xref: /linux/drivers/hv/vmbus_drv.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <asm/hyperv.h>
38 #include <asm/hypervisor.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 
58 static void hyperv_report_panic(struct pt_regs *regs)
59 {
60 	static bool panic_reported;
61 
62 	/*
63 	 * We prefer to report panic on 'die' chain as we have proper
64 	 * registers to report, but if we miss it (e.g. on BUG()) we need
65 	 * to report it on 'panic'.
66 	 */
67 	if (panic_reported)
68 		return;
69 	panic_reported = true;
70 
71 	wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip);
72 	wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax);
73 	wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx);
74 	wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx);
75 	wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx);
76 
77 	/*
78 	 * Let Hyper-V know there is crash data available
79 	 */
80 	wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
81 }
82 
83 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
84 			      void *args)
85 {
86 	struct pt_regs *regs;
87 
88 	regs = current_pt_regs();
89 
90 	hyperv_report_panic(regs);
91 	return NOTIFY_DONE;
92 }
93 
94 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
95 			    void *args)
96 {
97 	struct die_args *die = (struct die_args *)args;
98 	struct pt_regs *regs = die->regs;
99 
100 	hyperv_report_panic(regs);
101 	return NOTIFY_DONE;
102 }
103 
104 static struct notifier_block hyperv_die_block = {
105 	.notifier_call = hyperv_die_event,
106 };
107 static struct notifier_block hyperv_panic_block = {
108 	.notifier_call = hyperv_panic_event,
109 };
110 
111 static const char *fb_mmio_name = "fb_range";
112 static struct resource *fb_mmio;
113 static struct resource *hyperv_mmio;
114 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
115 
116 static int vmbus_exists(void)
117 {
118 	if (hv_acpi_dev == NULL)
119 		return -ENODEV;
120 
121 	return 0;
122 }
123 
124 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
125 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
126 {
127 	int i;
128 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
129 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
130 }
131 
132 static u8 channel_monitor_group(struct vmbus_channel *channel)
133 {
134 	return (u8)channel->offermsg.monitorid / 32;
135 }
136 
137 static u8 channel_monitor_offset(struct vmbus_channel *channel)
138 {
139 	return (u8)channel->offermsg.monitorid % 32;
140 }
141 
142 static u32 channel_pending(struct vmbus_channel *channel,
143 			   struct hv_monitor_page *monitor_page)
144 {
145 	u8 monitor_group = channel_monitor_group(channel);
146 	return monitor_page->trigger_group[monitor_group].pending;
147 }
148 
149 static u32 channel_latency(struct vmbus_channel *channel,
150 			   struct hv_monitor_page *monitor_page)
151 {
152 	u8 monitor_group = channel_monitor_group(channel);
153 	u8 monitor_offset = channel_monitor_offset(channel);
154 	return monitor_page->latency[monitor_group][monitor_offset];
155 }
156 
157 static u32 channel_conn_id(struct vmbus_channel *channel,
158 			   struct hv_monitor_page *monitor_page)
159 {
160 	u8 monitor_group = channel_monitor_group(channel);
161 	u8 monitor_offset = channel_monitor_offset(channel);
162 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
163 }
164 
165 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
166 		       char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
173 }
174 static DEVICE_ATTR_RO(id);
175 
176 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
177 			  char *buf)
178 {
179 	struct hv_device *hv_dev = device_to_hv_device(dev);
180 
181 	if (!hv_dev->channel)
182 		return -ENODEV;
183 	return sprintf(buf, "%d\n", hv_dev->channel->state);
184 }
185 static DEVICE_ATTR_RO(state);
186 
187 static ssize_t monitor_id_show(struct device *dev,
188 			       struct device_attribute *dev_attr, char *buf)
189 {
190 	struct hv_device *hv_dev = device_to_hv_device(dev);
191 
192 	if (!hv_dev->channel)
193 		return -ENODEV;
194 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
195 }
196 static DEVICE_ATTR_RO(monitor_id);
197 
198 static ssize_t class_id_show(struct device *dev,
199 			       struct device_attribute *dev_attr, char *buf)
200 {
201 	struct hv_device *hv_dev = device_to_hv_device(dev);
202 
203 	if (!hv_dev->channel)
204 		return -ENODEV;
205 	return sprintf(buf, "{%pUl}\n",
206 		       hv_dev->channel->offermsg.offer.if_type.b);
207 }
208 static DEVICE_ATTR_RO(class_id);
209 
210 static ssize_t device_id_show(struct device *dev,
211 			      struct device_attribute *dev_attr, char *buf)
212 {
213 	struct hv_device *hv_dev = device_to_hv_device(dev);
214 
215 	if (!hv_dev->channel)
216 		return -ENODEV;
217 	return sprintf(buf, "{%pUl}\n",
218 		       hv_dev->channel->offermsg.offer.if_instance.b);
219 }
220 static DEVICE_ATTR_RO(device_id);
221 
222 static ssize_t modalias_show(struct device *dev,
223 			     struct device_attribute *dev_attr, char *buf)
224 {
225 	struct hv_device *hv_dev = device_to_hv_device(dev);
226 	char alias_name[VMBUS_ALIAS_LEN + 1];
227 
228 	print_alias_name(hv_dev, alias_name);
229 	return sprintf(buf, "vmbus:%s\n", alias_name);
230 }
231 static DEVICE_ATTR_RO(modalias);
232 
233 static ssize_t server_monitor_pending_show(struct device *dev,
234 					   struct device_attribute *dev_attr,
235 					   char *buf)
236 {
237 	struct hv_device *hv_dev = device_to_hv_device(dev);
238 
239 	if (!hv_dev->channel)
240 		return -ENODEV;
241 	return sprintf(buf, "%d\n",
242 		       channel_pending(hv_dev->channel,
243 				       vmbus_connection.monitor_pages[1]));
244 }
245 static DEVICE_ATTR_RO(server_monitor_pending);
246 
247 static ssize_t client_monitor_pending_show(struct device *dev,
248 					   struct device_attribute *dev_attr,
249 					   char *buf)
250 {
251 	struct hv_device *hv_dev = device_to_hv_device(dev);
252 
253 	if (!hv_dev->channel)
254 		return -ENODEV;
255 	return sprintf(buf, "%d\n",
256 		       channel_pending(hv_dev->channel,
257 				       vmbus_connection.monitor_pages[1]));
258 }
259 static DEVICE_ATTR_RO(client_monitor_pending);
260 
261 static ssize_t server_monitor_latency_show(struct device *dev,
262 					   struct device_attribute *dev_attr,
263 					   char *buf)
264 {
265 	struct hv_device *hv_dev = device_to_hv_device(dev);
266 
267 	if (!hv_dev->channel)
268 		return -ENODEV;
269 	return sprintf(buf, "%d\n",
270 		       channel_latency(hv_dev->channel,
271 				       vmbus_connection.monitor_pages[0]));
272 }
273 static DEVICE_ATTR_RO(server_monitor_latency);
274 
275 static ssize_t client_monitor_latency_show(struct device *dev,
276 					   struct device_attribute *dev_attr,
277 					   char *buf)
278 {
279 	struct hv_device *hv_dev = device_to_hv_device(dev);
280 
281 	if (!hv_dev->channel)
282 		return -ENODEV;
283 	return sprintf(buf, "%d\n",
284 		       channel_latency(hv_dev->channel,
285 				       vmbus_connection.monitor_pages[1]));
286 }
287 static DEVICE_ATTR_RO(client_monitor_latency);
288 
289 static ssize_t server_monitor_conn_id_show(struct device *dev,
290 					   struct device_attribute *dev_attr,
291 					   char *buf)
292 {
293 	struct hv_device *hv_dev = device_to_hv_device(dev);
294 
295 	if (!hv_dev->channel)
296 		return -ENODEV;
297 	return sprintf(buf, "%d\n",
298 		       channel_conn_id(hv_dev->channel,
299 				       vmbus_connection.monitor_pages[0]));
300 }
301 static DEVICE_ATTR_RO(server_monitor_conn_id);
302 
303 static ssize_t client_monitor_conn_id_show(struct device *dev,
304 					   struct device_attribute *dev_attr,
305 					   char *buf)
306 {
307 	struct hv_device *hv_dev = device_to_hv_device(dev);
308 
309 	if (!hv_dev->channel)
310 		return -ENODEV;
311 	return sprintf(buf, "%d\n",
312 		       channel_conn_id(hv_dev->channel,
313 				       vmbus_connection.monitor_pages[1]));
314 }
315 static DEVICE_ATTR_RO(client_monitor_conn_id);
316 
317 static ssize_t out_intr_mask_show(struct device *dev,
318 				  struct device_attribute *dev_attr, char *buf)
319 {
320 	struct hv_device *hv_dev = device_to_hv_device(dev);
321 	struct hv_ring_buffer_debug_info outbound;
322 
323 	if (!hv_dev->channel)
324 		return -ENODEV;
325 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
326 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329 
330 static ssize_t out_read_index_show(struct device *dev,
331 				   struct device_attribute *dev_attr, char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 
336 	if (!hv_dev->channel)
337 		return -ENODEV;
338 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
339 	return sprintf(buf, "%d\n", outbound.current_read_index);
340 }
341 static DEVICE_ATTR_RO(out_read_index);
342 
343 static ssize_t out_write_index_show(struct device *dev,
344 				    struct device_attribute *dev_attr,
345 				    char *buf)
346 {
347 	struct hv_device *hv_dev = device_to_hv_device(dev);
348 	struct hv_ring_buffer_debug_info outbound;
349 
350 	if (!hv_dev->channel)
351 		return -ENODEV;
352 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
353 	return sprintf(buf, "%d\n", outbound.current_write_index);
354 }
355 static DEVICE_ATTR_RO(out_write_index);
356 
357 static ssize_t out_read_bytes_avail_show(struct device *dev,
358 					 struct device_attribute *dev_attr,
359 					 char *buf)
360 {
361 	struct hv_device *hv_dev = device_to_hv_device(dev);
362 	struct hv_ring_buffer_debug_info outbound;
363 
364 	if (!hv_dev->channel)
365 		return -ENODEV;
366 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
367 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
368 }
369 static DEVICE_ATTR_RO(out_read_bytes_avail);
370 
371 static ssize_t out_write_bytes_avail_show(struct device *dev,
372 					  struct device_attribute *dev_attr,
373 					  char *buf)
374 {
375 	struct hv_device *hv_dev = device_to_hv_device(dev);
376 	struct hv_ring_buffer_debug_info outbound;
377 
378 	if (!hv_dev->channel)
379 		return -ENODEV;
380 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
381 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
382 }
383 static DEVICE_ATTR_RO(out_write_bytes_avail);
384 
385 static ssize_t in_intr_mask_show(struct device *dev,
386 				 struct device_attribute *dev_attr, char *buf)
387 {
388 	struct hv_device *hv_dev = device_to_hv_device(dev);
389 	struct hv_ring_buffer_debug_info inbound;
390 
391 	if (!hv_dev->channel)
392 		return -ENODEV;
393 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
394 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
395 }
396 static DEVICE_ATTR_RO(in_intr_mask);
397 
398 static ssize_t in_read_index_show(struct device *dev,
399 				  struct device_attribute *dev_attr, char *buf)
400 {
401 	struct hv_device *hv_dev = device_to_hv_device(dev);
402 	struct hv_ring_buffer_debug_info inbound;
403 
404 	if (!hv_dev->channel)
405 		return -ENODEV;
406 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
407 	return sprintf(buf, "%d\n", inbound.current_read_index);
408 }
409 static DEVICE_ATTR_RO(in_read_index);
410 
411 static ssize_t in_write_index_show(struct device *dev,
412 				   struct device_attribute *dev_attr, char *buf)
413 {
414 	struct hv_device *hv_dev = device_to_hv_device(dev);
415 	struct hv_ring_buffer_debug_info inbound;
416 
417 	if (!hv_dev->channel)
418 		return -ENODEV;
419 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
420 	return sprintf(buf, "%d\n", inbound.current_write_index);
421 }
422 static DEVICE_ATTR_RO(in_write_index);
423 
424 static ssize_t in_read_bytes_avail_show(struct device *dev,
425 					struct device_attribute *dev_attr,
426 					char *buf)
427 {
428 	struct hv_device *hv_dev = device_to_hv_device(dev);
429 	struct hv_ring_buffer_debug_info inbound;
430 
431 	if (!hv_dev->channel)
432 		return -ENODEV;
433 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
435 }
436 static DEVICE_ATTR_RO(in_read_bytes_avail);
437 
438 static ssize_t in_write_bytes_avail_show(struct device *dev,
439 					 struct device_attribute *dev_attr,
440 					 char *buf)
441 {
442 	struct hv_device *hv_dev = device_to_hv_device(dev);
443 	struct hv_ring_buffer_debug_info inbound;
444 
445 	if (!hv_dev->channel)
446 		return -ENODEV;
447 	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
448 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
449 }
450 static DEVICE_ATTR_RO(in_write_bytes_avail);
451 
452 static ssize_t channel_vp_mapping_show(struct device *dev,
453 				       struct device_attribute *dev_attr,
454 				       char *buf)
455 {
456 	struct hv_device *hv_dev = device_to_hv_device(dev);
457 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
458 	unsigned long flags;
459 	int buf_size = PAGE_SIZE, n_written, tot_written;
460 	struct list_head *cur;
461 
462 	if (!channel)
463 		return -ENODEV;
464 
465 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
466 		channel->offermsg.child_relid, channel->target_cpu);
467 
468 	spin_lock_irqsave(&channel->lock, flags);
469 
470 	list_for_each(cur, &channel->sc_list) {
471 		if (tot_written >= buf_size - 1)
472 			break;
473 
474 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
475 		n_written = scnprintf(buf + tot_written,
476 				     buf_size - tot_written,
477 				     "%u:%u\n",
478 				     cur_sc->offermsg.child_relid,
479 				     cur_sc->target_cpu);
480 		tot_written += n_written;
481 	}
482 
483 	spin_unlock_irqrestore(&channel->lock, flags);
484 
485 	return tot_written;
486 }
487 static DEVICE_ATTR_RO(channel_vp_mapping);
488 
489 static ssize_t vendor_show(struct device *dev,
490 			   struct device_attribute *dev_attr,
491 			   char *buf)
492 {
493 	struct hv_device *hv_dev = device_to_hv_device(dev);
494 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
495 }
496 static DEVICE_ATTR_RO(vendor);
497 
498 static ssize_t device_show(struct device *dev,
499 			   struct device_attribute *dev_attr,
500 			   char *buf)
501 {
502 	struct hv_device *hv_dev = device_to_hv_device(dev);
503 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
504 }
505 static DEVICE_ATTR_RO(device);
506 
507 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
508 static struct attribute *vmbus_dev_attrs[] = {
509 	&dev_attr_id.attr,
510 	&dev_attr_state.attr,
511 	&dev_attr_monitor_id.attr,
512 	&dev_attr_class_id.attr,
513 	&dev_attr_device_id.attr,
514 	&dev_attr_modalias.attr,
515 	&dev_attr_server_monitor_pending.attr,
516 	&dev_attr_client_monitor_pending.attr,
517 	&dev_attr_server_monitor_latency.attr,
518 	&dev_attr_client_monitor_latency.attr,
519 	&dev_attr_server_monitor_conn_id.attr,
520 	&dev_attr_client_monitor_conn_id.attr,
521 	&dev_attr_out_intr_mask.attr,
522 	&dev_attr_out_read_index.attr,
523 	&dev_attr_out_write_index.attr,
524 	&dev_attr_out_read_bytes_avail.attr,
525 	&dev_attr_out_write_bytes_avail.attr,
526 	&dev_attr_in_intr_mask.attr,
527 	&dev_attr_in_read_index.attr,
528 	&dev_attr_in_write_index.attr,
529 	&dev_attr_in_read_bytes_avail.attr,
530 	&dev_attr_in_write_bytes_avail.attr,
531 	&dev_attr_channel_vp_mapping.attr,
532 	&dev_attr_vendor.attr,
533 	&dev_attr_device.attr,
534 	NULL,
535 };
536 ATTRIBUTE_GROUPS(vmbus_dev);
537 
538 /*
539  * vmbus_uevent - add uevent for our device
540  *
541  * This routine is invoked when a device is added or removed on the vmbus to
542  * generate a uevent to udev in the userspace. The udev will then look at its
543  * rule and the uevent generated here to load the appropriate driver
544  *
545  * The alias string will be of the form vmbus:guid where guid is the string
546  * representation of the device guid (each byte of the guid will be
547  * represented with two hex characters.
548  */
549 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
550 {
551 	struct hv_device *dev = device_to_hv_device(device);
552 	int ret;
553 	char alias_name[VMBUS_ALIAS_LEN + 1];
554 
555 	print_alias_name(dev, alias_name);
556 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
557 	return ret;
558 }
559 
560 static const uuid_le null_guid;
561 
562 static inline bool is_null_guid(const uuid_le *guid)
563 {
564 	if (uuid_le_cmp(*guid, null_guid))
565 		return false;
566 	return true;
567 }
568 
569 /*
570  * Return a matching hv_vmbus_device_id pointer.
571  * If there is no match, return NULL.
572  */
573 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
574 					const uuid_le *guid)
575 {
576 	const struct hv_vmbus_device_id *id = NULL;
577 	struct vmbus_dynid *dynid;
578 
579 	/* Look at the dynamic ids first, before the static ones */
580 	spin_lock(&drv->dynids.lock);
581 	list_for_each_entry(dynid, &drv->dynids.list, node) {
582 		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
583 			id = &dynid->id;
584 			break;
585 		}
586 	}
587 	spin_unlock(&drv->dynids.lock);
588 
589 	if (id)
590 		return id;
591 
592 	id = drv->id_table;
593 	if (id == NULL)
594 		return NULL; /* empty device table */
595 
596 	for (; !is_null_guid(&id->guid); id++)
597 		if (!uuid_le_cmp(id->guid, *guid))
598 			return id;
599 
600 	return NULL;
601 }
602 
603 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
604 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
605 {
606 	struct vmbus_dynid *dynid;
607 
608 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
609 	if (!dynid)
610 		return -ENOMEM;
611 
612 	dynid->id.guid = *guid;
613 
614 	spin_lock(&drv->dynids.lock);
615 	list_add_tail(&dynid->node, &drv->dynids.list);
616 	spin_unlock(&drv->dynids.lock);
617 
618 	return driver_attach(&drv->driver);
619 }
620 
621 static void vmbus_free_dynids(struct hv_driver *drv)
622 {
623 	struct vmbus_dynid *dynid, *n;
624 
625 	spin_lock(&drv->dynids.lock);
626 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
627 		list_del(&dynid->node);
628 		kfree(dynid);
629 	}
630 	spin_unlock(&drv->dynids.lock);
631 }
632 
633 /* Parse string of form: 1b4e28ba-2fa1-11d2-883f-b9a761bde3f */
634 static int get_uuid_le(const char *str, uuid_le *uu)
635 {
636 	unsigned int b[16];
637 	int i;
638 
639 	if (strlen(str) < 37)
640 		return -1;
641 
642 	for (i = 0; i < 36; i++) {
643 		switch (i) {
644 		case 8: case 13: case 18: case 23:
645 			if (str[i] != '-')
646 				return -1;
647 			break;
648 		default:
649 			if (!isxdigit(str[i]))
650 				return -1;
651 		}
652 	}
653 
654 	/* unparse little endian output byte order */
655 	if (sscanf(str,
656 		   "%2x%2x%2x%2x-%2x%2x-%2x%2x-%2x%2x-%2x%2x%2x%2x%2x%2x",
657 		   &b[3], &b[2], &b[1], &b[0],
658 		   &b[5], &b[4], &b[7], &b[6], &b[8], &b[9],
659 		   &b[10], &b[11], &b[12], &b[13], &b[14], &b[15]) != 16)
660 		return -1;
661 
662 	for (i = 0; i < 16; i++)
663 		uu->b[i] = b[i];
664 	return 0;
665 }
666 
667 /*
668  * store_new_id - sysfs frontend to vmbus_add_dynid()
669  *
670  * Allow GUIDs to be added to an existing driver via sysfs.
671  */
672 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
673 			    size_t count)
674 {
675 	struct hv_driver *drv = drv_to_hv_drv(driver);
676 	uuid_le guid = NULL_UUID_LE;
677 	ssize_t retval;
678 
679 	if (get_uuid_le(buf, &guid) != 0)
680 		return -EINVAL;
681 
682 	if (hv_vmbus_get_id(drv, &guid))
683 		return -EEXIST;
684 
685 	retval = vmbus_add_dynid(drv, &guid);
686 	if (retval)
687 		return retval;
688 	return count;
689 }
690 static DRIVER_ATTR_WO(new_id);
691 
692 /*
693  * store_remove_id - remove a PCI device ID from this driver
694  *
695  * Removes a dynamic pci device ID to this driver.
696  */
697 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
698 			       size_t count)
699 {
700 	struct hv_driver *drv = drv_to_hv_drv(driver);
701 	struct vmbus_dynid *dynid, *n;
702 	uuid_le guid = NULL_UUID_LE;
703 	size_t retval = -ENODEV;
704 
705 	if (get_uuid_le(buf, &guid))
706 		return -EINVAL;
707 
708 	spin_lock(&drv->dynids.lock);
709 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
710 		struct hv_vmbus_device_id *id = &dynid->id;
711 
712 		if (!uuid_le_cmp(id->guid, guid)) {
713 			list_del(&dynid->node);
714 			kfree(dynid);
715 			retval = count;
716 			break;
717 		}
718 	}
719 	spin_unlock(&drv->dynids.lock);
720 
721 	return retval;
722 }
723 static DRIVER_ATTR_WO(remove_id);
724 
725 static struct attribute *vmbus_drv_attrs[] = {
726 	&driver_attr_new_id.attr,
727 	&driver_attr_remove_id.attr,
728 	NULL,
729 };
730 ATTRIBUTE_GROUPS(vmbus_drv);
731 
732 
733 /*
734  * vmbus_match - Attempt to match the specified device to the specified driver
735  */
736 static int vmbus_match(struct device *device, struct device_driver *driver)
737 {
738 	struct hv_driver *drv = drv_to_hv_drv(driver);
739 	struct hv_device *hv_dev = device_to_hv_device(device);
740 
741 	/* The hv_sock driver handles all hv_sock offers. */
742 	if (is_hvsock_channel(hv_dev->channel))
743 		return drv->hvsock;
744 
745 	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
746 		return 1;
747 
748 	return 0;
749 }
750 
751 /*
752  * vmbus_probe - Add the new vmbus's child device
753  */
754 static int vmbus_probe(struct device *child_device)
755 {
756 	int ret = 0;
757 	struct hv_driver *drv =
758 			drv_to_hv_drv(child_device->driver);
759 	struct hv_device *dev = device_to_hv_device(child_device);
760 	const struct hv_vmbus_device_id *dev_id;
761 
762 	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
763 	if (drv->probe) {
764 		ret = drv->probe(dev, dev_id);
765 		if (ret != 0)
766 			pr_err("probe failed for device %s (%d)\n",
767 			       dev_name(child_device), ret);
768 
769 	} else {
770 		pr_err("probe not set for driver %s\n",
771 		       dev_name(child_device));
772 		ret = -ENODEV;
773 	}
774 	return ret;
775 }
776 
777 /*
778  * vmbus_remove - Remove a vmbus device
779  */
780 static int vmbus_remove(struct device *child_device)
781 {
782 	struct hv_driver *drv;
783 	struct hv_device *dev = device_to_hv_device(child_device);
784 
785 	if (child_device->driver) {
786 		drv = drv_to_hv_drv(child_device->driver);
787 		if (drv->remove)
788 			drv->remove(dev);
789 	}
790 
791 	return 0;
792 }
793 
794 
795 /*
796  * vmbus_shutdown - Shutdown a vmbus device
797  */
798 static void vmbus_shutdown(struct device *child_device)
799 {
800 	struct hv_driver *drv;
801 	struct hv_device *dev = device_to_hv_device(child_device);
802 
803 
804 	/* The device may not be attached yet */
805 	if (!child_device->driver)
806 		return;
807 
808 	drv = drv_to_hv_drv(child_device->driver);
809 
810 	if (drv->shutdown)
811 		drv->shutdown(dev);
812 
813 	return;
814 }
815 
816 
817 /*
818  * vmbus_device_release - Final callback release of the vmbus child device
819  */
820 static void vmbus_device_release(struct device *device)
821 {
822 	struct hv_device *hv_dev = device_to_hv_device(device);
823 	struct vmbus_channel *channel = hv_dev->channel;
824 
825 	hv_process_channel_removal(channel,
826 				   channel->offermsg.child_relid);
827 	kfree(hv_dev);
828 
829 }
830 
831 /* The one and only one */
832 static struct bus_type  hv_bus = {
833 	.name =		"vmbus",
834 	.match =		vmbus_match,
835 	.shutdown =		vmbus_shutdown,
836 	.remove =		vmbus_remove,
837 	.probe =		vmbus_probe,
838 	.uevent =		vmbus_uevent,
839 	.dev_groups =		vmbus_dev_groups,
840 	.drv_groups =		vmbus_drv_groups,
841 };
842 
843 struct onmessage_work_context {
844 	struct work_struct work;
845 	struct hv_message msg;
846 };
847 
848 static void vmbus_onmessage_work(struct work_struct *work)
849 {
850 	struct onmessage_work_context *ctx;
851 
852 	/* Do not process messages if we're in DISCONNECTED state */
853 	if (vmbus_connection.conn_state == DISCONNECTED)
854 		return;
855 
856 	ctx = container_of(work, struct onmessage_work_context,
857 			   work);
858 	vmbus_onmessage(&ctx->msg);
859 	kfree(ctx);
860 }
861 
862 static void hv_process_timer_expiration(struct hv_message *msg, int cpu)
863 {
864 	struct clock_event_device *dev = hv_context.clk_evt[cpu];
865 
866 	if (dev->event_handler)
867 		dev->event_handler(dev);
868 
869 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
870 }
871 
872 void vmbus_on_msg_dpc(unsigned long data)
873 {
874 	int cpu = smp_processor_id();
875 	void *page_addr = hv_context.synic_message_page[cpu];
876 	struct hv_message *msg = (struct hv_message *)page_addr +
877 				  VMBUS_MESSAGE_SINT;
878 	struct vmbus_channel_message_header *hdr;
879 	struct vmbus_channel_message_table_entry *entry;
880 	struct onmessage_work_context *ctx;
881 	u32 message_type = msg->header.message_type;
882 
883 	if (message_type == HVMSG_NONE)
884 		/* no msg */
885 		return;
886 
887 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
888 
889 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
890 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
891 		goto msg_handled;
892 	}
893 
894 	entry = &channel_message_table[hdr->msgtype];
895 	if (entry->handler_type	== VMHT_BLOCKING) {
896 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
897 		if (ctx == NULL)
898 			return;
899 
900 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
901 		memcpy(&ctx->msg, msg, sizeof(*msg));
902 
903 		queue_work(vmbus_connection.work_queue, &ctx->work);
904 	} else
905 		entry->message_handler(hdr);
906 
907 msg_handled:
908 	vmbus_signal_eom(msg, message_type);
909 }
910 
911 static void vmbus_isr(void)
912 {
913 	int cpu = smp_processor_id();
914 	void *page_addr;
915 	struct hv_message *msg;
916 	union hv_synic_event_flags *event;
917 	bool handled = false;
918 
919 	page_addr = hv_context.synic_event_page[cpu];
920 	if (page_addr == NULL)
921 		return;
922 
923 	event = (union hv_synic_event_flags *)page_addr +
924 					 VMBUS_MESSAGE_SINT;
925 	/*
926 	 * Check for events before checking for messages. This is the order
927 	 * in which events and messages are checked in Windows guests on
928 	 * Hyper-V, and the Windows team suggested we do the same.
929 	 */
930 
931 	if ((vmbus_proto_version == VERSION_WS2008) ||
932 		(vmbus_proto_version == VERSION_WIN7)) {
933 
934 		/* Since we are a child, we only need to check bit 0 */
935 		if (sync_test_and_clear_bit(0,
936 			(unsigned long *) &event->flags32[0])) {
937 			handled = true;
938 		}
939 	} else {
940 		/*
941 		 * Our host is win8 or above. The signaling mechanism
942 		 * has changed and we can directly look at the event page.
943 		 * If bit n is set then we have an interrup on the channel
944 		 * whose id is n.
945 		 */
946 		handled = true;
947 	}
948 
949 	if (handled)
950 		tasklet_schedule(hv_context.event_dpc[cpu]);
951 
952 
953 	page_addr = hv_context.synic_message_page[cpu];
954 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
955 
956 	/* Check if there are actual msgs to be processed */
957 	if (msg->header.message_type != HVMSG_NONE) {
958 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
959 			hv_process_timer_expiration(msg, cpu);
960 		else
961 			tasklet_schedule(hv_context.msg_dpc[cpu]);
962 	}
963 
964 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
965 }
966 
967 
968 /*
969  * vmbus_bus_init -Main vmbus driver initialization routine.
970  *
971  * Here, we
972  *	- initialize the vmbus driver context
973  *	- invoke the vmbus hv main init routine
974  *	- retrieve the channel offers
975  */
976 static int vmbus_bus_init(void)
977 {
978 	int ret;
979 
980 	/* Hypervisor initialization...setup hypercall page..etc */
981 	ret = hv_init();
982 	if (ret != 0) {
983 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
984 		return ret;
985 	}
986 
987 	ret = bus_register(&hv_bus);
988 	if (ret)
989 		goto err_cleanup;
990 
991 	hv_setup_vmbus_irq(vmbus_isr);
992 
993 	ret = hv_synic_alloc();
994 	if (ret)
995 		goto err_alloc;
996 	/*
997 	 * Initialize the per-cpu interrupt state and
998 	 * connect to the host.
999 	 */
1000 	on_each_cpu(hv_synic_init, NULL, 1);
1001 	ret = vmbus_connect();
1002 	if (ret)
1003 		goto err_connect;
1004 
1005 	if (vmbus_proto_version > VERSION_WIN7)
1006 		cpu_hotplug_disable();
1007 
1008 	/*
1009 	 * Only register if the crash MSRs are available
1010 	 */
1011 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1012 		register_die_notifier(&hyperv_die_block);
1013 		atomic_notifier_chain_register(&panic_notifier_list,
1014 					       &hyperv_panic_block);
1015 	}
1016 
1017 	vmbus_request_offers();
1018 
1019 	return 0;
1020 
1021 err_connect:
1022 	on_each_cpu(hv_synic_cleanup, NULL, 1);
1023 err_alloc:
1024 	hv_synic_free();
1025 	hv_remove_vmbus_irq();
1026 
1027 	bus_unregister(&hv_bus);
1028 
1029 err_cleanup:
1030 	hv_cleanup(false);
1031 
1032 	return ret;
1033 }
1034 
1035 /**
1036  * __vmbus_child_driver_register() - Register a vmbus's driver
1037  * @hv_driver: Pointer to driver structure you want to register
1038  * @owner: owner module of the drv
1039  * @mod_name: module name string
1040  *
1041  * Registers the given driver with Linux through the 'driver_register()' call
1042  * and sets up the hyper-v vmbus handling for this driver.
1043  * It will return the state of the 'driver_register()' call.
1044  *
1045  */
1046 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1047 {
1048 	int ret;
1049 
1050 	pr_info("registering driver %s\n", hv_driver->name);
1051 
1052 	ret = vmbus_exists();
1053 	if (ret < 0)
1054 		return ret;
1055 
1056 	hv_driver->driver.name = hv_driver->name;
1057 	hv_driver->driver.owner = owner;
1058 	hv_driver->driver.mod_name = mod_name;
1059 	hv_driver->driver.bus = &hv_bus;
1060 
1061 	spin_lock_init(&hv_driver->dynids.lock);
1062 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1063 
1064 	ret = driver_register(&hv_driver->driver);
1065 
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1069 
1070 /**
1071  * vmbus_driver_unregister() - Unregister a vmbus's driver
1072  * @hv_driver: Pointer to driver structure you want to
1073  *             un-register
1074  *
1075  * Un-register the given driver that was previous registered with a call to
1076  * vmbus_driver_register()
1077  */
1078 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1079 {
1080 	pr_info("unregistering driver %s\n", hv_driver->name);
1081 
1082 	if (!vmbus_exists()) {
1083 		driver_unregister(&hv_driver->driver);
1084 		vmbus_free_dynids(hv_driver);
1085 	}
1086 }
1087 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1088 
1089 /*
1090  * vmbus_device_create - Creates and registers a new child device
1091  * on the vmbus.
1092  */
1093 struct hv_device *vmbus_device_create(const uuid_le *type,
1094 				      const uuid_le *instance,
1095 				      struct vmbus_channel *channel)
1096 {
1097 	struct hv_device *child_device_obj;
1098 
1099 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1100 	if (!child_device_obj) {
1101 		pr_err("Unable to allocate device object for child device\n");
1102 		return NULL;
1103 	}
1104 
1105 	child_device_obj->channel = channel;
1106 	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1107 	memcpy(&child_device_obj->dev_instance, instance,
1108 	       sizeof(uuid_le));
1109 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1110 
1111 
1112 	return child_device_obj;
1113 }
1114 
1115 /*
1116  * vmbus_device_register - Register the child device
1117  */
1118 int vmbus_device_register(struct hv_device *child_device_obj)
1119 {
1120 	int ret = 0;
1121 
1122 	dev_set_name(&child_device_obj->device, "%pUl",
1123 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1124 
1125 	child_device_obj->device.bus = &hv_bus;
1126 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1127 	child_device_obj->device.release = vmbus_device_release;
1128 
1129 	/*
1130 	 * Register with the LDM. This will kick off the driver/device
1131 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1132 	 */
1133 	ret = device_register(&child_device_obj->device);
1134 
1135 	if (ret)
1136 		pr_err("Unable to register child device\n");
1137 	else
1138 		pr_debug("child device %s registered\n",
1139 			dev_name(&child_device_obj->device));
1140 
1141 	return ret;
1142 }
1143 
1144 /*
1145  * vmbus_device_unregister - Remove the specified child device
1146  * from the vmbus.
1147  */
1148 void vmbus_device_unregister(struct hv_device *device_obj)
1149 {
1150 	pr_debug("child device %s unregistered\n",
1151 		dev_name(&device_obj->device));
1152 
1153 	/*
1154 	 * Kick off the process of unregistering the device.
1155 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1156 	 */
1157 	device_unregister(&device_obj->device);
1158 }
1159 
1160 
1161 /*
1162  * VMBUS is an acpi enumerated device. Get the information we
1163  * need from DSDT.
1164  */
1165 #define VTPM_BASE_ADDRESS 0xfed40000
1166 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1167 {
1168 	resource_size_t start = 0;
1169 	resource_size_t end = 0;
1170 	struct resource *new_res;
1171 	struct resource **old_res = &hyperv_mmio;
1172 	struct resource **prev_res = NULL;
1173 
1174 	switch (res->type) {
1175 
1176 	/*
1177 	 * "Address" descriptors are for bus windows. Ignore
1178 	 * "memory" descriptors, which are for registers on
1179 	 * devices.
1180 	 */
1181 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1182 		start = res->data.address32.address.minimum;
1183 		end = res->data.address32.address.maximum;
1184 		break;
1185 
1186 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1187 		start = res->data.address64.address.minimum;
1188 		end = res->data.address64.address.maximum;
1189 		break;
1190 
1191 	default:
1192 		/* Unused resource type */
1193 		return AE_OK;
1194 
1195 	}
1196 	/*
1197 	 * Ignore ranges that are below 1MB, as they're not
1198 	 * necessary or useful here.
1199 	 */
1200 	if (end < 0x100000)
1201 		return AE_OK;
1202 
1203 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1204 	if (!new_res)
1205 		return AE_NO_MEMORY;
1206 
1207 	/* If this range overlaps the virtual TPM, truncate it. */
1208 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1209 		end = VTPM_BASE_ADDRESS;
1210 
1211 	new_res->name = "hyperv mmio";
1212 	new_res->flags = IORESOURCE_MEM;
1213 	new_res->start = start;
1214 	new_res->end = end;
1215 
1216 	/*
1217 	 * If two ranges are adjacent, merge them.
1218 	 */
1219 	do {
1220 		if (!*old_res) {
1221 			*old_res = new_res;
1222 			break;
1223 		}
1224 
1225 		if (((*old_res)->end + 1) == new_res->start) {
1226 			(*old_res)->end = new_res->end;
1227 			kfree(new_res);
1228 			break;
1229 		}
1230 
1231 		if ((*old_res)->start == new_res->end + 1) {
1232 			(*old_res)->start = new_res->start;
1233 			kfree(new_res);
1234 			break;
1235 		}
1236 
1237 		if ((*old_res)->start > new_res->end) {
1238 			new_res->sibling = *old_res;
1239 			if (prev_res)
1240 				(*prev_res)->sibling = new_res;
1241 			*old_res = new_res;
1242 			break;
1243 		}
1244 
1245 		prev_res = old_res;
1246 		old_res = &(*old_res)->sibling;
1247 
1248 	} while (1);
1249 
1250 	return AE_OK;
1251 }
1252 
1253 static int vmbus_acpi_remove(struct acpi_device *device)
1254 {
1255 	struct resource *cur_res;
1256 	struct resource *next_res;
1257 
1258 	if (hyperv_mmio) {
1259 		if (fb_mmio) {
1260 			__release_region(hyperv_mmio, fb_mmio->start,
1261 					 resource_size(fb_mmio));
1262 			fb_mmio = NULL;
1263 		}
1264 
1265 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1266 			next_res = cur_res->sibling;
1267 			kfree(cur_res);
1268 		}
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static void vmbus_reserve_fb(void)
1275 {
1276 	int size;
1277 	/*
1278 	 * Make a claim for the frame buffer in the resource tree under the
1279 	 * first node, which will be the one below 4GB.  The length seems to
1280 	 * be underreported, particularly in a Generation 1 VM.  So start out
1281 	 * reserving a larger area and make it smaller until it succeeds.
1282 	 */
1283 
1284 	if (screen_info.lfb_base) {
1285 		if (efi_enabled(EFI_BOOT))
1286 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1287 		else
1288 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1289 
1290 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1291 			fb_mmio = __request_region(hyperv_mmio,
1292 						   screen_info.lfb_base, size,
1293 						   fb_mmio_name, 0);
1294 		}
1295 	}
1296 }
1297 
1298 /**
1299  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1300  * @new:		If successful, supplied a pointer to the
1301  *			allocated MMIO space.
1302  * @device_obj:		Identifies the caller
1303  * @min:		Minimum guest physical address of the
1304  *			allocation
1305  * @max:		Maximum guest physical address
1306  * @size:		Size of the range to be allocated
1307  * @align:		Alignment of the range to be allocated
1308  * @fb_overlap_ok:	Whether this allocation can be allowed
1309  *			to overlap the video frame buffer.
1310  *
1311  * This function walks the resources granted to VMBus by the
1312  * _CRS object in the ACPI namespace underneath the parent
1313  * "bridge" whether that's a root PCI bus in the Generation 1
1314  * case or a Module Device in the Generation 2 case.  It then
1315  * attempts to allocate from the global MMIO pool in a way that
1316  * matches the constraints supplied in these parameters and by
1317  * that _CRS.
1318  *
1319  * Return: 0 on success, -errno on failure
1320  */
1321 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1322 			resource_size_t min, resource_size_t max,
1323 			resource_size_t size, resource_size_t align,
1324 			bool fb_overlap_ok)
1325 {
1326 	struct resource *iter, *shadow;
1327 	resource_size_t range_min, range_max, start;
1328 	const char *dev_n = dev_name(&device_obj->device);
1329 	int retval;
1330 
1331 	retval = -ENXIO;
1332 	down(&hyperv_mmio_lock);
1333 
1334 	/*
1335 	 * If overlaps with frame buffers are allowed, then first attempt to
1336 	 * make the allocation from within the reserved region.  Because it
1337 	 * is already reserved, no shadow allocation is necessary.
1338 	 */
1339 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1340 	    !(max < fb_mmio->start)) {
1341 
1342 		range_min = fb_mmio->start;
1343 		range_max = fb_mmio->end;
1344 		start = (range_min + align - 1) & ~(align - 1);
1345 		for (; start + size - 1 <= range_max; start += align) {
1346 			*new = request_mem_region_exclusive(start, size, dev_n);
1347 			if (*new) {
1348 				retval = 0;
1349 				goto exit;
1350 			}
1351 		}
1352 	}
1353 
1354 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1355 		if ((iter->start >= max) || (iter->end <= min))
1356 			continue;
1357 
1358 		range_min = iter->start;
1359 		range_max = iter->end;
1360 		start = (range_min + align - 1) & ~(align - 1);
1361 		for (; start + size - 1 <= range_max; start += align) {
1362 			shadow = __request_region(iter, start, size, NULL,
1363 						  IORESOURCE_BUSY);
1364 			if (!shadow)
1365 				continue;
1366 
1367 			*new = request_mem_region_exclusive(start, size, dev_n);
1368 			if (*new) {
1369 				shadow->name = (char *)*new;
1370 				retval = 0;
1371 				goto exit;
1372 			}
1373 
1374 			__release_region(iter, start, size);
1375 		}
1376 	}
1377 
1378 exit:
1379 	up(&hyperv_mmio_lock);
1380 	return retval;
1381 }
1382 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1383 
1384 /**
1385  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1386  * @start:		Base address of region to release.
1387  * @size:		Size of the range to be allocated
1388  *
1389  * This function releases anything requested by
1390  * vmbus_mmio_allocate().
1391  */
1392 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1393 {
1394 	struct resource *iter;
1395 
1396 	down(&hyperv_mmio_lock);
1397 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1398 		if ((iter->start >= start + size) || (iter->end <= start))
1399 			continue;
1400 
1401 		__release_region(iter, start, size);
1402 	}
1403 	release_mem_region(start, size);
1404 	up(&hyperv_mmio_lock);
1405 
1406 }
1407 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1408 
1409 /**
1410  * vmbus_cpu_number_to_vp_number() - Map CPU to VP.
1411  * @cpu_number: CPU number in Linux terms
1412  *
1413  * This function returns the mapping between the Linux processor
1414  * number and the hypervisor's virtual processor number, useful
1415  * in making hypercalls and such that talk about specific
1416  * processors.
1417  *
1418  * Return: Virtual processor number in Hyper-V terms
1419  */
1420 int vmbus_cpu_number_to_vp_number(int cpu_number)
1421 {
1422 	return hv_context.vp_index[cpu_number];
1423 }
1424 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number);
1425 
1426 static int vmbus_acpi_add(struct acpi_device *device)
1427 {
1428 	acpi_status result;
1429 	int ret_val = -ENODEV;
1430 	struct acpi_device *ancestor;
1431 
1432 	hv_acpi_dev = device;
1433 
1434 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1435 					vmbus_walk_resources, NULL);
1436 
1437 	if (ACPI_FAILURE(result))
1438 		goto acpi_walk_err;
1439 	/*
1440 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1441 	 * firmware) is the VMOD that has the mmio ranges. Get that.
1442 	 */
1443 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1444 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1445 					     vmbus_walk_resources, NULL);
1446 
1447 		if (ACPI_FAILURE(result))
1448 			continue;
1449 		if (hyperv_mmio) {
1450 			vmbus_reserve_fb();
1451 			break;
1452 		}
1453 	}
1454 	ret_val = 0;
1455 
1456 acpi_walk_err:
1457 	complete(&probe_event);
1458 	if (ret_val)
1459 		vmbus_acpi_remove(device);
1460 	return ret_val;
1461 }
1462 
1463 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1464 	{"VMBUS", 0},
1465 	{"VMBus", 0},
1466 	{"", 0},
1467 };
1468 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1469 
1470 static struct acpi_driver vmbus_acpi_driver = {
1471 	.name = "vmbus",
1472 	.ids = vmbus_acpi_device_ids,
1473 	.ops = {
1474 		.add = vmbus_acpi_add,
1475 		.remove = vmbus_acpi_remove,
1476 	},
1477 };
1478 
1479 static void hv_kexec_handler(void)
1480 {
1481 	int cpu;
1482 
1483 	hv_synic_clockevents_cleanup();
1484 	vmbus_initiate_unload(false);
1485 	for_each_online_cpu(cpu)
1486 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1487 	hv_cleanup(false);
1488 };
1489 
1490 static void hv_crash_handler(struct pt_regs *regs)
1491 {
1492 	vmbus_initiate_unload(true);
1493 	/*
1494 	 * In crash handler we can't schedule synic cleanup for all CPUs,
1495 	 * doing the cleanup for current CPU only. This should be sufficient
1496 	 * for kdump.
1497 	 */
1498 	hv_synic_cleanup(NULL);
1499 	hv_cleanup(true);
1500 };
1501 
1502 static int __init hv_acpi_init(void)
1503 {
1504 	int ret, t;
1505 
1506 	if (x86_hyper != &x86_hyper_ms_hyperv)
1507 		return -ENODEV;
1508 
1509 	init_completion(&probe_event);
1510 
1511 	/*
1512 	 * Get ACPI resources first.
1513 	 */
1514 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1515 
1516 	if (ret)
1517 		return ret;
1518 
1519 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
1520 	if (t == 0) {
1521 		ret = -ETIMEDOUT;
1522 		goto cleanup;
1523 	}
1524 
1525 	ret = vmbus_bus_init();
1526 	if (ret)
1527 		goto cleanup;
1528 
1529 	hv_setup_kexec_handler(hv_kexec_handler);
1530 	hv_setup_crash_handler(hv_crash_handler);
1531 
1532 	return 0;
1533 
1534 cleanup:
1535 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1536 	hv_acpi_dev = NULL;
1537 	return ret;
1538 }
1539 
1540 static void __exit vmbus_exit(void)
1541 {
1542 	int cpu;
1543 
1544 	hv_remove_kexec_handler();
1545 	hv_remove_crash_handler();
1546 	vmbus_connection.conn_state = DISCONNECTED;
1547 	hv_synic_clockevents_cleanup();
1548 	vmbus_disconnect();
1549 	hv_remove_vmbus_irq();
1550 	for_each_online_cpu(cpu)
1551 		tasklet_kill(hv_context.msg_dpc[cpu]);
1552 	vmbus_free_channels();
1553 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1554 		unregister_die_notifier(&hyperv_die_block);
1555 		atomic_notifier_chain_unregister(&panic_notifier_list,
1556 						 &hyperv_panic_block);
1557 	}
1558 	bus_unregister(&hv_bus);
1559 	hv_cleanup(false);
1560 	for_each_online_cpu(cpu) {
1561 		tasklet_kill(hv_context.event_dpc[cpu]);
1562 		smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1);
1563 	}
1564 	hv_synic_free();
1565 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1566 	if (vmbus_proto_version > VERSION_WIN7)
1567 		cpu_hotplug_enable();
1568 }
1569 
1570 
1571 MODULE_LICENSE("GPL");
1572 
1573 subsys_initcall(hv_acpi_init);
1574 module_exit(vmbus_exit);
1575