xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 59024954a1e7e26b62680e1f2b5725249a6c09f7)
1 /*
2  * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/interrupt.h>
23 #include <linux/irqdomain.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/log2.h>
26 #include <linux/mm.h>
27 #include <linux/msi.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_pci.h>
32 #include <linux/of_platform.h>
33 #include <linux/percpu.h>
34 #include <linux/slab.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 
39 #include <asm/cacheflush.h>
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 
45 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
46 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
48 
49 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
50 
51 /*
52  * Collection structure - just an ID, and a redistributor address to
53  * ping. We use one per CPU as a bag of interrupts assigned to this
54  * CPU.
55  */
56 struct its_collection {
57 	u64			target_address;
58 	u16			col_id;
59 };
60 
61 /*
62  * The ITS_BASER structure - contains memory information, cached
63  * value of BASER register configuration and ITS page size.
64  */
65 struct its_baser {
66 	void		*base;
67 	u64		val;
68 	u32		order;
69 	u32		psz;
70 };
71 
72 /*
73  * The ITS structure - contains most of the infrastructure, with the
74  * top-level MSI domain, the command queue, the collections, and the
75  * list of devices writing to it.
76  */
77 struct its_node {
78 	raw_spinlock_t		lock;
79 	struct list_head	entry;
80 	void __iomem		*base;
81 	phys_addr_t		phys_base;
82 	struct its_cmd_block	*cmd_base;
83 	struct its_cmd_block	*cmd_write;
84 	struct its_baser	tables[GITS_BASER_NR_REGS];
85 	struct its_collection	*collections;
86 	struct list_head	its_device_list;
87 	u64			flags;
88 	u32			ite_size;
89 	u32			device_ids;
90 	int			numa_node;
91 };
92 
93 #define ITS_ITT_ALIGN		SZ_256
94 
95 /* Convert page order to size in bytes */
96 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
97 
98 struct event_lpi_map {
99 	unsigned long		*lpi_map;
100 	u16			*col_map;
101 	irq_hw_number_t		lpi_base;
102 	int			nr_lpis;
103 };
104 
105 /*
106  * The ITS view of a device - belongs to an ITS, a collection, owns an
107  * interrupt translation table, and a list of interrupts.
108  */
109 struct its_device {
110 	struct list_head	entry;
111 	struct its_node		*its;
112 	struct event_lpi_map	event_map;
113 	void			*itt;
114 	u32			nr_ites;
115 	u32			device_id;
116 };
117 
118 static LIST_HEAD(its_nodes);
119 static DEFINE_SPINLOCK(its_lock);
120 static struct rdists *gic_rdists;
121 static struct irq_domain *its_parent;
122 
123 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
124 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
125 
126 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
127 					       u32 event)
128 {
129 	struct its_node *its = its_dev->its;
130 
131 	return its->collections + its_dev->event_map.col_map[event];
132 }
133 
134 /*
135  * ITS command descriptors - parameters to be encoded in a command
136  * block.
137  */
138 struct its_cmd_desc {
139 	union {
140 		struct {
141 			struct its_device *dev;
142 			u32 event_id;
143 		} its_inv_cmd;
144 
145 		struct {
146 			struct its_device *dev;
147 			u32 event_id;
148 		} its_int_cmd;
149 
150 		struct {
151 			struct its_device *dev;
152 			int valid;
153 		} its_mapd_cmd;
154 
155 		struct {
156 			struct its_collection *col;
157 			int valid;
158 		} its_mapc_cmd;
159 
160 		struct {
161 			struct its_device *dev;
162 			u32 phys_id;
163 			u32 event_id;
164 		} its_mapvi_cmd;
165 
166 		struct {
167 			struct its_device *dev;
168 			struct its_collection *col;
169 			u32 event_id;
170 		} its_movi_cmd;
171 
172 		struct {
173 			struct its_device *dev;
174 			u32 event_id;
175 		} its_discard_cmd;
176 
177 		struct {
178 			struct its_collection *col;
179 		} its_invall_cmd;
180 	};
181 };
182 
183 /*
184  * The ITS command block, which is what the ITS actually parses.
185  */
186 struct its_cmd_block {
187 	u64	raw_cmd[4];
188 };
189 
190 #define ITS_CMD_QUEUE_SZ		SZ_64K
191 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
192 
193 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
194 						    struct its_cmd_desc *);
195 
196 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
197 {
198 	cmd->raw_cmd[0] &= ~0xffUL;
199 	cmd->raw_cmd[0] |= cmd_nr;
200 }
201 
202 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
203 {
204 	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
205 	cmd->raw_cmd[0] |= ((u64)devid) << 32;
206 }
207 
208 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
209 {
210 	cmd->raw_cmd[1] &= ~0xffffffffUL;
211 	cmd->raw_cmd[1] |= id;
212 }
213 
214 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
215 {
216 	cmd->raw_cmd[1] &= 0xffffffffUL;
217 	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
218 }
219 
220 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
221 {
222 	cmd->raw_cmd[1] &= ~0x1fUL;
223 	cmd->raw_cmd[1] |= size & 0x1f;
224 }
225 
226 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
227 {
228 	cmd->raw_cmd[2] &= ~0xffffffffffffUL;
229 	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
230 }
231 
232 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
233 {
234 	cmd->raw_cmd[2] &= ~(1UL << 63);
235 	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
236 }
237 
238 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
239 {
240 	cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
241 	cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
242 }
243 
244 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
245 {
246 	cmd->raw_cmd[2] &= ~0xffffUL;
247 	cmd->raw_cmd[2] |= col;
248 }
249 
250 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
251 {
252 	/* Let's fixup BE commands */
253 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
254 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
255 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
256 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
257 }
258 
259 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
260 						 struct its_cmd_desc *desc)
261 {
262 	unsigned long itt_addr;
263 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
264 
265 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
266 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
267 
268 	its_encode_cmd(cmd, GITS_CMD_MAPD);
269 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
270 	its_encode_size(cmd, size - 1);
271 	its_encode_itt(cmd, itt_addr);
272 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
273 
274 	its_fixup_cmd(cmd);
275 
276 	return NULL;
277 }
278 
279 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
280 						 struct its_cmd_desc *desc)
281 {
282 	its_encode_cmd(cmd, GITS_CMD_MAPC);
283 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
284 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
285 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
286 
287 	its_fixup_cmd(cmd);
288 
289 	return desc->its_mapc_cmd.col;
290 }
291 
292 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
293 						  struct its_cmd_desc *desc)
294 {
295 	struct its_collection *col;
296 
297 	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
298 			       desc->its_mapvi_cmd.event_id);
299 
300 	its_encode_cmd(cmd, GITS_CMD_MAPVI);
301 	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
302 	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
303 	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
304 	its_encode_collection(cmd, col->col_id);
305 
306 	its_fixup_cmd(cmd);
307 
308 	return col;
309 }
310 
311 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
312 						 struct its_cmd_desc *desc)
313 {
314 	struct its_collection *col;
315 
316 	col = dev_event_to_col(desc->its_movi_cmd.dev,
317 			       desc->its_movi_cmd.event_id);
318 
319 	its_encode_cmd(cmd, GITS_CMD_MOVI);
320 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
321 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
322 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
323 
324 	its_fixup_cmd(cmd);
325 
326 	return col;
327 }
328 
329 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
330 						    struct its_cmd_desc *desc)
331 {
332 	struct its_collection *col;
333 
334 	col = dev_event_to_col(desc->its_discard_cmd.dev,
335 			       desc->its_discard_cmd.event_id);
336 
337 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
338 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
339 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
340 
341 	its_fixup_cmd(cmd);
342 
343 	return col;
344 }
345 
346 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
347 						struct its_cmd_desc *desc)
348 {
349 	struct its_collection *col;
350 
351 	col = dev_event_to_col(desc->its_inv_cmd.dev,
352 			       desc->its_inv_cmd.event_id);
353 
354 	its_encode_cmd(cmd, GITS_CMD_INV);
355 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
356 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
357 
358 	its_fixup_cmd(cmd);
359 
360 	return col;
361 }
362 
363 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
364 						   struct its_cmd_desc *desc)
365 {
366 	its_encode_cmd(cmd, GITS_CMD_INVALL);
367 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
368 
369 	its_fixup_cmd(cmd);
370 
371 	return NULL;
372 }
373 
374 static u64 its_cmd_ptr_to_offset(struct its_node *its,
375 				 struct its_cmd_block *ptr)
376 {
377 	return (ptr - its->cmd_base) * sizeof(*ptr);
378 }
379 
380 static int its_queue_full(struct its_node *its)
381 {
382 	int widx;
383 	int ridx;
384 
385 	widx = its->cmd_write - its->cmd_base;
386 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
387 
388 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
389 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
390 		return 1;
391 
392 	return 0;
393 }
394 
395 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
396 {
397 	struct its_cmd_block *cmd;
398 	u32 count = 1000000;	/* 1s! */
399 
400 	while (its_queue_full(its)) {
401 		count--;
402 		if (!count) {
403 			pr_err_ratelimited("ITS queue not draining\n");
404 			return NULL;
405 		}
406 		cpu_relax();
407 		udelay(1);
408 	}
409 
410 	cmd = its->cmd_write++;
411 
412 	/* Handle queue wrapping */
413 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
414 		its->cmd_write = its->cmd_base;
415 
416 	return cmd;
417 }
418 
419 static struct its_cmd_block *its_post_commands(struct its_node *its)
420 {
421 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
422 
423 	writel_relaxed(wr, its->base + GITS_CWRITER);
424 
425 	return its->cmd_write;
426 }
427 
428 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
429 {
430 	/*
431 	 * Make sure the commands written to memory are observable by
432 	 * the ITS.
433 	 */
434 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
435 		__flush_dcache_area(cmd, sizeof(*cmd));
436 	else
437 		dsb(ishst);
438 }
439 
440 static void its_wait_for_range_completion(struct its_node *its,
441 					  struct its_cmd_block *from,
442 					  struct its_cmd_block *to)
443 {
444 	u64 rd_idx, from_idx, to_idx;
445 	u32 count = 1000000;	/* 1s! */
446 
447 	from_idx = its_cmd_ptr_to_offset(its, from);
448 	to_idx = its_cmd_ptr_to_offset(its, to);
449 
450 	while (1) {
451 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
452 		if (rd_idx >= to_idx || rd_idx < from_idx)
453 			break;
454 
455 		count--;
456 		if (!count) {
457 			pr_err_ratelimited("ITS queue timeout\n");
458 			return;
459 		}
460 		cpu_relax();
461 		udelay(1);
462 	}
463 }
464 
465 static void its_send_single_command(struct its_node *its,
466 				    its_cmd_builder_t builder,
467 				    struct its_cmd_desc *desc)
468 {
469 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
470 	struct its_collection *sync_col;
471 	unsigned long flags;
472 
473 	raw_spin_lock_irqsave(&its->lock, flags);
474 
475 	cmd = its_allocate_entry(its);
476 	if (!cmd) {		/* We're soooooo screewed... */
477 		pr_err_ratelimited("ITS can't allocate, dropping command\n");
478 		raw_spin_unlock_irqrestore(&its->lock, flags);
479 		return;
480 	}
481 	sync_col = builder(cmd, desc);
482 	its_flush_cmd(its, cmd);
483 
484 	if (sync_col) {
485 		sync_cmd = its_allocate_entry(its);
486 		if (!sync_cmd) {
487 			pr_err_ratelimited("ITS can't SYNC, skipping\n");
488 			goto post;
489 		}
490 		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
491 		its_encode_target(sync_cmd, sync_col->target_address);
492 		its_fixup_cmd(sync_cmd);
493 		its_flush_cmd(its, sync_cmd);
494 	}
495 
496 post:
497 	next_cmd = its_post_commands(its);
498 	raw_spin_unlock_irqrestore(&its->lock, flags);
499 
500 	its_wait_for_range_completion(its, cmd, next_cmd);
501 }
502 
503 static void its_send_inv(struct its_device *dev, u32 event_id)
504 {
505 	struct its_cmd_desc desc;
506 
507 	desc.its_inv_cmd.dev = dev;
508 	desc.its_inv_cmd.event_id = event_id;
509 
510 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
511 }
512 
513 static void its_send_mapd(struct its_device *dev, int valid)
514 {
515 	struct its_cmd_desc desc;
516 
517 	desc.its_mapd_cmd.dev = dev;
518 	desc.its_mapd_cmd.valid = !!valid;
519 
520 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
521 }
522 
523 static void its_send_mapc(struct its_node *its, struct its_collection *col,
524 			  int valid)
525 {
526 	struct its_cmd_desc desc;
527 
528 	desc.its_mapc_cmd.col = col;
529 	desc.its_mapc_cmd.valid = !!valid;
530 
531 	its_send_single_command(its, its_build_mapc_cmd, &desc);
532 }
533 
534 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
535 {
536 	struct its_cmd_desc desc;
537 
538 	desc.its_mapvi_cmd.dev = dev;
539 	desc.its_mapvi_cmd.phys_id = irq_id;
540 	desc.its_mapvi_cmd.event_id = id;
541 
542 	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
543 }
544 
545 static void its_send_movi(struct its_device *dev,
546 			  struct its_collection *col, u32 id)
547 {
548 	struct its_cmd_desc desc;
549 
550 	desc.its_movi_cmd.dev = dev;
551 	desc.its_movi_cmd.col = col;
552 	desc.its_movi_cmd.event_id = id;
553 
554 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
555 }
556 
557 static void its_send_discard(struct its_device *dev, u32 id)
558 {
559 	struct its_cmd_desc desc;
560 
561 	desc.its_discard_cmd.dev = dev;
562 	desc.its_discard_cmd.event_id = id;
563 
564 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
565 }
566 
567 static void its_send_invall(struct its_node *its, struct its_collection *col)
568 {
569 	struct its_cmd_desc desc;
570 
571 	desc.its_invall_cmd.col = col;
572 
573 	its_send_single_command(its, its_build_invall_cmd, &desc);
574 }
575 
576 /*
577  * irqchip functions - assumes MSI, mostly.
578  */
579 
580 static inline u32 its_get_event_id(struct irq_data *d)
581 {
582 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
583 	return d->hwirq - its_dev->event_map.lpi_base;
584 }
585 
586 static void lpi_set_config(struct irq_data *d, bool enable)
587 {
588 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
589 	irq_hw_number_t hwirq = d->hwirq;
590 	u32 id = its_get_event_id(d);
591 	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
592 
593 	if (enable)
594 		*cfg |= LPI_PROP_ENABLED;
595 	else
596 		*cfg &= ~LPI_PROP_ENABLED;
597 
598 	/*
599 	 * Make the above write visible to the redistributors.
600 	 * And yes, we're flushing exactly: One. Single. Byte.
601 	 * Humpf...
602 	 */
603 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
604 		__flush_dcache_area(cfg, sizeof(*cfg));
605 	else
606 		dsb(ishst);
607 	its_send_inv(its_dev, id);
608 }
609 
610 static void its_mask_irq(struct irq_data *d)
611 {
612 	lpi_set_config(d, false);
613 }
614 
615 static void its_unmask_irq(struct irq_data *d)
616 {
617 	lpi_set_config(d, true);
618 }
619 
620 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
621 			    bool force)
622 {
623 	unsigned int cpu;
624 	const struct cpumask *cpu_mask = cpu_online_mask;
625 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
626 	struct its_collection *target_col;
627 	u32 id = its_get_event_id(d);
628 
629        /* lpi cannot be routed to a redistributor that is on a foreign node */
630 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
631 		if (its_dev->its->numa_node >= 0) {
632 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
633 			if (!cpumask_intersects(mask_val, cpu_mask))
634 				return -EINVAL;
635 		}
636 	}
637 
638 	cpu = cpumask_any_and(mask_val, cpu_mask);
639 
640 	if (cpu >= nr_cpu_ids)
641 		return -EINVAL;
642 
643 	target_col = &its_dev->its->collections[cpu];
644 	its_send_movi(its_dev, target_col, id);
645 	its_dev->event_map.col_map[id] = cpu;
646 
647 	return IRQ_SET_MASK_OK_DONE;
648 }
649 
650 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
651 {
652 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
653 	struct its_node *its;
654 	u64 addr;
655 
656 	its = its_dev->its;
657 	addr = its->phys_base + GITS_TRANSLATER;
658 
659 	msg->address_lo		= addr & ((1UL << 32) - 1);
660 	msg->address_hi		= addr >> 32;
661 	msg->data		= its_get_event_id(d);
662 }
663 
664 static struct irq_chip its_irq_chip = {
665 	.name			= "ITS",
666 	.irq_mask		= its_mask_irq,
667 	.irq_unmask		= its_unmask_irq,
668 	.irq_eoi		= irq_chip_eoi_parent,
669 	.irq_set_affinity	= its_set_affinity,
670 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
671 };
672 
673 /*
674  * How we allocate LPIs:
675  *
676  * The GIC has id_bits bits for interrupt identifiers. From there, we
677  * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
678  * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
679  * bits to the right.
680  *
681  * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
682  */
683 #define IRQS_PER_CHUNK_SHIFT	5
684 #define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
685 
686 static unsigned long *lpi_bitmap;
687 static u32 lpi_chunks;
688 static DEFINE_SPINLOCK(lpi_lock);
689 
690 static int its_lpi_to_chunk(int lpi)
691 {
692 	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
693 }
694 
695 static int its_chunk_to_lpi(int chunk)
696 {
697 	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
698 }
699 
700 static int __init its_lpi_init(u32 id_bits)
701 {
702 	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
703 
704 	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
705 			     GFP_KERNEL);
706 	if (!lpi_bitmap) {
707 		lpi_chunks = 0;
708 		return -ENOMEM;
709 	}
710 
711 	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
712 	return 0;
713 }
714 
715 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
716 {
717 	unsigned long *bitmap = NULL;
718 	int chunk_id;
719 	int nr_chunks;
720 	int i;
721 
722 	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
723 
724 	spin_lock(&lpi_lock);
725 
726 	do {
727 		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
728 						      0, nr_chunks, 0);
729 		if (chunk_id < lpi_chunks)
730 			break;
731 
732 		nr_chunks--;
733 	} while (nr_chunks > 0);
734 
735 	if (!nr_chunks)
736 		goto out;
737 
738 	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
739 			 GFP_ATOMIC);
740 	if (!bitmap)
741 		goto out;
742 
743 	for (i = 0; i < nr_chunks; i++)
744 		set_bit(chunk_id + i, lpi_bitmap);
745 
746 	*base = its_chunk_to_lpi(chunk_id);
747 	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
748 
749 out:
750 	spin_unlock(&lpi_lock);
751 
752 	if (!bitmap)
753 		*base = *nr_ids = 0;
754 
755 	return bitmap;
756 }
757 
758 static void its_lpi_free(struct event_lpi_map *map)
759 {
760 	int base = map->lpi_base;
761 	int nr_ids = map->nr_lpis;
762 	int lpi;
763 
764 	spin_lock(&lpi_lock);
765 
766 	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
767 		int chunk = its_lpi_to_chunk(lpi);
768 		BUG_ON(chunk > lpi_chunks);
769 		if (test_bit(chunk, lpi_bitmap)) {
770 			clear_bit(chunk, lpi_bitmap);
771 		} else {
772 			pr_err("Bad LPI chunk %d\n", chunk);
773 		}
774 	}
775 
776 	spin_unlock(&lpi_lock);
777 
778 	kfree(map->lpi_map);
779 	kfree(map->col_map);
780 }
781 
782 /*
783  * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
784  * deal with (one configuration byte per interrupt). PENDBASE has to
785  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
786  */
787 #define LPI_PROPBASE_SZ		SZ_64K
788 #define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
789 
790 /*
791  * This is how many bits of ID we need, including the useless ones.
792  */
793 #define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
794 
795 #define LPI_PROP_DEFAULT_PRIO	0xa0
796 
797 static int __init its_alloc_lpi_tables(void)
798 {
799 	phys_addr_t paddr;
800 
801 	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
802 					   get_order(LPI_PROPBASE_SZ));
803 	if (!gic_rdists->prop_page) {
804 		pr_err("Failed to allocate PROPBASE\n");
805 		return -ENOMEM;
806 	}
807 
808 	paddr = page_to_phys(gic_rdists->prop_page);
809 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
810 
811 	/* Priority 0xa0, Group-1, disabled */
812 	memset(page_address(gic_rdists->prop_page),
813 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
814 	       LPI_PROPBASE_SZ);
815 
816 	/* Make sure the GIC will observe the written configuration */
817 	__flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
818 
819 	return 0;
820 }
821 
822 static const char *its_base_type_string[] = {
823 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
824 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
825 	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
826 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
827 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
828 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
829 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
830 };
831 
832 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
833 {
834 	u32 idx = baser - its->tables;
835 
836 	return readq_relaxed(its->base + GITS_BASER + (idx << 3));
837 }
838 
839 static void its_write_baser(struct its_node *its, struct its_baser *baser,
840 			    u64 val)
841 {
842 	u32 idx = baser - its->tables;
843 
844 	writeq_relaxed(val, its->base + GITS_BASER + (idx << 3));
845 	baser->val = its_read_baser(its, baser);
846 }
847 
848 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
849 			   u64 cache, u64 shr, u32 psz, u32 order,
850 			   bool indirect)
851 {
852 	u64 val = its_read_baser(its, baser);
853 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
854 	u64 type = GITS_BASER_TYPE(val);
855 	u32 alloc_pages;
856 	void *base;
857 	u64 tmp;
858 
859 retry_alloc_baser:
860 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
861 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
862 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
863 			&its->phys_base, its_base_type_string[type],
864 			alloc_pages, GITS_BASER_PAGES_MAX);
865 		alloc_pages = GITS_BASER_PAGES_MAX;
866 		order = get_order(GITS_BASER_PAGES_MAX * psz);
867 	}
868 
869 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
870 	if (!base)
871 		return -ENOMEM;
872 
873 retry_baser:
874 	val = (virt_to_phys(base)				 |
875 		(type << GITS_BASER_TYPE_SHIFT)			 |
876 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
877 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
878 		cache						 |
879 		shr						 |
880 		GITS_BASER_VALID);
881 
882 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
883 
884 	switch (psz) {
885 	case SZ_4K:
886 		val |= GITS_BASER_PAGE_SIZE_4K;
887 		break;
888 	case SZ_16K:
889 		val |= GITS_BASER_PAGE_SIZE_16K;
890 		break;
891 	case SZ_64K:
892 		val |= GITS_BASER_PAGE_SIZE_64K;
893 		break;
894 	}
895 
896 	its_write_baser(its, baser, val);
897 	tmp = baser->val;
898 
899 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
900 		/*
901 		 * Shareability didn't stick. Just use
902 		 * whatever the read reported, which is likely
903 		 * to be the only thing this redistributor
904 		 * supports. If that's zero, make it
905 		 * non-cacheable as well.
906 		 */
907 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
908 		if (!shr) {
909 			cache = GITS_BASER_nC;
910 			__flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
911 		}
912 		goto retry_baser;
913 	}
914 
915 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
916 		/*
917 		 * Page size didn't stick. Let's try a smaller
918 		 * size and retry. If we reach 4K, then
919 		 * something is horribly wrong...
920 		 */
921 		free_pages((unsigned long)base, order);
922 		baser->base = NULL;
923 
924 		switch (psz) {
925 		case SZ_16K:
926 			psz = SZ_4K;
927 			goto retry_alloc_baser;
928 		case SZ_64K:
929 			psz = SZ_16K;
930 			goto retry_alloc_baser;
931 		}
932 	}
933 
934 	if (val != tmp) {
935 		pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n",
936 		       &its->phys_base, its_base_type_string[type],
937 		       (unsigned long) val, (unsigned long) tmp);
938 		free_pages((unsigned long)base, order);
939 		return -ENXIO;
940 	}
941 
942 	baser->order = order;
943 	baser->base = base;
944 	baser->psz = psz;
945 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
946 
947 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
948 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp),
949 		its_base_type_string[type],
950 		(unsigned long)virt_to_phys(base),
951 		indirect ? "indirect" : "flat", (int)esz,
952 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
953 
954 	return 0;
955 }
956 
957 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
958 				   u32 psz, u32 *order)
959 {
960 	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
961 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
962 	u32 ids = its->device_ids;
963 	u32 new_order = *order;
964 	bool indirect = false;
965 
966 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
967 	if ((esz << ids) > (psz * 2)) {
968 		/*
969 		 * Find out whether hw supports a single or two-level table by
970 		 * table by reading bit at offset '62' after writing '1' to it.
971 		 */
972 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
973 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
974 
975 		if (indirect) {
976 			/*
977 			 * The size of the lvl2 table is equal to ITS page size
978 			 * which is 'psz'. For computing lvl1 table size,
979 			 * subtract ID bits that sparse lvl2 table from 'ids'
980 			 * which is reported by ITS hardware times lvl1 table
981 			 * entry size.
982 			 */
983 			ids -= ilog2(psz / esz);
984 			esz = GITS_LVL1_ENTRY_SIZE;
985 		}
986 	}
987 
988 	/*
989 	 * Allocate as many entries as required to fit the
990 	 * range of device IDs that the ITS can grok... The ID
991 	 * space being incredibly sparse, this results in a
992 	 * massive waste of memory if two-level device table
993 	 * feature is not supported by hardware.
994 	 */
995 	new_order = max_t(u32, get_order(esz << ids), new_order);
996 	if (new_order >= MAX_ORDER) {
997 		new_order = MAX_ORDER - 1;
998 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz);
999 		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1000 			&its->phys_base, its->device_ids, ids);
1001 	}
1002 
1003 	*order = new_order;
1004 
1005 	return indirect;
1006 }
1007 
1008 static void its_free_tables(struct its_node *its)
1009 {
1010 	int i;
1011 
1012 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1013 		if (its->tables[i].base) {
1014 			free_pages((unsigned long)its->tables[i].base,
1015 				   its->tables[i].order);
1016 			its->tables[i].base = NULL;
1017 		}
1018 	}
1019 }
1020 
1021 static int its_alloc_tables(struct its_node *its)
1022 {
1023 	u64 typer = readq_relaxed(its->base + GITS_TYPER);
1024 	u32 ids = GITS_TYPER_DEVBITS(typer);
1025 	u64 shr = GITS_BASER_InnerShareable;
1026 	u64 cache = GITS_BASER_WaWb;
1027 	u32 psz = SZ_64K;
1028 	int err, i;
1029 
1030 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1031 		/*
1032 		* erratum 22375: only alloc 8MB table size
1033 		* erratum 24313: ignore memory access type
1034 		*/
1035 		cache   = GITS_BASER_nCnB;
1036 		ids     = 0x14;                 /* 20 bits, 8MB */
1037 	}
1038 
1039 	its->device_ids = ids;
1040 
1041 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1042 		struct its_baser *baser = its->tables + i;
1043 		u64 val = its_read_baser(its, baser);
1044 		u64 type = GITS_BASER_TYPE(val);
1045 		u32 order = get_order(psz);
1046 		bool indirect = false;
1047 
1048 		if (type == GITS_BASER_TYPE_NONE)
1049 			continue;
1050 
1051 		if (type == GITS_BASER_TYPE_DEVICE)
1052 			indirect = its_parse_baser_device(its, baser, psz, &order);
1053 
1054 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1055 		if (err < 0) {
1056 			its_free_tables(its);
1057 			return err;
1058 		}
1059 
1060 		/* Update settings which will be used for next BASERn */
1061 		psz = baser->psz;
1062 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1063 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 static int its_alloc_collections(struct its_node *its)
1070 {
1071 	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1072 				   GFP_KERNEL);
1073 	if (!its->collections)
1074 		return -ENOMEM;
1075 
1076 	return 0;
1077 }
1078 
1079 static void its_cpu_init_lpis(void)
1080 {
1081 	void __iomem *rbase = gic_data_rdist_rd_base();
1082 	struct page *pend_page;
1083 	u64 val, tmp;
1084 
1085 	/* If we didn't allocate the pending table yet, do it now */
1086 	pend_page = gic_data_rdist()->pend_page;
1087 	if (!pend_page) {
1088 		phys_addr_t paddr;
1089 		/*
1090 		 * The pending pages have to be at least 64kB aligned,
1091 		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1092 		 */
1093 		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1094 					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1095 		if (!pend_page) {
1096 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1097 			       smp_processor_id());
1098 			return;
1099 		}
1100 
1101 		/* Make sure the GIC will observe the zero-ed page */
1102 		__flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1103 
1104 		paddr = page_to_phys(pend_page);
1105 		pr_info("CPU%d: using LPI pending table @%pa\n",
1106 			smp_processor_id(), &paddr);
1107 		gic_data_rdist()->pend_page = pend_page;
1108 	}
1109 
1110 	/* Disable LPIs */
1111 	val = readl_relaxed(rbase + GICR_CTLR);
1112 	val &= ~GICR_CTLR_ENABLE_LPIS;
1113 	writel_relaxed(val, rbase + GICR_CTLR);
1114 
1115 	/*
1116 	 * Make sure any change to the table is observable by the GIC.
1117 	 */
1118 	dsb(sy);
1119 
1120 	/* set PROPBASE */
1121 	val = (page_to_phys(gic_rdists->prop_page) |
1122 	       GICR_PROPBASER_InnerShareable |
1123 	       GICR_PROPBASER_WaWb |
1124 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1125 
1126 	writeq_relaxed(val, rbase + GICR_PROPBASER);
1127 	tmp = readq_relaxed(rbase + GICR_PROPBASER);
1128 
1129 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1130 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1131 			/*
1132 			 * The HW reports non-shareable, we must
1133 			 * remove the cacheability attributes as
1134 			 * well.
1135 			 */
1136 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1137 				 GICR_PROPBASER_CACHEABILITY_MASK);
1138 			val |= GICR_PROPBASER_nC;
1139 			writeq_relaxed(val, rbase + GICR_PROPBASER);
1140 		}
1141 		pr_info_once("GIC: using cache flushing for LPI property table\n");
1142 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1143 	}
1144 
1145 	/* set PENDBASE */
1146 	val = (page_to_phys(pend_page) |
1147 	       GICR_PENDBASER_InnerShareable |
1148 	       GICR_PENDBASER_WaWb);
1149 
1150 	writeq_relaxed(val, rbase + GICR_PENDBASER);
1151 	tmp = readq_relaxed(rbase + GICR_PENDBASER);
1152 
1153 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1154 		/*
1155 		 * The HW reports non-shareable, we must remove the
1156 		 * cacheability attributes as well.
1157 		 */
1158 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1159 			 GICR_PENDBASER_CACHEABILITY_MASK);
1160 		val |= GICR_PENDBASER_nC;
1161 		writeq_relaxed(val, rbase + GICR_PENDBASER);
1162 	}
1163 
1164 	/* Enable LPIs */
1165 	val = readl_relaxed(rbase + GICR_CTLR);
1166 	val |= GICR_CTLR_ENABLE_LPIS;
1167 	writel_relaxed(val, rbase + GICR_CTLR);
1168 
1169 	/* Make sure the GIC has seen the above */
1170 	dsb(sy);
1171 }
1172 
1173 static void its_cpu_init_collection(void)
1174 {
1175 	struct its_node *its;
1176 	int cpu;
1177 
1178 	spin_lock(&its_lock);
1179 	cpu = smp_processor_id();
1180 
1181 	list_for_each_entry(its, &its_nodes, entry) {
1182 		u64 target;
1183 
1184 		/* avoid cross node collections and its mapping */
1185 		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1186 			struct device_node *cpu_node;
1187 
1188 			cpu_node = of_get_cpu_node(cpu, NULL);
1189 			if (its->numa_node != NUMA_NO_NODE &&
1190 				its->numa_node != of_node_to_nid(cpu_node))
1191 				continue;
1192 		}
1193 
1194 		/*
1195 		 * We now have to bind each collection to its target
1196 		 * redistributor.
1197 		 */
1198 		if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1199 			/*
1200 			 * This ITS wants the physical address of the
1201 			 * redistributor.
1202 			 */
1203 			target = gic_data_rdist()->phys_base;
1204 		} else {
1205 			/*
1206 			 * This ITS wants a linear CPU number.
1207 			 */
1208 			target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1209 			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1210 		}
1211 
1212 		/* Perform collection mapping */
1213 		its->collections[cpu].target_address = target;
1214 		its->collections[cpu].col_id = cpu;
1215 
1216 		its_send_mapc(its, &its->collections[cpu], 1);
1217 		its_send_invall(its, &its->collections[cpu]);
1218 	}
1219 
1220 	spin_unlock(&its_lock);
1221 }
1222 
1223 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1224 {
1225 	struct its_device *its_dev = NULL, *tmp;
1226 	unsigned long flags;
1227 
1228 	raw_spin_lock_irqsave(&its->lock, flags);
1229 
1230 	list_for_each_entry(tmp, &its->its_device_list, entry) {
1231 		if (tmp->device_id == dev_id) {
1232 			its_dev = tmp;
1233 			break;
1234 		}
1235 	}
1236 
1237 	raw_spin_unlock_irqrestore(&its->lock, flags);
1238 
1239 	return its_dev;
1240 }
1241 
1242 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1243 {
1244 	int i;
1245 
1246 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1247 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1248 			return &its->tables[i];
1249 	}
1250 
1251 	return NULL;
1252 }
1253 
1254 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1255 {
1256 	struct its_baser *baser;
1257 	struct page *page;
1258 	u32 esz, idx;
1259 	__le64 *table;
1260 
1261 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1262 
1263 	/* Don't allow device id that exceeds ITS hardware limit */
1264 	if (!baser)
1265 		return (ilog2(dev_id) < its->device_ids);
1266 
1267 	/* Don't allow device id that exceeds single, flat table limit */
1268 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1269 	if (!(baser->val & GITS_BASER_INDIRECT))
1270 		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1271 
1272 	/* Compute 1st level table index & check if that exceeds table limit */
1273 	idx = dev_id >> ilog2(baser->psz / esz);
1274 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1275 		return false;
1276 
1277 	table = baser->base;
1278 
1279 	/* Allocate memory for 2nd level table */
1280 	if (!table[idx]) {
1281 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1282 		if (!page)
1283 			return false;
1284 
1285 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1286 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1287 			__flush_dcache_area(page_address(page), baser->psz);
1288 
1289 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1290 
1291 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1292 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1293 			__flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE);
1294 
1295 		/* Ensure updated table contents are visible to ITS hardware */
1296 		dsb(sy);
1297 	}
1298 
1299 	return true;
1300 }
1301 
1302 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1303 					    int nvecs)
1304 {
1305 	struct its_device *dev;
1306 	unsigned long *lpi_map;
1307 	unsigned long flags;
1308 	u16 *col_map = NULL;
1309 	void *itt;
1310 	int lpi_base;
1311 	int nr_lpis;
1312 	int nr_ites;
1313 	int sz;
1314 
1315 	if (!its_alloc_device_table(its, dev_id))
1316 		return NULL;
1317 
1318 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1319 	/*
1320 	 * At least one bit of EventID is being used, hence a minimum
1321 	 * of two entries. No, the architecture doesn't let you
1322 	 * express an ITT with a single entry.
1323 	 */
1324 	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1325 	sz = nr_ites * its->ite_size;
1326 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1327 	itt = kzalloc(sz, GFP_KERNEL);
1328 	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1329 	if (lpi_map)
1330 		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1331 
1332 	if (!dev || !itt || !lpi_map || !col_map) {
1333 		kfree(dev);
1334 		kfree(itt);
1335 		kfree(lpi_map);
1336 		kfree(col_map);
1337 		return NULL;
1338 	}
1339 
1340 	__flush_dcache_area(itt, sz);
1341 
1342 	dev->its = its;
1343 	dev->itt = itt;
1344 	dev->nr_ites = nr_ites;
1345 	dev->event_map.lpi_map = lpi_map;
1346 	dev->event_map.col_map = col_map;
1347 	dev->event_map.lpi_base = lpi_base;
1348 	dev->event_map.nr_lpis = nr_lpis;
1349 	dev->device_id = dev_id;
1350 	INIT_LIST_HEAD(&dev->entry);
1351 
1352 	raw_spin_lock_irqsave(&its->lock, flags);
1353 	list_add(&dev->entry, &its->its_device_list);
1354 	raw_spin_unlock_irqrestore(&its->lock, flags);
1355 
1356 	/* Map device to its ITT */
1357 	its_send_mapd(dev, 1);
1358 
1359 	return dev;
1360 }
1361 
1362 static void its_free_device(struct its_device *its_dev)
1363 {
1364 	unsigned long flags;
1365 
1366 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1367 	list_del(&its_dev->entry);
1368 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1369 	kfree(its_dev->itt);
1370 	kfree(its_dev);
1371 }
1372 
1373 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1374 {
1375 	int idx;
1376 
1377 	idx = find_first_zero_bit(dev->event_map.lpi_map,
1378 				  dev->event_map.nr_lpis);
1379 	if (idx == dev->event_map.nr_lpis)
1380 		return -ENOSPC;
1381 
1382 	*hwirq = dev->event_map.lpi_base + idx;
1383 	set_bit(idx, dev->event_map.lpi_map);
1384 
1385 	return 0;
1386 }
1387 
1388 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1389 			   int nvec, msi_alloc_info_t *info)
1390 {
1391 	struct its_node *its;
1392 	struct its_device *its_dev;
1393 	struct msi_domain_info *msi_info;
1394 	u32 dev_id;
1395 
1396 	/*
1397 	 * We ignore "dev" entierely, and rely on the dev_id that has
1398 	 * been passed via the scratchpad. This limits this domain's
1399 	 * usefulness to upper layers that definitely know that they
1400 	 * are built on top of the ITS.
1401 	 */
1402 	dev_id = info->scratchpad[0].ul;
1403 
1404 	msi_info = msi_get_domain_info(domain);
1405 	its = msi_info->data;
1406 
1407 	its_dev = its_find_device(its, dev_id);
1408 	if (its_dev) {
1409 		/*
1410 		 * We already have seen this ID, probably through
1411 		 * another alias (PCI bridge of some sort). No need to
1412 		 * create the device.
1413 		 */
1414 		pr_debug("Reusing ITT for devID %x\n", dev_id);
1415 		goto out;
1416 	}
1417 
1418 	its_dev = its_create_device(its, dev_id, nvec);
1419 	if (!its_dev)
1420 		return -ENOMEM;
1421 
1422 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1423 out:
1424 	info->scratchpad[0].ptr = its_dev;
1425 	return 0;
1426 }
1427 
1428 static struct msi_domain_ops its_msi_domain_ops = {
1429 	.msi_prepare	= its_msi_prepare,
1430 };
1431 
1432 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1433 				    unsigned int virq,
1434 				    irq_hw_number_t hwirq)
1435 {
1436 	struct irq_fwspec fwspec;
1437 
1438 	if (irq_domain_get_of_node(domain->parent)) {
1439 		fwspec.fwnode = domain->parent->fwnode;
1440 		fwspec.param_count = 3;
1441 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1442 		fwspec.param[1] = hwirq;
1443 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1444 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1445 		fwspec.fwnode = domain->parent->fwnode;
1446 		fwspec.param_count = 2;
1447 		fwspec.param[0] = hwirq;
1448 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1449 	} else {
1450 		return -EINVAL;
1451 	}
1452 
1453 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1454 }
1455 
1456 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1457 				unsigned int nr_irqs, void *args)
1458 {
1459 	msi_alloc_info_t *info = args;
1460 	struct its_device *its_dev = info->scratchpad[0].ptr;
1461 	irq_hw_number_t hwirq;
1462 	int err;
1463 	int i;
1464 
1465 	for (i = 0; i < nr_irqs; i++) {
1466 		err = its_alloc_device_irq(its_dev, &hwirq);
1467 		if (err)
1468 			return err;
1469 
1470 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1471 		if (err)
1472 			return err;
1473 
1474 		irq_domain_set_hwirq_and_chip(domain, virq + i,
1475 					      hwirq, &its_irq_chip, its_dev);
1476 		pr_debug("ID:%d pID:%d vID:%d\n",
1477 			 (int)(hwirq - its_dev->event_map.lpi_base),
1478 			 (int) hwirq, virq + i);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static void its_irq_domain_activate(struct irq_domain *domain,
1485 				    struct irq_data *d)
1486 {
1487 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1488 	u32 event = its_get_event_id(d);
1489 	const struct cpumask *cpu_mask = cpu_online_mask;
1490 
1491 	/* get the cpu_mask of local node */
1492 	if (its_dev->its->numa_node >= 0)
1493 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1494 
1495 	/* Bind the LPI to the first possible CPU */
1496 	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1497 
1498 	/* Map the GIC IRQ and event to the device */
1499 	its_send_mapvi(its_dev, d->hwirq, event);
1500 }
1501 
1502 static void its_irq_domain_deactivate(struct irq_domain *domain,
1503 				      struct irq_data *d)
1504 {
1505 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1506 	u32 event = its_get_event_id(d);
1507 
1508 	/* Stop the delivery of interrupts */
1509 	its_send_discard(its_dev, event);
1510 }
1511 
1512 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1513 				unsigned int nr_irqs)
1514 {
1515 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1516 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1517 	int i;
1518 
1519 	for (i = 0; i < nr_irqs; i++) {
1520 		struct irq_data *data = irq_domain_get_irq_data(domain,
1521 								virq + i);
1522 		u32 event = its_get_event_id(data);
1523 
1524 		/* Mark interrupt index as unused */
1525 		clear_bit(event, its_dev->event_map.lpi_map);
1526 
1527 		/* Nuke the entry in the domain */
1528 		irq_domain_reset_irq_data(data);
1529 	}
1530 
1531 	/* If all interrupts have been freed, start mopping the floor */
1532 	if (bitmap_empty(its_dev->event_map.lpi_map,
1533 			 its_dev->event_map.nr_lpis)) {
1534 		its_lpi_free(&its_dev->event_map);
1535 
1536 		/* Unmap device/itt */
1537 		its_send_mapd(its_dev, 0);
1538 		its_free_device(its_dev);
1539 	}
1540 
1541 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1542 }
1543 
1544 static const struct irq_domain_ops its_domain_ops = {
1545 	.alloc			= its_irq_domain_alloc,
1546 	.free			= its_irq_domain_free,
1547 	.activate		= its_irq_domain_activate,
1548 	.deactivate		= its_irq_domain_deactivate,
1549 };
1550 
1551 static int its_force_quiescent(void __iomem *base)
1552 {
1553 	u32 count = 1000000;	/* 1s */
1554 	u32 val;
1555 
1556 	val = readl_relaxed(base + GITS_CTLR);
1557 	/*
1558 	 * GIC architecture specification requires the ITS to be both
1559 	 * disabled and quiescent for writes to GITS_BASER<n> or
1560 	 * GITS_CBASER to not have UNPREDICTABLE results.
1561 	 */
1562 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1563 		return 0;
1564 
1565 	/* Disable the generation of all interrupts to this ITS */
1566 	val &= ~GITS_CTLR_ENABLE;
1567 	writel_relaxed(val, base + GITS_CTLR);
1568 
1569 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1570 	while (1) {
1571 		val = readl_relaxed(base + GITS_CTLR);
1572 		if (val & GITS_CTLR_QUIESCENT)
1573 			return 0;
1574 
1575 		count--;
1576 		if (!count)
1577 			return -EBUSY;
1578 
1579 		cpu_relax();
1580 		udelay(1);
1581 	}
1582 }
1583 
1584 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1585 {
1586 	struct its_node *its = data;
1587 
1588 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1589 }
1590 
1591 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1592 {
1593 	struct its_node *its = data;
1594 
1595 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1596 }
1597 
1598 static const struct gic_quirk its_quirks[] = {
1599 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1600 	{
1601 		.desc	= "ITS: Cavium errata 22375, 24313",
1602 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1603 		.mask	= 0xffff0fff,
1604 		.init	= its_enable_quirk_cavium_22375,
1605 	},
1606 #endif
1607 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1608 	{
1609 		.desc	= "ITS: Cavium erratum 23144",
1610 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1611 		.mask	= 0xffff0fff,
1612 		.init	= its_enable_quirk_cavium_23144,
1613 	},
1614 #endif
1615 	{
1616 	}
1617 };
1618 
1619 static void its_enable_quirks(struct its_node *its)
1620 {
1621 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1622 
1623 	gic_enable_quirks(iidr, its_quirks, its);
1624 }
1625 
1626 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1627 {
1628 	struct irq_domain *inner_domain;
1629 	struct msi_domain_info *info;
1630 
1631 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1632 	if (!info)
1633 		return -ENOMEM;
1634 
1635 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1636 	if (!inner_domain) {
1637 		kfree(info);
1638 		return -ENOMEM;
1639 	}
1640 
1641 	inner_domain->parent = its_parent;
1642 	inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1643 	info->ops = &its_msi_domain_ops;
1644 	info->data = its;
1645 	inner_domain->host_data = info;
1646 
1647 	return 0;
1648 }
1649 
1650 static int __init its_probe_one(struct resource *res,
1651 				struct fwnode_handle *handle, int numa_node)
1652 {
1653 	struct its_node *its;
1654 	void __iomem *its_base;
1655 	u32 val;
1656 	u64 baser, tmp;
1657 	int err;
1658 
1659 	its_base = ioremap(res->start, resource_size(res));
1660 	if (!its_base) {
1661 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1662 		return -ENOMEM;
1663 	}
1664 
1665 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1666 	if (val != 0x30 && val != 0x40) {
1667 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1668 		err = -ENODEV;
1669 		goto out_unmap;
1670 	}
1671 
1672 	err = its_force_quiescent(its_base);
1673 	if (err) {
1674 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1675 		goto out_unmap;
1676 	}
1677 
1678 	pr_info("ITS %pR\n", res);
1679 
1680 	its = kzalloc(sizeof(*its), GFP_KERNEL);
1681 	if (!its) {
1682 		err = -ENOMEM;
1683 		goto out_unmap;
1684 	}
1685 
1686 	raw_spin_lock_init(&its->lock);
1687 	INIT_LIST_HEAD(&its->entry);
1688 	INIT_LIST_HEAD(&its->its_device_list);
1689 	its->base = its_base;
1690 	its->phys_base = res->start;
1691 	its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1692 	its->numa_node = numa_node;
1693 
1694 	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1695 	if (!its->cmd_base) {
1696 		err = -ENOMEM;
1697 		goto out_free_its;
1698 	}
1699 	its->cmd_write = its->cmd_base;
1700 
1701 	its_enable_quirks(its);
1702 
1703 	err = its_alloc_tables(its);
1704 	if (err)
1705 		goto out_free_cmd;
1706 
1707 	err = its_alloc_collections(its);
1708 	if (err)
1709 		goto out_free_tables;
1710 
1711 	baser = (virt_to_phys(its->cmd_base)	|
1712 		 GITS_CBASER_WaWb		|
1713 		 GITS_CBASER_InnerShareable	|
1714 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1715 		 GITS_CBASER_VALID);
1716 
1717 	writeq_relaxed(baser, its->base + GITS_CBASER);
1718 	tmp = readq_relaxed(its->base + GITS_CBASER);
1719 
1720 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1721 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1722 			/*
1723 			 * The HW reports non-shareable, we must
1724 			 * remove the cacheability attributes as
1725 			 * well.
1726 			 */
1727 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1728 				   GITS_CBASER_CACHEABILITY_MASK);
1729 			baser |= GITS_CBASER_nC;
1730 			writeq_relaxed(baser, its->base + GITS_CBASER);
1731 		}
1732 		pr_info("ITS: using cache flushing for cmd queue\n");
1733 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1734 	}
1735 
1736 	writeq_relaxed(0, its->base + GITS_CWRITER);
1737 	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1738 
1739 	err = its_init_domain(handle, its);
1740 	if (err)
1741 		goto out_free_tables;
1742 
1743 	spin_lock(&its_lock);
1744 	list_add(&its->entry, &its_nodes);
1745 	spin_unlock(&its_lock);
1746 
1747 	return 0;
1748 
1749 out_free_tables:
1750 	its_free_tables(its);
1751 out_free_cmd:
1752 	kfree(its->cmd_base);
1753 out_free_its:
1754 	kfree(its);
1755 out_unmap:
1756 	iounmap(its_base);
1757 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1758 	return err;
1759 }
1760 
1761 static bool gic_rdists_supports_plpis(void)
1762 {
1763 	return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1764 }
1765 
1766 int its_cpu_init(void)
1767 {
1768 	if (!list_empty(&its_nodes)) {
1769 		if (!gic_rdists_supports_plpis()) {
1770 			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1771 			return -ENXIO;
1772 		}
1773 		its_cpu_init_lpis();
1774 		its_cpu_init_collection();
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static struct of_device_id its_device_id[] = {
1781 	{	.compatible	= "arm,gic-v3-its",	},
1782 	{},
1783 };
1784 
1785 static int __init its_of_probe(struct device_node *node)
1786 {
1787 	struct device_node *np;
1788 	struct resource res;
1789 
1790 	for (np = of_find_matching_node(node, its_device_id); np;
1791 	     np = of_find_matching_node(np, its_device_id)) {
1792 		if (!of_property_read_bool(np, "msi-controller")) {
1793 			pr_warn("%s: no msi-controller property, ITS ignored\n",
1794 				np->full_name);
1795 			continue;
1796 		}
1797 
1798 		if (of_address_to_resource(np, 0, &res)) {
1799 			pr_warn("%s: no regs?\n", np->full_name);
1800 			continue;
1801 		}
1802 
1803 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1804 	}
1805 	return 0;
1806 }
1807 
1808 #ifdef CONFIG_ACPI
1809 
1810 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1811 
1812 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1813 					  const unsigned long end)
1814 {
1815 	struct acpi_madt_generic_translator *its_entry;
1816 	struct fwnode_handle *dom_handle;
1817 	struct resource res;
1818 	int err;
1819 
1820 	its_entry = (struct acpi_madt_generic_translator *)header;
1821 	memset(&res, 0, sizeof(res));
1822 	res.start = its_entry->base_address;
1823 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1824 	res.flags = IORESOURCE_MEM;
1825 
1826 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1827 	if (!dom_handle) {
1828 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1829 		       &res.start);
1830 		return -ENOMEM;
1831 	}
1832 
1833 	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1834 	if (err) {
1835 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1836 		       &res.start, its_entry->translation_id);
1837 		goto dom_err;
1838 	}
1839 
1840 	err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1841 	if (!err)
1842 		return 0;
1843 
1844 	iort_deregister_domain_token(its_entry->translation_id);
1845 dom_err:
1846 	irq_domain_free_fwnode(dom_handle);
1847 	return err;
1848 }
1849 
1850 static void __init its_acpi_probe(void)
1851 {
1852 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1853 			      gic_acpi_parse_madt_its, 0);
1854 }
1855 #else
1856 static void __init its_acpi_probe(void) { }
1857 #endif
1858 
1859 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1860 		    struct irq_domain *parent_domain)
1861 {
1862 	struct device_node *of_node;
1863 
1864 	its_parent = parent_domain;
1865 	of_node = to_of_node(handle);
1866 	if (of_node)
1867 		its_of_probe(of_node);
1868 	else
1869 		its_acpi_probe();
1870 
1871 	if (list_empty(&its_nodes)) {
1872 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1873 		return -ENXIO;
1874 	}
1875 
1876 	gic_rdists = rdists;
1877 	its_alloc_lpi_tables();
1878 	its_lpi_init(rdists->id_bits);
1879 
1880 	return 0;
1881 }
1882