1 /* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/err.h> 39 #include <linux/ctype.h> 40 #include <linux/kthread.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/atomic.h> 44 #include <scsi/scsi_proto.h> 45 #include <scsi/scsi_tcq.h> 46 #include <target/configfs_macros.h> 47 #include <target/target_core_base.h> 48 #include <target/target_core_fabric_configfs.h> 49 #include <target/target_core_fabric.h> 50 #include <target/target_core_configfs.h> 51 #include "ib_srpt.h" 52 53 /* Name of this kernel module. */ 54 #define DRV_NAME "ib_srpt" 55 #define DRV_VERSION "2.0.0" 56 #define DRV_RELDATE "2011-02-14" 57 58 #define SRPT_ID_STRING "Linux SRP target" 59 60 #undef pr_fmt 61 #define pr_fmt(fmt) DRV_NAME " " fmt 62 63 MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 64 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 65 "v" DRV_VERSION " (" DRV_RELDATE ")"); 66 MODULE_LICENSE("Dual BSD/GPL"); 67 68 /* 69 * Global Variables 70 */ 71 72 static u64 srpt_service_guid; 73 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 74 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 75 76 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 77 module_param(srp_max_req_size, int, 0444); 78 MODULE_PARM_DESC(srp_max_req_size, 79 "Maximum size of SRP request messages in bytes."); 80 81 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 82 module_param(srpt_srq_size, int, 0444); 83 MODULE_PARM_DESC(srpt_srq_size, 84 "Shared receive queue (SRQ) size."); 85 86 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 87 { 88 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 89 } 90 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 91 0444); 92 MODULE_PARM_DESC(srpt_service_guid, 93 "Using this value for ioc_guid, id_ext, and cm_listen_id" 94 " instead of using the node_guid of the first HCA."); 95 96 static struct ib_client srpt_client; 97 static const struct target_core_fabric_ops srpt_template; 98 static void srpt_release_channel(struct srpt_rdma_ch *ch); 99 static int srpt_queue_status(struct se_cmd *cmd); 100 101 /** 102 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 103 */ 104 static inline 105 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 106 { 107 switch (dir) { 108 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 109 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 110 default: return dir; 111 } 112 } 113 114 /** 115 * srpt_sdev_name() - Return the name associated with the HCA. 116 * 117 * Examples are ib0, ib1, ... 118 */ 119 static inline const char *srpt_sdev_name(struct srpt_device *sdev) 120 { 121 return sdev->device->name; 122 } 123 124 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 125 { 126 unsigned long flags; 127 enum rdma_ch_state state; 128 129 spin_lock_irqsave(&ch->spinlock, flags); 130 state = ch->state; 131 spin_unlock_irqrestore(&ch->spinlock, flags); 132 return state; 133 } 134 135 static enum rdma_ch_state 136 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 137 { 138 unsigned long flags; 139 enum rdma_ch_state prev; 140 141 spin_lock_irqsave(&ch->spinlock, flags); 142 prev = ch->state; 143 ch->state = new_state; 144 spin_unlock_irqrestore(&ch->spinlock, flags); 145 return prev; 146 } 147 148 /** 149 * srpt_test_and_set_ch_state() - Test and set the channel state. 150 * 151 * Returns true if and only if the channel state has been set to the new state. 152 */ 153 static bool 154 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 155 enum rdma_ch_state new) 156 { 157 unsigned long flags; 158 enum rdma_ch_state prev; 159 160 spin_lock_irqsave(&ch->spinlock, flags); 161 prev = ch->state; 162 if (prev == old) 163 ch->state = new; 164 spin_unlock_irqrestore(&ch->spinlock, flags); 165 return prev == old; 166 } 167 168 /** 169 * srpt_event_handler() - Asynchronous IB event callback function. 170 * 171 * Callback function called by the InfiniBand core when an asynchronous IB 172 * event occurs. This callback may occur in interrupt context. See also 173 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 174 * Architecture Specification. 175 */ 176 static void srpt_event_handler(struct ib_event_handler *handler, 177 struct ib_event *event) 178 { 179 struct srpt_device *sdev; 180 struct srpt_port *sport; 181 182 sdev = ib_get_client_data(event->device, &srpt_client); 183 if (!sdev || sdev->device != event->device) 184 return; 185 186 pr_debug("ASYNC event= %d on device= %s\n", event->event, 187 srpt_sdev_name(sdev)); 188 189 switch (event->event) { 190 case IB_EVENT_PORT_ERR: 191 if (event->element.port_num <= sdev->device->phys_port_cnt) { 192 sport = &sdev->port[event->element.port_num - 1]; 193 sport->lid = 0; 194 sport->sm_lid = 0; 195 } 196 break; 197 case IB_EVENT_PORT_ACTIVE: 198 case IB_EVENT_LID_CHANGE: 199 case IB_EVENT_PKEY_CHANGE: 200 case IB_EVENT_SM_CHANGE: 201 case IB_EVENT_CLIENT_REREGISTER: 202 case IB_EVENT_GID_CHANGE: 203 /* Refresh port data asynchronously. */ 204 if (event->element.port_num <= sdev->device->phys_port_cnt) { 205 sport = &sdev->port[event->element.port_num - 1]; 206 if (!sport->lid && !sport->sm_lid) 207 schedule_work(&sport->work); 208 } 209 break; 210 default: 211 pr_err("received unrecognized IB event %d\n", 212 event->event); 213 break; 214 } 215 } 216 217 /** 218 * srpt_srq_event() - SRQ event callback function. 219 */ 220 static void srpt_srq_event(struct ib_event *event, void *ctx) 221 { 222 pr_info("SRQ event %d\n", event->event); 223 } 224 225 /** 226 * srpt_qp_event() - QP event callback function. 227 */ 228 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 229 { 230 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 231 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 232 233 switch (event->event) { 234 case IB_EVENT_COMM_EST: 235 ib_cm_notify(ch->cm_id, event->event); 236 break; 237 case IB_EVENT_QP_LAST_WQE_REACHED: 238 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 239 CH_RELEASING)) 240 srpt_release_channel(ch); 241 else 242 pr_debug("%s: state %d - ignored LAST_WQE.\n", 243 ch->sess_name, srpt_get_ch_state(ch)); 244 break; 245 default: 246 pr_err("received unrecognized IB QP event %d\n", event->event); 247 break; 248 } 249 } 250 251 /** 252 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 253 * 254 * @slot: one-based slot number. 255 * @value: four-bit value. 256 * 257 * Copies the lowest four bits of value in element slot of the array of four 258 * bit elements called c_list (controller list). The index slot is one-based. 259 */ 260 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 261 { 262 u16 id; 263 u8 tmp; 264 265 id = (slot - 1) / 2; 266 if (slot & 0x1) { 267 tmp = c_list[id] & 0xf; 268 c_list[id] = (value << 4) | tmp; 269 } else { 270 tmp = c_list[id] & 0xf0; 271 c_list[id] = (value & 0xf) | tmp; 272 } 273 } 274 275 /** 276 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 277 * 278 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 279 * Specification. 280 */ 281 static void srpt_get_class_port_info(struct ib_dm_mad *mad) 282 { 283 struct ib_class_port_info *cif; 284 285 cif = (struct ib_class_port_info *)mad->data; 286 memset(cif, 0, sizeof *cif); 287 cif->base_version = 1; 288 cif->class_version = 1; 289 cif->resp_time_value = 20; 290 291 mad->mad_hdr.status = 0; 292 } 293 294 /** 295 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 296 * 297 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 298 * Specification. See also section B.7, table B.6 in the SRP r16a document. 299 */ 300 static void srpt_get_iou(struct ib_dm_mad *mad) 301 { 302 struct ib_dm_iou_info *ioui; 303 u8 slot; 304 int i; 305 306 ioui = (struct ib_dm_iou_info *)mad->data; 307 ioui->change_id = __constant_cpu_to_be16(1); 308 ioui->max_controllers = 16; 309 310 /* set present for slot 1 and empty for the rest */ 311 srpt_set_ioc(ioui->controller_list, 1, 1); 312 for (i = 1, slot = 2; i < 16; i++, slot++) 313 srpt_set_ioc(ioui->controller_list, slot, 0); 314 315 mad->mad_hdr.status = 0; 316 } 317 318 /** 319 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 320 * 321 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 322 * Architecture Specification. See also section B.7, table B.7 in the SRP 323 * r16a document. 324 */ 325 static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 326 struct ib_dm_mad *mad) 327 { 328 struct srpt_device *sdev = sport->sdev; 329 struct ib_dm_ioc_profile *iocp; 330 331 iocp = (struct ib_dm_ioc_profile *)mad->data; 332 333 if (!slot || slot > 16) { 334 mad->mad_hdr.status 335 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 336 return; 337 } 338 339 if (slot > 2) { 340 mad->mad_hdr.status 341 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 342 return; 343 } 344 345 memset(iocp, 0, sizeof *iocp); 346 strcpy(iocp->id_string, SRPT_ID_STRING); 347 iocp->guid = cpu_to_be64(srpt_service_guid); 348 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 349 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 350 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 351 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 352 iocp->subsys_device_id = 0x0; 353 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 354 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 355 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 356 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 357 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 358 iocp->rdma_read_depth = 4; 359 iocp->send_size = cpu_to_be32(srp_max_req_size); 360 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 361 1U << 24)); 362 iocp->num_svc_entries = 1; 363 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 364 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 365 366 mad->mad_hdr.status = 0; 367 } 368 369 /** 370 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 371 * 372 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 373 * Specification. See also section B.7, table B.8 in the SRP r16a document. 374 */ 375 static void srpt_get_svc_entries(u64 ioc_guid, 376 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 377 { 378 struct ib_dm_svc_entries *svc_entries; 379 380 WARN_ON(!ioc_guid); 381 382 if (!slot || slot > 16) { 383 mad->mad_hdr.status 384 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 385 return; 386 } 387 388 if (slot > 2 || lo > hi || hi > 1) { 389 mad->mad_hdr.status 390 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 391 return; 392 } 393 394 svc_entries = (struct ib_dm_svc_entries *)mad->data; 395 memset(svc_entries, 0, sizeof *svc_entries); 396 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 397 snprintf(svc_entries->service_entries[0].name, 398 sizeof(svc_entries->service_entries[0].name), 399 "%s%016llx", 400 SRP_SERVICE_NAME_PREFIX, 401 ioc_guid); 402 403 mad->mad_hdr.status = 0; 404 } 405 406 /** 407 * srpt_mgmt_method_get() - Process a received management datagram. 408 * @sp: source port through which the MAD has been received. 409 * @rq_mad: received MAD. 410 * @rsp_mad: response MAD. 411 */ 412 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 413 struct ib_dm_mad *rsp_mad) 414 { 415 u16 attr_id; 416 u32 slot; 417 u8 hi, lo; 418 419 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 420 switch (attr_id) { 421 case DM_ATTR_CLASS_PORT_INFO: 422 srpt_get_class_port_info(rsp_mad); 423 break; 424 case DM_ATTR_IOU_INFO: 425 srpt_get_iou(rsp_mad); 426 break; 427 case DM_ATTR_IOC_PROFILE: 428 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 429 srpt_get_ioc(sp, slot, rsp_mad); 430 break; 431 case DM_ATTR_SVC_ENTRIES: 432 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 433 hi = (u8) ((slot >> 8) & 0xff); 434 lo = (u8) (slot & 0xff); 435 slot = (u16) ((slot >> 16) & 0xffff); 436 srpt_get_svc_entries(srpt_service_guid, 437 slot, hi, lo, rsp_mad); 438 break; 439 default: 440 rsp_mad->mad_hdr.status = 441 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 442 break; 443 } 444 } 445 446 /** 447 * srpt_mad_send_handler() - Post MAD-send callback function. 448 */ 449 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 450 struct ib_mad_send_wc *mad_wc) 451 { 452 ib_destroy_ah(mad_wc->send_buf->ah); 453 ib_free_send_mad(mad_wc->send_buf); 454 } 455 456 /** 457 * srpt_mad_recv_handler() - MAD reception callback function. 458 */ 459 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 460 struct ib_mad_recv_wc *mad_wc) 461 { 462 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 463 struct ib_ah *ah; 464 struct ib_mad_send_buf *rsp; 465 struct ib_dm_mad *dm_mad; 466 467 if (!mad_wc || !mad_wc->recv_buf.mad) 468 return; 469 470 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 471 mad_wc->recv_buf.grh, mad_agent->port_num); 472 if (IS_ERR(ah)) 473 goto err; 474 475 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 476 477 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 478 mad_wc->wc->pkey_index, 0, 479 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 480 GFP_KERNEL, 481 IB_MGMT_BASE_VERSION); 482 if (IS_ERR(rsp)) 483 goto err_rsp; 484 485 rsp->ah = ah; 486 487 dm_mad = rsp->mad; 488 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 489 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 490 dm_mad->mad_hdr.status = 0; 491 492 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 493 case IB_MGMT_METHOD_GET: 494 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 495 break; 496 case IB_MGMT_METHOD_SET: 497 dm_mad->mad_hdr.status = 498 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 499 break; 500 default: 501 dm_mad->mad_hdr.status = 502 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 503 break; 504 } 505 506 if (!ib_post_send_mad(rsp, NULL)) { 507 ib_free_recv_mad(mad_wc); 508 /* will destroy_ah & free_send_mad in send completion */ 509 return; 510 } 511 512 ib_free_send_mad(rsp); 513 514 err_rsp: 515 ib_destroy_ah(ah); 516 err: 517 ib_free_recv_mad(mad_wc); 518 } 519 520 /** 521 * srpt_refresh_port() - Configure a HCA port. 522 * 523 * Enable InfiniBand management datagram processing, update the cached sm_lid, 524 * lid and gid values, and register a callback function for processing MADs 525 * on the specified port. 526 * 527 * Note: It is safe to call this function more than once for the same port. 528 */ 529 static int srpt_refresh_port(struct srpt_port *sport) 530 { 531 struct ib_mad_reg_req reg_req; 532 struct ib_port_modify port_modify; 533 struct ib_port_attr port_attr; 534 int ret; 535 536 memset(&port_modify, 0, sizeof port_modify); 537 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 538 port_modify.clr_port_cap_mask = 0; 539 540 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 541 if (ret) 542 goto err_mod_port; 543 544 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 545 if (ret) 546 goto err_query_port; 547 548 sport->sm_lid = port_attr.sm_lid; 549 sport->lid = port_attr.lid; 550 551 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 552 if (ret) 553 goto err_query_port; 554 555 if (!sport->mad_agent) { 556 memset(®_req, 0, sizeof reg_req); 557 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 558 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 559 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 560 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 561 562 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 563 sport->port, 564 IB_QPT_GSI, 565 ®_req, 0, 566 srpt_mad_send_handler, 567 srpt_mad_recv_handler, 568 sport, 0); 569 if (IS_ERR(sport->mad_agent)) { 570 ret = PTR_ERR(sport->mad_agent); 571 sport->mad_agent = NULL; 572 goto err_query_port; 573 } 574 } 575 576 return 0; 577 578 err_query_port: 579 580 port_modify.set_port_cap_mask = 0; 581 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 582 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 583 584 err_mod_port: 585 586 return ret; 587 } 588 589 /** 590 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 591 * 592 * Note: It is safe to call this function more than once for the same device. 593 */ 594 static void srpt_unregister_mad_agent(struct srpt_device *sdev) 595 { 596 struct ib_port_modify port_modify = { 597 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 598 }; 599 struct srpt_port *sport; 600 int i; 601 602 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 603 sport = &sdev->port[i - 1]; 604 WARN_ON(sport->port != i); 605 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 606 pr_err("disabling MAD processing failed.\n"); 607 if (sport->mad_agent) { 608 ib_unregister_mad_agent(sport->mad_agent); 609 sport->mad_agent = NULL; 610 } 611 } 612 } 613 614 /** 615 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 616 */ 617 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 618 int ioctx_size, int dma_size, 619 enum dma_data_direction dir) 620 { 621 struct srpt_ioctx *ioctx; 622 623 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 624 if (!ioctx) 625 goto err; 626 627 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 628 if (!ioctx->buf) 629 goto err_free_ioctx; 630 631 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 632 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 633 goto err_free_buf; 634 635 return ioctx; 636 637 err_free_buf: 638 kfree(ioctx->buf); 639 err_free_ioctx: 640 kfree(ioctx); 641 err: 642 return NULL; 643 } 644 645 /** 646 * srpt_free_ioctx() - Free an SRPT I/O context structure. 647 */ 648 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 649 int dma_size, enum dma_data_direction dir) 650 { 651 if (!ioctx) 652 return; 653 654 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 655 kfree(ioctx->buf); 656 kfree(ioctx); 657 } 658 659 /** 660 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 661 * @sdev: Device to allocate the I/O context ring for. 662 * @ring_size: Number of elements in the I/O context ring. 663 * @ioctx_size: I/O context size. 664 * @dma_size: DMA buffer size. 665 * @dir: DMA data direction. 666 */ 667 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 668 int ring_size, int ioctx_size, 669 int dma_size, enum dma_data_direction dir) 670 { 671 struct srpt_ioctx **ring; 672 int i; 673 674 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 675 && ioctx_size != sizeof(struct srpt_send_ioctx)); 676 677 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 678 if (!ring) 679 goto out; 680 for (i = 0; i < ring_size; ++i) { 681 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 682 if (!ring[i]) 683 goto err; 684 ring[i]->index = i; 685 } 686 goto out; 687 688 err: 689 while (--i >= 0) 690 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 691 kfree(ring); 692 ring = NULL; 693 out: 694 return ring; 695 } 696 697 /** 698 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 699 */ 700 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 701 struct srpt_device *sdev, int ring_size, 702 int dma_size, enum dma_data_direction dir) 703 { 704 int i; 705 706 for (i = 0; i < ring_size; ++i) 707 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 708 kfree(ioctx_ring); 709 } 710 711 /** 712 * srpt_get_cmd_state() - Get the state of a SCSI command. 713 */ 714 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 715 { 716 enum srpt_command_state state; 717 unsigned long flags; 718 719 BUG_ON(!ioctx); 720 721 spin_lock_irqsave(&ioctx->spinlock, flags); 722 state = ioctx->state; 723 spin_unlock_irqrestore(&ioctx->spinlock, flags); 724 return state; 725 } 726 727 /** 728 * srpt_set_cmd_state() - Set the state of a SCSI command. 729 * 730 * Does not modify the state of aborted commands. Returns the previous command 731 * state. 732 */ 733 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 734 enum srpt_command_state new) 735 { 736 enum srpt_command_state previous; 737 unsigned long flags; 738 739 BUG_ON(!ioctx); 740 741 spin_lock_irqsave(&ioctx->spinlock, flags); 742 previous = ioctx->state; 743 if (previous != SRPT_STATE_DONE) 744 ioctx->state = new; 745 spin_unlock_irqrestore(&ioctx->spinlock, flags); 746 747 return previous; 748 } 749 750 /** 751 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 752 * 753 * Returns true if and only if the previous command state was equal to 'old'. 754 */ 755 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 756 enum srpt_command_state old, 757 enum srpt_command_state new) 758 { 759 enum srpt_command_state previous; 760 unsigned long flags; 761 762 WARN_ON(!ioctx); 763 WARN_ON(old == SRPT_STATE_DONE); 764 WARN_ON(new == SRPT_STATE_NEW); 765 766 spin_lock_irqsave(&ioctx->spinlock, flags); 767 previous = ioctx->state; 768 if (previous == old) 769 ioctx->state = new; 770 spin_unlock_irqrestore(&ioctx->spinlock, flags); 771 return previous == old; 772 } 773 774 /** 775 * srpt_post_recv() - Post an IB receive request. 776 */ 777 static int srpt_post_recv(struct srpt_device *sdev, 778 struct srpt_recv_ioctx *ioctx) 779 { 780 struct ib_sge list; 781 struct ib_recv_wr wr, *bad_wr; 782 783 BUG_ON(!sdev); 784 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 785 786 list.addr = ioctx->ioctx.dma; 787 list.length = srp_max_req_size; 788 list.lkey = sdev->mr->lkey; 789 790 wr.next = NULL; 791 wr.sg_list = &list; 792 wr.num_sge = 1; 793 794 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 795 } 796 797 /** 798 * srpt_post_send() - Post an IB send request. 799 * 800 * Returns zero upon success and a non-zero value upon failure. 801 */ 802 static int srpt_post_send(struct srpt_rdma_ch *ch, 803 struct srpt_send_ioctx *ioctx, int len) 804 { 805 struct ib_sge list; 806 struct ib_send_wr wr, *bad_wr; 807 struct srpt_device *sdev = ch->sport->sdev; 808 int ret; 809 810 atomic_inc(&ch->req_lim); 811 812 ret = -ENOMEM; 813 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 814 pr_warn("IB send queue full (needed 1)\n"); 815 goto out; 816 } 817 818 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 819 DMA_TO_DEVICE); 820 821 list.addr = ioctx->ioctx.dma; 822 list.length = len; 823 list.lkey = sdev->mr->lkey; 824 825 wr.next = NULL; 826 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 827 wr.sg_list = &list; 828 wr.num_sge = 1; 829 wr.opcode = IB_WR_SEND; 830 wr.send_flags = IB_SEND_SIGNALED; 831 832 ret = ib_post_send(ch->qp, &wr, &bad_wr); 833 834 out: 835 if (ret < 0) { 836 atomic_inc(&ch->sq_wr_avail); 837 atomic_dec(&ch->req_lim); 838 } 839 return ret; 840 } 841 842 /** 843 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 844 * @ioctx: Pointer to the I/O context associated with the request. 845 * @srp_cmd: Pointer to the SRP_CMD request data. 846 * @dir: Pointer to the variable to which the transfer direction will be 847 * written. 848 * @data_len: Pointer to the variable to which the total data length of all 849 * descriptors in the SRP_CMD request will be written. 850 * 851 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 852 * 853 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 854 * -ENOMEM when memory allocation fails and zero upon success. 855 */ 856 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 857 struct srp_cmd *srp_cmd, 858 enum dma_data_direction *dir, u64 *data_len) 859 { 860 struct srp_indirect_buf *idb; 861 struct srp_direct_buf *db; 862 unsigned add_cdb_offset; 863 int ret; 864 865 /* 866 * The pointer computations below will only be compiled correctly 867 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 868 * whether srp_cmd::add_data has been declared as a byte pointer. 869 */ 870 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 871 && !__same_type(srp_cmd->add_data[0], (u8)0)); 872 873 BUG_ON(!dir); 874 BUG_ON(!data_len); 875 876 ret = 0; 877 *data_len = 0; 878 879 /* 880 * The lower four bits of the buffer format field contain the DATA-IN 881 * buffer descriptor format, and the highest four bits contain the 882 * DATA-OUT buffer descriptor format. 883 */ 884 *dir = DMA_NONE; 885 if (srp_cmd->buf_fmt & 0xf) 886 /* DATA-IN: transfer data from target to initiator (read). */ 887 *dir = DMA_FROM_DEVICE; 888 else if (srp_cmd->buf_fmt >> 4) 889 /* DATA-OUT: transfer data from initiator to target (write). */ 890 *dir = DMA_TO_DEVICE; 891 892 /* 893 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 894 * CDB LENGTH' field are reserved and the size in bytes of this field 895 * is four times the value specified in bits 3..7. Hence the "& ~3". 896 */ 897 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 898 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 899 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 900 ioctx->n_rbuf = 1; 901 ioctx->rbufs = &ioctx->single_rbuf; 902 903 db = (struct srp_direct_buf *)(srp_cmd->add_data 904 + add_cdb_offset); 905 memcpy(ioctx->rbufs, db, sizeof *db); 906 *data_len = be32_to_cpu(db->len); 907 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 908 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 909 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 910 + add_cdb_offset); 911 912 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 913 914 if (ioctx->n_rbuf > 915 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 916 pr_err("received unsupported SRP_CMD request" 917 " type (%u out + %u in != %u / %zu)\n", 918 srp_cmd->data_out_desc_cnt, 919 srp_cmd->data_in_desc_cnt, 920 be32_to_cpu(idb->table_desc.len), 921 sizeof(*db)); 922 ioctx->n_rbuf = 0; 923 ret = -EINVAL; 924 goto out; 925 } 926 927 if (ioctx->n_rbuf == 1) 928 ioctx->rbufs = &ioctx->single_rbuf; 929 else { 930 ioctx->rbufs = 931 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 932 if (!ioctx->rbufs) { 933 ioctx->n_rbuf = 0; 934 ret = -ENOMEM; 935 goto out; 936 } 937 } 938 939 db = idb->desc_list; 940 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 941 *data_len = be32_to_cpu(idb->len); 942 } 943 out: 944 return ret; 945 } 946 947 /** 948 * srpt_init_ch_qp() - Initialize queue pair attributes. 949 * 950 * Initialized the attributes of queue pair 'qp' by allowing local write, 951 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 952 */ 953 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 954 { 955 struct ib_qp_attr *attr; 956 int ret; 957 958 attr = kzalloc(sizeof *attr, GFP_KERNEL); 959 if (!attr) 960 return -ENOMEM; 961 962 attr->qp_state = IB_QPS_INIT; 963 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 964 IB_ACCESS_REMOTE_WRITE; 965 attr->port_num = ch->sport->port; 966 attr->pkey_index = 0; 967 968 ret = ib_modify_qp(qp, attr, 969 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 970 IB_QP_PKEY_INDEX); 971 972 kfree(attr); 973 return ret; 974 } 975 976 /** 977 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 978 * @ch: channel of the queue pair. 979 * @qp: queue pair to change the state of. 980 * 981 * Returns zero upon success and a negative value upon failure. 982 * 983 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 984 * If this structure ever becomes larger, it might be necessary to allocate 985 * it dynamically instead of on the stack. 986 */ 987 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 988 { 989 struct ib_qp_attr qp_attr; 990 int attr_mask; 991 int ret; 992 993 qp_attr.qp_state = IB_QPS_RTR; 994 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 995 if (ret) 996 goto out; 997 998 qp_attr.max_dest_rd_atomic = 4; 999 1000 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1001 1002 out: 1003 return ret; 1004 } 1005 1006 /** 1007 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1008 * @ch: channel of the queue pair. 1009 * @qp: queue pair to change the state of. 1010 * 1011 * Returns zero upon success and a negative value upon failure. 1012 * 1013 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1014 * If this structure ever becomes larger, it might be necessary to allocate 1015 * it dynamically instead of on the stack. 1016 */ 1017 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1018 { 1019 struct ib_qp_attr qp_attr; 1020 int attr_mask; 1021 int ret; 1022 1023 qp_attr.qp_state = IB_QPS_RTS; 1024 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1025 if (ret) 1026 goto out; 1027 1028 qp_attr.max_rd_atomic = 4; 1029 1030 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1031 1032 out: 1033 return ret; 1034 } 1035 1036 /** 1037 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1038 */ 1039 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1040 { 1041 struct ib_qp_attr qp_attr; 1042 1043 qp_attr.qp_state = IB_QPS_ERR; 1044 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1045 } 1046 1047 /** 1048 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1049 */ 1050 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1051 struct srpt_send_ioctx *ioctx) 1052 { 1053 struct scatterlist *sg; 1054 enum dma_data_direction dir; 1055 1056 BUG_ON(!ch); 1057 BUG_ON(!ioctx); 1058 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1059 1060 while (ioctx->n_rdma) 1061 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1062 1063 kfree(ioctx->rdma_ius); 1064 ioctx->rdma_ius = NULL; 1065 1066 if (ioctx->mapped_sg_count) { 1067 sg = ioctx->sg; 1068 WARN_ON(!sg); 1069 dir = ioctx->cmd.data_direction; 1070 BUG_ON(dir == DMA_NONE); 1071 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1072 opposite_dma_dir(dir)); 1073 ioctx->mapped_sg_count = 0; 1074 } 1075 } 1076 1077 /** 1078 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1079 */ 1080 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1081 struct srpt_send_ioctx *ioctx) 1082 { 1083 struct ib_device *dev = ch->sport->sdev->device; 1084 struct se_cmd *cmd; 1085 struct scatterlist *sg, *sg_orig; 1086 int sg_cnt; 1087 enum dma_data_direction dir; 1088 struct rdma_iu *riu; 1089 struct srp_direct_buf *db; 1090 dma_addr_t dma_addr; 1091 struct ib_sge *sge; 1092 u64 raddr; 1093 u32 rsize; 1094 u32 tsize; 1095 u32 dma_len; 1096 int count, nrdma; 1097 int i, j, k; 1098 1099 BUG_ON(!ch); 1100 BUG_ON(!ioctx); 1101 cmd = &ioctx->cmd; 1102 dir = cmd->data_direction; 1103 BUG_ON(dir == DMA_NONE); 1104 1105 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1106 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1107 1108 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1109 opposite_dma_dir(dir)); 1110 if (unlikely(!count)) 1111 return -EAGAIN; 1112 1113 ioctx->mapped_sg_count = count; 1114 1115 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1116 nrdma = ioctx->n_rdma_ius; 1117 else { 1118 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1119 + ioctx->n_rbuf; 1120 1121 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1122 if (!ioctx->rdma_ius) 1123 goto free_mem; 1124 1125 ioctx->n_rdma_ius = nrdma; 1126 } 1127 1128 db = ioctx->rbufs; 1129 tsize = cmd->data_length; 1130 dma_len = ib_sg_dma_len(dev, &sg[0]); 1131 riu = ioctx->rdma_ius; 1132 1133 /* 1134 * For each remote desc - calculate the #ib_sge. 1135 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1136 * each remote desc rdma_iu is required a rdma wr; 1137 * else 1138 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1139 * another rdma wr 1140 */ 1141 for (i = 0, j = 0; 1142 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1143 rsize = be32_to_cpu(db->len); 1144 raddr = be64_to_cpu(db->va); 1145 riu->raddr = raddr; 1146 riu->rkey = be32_to_cpu(db->key); 1147 riu->sge_cnt = 0; 1148 1149 /* calculate how many sge required for this remote_buf */ 1150 while (rsize > 0 && tsize > 0) { 1151 1152 if (rsize >= dma_len) { 1153 tsize -= dma_len; 1154 rsize -= dma_len; 1155 raddr += dma_len; 1156 1157 if (tsize > 0) { 1158 ++j; 1159 if (j < count) { 1160 sg = sg_next(sg); 1161 dma_len = ib_sg_dma_len( 1162 dev, sg); 1163 } 1164 } 1165 } else { 1166 tsize -= rsize; 1167 dma_len -= rsize; 1168 rsize = 0; 1169 } 1170 1171 ++riu->sge_cnt; 1172 1173 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1174 ++ioctx->n_rdma; 1175 riu->sge = 1176 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1177 GFP_KERNEL); 1178 if (!riu->sge) 1179 goto free_mem; 1180 1181 ++riu; 1182 riu->sge_cnt = 0; 1183 riu->raddr = raddr; 1184 riu->rkey = be32_to_cpu(db->key); 1185 } 1186 } 1187 1188 ++ioctx->n_rdma; 1189 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1190 GFP_KERNEL); 1191 if (!riu->sge) 1192 goto free_mem; 1193 } 1194 1195 db = ioctx->rbufs; 1196 tsize = cmd->data_length; 1197 riu = ioctx->rdma_ius; 1198 sg = sg_orig; 1199 dma_len = ib_sg_dma_len(dev, &sg[0]); 1200 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1201 1202 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1203 for (i = 0, j = 0; 1204 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1205 rsize = be32_to_cpu(db->len); 1206 sge = riu->sge; 1207 k = 0; 1208 1209 while (rsize > 0 && tsize > 0) { 1210 sge->addr = dma_addr; 1211 sge->lkey = ch->sport->sdev->mr->lkey; 1212 1213 if (rsize >= dma_len) { 1214 sge->length = 1215 (tsize < dma_len) ? tsize : dma_len; 1216 tsize -= dma_len; 1217 rsize -= dma_len; 1218 1219 if (tsize > 0) { 1220 ++j; 1221 if (j < count) { 1222 sg = sg_next(sg); 1223 dma_len = ib_sg_dma_len( 1224 dev, sg); 1225 dma_addr = ib_sg_dma_address( 1226 dev, sg); 1227 } 1228 } 1229 } else { 1230 sge->length = (tsize < rsize) ? tsize : rsize; 1231 tsize -= rsize; 1232 dma_len -= rsize; 1233 dma_addr += rsize; 1234 rsize = 0; 1235 } 1236 1237 ++k; 1238 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1239 ++riu; 1240 sge = riu->sge; 1241 k = 0; 1242 } else if (rsize > 0 && tsize > 0) 1243 ++sge; 1244 } 1245 } 1246 1247 return 0; 1248 1249 free_mem: 1250 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1251 1252 return -ENOMEM; 1253 } 1254 1255 /** 1256 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1257 */ 1258 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1259 { 1260 struct srpt_send_ioctx *ioctx; 1261 unsigned long flags; 1262 1263 BUG_ON(!ch); 1264 1265 ioctx = NULL; 1266 spin_lock_irqsave(&ch->spinlock, flags); 1267 if (!list_empty(&ch->free_list)) { 1268 ioctx = list_first_entry(&ch->free_list, 1269 struct srpt_send_ioctx, free_list); 1270 list_del(&ioctx->free_list); 1271 } 1272 spin_unlock_irqrestore(&ch->spinlock, flags); 1273 1274 if (!ioctx) 1275 return ioctx; 1276 1277 BUG_ON(ioctx->ch != ch); 1278 spin_lock_init(&ioctx->spinlock); 1279 ioctx->state = SRPT_STATE_NEW; 1280 ioctx->n_rbuf = 0; 1281 ioctx->rbufs = NULL; 1282 ioctx->n_rdma = 0; 1283 ioctx->n_rdma_ius = 0; 1284 ioctx->rdma_ius = NULL; 1285 ioctx->mapped_sg_count = 0; 1286 init_completion(&ioctx->tx_done); 1287 ioctx->queue_status_only = false; 1288 /* 1289 * transport_init_se_cmd() does not initialize all fields, so do it 1290 * here. 1291 */ 1292 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1293 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1294 1295 return ioctx; 1296 } 1297 1298 /** 1299 * srpt_abort_cmd() - Abort a SCSI command. 1300 * @ioctx: I/O context associated with the SCSI command. 1301 * @context: Preferred execution context. 1302 */ 1303 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1304 { 1305 enum srpt_command_state state; 1306 unsigned long flags; 1307 1308 BUG_ON(!ioctx); 1309 1310 /* 1311 * If the command is in a state where the target core is waiting for 1312 * the ib_srpt driver, change the state to the next state. Changing 1313 * the state of the command from SRPT_STATE_NEED_DATA to 1314 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1315 * function a second time. 1316 */ 1317 1318 spin_lock_irqsave(&ioctx->spinlock, flags); 1319 state = ioctx->state; 1320 switch (state) { 1321 case SRPT_STATE_NEED_DATA: 1322 ioctx->state = SRPT_STATE_DATA_IN; 1323 break; 1324 case SRPT_STATE_DATA_IN: 1325 case SRPT_STATE_CMD_RSP_SENT: 1326 case SRPT_STATE_MGMT_RSP_SENT: 1327 ioctx->state = SRPT_STATE_DONE; 1328 break; 1329 default: 1330 break; 1331 } 1332 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1333 1334 if (state == SRPT_STATE_DONE) { 1335 struct srpt_rdma_ch *ch = ioctx->ch; 1336 1337 BUG_ON(ch->sess == NULL); 1338 1339 target_put_sess_cmd(ch->sess, &ioctx->cmd); 1340 goto out; 1341 } 1342 1343 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1344 ioctx->tag); 1345 1346 switch (state) { 1347 case SRPT_STATE_NEW: 1348 case SRPT_STATE_DATA_IN: 1349 case SRPT_STATE_MGMT: 1350 /* 1351 * Do nothing - defer abort processing until 1352 * srpt_queue_response() is invoked. 1353 */ 1354 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1355 break; 1356 case SRPT_STATE_NEED_DATA: 1357 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1358 1359 /* XXX(hch): this is a horrible layering violation.. */ 1360 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1361 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1362 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1363 break; 1364 case SRPT_STATE_CMD_RSP_SENT: 1365 /* 1366 * SRP_RSP sending failed or the SRP_RSP send completion has 1367 * not been received in time. 1368 */ 1369 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1370 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1371 break; 1372 case SRPT_STATE_MGMT_RSP_SENT: 1373 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1374 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1375 break; 1376 default: 1377 WARN(1, "Unexpected command state (%d)", state); 1378 break; 1379 } 1380 1381 out: 1382 return state; 1383 } 1384 1385 /** 1386 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1387 */ 1388 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1389 { 1390 struct srpt_send_ioctx *ioctx; 1391 enum srpt_command_state state; 1392 struct se_cmd *cmd; 1393 u32 index; 1394 1395 atomic_inc(&ch->sq_wr_avail); 1396 1397 index = idx_from_wr_id(wr_id); 1398 ioctx = ch->ioctx_ring[index]; 1399 state = srpt_get_cmd_state(ioctx); 1400 cmd = &ioctx->cmd; 1401 1402 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1403 && state != SRPT_STATE_MGMT_RSP_SENT 1404 && state != SRPT_STATE_NEED_DATA 1405 && state != SRPT_STATE_DONE); 1406 1407 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1408 if (state == SRPT_STATE_CMD_RSP_SENT 1409 || state == SRPT_STATE_MGMT_RSP_SENT) 1410 atomic_dec(&ch->req_lim); 1411 1412 srpt_abort_cmd(ioctx); 1413 } 1414 1415 /** 1416 * srpt_handle_send_comp() - Process an IB send completion notification. 1417 */ 1418 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1419 struct srpt_send_ioctx *ioctx) 1420 { 1421 enum srpt_command_state state; 1422 1423 atomic_inc(&ch->sq_wr_avail); 1424 1425 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1426 1427 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1428 && state != SRPT_STATE_MGMT_RSP_SENT 1429 && state != SRPT_STATE_DONE)) 1430 pr_debug("state = %d\n", state); 1431 1432 if (state != SRPT_STATE_DONE) { 1433 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1434 transport_generic_free_cmd(&ioctx->cmd, 0); 1435 } else { 1436 pr_err("IB completion has been received too late for" 1437 " wr_id = %u.\n", ioctx->ioctx.index); 1438 } 1439 } 1440 1441 /** 1442 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1443 * 1444 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1445 * the data that has been transferred via IB RDMA had to be postponed until the 1446 * check_stop_free() callback. None of this is necessary anymore and needs to 1447 * be cleaned up. 1448 */ 1449 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1450 struct srpt_send_ioctx *ioctx, 1451 enum srpt_opcode opcode) 1452 { 1453 WARN_ON(ioctx->n_rdma <= 0); 1454 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1455 1456 if (opcode == SRPT_RDMA_READ_LAST) { 1457 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1458 SRPT_STATE_DATA_IN)) 1459 target_execute_cmd(&ioctx->cmd); 1460 else 1461 pr_err("%s[%d]: wrong state = %d\n", __func__, 1462 __LINE__, srpt_get_cmd_state(ioctx)); 1463 } else if (opcode == SRPT_RDMA_ABORT) { 1464 ioctx->rdma_aborted = true; 1465 } else { 1466 WARN(true, "unexpected opcode %d\n", opcode); 1467 } 1468 } 1469 1470 /** 1471 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1472 */ 1473 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1474 struct srpt_send_ioctx *ioctx, 1475 enum srpt_opcode opcode) 1476 { 1477 struct se_cmd *cmd; 1478 enum srpt_command_state state; 1479 1480 cmd = &ioctx->cmd; 1481 state = srpt_get_cmd_state(ioctx); 1482 switch (opcode) { 1483 case SRPT_RDMA_READ_LAST: 1484 if (ioctx->n_rdma <= 0) { 1485 pr_err("Received invalid RDMA read" 1486 " error completion with idx %d\n", 1487 ioctx->ioctx.index); 1488 break; 1489 } 1490 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1491 if (state == SRPT_STATE_NEED_DATA) 1492 srpt_abort_cmd(ioctx); 1493 else 1494 pr_err("%s[%d]: wrong state = %d\n", 1495 __func__, __LINE__, state); 1496 break; 1497 case SRPT_RDMA_WRITE_LAST: 1498 break; 1499 default: 1500 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1501 break; 1502 } 1503 } 1504 1505 /** 1506 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1507 * @ch: RDMA channel through which the request has been received. 1508 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1509 * be built in the buffer ioctx->buf points at and hence this function will 1510 * overwrite the request data. 1511 * @tag: tag of the request for which this response is being generated. 1512 * @status: value for the STATUS field of the SRP_RSP information unit. 1513 * 1514 * Returns the size in bytes of the SRP_RSP response. 1515 * 1516 * An SRP_RSP response contains a SCSI status or service response. See also 1517 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1518 * response. See also SPC-2 for more information about sense data. 1519 */ 1520 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1521 struct srpt_send_ioctx *ioctx, u64 tag, 1522 int status) 1523 { 1524 struct srp_rsp *srp_rsp; 1525 const u8 *sense_data; 1526 int sense_data_len, max_sense_len; 1527 1528 /* 1529 * The lowest bit of all SAM-3 status codes is zero (see also 1530 * paragraph 5.3 in SAM-3). 1531 */ 1532 WARN_ON(status & 1); 1533 1534 srp_rsp = ioctx->ioctx.buf; 1535 BUG_ON(!srp_rsp); 1536 1537 sense_data = ioctx->sense_data; 1538 sense_data_len = ioctx->cmd.scsi_sense_length; 1539 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1540 1541 memset(srp_rsp, 0, sizeof *srp_rsp); 1542 srp_rsp->opcode = SRP_RSP; 1543 srp_rsp->req_lim_delta = 1544 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1545 srp_rsp->tag = tag; 1546 srp_rsp->status = status; 1547 1548 if (sense_data_len) { 1549 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1550 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1551 if (sense_data_len > max_sense_len) { 1552 pr_warn("truncated sense data from %d to %d" 1553 " bytes\n", sense_data_len, max_sense_len); 1554 sense_data_len = max_sense_len; 1555 } 1556 1557 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1558 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1559 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1560 } 1561 1562 return sizeof(*srp_rsp) + sense_data_len; 1563 } 1564 1565 /** 1566 * srpt_build_tskmgmt_rsp() - Build a task management response. 1567 * @ch: RDMA channel through which the request has been received. 1568 * @ioctx: I/O context in which the SRP_RSP response will be built. 1569 * @rsp_code: RSP_CODE that will be stored in the response. 1570 * @tag: Tag of the request for which this response is being generated. 1571 * 1572 * Returns the size in bytes of the SRP_RSP response. 1573 * 1574 * An SRP_RSP response contains a SCSI status or service response. See also 1575 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1576 * response. 1577 */ 1578 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1579 struct srpt_send_ioctx *ioctx, 1580 u8 rsp_code, u64 tag) 1581 { 1582 struct srp_rsp *srp_rsp; 1583 int resp_data_len; 1584 int resp_len; 1585 1586 resp_data_len = 4; 1587 resp_len = sizeof(*srp_rsp) + resp_data_len; 1588 1589 srp_rsp = ioctx->ioctx.buf; 1590 BUG_ON(!srp_rsp); 1591 memset(srp_rsp, 0, sizeof *srp_rsp); 1592 1593 srp_rsp->opcode = SRP_RSP; 1594 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1595 + atomic_xchg(&ch->req_lim_delta, 0)); 1596 srp_rsp->tag = tag; 1597 1598 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1599 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1600 srp_rsp->data[3] = rsp_code; 1601 1602 return resp_len; 1603 } 1604 1605 #define NO_SUCH_LUN ((uint64_t)-1LL) 1606 1607 /* 1608 * SCSI LUN addressing method. See also SAM-2 and the section about 1609 * eight byte LUNs. 1610 */ 1611 enum scsi_lun_addr_method { 1612 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1613 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1614 SCSI_LUN_ADDR_METHOD_LUN = 2, 1615 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1616 }; 1617 1618 /* 1619 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1620 * 1621 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1622 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1623 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1624 */ 1625 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1626 { 1627 uint64_t res = NO_SUCH_LUN; 1628 int addressing_method; 1629 1630 if (unlikely(len < 2)) { 1631 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1632 len); 1633 goto out; 1634 } 1635 1636 switch (len) { 1637 case 8: 1638 if ((*((__be64 *)lun) & 1639 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1640 goto out_err; 1641 break; 1642 case 4: 1643 if (*((__be16 *)&lun[2]) != 0) 1644 goto out_err; 1645 break; 1646 case 6: 1647 if (*((__be32 *)&lun[2]) != 0) 1648 goto out_err; 1649 break; 1650 case 2: 1651 break; 1652 default: 1653 goto out_err; 1654 } 1655 1656 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1657 switch (addressing_method) { 1658 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1659 case SCSI_LUN_ADDR_METHOD_FLAT: 1660 case SCSI_LUN_ADDR_METHOD_LUN: 1661 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1662 break; 1663 1664 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1665 default: 1666 pr_err("Unimplemented LUN addressing method %u\n", 1667 addressing_method); 1668 break; 1669 } 1670 1671 out: 1672 return res; 1673 1674 out_err: 1675 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1676 goto out; 1677 } 1678 1679 static int srpt_check_stop_free(struct se_cmd *cmd) 1680 { 1681 struct srpt_send_ioctx *ioctx = container_of(cmd, 1682 struct srpt_send_ioctx, cmd); 1683 1684 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 1685 } 1686 1687 /** 1688 * srpt_handle_cmd() - Process SRP_CMD. 1689 */ 1690 static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1691 struct srpt_recv_ioctx *recv_ioctx, 1692 struct srpt_send_ioctx *send_ioctx) 1693 { 1694 struct se_cmd *cmd; 1695 struct srp_cmd *srp_cmd; 1696 uint64_t unpacked_lun; 1697 u64 data_len; 1698 enum dma_data_direction dir; 1699 sense_reason_t ret; 1700 int rc; 1701 1702 BUG_ON(!send_ioctx); 1703 1704 srp_cmd = recv_ioctx->ioctx.buf; 1705 cmd = &send_ioctx->cmd; 1706 send_ioctx->tag = srp_cmd->tag; 1707 1708 switch (srp_cmd->task_attr) { 1709 case SRP_CMD_SIMPLE_Q: 1710 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1711 break; 1712 case SRP_CMD_ORDERED_Q: 1713 default: 1714 cmd->sam_task_attr = TCM_ORDERED_TAG; 1715 break; 1716 case SRP_CMD_HEAD_OF_Q: 1717 cmd->sam_task_attr = TCM_HEAD_TAG; 1718 break; 1719 case SRP_CMD_ACA: 1720 cmd->sam_task_attr = TCM_ACA_TAG; 1721 break; 1722 } 1723 1724 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1725 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1726 srp_cmd->tag); 1727 ret = TCM_INVALID_CDB_FIELD; 1728 goto send_sense; 1729 } 1730 1731 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1732 sizeof(srp_cmd->lun)); 1733 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1734 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1735 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1736 if (rc != 0) { 1737 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1738 goto send_sense; 1739 } 1740 return 0; 1741 1742 send_sense: 1743 transport_send_check_condition_and_sense(cmd, ret, 0); 1744 return -1; 1745 } 1746 1747 /** 1748 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. 1749 * @ch: RDMA channel of the task management request. 1750 * @fn: Task management function to perform. 1751 * @req_tag: Tag of the SRP task management request. 1752 * @mgmt_ioctx: I/O context of the task management request. 1753 * 1754 * Returns zero if the target core will process the task management 1755 * request asynchronously. 1756 * 1757 * Note: It is assumed that the initiator serializes tag-based task management 1758 * requests. 1759 */ 1760 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) 1761 { 1762 struct srpt_device *sdev; 1763 struct srpt_rdma_ch *ch; 1764 struct srpt_send_ioctx *target; 1765 int ret, i; 1766 1767 ret = -EINVAL; 1768 ch = ioctx->ch; 1769 BUG_ON(!ch); 1770 BUG_ON(!ch->sport); 1771 sdev = ch->sport->sdev; 1772 BUG_ON(!sdev); 1773 spin_lock_irq(&sdev->spinlock); 1774 for (i = 0; i < ch->rq_size; ++i) { 1775 target = ch->ioctx_ring[i]; 1776 if (target->cmd.se_lun == ioctx->cmd.se_lun && 1777 target->tag == tag && 1778 srpt_get_cmd_state(target) != SRPT_STATE_DONE) { 1779 ret = 0; 1780 /* now let the target core abort &target->cmd; */ 1781 break; 1782 } 1783 } 1784 spin_unlock_irq(&sdev->spinlock); 1785 return ret; 1786 } 1787 1788 static int srp_tmr_to_tcm(int fn) 1789 { 1790 switch (fn) { 1791 case SRP_TSK_ABORT_TASK: 1792 return TMR_ABORT_TASK; 1793 case SRP_TSK_ABORT_TASK_SET: 1794 return TMR_ABORT_TASK_SET; 1795 case SRP_TSK_CLEAR_TASK_SET: 1796 return TMR_CLEAR_TASK_SET; 1797 case SRP_TSK_LUN_RESET: 1798 return TMR_LUN_RESET; 1799 case SRP_TSK_CLEAR_ACA: 1800 return TMR_CLEAR_ACA; 1801 default: 1802 return -1; 1803 } 1804 } 1805 1806 /** 1807 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1808 * 1809 * Returns 0 if and only if the request will be processed by the target core. 1810 * 1811 * For more information about SRP_TSK_MGMT information units, see also section 1812 * 6.7 in the SRP r16a document. 1813 */ 1814 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1815 struct srpt_recv_ioctx *recv_ioctx, 1816 struct srpt_send_ioctx *send_ioctx) 1817 { 1818 struct srp_tsk_mgmt *srp_tsk; 1819 struct se_cmd *cmd; 1820 struct se_session *sess = ch->sess; 1821 uint64_t unpacked_lun; 1822 uint32_t tag = 0; 1823 int tcm_tmr; 1824 int rc; 1825 1826 BUG_ON(!send_ioctx); 1827 1828 srp_tsk = recv_ioctx->ioctx.buf; 1829 cmd = &send_ioctx->cmd; 1830 1831 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1832 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1833 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1834 1835 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1836 send_ioctx->tag = srp_tsk->tag; 1837 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1838 if (tcm_tmr < 0) { 1839 send_ioctx->cmd.se_tmr_req->response = 1840 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; 1841 goto fail; 1842 } 1843 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1844 sizeof(srp_tsk->lun)); 1845 1846 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) { 1847 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); 1848 if (rc < 0) { 1849 send_ioctx->cmd.se_tmr_req->response = 1850 TMR_TASK_DOES_NOT_EXIST; 1851 goto fail; 1852 } 1853 tag = srp_tsk->task_tag; 1854 } 1855 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1856 srp_tsk, tcm_tmr, GFP_KERNEL, tag, 1857 TARGET_SCF_ACK_KREF); 1858 if (rc != 0) { 1859 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1860 goto fail; 1861 } 1862 return; 1863 fail: 1864 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1865 } 1866 1867 /** 1868 * srpt_handle_new_iu() - Process a newly received information unit. 1869 * @ch: RDMA channel through which the information unit has been received. 1870 * @ioctx: SRPT I/O context associated with the information unit. 1871 */ 1872 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1873 struct srpt_recv_ioctx *recv_ioctx, 1874 struct srpt_send_ioctx *send_ioctx) 1875 { 1876 struct srp_cmd *srp_cmd; 1877 enum rdma_ch_state ch_state; 1878 1879 BUG_ON(!ch); 1880 BUG_ON(!recv_ioctx); 1881 1882 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1883 recv_ioctx->ioctx.dma, srp_max_req_size, 1884 DMA_FROM_DEVICE); 1885 1886 ch_state = srpt_get_ch_state(ch); 1887 if (unlikely(ch_state == CH_CONNECTING)) { 1888 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1889 goto out; 1890 } 1891 1892 if (unlikely(ch_state != CH_LIVE)) 1893 goto out; 1894 1895 srp_cmd = recv_ioctx->ioctx.buf; 1896 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1897 if (!send_ioctx) 1898 send_ioctx = srpt_get_send_ioctx(ch); 1899 if (unlikely(!send_ioctx)) { 1900 list_add_tail(&recv_ioctx->wait_list, 1901 &ch->cmd_wait_list); 1902 goto out; 1903 } 1904 } 1905 1906 switch (srp_cmd->opcode) { 1907 case SRP_CMD: 1908 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1909 break; 1910 case SRP_TSK_MGMT: 1911 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1912 break; 1913 case SRP_I_LOGOUT: 1914 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1915 break; 1916 case SRP_CRED_RSP: 1917 pr_debug("received SRP_CRED_RSP\n"); 1918 break; 1919 case SRP_AER_RSP: 1920 pr_debug("received SRP_AER_RSP\n"); 1921 break; 1922 case SRP_RSP: 1923 pr_err("Received SRP_RSP\n"); 1924 break; 1925 default: 1926 pr_err("received IU with unknown opcode 0x%x\n", 1927 srp_cmd->opcode); 1928 break; 1929 } 1930 1931 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1932 out: 1933 return; 1934 } 1935 1936 static void srpt_process_rcv_completion(struct ib_cq *cq, 1937 struct srpt_rdma_ch *ch, 1938 struct ib_wc *wc) 1939 { 1940 struct srpt_device *sdev = ch->sport->sdev; 1941 struct srpt_recv_ioctx *ioctx; 1942 u32 index; 1943 1944 index = idx_from_wr_id(wc->wr_id); 1945 if (wc->status == IB_WC_SUCCESS) { 1946 int req_lim; 1947 1948 req_lim = atomic_dec_return(&ch->req_lim); 1949 if (unlikely(req_lim < 0)) 1950 pr_err("req_lim = %d < 0\n", req_lim); 1951 ioctx = sdev->ioctx_ring[index]; 1952 srpt_handle_new_iu(ch, ioctx, NULL); 1953 } else { 1954 pr_info("receiving failed for idx %u with status %d\n", 1955 index, wc->status); 1956 } 1957 } 1958 1959 /** 1960 * srpt_process_send_completion() - Process an IB send completion. 1961 * 1962 * Note: Although this has not yet been observed during tests, at least in 1963 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1964 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1965 * value in each response is set to one, and it is possible that this response 1966 * makes the initiator send a new request before the send completion for that 1967 * response has been processed. This could e.g. happen if the call to 1968 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1969 * if IB retransmission causes generation of the send completion to be 1970 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1971 * are queued on cmd_wait_list. The code below processes these delayed 1972 * requests one at a time. 1973 */ 1974 static void srpt_process_send_completion(struct ib_cq *cq, 1975 struct srpt_rdma_ch *ch, 1976 struct ib_wc *wc) 1977 { 1978 struct srpt_send_ioctx *send_ioctx; 1979 uint32_t index; 1980 enum srpt_opcode opcode; 1981 1982 index = idx_from_wr_id(wc->wr_id); 1983 opcode = opcode_from_wr_id(wc->wr_id); 1984 send_ioctx = ch->ioctx_ring[index]; 1985 if (wc->status == IB_WC_SUCCESS) { 1986 if (opcode == SRPT_SEND) 1987 srpt_handle_send_comp(ch, send_ioctx); 1988 else { 1989 WARN_ON(opcode != SRPT_RDMA_ABORT && 1990 wc->opcode != IB_WC_RDMA_READ); 1991 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1992 } 1993 } else { 1994 if (opcode == SRPT_SEND) { 1995 pr_info("sending response for idx %u failed" 1996 " with status %d\n", index, wc->status); 1997 srpt_handle_send_err_comp(ch, wc->wr_id); 1998 } else if (opcode != SRPT_RDMA_MID) { 1999 pr_info("RDMA t %d for idx %u failed with" 2000 " status %d\n", opcode, index, wc->status); 2001 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 2002 } 2003 } 2004 2005 while (unlikely(opcode == SRPT_SEND 2006 && !list_empty(&ch->cmd_wait_list) 2007 && srpt_get_ch_state(ch) == CH_LIVE 2008 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 2009 struct srpt_recv_ioctx *recv_ioctx; 2010 2011 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 2012 struct srpt_recv_ioctx, 2013 wait_list); 2014 list_del(&recv_ioctx->wait_list); 2015 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 2016 } 2017 } 2018 2019 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 2020 { 2021 struct ib_wc *const wc = ch->wc; 2022 int i, n; 2023 2024 WARN_ON(cq != ch->cq); 2025 2026 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 2027 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 2028 for (i = 0; i < n; i++) { 2029 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 2030 srpt_process_rcv_completion(cq, ch, &wc[i]); 2031 else 2032 srpt_process_send_completion(cq, ch, &wc[i]); 2033 } 2034 } 2035 } 2036 2037 /** 2038 * srpt_completion() - IB completion queue callback function. 2039 * 2040 * Notes: 2041 * - It is guaranteed that a completion handler will never be invoked 2042 * concurrently on two different CPUs for the same completion queue. See also 2043 * Documentation/infiniband/core_locking.txt and the implementation of 2044 * handle_edge_irq() in kernel/irq/chip.c. 2045 * - When threaded IRQs are enabled, completion handlers are invoked in thread 2046 * context instead of interrupt context. 2047 */ 2048 static void srpt_completion(struct ib_cq *cq, void *ctx) 2049 { 2050 struct srpt_rdma_ch *ch = ctx; 2051 2052 wake_up_interruptible(&ch->wait_queue); 2053 } 2054 2055 static int srpt_compl_thread(void *arg) 2056 { 2057 struct srpt_rdma_ch *ch; 2058 2059 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2060 current->flags |= PF_NOFREEZE; 2061 2062 ch = arg; 2063 BUG_ON(!ch); 2064 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2065 ch->sess_name, ch->thread->comm, current->pid); 2066 while (!kthread_should_stop()) { 2067 wait_event_interruptible(ch->wait_queue, 2068 (srpt_process_completion(ch->cq, ch), 2069 kthread_should_stop())); 2070 } 2071 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2072 ch->sess_name, ch->thread->comm, current->pid); 2073 return 0; 2074 } 2075 2076 /** 2077 * srpt_create_ch_ib() - Create receive and send completion queues. 2078 */ 2079 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2080 { 2081 struct ib_qp_init_attr *qp_init; 2082 struct srpt_port *sport = ch->sport; 2083 struct srpt_device *sdev = sport->sdev; 2084 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2085 struct ib_cq_init_attr cq_attr = {}; 2086 int ret; 2087 2088 WARN_ON(ch->rq_size < 1); 2089 2090 ret = -ENOMEM; 2091 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2092 if (!qp_init) 2093 goto out; 2094 2095 retry: 2096 cq_attr.cqe = ch->rq_size + srp_sq_size; 2097 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2098 &cq_attr); 2099 if (IS_ERR(ch->cq)) { 2100 ret = PTR_ERR(ch->cq); 2101 pr_err("failed to create CQ cqe= %d ret= %d\n", 2102 ch->rq_size + srp_sq_size, ret); 2103 goto out; 2104 } 2105 2106 qp_init->qp_context = (void *)ch; 2107 qp_init->event_handler 2108 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2109 qp_init->send_cq = ch->cq; 2110 qp_init->recv_cq = ch->cq; 2111 qp_init->srq = sdev->srq; 2112 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2113 qp_init->qp_type = IB_QPT_RC; 2114 qp_init->cap.max_send_wr = srp_sq_size; 2115 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2116 2117 ch->qp = ib_create_qp(sdev->pd, qp_init); 2118 if (IS_ERR(ch->qp)) { 2119 ret = PTR_ERR(ch->qp); 2120 if (ret == -ENOMEM) { 2121 srp_sq_size /= 2; 2122 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2123 ib_destroy_cq(ch->cq); 2124 goto retry; 2125 } 2126 } 2127 pr_err("failed to create_qp ret= %d\n", ret); 2128 goto err_destroy_cq; 2129 } 2130 2131 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2132 2133 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2134 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2135 qp_init->cap.max_send_wr, ch->cm_id); 2136 2137 ret = srpt_init_ch_qp(ch, ch->qp); 2138 if (ret) 2139 goto err_destroy_qp; 2140 2141 init_waitqueue_head(&ch->wait_queue); 2142 2143 pr_debug("creating thread for session %s\n", ch->sess_name); 2144 2145 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2146 if (IS_ERR(ch->thread)) { 2147 pr_err("failed to create kernel thread %ld\n", 2148 PTR_ERR(ch->thread)); 2149 ch->thread = NULL; 2150 goto err_destroy_qp; 2151 } 2152 2153 out: 2154 kfree(qp_init); 2155 return ret; 2156 2157 err_destroy_qp: 2158 ib_destroy_qp(ch->qp); 2159 err_destroy_cq: 2160 ib_destroy_cq(ch->cq); 2161 goto out; 2162 } 2163 2164 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2165 { 2166 if (ch->thread) 2167 kthread_stop(ch->thread); 2168 2169 ib_destroy_qp(ch->qp); 2170 ib_destroy_cq(ch->cq); 2171 } 2172 2173 /** 2174 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2175 * 2176 * Reset the QP and make sure all resources associated with the channel will 2177 * be deallocated at an appropriate time. 2178 * 2179 * Note: The caller must hold ch->sport->sdev->spinlock. 2180 */ 2181 static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2182 { 2183 struct srpt_device *sdev; 2184 enum rdma_ch_state prev_state; 2185 unsigned long flags; 2186 2187 sdev = ch->sport->sdev; 2188 2189 spin_lock_irqsave(&ch->spinlock, flags); 2190 prev_state = ch->state; 2191 switch (prev_state) { 2192 case CH_CONNECTING: 2193 case CH_LIVE: 2194 ch->state = CH_DISCONNECTING; 2195 break; 2196 default: 2197 break; 2198 } 2199 spin_unlock_irqrestore(&ch->spinlock, flags); 2200 2201 switch (prev_state) { 2202 case CH_CONNECTING: 2203 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2204 NULL, 0); 2205 /* fall through */ 2206 case CH_LIVE: 2207 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2208 pr_err("sending CM DREQ failed.\n"); 2209 break; 2210 case CH_DISCONNECTING: 2211 break; 2212 case CH_DRAINING: 2213 case CH_RELEASING: 2214 break; 2215 } 2216 } 2217 2218 /** 2219 * srpt_close_ch() - Close an RDMA channel. 2220 */ 2221 static void srpt_close_ch(struct srpt_rdma_ch *ch) 2222 { 2223 struct srpt_device *sdev; 2224 2225 sdev = ch->sport->sdev; 2226 spin_lock_irq(&sdev->spinlock); 2227 __srpt_close_ch(ch); 2228 spin_unlock_irq(&sdev->spinlock); 2229 } 2230 2231 /** 2232 * srpt_shutdown_session() - Whether or not a session may be shut down. 2233 */ 2234 static int srpt_shutdown_session(struct se_session *se_sess) 2235 { 2236 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2237 unsigned long flags; 2238 2239 spin_lock_irqsave(&ch->spinlock, flags); 2240 if (ch->in_shutdown) { 2241 spin_unlock_irqrestore(&ch->spinlock, flags); 2242 return true; 2243 } 2244 2245 ch->in_shutdown = true; 2246 target_sess_cmd_list_set_waiting(se_sess); 2247 spin_unlock_irqrestore(&ch->spinlock, flags); 2248 2249 return true; 2250 } 2251 2252 /** 2253 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2254 * @cm_id: Pointer to the CM ID of the channel to be drained. 2255 * 2256 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2257 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2258 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2259 * waits until all target sessions for the associated IB device have been 2260 * unregistered and target session registration involves a call to 2261 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2262 * this function has finished). 2263 */ 2264 static void srpt_drain_channel(struct ib_cm_id *cm_id) 2265 { 2266 struct srpt_device *sdev; 2267 struct srpt_rdma_ch *ch; 2268 int ret; 2269 bool do_reset = false; 2270 2271 WARN_ON_ONCE(irqs_disabled()); 2272 2273 sdev = cm_id->context; 2274 BUG_ON(!sdev); 2275 spin_lock_irq(&sdev->spinlock); 2276 list_for_each_entry(ch, &sdev->rch_list, list) { 2277 if (ch->cm_id == cm_id) { 2278 do_reset = srpt_test_and_set_ch_state(ch, 2279 CH_CONNECTING, CH_DRAINING) || 2280 srpt_test_and_set_ch_state(ch, 2281 CH_LIVE, CH_DRAINING) || 2282 srpt_test_and_set_ch_state(ch, 2283 CH_DISCONNECTING, CH_DRAINING); 2284 break; 2285 } 2286 } 2287 spin_unlock_irq(&sdev->spinlock); 2288 2289 if (do_reset) { 2290 if (ch->sess) 2291 srpt_shutdown_session(ch->sess); 2292 2293 ret = srpt_ch_qp_err(ch); 2294 if (ret < 0) 2295 pr_err("Setting queue pair in error state" 2296 " failed: %d\n", ret); 2297 } 2298 } 2299 2300 /** 2301 * srpt_find_channel() - Look up an RDMA channel. 2302 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2303 * 2304 * Return NULL if no matching RDMA channel has been found. 2305 */ 2306 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2307 struct ib_cm_id *cm_id) 2308 { 2309 struct srpt_rdma_ch *ch; 2310 bool found; 2311 2312 WARN_ON_ONCE(irqs_disabled()); 2313 BUG_ON(!sdev); 2314 2315 found = false; 2316 spin_lock_irq(&sdev->spinlock); 2317 list_for_each_entry(ch, &sdev->rch_list, list) { 2318 if (ch->cm_id == cm_id) { 2319 found = true; 2320 break; 2321 } 2322 } 2323 spin_unlock_irq(&sdev->spinlock); 2324 2325 return found ? ch : NULL; 2326 } 2327 2328 /** 2329 * srpt_release_channel() - Release channel resources. 2330 * 2331 * Schedules the actual release because: 2332 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2333 * trigger a deadlock. 2334 * - It is not safe to call TCM transport_* functions from interrupt context. 2335 */ 2336 static void srpt_release_channel(struct srpt_rdma_ch *ch) 2337 { 2338 schedule_work(&ch->release_work); 2339 } 2340 2341 static void srpt_release_channel_work(struct work_struct *w) 2342 { 2343 struct srpt_rdma_ch *ch; 2344 struct srpt_device *sdev; 2345 struct se_session *se_sess; 2346 2347 ch = container_of(w, struct srpt_rdma_ch, release_work); 2348 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2349 ch->release_done); 2350 2351 sdev = ch->sport->sdev; 2352 BUG_ON(!sdev); 2353 2354 se_sess = ch->sess; 2355 BUG_ON(!se_sess); 2356 2357 target_wait_for_sess_cmds(se_sess); 2358 2359 transport_deregister_session_configfs(se_sess); 2360 transport_deregister_session(se_sess); 2361 ch->sess = NULL; 2362 2363 ib_destroy_cm_id(ch->cm_id); 2364 2365 srpt_destroy_ch_ib(ch); 2366 2367 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2368 ch->sport->sdev, ch->rq_size, 2369 ch->rsp_size, DMA_TO_DEVICE); 2370 2371 spin_lock_irq(&sdev->spinlock); 2372 list_del(&ch->list); 2373 spin_unlock_irq(&sdev->spinlock); 2374 2375 if (ch->release_done) 2376 complete(ch->release_done); 2377 2378 wake_up(&sdev->ch_releaseQ); 2379 2380 kfree(ch); 2381 } 2382 2383 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2384 u8 i_port_id[16]) 2385 { 2386 struct srpt_node_acl *nacl; 2387 2388 list_for_each_entry(nacl, &sport->port_acl_list, list) 2389 if (memcmp(nacl->i_port_id, i_port_id, 2390 sizeof(nacl->i_port_id)) == 0) 2391 return nacl; 2392 2393 return NULL; 2394 } 2395 2396 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2397 u8 i_port_id[16]) 2398 { 2399 struct srpt_node_acl *nacl; 2400 2401 spin_lock_irq(&sport->port_acl_lock); 2402 nacl = __srpt_lookup_acl(sport, i_port_id); 2403 spin_unlock_irq(&sport->port_acl_lock); 2404 2405 return nacl; 2406 } 2407 2408 /** 2409 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2410 * 2411 * Ownership of the cm_id is transferred to the target session if this 2412 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2413 */ 2414 static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2415 struct ib_cm_req_event_param *param, 2416 void *private_data) 2417 { 2418 struct srpt_device *sdev = cm_id->context; 2419 struct srpt_port *sport = &sdev->port[param->port - 1]; 2420 struct srp_login_req *req; 2421 struct srp_login_rsp *rsp; 2422 struct srp_login_rej *rej; 2423 struct ib_cm_rep_param *rep_param; 2424 struct srpt_rdma_ch *ch, *tmp_ch; 2425 struct srpt_node_acl *nacl; 2426 u32 it_iu_len; 2427 int i; 2428 int ret = 0; 2429 2430 WARN_ON_ONCE(irqs_disabled()); 2431 2432 if (WARN_ON(!sdev || !private_data)) 2433 return -EINVAL; 2434 2435 req = (struct srp_login_req *)private_data; 2436 2437 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2438 2439 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2440 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2441 " (guid=0x%llx:0x%llx)\n", 2442 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2443 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2444 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2445 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2446 it_iu_len, 2447 param->port, 2448 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2449 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2450 2451 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2452 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2453 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2454 2455 if (!rsp || !rej || !rep_param) { 2456 ret = -ENOMEM; 2457 goto out; 2458 } 2459 2460 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2461 rej->reason = __constant_cpu_to_be32( 2462 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2463 ret = -EINVAL; 2464 pr_err("rejected SRP_LOGIN_REQ because its" 2465 " length (%d bytes) is out of range (%d .. %d)\n", 2466 it_iu_len, 64, srp_max_req_size); 2467 goto reject; 2468 } 2469 2470 if (!sport->enabled) { 2471 rej->reason = __constant_cpu_to_be32( 2472 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2473 ret = -EINVAL; 2474 pr_err("rejected SRP_LOGIN_REQ because the target port" 2475 " has not yet been enabled\n"); 2476 goto reject; 2477 } 2478 2479 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2480 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2481 2482 spin_lock_irq(&sdev->spinlock); 2483 2484 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2485 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2486 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2487 && param->port == ch->sport->port 2488 && param->listen_id == ch->sport->sdev->cm_id 2489 && ch->cm_id) { 2490 enum rdma_ch_state ch_state; 2491 2492 ch_state = srpt_get_ch_state(ch); 2493 if (ch_state != CH_CONNECTING 2494 && ch_state != CH_LIVE) 2495 continue; 2496 2497 /* found an existing channel */ 2498 pr_debug("Found existing channel %s" 2499 " cm_id= %p state= %d\n", 2500 ch->sess_name, ch->cm_id, ch_state); 2501 2502 __srpt_close_ch(ch); 2503 2504 rsp->rsp_flags = 2505 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2506 } 2507 } 2508 2509 spin_unlock_irq(&sdev->spinlock); 2510 2511 } else 2512 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2513 2514 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2515 || *(__be64 *)(req->target_port_id + 8) != 2516 cpu_to_be64(srpt_service_guid)) { 2517 rej->reason = __constant_cpu_to_be32( 2518 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2519 ret = -ENOMEM; 2520 pr_err("rejected SRP_LOGIN_REQ because it" 2521 " has an invalid target port identifier.\n"); 2522 goto reject; 2523 } 2524 2525 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2526 if (!ch) { 2527 rej->reason = __constant_cpu_to_be32( 2528 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2529 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2530 ret = -ENOMEM; 2531 goto reject; 2532 } 2533 2534 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2535 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2536 memcpy(ch->t_port_id, req->target_port_id, 16); 2537 ch->sport = &sdev->port[param->port - 1]; 2538 ch->cm_id = cm_id; 2539 /* 2540 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2541 * for the SRP protocol to the command queue size. 2542 */ 2543 ch->rq_size = SRPT_RQ_SIZE; 2544 spin_lock_init(&ch->spinlock); 2545 ch->state = CH_CONNECTING; 2546 INIT_LIST_HEAD(&ch->cmd_wait_list); 2547 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2548 2549 ch->ioctx_ring = (struct srpt_send_ioctx **) 2550 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2551 sizeof(*ch->ioctx_ring[0]), 2552 ch->rsp_size, DMA_TO_DEVICE); 2553 if (!ch->ioctx_ring) 2554 goto free_ch; 2555 2556 INIT_LIST_HEAD(&ch->free_list); 2557 for (i = 0; i < ch->rq_size; i++) { 2558 ch->ioctx_ring[i]->ch = ch; 2559 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2560 } 2561 2562 ret = srpt_create_ch_ib(ch); 2563 if (ret) { 2564 rej->reason = __constant_cpu_to_be32( 2565 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2566 pr_err("rejected SRP_LOGIN_REQ because creating" 2567 " a new RDMA channel failed.\n"); 2568 goto free_ring; 2569 } 2570 2571 ret = srpt_ch_qp_rtr(ch, ch->qp); 2572 if (ret) { 2573 rej->reason = __constant_cpu_to_be32( 2574 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2575 pr_err("rejected SRP_LOGIN_REQ because enabling" 2576 " RTR failed (error code = %d)\n", ret); 2577 goto destroy_ib; 2578 } 2579 /* 2580 * Use the initator port identifier as the session name. 2581 */ 2582 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2583 be64_to_cpu(*(__be64 *)ch->i_port_id), 2584 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2585 2586 pr_debug("registering session %s\n", ch->sess_name); 2587 2588 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2589 if (!nacl) { 2590 pr_info("Rejected login because no ACL has been" 2591 " configured yet for initiator %s.\n", ch->sess_name); 2592 rej->reason = __constant_cpu_to_be32( 2593 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2594 goto destroy_ib; 2595 } 2596 2597 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2598 if (IS_ERR(ch->sess)) { 2599 rej->reason = __constant_cpu_to_be32( 2600 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2601 pr_debug("Failed to create session\n"); 2602 goto deregister_session; 2603 } 2604 ch->sess->se_node_acl = &nacl->nacl; 2605 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2606 2607 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2608 ch->sess_name, ch->cm_id); 2609 2610 /* create srp_login_response */ 2611 rsp->opcode = SRP_LOGIN_RSP; 2612 rsp->tag = req->tag; 2613 rsp->max_it_iu_len = req->req_it_iu_len; 2614 rsp->max_ti_iu_len = req->req_it_iu_len; 2615 ch->max_ti_iu_len = it_iu_len; 2616 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2617 | SRP_BUF_FORMAT_INDIRECT); 2618 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2619 atomic_set(&ch->req_lim, ch->rq_size); 2620 atomic_set(&ch->req_lim_delta, 0); 2621 2622 /* create cm reply */ 2623 rep_param->qp_num = ch->qp->qp_num; 2624 rep_param->private_data = (void *)rsp; 2625 rep_param->private_data_len = sizeof *rsp; 2626 rep_param->rnr_retry_count = 7; 2627 rep_param->flow_control = 1; 2628 rep_param->failover_accepted = 0; 2629 rep_param->srq = 1; 2630 rep_param->responder_resources = 4; 2631 rep_param->initiator_depth = 4; 2632 2633 ret = ib_send_cm_rep(cm_id, rep_param); 2634 if (ret) { 2635 pr_err("sending SRP_LOGIN_REQ response failed" 2636 " (error code = %d)\n", ret); 2637 goto release_channel; 2638 } 2639 2640 spin_lock_irq(&sdev->spinlock); 2641 list_add_tail(&ch->list, &sdev->rch_list); 2642 spin_unlock_irq(&sdev->spinlock); 2643 2644 goto out; 2645 2646 release_channel: 2647 srpt_set_ch_state(ch, CH_RELEASING); 2648 transport_deregister_session_configfs(ch->sess); 2649 2650 deregister_session: 2651 transport_deregister_session(ch->sess); 2652 ch->sess = NULL; 2653 2654 destroy_ib: 2655 srpt_destroy_ch_ib(ch); 2656 2657 free_ring: 2658 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2659 ch->sport->sdev, ch->rq_size, 2660 ch->rsp_size, DMA_TO_DEVICE); 2661 free_ch: 2662 kfree(ch); 2663 2664 reject: 2665 rej->opcode = SRP_LOGIN_REJ; 2666 rej->tag = req->tag; 2667 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2668 | SRP_BUF_FORMAT_INDIRECT); 2669 2670 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2671 (void *)rej, sizeof *rej); 2672 2673 out: 2674 kfree(rep_param); 2675 kfree(rsp); 2676 kfree(rej); 2677 2678 return ret; 2679 } 2680 2681 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2682 { 2683 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2684 srpt_drain_channel(cm_id); 2685 } 2686 2687 /** 2688 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2689 * 2690 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2691 * and that the recipient may begin transmitting (RTU = ready to use). 2692 */ 2693 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2694 { 2695 struct srpt_rdma_ch *ch; 2696 int ret; 2697 2698 ch = srpt_find_channel(cm_id->context, cm_id); 2699 BUG_ON(!ch); 2700 2701 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2702 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2703 2704 ret = srpt_ch_qp_rts(ch, ch->qp); 2705 2706 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2707 wait_list) { 2708 list_del(&ioctx->wait_list); 2709 srpt_handle_new_iu(ch, ioctx, NULL); 2710 } 2711 if (ret) 2712 srpt_close_ch(ch); 2713 } 2714 } 2715 2716 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2717 { 2718 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2719 srpt_drain_channel(cm_id); 2720 } 2721 2722 static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2723 { 2724 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2725 srpt_drain_channel(cm_id); 2726 } 2727 2728 /** 2729 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2730 */ 2731 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2732 { 2733 struct srpt_rdma_ch *ch; 2734 unsigned long flags; 2735 bool send_drep = false; 2736 2737 ch = srpt_find_channel(cm_id->context, cm_id); 2738 BUG_ON(!ch); 2739 2740 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2741 2742 spin_lock_irqsave(&ch->spinlock, flags); 2743 switch (ch->state) { 2744 case CH_CONNECTING: 2745 case CH_LIVE: 2746 send_drep = true; 2747 ch->state = CH_DISCONNECTING; 2748 break; 2749 case CH_DISCONNECTING: 2750 case CH_DRAINING: 2751 case CH_RELEASING: 2752 WARN(true, "unexpected channel state %d\n", ch->state); 2753 break; 2754 } 2755 spin_unlock_irqrestore(&ch->spinlock, flags); 2756 2757 if (send_drep) { 2758 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2759 pr_err("Sending IB DREP failed.\n"); 2760 pr_info("Received DREQ and sent DREP for session %s.\n", 2761 ch->sess_name); 2762 } 2763 } 2764 2765 /** 2766 * srpt_cm_drep_recv() - Process reception of a DREP message. 2767 */ 2768 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2769 { 2770 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2771 srpt_drain_channel(cm_id); 2772 } 2773 2774 /** 2775 * srpt_cm_handler() - IB connection manager callback function. 2776 * 2777 * A non-zero return value will cause the caller destroy the CM ID. 2778 * 2779 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2780 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2781 * a non-zero value in any other case will trigger a race with the 2782 * ib_destroy_cm_id() call in srpt_release_channel(). 2783 */ 2784 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2785 { 2786 int ret; 2787 2788 ret = 0; 2789 switch (event->event) { 2790 case IB_CM_REQ_RECEIVED: 2791 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2792 event->private_data); 2793 break; 2794 case IB_CM_REJ_RECEIVED: 2795 srpt_cm_rej_recv(cm_id); 2796 break; 2797 case IB_CM_RTU_RECEIVED: 2798 case IB_CM_USER_ESTABLISHED: 2799 srpt_cm_rtu_recv(cm_id); 2800 break; 2801 case IB_CM_DREQ_RECEIVED: 2802 srpt_cm_dreq_recv(cm_id); 2803 break; 2804 case IB_CM_DREP_RECEIVED: 2805 srpt_cm_drep_recv(cm_id); 2806 break; 2807 case IB_CM_TIMEWAIT_EXIT: 2808 srpt_cm_timewait_exit(cm_id); 2809 break; 2810 case IB_CM_REP_ERROR: 2811 srpt_cm_rep_error(cm_id); 2812 break; 2813 case IB_CM_DREQ_ERROR: 2814 pr_info("Received IB DREQ ERROR event.\n"); 2815 break; 2816 case IB_CM_MRA_RECEIVED: 2817 pr_info("Received IB MRA event\n"); 2818 break; 2819 default: 2820 pr_err("received unrecognized IB CM event %d\n", event->event); 2821 break; 2822 } 2823 2824 return ret; 2825 } 2826 2827 /** 2828 * srpt_perform_rdmas() - Perform IB RDMA. 2829 * 2830 * Returns zero upon success or a negative number upon failure. 2831 */ 2832 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2833 struct srpt_send_ioctx *ioctx) 2834 { 2835 struct ib_send_wr wr; 2836 struct ib_send_wr *bad_wr; 2837 struct rdma_iu *riu; 2838 int i; 2839 int ret; 2840 int sq_wr_avail; 2841 enum dma_data_direction dir; 2842 const int n_rdma = ioctx->n_rdma; 2843 2844 dir = ioctx->cmd.data_direction; 2845 if (dir == DMA_TO_DEVICE) { 2846 /* write */ 2847 ret = -ENOMEM; 2848 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2849 if (sq_wr_avail < 0) { 2850 pr_warn("IB send queue full (needed %d)\n", 2851 n_rdma); 2852 goto out; 2853 } 2854 } 2855 2856 ioctx->rdma_aborted = false; 2857 ret = 0; 2858 riu = ioctx->rdma_ius; 2859 memset(&wr, 0, sizeof wr); 2860 2861 for (i = 0; i < n_rdma; ++i, ++riu) { 2862 if (dir == DMA_FROM_DEVICE) { 2863 wr.opcode = IB_WR_RDMA_WRITE; 2864 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2865 SRPT_RDMA_WRITE_LAST : 2866 SRPT_RDMA_MID, 2867 ioctx->ioctx.index); 2868 } else { 2869 wr.opcode = IB_WR_RDMA_READ; 2870 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2871 SRPT_RDMA_READ_LAST : 2872 SRPT_RDMA_MID, 2873 ioctx->ioctx.index); 2874 } 2875 wr.next = NULL; 2876 wr.wr.rdma.remote_addr = riu->raddr; 2877 wr.wr.rdma.rkey = riu->rkey; 2878 wr.num_sge = riu->sge_cnt; 2879 wr.sg_list = riu->sge; 2880 2881 /* only get completion event for the last rdma write */ 2882 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2883 wr.send_flags = IB_SEND_SIGNALED; 2884 2885 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2886 if (ret) 2887 break; 2888 } 2889 2890 if (ret) 2891 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2892 __func__, __LINE__, ret, i, n_rdma); 2893 if (ret && i > 0) { 2894 wr.num_sge = 0; 2895 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2896 wr.send_flags = IB_SEND_SIGNALED; 2897 while (ch->state == CH_LIVE && 2898 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2899 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2900 ioctx->ioctx.index); 2901 msleep(1000); 2902 } 2903 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2904 pr_info("Waiting until RDMA abort finished [%d]\n", 2905 ioctx->ioctx.index); 2906 msleep(1000); 2907 } 2908 } 2909 out: 2910 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2911 atomic_add(n_rdma, &ch->sq_wr_avail); 2912 return ret; 2913 } 2914 2915 /** 2916 * srpt_xfer_data() - Start data transfer from initiator to target. 2917 */ 2918 static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2919 struct srpt_send_ioctx *ioctx) 2920 { 2921 int ret; 2922 2923 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2924 if (ret) { 2925 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2926 goto out; 2927 } 2928 2929 ret = srpt_perform_rdmas(ch, ioctx); 2930 if (ret) { 2931 if (ret == -EAGAIN || ret == -ENOMEM) 2932 pr_info("%s[%d] queue full -- ret=%d\n", 2933 __func__, __LINE__, ret); 2934 else 2935 pr_err("%s[%d] fatal error -- ret=%d\n", 2936 __func__, __LINE__, ret); 2937 goto out_unmap; 2938 } 2939 2940 out: 2941 return ret; 2942 out_unmap: 2943 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2944 goto out; 2945 } 2946 2947 static int srpt_write_pending_status(struct se_cmd *se_cmd) 2948 { 2949 struct srpt_send_ioctx *ioctx; 2950 2951 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2952 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2953 } 2954 2955 /* 2956 * srpt_write_pending() - Start data transfer from initiator to target (write). 2957 */ 2958 static int srpt_write_pending(struct se_cmd *se_cmd) 2959 { 2960 struct srpt_rdma_ch *ch; 2961 struct srpt_send_ioctx *ioctx; 2962 enum srpt_command_state new_state; 2963 enum rdma_ch_state ch_state; 2964 int ret; 2965 2966 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2967 2968 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2969 WARN_ON(new_state == SRPT_STATE_DONE); 2970 2971 ch = ioctx->ch; 2972 BUG_ON(!ch); 2973 2974 ch_state = srpt_get_ch_state(ch); 2975 switch (ch_state) { 2976 case CH_CONNECTING: 2977 WARN(true, "unexpected channel state %d\n", ch_state); 2978 ret = -EINVAL; 2979 goto out; 2980 case CH_LIVE: 2981 break; 2982 case CH_DISCONNECTING: 2983 case CH_DRAINING: 2984 case CH_RELEASING: 2985 pr_debug("cmd with tag %lld: channel disconnecting\n", 2986 ioctx->tag); 2987 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2988 ret = -EINVAL; 2989 goto out; 2990 } 2991 ret = srpt_xfer_data(ch, ioctx); 2992 2993 out: 2994 return ret; 2995 } 2996 2997 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2998 { 2999 switch (tcm_mgmt_status) { 3000 case TMR_FUNCTION_COMPLETE: 3001 return SRP_TSK_MGMT_SUCCESS; 3002 case TMR_FUNCTION_REJECTED: 3003 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 3004 } 3005 return SRP_TSK_MGMT_FAILED; 3006 } 3007 3008 /** 3009 * srpt_queue_response() - Transmits the response to a SCSI command. 3010 * 3011 * Callback function called by the TCM core. Must not block since it can be 3012 * invoked on the context of the IB completion handler. 3013 */ 3014 static void srpt_queue_response(struct se_cmd *cmd) 3015 { 3016 struct srpt_rdma_ch *ch; 3017 struct srpt_send_ioctx *ioctx; 3018 enum srpt_command_state state; 3019 unsigned long flags; 3020 int ret; 3021 enum dma_data_direction dir; 3022 int resp_len; 3023 u8 srp_tm_status; 3024 3025 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3026 ch = ioctx->ch; 3027 BUG_ON(!ch); 3028 3029 spin_lock_irqsave(&ioctx->spinlock, flags); 3030 state = ioctx->state; 3031 switch (state) { 3032 case SRPT_STATE_NEW: 3033 case SRPT_STATE_DATA_IN: 3034 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 3035 break; 3036 case SRPT_STATE_MGMT: 3037 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 3038 break; 3039 default: 3040 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 3041 ch, ioctx->ioctx.index, ioctx->state); 3042 break; 3043 } 3044 spin_unlock_irqrestore(&ioctx->spinlock, flags); 3045 3046 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 3047 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 3048 atomic_inc(&ch->req_lim_delta); 3049 srpt_abort_cmd(ioctx); 3050 return; 3051 } 3052 3053 dir = ioctx->cmd.data_direction; 3054 3055 /* For read commands, transfer the data to the initiator. */ 3056 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 3057 !ioctx->queue_status_only) { 3058 ret = srpt_xfer_data(ch, ioctx); 3059 if (ret) { 3060 pr_err("xfer_data failed for tag %llu\n", 3061 ioctx->tag); 3062 return; 3063 } 3064 } 3065 3066 if (state != SRPT_STATE_MGMT) 3067 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3068 cmd->scsi_status); 3069 else { 3070 srp_tm_status 3071 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3072 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3073 ioctx->tag); 3074 } 3075 ret = srpt_post_send(ch, ioctx, resp_len); 3076 if (ret) { 3077 pr_err("sending cmd response failed for tag %llu\n", 3078 ioctx->tag); 3079 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3080 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3081 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd); 3082 } 3083 } 3084 3085 static int srpt_queue_data_in(struct se_cmd *cmd) 3086 { 3087 srpt_queue_response(cmd); 3088 return 0; 3089 } 3090 3091 static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3092 { 3093 srpt_queue_response(cmd); 3094 } 3095 3096 static void srpt_aborted_task(struct se_cmd *cmd) 3097 { 3098 struct srpt_send_ioctx *ioctx = container_of(cmd, 3099 struct srpt_send_ioctx, cmd); 3100 3101 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3102 } 3103 3104 static int srpt_queue_status(struct se_cmd *cmd) 3105 { 3106 struct srpt_send_ioctx *ioctx; 3107 3108 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3109 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3110 if (cmd->se_cmd_flags & 3111 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3112 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3113 ioctx->queue_status_only = true; 3114 srpt_queue_response(cmd); 3115 return 0; 3116 } 3117 3118 static void srpt_refresh_port_work(struct work_struct *work) 3119 { 3120 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3121 3122 srpt_refresh_port(sport); 3123 } 3124 3125 static int srpt_ch_list_empty(struct srpt_device *sdev) 3126 { 3127 int res; 3128 3129 spin_lock_irq(&sdev->spinlock); 3130 res = list_empty(&sdev->rch_list); 3131 spin_unlock_irq(&sdev->spinlock); 3132 3133 return res; 3134 } 3135 3136 /** 3137 * srpt_release_sdev() - Free the channel resources associated with a target. 3138 */ 3139 static int srpt_release_sdev(struct srpt_device *sdev) 3140 { 3141 struct srpt_rdma_ch *ch, *tmp_ch; 3142 int res; 3143 3144 WARN_ON_ONCE(irqs_disabled()); 3145 3146 BUG_ON(!sdev); 3147 3148 spin_lock_irq(&sdev->spinlock); 3149 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3150 __srpt_close_ch(ch); 3151 spin_unlock_irq(&sdev->spinlock); 3152 3153 res = wait_event_interruptible(sdev->ch_releaseQ, 3154 srpt_ch_list_empty(sdev)); 3155 if (res) 3156 pr_err("%s: interrupted.\n", __func__); 3157 3158 return 0; 3159 } 3160 3161 static struct srpt_port *__srpt_lookup_port(const char *name) 3162 { 3163 struct ib_device *dev; 3164 struct srpt_device *sdev; 3165 struct srpt_port *sport; 3166 int i; 3167 3168 list_for_each_entry(sdev, &srpt_dev_list, list) { 3169 dev = sdev->device; 3170 if (!dev) 3171 continue; 3172 3173 for (i = 0; i < dev->phys_port_cnt; i++) { 3174 sport = &sdev->port[i]; 3175 3176 if (!strcmp(sport->port_guid, name)) 3177 return sport; 3178 } 3179 } 3180 3181 return NULL; 3182 } 3183 3184 static struct srpt_port *srpt_lookup_port(const char *name) 3185 { 3186 struct srpt_port *sport; 3187 3188 spin_lock(&srpt_dev_lock); 3189 sport = __srpt_lookup_port(name); 3190 spin_unlock(&srpt_dev_lock); 3191 3192 return sport; 3193 } 3194 3195 /** 3196 * srpt_add_one() - Infiniband device addition callback function. 3197 */ 3198 static void srpt_add_one(struct ib_device *device) 3199 { 3200 struct srpt_device *sdev; 3201 struct srpt_port *sport; 3202 struct ib_srq_init_attr srq_attr; 3203 int i; 3204 3205 pr_debug("device = %p, device->dma_ops = %p\n", device, 3206 device->dma_ops); 3207 3208 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3209 if (!sdev) 3210 goto err; 3211 3212 sdev->device = device; 3213 INIT_LIST_HEAD(&sdev->rch_list); 3214 init_waitqueue_head(&sdev->ch_releaseQ); 3215 spin_lock_init(&sdev->spinlock); 3216 3217 if (ib_query_device(device, &sdev->dev_attr)) 3218 goto free_dev; 3219 3220 sdev->pd = ib_alloc_pd(device); 3221 if (IS_ERR(sdev->pd)) 3222 goto free_dev; 3223 3224 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3225 if (IS_ERR(sdev->mr)) 3226 goto err_pd; 3227 3228 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3229 3230 srq_attr.event_handler = srpt_srq_event; 3231 srq_attr.srq_context = (void *)sdev; 3232 srq_attr.attr.max_wr = sdev->srq_size; 3233 srq_attr.attr.max_sge = 1; 3234 srq_attr.attr.srq_limit = 0; 3235 srq_attr.srq_type = IB_SRQT_BASIC; 3236 3237 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3238 if (IS_ERR(sdev->srq)) 3239 goto err_mr; 3240 3241 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3242 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3243 device->name); 3244 3245 if (!srpt_service_guid) 3246 srpt_service_guid = be64_to_cpu(device->node_guid); 3247 3248 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3249 if (IS_ERR(sdev->cm_id)) 3250 goto err_srq; 3251 3252 /* print out target login information */ 3253 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3254 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3255 srpt_service_guid, srpt_service_guid); 3256 3257 /* 3258 * We do not have a consistent service_id (ie. also id_ext of target_id) 3259 * to identify this target. We currently use the guid of the first HCA 3260 * in the system as service_id; therefore, the target_id will change 3261 * if this HCA is gone bad and replaced by different HCA 3262 */ 3263 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3264 goto err_cm; 3265 3266 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3267 srpt_event_handler); 3268 if (ib_register_event_handler(&sdev->event_handler)) 3269 goto err_cm; 3270 3271 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3272 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3273 sizeof(*sdev->ioctx_ring[0]), 3274 srp_max_req_size, DMA_FROM_DEVICE); 3275 if (!sdev->ioctx_ring) 3276 goto err_event; 3277 3278 for (i = 0; i < sdev->srq_size; ++i) 3279 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3280 3281 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3282 3283 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3284 sport = &sdev->port[i - 1]; 3285 sport->sdev = sdev; 3286 sport->port = i; 3287 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3288 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3289 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3290 INIT_WORK(&sport->work, srpt_refresh_port_work); 3291 INIT_LIST_HEAD(&sport->port_acl_list); 3292 spin_lock_init(&sport->port_acl_lock); 3293 3294 if (srpt_refresh_port(sport)) { 3295 pr_err("MAD registration failed for %s-%d.\n", 3296 srpt_sdev_name(sdev), i); 3297 goto err_ring; 3298 } 3299 snprintf(sport->port_guid, sizeof(sport->port_guid), 3300 "0x%016llx%016llx", 3301 be64_to_cpu(sport->gid.global.subnet_prefix), 3302 be64_to_cpu(sport->gid.global.interface_id)); 3303 } 3304 3305 spin_lock(&srpt_dev_lock); 3306 list_add_tail(&sdev->list, &srpt_dev_list); 3307 spin_unlock(&srpt_dev_lock); 3308 3309 out: 3310 ib_set_client_data(device, &srpt_client, sdev); 3311 pr_debug("added %s.\n", device->name); 3312 return; 3313 3314 err_ring: 3315 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3316 sdev->srq_size, srp_max_req_size, 3317 DMA_FROM_DEVICE); 3318 err_event: 3319 ib_unregister_event_handler(&sdev->event_handler); 3320 err_cm: 3321 ib_destroy_cm_id(sdev->cm_id); 3322 err_srq: 3323 ib_destroy_srq(sdev->srq); 3324 err_mr: 3325 ib_dereg_mr(sdev->mr); 3326 err_pd: 3327 ib_dealloc_pd(sdev->pd); 3328 free_dev: 3329 kfree(sdev); 3330 err: 3331 sdev = NULL; 3332 pr_info("%s(%s) failed.\n", __func__, device->name); 3333 goto out; 3334 } 3335 3336 /** 3337 * srpt_remove_one() - InfiniBand device removal callback function. 3338 */ 3339 static void srpt_remove_one(struct ib_device *device) 3340 { 3341 struct srpt_device *sdev; 3342 int i; 3343 3344 sdev = ib_get_client_data(device, &srpt_client); 3345 if (!sdev) { 3346 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3347 return; 3348 } 3349 3350 srpt_unregister_mad_agent(sdev); 3351 3352 ib_unregister_event_handler(&sdev->event_handler); 3353 3354 /* Cancel any work queued by the just unregistered IB event handler. */ 3355 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3356 cancel_work_sync(&sdev->port[i].work); 3357 3358 ib_destroy_cm_id(sdev->cm_id); 3359 3360 /* 3361 * Unregistering a target must happen after destroying sdev->cm_id 3362 * such that no new SRP_LOGIN_REQ information units can arrive while 3363 * destroying the target. 3364 */ 3365 spin_lock(&srpt_dev_lock); 3366 list_del(&sdev->list); 3367 spin_unlock(&srpt_dev_lock); 3368 srpt_release_sdev(sdev); 3369 3370 ib_destroy_srq(sdev->srq); 3371 ib_dereg_mr(sdev->mr); 3372 ib_dealloc_pd(sdev->pd); 3373 3374 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3375 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3376 sdev->ioctx_ring = NULL; 3377 kfree(sdev); 3378 } 3379 3380 static struct ib_client srpt_client = { 3381 .name = DRV_NAME, 3382 .add = srpt_add_one, 3383 .remove = srpt_remove_one 3384 }; 3385 3386 static int srpt_check_true(struct se_portal_group *se_tpg) 3387 { 3388 return 1; 3389 } 3390 3391 static int srpt_check_false(struct se_portal_group *se_tpg) 3392 { 3393 return 0; 3394 } 3395 3396 static char *srpt_get_fabric_name(void) 3397 { 3398 return "srpt"; 3399 } 3400 3401 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3402 { 3403 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3404 } 3405 3406 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3407 { 3408 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3409 3410 return sport->port_guid; 3411 } 3412 3413 static u16 srpt_get_tag(struct se_portal_group *tpg) 3414 { 3415 return 1; 3416 } 3417 3418 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3419 { 3420 return 1; 3421 } 3422 3423 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3424 struct se_node_acl *se_nacl, 3425 struct t10_pr_registration *pr_reg, 3426 int *format_code, unsigned char *buf) 3427 { 3428 struct srpt_node_acl *nacl; 3429 struct spc_rdma_transport_id *tr_id; 3430 3431 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3432 tr_id = (void *)buf; 3433 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3434 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3435 return sizeof(*tr_id); 3436 } 3437 3438 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3439 struct se_node_acl *se_nacl, 3440 struct t10_pr_registration *pr_reg, 3441 int *format_code) 3442 { 3443 *format_code = 0; 3444 return sizeof(struct spc_rdma_transport_id); 3445 } 3446 3447 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3448 const char *buf, u32 *out_tid_len, 3449 char **port_nexus_ptr) 3450 { 3451 struct spc_rdma_transport_id *tr_id; 3452 3453 *port_nexus_ptr = NULL; 3454 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3455 tr_id = (void *)buf; 3456 return (char *)tr_id->i_port_id; 3457 } 3458 3459 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3460 { 3461 struct srpt_node_acl *nacl; 3462 3463 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3464 if (!nacl) { 3465 pr_err("Unable to allocate struct srpt_node_acl\n"); 3466 return NULL; 3467 } 3468 3469 return &nacl->nacl; 3470 } 3471 3472 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3473 struct se_node_acl *se_nacl) 3474 { 3475 struct srpt_node_acl *nacl; 3476 3477 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3478 kfree(nacl); 3479 } 3480 3481 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3482 { 3483 return 1; 3484 } 3485 3486 static void srpt_release_cmd(struct se_cmd *se_cmd) 3487 { 3488 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3489 struct srpt_send_ioctx, cmd); 3490 struct srpt_rdma_ch *ch = ioctx->ch; 3491 unsigned long flags; 3492 3493 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3494 WARN_ON(ioctx->mapped_sg_count != 0); 3495 3496 if (ioctx->n_rbuf > 1) { 3497 kfree(ioctx->rbufs); 3498 ioctx->rbufs = NULL; 3499 ioctx->n_rbuf = 0; 3500 } 3501 3502 spin_lock_irqsave(&ch->spinlock, flags); 3503 list_add(&ioctx->free_list, &ch->free_list); 3504 spin_unlock_irqrestore(&ch->spinlock, flags); 3505 } 3506 3507 /** 3508 * srpt_close_session() - Forcibly close a session. 3509 * 3510 * Callback function invoked by the TCM core to clean up sessions associated 3511 * with a node ACL when the user invokes 3512 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3513 */ 3514 static void srpt_close_session(struct se_session *se_sess) 3515 { 3516 DECLARE_COMPLETION_ONSTACK(release_done); 3517 struct srpt_rdma_ch *ch; 3518 struct srpt_device *sdev; 3519 unsigned long res; 3520 3521 ch = se_sess->fabric_sess_ptr; 3522 WARN_ON(ch->sess != se_sess); 3523 3524 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3525 3526 sdev = ch->sport->sdev; 3527 spin_lock_irq(&sdev->spinlock); 3528 BUG_ON(ch->release_done); 3529 ch->release_done = &release_done; 3530 __srpt_close_ch(ch); 3531 spin_unlock_irq(&sdev->spinlock); 3532 3533 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3534 WARN_ON(res == 0); 3535 } 3536 3537 /** 3538 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3539 * 3540 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3541 * This object represents an arbitrary integer used to uniquely identify a 3542 * particular attached remote initiator port to a particular SCSI target port 3543 * within a particular SCSI target device within a particular SCSI instance. 3544 */ 3545 static u32 srpt_sess_get_index(struct se_session *se_sess) 3546 { 3547 return 0; 3548 } 3549 3550 static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3551 { 3552 } 3553 3554 static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3555 { 3556 struct srpt_send_ioctx *ioctx; 3557 3558 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3559 return ioctx->tag; 3560 } 3561 3562 /* Note: only used from inside debug printk's by the TCM core. */ 3563 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3564 { 3565 struct srpt_send_ioctx *ioctx; 3566 3567 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3568 return srpt_get_cmd_state(ioctx); 3569 } 3570 3571 /** 3572 * srpt_parse_i_port_id() - Parse an initiator port ID. 3573 * @name: ASCII representation of a 128-bit initiator port ID. 3574 * @i_port_id: Binary 128-bit port ID. 3575 */ 3576 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3577 { 3578 const char *p; 3579 unsigned len, count, leading_zero_bytes; 3580 int ret, rc; 3581 3582 p = name; 3583 if (strncasecmp(p, "0x", 2) == 0) 3584 p += 2; 3585 ret = -EINVAL; 3586 len = strlen(p); 3587 if (len % 2) 3588 goto out; 3589 count = min(len / 2, 16U); 3590 leading_zero_bytes = 16 - count; 3591 memset(i_port_id, 0, leading_zero_bytes); 3592 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3593 if (rc < 0) 3594 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3595 ret = 0; 3596 out: 3597 return ret; 3598 } 3599 3600 /* 3601 * configfs callback function invoked for 3602 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3603 */ 3604 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3605 struct config_group *group, 3606 const char *name) 3607 { 3608 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3609 struct se_node_acl *se_nacl, *se_nacl_new; 3610 struct srpt_node_acl *nacl; 3611 int ret = 0; 3612 u32 nexus_depth = 1; 3613 u8 i_port_id[16]; 3614 3615 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3616 pr_err("invalid initiator port ID %s\n", name); 3617 ret = -EINVAL; 3618 goto err; 3619 } 3620 3621 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3622 if (!se_nacl_new) { 3623 ret = -ENOMEM; 3624 goto err; 3625 } 3626 /* 3627 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3628 * when converting a node ACL from demo mode to explict 3629 */ 3630 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3631 nexus_depth); 3632 if (IS_ERR(se_nacl)) { 3633 ret = PTR_ERR(se_nacl); 3634 goto err; 3635 } 3636 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3637 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3638 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3639 nacl->sport = sport; 3640 3641 spin_lock_irq(&sport->port_acl_lock); 3642 list_add_tail(&nacl->list, &sport->port_acl_list); 3643 spin_unlock_irq(&sport->port_acl_lock); 3644 3645 return se_nacl; 3646 err: 3647 return ERR_PTR(ret); 3648 } 3649 3650 /* 3651 * configfs callback function invoked for 3652 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3653 */ 3654 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3655 { 3656 struct srpt_node_acl *nacl; 3657 struct srpt_device *sdev; 3658 struct srpt_port *sport; 3659 3660 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3661 sport = nacl->sport; 3662 sdev = sport->sdev; 3663 spin_lock_irq(&sport->port_acl_lock); 3664 list_del(&nacl->list); 3665 spin_unlock_irq(&sport->port_acl_lock); 3666 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3667 srpt_release_fabric_acl(NULL, se_nacl); 3668 } 3669 3670 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3671 struct se_portal_group *se_tpg, 3672 char *page) 3673 { 3674 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3675 3676 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3677 } 3678 3679 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3680 struct se_portal_group *se_tpg, 3681 const char *page, 3682 size_t count) 3683 { 3684 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3685 unsigned long val; 3686 int ret; 3687 3688 ret = kstrtoul(page, 0, &val); 3689 if (ret < 0) { 3690 pr_err("kstrtoul() failed with ret: %d\n", ret); 3691 return -EINVAL; 3692 } 3693 if (val > MAX_SRPT_RDMA_SIZE) { 3694 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3695 MAX_SRPT_RDMA_SIZE); 3696 return -EINVAL; 3697 } 3698 if (val < DEFAULT_MAX_RDMA_SIZE) { 3699 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3700 val, DEFAULT_MAX_RDMA_SIZE); 3701 return -EINVAL; 3702 } 3703 sport->port_attrib.srp_max_rdma_size = val; 3704 3705 return count; 3706 } 3707 3708 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3709 3710 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3711 struct se_portal_group *se_tpg, 3712 char *page) 3713 { 3714 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3715 3716 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3717 } 3718 3719 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3720 struct se_portal_group *se_tpg, 3721 const char *page, 3722 size_t count) 3723 { 3724 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3725 unsigned long val; 3726 int ret; 3727 3728 ret = kstrtoul(page, 0, &val); 3729 if (ret < 0) { 3730 pr_err("kstrtoul() failed with ret: %d\n", ret); 3731 return -EINVAL; 3732 } 3733 if (val > MAX_SRPT_RSP_SIZE) { 3734 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3735 MAX_SRPT_RSP_SIZE); 3736 return -EINVAL; 3737 } 3738 if (val < MIN_MAX_RSP_SIZE) { 3739 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3740 MIN_MAX_RSP_SIZE); 3741 return -EINVAL; 3742 } 3743 sport->port_attrib.srp_max_rsp_size = val; 3744 3745 return count; 3746 } 3747 3748 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3749 3750 static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3751 struct se_portal_group *se_tpg, 3752 char *page) 3753 { 3754 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3755 3756 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3757 } 3758 3759 static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3760 struct se_portal_group *se_tpg, 3761 const char *page, 3762 size_t count) 3763 { 3764 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3765 unsigned long val; 3766 int ret; 3767 3768 ret = kstrtoul(page, 0, &val); 3769 if (ret < 0) { 3770 pr_err("kstrtoul() failed with ret: %d\n", ret); 3771 return -EINVAL; 3772 } 3773 if (val > MAX_SRPT_SRQ_SIZE) { 3774 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3775 MAX_SRPT_SRQ_SIZE); 3776 return -EINVAL; 3777 } 3778 if (val < MIN_SRPT_SRQ_SIZE) { 3779 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3780 MIN_SRPT_SRQ_SIZE); 3781 return -EINVAL; 3782 } 3783 sport->port_attrib.srp_sq_size = val; 3784 3785 return count; 3786 } 3787 3788 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3789 3790 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3791 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3792 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3793 &srpt_tpg_attrib_srp_sq_size.attr, 3794 NULL, 3795 }; 3796 3797 static ssize_t srpt_tpg_show_enable( 3798 struct se_portal_group *se_tpg, 3799 char *page) 3800 { 3801 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3802 3803 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3804 } 3805 3806 static ssize_t srpt_tpg_store_enable( 3807 struct se_portal_group *se_tpg, 3808 const char *page, 3809 size_t count) 3810 { 3811 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3812 unsigned long tmp; 3813 int ret; 3814 3815 ret = kstrtoul(page, 0, &tmp); 3816 if (ret < 0) { 3817 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3818 return -EINVAL; 3819 } 3820 3821 if ((tmp != 0) && (tmp != 1)) { 3822 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3823 return -EINVAL; 3824 } 3825 if (tmp == 1) 3826 sport->enabled = true; 3827 else 3828 sport->enabled = false; 3829 3830 return count; 3831 } 3832 3833 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3834 3835 static struct configfs_attribute *srpt_tpg_attrs[] = { 3836 &srpt_tpg_enable.attr, 3837 NULL, 3838 }; 3839 3840 /** 3841 * configfs callback invoked for 3842 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3843 */ 3844 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3845 struct config_group *group, 3846 const char *name) 3847 { 3848 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3849 int res; 3850 3851 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3852 res = core_tpg_register(&srpt_template, &sport->port_wwn, 3853 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3854 if (res) 3855 return ERR_PTR(res); 3856 3857 return &sport->port_tpg_1; 3858 } 3859 3860 /** 3861 * configfs callback invoked for 3862 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3863 */ 3864 static void srpt_drop_tpg(struct se_portal_group *tpg) 3865 { 3866 struct srpt_port *sport = container_of(tpg, 3867 struct srpt_port, port_tpg_1); 3868 3869 sport->enabled = false; 3870 core_tpg_deregister(&sport->port_tpg_1); 3871 } 3872 3873 /** 3874 * configfs callback invoked for 3875 * mkdir /sys/kernel/config/target/$driver/$port 3876 */ 3877 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3878 struct config_group *group, 3879 const char *name) 3880 { 3881 struct srpt_port *sport; 3882 int ret; 3883 3884 sport = srpt_lookup_port(name); 3885 pr_debug("make_tport(%s)\n", name); 3886 ret = -EINVAL; 3887 if (!sport) 3888 goto err; 3889 3890 return &sport->port_wwn; 3891 3892 err: 3893 return ERR_PTR(ret); 3894 } 3895 3896 /** 3897 * configfs callback invoked for 3898 * rmdir /sys/kernel/config/target/$driver/$port 3899 */ 3900 static void srpt_drop_tport(struct se_wwn *wwn) 3901 { 3902 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3903 3904 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3905 } 3906 3907 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3908 char *buf) 3909 { 3910 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3911 } 3912 3913 TF_WWN_ATTR_RO(srpt, version); 3914 3915 static struct configfs_attribute *srpt_wwn_attrs[] = { 3916 &srpt_wwn_version.attr, 3917 NULL, 3918 }; 3919 3920 static const struct target_core_fabric_ops srpt_template = { 3921 .module = THIS_MODULE, 3922 .name = "srpt", 3923 .get_fabric_name = srpt_get_fabric_name, 3924 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3925 .tpg_get_wwn = srpt_get_fabric_wwn, 3926 .tpg_get_tag = srpt_get_tag, 3927 .tpg_get_default_depth = srpt_get_default_depth, 3928 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3929 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3930 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3931 .tpg_check_demo_mode = srpt_check_false, 3932 .tpg_check_demo_mode_cache = srpt_check_true, 3933 .tpg_check_demo_mode_write_protect = srpt_check_true, 3934 .tpg_check_prod_mode_write_protect = srpt_check_false, 3935 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3936 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3937 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3938 .release_cmd = srpt_release_cmd, 3939 .check_stop_free = srpt_check_stop_free, 3940 .shutdown_session = srpt_shutdown_session, 3941 .close_session = srpt_close_session, 3942 .sess_get_index = srpt_sess_get_index, 3943 .sess_get_initiator_sid = NULL, 3944 .write_pending = srpt_write_pending, 3945 .write_pending_status = srpt_write_pending_status, 3946 .set_default_node_attributes = srpt_set_default_node_attrs, 3947 .get_task_tag = srpt_get_task_tag, 3948 .get_cmd_state = srpt_get_tcm_cmd_state, 3949 .queue_data_in = srpt_queue_data_in, 3950 .queue_status = srpt_queue_status, 3951 .queue_tm_rsp = srpt_queue_tm_rsp, 3952 .aborted_task = srpt_aborted_task, 3953 /* 3954 * Setup function pointers for generic logic in 3955 * target_core_fabric_configfs.c 3956 */ 3957 .fabric_make_wwn = srpt_make_tport, 3958 .fabric_drop_wwn = srpt_drop_tport, 3959 .fabric_make_tpg = srpt_make_tpg, 3960 .fabric_drop_tpg = srpt_drop_tpg, 3961 .fabric_post_link = NULL, 3962 .fabric_pre_unlink = NULL, 3963 .fabric_make_np = NULL, 3964 .fabric_drop_np = NULL, 3965 .fabric_make_nodeacl = srpt_make_nodeacl, 3966 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3967 3968 .tfc_wwn_attrs = srpt_wwn_attrs, 3969 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3970 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3971 }; 3972 3973 /** 3974 * srpt_init_module() - Kernel module initialization. 3975 * 3976 * Note: Since ib_register_client() registers callback functions, and since at 3977 * least one of these callback functions (srpt_add_one()) calls target core 3978 * functions, this driver must be registered with the target core before 3979 * ib_register_client() is called. 3980 */ 3981 static int __init srpt_init_module(void) 3982 { 3983 int ret; 3984 3985 ret = -EINVAL; 3986 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3987 pr_err("invalid value %d for kernel module parameter" 3988 " srp_max_req_size -- must be at least %d.\n", 3989 srp_max_req_size, MIN_MAX_REQ_SIZE); 3990 goto out; 3991 } 3992 3993 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3994 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3995 pr_err("invalid value %d for kernel module parameter" 3996 " srpt_srq_size -- must be in the range [%d..%d].\n", 3997 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3998 goto out; 3999 } 4000 4001 ret = target_register_template(&srpt_template); 4002 if (ret) 4003 goto out; 4004 4005 ret = ib_register_client(&srpt_client); 4006 if (ret) { 4007 pr_err("couldn't register IB client\n"); 4008 goto out_unregister_target; 4009 } 4010 4011 return 0; 4012 4013 out_unregister_target: 4014 target_unregister_template(&srpt_template); 4015 out: 4016 return ret; 4017 } 4018 4019 static void __exit srpt_cleanup_module(void) 4020 { 4021 ib_unregister_client(&srpt_client); 4022 target_unregister_template(&srpt_template); 4023 } 4024 4025 module_init(srpt_init_module); 4026 module_exit(srpt_cleanup_module); 4027