1 /* 2 * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface 3 * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com> 4 * 5 * 2.6 port by Matt Porter <mporter@kernel.crashing.org> 6 * 7 * The documentation describes this as an SMBus controller, but it doesn't 8 * understand any of the SMBus protocol in hardware. It's really an I2C 9 * controller that could emulate most of the SMBus in software. 10 * 11 * This is just a skeleton adapter to use with the Au1550 PSC 12 * algorithm. It was developed for the Pb1550, but will work with 13 * any Au1550 board that has a similar PSC configuration. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 2 18 * of the License, or (at your option) any later version. 19 * 20 * This program is distributed in the hope that it will be useful, 21 * but WITHOUT ANY WARRANTY; without even the implied warranty of 22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 23 * GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with this program; if not, write to the Free Software 27 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/errno.h> 35 #include <linux/i2c.h> 36 37 #include <asm/mach-au1x00/au1000.h> 38 #include <asm/mach-pb1x00/pb1550.h> 39 #include <asm/mach-au1x00/au1xxx_psc.h> 40 41 #include "i2c-au1550.h" 42 43 static int 44 wait_xfer_done(struct i2c_au1550_data *adap) 45 { 46 u32 stat; 47 int i; 48 volatile psc_smb_t *sp; 49 50 sp = (volatile psc_smb_t *)(adap->psc_base); 51 52 /* Wait for Tx FIFO Underflow. 53 */ 54 for (i = 0; i < adap->xfer_timeout; i++) { 55 stat = sp->psc_smbevnt; 56 au_sync(); 57 if ((stat & PSC_SMBEVNT_TU) != 0) { 58 /* Clear it. */ 59 sp->psc_smbevnt = PSC_SMBEVNT_TU; 60 au_sync(); 61 return 0; 62 } 63 udelay(1); 64 } 65 66 return -ETIMEDOUT; 67 } 68 69 static int 70 wait_ack(struct i2c_au1550_data *adap) 71 { 72 u32 stat; 73 volatile psc_smb_t *sp; 74 75 if (wait_xfer_done(adap)) 76 return -ETIMEDOUT; 77 78 sp = (volatile psc_smb_t *)(adap->psc_base); 79 80 stat = sp->psc_smbevnt; 81 au_sync(); 82 83 if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0) 84 return -ETIMEDOUT; 85 86 return 0; 87 } 88 89 static int 90 wait_master_done(struct i2c_au1550_data *adap) 91 { 92 u32 stat; 93 int i; 94 volatile psc_smb_t *sp; 95 96 sp = (volatile psc_smb_t *)(adap->psc_base); 97 98 /* Wait for Master Done. 99 */ 100 for (i = 0; i < adap->xfer_timeout; i++) { 101 stat = sp->psc_smbevnt; 102 au_sync(); 103 if ((stat & PSC_SMBEVNT_MD) != 0) 104 return 0; 105 udelay(1); 106 } 107 108 return -ETIMEDOUT; 109 } 110 111 static int 112 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd) 113 { 114 volatile psc_smb_t *sp; 115 u32 stat; 116 117 sp = (volatile psc_smb_t *)(adap->psc_base); 118 119 /* Reset the FIFOs, clear events. 120 */ 121 sp->psc_smbpcr = PSC_SMBPCR_DC; 122 sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR; 123 au_sync(); 124 do { 125 stat = sp->psc_smbpcr; 126 au_sync(); 127 } while ((stat & PSC_SMBPCR_DC) != 0); 128 129 /* Write out the i2c chip address and specify operation 130 */ 131 addr <<= 1; 132 if (rd) 133 addr |= 1; 134 135 /* Put byte into fifo, start up master. 136 */ 137 sp->psc_smbtxrx = addr; 138 au_sync(); 139 sp->psc_smbpcr = PSC_SMBPCR_MS; 140 au_sync(); 141 if (wait_ack(adap)) 142 return -EIO; 143 return 0; 144 } 145 146 static u32 147 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data) 148 { 149 int j; 150 u32 data, stat; 151 volatile psc_smb_t *sp; 152 153 if (wait_xfer_done(adap)) 154 return -EIO; 155 156 sp = (volatile psc_smb_t *)(adap->psc_base); 157 158 j = adap->xfer_timeout * 100; 159 do { 160 j--; 161 if (j <= 0) 162 return -EIO; 163 164 stat = sp->psc_smbstat; 165 au_sync(); 166 if ((stat & PSC_SMBSTAT_RE) == 0) 167 j = 0; 168 else 169 udelay(1); 170 } while (j > 0); 171 data = sp->psc_smbtxrx; 172 au_sync(); 173 *ret_data = data; 174 175 return 0; 176 } 177 178 static int 179 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf, 180 unsigned int len) 181 { 182 int i; 183 u32 data; 184 volatile psc_smb_t *sp; 185 186 if (len == 0) 187 return 0; 188 189 /* A read is performed by stuffing the transmit fifo with 190 * zero bytes for timing, waiting for bytes to appear in the 191 * receive fifo, then reading the bytes. 192 */ 193 194 sp = (volatile psc_smb_t *)(adap->psc_base); 195 196 i = 0; 197 while (i < (len-1)) { 198 sp->psc_smbtxrx = 0; 199 au_sync(); 200 if (wait_for_rx_byte(adap, &data)) 201 return -EIO; 202 203 buf[i] = data; 204 i++; 205 } 206 207 /* The last byte has to indicate transfer done. 208 */ 209 sp->psc_smbtxrx = PSC_SMBTXRX_STP; 210 au_sync(); 211 if (wait_master_done(adap)) 212 return -EIO; 213 214 data = sp->psc_smbtxrx; 215 au_sync(); 216 buf[i] = data; 217 return 0; 218 } 219 220 static int 221 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf, 222 unsigned int len) 223 { 224 int i; 225 u32 data; 226 volatile psc_smb_t *sp; 227 228 if (len == 0) 229 return 0; 230 231 sp = (volatile psc_smb_t *)(adap->psc_base); 232 233 i = 0; 234 while (i < (len-1)) { 235 data = buf[i]; 236 sp->psc_smbtxrx = data; 237 au_sync(); 238 if (wait_ack(adap)) 239 return -EIO; 240 i++; 241 } 242 243 /* The last byte has to indicate transfer done. 244 */ 245 data = buf[i]; 246 data |= PSC_SMBTXRX_STP; 247 sp->psc_smbtxrx = data; 248 au_sync(); 249 if (wait_master_done(adap)) 250 return -EIO; 251 return 0; 252 } 253 254 static int 255 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) 256 { 257 struct i2c_au1550_data *adap = i2c_adap->algo_data; 258 struct i2c_msg *p; 259 int i, err = 0; 260 261 for (i = 0; !err && i < num; i++) { 262 p = &msgs[i]; 263 err = do_address(adap, p->addr, p->flags & I2C_M_RD); 264 if (err || !p->len) 265 continue; 266 if (p->flags & I2C_M_RD) 267 err = i2c_read(adap, p->buf, p->len); 268 else 269 err = i2c_write(adap, p->buf, p->len); 270 } 271 272 /* Return the number of messages processed, or the error code. 273 */ 274 if (err == 0) 275 err = num; 276 return err; 277 } 278 279 static u32 280 au1550_func(struct i2c_adapter *adap) 281 { 282 return I2C_FUNC_I2C; 283 } 284 285 static struct i2c_algorithm au1550_algo = { 286 .master_xfer = au1550_xfer, 287 .functionality = au1550_func, 288 }; 289 290 /* 291 * registering functions to load algorithms at runtime 292 * Prior to calling us, the 50MHz clock frequency and routing 293 * must have been set up for the PSC indicated by the adapter. 294 */ 295 int 296 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap) 297 { 298 struct i2c_au1550_data *adap = i2c_adap->algo_data; 299 volatile psc_smb_t *sp; 300 u32 stat; 301 302 i2c_adap->algo = &au1550_algo; 303 304 /* Now, set up the PSC for SMBus PIO mode. 305 */ 306 sp = (volatile psc_smb_t *)(adap->psc_base); 307 sp->psc_ctrl = PSC_CTRL_DISABLE; 308 au_sync(); 309 sp->psc_sel = PSC_SEL_PS_SMBUSMODE; 310 sp->psc_smbcfg = 0; 311 au_sync(); 312 sp->psc_ctrl = PSC_CTRL_ENABLE; 313 au_sync(); 314 do { 315 stat = sp->psc_smbstat; 316 au_sync(); 317 } while ((stat & PSC_SMBSTAT_SR) == 0); 318 319 sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 | 320 PSC_SMBCFG_DD_DISABLE); 321 322 /* Divide by 8 to get a 6.25 MHz clock. The later protocol 323 * timings are based on this clock. 324 */ 325 sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8); 326 sp->psc_smbmsk = PSC_SMBMSK_ALLMASK; 327 au_sync(); 328 329 /* Set the protocol timer values. See Table 71 in the 330 * Au1550 Data Book for standard timing values. 331 */ 332 sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \ 333 PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \ 334 PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \ 335 PSC_SMBTMR_SET_CH(15); 336 au_sync(); 337 338 sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE; 339 do { 340 stat = sp->psc_smbstat; 341 au_sync(); 342 } while ((stat & PSC_SMBSTAT_DR) == 0); 343 344 return i2c_add_adapter(i2c_adap); 345 } 346 347 348 int 349 i2c_au1550_del_bus(struct i2c_adapter *adap) 350 { 351 return i2c_del_adapter(adap); 352 } 353 354 static int 355 pb1550_reg(struct i2c_client *client) 356 { 357 return 0; 358 } 359 360 static int 361 pb1550_unreg(struct i2c_client *client) 362 { 363 return 0; 364 } 365 366 static struct i2c_au1550_data pb1550_i2c_info = { 367 SMBUS_PSC_BASE, 200, 200 368 }; 369 370 static struct i2c_adapter pb1550_board_adapter = { 371 name: "pb1550 adapter", 372 id: I2C_HW_AU1550_PSC, 373 algo: NULL, 374 algo_data: &pb1550_i2c_info, 375 client_register: pb1550_reg, 376 client_unregister: pb1550_unreg, 377 }; 378 379 /* BIG hack to support the control interface on the Wolfson WM8731 380 * audio codec on the Pb1550 board. We get an address and two data 381 * bytes to write, create an i2c message, and send it across the 382 * i2c transfer function. We do this here because we have access to 383 * the i2c adapter structure. 384 */ 385 static struct i2c_msg wm_i2c_msg; /* We don't want this stuff on the stack */ 386 static u8 i2cbuf[2]; 387 388 int 389 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val) 390 { 391 wm_i2c_msg.addr = addr; 392 wm_i2c_msg.flags = 0; 393 wm_i2c_msg.buf = i2cbuf; 394 wm_i2c_msg.len = 2; 395 i2cbuf[0] = reg; 396 i2cbuf[1] = val; 397 398 return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1); 399 } 400 401 static int __init 402 i2c_au1550_init(void) 403 { 404 printk(KERN_INFO "Au1550 I2C: "); 405 406 /* This is where we would set up a 50MHz clock source 407 * and routing. On the Pb1550, the SMBus is PSC2, which 408 * uses a shared clock with USB. This has been already 409 * configured by Yamon as a 48MHz clock, close enough 410 * for our work. 411 */ 412 if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) { 413 printk("failed to initialize.\n"); 414 return -ENODEV; 415 } 416 417 printk("initialized.\n"); 418 return 0; 419 } 420 421 static void __exit 422 i2c_au1550_exit(void) 423 { 424 i2c_au1550_del_bus(&pb1550_board_adapter); 425 } 426 427 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC."); 428 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550"); 429 MODULE_LICENSE("GPL"); 430 431 module_init (i2c_au1550_init); 432 module_exit (i2c_au1550_exit); 433