xref: /linux/drivers/input/input.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/export.h>
12 #include <linux/init.h>
13 #include <linux/types.h>
14 #include <linux/idr.h>
15 #include <linux/input/mt.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/pm.h>
24 #include <linux/poll.h>
25 #include <linux/device.h>
26 #include <linux/kstrtox.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 #include "input-core-private.h"
31 #include "input-poller.h"
32 
33 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
34 MODULE_DESCRIPTION("Input core");
35 MODULE_LICENSE("GPL");
36 
37 #define INPUT_MAX_CHAR_DEVICES		1024
38 #define INPUT_FIRST_DYNAMIC_DEV		256
39 static DEFINE_IDA(input_ida);
40 
41 static LIST_HEAD(input_dev_list);
42 static LIST_HEAD(input_handler_list);
43 
44 /*
45  * input_mutex protects access to both input_dev_list and input_handler_list.
46  * This also causes input_[un]register_device and input_[un]register_handler
47  * be mutually exclusive which simplifies locking in drivers implementing
48  * input handlers.
49  */
50 static DEFINE_MUTEX(input_mutex);
51 
52 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 
54 static const unsigned int input_max_code[EV_CNT] = {
55 	[EV_KEY] = KEY_MAX,
56 	[EV_REL] = REL_MAX,
57 	[EV_ABS] = ABS_MAX,
58 	[EV_MSC] = MSC_MAX,
59 	[EV_SW] = SW_MAX,
60 	[EV_LED] = LED_MAX,
61 	[EV_SND] = SND_MAX,
62 	[EV_FF] = FF_MAX,
63 };
64 
65 static inline int is_event_supported(unsigned int code,
66 				     unsigned long *bm, unsigned int max)
67 {
68 	return code <= max && test_bit(code, bm);
69 }
70 
71 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 {
73 	if (fuzz) {
74 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 			return old_val;
76 
77 		if (value > old_val - fuzz && value < old_val + fuzz)
78 			return (old_val * 3 + value) / 4;
79 
80 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
81 			return (old_val + value) / 2;
82 	}
83 
84 	return value;
85 }
86 
87 static void input_start_autorepeat(struct input_dev *dev, int code)
88 {
89 	if (test_bit(EV_REP, dev->evbit) &&
90 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
91 	    dev->timer.function) {
92 		dev->repeat_key = code;
93 		mod_timer(&dev->timer,
94 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
95 	}
96 }
97 
98 static void input_stop_autorepeat(struct input_dev *dev)
99 {
100 	timer_delete(&dev->timer);
101 }
102 
103 /*
104  * Pass values first through all filters and then, if event has not been
105  * filtered out, through all open handles. This order is achieved by placing
106  * filters at the head of the list of handles attached to the device, and
107  * placing regular handles at the tail of the list.
108  *
109  * This function is called with dev->event_lock held and interrupts disabled.
110  */
111 static void input_pass_values(struct input_dev *dev,
112 			      struct input_value *vals, unsigned int count)
113 {
114 	struct input_handle *handle;
115 	struct input_value *v;
116 
117 	lockdep_assert_held(&dev->event_lock);
118 
119 	scoped_guard(rcu) {
120 		handle = rcu_dereference(dev->grab);
121 		if (handle) {
122 			count = handle->handle_events(handle, vals, count);
123 			break;
124 		}
125 
126 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
127 			if (handle->open) {
128 				count = handle->handle_events(handle, vals,
129 							      count);
130 				if (!count)
131 					break;
132 			}
133 		}
134 	}
135 
136 	/* trigger auto repeat for key events */
137 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
138 		for (v = vals; v != vals + count; v++) {
139 			if (v->type == EV_KEY && v->value != 2) {
140 				if (v->value)
141 					input_start_autorepeat(dev, v->code);
142 				else
143 					input_stop_autorepeat(dev);
144 			}
145 		}
146 	}
147 }
148 
149 #define INPUT_IGNORE_EVENT	0
150 #define INPUT_PASS_TO_HANDLERS	1
151 #define INPUT_PASS_TO_DEVICE	2
152 #define INPUT_SLOT		4
153 #define INPUT_FLUSH		8
154 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
155 
156 static int input_handle_abs_event(struct input_dev *dev,
157 				  unsigned int code, int *pval)
158 {
159 	struct input_mt *mt = dev->mt;
160 	bool is_new_slot = false;
161 	bool is_mt_event;
162 	int *pold;
163 
164 	if (code == ABS_MT_SLOT) {
165 		/*
166 		 * "Stage" the event; we'll flush it later, when we
167 		 * get actual touch data.
168 		 */
169 		if (mt && *pval >= 0 && *pval < mt->num_slots)
170 			mt->slot = *pval;
171 
172 		return INPUT_IGNORE_EVENT;
173 	}
174 
175 	is_mt_event = input_is_mt_value(code);
176 
177 	if (!is_mt_event) {
178 		pold = &dev->absinfo[code].value;
179 	} else if (mt) {
180 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
181 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
182 	} else {
183 		/*
184 		 * Bypass filtering for multi-touch events when
185 		 * not employing slots.
186 		 */
187 		pold = NULL;
188 	}
189 
190 	if (pold) {
191 		*pval = input_defuzz_abs_event(*pval, *pold,
192 						dev->absinfo[code].fuzz);
193 		if (*pold == *pval)
194 			return INPUT_IGNORE_EVENT;
195 
196 		*pold = *pval;
197 	}
198 
199 	/* Flush pending "slot" event */
200 	if (is_new_slot) {
201 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
202 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
203 	}
204 
205 	return INPUT_PASS_TO_HANDLERS;
206 }
207 
208 static int input_get_disposition(struct input_dev *dev,
209 			  unsigned int type, unsigned int code, int *pval)
210 {
211 	int disposition = INPUT_IGNORE_EVENT;
212 	int value = *pval;
213 
214 	/* filter-out events from inhibited devices */
215 	if (dev->inhibited)
216 		return INPUT_IGNORE_EVENT;
217 
218 	switch (type) {
219 
220 	case EV_SYN:
221 		switch (code) {
222 		case SYN_CONFIG:
223 			disposition = INPUT_PASS_TO_ALL;
224 			break;
225 
226 		case SYN_REPORT:
227 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
228 			break;
229 		case SYN_MT_REPORT:
230 			disposition = INPUT_PASS_TO_HANDLERS;
231 			break;
232 		}
233 		break;
234 
235 	case EV_KEY:
236 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
237 
238 			/* auto-repeat bypasses state updates */
239 			if (value == 2) {
240 				disposition = INPUT_PASS_TO_HANDLERS;
241 				break;
242 			}
243 
244 			if (!!test_bit(code, dev->key) != !!value) {
245 
246 				__change_bit(code, dev->key);
247 				disposition = INPUT_PASS_TO_HANDLERS;
248 			}
249 		}
250 		break;
251 
252 	case EV_SW:
253 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
254 		    !!test_bit(code, dev->sw) != !!value) {
255 
256 			__change_bit(code, dev->sw);
257 			disposition = INPUT_PASS_TO_HANDLERS;
258 		}
259 		break;
260 
261 	case EV_ABS:
262 		if (is_event_supported(code, dev->absbit, ABS_MAX))
263 			disposition = input_handle_abs_event(dev, code, &value);
264 
265 		break;
266 
267 	case EV_REL:
268 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
269 			disposition = INPUT_PASS_TO_HANDLERS;
270 
271 		break;
272 
273 	case EV_MSC:
274 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
275 			disposition = INPUT_PASS_TO_ALL;
276 
277 		break;
278 
279 	case EV_LED:
280 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
281 		    !!test_bit(code, dev->led) != !!value) {
282 
283 			__change_bit(code, dev->led);
284 			disposition = INPUT_PASS_TO_ALL;
285 		}
286 		break;
287 
288 	case EV_SND:
289 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
290 
291 			if (!!test_bit(code, dev->snd) != !!value)
292 				__change_bit(code, dev->snd);
293 			disposition = INPUT_PASS_TO_ALL;
294 		}
295 		break;
296 
297 	case EV_REP:
298 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
299 			dev->rep[code] = value;
300 			disposition = INPUT_PASS_TO_ALL;
301 		}
302 		break;
303 
304 	case EV_FF:
305 		if (value >= 0)
306 			disposition = INPUT_PASS_TO_ALL;
307 		break;
308 
309 	case EV_PWR:
310 		disposition = INPUT_PASS_TO_ALL;
311 		break;
312 	}
313 
314 	*pval = value;
315 	return disposition;
316 }
317 
318 static void input_event_dispose(struct input_dev *dev, int disposition,
319 				unsigned int type, unsigned int code, int value)
320 {
321 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
322 		dev->event(dev, type, code, value);
323 
324 	if (disposition & INPUT_PASS_TO_HANDLERS) {
325 		struct input_value *v;
326 
327 		if (disposition & INPUT_SLOT) {
328 			v = &dev->vals[dev->num_vals++];
329 			v->type = EV_ABS;
330 			v->code = ABS_MT_SLOT;
331 			v->value = dev->mt->slot;
332 		}
333 
334 		v = &dev->vals[dev->num_vals++];
335 		v->type = type;
336 		v->code = code;
337 		v->value = value;
338 	}
339 
340 	if (disposition & INPUT_FLUSH) {
341 		if (dev->num_vals >= 2)
342 			input_pass_values(dev, dev->vals, dev->num_vals);
343 		dev->num_vals = 0;
344 		/*
345 		 * Reset the timestamp on flush so we won't end up
346 		 * with a stale one. Note we only need to reset the
347 		 * monolithic one as we use its presence when deciding
348 		 * whether to generate a synthetic timestamp.
349 		 */
350 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
351 	} else if (dev->num_vals >= dev->max_vals - 2) {
352 		dev->vals[dev->num_vals++] = input_value_sync;
353 		input_pass_values(dev, dev->vals, dev->num_vals);
354 		dev->num_vals = 0;
355 	}
356 }
357 
358 void input_handle_event(struct input_dev *dev,
359 			unsigned int type, unsigned int code, int value)
360 {
361 	int disposition;
362 
363 	lockdep_assert_held(&dev->event_lock);
364 
365 	disposition = input_get_disposition(dev, type, code, &value);
366 	if (disposition != INPUT_IGNORE_EVENT) {
367 		if (type != EV_SYN)
368 			add_input_randomness(type, code, value);
369 
370 		input_event_dispose(dev, disposition, type, code, value);
371 	}
372 }
373 
374 /**
375  * input_event() - report new input event
376  * @dev: device that generated the event
377  * @type: type of the event
378  * @code: event code
379  * @value: value of the event
380  *
381  * This function should be used by drivers implementing various input
382  * devices to report input events. See also input_inject_event().
383  *
384  * NOTE: input_event() may be safely used right after input device was
385  * allocated with input_allocate_device(), even before it is registered
386  * with input_register_device(), but the event will not reach any of the
387  * input handlers. Such early invocation of input_event() may be used
388  * to 'seed' initial state of a switch or initial position of absolute
389  * axis, etc.
390  */
391 void input_event(struct input_dev *dev,
392 		 unsigned int type, unsigned int code, int value)
393 {
394 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
395 		guard(spinlock_irqsave)(&dev->event_lock);
396 		input_handle_event(dev, type, code, value);
397 	}
398 }
399 EXPORT_SYMBOL(input_event);
400 
401 /**
402  * input_inject_event() - send input event from input handler
403  * @handle: input handle to send event through
404  * @type: type of the event
405  * @code: event code
406  * @value: value of the event
407  *
408  * Similar to input_event() but will ignore event if device is
409  * "grabbed" and handle injecting event is not the one that owns
410  * the device.
411  */
412 void input_inject_event(struct input_handle *handle,
413 			unsigned int type, unsigned int code, int value)
414 {
415 	struct input_dev *dev = handle->dev;
416 	struct input_handle *grab;
417 
418 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
419 		guard(spinlock_irqsave)(&dev->event_lock);
420 		guard(rcu)();
421 
422 		grab = rcu_dereference(dev->grab);
423 		if (!grab || grab == handle)
424 			input_handle_event(dev, type, code, value);
425 
426 	}
427 }
428 EXPORT_SYMBOL(input_inject_event);
429 
430 /**
431  * input_alloc_absinfo - allocates array of input_absinfo structs
432  * @dev: the input device emitting absolute events
433  *
434  * If the absinfo struct the caller asked for is already allocated, this
435  * functions will not do anything.
436  */
437 void input_alloc_absinfo(struct input_dev *dev)
438 {
439 	if (dev->absinfo)
440 		return;
441 
442 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
443 	if (!dev->absinfo) {
444 		dev_err(dev->dev.parent ?: &dev->dev,
445 			"%s: unable to allocate memory\n", __func__);
446 		/*
447 		 * We will handle this allocation failure in
448 		 * input_register_device() when we refuse to register input
449 		 * device with ABS bits but without absinfo.
450 		 */
451 	}
452 }
453 EXPORT_SYMBOL(input_alloc_absinfo);
454 
455 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
456 			  int min, int max, int fuzz, int flat)
457 {
458 	struct input_absinfo *absinfo;
459 
460 	__set_bit(EV_ABS, dev->evbit);
461 	__set_bit(axis, dev->absbit);
462 
463 	input_alloc_absinfo(dev);
464 	if (!dev->absinfo)
465 		return;
466 
467 	absinfo = &dev->absinfo[axis];
468 	absinfo->minimum = min;
469 	absinfo->maximum = max;
470 	absinfo->fuzz = fuzz;
471 	absinfo->flat = flat;
472 }
473 EXPORT_SYMBOL(input_set_abs_params);
474 
475 /**
476  * input_copy_abs - Copy absinfo from one input_dev to another
477  * @dst: Destination input device to copy the abs settings to
478  * @dst_axis: ABS_* value selecting the destination axis
479  * @src: Source input device to copy the abs settings from
480  * @src_axis: ABS_* value selecting the source axis
481  *
482  * Set absinfo for the selected destination axis by copying it from
483  * the specified source input device's source axis.
484  * This is useful to e.g. setup a pen/stylus input-device for combined
485  * touchscreen/pen hardware where the pen uses the same coordinates as
486  * the touchscreen.
487  */
488 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
489 		    const struct input_dev *src, unsigned int src_axis)
490 {
491 	/* src must have EV_ABS and src_axis set */
492 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
493 		      test_bit(src_axis, src->absbit))))
494 		return;
495 
496 	/*
497 	 * input_alloc_absinfo() may have failed for the source. Our caller is
498 	 * expected to catch this when registering the input devices, which may
499 	 * happen after the input_copy_abs() call.
500 	 */
501 	if (!src->absinfo)
502 		return;
503 
504 	input_set_capability(dst, EV_ABS, dst_axis);
505 	if (!dst->absinfo)
506 		return;
507 
508 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
509 }
510 EXPORT_SYMBOL(input_copy_abs);
511 
512 /**
513  * input_grab_device - grabs device for exclusive use
514  * @handle: input handle that wants to own the device
515  *
516  * When a device is grabbed by an input handle all events generated by
517  * the device are delivered only to this handle. Also events injected
518  * by other input handles are ignored while device is grabbed.
519  */
520 int input_grab_device(struct input_handle *handle)
521 {
522 	struct input_dev *dev = handle->dev;
523 
524 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
525 		if (dev->grab)
526 			return -EBUSY;
527 
528 		rcu_assign_pointer(dev->grab, handle);
529 	}
530 
531 	return 0;
532 }
533 EXPORT_SYMBOL(input_grab_device);
534 
535 static void __input_release_device(struct input_handle *handle)
536 {
537 	struct input_dev *dev = handle->dev;
538 	struct input_handle *grabber;
539 
540 	grabber = rcu_dereference_protected(dev->grab,
541 					    lockdep_is_held(&dev->mutex));
542 	if (grabber == handle) {
543 		rcu_assign_pointer(dev->grab, NULL);
544 		/* Make sure input_pass_values() notices that grab is gone */
545 		synchronize_rcu();
546 
547 		list_for_each_entry(handle, &dev->h_list, d_node)
548 			if (handle->open && handle->handler->start)
549 				handle->handler->start(handle);
550 	}
551 }
552 
553 /**
554  * input_release_device - release previously grabbed device
555  * @handle: input handle that owns the device
556  *
557  * Releases previously grabbed device so that other input handles can
558  * start receiving input events. Upon release all handlers attached
559  * to the device have their start() method called so they have a change
560  * to synchronize device state with the rest of the system.
561  */
562 void input_release_device(struct input_handle *handle)
563 {
564 	struct input_dev *dev = handle->dev;
565 
566 	guard(mutex)(&dev->mutex);
567 	__input_release_device(handle);
568 }
569 EXPORT_SYMBOL(input_release_device);
570 
571 /**
572  * input_open_device - open input device
573  * @handle: handle through which device is being accessed
574  *
575  * This function should be called by input handlers when they
576  * want to start receive events from given input device.
577  */
578 int input_open_device(struct input_handle *handle)
579 {
580 	struct input_dev *dev = handle->dev;
581 	int error;
582 
583 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
584 		if (dev->going_away)
585 			return -ENODEV;
586 
587 		handle->open++;
588 
589 		if (handle->handler->passive_observer)
590 			return 0;
591 
592 		if (dev->users++ || dev->inhibited) {
593 			/*
594 			 * Device is already opened and/or inhibited,
595 			 * so we can exit immediately and report success.
596 			 */
597 			return 0;
598 		}
599 
600 		if (dev->open) {
601 			error = dev->open(dev);
602 			if (error) {
603 				dev->users--;
604 				handle->open--;
605 				/*
606 				 * Make sure we are not delivering any more
607 				 * events through this handle.
608 				 */
609 				synchronize_rcu();
610 				return error;
611 			}
612 		}
613 
614 		if (dev->poller)
615 			input_dev_poller_start(dev->poller);
616 	}
617 
618 	return 0;
619 }
620 EXPORT_SYMBOL(input_open_device);
621 
622 int input_flush_device(struct input_handle *handle, struct file *file)
623 {
624 	struct input_dev *dev = handle->dev;
625 
626 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
627 		if (dev->flush)
628 			return dev->flush(dev, file);
629 	}
630 
631 	return 0;
632 }
633 EXPORT_SYMBOL(input_flush_device);
634 
635 /**
636  * input_close_device - close input device
637  * @handle: handle through which device is being accessed
638  *
639  * This function should be called by input handlers when they
640  * want to stop receive events from given input device.
641  */
642 void input_close_device(struct input_handle *handle)
643 {
644 	struct input_dev *dev = handle->dev;
645 
646 	guard(mutex)(&dev->mutex);
647 
648 	__input_release_device(handle);
649 
650 	if (!handle->handler->passive_observer) {
651 		if (!--dev->users && !dev->inhibited) {
652 			if (dev->poller)
653 				input_dev_poller_stop(dev->poller);
654 			if (dev->close)
655 				dev->close(dev);
656 		}
657 	}
658 
659 	if (!--handle->open) {
660 		/*
661 		 * synchronize_rcu() makes sure that input_pass_values()
662 		 * completed and that no more input events are delivered
663 		 * through this handle
664 		 */
665 		synchronize_rcu();
666 	}
667 }
668 EXPORT_SYMBOL(input_close_device);
669 
670 /*
671  * Simulate keyup events for all keys that are marked as pressed.
672  * The function must be called with dev->event_lock held.
673  */
674 static bool input_dev_release_keys(struct input_dev *dev)
675 {
676 	bool need_sync = false;
677 	int code;
678 
679 	lockdep_assert_held(&dev->event_lock);
680 
681 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
682 		for_each_set_bit(code, dev->key, KEY_CNT) {
683 			input_handle_event(dev, EV_KEY, code, 0);
684 			need_sync = true;
685 		}
686 	}
687 
688 	return need_sync;
689 }
690 
691 /*
692  * Prepare device for unregistering
693  */
694 static void input_disconnect_device(struct input_dev *dev)
695 {
696 	struct input_handle *handle;
697 
698 	/*
699 	 * Mark device as going away. Note that we take dev->mutex here
700 	 * not to protect access to dev->going_away but rather to ensure
701 	 * that there are no threads in the middle of input_open_device()
702 	 */
703 	scoped_guard(mutex, &dev->mutex)
704 		dev->going_away = true;
705 
706 	guard(spinlock_irq)(&dev->event_lock);
707 
708 	/*
709 	 * Simulate keyup events for all pressed keys so that handlers
710 	 * are not left with "stuck" keys. The driver may continue
711 	 * generate events even after we done here but they will not
712 	 * reach any handlers.
713 	 */
714 	if (input_dev_release_keys(dev))
715 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
716 
717 	list_for_each_entry(handle, &dev->h_list, d_node)
718 		handle->open = 0;
719 }
720 
721 /**
722  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
723  * @ke: keymap entry containing scancode to be converted.
724  * @scancode: pointer to the location where converted scancode should
725  *	be stored.
726  *
727  * This function is used to convert scancode stored in &struct keymap_entry
728  * into scalar form understood by legacy keymap handling methods. These
729  * methods expect scancodes to be represented as 'unsigned int'.
730  */
731 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
732 			     unsigned int *scancode)
733 {
734 	switch (ke->len) {
735 	case 1:
736 		*scancode = *((u8 *)ke->scancode);
737 		break;
738 
739 	case 2:
740 		*scancode = *((u16 *)ke->scancode);
741 		break;
742 
743 	case 4:
744 		*scancode = *((u32 *)ke->scancode);
745 		break;
746 
747 	default:
748 		return -EINVAL;
749 	}
750 
751 	return 0;
752 }
753 EXPORT_SYMBOL(input_scancode_to_scalar);
754 
755 /*
756  * Those routines handle the default case where no [gs]etkeycode() is
757  * defined. In this case, an array indexed by the scancode is used.
758  */
759 
760 static unsigned int input_fetch_keycode(struct input_dev *dev,
761 					unsigned int index)
762 {
763 	switch (dev->keycodesize) {
764 	case 1:
765 		return ((u8 *)dev->keycode)[index];
766 
767 	case 2:
768 		return ((u16 *)dev->keycode)[index];
769 
770 	default:
771 		return ((u32 *)dev->keycode)[index];
772 	}
773 }
774 
775 static int input_default_getkeycode(struct input_dev *dev,
776 				    struct input_keymap_entry *ke)
777 {
778 	unsigned int index;
779 	int error;
780 
781 	if (!dev->keycodesize)
782 		return -EINVAL;
783 
784 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
785 		index = ke->index;
786 	else {
787 		error = input_scancode_to_scalar(ke, &index);
788 		if (error)
789 			return error;
790 	}
791 
792 	if (index >= dev->keycodemax)
793 		return -EINVAL;
794 
795 	ke->keycode = input_fetch_keycode(dev, index);
796 	ke->index = index;
797 	ke->len = sizeof(index);
798 	memcpy(ke->scancode, &index, sizeof(index));
799 
800 	return 0;
801 }
802 
803 static int input_default_setkeycode(struct input_dev *dev,
804 				    const struct input_keymap_entry *ke,
805 				    unsigned int *old_keycode)
806 {
807 	unsigned int index;
808 	int error;
809 	int i;
810 
811 	if (!dev->keycodesize)
812 		return -EINVAL;
813 
814 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
815 		index = ke->index;
816 	} else {
817 		error = input_scancode_to_scalar(ke, &index);
818 		if (error)
819 			return error;
820 	}
821 
822 	if (index >= dev->keycodemax)
823 		return -EINVAL;
824 
825 	if (dev->keycodesize < sizeof(ke->keycode) &&
826 			(ke->keycode >> (dev->keycodesize * 8)))
827 		return -EINVAL;
828 
829 	switch (dev->keycodesize) {
830 		case 1: {
831 			u8 *k = (u8 *)dev->keycode;
832 			*old_keycode = k[index];
833 			k[index] = ke->keycode;
834 			break;
835 		}
836 		case 2: {
837 			u16 *k = (u16 *)dev->keycode;
838 			*old_keycode = k[index];
839 			k[index] = ke->keycode;
840 			break;
841 		}
842 		default: {
843 			u32 *k = (u32 *)dev->keycode;
844 			*old_keycode = k[index];
845 			k[index] = ke->keycode;
846 			break;
847 		}
848 	}
849 
850 	if (*old_keycode <= KEY_MAX) {
851 		__clear_bit(*old_keycode, dev->keybit);
852 		for (i = 0; i < dev->keycodemax; i++) {
853 			if (input_fetch_keycode(dev, i) == *old_keycode) {
854 				__set_bit(*old_keycode, dev->keybit);
855 				/* Setting the bit twice is useless, so break */
856 				break;
857 			}
858 		}
859 	}
860 
861 	__set_bit(ke->keycode, dev->keybit);
862 	return 0;
863 }
864 
865 /**
866  * input_get_keycode - retrieve keycode currently mapped to a given scancode
867  * @dev: input device which keymap is being queried
868  * @ke: keymap entry
869  *
870  * This function should be called by anyone interested in retrieving current
871  * keymap. Presently evdev handlers use it.
872  */
873 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
874 {
875 	guard(spinlock_irqsave)(&dev->event_lock);
876 
877 	return dev->getkeycode(dev, ke);
878 }
879 EXPORT_SYMBOL(input_get_keycode);
880 
881 /**
882  * input_set_keycode - attribute a keycode to a given scancode
883  * @dev: input device which keymap is being updated
884  * @ke: new keymap entry
885  *
886  * This function should be called by anyone needing to update current
887  * keymap. Presently keyboard and evdev handlers use it.
888  */
889 int input_set_keycode(struct input_dev *dev,
890 		      const struct input_keymap_entry *ke)
891 {
892 	unsigned int old_keycode;
893 	int error;
894 
895 	if (ke->keycode > KEY_MAX)
896 		return -EINVAL;
897 
898 	guard(spinlock_irqsave)(&dev->event_lock);
899 
900 	error = dev->setkeycode(dev, ke, &old_keycode);
901 	if (error)
902 		return error;
903 
904 	/* Make sure KEY_RESERVED did not get enabled. */
905 	__clear_bit(KEY_RESERVED, dev->keybit);
906 
907 	/*
908 	 * Simulate keyup event if keycode is not present
909 	 * in the keymap anymore
910 	 */
911 	if (old_keycode > KEY_MAX) {
912 		dev_warn(dev->dev.parent ?: &dev->dev,
913 			 "%s: got too big old keycode %#x\n",
914 			 __func__, old_keycode);
915 	} else if (test_bit(EV_KEY, dev->evbit) &&
916 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
917 		   __test_and_clear_bit(old_keycode, dev->key)) {
918 		/*
919 		 * We have to use input_event_dispose() here directly instead
920 		 * of input_handle_event() because the key we want to release
921 		 * here is considered no longer supported by the device and
922 		 * input_handle_event() will ignore it.
923 		 */
924 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
925 				    EV_KEY, old_keycode, 0);
926 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
927 				    EV_SYN, SYN_REPORT, 1);
928 	}
929 
930 	return 0;
931 }
932 EXPORT_SYMBOL(input_set_keycode);
933 
934 bool input_match_device_id(const struct input_dev *dev,
935 			   const struct input_device_id *id)
936 {
937 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
938 		if (id->bustype != dev->id.bustype)
939 			return false;
940 
941 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
942 		if (id->vendor != dev->id.vendor)
943 			return false;
944 
945 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
946 		if (id->product != dev->id.product)
947 			return false;
948 
949 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
950 		if (id->version != dev->id.version)
951 			return false;
952 
953 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
954 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
955 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
956 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
957 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
958 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
959 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
960 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
961 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
962 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
963 		return false;
964 	}
965 
966 	return true;
967 }
968 EXPORT_SYMBOL(input_match_device_id);
969 
970 static const struct input_device_id *input_match_device(struct input_handler *handler,
971 							struct input_dev *dev)
972 {
973 	const struct input_device_id *id;
974 
975 	for (id = handler->id_table; id->flags; id++) {
976 		if (input_match_device_id(dev, id) &&
977 		    (!handler->match || handler->match(handler, dev))) {
978 			return id;
979 		}
980 	}
981 
982 	return NULL;
983 }
984 
985 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
986 {
987 	const struct input_device_id *id;
988 	int error;
989 
990 	id = input_match_device(handler, dev);
991 	if (!id)
992 		return -ENODEV;
993 
994 	error = handler->connect(handler, dev, id);
995 	if (error && error != -ENODEV)
996 		pr_err("failed to attach handler %s to device %s, error: %d\n",
997 		       handler->name, kobject_name(&dev->dev.kobj), error);
998 
999 	return error;
1000 }
1001 
1002 #ifdef CONFIG_PROC_FS
1003 
1004 static struct proc_dir_entry *proc_bus_input_dir;
1005 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1006 static int input_devices_state;
1007 
1008 static inline void input_wakeup_procfs_readers(void)
1009 {
1010 	input_devices_state++;
1011 	wake_up(&input_devices_poll_wait);
1012 }
1013 
1014 struct input_seq_state {
1015 	unsigned short pos;
1016 	bool mutex_acquired;
1017 	int input_devices_state;
1018 };
1019 
1020 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1021 {
1022 	struct seq_file *seq = file->private_data;
1023 	struct input_seq_state *state = seq->private;
1024 
1025 	poll_wait(file, &input_devices_poll_wait, wait);
1026 	if (state->input_devices_state != input_devices_state) {
1027 		state->input_devices_state = input_devices_state;
1028 		return EPOLLIN | EPOLLRDNORM;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1035 {
1036 	struct input_seq_state *state = seq->private;
1037 	int error;
1038 
1039 	error = mutex_lock_interruptible(&input_mutex);
1040 	if (error) {
1041 		state->mutex_acquired = false;
1042 		return ERR_PTR(error);
1043 	}
1044 
1045 	state->mutex_acquired = true;
1046 
1047 	return seq_list_start(&input_dev_list, *pos);
1048 }
1049 
1050 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1051 {
1052 	return seq_list_next(v, &input_dev_list, pos);
1053 }
1054 
1055 static void input_seq_stop(struct seq_file *seq, void *v)
1056 {
1057 	struct input_seq_state *state = seq->private;
1058 
1059 	if (state->mutex_acquired)
1060 		mutex_unlock(&input_mutex);
1061 }
1062 
1063 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1064 				   unsigned long *bitmap, int max)
1065 {
1066 	int i;
1067 	bool skip_empty = true;
1068 	char buf[18];
1069 
1070 	seq_printf(seq, "B: %s=", name);
1071 
1072 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1073 		if (input_bits_to_string(buf, sizeof(buf),
1074 					 bitmap[i], skip_empty)) {
1075 			skip_empty = false;
1076 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * If no output was produced print a single 0.
1082 	 */
1083 	if (skip_empty)
1084 		seq_putc(seq, '0');
1085 
1086 	seq_putc(seq, '\n');
1087 }
1088 
1089 static int input_devices_seq_show(struct seq_file *seq, void *v)
1090 {
1091 	struct input_dev *dev = container_of(v, struct input_dev, node);
1092 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1093 	struct input_handle *handle;
1094 
1095 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1096 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1097 
1098 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1099 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1100 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1101 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1102 	seq_puts(seq, "H: Handlers=");
1103 
1104 	list_for_each_entry(handle, &dev->h_list, d_node)
1105 		seq_printf(seq, "%s ", handle->name);
1106 	seq_putc(seq, '\n');
1107 
1108 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1109 
1110 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1111 	if (test_bit(EV_KEY, dev->evbit))
1112 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1113 	if (test_bit(EV_REL, dev->evbit))
1114 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1115 	if (test_bit(EV_ABS, dev->evbit))
1116 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1117 	if (test_bit(EV_MSC, dev->evbit))
1118 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1119 	if (test_bit(EV_LED, dev->evbit))
1120 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1121 	if (test_bit(EV_SND, dev->evbit))
1122 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1123 	if (test_bit(EV_FF, dev->evbit))
1124 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1125 	if (test_bit(EV_SW, dev->evbit))
1126 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1127 
1128 	seq_putc(seq, '\n');
1129 
1130 	kfree(path);
1131 	return 0;
1132 }
1133 
1134 static const struct seq_operations input_devices_seq_ops = {
1135 	.start	= input_devices_seq_start,
1136 	.next	= input_devices_seq_next,
1137 	.stop	= input_seq_stop,
1138 	.show	= input_devices_seq_show,
1139 };
1140 
1141 static int input_proc_devices_open(struct inode *inode, struct file *file)
1142 {
1143 	return seq_open_private(file, &input_devices_seq_ops,
1144 				sizeof(struct input_seq_state));
1145 }
1146 
1147 static const struct proc_ops input_devices_proc_ops = {
1148 	.proc_open	= input_proc_devices_open,
1149 	.proc_poll	= input_proc_devices_poll,
1150 	.proc_read	= seq_read,
1151 	.proc_lseek	= seq_lseek,
1152 	.proc_release	= seq_release_private,
1153 };
1154 
1155 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1156 {
1157 	struct input_seq_state *state = seq->private;
1158 	int error;
1159 
1160 	error = mutex_lock_interruptible(&input_mutex);
1161 	if (error) {
1162 		state->mutex_acquired = false;
1163 		return ERR_PTR(error);
1164 	}
1165 
1166 	state->mutex_acquired = true;
1167 	state->pos = *pos;
1168 
1169 	return seq_list_start(&input_handler_list, *pos);
1170 }
1171 
1172 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1173 {
1174 	struct input_seq_state *state = seq->private;
1175 
1176 	state->pos = *pos + 1;
1177 	return seq_list_next(v, &input_handler_list, pos);
1178 }
1179 
1180 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1181 {
1182 	struct input_handler *handler = container_of(v, struct input_handler, node);
1183 	struct input_seq_state *state = seq->private;
1184 
1185 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1186 	if (handler->filter)
1187 		seq_puts(seq, " (filter)");
1188 	if (handler->legacy_minors)
1189 		seq_printf(seq, " Minor=%d", handler->minor);
1190 	seq_putc(seq, '\n');
1191 
1192 	return 0;
1193 }
1194 
1195 static const struct seq_operations input_handlers_seq_ops = {
1196 	.start	= input_handlers_seq_start,
1197 	.next	= input_handlers_seq_next,
1198 	.stop	= input_seq_stop,
1199 	.show	= input_handlers_seq_show,
1200 };
1201 
1202 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1203 {
1204 	return seq_open_private(file, &input_handlers_seq_ops,
1205 				sizeof(struct input_seq_state));
1206 }
1207 
1208 static const struct proc_ops input_handlers_proc_ops = {
1209 	.proc_open	= input_proc_handlers_open,
1210 	.proc_read	= seq_read,
1211 	.proc_lseek	= seq_lseek,
1212 	.proc_release	= seq_release_private,
1213 };
1214 
1215 static int __init input_proc_init(void)
1216 {
1217 	struct proc_dir_entry *entry;
1218 
1219 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1220 	if (!proc_bus_input_dir)
1221 		return -ENOMEM;
1222 
1223 	entry = proc_create("devices", 0, proc_bus_input_dir,
1224 			    &input_devices_proc_ops);
1225 	if (!entry)
1226 		goto fail1;
1227 
1228 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1229 			    &input_handlers_proc_ops);
1230 	if (!entry)
1231 		goto fail2;
1232 
1233 	return 0;
1234 
1235  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1236  fail1: remove_proc_entry("bus/input", NULL);
1237 	return -ENOMEM;
1238 }
1239 
1240 static void input_proc_exit(void)
1241 {
1242 	remove_proc_entry("devices", proc_bus_input_dir);
1243 	remove_proc_entry("handlers", proc_bus_input_dir);
1244 	remove_proc_entry("bus/input", NULL);
1245 }
1246 
1247 #else /* !CONFIG_PROC_FS */
1248 static inline void input_wakeup_procfs_readers(void) { }
1249 static inline int input_proc_init(void) { return 0; }
1250 static inline void input_proc_exit(void) { }
1251 #endif
1252 
1253 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1254 static ssize_t input_dev_show_##name(struct device *dev,		\
1255 				     struct device_attribute *attr,	\
1256 				     char *buf)				\
1257 {									\
1258 	struct input_dev *input_dev = to_input_dev(dev);		\
1259 									\
1260 	return sysfs_emit(buf, "%s\n",					\
1261 			  input_dev->name ? input_dev->name : "");	\
1262 }									\
1263 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1264 
1265 INPUT_DEV_STRING_ATTR_SHOW(name);
1266 INPUT_DEV_STRING_ATTR_SHOW(phys);
1267 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1268 
1269 static int input_print_modalias_bits(char *buf, int size,
1270 				     char name, const unsigned long *bm,
1271 				     unsigned int min_bit, unsigned int max_bit)
1272 {
1273 	int bit = min_bit;
1274 	int len = 0;
1275 
1276 	len += snprintf(buf, max(size, 0), "%c", name);
1277 	for_each_set_bit_from(bit, bm, max_bit)
1278 		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1279 	return len;
1280 }
1281 
1282 static int input_print_modalias_parts(char *buf, int size, int full_len,
1283 				      const struct input_dev *id)
1284 {
1285 	int len, klen, remainder, space;
1286 
1287 	len = snprintf(buf, max(size, 0),
1288 		       "input:b%04Xv%04Xp%04Xe%04X-",
1289 		       id->id.bustype, id->id.vendor,
1290 		       id->id.product, id->id.version);
1291 
1292 	len += input_print_modalias_bits(buf + len, size - len,
1293 				'e', id->evbit, 0, EV_MAX);
1294 
1295 	/*
1296 	 * Calculate the remaining space in the buffer making sure we
1297 	 * have place for the terminating 0.
1298 	 */
1299 	space = max(size - (len + 1), 0);
1300 
1301 	klen = input_print_modalias_bits(buf + len, size - len,
1302 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1303 	len += klen;
1304 
1305 	/*
1306 	 * If we have more data than we can fit in the buffer, check
1307 	 * if we can trim key data to fit in the rest. We will indicate
1308 	 * that key data is incomplete by adding "+" sign at the end, like
1309 	 * this: * "k1,2,3,45,+,".
1310 	 *
1311 	 * Note that we shortest key info (if present) is "k+," so we
1312 	 * can only try to trim if key data is longer than that.
1313 	 */
1314 	if (full_len && size < full_len + 1 && klen > 3) {
1315 		remainder = full_len - len;
1316 		/*
1317 		 * We can only trim if we have space for the remainder
1318 		 * and also for at least "k+," which is 3 more characters.
1319 		 */
1320 		if (remainder <= space - 3) {
1321 			/*
1322 			 * We are guaranteed to have 'k' in the buffer, so
1323 			 * we need at least 3 additional bytes for storing
1324 			 * "+," in addition to the remainder.
1325 			 */
1326 			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1327 				if (buf[i] == 'k' || buf[i] == ',') {
1328 					strcpy(buf + i + 1, "+,");
1329 					len = i + 3; /* Not counting '\0' */
1330 					break;
1331 				}
1332 			}
1333 		}
1334 	}
1335 
1336 	len += input_print_modalias_bits(buf + len, size - len,
1337 				'r', id->relbit, 0, REL_MAX);
1338 	len += input_print_modalias_bits(buf + len, size - len,
1339 				'a', id->absbit, 0, ABS_MAX);
1340 	len += input_print_modalias_bits(buf + len, size - len,
1341 				'm', id->mscbit, 0, MSC_MAX);
1342 	len += input_print_modalias_bits(buf + len, size - len,
1343 				'l', id->ledbit, 0, LED_MAX);
1344 	len += input_print_modalias_bits(buf + len, size - len,
1345 				's', id->sndbit, 0, SND_MAX);
1346 	len += input_print_modalias_bits(buf + len, size - len,
1347 				'f', id->ffbit, 0, FF_MAX);
1348 	len += input_print_modalias_bits(buf + len, size - len,
1349 				'w', id->swbit, 0, SW_MAX);
1350 
1351 	return len;
1352 }
1353 
1354 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1355 {
1356 	int full_len;
1357 
1358 	/*
1359 	 * Printing is done in 2 passes: first one figures out total length
1360 	 * needed for the modalias string, second one will try to trim key
1361 	 * data in case when buffer is too small for the entire modalias.
1362 	 * If the buffer is too small regardless, it will fill as much as it
1363 	 * can (without trimming key data) into the buffer and leave it to
1364 	 * the caller to figure out what to do with the result.
1365 	 */
1366 	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1367 	return input_print_modalias_parts(buf, size, full_len, id);
1368 }
1369 
1370 static ssize_t input_dev_show_modalias(struct device *dev,
1371 				       struct device_attribute *attr,
1372 				       char *buf)
1373 {
1374 	struct input_dev *id = to_input_dev(dev);
1375 	ssize_t len;
1376 
1377 	len = input_print_modalias(buf, PAGE_SIZE, id);
1378 	if (len < PAGE_SIZE - 2)
1379 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380 
1381 	return min_t(int, len, PAGE_SIZE);
1382 }
1383 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1384 
1385 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1386 			      int max, int add_cr);
1387 
1388 static ssize_t input_dev_show_properties(struct device *dev,
1389 					 struct device_attribute *attr,
1390 					 char *buf)
1391 {
1392 	struct input_dev *input_dev = to_input_dev(dev);
1393 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1394 				     INPUT_PROP_MAX, true);
1395 	return min_t(int, len, PAGE_SIZE);
1396 }
1397 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1398 
1399 static int input_inhibit_device(struct input_dev *dev);
1400 static int input_uninhibit_device(struct input_dev *dev);
1401 
1402 static ssize_t inhibited_show(struct device *dev,
1403 			      struct device_attribute *attr,
1404 			      char *buf)
1405 {
1406 	struct input_dev *input_dev = to_input_dev(dev);
1407 
1408 	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1409 }
1410 
1411 static ssize_t inhibited_store(struct device *dev,
1412 			       struct device_attribute *attr, const char *buf,
1413 			       size_t len)
1414 {
1415 	struct input_dev *input_dev = to_input_dev(dev);
1416 	ssize_t rv;
1417 	bool inhibited;
1418 
1419 	if (kstrtobool(buf, &inhibited))
1420 		return -EINVAL;
1421 
1422 	if (inhibited)
1423 		rv = input_inhibit_device(input_dev);
1424 	else
1425 		rv = input_uninhibit_device(input_dev);
1426 
1427 	if (rv != 0)
1428 		return rv;
1429 
1430 	return len;
1431 }
1432 
1433 static DEVICE_ATTR_RW(inhibited);
1434 
1435 static struct attribute *input_dev_attrs[] = {
1436 	&dev_attr_name.attr,
1437 	&dev_attr_phys.attr,
1438 	&dev_attr_uniq.attr,
1439 	&dev_attr_modalias.attr,
1440 	&dev_attr_properties.attr,
1441 	&dev_attr_inhibited.attr,
1442 	NULL
1443 };
1444 
1445 static const struct attribute_group input_dev_attr_group = {
1446 	.attrs	= input_dev_attrs,
1447 };
1448 
1449 #define INPUT_DEV_ID_ATTR(name)						\
1450 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1451 					struct device_attribute *attr,	\
1452 					char *buf)			\
1453 {									\
1454 	struct input_dev *input_dev = to_input_dev(dev);		\
1455 	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1456 }									\
1457 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1458 
1459 INPUT_DEV_ID_ATTR(bustype);
1460 INPUT_DEV_ID_ATTR(vendor);
1461 INPUT_DEV_ID_ATTR(product);
1462 INPUT_DEV_ID_ATTR(version);
1463 
1464 static struct attribute *input_dev_id_attrs[] = {
1465 	&dev_attr_bustype.attr,
1466 	&dev_attr_vendor.attr,
1467 	&dev_attr_product.attr,
1468 	&dev_attr_version.attr,
1469 	NULL
1470 };
1471 
1472 static const struct attribute_group input_dev_id_attr_group = {
1473 	.name	= "id",
1474 	.attrs	= input_dev_id_attrs,
1475 };
1476 
1477 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1478 			      int max, int add_cr)
1479 {
1480 	int i;
1481 	int len = 0;
1482 	bool skip_empty = true;
1483 
1484 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1485 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1486 					    bitmap[i], skip_empty);
1487 		if (len) {
1488 			skip_empty = false;
1489 			if (i > 0)
1490 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * If no output was produced print a single 0.
1496 	 */
1497 	if (len == 0)
1498 		len = snprintf(buf, buf_size, "%d", 0);
1499 
1500 	if (add_cr)
1501 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1502 
1503 	return len;
1504 }
1505 
1506 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1507 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1508 				       struct device_attribute *attr,	\
1509 				       char *buf)			\
1510 {									\
1511 	struct input_dev *input_dev = to_input_dev(dev);		\
1512 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1513 				     input_dev->bm##bit, ev##_MAX,	\
1514 				     true);				\
1515 	return min_t(int, len, PAGE_SIZE);				\
1516 }									\
1517 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1518 
1519 INPUT_DEV_CAP_ATTR(EV, ev);
1520 INPUT_DEV_CAP_ATTR(KEY, key);
1521 INPUT_DEV_CAP_ATTR(REL, rel);
1522 INPUT_DEV_CAP_ATTR(ABS, abs);
1523 INPUT_DEV_CAP_ATTR(MSC, msc);
1524 INPUT_DEV_CAP_ATTR(LED, led);
1525 INPUT_DEV_CAP_ATTR(SND, snd);
1526 INPUT_DEV_CAP_ATTR(FF, ff);
1527 INPUT_DEV_CAP_ATTR(SW, sw);
1528 
1529 static struct attribute *input_dev_caps_attrs[] = {
1530 	&dev_attr_ev.attr,
1531 	&dev_attr_key.attr,
1532 	&dev_attr_rel.attr,
1533 	&dev_attr_abs.attr,
1534 	&dev_attr_msc.attr,
1535 	&dev_attr_led.attr,
1536 	&dev_attr_snd.attr,
1537 	&dev_attr_ff.attr,
1538 	&dev_attr_sw.attr,
1539 	NULL
1540 };
1541 
1542 static const struct attribute_group input_dev_caps_attr_group = {
1543 	.name	= "capabilities",
1544 	.attrs	= input_dev_caps_attrs,
1545 };
1546 
1547 static const struct attribute_group *input_dev_attr_groups[] = {
1548 	&input_dev_attr_group,
1549 	&input_dev_id_attr_group,
1550 	&input_dev_caps_attr_group,
1551 	&input_poller_attribute_group,
1552 	NULL
1553 };
1554 
1555 static void input_dev_release(struct device *device)
1556 {
1557 	struct input_dev *dev = to_input_dev(device);
1558 
1559 	input_ff_destroy(dev);
1560 	input_mt_destroy_slots(dev);
1561 	kfree(dev->poller);
1562 	kfree(dev->absinfo);
1563 	kfree(dev->vals);
1564 	kfree(dev);
1565 
1566 	module_put(THIS_MODULE);
1567 }
1568 
1569 /*
1570  * Input uevent interface - loading event handlers based on
1571  * device bitfields.
1572  */
1573 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1574 				   const char *name, const unsigned long *bitmap, int max)
1575 {
1576 	int len;
1577 
1578 	if (add_uevent_var(env, "%s", name))
1579 		return -ENOMEM;
1580 
1581 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1582 				 sizeof(env->buf) - env->buflen,
1583 				 bitmap, max, false);
1584 	if (len >= (sizeof(env->buf) - env->buflen))
1585 		return -ENOMEM;
1586 
1587 	env->buflen += len;
1588 	return 0;
1589 }
1590 
1591 /*
1592  * This is a pretty gross hack. When building uevent data the driver core
1593  * may try adding more environment variables to kobj_uevent_env without
1594  * telling us, so we have no idea how much of the buffer we can use to
1595  * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1596  * reduce amount of memory we will use for the modalias environment variable.
1597  *
1598  * The potential additions are:
1599  *
1600  * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1601  * HOME=/ (6 bytes)
1602  * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1603  *
1604  * 68 bytes total. Allow extra buffer - 96 bytes
1605  */
1606 #define UEVENT_ENV_EXTRA_LEN	96
1607 
1608 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1609 					 const struct input_dev *dev)
1610 {
1611 	int len;
1612 
1613 	if (add_uevent_var(env, "MODALIAS="))
1614 		return -ENOMEM;
1615 
1616 	len = input_print_modalias(&env->buf[env->buflen - 1],
1617 				   (int)sizeof(env->buf) - env->buflen -
1618 					UEVENT_ENV_EXTRA_LEN,
1619 				   dev);
1620 	if (len >= ((int)sizeof(env->buf) - env->buflen -
1621 					UEVENT_ENV_EXTRA_LEN))
1622 		return -ENOMEM;
1623 
1624 	env->buflen += len;
1625 	return 0;
1626 }
1627 
1628 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1629 	do {								\
1630 		int err = add_uevent_var(env, fmt, val);		\
1631 		if (err)						\
1632 			return err;					\
1633 	} while (0)
1634 
1635 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1636 	do {								\
1637 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1638 		if (err)						\
1639 			return err;					\
1640 	} while (0)
1641 
1642 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1643 	do {								\
1644 		int err = input_add_uevent_modalias_var(env, dev);	\
1645 		if (err)						\
1646 			return err;					\
1647 	} while (0)
1648 
1649 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1650 {
1651 	const struct input_dev *dev = to_input_dev(device);
1652 
1653 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1654 				dev->id.bustype, dev->id.vendor,
1655 				dev->id.product, dev->id.version);
1656 	if (dev->name)
1657 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1658 	if (dev->phys)
1659 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1660 	if (dev->uniq)
1661 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1662 
1663 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1664 
1665 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1666 	if (test_bit(EV_KEY, dev->evbit))
1667 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1668 	if (test_bit(EV_REL, dev->evbit))
1669 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1670 	if (test_bit(EV_ABS, dev->evbit))
1671 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1672 	if (test_bit(EV_MSC, dev->evbit))
1673 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1674 	if (test_bit(EV_LED, dev->evbit))
1675 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1676 	if (test_bit(EV_SND, dev->evbit))
1677 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1678 	if (test_bit(EV_FF, dev->evbit))
1679 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1680 	if (test_bit(EV_SW, dev->evbit))
1681 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1682 
1683 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1684 
1685 	return 0;
1686 }
1687 
1688 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1689 	do {								\
1690 		int i;							\
1691 		bool active;						\
1692 									\
1693 		if (!test_bit(EV_##type, dev->evbit))			\
1694 			break;						\
1695 									\
1696 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1697 			active = test_bit(i, dev->bits);		\
1698 			if (!active && !on)				\
1699 				continue;				\
1700 									\
1701 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1702 		}							\
1703 	} while (0)
1704 
1705 static void input_dev_toggle(struct input_dev *dev, bool activate)
1706 {
1707 	if (!dev->event)
1708 		return;
1709 
1710 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1711 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1712 
1713 	if (activate && test_bit(EV_REP, dev->evbit)) {
1714 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1715 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1716 	}
1717 }
1718 
1719 /**
1720  * input_reset_device() - reset/restore the state of input device
1721  * @dev: input device whose state needs to be reset
1722  *
1723  * This function tries to reset the state of an opened input device and
1724  * bring internal state and state if the hardware in sync with each other.
1725  * We mark all keys as released, restore LED state, repeat rate, etc.
1726  */
1727 void input_reset_device(struct input_dev *dev)
1728 {
1729 	guard(mutex)(&dev->mutex);
1730 	guard(spinlock_irqsave)(&dev->event_lock);
1731 
1732 	input_dev_toggle(dev, true);
1733 	if (input_dev_release_keys(dev))
1734 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1735 }
1736 EXPORT_SYMBOL(input_reset_device);
1737 
1738 static int input_inhibit_device(struct input_dev *dev)
1739 {
1740 	guard(mutex)(&dev->mutex);
1741 
1742 	if (dev->inhibited)
1743 		return 0;
1744 
1745 	if (dev->users) {
1746 		if (dev->close)
1747 			dev->close(dev);
1748 		if (dev->poller)
1749 			input_dev_poller_stop(dev->poller);
1750 	}
1751 
1752 	scoped_guard(spinlock_irq, &dev->event_lock) {
1753 		input_mt_release_slots(dev);
1754 		input_dev_release_keys(dev);
1755 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1756 		input_dev_toggle(dev, false);
1757 	}
1758 
1759 	dev->inhibited = true;
1760 
1761 	return 0;
1762 }
1763 
1764 static int input_uninhibit_device(struct input_dev *dev)
1765 {
1766 	int error;
1767 
1768 	guard(mutex)(&dev->mutex);
1769 
1770 	if (!dev->inhibited)
1771 		return 0;
1772 
1773 	if (dev->users) {
1774 		if (dev->open) {
1775 			error = dev->open(dev);
1776 			if (error)
1777 				return error;
1778 		}
1779 		if (dev->poller)
1780 			input_dev_poller_start(dev->poller);
1781 	}
1782 
1783 	dev->inhibited = false;
1784 
1785 	scoped_guard(spinlock_irq, &dev->event_lock)
1786 		input_dev_toggle(dev, true);
1787 
1788 	return 0;
1789 }
1790 
1791 static int input_dev_suspend(struct device *dev)
1792 {
1793 	struct input_dev *input_dev = to_input_dev(dev);
1794 
1795 	guard(spinlock_irq)(&input_dev->event_lock);
1796 
1797 	/*
1798 	 * Keys that are pressed now are unlikely to be
1799 	 * still pressed when we resume.
1800 	 */
1801 	if (input_dev_release_keys(input_dev))
1802 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1803 
1804 	/* Turn off LEDs and sounds, if any are active. */
1805 	input_dev_toggle(input_dev, false);
1806 
1807 	return 0;
1808 }
1809 
1810 static int input_dev_resume(struct device *dev)
1811 {
1812 	struct input_dev *input_dev = to_input_dev(dev);
1813 
1814 	guard(spinlock_irq)(&input_dev->event_lock);
1815 
1816 	/* Restore state of LEDs and sounds, if any were active. */
1817 	input_dev_toggle(input_dev, true);
1818 
1819 	return 0;
1820 }
1821 
1822 static int input_dev_freeze(struct device *dev)
1823 {
1824 	struct input_dev *input_dev = to_input_dev(dev);
1825 
1826 	guard(spinlock_irq)(&input_dev->event_lock);
1827 
1828 	/*
1829 	 * Keys that are pressed now are unlikely to be
1830 	 * still pressed when we resume.
1831 	 */
1832 	if (input_dev_release_keys(input_dev))
1833 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1834 
1835 	return 0;
1836 }
1837 
1838 static int input_dev_poweroff(struct device *dev)
1839 {
1840 	struct input_dev *input_dev = to_input_dev(dev);
1841 
1842 	guard(spinlock_irq)(&input_dev->event_lock);
1843 
1844 	/* Turn off LEDs and sounds, if any are active. */
1845 	input_dev_toggle(input_dev, false);
1846 
1847 	return 0;
1848 }
1849 
1850 static const struct dev_pm_ops input_dev_pm_ops = {
1851 	.suspend	= input_dev_suspend,
1852 	.resume		= input_dev_resume,
1853 	.freeze		= input_dev_freeze,
1854 	.poweroff	= input_dev_poweroff,
1855 	.restore	= input_dev_resume,
1856 };
1857 
1858 static const struct device_type input_dev_type = {
1859 	.groups		= input_dev_attr_groups,
1860 	.release	= input_dev_release,
1861 	.uevent		= input_dev_uevent,
1862 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1863 };
1864 
1865 static char *input_devnode(const struct device *dev, umode_t *mode)
1866 {
1867 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1868 }
1869 
1870 const struct class input_class = {
1871 	.name		= "input",
1872 	.devnode	= input_devnode,
1873 };
1874 EXPORT_SYMBOL_GPL(input_class);
1875 
1876 /**
1877  * input_allocate_device - allocate memory for new input device
1878  *
1879  * Returns prepared struct input_dev or %NULL.
1880  *
1881  * NOTE: Use input_free_device() to free devices that have not been
1882  * registered; input_unregister_device() should be used for already
1883  * registered devices.
1884  */
1885 struct input_dev *input_allocate_device(void)
1886 {
1887 	static atomic_t input_no = ATOMIC_INIT(-1);
1888 	struct input_dev *dev;
1889 
1890 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1891 	if (!dev)
1892 		return NULL;
1893 
1894 	/*
1895 	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1896 	 * see input_estimate_events_per_packet(). We will tune the number
1897 	 * when we register the device.
1898 	 */
1899 	dev->max_vals = 10;
1900 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1901 	if (!dev->vals) {
1902 		kfree(dev);
1903 		return NULL;
1904 	}
1905 
1906 	mutex_init(&dev->mutex);
1907 	spin_lock_init(&dev->event_lock);
1908 	timer_setup(&dev->timer, NULL, 0);
1909 	INIT_LIST_HEAD(&dev->h_list);
1910 	INIT_LIST_HEAD(&dev->node);
1911 
1912 	dev->dev.type = &input_dev_type;
1913 	dev->dev.class = &input_class;
1914 	device_initialize(&dev->dev);
1915 	/*
1916 	 * From this point on we can no longer simply "kfree(dev)", we need
1917 	 * to use input_free_device() so that device core properly frees its
1918 	 * resources associated with the input device.
1919 	 */
1920 
1921 	dev_set_name(&dev->dev, "input%lu",
1922 		     (unsigned long)atomic_inc_return(&input_no));
1923 
1924 	__module_get(THIS_MODULE);
1925 
1926 	return dev;
1927 }
1928 EXPORT_SYMBOL(input_allocate_device);
1929 
1930 struct input_devres {
1931 	struct input_dev *input;
1932 };
1933 
1934 static int devm_input_device_match(struct device *dev, void *res, void *data)
1935 {
1936 	struct input_devres *devres = res;
1937 
1938 	return devres->input == data;
1939 }
1940 
1941 static void devm_input_device_release(struct device *dev, void *res)
1942 {
1943 	struct input_devres *devres = res;
1944 	struct input_dev *input = devres->input;
1945 
1946 	dev_dbg(dev, "%s: dropping reference to %s\n",
1947 		__func__, dev_name(&input->dev));
1948 	input_put_device(input);
1949 }
1950 
1951 /**
1952  * devm_input_allocate_device - allocate managed input device
1953  * @dev: device owning the input device being created
1954  *
1955  * Returns prepared struct input_dev or %NULL.
1956  *
1957  * Managed input devices do not need to be explicitly unregistered or
1958  * freed as it will be done automatically when owner device unbinds from
1959  * its driver (or binding fails). Once managed input device is allocated,
1960  * it is ready to be set up and registered in the same fashion as regular
1961  * input device. There are no special devm_input_device_[un]register()
1962  * variants, regular ones work with both managed and unmanaged devices,
1963  * should you need them. In most cases however, managed input device need
1964  * not be explicitly unregistered or freed.
1965  *
1966  * NOTE: the owner device is set up as parent of input device and users
1967  * should not override it.
1968  */
1969 struct input_dev *devm_input_allocate_device(struct device *dev)
1970 {
1971 	struct input_dev *input;
1972 	struct input_devres *devres;
1973 
1974 	devres = devres_alloc(devm_input_device_release,
1975 			      sizeof(*devres), GFP_KERNEL);
1976 	if (!devres)
1977 		return NULL;
1978 
1979 	input = input_allocate_device();
1980 	if (!input) {
1981 		devres_free(devres);
1982 		return NULL;
1983 	}
1984 
1985 	input->dev.parent = dev;
1986 	input->devres_managed = true;
1987 
1988 	devres->input = input;
1989 	devres_add(dev, devres);
1990 
1991 	return input;
1992 }
1993 EXPORT_SYMBOL(devm_input_allocate_device);
1994 
1995 /**
1996  * input_free_device - free memory occupied by input_dev structure
1997  * @dev: input device to free
1998  *
1999  * This function should only be used if input_register_device()
2000  * was not called yet or if it failed. Once device was registered
2001  * use input_unregister_device() and memory will be freed once last
2002  * reference to the device is dropped.
2003  *
2004  * Device should be allocated by input_allocate_device().
2005  *
2006  * NOTE: If there are references to the input device then memory
2007  * will not be freed until last reference is dropped.
2008  */
2009 void input_free_device(struct input_dev *dev)
2010 {
2011 	if (dev) {
2012 		if (dev->devres_managed)
2013 			WARN_ON(devres_destroy(dev->dev.parent,
2014 						devm_input_device_release,
2015 						devm_input_device_match,
2016 						dev));
2017 		input_put_device(dev);
2018 	}
2019 }
2020 EXPORT_SYMBOL(input_free_device);
2021 
2022 /**
2023  * input_set_timestamp - set timestamp for input events
2024  * @dev: input device to set timestamp for
2025  * @timestamp: the time at which the event has occurred
2026  *   in CLOCK_MONOTONIC
2027  *
2028  * This function is intended to provide to the input system a more
2029  * accurate time of when an event actually occurred. The driver should
2030  * call this function as soon as a timestamp is acquired ensuring
2031  * clock conversions in input_set_timestamp are done correctly.
2032  *
2033  * The system entering suspend state between timestamp acquisition and
2034  * calling input_set_timestamp can result in inaccurate conversions.
2035  */
2036 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2037 {
2038 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2039 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2040 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2041 							   TK_OFFS_BOOT);
2042 }
2043 EXPORT_SYMBOL(input_set_timestamp);
2044 
2045 /**
2046  * input_get_timestamp - get timestamp for input events
2047  * @dev: input device to get timestamp from
2048  *
2049  * A valid timestamp is a timestamp of non-zero value.
2050  */
2051 ktime_t *input_get_timestamp(struct input_dev *dev)
2052 {
2053 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2054 
2055 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2056 		input_set_timestamp(dev, ktime_get());
2057 
2058 	return dev->timestamp;
2059 }
2060 EXPORT_SYMBOL(input_get_timestamp);
2061 
2062 /**
2063  * input_set_capability - mark device as capable of a certain event
2064  * @dev: device that is capable of emitting or accepting event
2065  * @type: type of the event (EV_KEY, EV_REL, etc...)
2066  * @code: event code
2067  *
2068  * In addition to setting up corresponding bit in appropriate capability
2069  * bitmap the function also adjusts dev->evbit.
2070  */
2071 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2072 {
2073 	if (type < EV_CNT && input_max_code[type] &&
2074 	    code > input_max_code[type]) {
2075 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2076 		       type);
2077 		dump_stack();
2078 		return;
2079 	}
2080 
2081 	switch (type) {
2082 	case EV_KEY:
2083 		__set_bit(code, dev->keybit);
2084 		break;
2085 
2086 	case EV_REL:
2087 		__set_bit(code, dev->relbit);
2088 		break;
2089 
2090 	case EV_ABS:
2091 		input_alloc_absinfo(dev);
2092 		__set_bit(code, dev->absbit);
2093 		break;
2094 
2095 	case EV_MSC:
2096 		__set_bit(code, dev->mscbit);
2097 		break;
2098 
2099 	case EV_SW:
2100 		__set_bit(code, dev->swbit);
2101 		break;
2102 
2103 	case EV_LED:
2104 		__set_bit(code, dev->ledbit);
2105 		break;
2106 
2107 	case EV_SND:
2108 		__set_bit(code, dev->sndbit);
2109 		break;
2110 
2111 	case EV_FF:
2112 		__set_bit(code, dev->ffbit);
2113 		break;
2114 
2115 	case EV_PWR:
2116 		/* do nothing */
2117 		break;
2118 
2119 	default:
2120 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2121 		dump_stack();
2122 		return;
2123 	}
2124 
2125 	__set_bit(type, dev->evbit);
2126 }
2127 EXPORT_SYMBOL(input_set_capability);
2128 
2129 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2130 {
2131 	int mt_slots;
2132 	int i;
2133 	unsigned int events;
2134 
2135 	if (dev->mt) {
2136 		mt_slots = dev->mt->num_slots;
2137 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2138 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2139 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2140 		mt_slots = clamp(mt_slots, 2, 32);
2141 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2142 		mt_slots = 2;
2143 	} else {
2144 		mt_slots = 0;
2145 	}
2146 
2147 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2148 
2149 	if (test_bit(EV_ABS, dev->evbit))
2150 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2151 			events += input_is_mt_axis(i) ? mt_slots : 1;
2152 
2153 	if (test_bit(EV_REL, dev->evbit))
2154 		events += bitmap_weight(dev->relbit, REL_CNT);
2155 
2156 	/* Make room for KEY and MSC events */
2157 	events += 7;
2158 
2159 	return events;
2160 }
2161 
2162 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2163 	do {								\
2164 		if (!test_bit(EV_##type, dev->evbit))			\
2165 			memset(dev->bits##bit, 0,			\
2166 				sizeof(dev->bits##bit));		\
2167 	} while (0)
2168 
2169 static void input_cleanse_bitmasks(struct input_dev *dev)
2170 {
2171 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2172 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2173 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2174 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2175 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2176 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2177 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2178 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2179 }
2180 
2181 static void __input_unregister_device(struct input_dev *dev)
2182 {
2183 	struct input_handle *handle, *next;
2184 
2185 	input_disconnect_device(dev);
2186 
2187 	scoped_guard(mutex, &input_mutex) {
2188 		list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2189 			handle->handler->disconnect(handle);
2190 		WARN_ON(!list_empty(&dev->h_list));
2191 
2192 		timer_delete_sync(&dev->timer);
2193 		list_del_init(&dev->node);
2194 
2195 		input_wakeup_procfs_readers();
2196 	}
2197 
2198 	device_del(&dev->dev);
2199 }
2200 
2201 static void devm_input_device_unregister(struct device *dev, void *res)
2202 {
2203 	struct input_devres *devres = res;
2204 	struct input_dev *input = devres->input;
2205 
2206 	dev_dbg(dev, "%s: unregistering device %s\n",
2207 		__func__, dev_name(&input->dev));
2208 	__input_unregister_device(input);
2209 }
2210 
2211 /*
2212  * Generate software autorepeat event. Note that we take
2213  * dev->event_lock here to avoid racing with input_event
2214  * which may cause keys get "stuck".
2215  */
2216 static void input_repeat_key(struct timer_list *t)
2217 {
2218 	struct input_dev *dev = timer_container_of(dev, t, timer);
2219 
2220 	guard(spinlock_irqsave)(&dev->event_lock);
2221 
2222 	if (!dev->inhibited &&
2223 	    test_bit(dev->repeat_key, dev->key) &&
2224 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2225 
2226 		input_set_timestamp(dev, ktime_get());
2227 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2228 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2229 
2230 		if (dev->rep[REP_PERIOD])
2231 			mod_timer(&dev->timer, jiffies +
2232 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2233 	}
2234 }
2235 
2236 /**
2237  * input_enable_softrepeat - enable software autorepeat
2238  * @dev: input device
2239  * @delay: repeat delay
2240  * @period: repeat period
2241  *
2242  * Enable software autorepeat on the input device.
2243  */
2244 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2245 {
2246 	dev->timer.function = input_repeat_key;
2247 	dev->rep[REP_DELAY] = delay;
2248 	dev->rep[REP_PERIOD] = period;
2249 }
2250 EXPORT_SYMBOL(input_enable_softrepeat);
2251 
2252 bool input_device_enabled(struct input_dev *dev)
2253 {
2254 	lockdep_assert_held(&dev->mutex);
2255 
2256 	return !dev->inhibited && dev->users > 0;
2257 }
2258 EXPORT_SYMBOL_GPL(input_device_enabled);
2259 
2260 static int input_device_tune_vals(struct input_dev *dev)
2261 {
2262 	struct input_value *vals;
2263 	unsigned int packet_size;
2264 	unsigned int max_vals;
2265 
2266 	packet_size = input_estimate_events_per_packet(dev);
2267 	if (dev->hint_events_per_packet < packet_size)
2268 		dev->hint_events_per_packet = packet_size;
2269 
2270 	max_vals = dev->hint_events_per_packet + 2;
2271 	if (dev->max_vals >= max_vals)
2272 		return 0;
2273 
2274 	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2275 	if (!vals)
2276 		return -ENOMEM;
2277 
2278 	scoped_guard(spinlock_irq, &dev->event_lock) {
2279 		dev->max_vals = max_vals;
2280 		swap(dev->vals, vals);
2281 	}
2282 
2283 	/* Because of swap() above, this frees the old vals memory */
2284 	kfree(vals);
2285 
2286 	return 0;
2287 }
2288 
2289 /**
2290  * input_register_device - register device with input core
2291  * @dev: device to be registered
2292  *
2293  * This function registers device with input core. The device must be
2294  * allocated with input_allocate_device() and all it's capabilities
2295  * set up before registering.
2296  * If function fails the device must be freed with input_free_device().
2297  * Once device has been successfully registered it can be unregistered
2298  * with input_unregister_device(); input_free_device() should not be
2299  * called in this case.
2300  *
2301  * Note that this function is also used to register managed input devices
2302  * (ones allocated with devm_input_allocate_device()). Such managed input
2303  * devices need not be explicitly unregistered or freed, their tear down
2304  * is controlled by the devres infrastructure. It is also worth noting
2305  * that tear down of managed input devices is internally a 2-step process:
2306  * registered managed input device is first unregistered, but stays in
2307  * memory and can still handle input_event() calls (although events will
2308  * not be delivered anywhere). The freeing of managed input device will
2309  * happen later, when devres stack is unwound to the point where device
2310  * allocation was made.
2311  */
2312 int input_register_device(struct input_dev *dev)
2313 {
2314 	struct input_devres *devres = NULL;
2315 	struct input_handler *handler;
2316 	const char *path;
2317 	int error;
2318 
2319 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2320 		dev_err(&dev->dev,
2321 			"Absolute device without dev->absinfo, refusing to register\n");
2322 		return -EINVAL;
2323 	}
2324 
2325 	if (dev->devres_managed) {
2326 		devres = devres_alloc(devm_input_device_unregister,
2327 				      sizeof(*devres), GFP_KERNEL);
2328 		if (!devres)
2329 			return -ENOMEM;
2330 
2331 		devres->input = dev;
2332 	}
2333 
2334 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2335 	__set_bit(EV_SYN, dev->evbit);
2336 
2337 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2338 	__clear_bit(KEY_RESERVED, dev->keybit);
2339 
2340 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2341 	input_cleanse_bitmasks(dev);
2342 
2343 	error = input_device_tune_vals(dev);
2344 	if (error)
2345 		goto err_devres_free;
2346 
2347 	/*
2348 	 * If delay and period are pre-set by the driver, then autorepeating
2349 	 * is handled by the driver itself and we don't do it in input.c.
2350 	 */
2351 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2352 		input_enable_softrepeat(dev, 250, 33);
2353 
2354 	if (!dev->getkeycode)
2355 		dev->getkeycode = input_default_getkeycode;
2356 
2357 	if (!dev->setkeycode)
2358 		dev->setkeycode = input_default_setkeycode;
2359 
2360 	if (dev->poller)
2361 		input_dev_poller_finalize(dev->poller);
2362 
2363 	error = device_add(&dev->dev);
2364 	if (error)
2365 		goto err_devres_free;
2366 
2367 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2368 	pr_info("%s as %s\n",
2369 		dev->name ? dev->name : "Unspecified device",
2370 		path ? path : "N/A");
2371 	kfree(path);
2372 
2373 	error = -EINTR;
2374 	scoped_cond_guard(mutex_intr, goto err_device_del, &input_mutex) {
2375 		list_add_tail(&dev->node, &input_dev_list);
2376 
2377 		list_for_each_entry(handler, &input_handler_list, node)
2378 			input_attach_handler(dev, handler);
2379 
2380 		input_wakeup_procfs_readers();
2381 	}
2382 
2383 	if (dev->devres_managed) {
2384 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2385 			__func__, dev_name(&dev->dev));
2386 		devres_add(dev->dev.parent, devres);
2387 	}
2388 	return 0;
2389 
2390 err_device_del:
2391 	device_del(&dev->dev);
2392 err_devres_free:
2393 	devres_free(devres);
2394 	return error;
2395 }
2396 EXPORT_SYMBOL(input_register_device);
2397 
2398 /**
2399  * input_unregister_device - unregister previously registered device
2400  * @dev: device to be unregistered
2401  *
2402  * This function unregisters an input device. Once device is unregistered
2403  * the caller should not try to access it as it may get freed at any moment.
2404  */
2405 void input_unregister_device(struct input_dev *dev)
2406 {
2407 	if (dev->devres_managed) {
2408 		WARN_ON(devres_destroy(dev->dev.parent,
2409 					devm_input_device_unregister,
2410 					devm_input_device_match,
2411 					dev));
2412 		__input_unregister_device(dev);
2413 		/*
2414 		 * We do not do input_put_device() here because it will be done
2415 		 * when 2nd devres fires up.
2416 		 */
2417 	} else {
2418 		__input_unregister_device(dev);
2419 		input_put_device(dev);
2420 	}
2421 }
2422 EXPORT_SYMBOL(input_unregister_device);
2423 
2424 static int input_handler_check_methods(const struct input_handler *handler)
2425 {
2426 	int count = 0;
2427 
2428 	if (handler->filter)
2429 		count++;
2430 	if (handler->events)
2431 		count++;
2432 	if (handler->event)
2433 		count++;
2434 
2435 	if (count > 1) {
2436 		pr_err("%s: only one event processing method can be defined (%s)\n",
2437 		       __func__, handler->name);
2438 		return -EINVAL;
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 /**
2445  * input_register_handler - register a new input handler
2446  * @handler: handler to be registered
2447  *
2448  * This function registers a new input handler (interface) for input
2449  * devices in the system and attaches it to all input devices that
2450  * are compatible with the handler.
2451  */
2452 int input_register_handler(struct input_handler *handler)
2453 {
2454 	struct input_dev *dev;
2455 	int error;
2456 
2457 	error = input_handler_check_methods(handler);
2458 	if (error)
2459 		return error;
2460 
2461 	scoped_cond_guard(mutex_intr, return -EINTR, &input_mutex) {
2462 		INIT_LIST_HEAD(&handler->h_list);
2463 
2464 		list_add_tail(&handler->node, &input_handler_list);
2465 
2466 		list_for_each_entry(dev, &input_dev_list, node)
2467 			input_attach_handler(dev, handler);
2468 
2469 		input_wakeup_procfs_readers();
2470 	}
2471 
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL(input_register_handler);
2475 
2476 /**
2477  * input_unregister_handler - unregisters an input handler
2478  * @handler: handler to be unregistered
2479  *
2480  * This function disconnects a handler from its input devices and
2481  * removes it from lists of known handlers.
2482  */
2483 void input_unregister_handler(struct input_handler *handler)
2484 {
2485 	struct input_handle *handle, *next;
2486 
2487 	guard(mutex)(&input_mutex);
2488 
2489 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2490 		handler->disconnect(handle);
2491 	WARN_ON(!list_empty(&handler->h_list));
2492 
2493 	list_del_init(&handler->node);
2494 
2495 	input_wakeup_procfs_readers();
2496 }
2497 EXPORT_SYMBOL(input_unregister_handler);
2498 
2499 /**
2500  * input_handler_for_each_handle - handle iterator
2501  * @handler: input handler to iterate
2502  * @data: data for the callback
2503  * @fn: function to be called for each handle
2504  *
2505  * Iterate over @bus's list of devices, and call @fn for each, passing
2506  * it @data and stop when @fn returns a non-zero value. The function is
2507  * using RCU to traverse the list and therefore may be using in atomic
2508  * contexts. The @fn callback is invoked from RCU critical section and
2509  * thus must not sleep.
2510  */
2511 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2512 				  int (*fn)(struct input_handle *, void *))
2513 {
2514 	struct input_handle *handle;
2515 	int retval;
2516 
2517 	guard(rcu)();
2518 
2519 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2520 		retval = fn(handle, data);
2521 		if (retval)
2522 			return retval;
2523 	}
2524 
2525 	return 0;
2526 }
2527 EXPORT_SYMBOL(input_handler_for_each_handle);
2528 
2529 /*
2530  * An implementation of input_handle's handle_events() method that simply
2531  * invokes handler->event() method for each event one by one.
2532  */
2533 static unsigned int input_handle_events_default(struct input_handle *handle,
2534 						struct input_value *vals,
2535 						unsigned int count)
2536 {
2537 	struct input_handler *handler = handle->handler;
2538 	struct input_value *v;
2539 
2540 	for (v = vals; v != vals + count; v++)
2541 		handler->event(handle, v->type, v->code, v->value);
2542 
2543 	return count;
2544 }
2545 
2546 /*
2547  * An implementation of input_handle's handle_events() method that invokes
2548  * handler->filter() method for each event one by one and removes events
2549  * that were filtered out from the "vals" array.
2550  */
2551 static unsigned int input_handle_events_filter(struct input_handle *handle,
2552 					       struct input_value *vals,
2553 					       unsigned int count)
2554 {
2555 	struct input_handler *handler = handle->handler;
2556 	struct input_value *end = vals;
2557 	struct input_value *v;
2558 
2559 	for (v = vals; v != vals + count; v++) {
2560 		if (handler->filter(handle, v->type, v->code, v->value))
2561 			continue;
2562 		if (end != v)
2563 			*end = *v;
2564 		end++;
2565 	}
2566 
2567 	return end - vals;
2568 }
2569 
2570 /*
2571  * An implementation of input_handle's handle_events() method that does nothing.
2572  */
2573 static unsigned int input_handle_events_null(struct input_handle *handle,
2574 					     struct input_value *vals,
2575 					     unsigned int count)
2576 {
2577 	return count;
2578 }
2579 
2580 /*
2581  * Sets up appropriate handle->event_handler based on the input_handler
2582  * associated with the handle.
2583  */
2584 static void input_handle_setup_event_handler(struct input_handle *handle)
2585 {
2586 	struct input_handler *handler = handle->handler;
2587 
2588 	if (handler->filter)
2589 		handle->handle_events = input_handle_events_filter;
2590 	else if (handler->event)
2591 		handle->handle_events = input_handle_events_default;
2592 	else if (handler->events)
2593 		handle->handle_events = handler->events;
2594 	else
2595 		handle->handle_events = input_handle_events_null;
2596 }
2597 
2598 /**
2599  * input_register_handle - register a new input handle
2600  * @handle: handle to register
2601  *
2602  * This function puts a new input handle onto device's
2603  * and handler's lists so that events can flow through
2604  * it once it is opened using input_open_device().
2605  *
2606  * This function is supposed to be called from handler's
2607  * connect() method.
2608  */
2609 int input_register_handle(struct input_handle *handle)
2610 {
2611 	struct input_handler *handler = handle->handler;
2612 	struct input_dev *dev = handle->dev;
2613 
2614 	input_handle_setup_event_handler(handle);
2615 	/*
2616 	 * We take dev->mutex here to prevent race with
2617 	 * input_release_device().
2618 	 */
2619 	scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
2620 		/*
2621 		 * Filters go to the head of the list, normal handlers
2622 		 * to the tail.
2623 		 */
2624 		if (handler->filter)
2625 			list_add_rcu(&handle->d_node, &dev->h_list);
2626 		else
2627 			list_add_tail_rcu(&handle->d_node, &dev->h_list);
2628 	}
2629 
2630 	/*
2631 	 * Since we are supposed to be called from ->connect()
2632 	 * which is mutually exclusive with ->disconnect()
2633 	 * we can't be racing with input_unregister_handle()
2634 	 * and so separate lock is not needed here.
2635 	 */
2636 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2637 
2638 	if (handler->start)
2639 		handler->start(handle);
2640 
2641 	return 0;
2642 }
2643 EXPORT_SYMBOL(input_register_handle);
2644 
2645 /**
2646  * input_unregister_handle - unregister an input handle
2647  * @handle: handle to unregister
2648  *
2649  * This function removes input handle from device's
2650  * and handler's lists.
2651  *
2652  * This function is supposed to be called from handler's
2653  * disconnect() method.
2654  */
2655 void input_unregister_handle(struct input_handle *handle)
2656 {
2657 	struct input_dev *dev = handle->dev;
2658 
2659 	list_del_rcu(&handle->h_node);
2660 
2661 	/*
2662 	 * Take dev->mutex to prevent race with input_release_device().
2663 	 */
2664 	scoped_guard(mutex, &dev->mutex)
2665 		list_del_rcu(&handle->d_node);
2666 
2667 	synchronize_rcu();
2668 }
2669 EXPORT_SYMBOL(input_unregister_handle);
2670 
2671 /**
2672  * input_get_new_minor - allocates a new input minor number
2673  * @legacy_base: beginning or the legacy range to be searched
2674  * @legacy_num: size of legacy range
2675  * @allow_dynamic: whether we can also take ID from the dynamic range
2676  *
2677  * This function allocates a new device minor for from input major namespace.
2678  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2679  * parameters and whether ID can be allocated from dynamic range if there are
2680  * no free IDs in legacy range.
2681  */
2682 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2683 			bool allow_dynamic)
2684 {
2685 	/*
2686 	 * This function should be called from input handler's ->connect()
2687 	 * methods, which are serialized with input_mutex, so no additional
2688 	 * locking is needed here.
2689 	 */
2690 	if (legacy_base >= 0) {
2691 		int minor = ida_alloc_range(&input_ida, legacy_base,
2692 					    legacy_base + legacy_num - 1,
2693 					    GFP_KERNEL);
2694 		if (minor >= 0 || !allow_dynamic)
2695 			return minor;
2696 	}
2697 
2698 	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2699 			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2700 }
2701 EXPORT_SYMBOL(input_get_new_minor);
2702 
2703 /**
2704  * input_free_minor - release previously allocated minor
2705  * @minor: minor to be released
2706  *
2707  * This function releases previously allocated input minor so that it can be
2708  * reused later.
2709  */
2710 void input_free_minor(unsigned int minor)
2711 {
2712 	ida_free(&input_ida, minor);
2713 }
2714 EXPORT_SYMBOL(input_free_minor);
2715 
2716 static int __init input_init(void)
2717 {
2718 	int err;
2719 
2720 	err = class_register(&input_class);
2721 	if (err) {
2722 		pr_err("unable to register input_dev class\n");
2723 		return err;
2724 	}
2725 
2726 	err = input_proc_init();
2727 	if (err)
2728 		goto fail1;
2729 
2730 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2731 				     INPUT_MAX_CHAR_DEVICES, "input");
2732 	if (err) {
2733 		pr_err("unable to register char major %d", INPUT_MAJOR);
2734 		goto fail2;
2735 	}
2736 
2737 	return 0;
2738 
2739  fail2:	input_proc_exit();
2740  fail1:	class_unregister(&input_class);
2741 	return err;
2742 }
2743 
2744 static void __exit input_exit(void)
2745 {
2746 	input_proc_exit();
2747 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2748 				 INPUT_MAX_CHAR_DEVICES);
2749 	class_unregister(&input_class);
2750 }
2751 
2752 subsys_initcall(input_init);
2753 module_exit(input_exit);
2754