xref: /linux/drivers/i2c/busses/i2c-au1550.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3  * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
4  *
5  * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
6  *
7  * The documentation describes this as an SMBus controller, but it doesn't
8  * understand any of the SMBus protocol in hardware.  It's really an I2C
9  * controller that could emulate most of the SMBus in software.
10  *
11  * This is just a skeleton adapter to use with the Au1550 PSC
12  * algorithm.  It was developed for the Pb1550, but will work with
13  * any Au1550 board that has a similar PSC configuration.
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version 2
18  * of the License, or (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with this program; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
28  */
29 
30 #include <linux/delay.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/errno.h>
35 #include <linux/i2c.h>
36 
37 #include <asm/mach-au1x00/au1000.h>
38 #include <asm/mach-pb1x00/pb1550.h>
39 #include <asm/mach-au1x00/au1xxx_psc.h>
40 
41 #include "i2c-au1550.h"
42 
43 static int
44 wait_xfer_done(struct i2c_au1550_data *adap)
45 {
46 	u32	stat;
47 	int	i;
48 	volatile psc_smb_t	*sp;
49 
50 	sp = (volatile psc_smb_t *)(adap->psc_base);
51 
52 	/* Wait for Tx FIFO Underflow.
53 	*/
54 	for (i = 0; i < adap->xfer_timeout; i++) {
55 		stat = sp->psc_smbevnt;
56 		au_sync();
57 		if ((stat & PSC_SMBEVNT_TU) != 0) {
58 			/* Clear it.  */
59 			sp->psc_smbevnt = PSC_SMBEVNT_TU;
60 			au_sync();
61 			return 0;
62 		}
63 		udelay(1);
64 	}
65 
66 	return -ETIMEDOUT;
67 }
68 
69 static int
70 wait_ack(struct i2c_au1550_data *adap)
71 {
72 	u32	stat;
73 	volatile psc_smb_t	*sp;
74 
75 	if (wait_xfer_done(adap))
76 		return -ETIMEDOUT;
77 
78 	sp = (volatile psc_smb_t *)(adap->psc_base);
79 
80 	stat = sp->psc_smbevnt;
81 	au_sync();
82 
83 	if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
84 		return -ETIMEDOUT;
85 
86 	return 0;
87 }
88 
89 static int
90 wait_master_done(struct i2c_au1550_data *adap)
91 {
92 	u32	stat;
93 	int	i;
94 	volatile psc_smb_t	*sp;
95 
96 	sp = (volatile psc_smb_t *)(adap->psc_base);
97 
98 	/* Wait for Master Done.
99 	*/
100 	for (i = 0; i < adap->xfer_timeout; i++) {
101 		stat = sp->psc_smbevnt;
102 		au_sync();
103 		if ((stat & PSC_SMBEVNT_MD) != 0)
104 			return 0;
105 		udelay(1);
106 	}
107 
108 	return -ETIMEDOUT;
109 }
110 
111 static int
112 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
113 {
114 	volatile psc_smb_t	*sp;
115 	u32			stat;
116 
117 	sp = (volatile psc_smb_t *)(adap->psc_base);
118 
119 	/* Reset the FIFOs, clear events.
120 	*/
121 	sp->psc_smbpcr = PSC_SMBPCR_DC;
122 	sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
123 	au_sync();
124 	do {
125 		stat = sp->psc_smbpcr;
126 		au_sync();
127 	} while ((stat & PSC_SMBPCR_DC) != 0);
128 
129 	/* Write out the i2c chip address and specify operation
130 	*/
131 	addr <<= 1;
132 	if (rd)
133 		addr |= 1;
134 
135 	/* Put byte into fifo, start up master.
136 	*/
137 	sp->psc_smbtxrx = addr;
138 	au_sync();
139 	sp->psc_smbpcr = PSC_SMBPCR_MS;
140 	au_sync();
141 	if (wait_ack(adap))
142 		return -EIO;
143 	return 0;
144 }
145 
146 static u32
147 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
148 {
149 	int	j;
150 	u32	data, stat;
151 	volatile psc_smb_t	*sp;
152 
153 	if (wait_xfer_done(adap))
154 		return -EIO;
155 
156 	sp = (volatile psc_smb_t *)(adap->psc_base);
157 
158 	j =  adap->xfer_timeout * 100;
159 	do {
160 		j--;
161 		if (j <= 0)
162 			return -EIO;
163 
164 		stat = sp->psc_smbstat;
165 		au_sync();
166 		if ((stat & PSC_SMBSTAT_RE) == 0)
167 			j = 0;
168 		else
169 			udelay(1);
170 	} while (j > 0);
171 	data = sp->psc_smbtxrx;
172 	au_sync();
173 	*ret_data = data;
174 
175 	return 0;
176 }
177 
178 static int
179 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
180 		    unsigned int len)
181 {
182 	int	i;
183 	u32	data;
184 	volatile psc_smb_t	*sp;
185 
186 	if (len == 0)
187 		return 0;
188 
189 	/* A read is performed by stuffing the transmit fifo with
190 	 * zero bytes for timing, waiting for bytes to appear in the
191 	 * receive fifo, then reading the bytes.
192 	 */
193 
194 	sp = (volatile psc_smb_t *)(adap->psc_base);
195 
196 	i = 0;
197 	while (i < (len-1)) {
198 		sp->psc_smbtxrx = 0;
199 		au_sync();
200 		if (wait_for_rx_byte(adap, &data))
201 			return -EIO;
202 
203 		buf[i] = data;
204 		i++;
205 	}
206 
207 	/* The last byte has to indicate transfer done.
208 	*/
209 	sp->psc_smbtxrx = PSC_SMBTXRX_STP;
210 	au_sync();
211 	if (wait_master_done(adap))
212 		return -EIO;
213 
214 	data = sp->psc_smbtxrx;
215 	au_sync();
216 	buf[i] = data;
217 	return 0;
218 }
219 
220 static int
221 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
222 		     unsigned int len)
223 {
224 	int	i;
225 	u32	data;
226 	volatile psc_smb_t	*sp;
227 
228 	if (len == 0)
229 		return 0;
230 
231 	sp = (volatile psc_smb_t *)(adap->psc_base);
232 
233 	i = 0;
234 	while (i < (len-1)) {
235 		data = buf[i];
236 		sp->psc_smbtxrx = data;
237 		au_sync();
238 		if (wait_ack(adap))
239 			return -EIO;
240 		i++;
241 	}
242 
243 	/* The last byte has to indicate transfer done.
244 	*/
245 	data = buf[i];
246 	data |= PSC_SMBTXRX_STP;
247 	sp->psc_smbtxrx = data;
248 	au_sync();
249 	if (wait_master_done(adap))
250 		return -EIO;
251 	return 0;
252 }
253 
254 static int
255 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
256 {
257 	struct i2c_au1550_data *adap = i2c_adap->algo_data;
258 	struct i2c_msg *p;
259 	int i, err = 0;
260 
261 	for (i = 0; !err && i < num; i++) {
262 		p = &msgs[i];
263 		err = do_address(adap, p->addr, p->flags & I2C_M_RD);
264 		if (err || !p->len)
265 			continue;
266 		if (p->flags & I2C_M_RD)
267 			err = i2c_read(adap, p->buf, p->len);
268 		else
269 			err = i2c_write(adap, p->buf, p->len);
270 	}
271 
272 	/* Return the number of messages processed, or the error code.
273 	*/
274 	if (err == 0)
275 		err = num;
276 	return err;
277 }
278 
279 static u32
280 au1550_func(struct i2c_adapter *adap)
281 {
282 	return I2C_FUNC_I2C;
283 }
284 
285 static struct i2c_algorithm au1550_algo = {
286 	.name		= "Au1550 algorithm",
287 	.id		= I2C_ALGO_AU1550,
288 	.master_xfer	= au1550_xfer,
289 	.functionality	= au1550_func,
290 };
291 
292 /*
293  * registering functions to load algorithms at runtime
294  * Prior to calling us, the 50MHz clock frequency and routing
295  * must have been set up for the PSC indicated by the adapter.
296  */
297 int
298 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
299 {
300 	struct i2c_au1550_data *adap = i2c_adap->algo_data;
301 	volatile psc_smb_t	*sp;
302 	u32	stat;
303 
304 	i2c_adap->algo = &au1550_algo;
305 
306 	/* Now, set up the PSC for SMBus PIO mode.
307 	*/
308 	sp = (volatile psc_smb_t *)(adap->psc_base);
309 	sp->psc_ctrl = PSC_CTRL_DISABLE;
310 	au_sync();
311 	sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
312 	sp->psc_smbcfg = 0;
313 	au_sync();
314 	sp->psc_ctrl = PSC_CTRL_ENABLE;
315 	au_sync();
316 	do {
317 		stat = sp->psc_smbstat;
318 		au_sync();
319 	} while ((stat & PSC_SMBSTAT_SR) == 0);
320 
321 	sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
322 				PSC_SMBCFG_DD_DISABLE);
323 
324 	/* Divide by 8 to get a 6.25 MHz clock.  The later protocol
325 	 * timings are based on this clock.
326 	 */
327 	sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
328 	sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
329 	au_sync();
330 
331 	/* Set the protocol timer values.  See Table 71 in the
332 	 * Au1550 Data Book for standard timing values.
333 	 */
334 	sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
335 		PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
336 		PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
337 		PSC_SMBTMR_SET_CH(15);
338 	au_sync();
339 
340 	sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
341 	do {
342 		stat = sp->psc_smbstat;
343 		au_sync();
344 	} while ((stat & PSC_SMBSTAT_DR) == 0);
345 
346 	return i2c_add_adapter(i2c_adap);
347 }
348 
349 
350 int
351 i2c_au1550_del_bus(struct i2c_adapter *adap)
352 {
353 	return i2c_del_adapter(adap);
354 }
355 
356 static int
357 pb1550_reg(struct i2c_client *client)
358 {
359 	return 0;
360 }
361 
362 static int
363 pb1550_unreg(struct i2c_client *client)
364 {
365 	return 0;
366 }
367 
368 static struct i2c_au1550_data pb1550_i2c_info = {
369 	SMBUS_PSC_BASE, 200, 200
370 };
371 
372 static struct i2c_adapter pb1550_board_adapter = {
373 	name:              "pb1550 adapter",
374 	id:                I2C_HW_AU1550_PSC,
375 	algo:              NULL,
376 	algo_data:         &pb1550_i2c_info,
377 	client_register:   pb1550_reg,
378 	client_unregister: pb1550_unreg,
379 };
380 
381 /* BIG hack to support the control interface on the Wolfson WM8731
382  * audio codec on the Pb1550 board.  We get an address and two data
383  * bytes to write, create an i2c message, and send it across the
384  * i2c transfer function.  We do this here because we have access to
385  * the i2c adapter structure.
386  */
387 static struct i2c_msg wm_i2c_msg;  /* We don't want this stuff on the stack */
388 static	u8 i2cbuf[2];
389 
390 int
391 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
392 {
393 	wm_i2c_msg.addr = addr;
394 	wm_i2c_msg.flags = 0;
395 	wm_i2c_msg.buf = i2cbuf;
396 	wm_i2c_msg.len = 2;
397 	i2cbuf[0] = reg;
398 	i2cbuf[1] = val;
399 
400 	return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
401 }
402 
403 static int __init
404 i2c_au1550_init(void)
405 {
406 	printk(KERN_INFO "Au1550 I2C: ");
407 
408 	/* This is where we would set up a 50MHz clock source
409 	 * and routing.  On the Pb1550, the SMBus is PSC2, which
410 	 * uses a shared clock with USB.  This has been already
411 	 * configured by Yamon as a 48MHz clock, close enough
412 	 * for our work.
413 	 */
414         if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
415 		printk("failed to initialize.\n");
416                 return -ENODEV;
417 	}
418 
419 	printk("initialized.\n");
420 	return 0;
421 }
422 
423 static void __exit
424 i2c_au1550_exit(void)
425 {
426 	i2c_au1550_del_bus(&pb1550_board_adapter);
427 }
428 
429 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
430 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
431 MODULE_LICENSE("GPL");
432 
433 module_init (i2c_au1550_init);
434 module_exit (i2c_au1550_exit);
435