - its->cmd_base) * sizeof(*ptr); 378 } 379 380 static int its_queue_full(struct its_node *its) 381 { 382 int widx; 383 int ridx; 384 385 widx = its->cmd_write - its->cmd_base; 386 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); 387 388 /* This is incredibly unlikely to happen, unless the ITS locks up. */ 389 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) 390 return 1; 391 392 return 0; 393 } 394 395 static struct its_cmd_block *its_allocate_entry(struct its_node *its) 396 { 397 struct its_cmd_block *cmd; 398 u32 count = 1000000; /* 1s! */ 399 400 while (its_queue_full(its)) { 401 count--; 402 if (!count) { 403 pr_err_ratelimited("ITS queue not draining\n"); 404 return NULL; 405 } 406 cpu_relax(); 407 udelay(1); 408 } 409 410 cmd = its->cmd_write++; 411 412 /* Handle queue wrapping */ 413 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) 414 its->cmd_write = its->cmd_base; 415 416 return cmd; 417 } 418 419 static struct its_cmd_block *its_post_commands(struct its_node *its) 420 { 421 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); 422 423 writel_relaxed(wr, its->base + GITS_CWRITER); 424 425 return its->cmd_write; 426 } 427 428 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) 429 { 430 /* 431 * Make sure the commands written to memory are observable by 432 * the ITS. 433 */ 434 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) 435 __flush_dcache_area(cmd, sizeof(*cmd)); 436 else 437 dsb(ishst); 438 } 439 440 static void its_wait_for_range_completion(struct its_node *its, 441 struct its_cmd_block *from, 442 struct its_cmd_block *to) 443 { 444 u64 rd_idx, from_idx, to_idx; 445 u32 count = 1000000; /* 1s! */ 446 447 from_idx = its_cmd_ptr_to_offset(its, from); 448 to_idx = its_cmd_ptr_to_offset(its, to); 449 450 while (1) { 451 rd_idx = readl_relaxed(its->base + GITS_CREADR); 452 if (rd_idx >= to_idx || rd_idx < from_idx) 453 break; 454 455 count--; 456 if (!count) { 457 pr_err_ratelimited("ITS queue timeout\n"); 458 return; 459 } 460 cpu_relax(); 461 udelay(1); 462 } 463 } 464 465 static void its_send_single_command(struct its_node *its, 466 its_cmd_builder_t builder, 467 struct its_cmd_desc *desc) 468 { 469 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; 470 struct its_collection *sync_col; 471 unsigned long flags; 472 473 raw_spin_lock_irqsave(&its->lock, flags); 474 475 cmd = its_allocate_entry(its); 476 if (!cmd) { /* We're soooooo screewed... */ 477 pr_err_ratelimited("ITS can't allocate, dropping command\n"); 478 raw_spin_unlock_irqrestore(&its->lock, flags); 479 return; 480 } 481 sync_col = builder(cmd, desc); 482 its_flush_cmd(its, cmd); 483 484 if (sync_col) { 485 sync_cmd = its_allocate_entry(its); 486 if (!sync_cmd) { 487 pr_err_ratelimited("ITS can't SYNC, skipping\n"); 488 goto post; 489 } 490 its_encode_cmd(sync_cmd, GITS_CMD_SYNC); 491 its_encode_target(sync_cmd, sync_col->target_address); 492 its_fixup_cmd(sync_cmd); 493 its_flush_cmd(its, sync_cmd); 494 } 495 496 post: 497 next_cmd = its_post_commands(its); 498 raw_spin_unlock_irqrestore(&its->lock, flags); 499 500 its_wait_for_range_completion(its, cmd, next_cmd); 501 } 502 503 static void its_send_inv(struct its_device *dev, u32 event_id) 504 { 505 struct its_cmd_desc desc; 506 507 desc.its_inv_cmd.dev = dev; 508 desc.its_inv_cmd.event_id = event_id; 509 510 its_send_single_command(dev->its, its_build_inv_cmd, &desc); 511 } 512 513 static void its_send_mapd(struct its_device *dev, int valid) 514 { 515 struct its_cmd_desc desc; 516 517 desc.its_mapd_cmd.dev = dev; 518 desc.its_mapd_cmd.valid = !!valid; 519 520 its_send_single_command(dev->its, its_build_mapd_cmd, &desc); 521 } 522 523 static void its_send_mapc(struct its_node *its, struct its_collection *col, 524 int valid) 525 { 526 struct its_cmd_desc desc; 527 528 desc.its_mapc_cmd.col = col; 529 desc.its_mapc_cmd.valid = !!valid; 530 531 its_send_single_command(its, its_build_mapc_cmd, &desc); 532 } 533 534 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id) 535 { 536 struct its_cmd_desc desc; 537 538 desc.its_mapvi_cmd.dev = dev; 539 desc.its_mapvi_cmd.phys_id = irq_id; 540 desc.its_mapvi_cmd.event_id = id; 541 542 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc); 543 } 544 545 static void its_send_movi(struct its_device *dev, 546 struct its_collection *col, u32 id) 547 { 548 struct its_cmd_desc desc; 549 550 desc.its_movi_cmd.dev = dev; 551 desc.its_movi_cmd.col = col; 552 desc.its_movi_cmd.event_id = id; 553 554 its_send_single_command(dev->its, its_build_movi_cmd, &desc); 555 } 556 557 static void its_send_discard(struct its_device *dev, u32 id) 558 { 559 struct its_cmd_desc desc; 560 561 desc.its_discard_cmd.dev = dev; 562 desc.its_discard_cmd.event_id = id; 563 564 its_send_single_command(dev->its, its_build_discard_cmd, &desc); 565 } 566 567 static void its_send_invall(struct its_node *its, struct its_collection *col) 568 { 569 struct its_cmd_desc desc; 570 571 desc.its_invall_cmd.col = col; 572 573 its_send_single_command(its, its_build_invall_cmd, &desc); 574 } 575 576 /* 577 * irqchip functions - assumes MSI, mostly. 578 */ 579 580 static inline u32 its_get_event_id(struct irq_data *d) 581 { 582 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 583 return d->hwirq - its_dev->event_map.lpi_base; 584 } 585 586 static void lpi_set_config(struct irq_data *d, bool enable) 587 { 588 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 589 irq_hw_number_t hwirq = d->hwirq; 590 u32 id = its_get_event_id(d); 591 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192; 592 593 if (enable) 594 *cfg |= LPI_PROP_ENABLED; 595 else 596 *cfg &= ~LPI_PROP_ENABLED; 597 598 /* 599 * Make the above write visible to the redistributors. 600 * And yes, we're flushing exactly: One. Single. Byte. 601 * Humpf... 602 */ 603 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) 604 __flush_dcache_area(cfg, sizeof(*cfg)); 605 else 606 dsb(ishst); 607 its_send_inv(its_dev, id); 608 } 609 610 static void its_mask_irq(struct irq_data *d) 611 { 612 lpi_set_config(d, false); 613 } 614 615 static void its_unmask_irq(struct irq_data *d) 616 { 617 lpi_set_config(d, true); 618 } 619 620 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, 621 bool force) 622 { 623 unsigned int cpu; 624 const struct cpumask *cpu_mask = cpu_online_mask; 625 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 626 struct its_collection *target_col; 627 u32 id = its_get_event_id(d); 628 629 /* lpi cannot be routed to a redistributor that is on a foreign node */ 630 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 631 if (its_dev->its->numa_node >= 0) { 632 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 633 if (!cpumask_intersects(mask_val, cpu_mask)) 634 return -EINVAL; 635 } 636 } 637 638 cpu = cpumask_any_and(mask_val, cpu_mask); 639 640 if (cpu >= nr_cpu_ids) 641 return -EINVAL; 642 643 target_col = &its_dev->its->collections[cpu]; 644 its_send_movi(its_dev, target_col, id); 645 its_dev->event_map.col_map[id] = cpu; 646 647 return IRQ_SET_MASK_OK_DONE; 648 } 649 650 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) 651 { 652 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 653 struct its_node *its; 654 u64 addr; 655 656 its = its_dev->its; 657 addr = its->phys_base + GITS_TRANSLATER; 658 659 msg->address_lo = addr & ((1UL << 32) - 1); 660 msg->address_hi = addr >> 32; 661 msg->data = its_get_event_id(d); 662 } 663 664 static struct irq_chip its_irq_chip = { 665 .name = "ITS", 666 .irq_mask = its_mask_irq, 667 .irq_unmask = its_unmask_irq, 668 .irq_eoi = irq_chip_eoi_parent, 669 .irq_set_affinity = its_set_affinity, 670 .irq_compose_msi_msg = its_irq_compose_msi_msg, 671 }; 672 673 /* 674 * How we allocate LPIs: 675 * 676 * The GIC has id_bits bits for interrupt identifiers. From there, we 677 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as 678 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5 679 * bits to the right. 680 * 681 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations. 682 */ 683 #define IRQS_PER_CHUNK_SHIFT 5 684 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT) 685 686 static unsigned long *lpi_bitmap; 687 static u32 lpi_chunks; 688 static DEFINE_SPINLOCK(lpi_lock); 689 690 static int its_lpi_to_chunk(int lpi) 691 { 692 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT; 693 } 694 695 static int its_chunk_to_lpi(int chunk) 696 { 697 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192; 698 } 699 700 static int __init its_lpi_init(u32 id_bits) 701 { 702 lpi_chunks = its_lpi_to_chunk(1UL << id_bits); 703 704 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long), 705 GFP_KERNEL); 706 if (!lpi_bitmap) { 707 lpi_chunks = 0; 708 return -ENOMEM; 709 } 710 711 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks); 712 return 0; 713 } 714 715 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids) 716 { 717 unsigned long *bitmap = NULL; 718 int chunk_id; 719 int nr_chunks; 720 int i; 721 722 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK); 723 724 spin_lock(&lpi_lock); 725 726 do { 727 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks, 728 0, nr_chunks, 0); 729 if (chunk_id < lpi_chunks) 730 break; 731 732 nr_chunks--; 733 } while (nr_chunks > 0); 734 735 if (!nr_chunks) 736 goto out; 737 738 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long), 739 GFP_ATOMIC); 740 if (!bitmap) 741 goto out; 742 743 for (i = 0; i < nr_chunks; i++) 744 set_bit(chunk_id + i, lpi_bitmap); 745 746 *base = its_chunk_to_lpi(chunk_id); 747 *nr_ids = nr_chunks * IRQS_PER_CHUNK; 748 749 out: 750 spin_unlock(&lpi_lock); 751 752 if (!bitmap) 753 *base = *nr_ids = 0; 754 755 return bitmap; 756 } 757 758 static void its_lpi_free(struct event_lpi_map *map) 759 { 760 int base = map->lpi_base; 761 int nr_ids = map->nr_lpis; 762 int lpi; 763 764 spin_lock(&lpi_lock); 765 766 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) { 767 int chunk = its_lpi_to_chunk(lpi); 768 BUG_ON(chunk > lpi_chunks); 769 if (test_bit(chunk, lpi_bitmap)) { 770 clear_bit(chunk, lpi_bitmap); 771 } else { 772 pr_err("Bad LPI chunk %d\n", chunk); 773 } 774 } 775 776 spin_unlock(&lpi_lock); 777 778 kfree(map->lpi_map); 779 kfree(map->col_map); 780 } 781 782 /* 783 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to 784 * deal with (one configuration byte per interrupt). PENDBASE has to 785 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). 786 */ 787 #define LPI_PROPBASE_SZ SZ_64K 788 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K) 789 790 /* 791 * This is how many bits of ID we need, including the useless ones. 792 */ 793 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K) 794 795 #define LPI_PROP_DEFAULT_PRIO 0xa0 796 797 static int __init its_alloc_lpi_tables(void) 798 { 799 phys_addr_t paddr; 800 801 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT, 802 get_order(LPI_PROPBASE_SZ)); 803 if (!gic_rdists->prop_page) { 804 pr_err("Failed to allocate PROPBASE\n"); 805 return -ENOMEM; 806 } 807 808 paddr = page_to_phys(gic_rdists->prop_page); 809 pr_info("GIC: using LPI property table @%pa\n", &paddr); 810 811 /* Priority 0xa0, Group-1, disabled */ 812 memset(page_address(gic_rdists->prop_page), 813 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, 814 LPI_PROPBASE_SZ); 815 816 /* Make sure the GIC will observe the written configuration */ 817 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ); 818 819 return 0; 820 } 821 822 static const char *its_base_type_string[] = { 823 [GITS_BASER_TYPE_DEVICE] = "Devices", 824 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", 825 [GITS_BASER_TYPE_CPU] = "Physical CPUs", 826 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", 827 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", 828 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", 829 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", 830 }; 831 832 static u64 its_read_baser(struct its_node *its, struct its_baser *baser) 833 { 834 u32 idx = baser - its->tables; 835 836 return readq_relaxed(its->base + GITS_BASER + (idx << 3)); 837 } 838 839 static void its_write_baser(struct its_node *its, struct its_baser *baser, 840 u64 val) 841 { 842 u32 idx = baser - its->tables; 843 844 writeq_relaxed(val, its->base + GITS_BASER + (idx << 3)); 845 baser->val = its_read_baser(its, baser); 846 } 847 848 static int its_setup_baser(struct its_node *its, struct its_baser *baser, 849 u64 cache, u64 shr, u32 psz, u32 order, 850 bool indirect) 851 { 852 u64 val = its_read_baser(its, baser); 853 u64 esz = GITS_BASER_ENTRY_SIZE(val); 854 u64 type = GITS_BASER_TYPE(val); 855 u32 alloc_pages; 856 void *base; 857 u64 tmp; 858 859 retry_alloc_baser: 860 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); 861 if (alloc_pages > GITS_BASER_PAGES_MAX) { 862 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", 863 &its->phys_base, its_base_type_string[type], 864 alloc_pages, GITS_BASER_PAGES_MAX); 865 alloc_pages = GITS_BASER_PAGES_MAX; 866 order = get_order(GITS_BASER_PAGES_MAX * psz); 867 } 868 869 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 870 if (!base) 871 return -ENOMEM; 872 873 retry_baser: 874 val = (virt_to_phys(base) | 875 (type << GITS_BASER_TYPE_SHIFT) | 876 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | 877 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | 878 cache | 879 shr | 880 GITS_BASER_VALID); 881 882 val |= indirect ? GITS_BASER_INDIRECT : 0x0; 883 884 switch (psz) { 885 case SZ_4K: 886 val |= GITS_BASER_PAGE_SIZE_4K; 887 break; 888 case SZ_16K: 889 val |= GITS_BASER_PAGE_SIZE_16K; 890 break; 891 case SZ_64K: 892 val |= GITS_BASER_PAGE_SIZE_64K; 893 break; 894 } 895 896 its_write_baser(its, baser, val); 897 tmp = baser->val; 898 899 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { 900 /* 901 * Shareability didn't stick. Just use 902 * whatever the read reported, which is likely 903 * to be the only thing this redistributor 904 * supports. If that's zero, make it 905 * non-cacheable as well. 906 */ 907 shr = tmp & GITS_BASER_SHAREABILITY_MASK; 908 if (!shr) { 909 cache = GITS_BASER_nC; 910 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order)); 911 } 912 goto retry_baser; 913 } 914 915 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) { 916 /* 917 * Page size didn't stick. Let's try a smaller 918 * size and retry. If we reach 4K, then 919 * something is horribly wrong... 920 */ 921 free_pages((unsigned long)base, order); 922 baser->base = NULL; 923 924 switch (psz) { 925 case SZ_16K: 926 psz = SZ_4K; 927 goto retry_alloc_baser; 928 case SZ_64K: 929 psz = SZ_16K; 930 goto retry_alloc_baser; 931 } 932 } 933 934 if (val != tmp) { 935 pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n", 936 &its->phys_base, its_base_type_string[type], 937 (unsigned long) val, (unsigned long) tmp); 938 free_pages((unsigned long)base, order); 939 return -ENXIO; 940 } 941 942 baser->order = order; 943 baser->base = base; 944 baser->psz = psz; 945 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; 946 947 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", 948 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp), 949 its_base_type_string[type], 950 (unsigned long)virt_to_phys(base), 951 indirect ? "indirect" : "flat", (int)esz, 952 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); 953 954 return 0; 955 } 956 957 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser, 958 u32 psz, u32 *order) 959 { 960 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser)); 961 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb; 962 u32 ids = its->device_ids; 963 u32 new_order = *order; 964 bool indirect = false; 965 966 /* No need to enable Indirection if memory requirement < (psz*2)bytes */ 967 if ((esz << ids) > (psz * 2)) { 968 /* 969 * Find out whether hw supports a single or two-level table by 970 * table by reading bit at offset '62' after writing '1' to it. 971 */ 972 its_write_baser(its, baser, val | GITS_BASER_INDIRECT); 973 indirect = !!(baser->val & GITS_BASER_INDIRECT); 974 975 if (indirect) { 976 /* 977 * The size of the lvl2 table is equal to ITS page size 978 * which is 'psz'. For computing lvl1 table size, 979 * subtract ID bits that sparse lvl2 table from 'ids' 980 * which is reported by ITS hardware times lvl1 table 981 * entry size. 982 */ 983 ids -= ilog2(psz / esz); 984 esz = GITS_LVL1_ENTRY_SIZE; 985 } 986 } 987 988 /* 989 * Allocate as many entries as required to fit the 990 * range of device IDs that the ITS can grok... The ID 991 * space being incredibly sparse, this results in a 992 * massive waste of memory if two-level device table 993 * feature is not supported by hardware. 994 */ 995 new_order = max_t(u32, get_order(esz << ids), new_order); 996 if (new_order >= MAX_ORDER) { 997 new_order = MAX_ORDER - 1; 998 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz); 999 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n", 1000 &its->phys_base, its->device_ids, ids); 1001 } 1002 1003 *order = new_order; 1004 1005 return indirect; 1006 } 1007 1008 static void its_free_tables(struct its_node *its) 1009 { 1010 int i; 1011 1012 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1013 if (its->tables[i].base) { 1014 free_pages((unsigned long)its->tables[i].base, 1015 its->tables[i].order); 1016 its->tables[i].base = NULL; 1017 } 1018 } 1019 } 1020 1021 static int its_alloc_tables(struct its_node *its) 1022 { 1023 u64 typer = readq_relaxed(its->base + GITS_TYPER); 1024 u32 ids = GITS_TYPER_DEVBITS(typer); 1025 u64 shr = GITS_BASER_InnerShareable; 1026 u64 cache = GITS_BASER_WaWb; 1027 u32 psz = SZ_64K; 1028 int err, i; 1029 1030 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) { 1031 /* 1032 * erratum 22375: only alloc 8MB table size 1033 * erratum 24313: ignore memory access type 1034 */ 1035 cache = GITS_BASER_nCnB; 1036 ids = 0x14; /* 20 bits, 8MB */ 1037 } 1038 1039 its->device_ids = ids; 1040 1041 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1042 struct its_baser *baser = its->tables + i; 1043 u64 val = its_read_baser(its, baser); 1044 u64 type = GITS_BASER_TYPE(val); 1045 u32 order = get_order(psz); 1046 bool indirect = false; 1047 1048 if (type == GITS_BASER_TYPE_NONE) 1049 continue; 1050 1051 if (type == GITS_BASER_TYPE_DEVICE) 1052 indirect = its_parse_baser_device(its, baser, psz, &order); 1053 1054 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect); 1055 if (err < 0) { 1056 its_free_tables(its); 1057 return err; 1058 } 1059 1060 /* Update settings which will be used for next BASERn */ 1061 psz = baser->psz; 1062 cache = baser->val & GITS_BASER_CACHEABILITY_MASK; 1063 shr = baser->val & GITS_BASER_SHAREABILITY_MASK; 1064 } 1065 1066 return 0; 1067 } 1068 1069 static int its_alloc_collections(struct its_node *its) 1070 { 1071 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections), 1072 GFP_KERNEL); 1073 if (!its->collections) 1074 return -ENOMEM; 1075 1076 return 0; 1077 } 1078 1079 static void its_cpu_init_lpis(void) 1080 { 1081 void __iomem *rbase = gic_data_rdist_rd_base(); 1082 struct page *pend_page; 1083 u64 val, tmp; 1084 1085 /* If we didn't allocate the pending table yet, do it now */ 1086 pend_page = gic_data_rdist()->pend_page; 1087 if (!pend_page) { 1088 phys_addr_t paddr; 1089 /* 1090 * The pending pages have to be at least 64kB aligned, 1091 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below. 1092 */ 1093 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO, 1094 get_order(max(LPI_PENDBASE_SZ, SZ_64K))); 1095 if (!pend_page) { 1096 pr_err("Failed to allocate PENDBASE for CPU%d\n", 1097 smp_processor_id()); 1098 return; 1099 } 1100 1101 /* Make sure the GIC will observe the zero-ed page */ 1102 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ); 1103 1104 paddr = page_to_phys(pend_page); 1105 pr_info("CPU%d: using LPI pending table @%pa\n", 1106 smp_processor_id(), &paddr); 1107 gic_data_rdist()->pend_page = pend_page; 1108 } 1109 1110 /* Disable LPIs */ 1111 val = readl_relaxed(rbase + GICR_CTLR); 1112 val &= ~GICR_CTLR_ENABLE_LPIS; 1113 writel_relaxed(val, rbase + GICR_CTLR); 1114 1115 /* 1116 * Make sure any change to the table is observable by the GIC. 1117 */ 1118 dsb(sy); 1119 1120 /* set PROPBASE */ 1121 val = (page_to_phys(gic_rdists->prop_page) | 1122 GICR_PROPBASER_InnerShareable | 1123 GICR_PROPBASER_WaWb | 1124 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); 1125 1126 writeq_relaxed(val, rbase + GICR_PROPBASER); 1127 tmp = readq_relaxed(rbase + GICR_PROPBASER); 1128 1129 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { 1130 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { 1131 /* 1132 * The HW reports non-shareable, we must 1133 * remove the cacheability attributes as 1134 * well. 1135 */ 1136 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | 1137 GICR_PROPBASER_CACHEABILITY_MASK); 1138 val |= GICR_PROPBASER_nC; 1139 writeq_relaxed(val, rbase + GICR_PROPBASER); 1140 } 1141 pr_info_once("GIC: using cache flushing for LPI property table\n"); 1142 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; 1143 } 1144 1145 /* set PENDBASE */ 1146 val = (page_to_phys(pend_page) | 1147 GICR_PENDBASER_InnerShareable | 1148 GICR_PENDBASER_WaWb); 1149 1150 writeq_relaxed(val, rbase + GICR_PENDBASER); 1151 tmp = readq_relaxed(rbase + GICR_PENDBASER); 1152 1153 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { 1154 /* 1155 * The HW reports non-shareable, we must remove the 1156 * cacheability attributes as well. 1157 */ 1158 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | 1159 GICR_PENDBASER_CACHEABILITY_MASK); 1160 val |= GICR_PENDBASER_nC; 1161 writeq_relaxed(val, rbase + GICR_PENDBASER); 1162 } 1163 1164 /* Enable LPIs */ 1165 val = readl_relaxed(rbase + GICR_CTLR); 1166 val |= GICR_CTLR_ENABLE_LPIS; 1167 writel_relaxed(val, rbase + GICR_CTLR); 1168 1169 /* Make sure the GIC has seen the above */ 1170 dsb(sy); 1171 } 1172 1173 static void its_cpu_init_collection(void) 1174 { 1175 struct its_node *its; 1176 int cpu; 1177 1178 spin_lock(&its_lock); 1179 cpu = smp_processor_id(); 1180 1181 list_for_each_entry(its, &its_nodes, entry) { 1182 u64 target; 1183 1184 /* avoid cross node collections and its mapping */ 1185 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { 1186 struct device_node *cpu_node; 1187 1188 cpu_node = of_get_cpu_node(cpu, NULL); 1189 if (its->numa_node != NUMA_NO_NODE && 1190 its->numa_node != of_node_to_nid(cpu_node)) 1191 continue; 1192 } 1193 1194 /* 1195 * We now have to bind each collection to its target 1196 * redistributor. 1197 */ 1198 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) { 1199 /* 1200 * This ITS wants the physical address of the 1201 * redistributor. 1202 */ 1203 target = gic_data_rdist()->phys_base; 1204 } else { 1205 /* 1206 * This ITS wants a linear CPU number. 1207 */ 1208 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER); 1209 target = GICR_TYPER_CPU_NUMBER(target) << 16; 1210 } 1211 1212 /* Perform collection mapping */ 1213 its->collections[cpu].target_address = target; 1214 its->collections[cpu].col_id = cpu; 1215 1216 its_send_mapc(its, &its->collections[cpu], 1); 1217 its_send_invall(its, &its->collections[cpu]); 1218 } 1219 1220 spin_unlock(&its_lock); 1221 } 1222 1223 static struct its_device *its_find_device(struct its_node *its, u32 dev_id) 1224 { 1225 struct its_device *its_dev = NULL, *tmp; 1226 unsigned long flags; 1227 1228 raw_spin_lock_irqsave(&its->lock, flags); 1229 1230 list_for_each_entry(tmp, &its->its_device_list, entry) { 1231 if (tmp->device_id == dev_id) { 1232 its_dev = tmp; 1233 break; 1234 } 1235 } 1236 1237 raw_spin_unlock_irqrestore(&its->lock, flags); 1238 1239 return its_dev; 1240 } 1241 1242 static struct its_baser *its_get_baser(struct its_node *its, u32 type) 1243 { 1244 int i; 1245 1246 for (i = 0; i < GITS_BASER_NR_REGS; i++) { 1247 if (GITS_BASER_TYPE(its->tables[i].val) == type) 1248 return &its->tables[i]; 1249 } 1250 1251 return NULL; 1252 } 1253 1254 static bool its_alloc_device_table(struct its_node *its, u32 dev_id) 1255 { 1256 struct its_baser *baser; 1257 struct page *page; 1258 u32 esz, idx; 1259 __le64 *table; 1260 1261 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); 1262 1263 /* Don't allow device id that exceeds ITS hardware limit */ 1264 if (!baser) 1265 return (ilog2(dev_id) < its->device_ids); 1266 1267 /* Don't allow device id that exceeds single, flat table limit */ 1268 esz = GITS_BASER_ENTRY_SIZE(baser->val); 1269 if (!(baser->val & GITS_BASER_INDIRECT)) 1270 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); 1271 1272 /* Compute 1st level table index & check if that exceeds table limit */ 1273 idx = dev_id >> ilog2(baser->psz / esz); 1274 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) 1275 return false; 1276 1277 table = baser->base; 1278 1279 /* Allocate memory for 2nd level table */ 1280 if (!table[idx]) { 1281 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); 1282 if (!page) 1283 return false; 1284 1285 /* Flush Lvl2 table to PoC if hw doesn't support coherency */ 1286 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1287 __flush_dcache_area(page_address(page), baser->psz); 1288 1289 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); 1290 1291 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ 1292 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) 1293 __flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE); 1294 1295 /* Ensure updated table contents are visible to ITS hardware */ 1296 dsb(sy); 1297 } 1298 1299 return true; 1300 } 1301 1302 static struct its_device *its_create_device(struct its_node *its, u32 dev_id, 1303 int nvecs) 1304 { 1305 struct its_device *dev; 1306 unsigned long *lpi_map; 1307 unsigned long flags; 1308 u16 *col_map = NULL; 1309 void *itt; 1310 int lpi_base; 1311 int nr_lpis; 1312 int nr_ites; 1313 int sz; 1314 1315 if (!its_alloc_device_table(its, dev_id)) 1316 return NULL; 1317 1318 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1319 /* 1320 * At least one bit of EventID is being used, hence a minimum 1321 * of two entries. No, the architecture doesn't let you 1322 * express an ITT with a single entry. 1323 */ 1324 nr_ites = max(2UL, roundup_pow_of_two(nvecs)); 1325 sz = nr_ites * its->ite_size; 1326 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; 1327 itt = kzalloc(sz, GFP_KERNEL); 1328 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis); 1329 if (lpi_map) 1330 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL); 1331 1332 if (!dev || !itt || !lpi_map || !col_map) { 1333 kfree(dev); 1334 kfree(itt); 1335 kfree(lpi_map); 1336 kfree(col_map); 1337 return NULL; 1338 } 1339 1340 __flush_dcache_area(itt, sz); 1341 1342 dev->its = its; 1343 dev->itt = itt; 1344 dev->nr_ites = nr_ites; 1345 dev->event_map.lpi_map = lpi_map; 1346 dev->event_map.col_map = col_map; 1347 dev->event_map.lpi_base = lpi_base; 1348 dev->event_map.nr_lpis = nr_lpis; 1349 dev->device_id = dev_id; 1350 INIT_LIST_HEAD(&dev->entry); 1351 1352 raw_spin_lock_irqsave(&its->lock, flags); 1353 list_add(&dev->entry, &its->its_device_list); 1354 raw_spin_unlock_irqrestore(&its->lock, flags); 1355 1356 /* Map device to its ITT */ 1357 its_send_mapd(dev, 1); 1358 1359 return dev; 1360 } 1361 1362 static void its_free_device(struct its_device *its_dev) 1363 { 1364 unsigned long flags; 1365 1366 raw_spin_lock_irqsave(&its_dev->its->lock, flags); 1367 list_del(&its_dev->entry); 1368 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); 1369 kfree(its_dev->itt); 1370 kfree(its_dev); 1371 } 1372 1373 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq) 1374 { 1375 int idx; 1376 1377 idx = find_first_zero_bit(dev->event_map.lpi_map, 1378 dev->event_map.nr_lpis); 1379 if (idx == dev->event_map.nr_lpis) 1380 return -ENOSPC; 1381 1382 *hwirq = dev->event_map.lpi_base + idx; 1383 set_bit(idx, dev->event_map.lpi_map); 1384 1385 return 0; 1386 } 1387 1388 static int its_msi_prepare(struct irq_domain *domain, struct device *dev, 1389 int nvec, msi_alloc_info_t *info) 1390 { 1391 struct its_node *its; 1392 struct its_device *its_dev; 1393 struct msi_domain_info *msi_info; 1394 u32 dev_id; 1395 1396 /* 1397 * We ignore "dev" entierely, and rely on the dev_id that has 1398 * been passed via the scratchpad. This limits this domain's 1399 * usefulness to upper layers that definitely know that they 1400 * are built on top of the ITS. 1401 */ 1402 dev_id = info->scratchpad[0].ul; 1403 1404 msi_info = msi_get_domain_info(domain); 1405 its = msi_info->data; 1406 1407 its_dev = its_find_device(its, dev_id); 1408 if (its_dev) { 1409 /* 1410 * We already have seen this ID, probably through 1411 * another alias (PCI bridge of some sort). No need to 1412 * create the device. 1413 */ 1414 pr_debug("Reusing ITT for devID %x\n", dev_id); 1415 goto out; 1416 } 1417 1418 its_dev = its_create_device(its, dev_id, nvec); 1419 if (!its_dev) 1420 return -ENOMEM; 1421 1422 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); 1423 out: 1424 info->scratchpad[0].ptr = its_dev; 1425 return 0; 1426 } 1427 1428 static struct msi_domain_ops its_msi_domain_ops = { 1429 .msi_prepare = its_msi_prepare, 1430 }; 1431 1432 static int its_irq_gic_domain_alloc(struct irq_domain *domain, 1433 unsigned int virq, 1434 irq_hw_number_t hwirq) 1435 { 1436 struct irq_fwspec fwspec; 1437 1438 if (irq_domain_get_of_node(domain->parent)) { 1439 fwspec.fwnode = domain->parent->fwnode; 1440 fwspec.param_count = 3; 1441 fwspec.param[0] = GIC_IRQ_TYPE_LPI; 1442 fwspec.param[1] = hwirq; 1443 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 1444 } else if (is_fwnode_irqchip(domain->parent->fwnode)) { 1445 fwspec.fwnode = domain->parent->fwnode; 1446 fwspec.param_count = 2; 1447 fwspec.param[0] = hwirq; 1448 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 1449 } else { 1450 return -EINVAL; 1451 } 1452 1453 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 1454 } 1455 1456 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, 1457 unsigned int nr_irqs, void *args) 1458 { 1459 msi_alloc_info_t *info = args; 1460 struct its_device *its_dev = info->scratchpad[0].ptr; 1461 irq_hw_number_t hwirq; 1462 int err; 1463 int i; 1464 1465 for (i = 0; i < nr_irqs; i++) { 1466 err = its_alloc_device_irq(its_dev, &hwirq); 1467 if (err) 1468 return err; 1469 1470 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq); 1471 if (err) 1472 return err; 1473 1474 irq_domain_set_hwirq_and_chip(domain, virq + i, 1475 hwirq, &its_irq_chip, its_dev); 1476 pr_debug("ID:%d pID:%d vID:%d\n", 1477 (int)(hwirq - its_dev->event_map.lpi_base), 1478 (int) hwirq, virq + i); 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void its_irq_domain_activate(struct irq_domain *domain, 1485 struct irq_data *d) 1486 { 1487 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1488 u32 event = its_get_event_id(d); 1489 const struct cpumask *cpu_mask = cpu_online_mask; 1490 1491 /* get the cpu_mask of local node */ 1492 if (its_dev->its->numa_node >= 0) 1493 cpu_mask = cpumask_of_node(its_dev->its->numa_node); 1494 1495 /* Bind the LPI to the first possible CPU */ 1496 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask); 1497 1498 /* Map the GIC IRQ and event to the device */ 1499 its_send_mapvi(its_dev, d->hwirq, event); 1500 } 1501 1502 static void its_irq_domain_deactivate(struct irq_domain *domain, 1503 struct irq_data *d) 1504 { 1505 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1506 u32 event = its_get_event_id(d); 1507 1508 /* Stop the delivery of interrupts */ 1509 its_send_discard(its_dev, event); 1510 } 1511 1512 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, 1513 unsigned int nr_irqs) 1514 { 1515 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1516 struct its_device *its_dev = irq_data_get_irq_chip_data(d); 1517 int i; 1518 1519 for (i = 0; i < nr_irqs; i++) { 1520 struct irq_data *data = irq_domain_get_irq_data(domain, 1521 virq + i); 1522 u32 event = its_get_event_id(data); 1523 1524 /* Mark interrupt index as unused */ 1525 clear_bit(event, its_dev->event_map.lpi_map); 1526 1527 /* Nuke the entry in the domain */ 1528 irq_domain_reset_irq_data(data); 1529 } 1530 1531 /* If all interrupts have been freed, start mopping the floor */ 1532 if (bitmap_empty(its_dev->event_map.lpi_map, 1533 its_dev->event_map.nr_lpis)) { 1534 its_lpi_free(&its_dev->event_map); 1535 1536 /* Unmap device/itt */ 1537 its_send_mapd(its_dev, 0); 1538 its_free_device(its_dev); 1539 } 1540 1541 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 1542 } 1543 1544 static const struct irq_domain_ops its_domain_ops = { 1545 .alloc = its_irq_domain_alloc, 1546 .free = its_irq_domain_free, 1547 .activate = its_irq_domain_activate, 1548 .deactivate = its_irq_domain_deactivate, 1549 }; 1550 1551 static int its_force_quiescent(void __iomem *base) 1552 { 1553 u32 count = 1000000; /* 1s */ 1554 u32 val; 1555 1556 val = readl_relaxed(base + GITS_CTLR); 1557 /* 1558 * GIC architecture specification requires the ITS to be both 1559 * disabled and quiescent for writes to GITS_BASER<n> or 1560 * GITS_CBASER to not have UNPREDICTABLE results. 1561 */ 1562 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) 1563 return 0; 1564 1565 /* Disable the generation of all interrupts to this ITS */ 1566 val &= ~GITS_CTLR_ENABLE; 1567 writel_relaxed(val, base + GITS_CTLR); 1568 1569 /* Poll GITS_CTLR and wait until ITS becomes quiescent */ 1570 while (1) { 1571 val = readl_relaxed(base + GITS_CTLR); 1572 if (val & GITS_CTLR_QUIESCENT) 1573 return 0; 1574 1575 count--; 1576 if (!count) 1577 return -EBUSY; 1578 1579 cpu_relax(); 1580 udelay(1); 1581 } 1582 } 1583 1584 static void __maybe_unused its_enable_quirk_cavium_22375(void *data) 1585 { 1586 struct its_node *its = data; 1587 1588 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; 1589 } 1590 1591 static void __maybe_unused its_enable_quirk_cavium_23144(void *data) 1592 { 1593 struct its_node *its = data; 1594 1595 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; 1596 } 1597 1598 static const struct gic_quirk its_quirks[] = { 1599 #ifdef CONFIG_CAVIUM_ERRATUM_22375 1600 { 1601 .desc = "ITS: Cavium errata 22375, 24313", 1602 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1603 .mask = 0xffff0fff, 1604 .init = its_enable_quirk_cavium_22375, 1605 }, 1606 #endif 1607 #ifdef CONFIG_CAVIUM_ERRATUM_23144 1608 { 1609 .desc = "ITS: Cavium erratum 23144", 1610 .iidr = 0xa100034c, /* ThunderX pass 1.x */ 1611 .mask = 0xffff0fff, 1612 .init = its_enable_quirk_cavium_23144, 1613 }, 1614 #endif 1615 { 1616 } 1617 }; 1618 1619 static void its_enable_quirks(struct its_node *its) 1620 { 1621 u32 iidr = readl_relaxed(its->base + GITS_IIDR); 1622 1623 gic_enable_quirks(iidr, its_quirks, its); 1624 } 1625 1626 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) 1627 { 1628 struct irq_domain *inner_domain; 1629 struct msi_domain_info *info; 1630 1631 info = kzalloc(sizeof(*info), GFP_KERNEL); 1632 if (!info) 1633 return -ENOMEM; 1634 1635 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); 1636 if (!inner_domain) { 1637 kfree(info); 1638 return -ENOMEM; 1639 } 1640 1641 inner_domain->parent = its_parent; 1642 inner_domain->bus_token = DOMAIN_BUS_NEXUS; 1643 info->ops = &its_msi_domain_ops; 1644 info->data = its; 1645 inner_domain->host_data = info; 1646 1647 return 0; 1648 } 1649 1650 static int __init its_probe_one(struct resource *res, 1651 struct fwnode_handle *handle, int numa_node) 1652 { 1653 struct its_node *its; 1654 void __iomem *its_base; 1655 u32 val; 1656 u64 baser, tmp; 1657 int err; 1658 1659 its_base = ioremap(res->start, resource_size(res)); 1660 if (!its_base) { 1661 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); 1662 return -ENOMEM; 1663 } 1664 1665 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; 1666 if (val != 0x30 && val != 0x40) { 1667 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); 1668 err = -ENODEV; 1669 goto out_unmap; 1670 } 1671 1672 err = its_force_quiescent(its_base); 1673 if (err) { 1674 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); 1675 goto out_unmap; 1676 } 1677 1678 pr_info("ITS %pR\n", res); 1679 1680 its = kzalloc(sizeof(*its), GFP_KERNEL); 1681 if (!its) { 1682 err = -ENOMEM; 1683 goto out_unmap; 1684 } 1685 1686 raw_spin_lock_init(&its->lock); 1687 INIT_LIST_HEAD(&its->entry); 1688 INIT_LIST_HEAD(&its->its_device_list); 1689 its->base = its_base; 1690 its->phys_base = res->start; 1691 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1; 1692 its->numa_node = numa_node; 1693 1694 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL); 1695 if (!its->cmd_base) { 1696 err = -ENOMEM; 1697 goto out_free_its; 1698 } 1699 its->cmd_write = its->cmd_base; 1700 1701 its_enable_quirks(its); 1702 1703 err = its_alloc_tables(its); 1704 if (err) 1705 goto out_free_cmd; 1706 1707 err = its_alloc_collections(its); 1708 if (err) 1709 goto out_free_tables; 1710 1711 baser = (virt_to_phys(its->cmd_base) | 1712 GITS_CBASER_WaWb | 1713 GITS_CBASER_InnerShareable | 1714 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | 1715 GITS_CBASER_VALID); 1716 1717 writeq_relaxed(baser, its->base + GITS_CBASER); 1718 tmp = readq_relaxed(its->base + GITS_CBASER); 1719 1720 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { 1721 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { 1722 /* 1723 * The HW reports non-shareable, we must 1724 * remove the cacheability attributes as 1725 * well. 1726 */ 1727 baser &= ~(GITS_CBASER_SHAREABILITY_MASK | 1728 GITS_CBASER_CACHEABILITY_MASK); 1729 baser |= GITS_CBASER_nC; 1730 writeq_relaxed(baser, its->base + GITS_CBASER); 1731 } 1732 pr_info("ITS: using cache flushing for cmd queue\n"); 1733 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; 1734 } 1735 1736 writeq_relaxed(0, its->base + GITS_CWRITER); 1737 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR); 1738 1739 err = its_init_domain(handle, its); 1740 if (err) 1741 goto out_free_tables; 1742 1743 spin_lock(&its_lock); 1744 list_add(&its->entry, &its_nodes); 1745 spin_unlock(&its_lock); 1746 1747 return 0; 1748 1749 out_free_tables: 1750 its_free_tables(its); 1751 out_free_cmd: 1752 kfree(its->cmd_base); 1753 out_free_its: 1754 kfree(its); 1755 out_unmap: 1756 iounmap(its_base); 1757 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); 1758 return err; 1759 } 1760 1761 static bool gic_rdists_supports_plpis(void) 1762 { 1763 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); 1764 } 1765 1766 int its_cpu_init(void) 1767 { 1768 if (!list_empty(&its_nodes)) { 1769 if (!gic_rdists_supports_plpis()) { 1770 pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); 1771 return -ENXIO; 1772 } 1773 its_cpu_init_lpis(); 1774 its_cpu_init_collection(); 1775 } 1776 1777 return 0; 1778 } 1779 1780 static struct of_device_id its_device_id[] = { 1781 { .compatible = "arm,gic-v3-its", }, 1782 {}, 1783 }; 1784 1785 static int __init its_of_probe(struct device_node *node) 1786 { 1787 struct device_node *np; 1788 struct resource res; 1789 1790 for (np = of_find_matching_node(node, its_device_id); np; 1791 np = of_find_matching_node(np, its_device_id)) { 1792 if (!of_property_read_bool(np, "msi-controller")) { 1793 pr_warn("%s: no msi-controller property, ITS ignored\n", 1794 np->full_name); 1795 continue; 1796 } 1797 1798 if (of_address_to_resource(np, 0, &res)) { 1799 pr_warn("%s: no regs?\n", np->full_name); 1800 continue; 1801 } 1802 1803 its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); 1804 } 1805 return 0; 1806 } 1807 1808 #ifdef CONFIG_ACPI 1809 1810 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) 1811 1812 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header, 1813 const unsigned long end) 1814 { 1815 struct acpi_madt_generic_translator *its_entry; 1816 struct fwnode_handle *dom_handle; 1817 struct resource res; 1818 int err; 1819 1820 its_entry = (struct acpi_madt_generic_translator *)header; 1821 memset(&res, 0, sizeof(res)); 1822 res.start = its_entry->base_address; 1823 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; 1824 res.flags = IORESOURCE_MEM; 1825 1826 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address); 1827 if (!dom_handle) { 1828 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", 1829 &res.start); 1830 return -ENOMEM; 1831 } 1832 1833 err = iort_register_domain_token(its_entry->translation_id, dom_handle); 1834 if (err) { 1835 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", 1836 &res.start, its_entry->translation_id); 1837 goto dom_err; 1838 } 1839 1840 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE); 1841 if (!err) 1842 return 0; 1843 1844 iort_deregister_domain_token(its_entry->translation_id); 1845 dom_err: 1846 irq_domain_free_fwnode(dom_handle); 1847 return err; 1848 } 1849 1850 static void __init its_acpi_probe(void) 1851 { 1852 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, 1853 gic_acpi_parse_madt_its, 0); 1854 } 1855 #else 1856 static void __init its_acpi_probe(void) { } 1857 #endif 1858 1859 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, 1860 struct irq_domain *parent_domain) 1861 { 1862 struct device_node *of_node; 1863 1864 its_parent = parent_domain; 1865 of_node = to_of_node(handle); 1866 if (of_node) 1867 its_of_probe(of_node); 1868 else 1869 its_acpi_probe(); 1870 1871 if (list_empty(&its_nodes)) { 1872 pr_warn("ITS: No ITS available, not enabling LPIs\n"); 1873 return -ENXIO; 1874 } 1875 1876 gic_rdists = rdists; 1877 its_alloc_lpi_tables(); 1878 its_lpi_init(rdists->id_bits); 1879 1880 return 0; 1881 } 1882