1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc_submit.h" 7 8 #include <linux/bitfield.h> 9 #include <linux/bitmap.h> 10 #include <linux/circ_buf.h> 11 #include <linux/delay.h> 12 #include <linux/dma-fence-array.h> 13 #include <linux/math64.h> 14 15 #include <drm/drm_managed.h> 16 17 #include "abi/guc_actions_abi.h" 18 #include "abi/guc_klvs_abi.h" 19 #include "regs/xe_lrc_layout.h" 20 #include "xe_assert.h" 21 #include "xe_devcoredump.h" 22 #include "xe_device.h" 23 #include "xe_exec_queue.h" 24 #include "xe_force_wake.h" 25 #include "xe_gpu_scheduler.h" 26 #include "xe_gt.h" 27 #include "xe_gt_clock.h" 28 #include "xe_gt_printk.h" 29 #include "xe_guc.h" 30 #include "xe_guc_capture.h" 31 #include "xe_guc_ct.h" 32 #include "xe_guc_exec_queue_types.h" 33 #include "xe_guc_id_mgr.h" 34 #include "xe_guc_submit_types.h" 35 #include "xe_hw_engine.h" 36 #include "xe_hw_fence.h" 37 #include "xe_lrc.h" 38 #include "xe_macros.h" 39 #include "xe_map.h" 40 #include "xe_mocs.h" 41 #include "xe_pm.h" 42 #include "xe_ring_ops_types.h" 43 #include "xe_sched_job.h" 44 #include "xe_trace.h" 45 #include "xe_vm.h" 46 47 static struct xe_guc * 48 exec_queue_to_guc(struct xe_exec_queue *q) 49 { 50 return &q->gt->uc.guc; 51 } 52 53 /* 54 * Helpers for engine state, using an atomic as some of the bits can transition 55 * as the same time (e.g. a suspend can be happning at the same time as schedule 56 * engine done being processed). 57 */ 58 #define EXEC_QUEUE_STATE_REGISTERED (1 << 0) 59 #define EXEC_QUEUE_STATE_ENABLED (1 << 1) 60 #define EXEC_QUEUE_STATE_PENDING_ENABLE (1 << 2) 61 #define EXEC_QUEUE_STATE_PENDING_DISABLE (1 << 3) 62 #define EXEC_QUEUE_STATE_DESTROYED (1 << 4) 63 #define EXEC_QUEUE_STATE_SUSPENDED (1 << 5) 64 #define EXEC_QUEUE_STATE_RESET (1 << 6) 65 #define EXEC_QUEUE_STATE_KILLED (1 << 7) 66 #define EXEC_QUEUE_STATE_WEDGED (1 << 8) 67 #define EXEC_QUEUE_STATE_BANNED (1 << 9) 68 #define EXEC_QUEUE_STATE_CHECK_TIMEOUT (1 << 10) 69 #define EXEC_QUEUE_STATE_EXTRA_REF (1 << 11) 70 71 static bool exec_queue_registered(struct xe_exec_queue *q) 72 { 73 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_REGISTERED; 74 } 75 76 static void set_exec_queue_registered(struct xe_exec_queue *q) 77 { 78 atomic_or(EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 79 } 80 81 static void clear_exec_queue_registered(struct xe_exec_queue *q) 82 { 83 atomic_and(~EXEC_QUEUE_STATE_REGISTERED, &q->guc->state); 84 } 85 86 static bool exec_queue_enabled(struct xe_exec_queue *q) 87 { 88 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_ENABLED; 89 } 90 91 static void set_exec_queue_enabled(struct xe_exec_queue *q) 92 { 93 atomic_or(EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 94 } 95 96 static void clear_exec_queue_enabled(struct xe_exec_queue *q) 97 { 98 atomic_and(~EXEC_QUEUE_STATE_ENABLED, &q->guc->state); 99 } 100 101 static bool exec_queue_pending_enable(struct xe_exec_queue *q) 102 { 103 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_ENABLE; 104 } 105 106 static void set_exec_queue_pending_enable(struct xe_exec_queue *q) 107 { 108 atomic_or(EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 109 } 110 111 static void clear_exec_queue_pending_enable(struct xe_exec_queue *q) 112 { 113 atomic_and(~EXEC_QUEUE_STATE_PENDING_ENABLE, &q->guc->state); 114 } 115 116 static bool exec_queue_pending_disable(struct xe_exec_queue *q) 117 { 118 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_PENDING_DISABLE; 119 } 120 121 static void set_exec_queue_pending_disable(struct xe_exec_queue *q) 122 { 123 atomic_or(EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 124 } 125 126 static void clear_exec_queue_pending_disable(struct xe_exec_queue *q) 127 { 128 atomic_and(~EXEC_QUEUE_STATE_PENDING_DISABLE, &q->guc->state); 129 } 130 131 static bool exec_queue_destroyed(struct xe_exec_queue *q) 132 { 133 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_DESTROYED; 134 } 135 136 static void set_exec_queue_destroyed(struct xe_exec_queue *q) 137 { 138 atomic_or(EXEC_QUEUE_STATE_DESTROYED, &q->guc->state); 139 } 140 141 static bool exec_queue_banned(struct xe_exec_queue *q) 142 { 143 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_BANNED; 144 } 145 146 static void set_exec_queue_banned(struct xe_exec_queue *q) 147 { 148 atomic_or(EXEC_QUEUE_STATE_BANNED, &q->guc->state); 149 } 150 151 static bool exec_queue_suspended(struct xe_exec_queue *q) 152 { 153 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_SUSPENDED; 154 } 155 156 static void set_exec_queue_suspended(struct xe_exec_queue *q) 157 { 158 atomic_or(EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 159 } 160 161 static void clear_exec_queue_suspended(struct xe_exec_queue *q) 162 { 163 atomic_and(~EXEC_QUEUE_STATE_SUSPENDED, &q->guc->state); 164 } 165 166 static bool exec_queue_reset(struct xe_exec_queue *q) 167 { 168 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_RESET; 169 } 170 171 static void set_exec_queue_reset(struct xe_exec_queue *q) 172 { 173 atomic_or(EXEC_QUEUE_STATE_RESET, &q->guc->state); 174 } 175 176 static bool exec_queue_killed(struct xe_exec_queue *q) 177 { 178 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_KILLED; 179 } 180 181 static void set_exec_queue_killed(struct xe_exec_queue *q) 182 { 183 atomic_or(EXEC_QUEUE_STATE_KILLED, &q->guc->state); 184 } 185 186 static bool exec_queue_wedged(struct xe_exec_queue *q) 187 { 188 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_WEDGED; 189 } 190 191 static void set_exec_queue_wedged(struct xe_exec_queue *q) 192 { 193 atomic_or(EXEC_QUEUE_STATE_WEDGED, &q->guc->state); 194 } 195 196 static bool exec_queue_check_timeout(struct xe_exec_queue *q) 197 { 198 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_CHECK_TIMEOUT; 199 } 200 201 static void set_exec_queue_check_timeout(struct xe_exec_queue *q) 202 { 203 atomic_or(EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 204 } 205 206 static void clear_exec_queue_check_timeout(struct xe_exec_queue *q) 207 { 208 atomic_and(~EXEC_QUEUE_STATE_CHECK_TIMEOUT, &q->guc->state); 209 } 210 211 static bool exec_queue_extra_ref(struct xe_exec_queue *q) 212 { 213 return atomic_read(&q->guc->state) & EXEC_QUEUE_STATE_EXTRA_REF; 214 } 215 216 static void set_exec_queue_extra_ref(struct xe_exec_queue *q) 217 { 218 atomic_or(EXEC_QUEUE_STATE_EXTRA_REF, &q->guc->state); 219 } 220 221 static bool exec_queue_killed_or_banned_or_wedged(struct xe_exec_queue *q) 222 { 223 return (atomic_read(&q->guc->state) & 224 (EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_KILLED | 225 EXEC_QUEUE_STATE_BANNED)); 226 } 227 228 #ifdef CONFIG_PROVE_LOCKING 229 static int alloc_submit_wq(struct xe_guc *guc) 230 { 231 int i; 232 233 for (i = 0; i < NUM_SUBMIT_WQ; ++i) { 234 guc->submission_state.submit_wq_pool[i] = 235 alloc_ordered_workqueue("submit_wq", 0); 236 if (!guc->submission_state.submit_wq_pool[i]) 237 goto err_free; 238 } 239 240 return 0; 241 242 err_free: 243 while (i) 244 destroy_workqueue(guc->submission_state.submit_wq_pool[--i]); 245 246 return -ENOMEM; 247 } 248 249 static void free_submit_wq(struct xe_guc *guc) 250 { 251 int i; 252 253 for (i = 0; i < NUM_SUBMIT_WQ; ++i) 254 destroy_workqueue(guc->submission_state.submit_wq_pool[i]); 255 } 256 257 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 258 { 259 int idx = guc->submission_state.submit_wq_idx++ % NUM_SUBMIT_WQ; 260 261 return guc->submission_state.submit_wq_pool[idx]; 262 } 263 #else 264 static int alloc_submit_wq(struct xe_guc *guc) 265 { 266 return 0; 267 } 268 269 static void free_submit_wq(struct xe_guc *guc) 270 { 271 272 } 273 274 static struct workqueue_struct *get_submit_wq(struct xe_guc *guc) 275 { 276 return NULL; 277 } 278 #endif 279 280 static void xe_guc_submit_fini(struct xe_guc *guc) 281 { 282 struct xe_device *xe = guc_to_xe(guc); 283 struct xe_gt *gt = guc_to_gt(guc); 284 int ret; 285 286 ret = wait_event_timeout(guc->submission_state.fini_wq, 287 xa_empty(&guc->submission_state.exec_queue_lookup), 288 HZ * 5); 289 290 drain_workqueue(xe->destroy_wq); 291 292 xe_gt_assert(gt, ret); 293 } 294 295 static void guc_submit_fini(struct drm_device *drm, void *arg) 296 { 297 struct xe_guc *guc = arg; 298 299 xe_guc_submit_fini(guc); 300 xa_destroy(&guc->submission_state.exec_queue_lookup); 301 free_submit_wq(guc); 302 } 303 304 static void guc_submit_wedged_fini(void *arg) 305 { 306 struct xe_guc *guc = arg; 307 struct xe_exec_queue *q; 308 unsigned long index; 309 310 mutex_lock(&guc->submission_state.lock); 311 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) { 312 if (exec_queue_wedged(q)) { 313 mutex_unlock(&guc->submission_state.lock); 314 xe_exec_queue_put(q); 315 mutex_lock(&guc->submission_state.lock); 316 } 317 } 318 mutex_unlock(&guc->submission_state.lock); 319 } 320 321 static const struct xe_exec_queue_ops guc_exec_queue_ops; 322 323 static void primelockdep(struct xe_guc *guc) 324 { 325 if (!IS_ENABLED(CONFIG_LOCKDEP)) 326 return; 327 328 fs_reclaim_acquire(GFP_KERNEL); 329 330 mutex_lock(&guc->submission_state.lock); 331 mutex_unlock(&guc->submission_state.lock); 332 333 fs_reclaim_release(GFP_KERNEL); 334 } 335 336 /** 337 * xe_guc_submit_init() - Initialize GuC submission. 338 * @guc: the &xe_guc to initialize 339 * @num_ids: number of GuC context IDs to use 340 * 341 * The bare-metal or PF driver can pass ~0 as &num_ids to indicate that all 342 * GuC context IDs supported by the GuC firmware should be used for submission. 343 * 344 * Only VF drivers will have to provide explicit number of GuC context IDs 345 * that they can use for submission. 346 * 347 * Return: 0 on success or a negative error code on failure. 348 */ 349 int xe_guc_submit_init(struct xe_guc *guc, unsigned int num_ids) 350 { 351 struct xe_device *xe = guc_to_xe(guc); 352 struct xe_gt *gt = guc_to_gt(guc); 353 int err; 354 355 err = drmm_mutex_init(&xe->drm, &guc->submission_state.lock); 356 if (err) 357 return err; 358 359 err = xe_guc_id_mgr_init(&guc->submission_state.idm, num_ids); 360 if (err) 361 return err; 362 363 err = alloc_submit_wq(guc); 364 if (err) 365 return err; 366 367 gt->exec_queue_ops = &guc_exec_queue_ops; 368 369 xa_init(&guc->submission_state.exec_queue_lookup); 370 371 init_waitqueue_head(&guc->submission_state.fini_wq); 372 373 primelockdep(guc); 374 375 return drmm_add_action_or_reset(&xe->drm, guc_submit_fini, guc); 376 } 377 378 static void __release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q, u32 xa_count) 379 { 380 int i; 381 382 lockdep_assert_held(&guc->submission_state.lock); 383 384 for (i = 0; i < xa_count; ++i) 385 xa_erase(&guc->submission_state.exec_queue_lookup, q->guc->id + i); 386 387 xe_guc_id_mgr_release_locked(&guc->submission_state.idm, 388 q->guc->id, q->width); 389 390 if (xa_empty(&guc->submission_state.exec_queue_lookup)) 391 wake_up(&guc->submission_state.fini_wq); 392 } 393 394 static int alloc_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 395 { 396 int ret; 397 int i; 398 399 /* 400 * Must use GFP_NOWAIT as this lock is in the dma fence signalling path, 401 * worse case user gets -ENOMEM on engine create and has to try again. 402 * 403 * FIXME: Have caller pre-alloc or post-alloc /w GFP_KERNEL to prevent 404 * failure. 405 */ 406 lockdep_assert_held(&guc->submission_state.lock); 407 408 ret = xe_guc_id_mgr_reserve_locked(&guc->submission_state.idm, 409 q->width); 410 if (ret < 0) 411 return ret; 412 413 q->guc->id = ret; 414 415 for (i = 0; i < q->width; ++i) { 416 ret = xa_err(xa_store(&guc->submission_state.exec_queue_lookup, 417 q->guc->id + i, q, GFP_NOWAIT)); 418 if (ret) 419 goto err_release; 420 } 421 422 return 0; 423 424 err_release: 425 __release_guc_id(guc, q, i); 426 427 return ret; 428 } 429 430 static void release_guc_id(struct xe_guc *guc, struct xe_exec_queue *q) 431 { 432 mutex_lock(&guc->submission_state.lock); 433 __release_guc_id(guc, q, q->width); 434 mutex_unlock(&guc->submission_state.lock); 435 } 436 437 struct exec_queue_policy { 438 u32 count; 439 struct guc_update_exec_queue_policy h2g; 440 }; 441 442 static u32 __guc_exec_queue_policy_action_size(struct exec_queue_policy *policy) 443 { 444 size_t bytes = sizeof(policy->h2g.header) + 445 (sizeof(policy->h2g.klv[0]) * policy->count); 446 447 return bytes / sizeof(u32); 448 } 449 450 static void __guc_exec_queue_policy_start_klv(struct exec_queue_policy *policy, 451 u16 guc_id) 452 { 453 policy->h2g.header.action = 454 XE_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 455 policy->h2g.header.guc_id = guc_id; 456 policy->count = 0; 457 } 458 459 #define MAKE_EXEC_QUEUE_POLICY_ADD(func, id) \ 460 static void __guc_exec_queue_policy_add_##func(struct exec_queue_policy *policy, \ 461 u32 data) \ 462 { \ 463 XE_WARN_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 464 \ 465 policy->h2g.klv[policy->count].kl = \ 466 FIELD_PREP(GUC_KLV_0_KEY, \ 467 GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 468 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 469 policy->h2g.klv[policy->count].value = data; \ 470 policy->count++; \ 471 } 472 473 MAKE_EXEC_QUEUE_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 474 MAKE_EXEC_QUEUE_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 475 MAKE_EXEC_QUEUE_POLICY_ADD(priority, SCHEDULING_PRIORITY) 476 #undef MAKE_EXEC_QUEUE_POLICY_ADD 477 478 static const int xe_exec_queue_prio_to_guc[] = { 479 [XE_EXEC_QUEUE_PRIORITY_LOW] = GUC_CLIENT_PRIORITY_NORMAL, 480 [XE_EXEC_QUEUE_PRIORITY_NORMAL] = GUC_CLIENT_PRIORITY_KMD_NORMAL, 481 [XE_EXEC_QUEUE_PRIORITY_HIGH] = GUC_CLIENT_PRIORITY_HIGH, 482 [XE_EXEC_QUEUE_PRIORITY_KERNEL] = GUC_CLIENT_PRIORITY_KMD_HIGH, 483 }; 484 485 static void init_policies(struct xe_guc *guc, struct xe_exec_queue *q) 486 { 487 struct exec_queue_policy policy; 488 struct xe_device *xe = guc_to_xe(guc); 489 enum xe_exec_queue_priority prio = q->sched_props.priority; 490 u32 timeslice_us = q->sched_props.timeslice_us; 491 u32 preempt_timeout_us = q->sched_props.preempt_timeout_us; 492 493 xe_assert(xe, exec_queue_registered(q)); 494 495 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 496 __guc_exec_queue_policy_add_priority(&policy, xe_exec_queue_prio_to_guc[prio]); 497 __guc_exec_queue_policy_add_execution_quantum(&policy, timeslice_us); 498 __guc_exec_queue_policy_add_preemption_timeout(&policy, preempt_timeout_us); 499 500 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 501 __guc_exec_queue_policy_action_size(&policy), 0, 0); 502 } 503 504 static void set_min_preemption_timeout(struct xe_guc *guc, struct xe_exec_queue *q) 505 { 506 struct exec_queue_policy policy; 507 508 __guc_exec_queue_policy_start_klv(&policy, q->guc->id); 509 __guc_exec_queue_policy_add_preemption_timeout(&policy, 1); 510 511 xe_guc_ct_send(&guc->ct, (u32 *)&policy.h2g, 512 __guc_exec_queue_policy_action_size(&policy), 0, 0); 513 } 514 515 #define parallel_read(xe_, map_, field_) \ 516 xe_map_rd_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 517 field_) 518 #define parallel_write(xe_, map_, field_, val_) \ 519 xe_map_wr_field(xe_, &map_, 0, struct guc_submit_parallel_scratch, \ 520 field_, val_) 521 522 static void __register_mlrc_exec_queue(struct xe_guc *guc, 523 struct xe_exec_queue *q, 524 struct guc_ctxt_registration_info *info) 525 { 526 #define MAX_MLRC_REG_SIZE (13 + XE_HW_ENGINE_MAX_INSTANCE * 2) 527 struct xe_device *xe = guc_to_xe(guc); 528 u32 action[MAX_MLRC_REG_SIZE]; 529 int len = 0; 530 int i; 531 532 xe_assert(xe, xe_exec_queue_is_parallel(q)); 533 534 action[len++] = XE_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 535 action[len++] = info->flags; 536 action[len++] = info->context_idx; 537 action[len++] = info->engine_class; 538 action[len++] = info->engine_submit_mask; 539 action[len++] = info->wq_desc_lo; 540 action[len++] = info->wq_desc_hi; 541 action[len++] = info->wq_base_lo; 542 action[len++] = info->wq_base_hi; 543 action[len++] = info->wq_size; 544 action[len++] = q->width; 545 action[len++] = info->hwlrca_lo; 546 action[len++] = info->hwlrca_hi; 547 548 for (i = 1; i < q->width; ++i) { 549 struct xe_lrc *lrc = q->lrc[i]; 550 551 action[len++] = lower_32_bits(xe_lrc_descriptor(lrc)); 552 action[len++] = upper_32_bits(xe_lrc_descriptor(lrc)); 553 } 554 555 xe_assert(xe, len <= MAX_MLRC_REG_SIZE); 556 #undef MAX_MLRC_REG_SIZE 557 558 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 559 } 560 561 static void __register_exec_queue(struct xe_guc *guc, 562 struct guc_ctxt_registration_info *info) 563 { 564 u32 action[] = { 565 XE_GUC_ACTION_REGISTER_CONTEXT, 566 info->flags, 567 info->context_idx, 568 info->engine_class, 569 info->engine_submit_mask, 570 info->wq_desc_lo, 571 info->wq_desc_hi, 572 info->wq_base_lo, 573 info->wq_base_hi, 574 info->wq_size, 575 info->hwlrca_lo, 576 info->hwlrca_hi, 577 }; 578 579 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0); 580 } 581 582 static void register_exec_queue(struct xe_exec_queue *q) 583 { 584 struct xe_guc *guc = exec_queue_to_guc(q); 585 struct xe_device *xe = guc_to_xe(guc); 586 struct xe_lrc *lrc = q->lrc[0]; 587 struct guc_ctxt_registration_info info; 588 589 xe_assert(xe, !exec_queue_registered(q)); 590 591 memset(&info, 0, sizeof(info)); 592 info.context_idx = q->guc->id; 593 info.engine_class = xe_engine_class_to_guc_class(q->class); 594 info.engine_submit_mask = q->logical_mask; 595 info.hwlrca_lo = lower_32_bits(xe_lrc_descriptor(lrc)); 596 info.hwlrca_hi = upper_32_bits(xe_lrc_descriptor(lrc)); 597 info.flags = CONTEXT_REGISTRATION_FLAG_KMD; 598 599 if (xe_exec_queue_is_parallel(q)) { 600 u64 ggtt_addr = xe_lrc_parallel_ggtt_addr(lrc); 601 struct iosys_map map = xe_lrc_parallel_map(lrc); 602 603 info.wq_desc_lo = lower_32_bits(ggtt_addr + 604 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 605 info.wq_desc_hi = upper_32_bits(ggtt_addr + 606 offsetof(struct guc_submit_parallel_scratch, wq_desc)); 607 info.wq_base_lo = lower_32_bits(ggtt_addr + 608 offsetof(struct guc_submit_parallel_scratch, wq[0])); 609 info.wq_base_hi = upper_32_bits(ggtt_addr + 610 offsetof(struct guc_submit_parallel_scratch, wq[0])); 611 info.wq_size = WQ_SIZE; 612 613 q->guc->wqi_head = 0; 614 q->guc->wqi_tail = 0; 615 xe_map_memset(xe, &map, 0, 0, PARALLEL_SCRATCH_SIZE - WQ_SIZE); 616 parallel_write(xe, map, wq_desc.wq_status, WQ_STATUS_ACTIVE); 617 } 618 619 /* 620 * We must keep a reference for LR engines if engine is registered with 621 * the GuC as jobs signal immediately and can't destroy an engine if the 622 * GuC has a reference to it. 623 */ 624 if (xe_exec_queue_is_lr(q)) 625 xe_exec_queue_get(q); 626 627 set_exec_queue_registered(q); 628 trace_xe_exec_queue_register(q); 629 if (xe_exec_queue_is_parallel(q)) 630 __register_mlrc_exec_queue(guc, q, &info); 631 else 632 __register_exec_queue(guc, &info); 633 init_policies(guc, q); 634 } 635 636 static u32 wq_space_until_wrap(struct xe_exec_queue *q) 637 { 638 return (WQ_SIZE - q->guc->wqi_tail); 639 } 640 641 static int wq_wait_for_space(struct xe_exec_queue *q, u32 wqi_size) 642 { 643 struct xe_guc *guc = exec_queue_to_guc(q); 644 struct xe_device *xe = guc_to_xe(guc); 645 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 646 unsigned int sleep_period_ms = 1; 647 648 #define AVAILABLE_SPACE \ 649 CIRC_SPACE(q->guc->wqi_tail, q->guc->wqi_head, WQ_SIZE) 650 if (wqi_size > AVAILABLE_SPACE) { 651 try_again: 652 q->guc->wqi_head = parallel_read(xe, map, wq_desc.head); 653 if (wqi_size > AVAILABLE_SPACE) { 654 if (sleep_period_ms == 1024) { 655 xe_gt_reset_async(q->gt); 656 return -ENODEV; 657 } 658 659 msleep(sleep_period_ms); 660 sleep_period_ms <<= 1; 661 goto try_again; 662 } 663 } 664 #undef AVAILABLE_SPACE 665 666 return 0; 667 } 668 669 static int wq_noop_append(struct xe_exec_queue *q) 670 { 671 struct xe_guc *guc = exec_queue_to_guc(q); 672 struct xe_device *xe = guc_to_xe(guc); 673 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 674 u32 len_dw = wq_space_until_wrap(q) / sizeof(u32) - 1; 675 676 if (wq_wait_for_space(q, wq_space_until_wrap(q))) 677 return -ENODEV; 678 679 xe_assert(xe, FIELD_FIT(WQ_LEN_MASK, len_dw)); 680 681 parallel_write(xe, map, wq[q->guc->wqi_tail / sizeof(u32)], 682 FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 683 FIELD_PREP(WQ_LEN_MASK, len_dw)); 684 q->guc->wqi_tail = 0; 685 686 return 0; 687 } 688 689 static void wq_item_append(struct xe_exec_queue *q) 690 { 691 struct xe_guc *guc = exec_queue_to_guc(q); 692 struct xe_device *xe = guc_to_xe(guc); 693 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 694 #define WQ_HEADER_SIZE 4 /* Includes 1 LRC address too */ 695 u32 wqi[XE_HW_ENGINE_MAX_INSTANCE + (WQ_HEADER_SIZE - 1)]; 696 u32 wqi_size = (q->width + (WQ_HEADER_SIZE - 1)) * sizeof(u32); 697 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 698 int i = 0, j; 699 700 if (wqi_size > wq_space_until_wrap(q)) { 701 if (wq_noop_append(q)) 702 return; 703 } 704 if (wq_wait_for_space(q, wqi_size)) 705 return; 706 707 wqi[i++] = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 708 FIELD_PREP(WQ_LEN_MASK, len_dw); 709 wqi[i++] = xe_lrc_descriptor(q->lrc[0]); 710 wqi[i++] = FIELD_PREP(WQ_GUC_ID_MASK, q->guc->id) | 711 FIELD_PREP(WQ_RING_TAIL_MASK, q->lrc[0]->ring.tail / sizeof(u64)); 712 wqi[i++] = 0; 713 for (j = 1; j < q->width; ++j) { 714 struct xe_lrc *lrc = q->lrc[j]; 715 716 wqi[i++] = lrc->ring.tail / sizeof(u64); 717 } 718 719 xe_assert(xe, i == wqi_size / sizeof(u32)); 720 721 iosys_map_incr(&map, offsetof(struct guc_submit_parallel_scratch, 722 wq[q->guc->wqi_tail / sizeof(u32)])); 723 xe_map_memcpy_to(xe, &map, 0, wqi, wqi_size); 724 q->guc->wqi_tail += wqi_size; 725 xe_assert(xe, q->guc->wqi_tail <= WQ_SIZE); 726 727 xe_device_wmb(xe); 728 729 map = xe_lrc_parallel_map(q->lrc[0]); 730 parallel_write(xe, map, wq_desc.tail, q->guc->wqi_tail); 731 } 732 733 #define RESUME_PENDING ~0x0ull 734 static void submit_exec_queue(struct xe_exec_queue *q) 735 { 736 struct xe_guc *guc = exec_queue_to_guc(q); 737 struct xe_device *xe = guc_to_xe(guc); 738 struct xe_lrc *lrc = q->lrc[0]; 739 u32 action[3]; 740 u32 g2h_len = 0; 741 u32 num_g2h = 0; 742 int len = 0; 743 bool extra_submit = false; 744 745 xe_assert(xe, exec_queue_registered(q)); 746 747 if (xe_exec_queue_is_parallel(q)) 748 wq_item_append(q); 749 else 750 xe_lrc_set_ring_tail(lrc, lrc->ring.tail); 751 752 if (exec_queue_suspended(q) && !xe_exec_queue_is_parallel(q)) 753 return; 754 755 if (!exec_queue_enabled(q) && !exec_queue_suspended(q)) { 756 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 757 action[len++] = q->guc->id; 758 action[len++] = GUC_CONTEXT_ENABLE; 759 g2h_len = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 760 num_g2h = 1; 761 if (xe_exec_queue_is_parallel(q)) 762 extra_submit = true; 763 764 q->guc->resume_time = RESUME_PENDING; 765 set_exec_queue_pending_enable(q); 766 set_exec_queue_enabled(q); 767 trace_xe_exec_queue_scheduling_enable(q); 768 } else { 769 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 770 action[len++] = q->guc->id; 771 trace_xe_exec_queue_submit(q); 772 } 773 774 xe_guc_ct_send(&guc->ct, action, len, g2h_len, num_g2h); 775 776 if (extra_submit) { 777 len = 0; 778 action[len++] = XE_GUC_ACTION_SCHED_CONTEXT; 779 action[len++] = q->guc->id; 780 trace_xe_exec_queue_submit(q); 781 782 xe_guc_ct_send(&guc->ct, action, len, 0, 0); 783 } 784 } 785 786 static struct dma_fence * 787 guc_exec_queue_run_job(struct drm_sched_job *drm_job) 788 { 789 struct xe_sched_job *job = to_xe_sched_job(drm_job); 790 struct xe_exec_queue *q = job->q; 791 struct xe_guc *guc = exec_queue_to_guc(q); 792 struct xe_device *xe = guc_to_xe(guc); 793 bool lr = xe_exec_queue_is_lr(q); 794 795 xe_assert(xe, !(exec_queue_destroyed(q) || exec_queue_pending_disable(q)) || 796 exec_queue_banned(q) || exec_queue_suspended(q)); 797 798 trace_xe_sched_job_run(job); 799 800 if (!exec_queue_killed_or_banned_or_wedged(q) && !xe_sched_job_is_error(job)) { 801 if (!exec_queue_registered(q)) 802 register_exec_queue(q); 803 if (!lr) /* LR jobs are emitted in the exec IOCTL */ 804 q->ring_ops->emit_job(job); 805 submit_exec_queue(q); 806 } 807 808 if (lr) { 809 xe_sched_job_set_error(job, -EOPNOTSUPP); 810 return NULL; 811 } else if (test_and_set_bit(JOB_FLAG_SUBMIT, &job->fence->flags)) { 812 return job->fence; 813 } else { 814 return dma_fence_get(job->fence); 815 } 816 } 817 818 static void guc_exec_queue_free_job(struct drm_sched_job *drm_job) 819 { 820 struct xe_sched_job *job = to_xe_sched_job(drm_job); 821 822 xe_exec_queue_update_run_ticks(job->q); 823 824 trace_xe_sched_job_free(job); 825 xe_sched_job_put(job); 826 } 827 828 int xe_guc_read_stopped(struct xe_guc *guc) 829 { 830 return atomic_read(&guc->submission_state.stopped); 831 } 832 833 #define MAKE_SCHED_CONTEXT_ACTION(q, enable_disable) \ 834 u32 action[] = { \ 835 XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, \ 836 q->guc->id, \ 837 GUC_CONTEXT_##enable_disable, \ 838 } 839 840 static void disable_scheduling_deregister(struct xe_guc *guc, 841 struct xe_exec_queue *q) 842 { 843 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 844 struct xe_device *xe = guc_to_xe(guc); 845 int ret; 846 847 set_min_preemption_timeout(guc, q); 848 smp_rmb(); 849 ret = wait_event_timeout(guc->ct.wq, !exec_queue_pending_enable(q) || 850 xe_guc_read_stopped(guc), HZ * 5); 851 if (!ret) { 852 struct xe_gpu_scheduler *sched = &q->guc->sched; 853 854 drm_warn(&xe->drm, "Pending enable failed to respond"); 855 xe_sched_submission_start(sched); 856 xe_gt_reset_async(q->gt); 857 xe_sched_tdr_queue_imm(sched); 858 return; 859 } 860 861 clear_exec_queue_enabled(q); 862 set_exec_queue_pending_disable(q); 863 set_exec_queue_destroyed(q); 864 trace_xe_exec_queue_scheduling_disable(q); 865 866 /* 867 * Reserve space for both G2H here as the 2nd G2H is sent from a G2H 868 * handler and we are not allowed to reserved G2H space in handlers. 869 */ 870 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 871 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET + 872 G2H_LEN_DW_DEREGISTER_CONTEXT, 2); 873 } 874 875 static void xe_guc_exec_queue_trigger_cleanup(struct xe_exec_queue *q) 876 { 877 struct xe_guc *guc = exec_queue_to_guc(q); 878 struct xe_device *xe = guc_to_xe(guc); 879 880 /** to wakeup xe_wait_user_fence ioctl if exec queue is reset */ 881 wake_up_all(&xe->ufence_wq); 882 883 if (xe_exec_queue_is_lr(q)) 884 queue_work(guc_to_gt(guc)->ordered_wq, &q->guc->lr_tdr); 885 else 886 xe_sched_tdr_queue_imm(&q->guc->sched); 887 } 888 889 /** 890 * xe_guc_submit_wedge() - Wedge GuC submission 891 * @guc: the GuC object 892 * 893 * Save exec queue's registered with GuC state by taking a ref to each queue. 894 * Register a DRMM handler to drop refs upon driver unload. 895 */ 896 void xe_guc_submit_wedge(struct xe_guc *guc) 897 { 898 struct xe_device *xe = guc_to_xe(guc); 899 struct xe_exec_queue *q; 900 unsigned long index; 901 int err; 902 903 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 904 905 err = devm_add_action_or_reset(guc_to_xe(guc)->drm.dev, 906 guc_submit_wedged_fini, guc); 907 if (err) { 908 drm_err(&xe->drm, "Failed to register xe_guc_submit clean-up on wedged.mode=2. Although device is wedged.\n"); 909 return; 910 } 911 912 mutex_lock(&guc->submission_state.lock); 913 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 914 if (xe_exec_queue_get_unless_zero(q)) 915 set_exec_queue_wedged(q); 916 mutex_unlock(&guc->submission_state.lock); 917 } 918 919 static bool guc_submit_hint_wedged(struct xe_guc *guc) 920 { 921 struct xe_device *xe = guc_to_xe(guc); 922 923 if (xe->wedged.mode != 2) 924 return false; 925 926 if (xe_device_wedged(xe)) 927 return true; 928 929 xe_device_declare_wedged(xe); 930 931 return true; 932 } 933 934 static void xe_guc_exec_queue_lr_cleanup(struct work_struct *w) 935 { 936 struct xe_guc_exec_queue *ge = 937 container_of(w, struct xe_guc_exec_queue, lr_tdr); 938 struct xe_exec_queue *q = ge->q; 939 struct xe_guc *guc = exec_queue_to_guc(q); 940 struct xe_device *xe = guc_to_xe(guc); 941 struct xe_gpu_scheduler *sched = &ge->sched; 942 bool wedged; 943 944 xe_assert(xe, xe_exec_queue_is_lr(q)); 945 trace_xe_exec_queue_lr_cleanup(q); 946 947 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 948 949 /* Kill the run_job / process_msg entry points */ 950 xe_sched_submission_stop(sched); 951 952 /* 953 * Engine state now mostly stable, disable scheduling / deregister if 954 * needed. This cleanup routine might be called multiple times, where 955 * the actual async engine deregister drops the final engine ref. 956 * Calling disable_scheduling_deregister will mark the engine as 957 * destroyed and fire off the CT requests to disable scheduling / 958 * deregister, which we only want to do once. We also don't want to mark 959 * the engine as pending_disable again as this may race with the 960 * xe_guc_deregister_done_handler() which treats it as an unexpected 961 * state. 962 */ 963 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 964 struct xe_guc *guc = exec_queue_to_guc(q); 965 int ret; 966 967 set_exec_queue_banned(q); 968 disable_scheduling_deregister(guc, q); 969 970 /* 971 * Must wait for scheduling to be disabled before signalling 972 * any fences, if GT broken the GT reset code should signal us. 973 */ 974 ret = wait_event_timeout(guc->ct.wq, 975 !exec_queue_pending_disable(q) || 976 xe_guc_read_stopped(guc), HZ * 5); 977 if (!ret) { 978 drm_warn(&xe->drm, "Schedule disable failed to respond"); 979 xe_sched_submission_start(sched); 980 xe_gt_reset_async(q->gt); 981 return; 982 } 983 } 984 985 xe_sched_submission_start(sched); 986 } 987 988 #define ADJUST_FIVE_PERCENT(__t) mul_u64_u32_div(__t, 105, 100) 989 990 static bool check_timeout(struct xe_exec_queue *q, struct xe_sched_job *job) 991 { 992 struct xe_gt *gt = guc_to_gt(exec_queue_to_guc(q)); 993 u32 ctx_timestamp = xe_lrc_ctx_timestamp(q->lrc[0]); 994 u32 ctx_job_timestamp = xe_lrc_ctx_job_timestamp(q->lrc[0]); 995 u32 timeout_ms = q->sched_props.job_timeout_ms; 996 u32 diff; 997 u64 running_time_ms; 998 999 /* 1000 * Counter wraps at ~223s at the usual 19.2MHz, be paranoid catch 1001 * possible overflows with a high timeout. 1002 */ 1003 xe_gt_assert(gt, timeout_ms < 100 * MSEC_PER_SEC); 1004 1005 if (ctx_timestamp < ctx_job_timestamp) 1006 diff = ctx_timestamp + U32_MAX - ctx_job_timestamp; 1007 else 1008 diff = ctx_timestamp - ctx_job_timestamp; 1009 1010 /* 1011 * Ensure timeout is within 5% to account for an GuC scheduling latency 1012 */ 1013 running_time_ms = 1014 ADJUST_FIVE_PERCENT(xe_gt_clock_interval_to_ms(gt, diff)); 1015 1016 xe_gt_dbg(gt, 1017 "Check job timeout: seqno=%u, lrc_seqno=%u, guc_id=%d, running_time_ms=%llu, timeout_ms=%u, diff=0x%08x", 1018 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1019 q->guc->id, running_time_ms, timeout_ms, diff); 1020 1021 return running_time_ms >= timeout_ms; 1022 } 1023 1024 static void enable_scheduling(struct xe_exec_queue *q) 1025 { 1026 MAKE_SCHED_CONTEXT_ACTION(q, ENABLE); 1027 struct xe_guc *guc = exec_queue_to_guc(q); 1028 int ret; 1029 1030 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1031 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1032 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1033 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1034 1035 set_exec_queue_pending_enable(q); 1036 set_exec_queue_enabled(q); 1037 trace_xe_exec_queue_scheduling_enable(q); 1038 1039 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1040 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1041 1042 ret = wait_event_timeout(guc->ct.wq, 1043 !exec_queue_pending_enable(q) || 1044 xe_guc_read_stopped(guc), HZ * 5); 1045 if (!ret || xe_guc_read_stopped(guc)) { 1046 xe_gt_warn(guc_to_gt(guc), "Schedule enable failed to respond"); 1047 set_exec_queue_banned(q); 1048 xe_gt_reset_async(q->gt); 1049 xe_sched_tdr_queue_imm(&q->guc->sched); 1050 } 1051 } 1052 1053 static void disable_scheduling(struct xe_exec_queue *q, bool immediate) 1054 { 1055 MAKE_SCHED_CONTEXT_ACTION(q, DISABLE); 1056 struct xe_guc *guc = exec_queue_to_guc(q); 1057 1058 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1059 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1060 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1061 1062 if (immediate) 1063 set_min_preemption_timeout(guc, q); 1064 clear_exec_queue_enabled(q); 1065 set_exec_queue_pending_disable(q); 1066 trace_xe_exec_queue_scheduling_disable(q); 1067 1068 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1069 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, 1); 1070 } 1071 1072 static void __deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1073 { 1074 u32 action[] = { 1075 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1076 q->guc->id, 1077 }; 1078 1079 xe_gt_assert(guc_to_gt(guc), !exec_queue_destroyed(q)); 1080 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1081 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1082 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1083 1084 set_exec_queue_destroyed(q); 1085 trace_xe_exec_queue_deregister(q); 1086 1087 xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 1088 G2H_LEN_DW_DEREGISTER_CONTEXT, 1); 1089 } 1090 1091 static enum drm_gpu_sched_stat 1092 guc_exec_queue_timedout_job(struct drm_sched_job *drm_job) 1093 { 1094 struct xe_sched_job *job = to_xe_sched_job(drm_job); 1095 struct xe_sched_job *tmp_job; 1096 struct xe_exec_queue *q = job->q; 1097 struct xe_gpu_scheduler *sched = &q->guc->sched; 1098 struct xe_guc *guc = exec_queue_to_guc(q); 1099 const char *process_name = "no process"; 1100 struct xe_device *xe = guc_to_xe(guc); 1101 int err = -ETIME; 1102 pid_t pid = -1; 1103 int i = 0; 1104 bool wedged, skip_timeout_check; 1105 1106 /* 1107 * TDR has fired before free job worker. Common if exec queue 1108 * immediately closed after last fence signaled. 1109 */ 1110 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags)) { 1111 guc_exec_queue_free_job(drm_job); 1112 1113 return DRM_GPU_SCHED_STAT_NOMINAL; 1114 } 1115 1116 /* Kill the run_job entry point */ 1117 xe_sched_submission_stop(sched); 1118 1119 /* Must check all state after stopping scheduler */ 1120 skip_timeout_check = exec_queue_reset(q) || 1121 exec_queue_killed_or_banned_or_wedged(q) || 1122 exec_queue_destroyed(q); 1123 1124 /* Job hasn't started, can't be timed out */ 1125 if (!skip_timeout_check && !xe_sched_job_started(job)) 1126 goto rearm; 1127 1128 /* 1129 * If devcoredump not captured and GuC capture for the job is not ready 1130 * do manual capture first and decide later if we need to use it 1131 */ 1132 if (!exec_queue_killed(q) && !xe->devcoredump.captured && 1133 !xe_guc_capture_get_matching_and_lock(job)) { 1134 /* take force wake before engine register manual capture */ 1135 if (xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL)) 1136 xe_gt_info(q->gt, "failed to get forcewake for coredump capture\n"); 1137 1138 xe_engine_snapshot_capture_for_job(job); 1139 1140 xe_force_wake_put(gt_to_fw(q->gt), XE_FORCEWAKE_ALL); 1141 } 1142 1143 /* 1144 * XXX: Sampling timeout doesn't work in wedged mode as we have to 1145 * modify scheduling state to read timestamp. We could read the 1146 * timestamp from a register to accumulate current running time but this 1147 * doesn't work for SRIOV. For now assuming timeouts in wedged mode are 1148 * genuine timeouts. 1149 */ 1150 wedged = guc_submit_hint_wedged(exec_queue_to_guc(q)); 1151 1152 /* Engine state now stable, disable scheduling to check timestamp */ 1153 if (!wedged && exec_queue_registered(q)) { 1154 int ret; 1155 1156 if (exec_queue_reset(q)) 1157 err = -EIO; 1158 1159 if (!exec_queue_destroyed(q)) { 1160 /* 1161 * Wait for any pending G2H to flush out before 1162 * modifying state 1163 */ 1164 ret = wait_event_timeout(guc->ct.wq, 1165 !exec_queue_pending_enable(q) || 1166 xe_guc_read_stopped(guc), HZ * 5); 1167 if (!ret || xe_guc_read_stopped(guc)) 1168 goto trigger_reset; 1169 1170 /* 1171 * Flag communicates to G2H handler that schedule 1172 * disable originated from a timeout check. The G2H then 1173 * avoid triggering cleanup or deregistering the exec 1174 * queue. 1175 */ 1176 set_exec_queue_check_timeout(q); 1177 disable_scheduling(q, skip_timeout_check); 1178 } 1179 1180 /* 1181 * Must wait for scheduling to be disabled before signalling 1182 * any fences, if GT broken the GT reset code should signal us. 1183 * 1184 * FIXME: Tests can generate a ton of 0x6000 (IOMMU CAT fault 1185 * error) messages which can cause the schedule disable to get 1186 * lost. If this occurs, trigger a GT reset to recover. 1187 */ 1188 smp_rmb(); 1189 ret = wait_event_timeout(guc->ct.wq, 1190 !exec_queue_pending_disable(q) || 1191 xe_guc_read_stopped(guc), HZ * 5); 1192 if (!ret || xe_guc_read_stopped(guc)) { 1193 trigger_reset: 1194 if (!ret) 1195 xe_gt_warn(guc_to_gt(guc), "Schedule disable failed to respond"); 1196 set_exec_queue_extra_ref(q); 1197 xe_exec_queue_get(q); /* GT reset owns this */ 1198 set_exec_queue_banned(q); 1199 xe_gt_reset_async(q->gt); 1200 xe_sched_tdr_queue_imm(sched); 1201 goto rearm; 1202 } 1203 } 1204 1205 /* 1206 * Check if job is actually timed out, if so restart job execution and TDR 1207 */ 1208 if (!wedged && !skip_timeout_check && !check_timeout(q, job) && 1209 !exec_queue_reset(q) && exec_queue_registered(q)) { 1210 clear_exec_queue_check_timeout(q); 1211 goto sched_enable; 1212 } 1213 1214 if (q->vm && q->vm->xef) { 1215 process_name = q->vm->xef->process_name; 1216 pid = q->vm->xef->pid; 1217 } 1218 xe_gt_notice(guc_to_gt(guc), "Timedout job: seqno=%u, lrc_seqno=%u, guc_id=%d, flags=0x%lx in %s [%d]", 1219 xe_sched_job_seqno(job), xe_sched_job_lrc_seqno(job), 1220 q->guc->id, q->flags, process_name, pid); 1221 1222 trace_xe_sched_job_timedout(job); 1223 1224 if (!exec_queue_killed(q)) 1225 xe_devcoredump(job); 1226 1227 /* 1228 * Kernel jobs should never fail, nor should VM jobs if they do 1229 * somethings has gone wrong and the GT needs a reset 1230 */ 1231 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_KERNEL, 1232 "Kernel-submitted job timed out\n"); 1233 xe_gt_WARN(q->gt, q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q), 1234 "VM job timed out on non-killed execqueue\n"); 1235 if (!wedged && (q->flags & EXEC_QUEUE_FLAG_KERNEL || 1236 (q->flags & EXEC_QUEUE_FLAG_VM && !exec_queue_killed(q)))) { 1237 if (!xe_sched_invalidate_job(job, 2)) { 1238 clear_exec_queue_check_timeout(q); 1239 xe_gt_reset_async(q->gt); 1240 goto rearm; 1241 } 1242 } 1243 1244 /* Finish cleaning up exec queue via deregister */ 1245 set_exec_queue_banned(q); 1246 if (!wedged && exec_queue_registered(q) && !exec_queue_destroyed(q)) { 1247 set_exec_queue_extra_ref(q); 1248 xe_exec_queue_get(q); 1249 __deregister_exec_queue(guc, q); 1250 } 1251 1252 /* Stop fence signaling */ 1253 xe_hw_fence_irq_stop(q->fence_irq); 1254 1255 /* 1256 * Fence state now stable, stop / start scheduler which cleans up any 1257 * fences that are complete 1258 */ 1259 xe_sched_add_pending_job(sched, job); 1260 xe_sched_submission_start(sched); 1261 1262 xe_guc_exec_queue_trigger_cleanup(q); 1263 1264 /* Mark all outstanding jobs as bad, thus completing them */ 1265 spin_lock(&sched->base.job_list_lock); 1266 list_for_each_entry(tmp_job, &sched->base.pending_list, drm.list) 1267 xe_sched_job_set_error(tmp_job, !i++ ? err : -ECANCELED); 1268 spin_unlock(&sched->base.job_list_lock); 1269 1270 /* Start fence signaling */ 1271 xe_hw_fence_irq_start(q->fence_irq); 1272 1273 return DRM_GPU_SCHED_STAT_NOMINAL; 1274 1275 sched_enable: 1276 enable_scheduling(q); 1277 rearm: 1278 /* 1279 * XXX: Ideally want to adjust timeout based on current exection time 1280 * but there is not currently an easy way to do in DRM scheduler. With 1281 * some thought, do this in a follow up. 1282 */ 1283 xe_sched_add_pending_job(sched, job); 1284 xe_sched_submission_start(sched); 1285 1286 return DRM_GPU_SCHED_STAT_NOMINAL; 1287 } 1288 1289 static void __guc_exec_queue_fini_async(struct work_struct *w) 1290 { 1291 struct xe_guc_exec_queue *ge = 1292 container_of(w, struct xe_guc_exec_queue, fini_async); 1293 struct xe_exec_queue *q = ge->q; 1294 struct xe_guc *guc = exec_queue_to_guc(q); 1295 1296 xe_pm_runtime_get(guc_to_xe(guc)); 1297 trace_xe_exec_queue_destroy(q); 1298 1299 if (xe_exec_queue_is_lr(q)) 1300 cancel_work_sync(&ge->lr_tdr); 1301 release_guc_id(guc, q); 1302 xe_sched_entity_fini(&ge->entity); 1303 xe_sched_fini(&ge->sched); 1304 1305 kfree(ge); 1306 xe_exec_queue_fini(q); 1307 xe_pm_runtime_put(guc_to_xe(guc)); 1308 } 1309 1310 static void guc_exec_queue_fini_async(struct xe_exec_queue *q) 1311 { 1312 struct xe_guc *guc = exec_queue_to_guc(q); 1313 struct xe_device *xe = guc_to_xe(guc); 1314 1315 INIT_WORK(&q->guc->fini_async, __guc_exec_queue_fini_async); 1316 1317 /* We must block on kernel engines so slabs are empty on driver unload */ 1318 if (q->flags & EXEC_QUEUE_FLAG_PERMANENT || exec_queue_wedged(q)) 1319 __guc_exec_queue_fini_async(&q->guc->fini_async); 1320 else 1321 queue_work(xe->destroy_wq, &q->guc->fini_async); 1322 } 1323 1324 static void __guc_exec_queue_fini(struct xe_guc *guc, struct xe_exec_queue *q) 1325 { 1326 /* 1327 * Might be done from within the GPU scheduler, need to do async as we 1328 * fini the scheduler when the engine is fini'd, the scheduler can't 1329 * complete fini within itself (circular dependency). Async resolves 1330 * this we and don't really care when everything is fini'd, just that it 1331 * is. 1332 */ 1333 guc_exec_queue_fini_async(q); 1334 } 1335 1336 static void __guc_exec_queue_process_msg_cleanup(struct xe_sched_msg *msg) 1337 { 1338 struct xe_exec_queue *q = msg->private_data; 1339 struct xe_guc *guc = exec_queue_to_guc(q); 1340 struct xe_device *xe = guc_to_xe(guc); 1341 1342 xe_assert(xe, !(q->flags & EXEC_QUEUE_FLAG_PERMANENT)); 1343 trace_xe_exec_queue_cleanup_entity(q); 1344 1345 if (exec_queue_registered(q)) 1346 disable_scheduling_deregister(guc, q); 1347 else 1348 __guc_exec_queue_fini(guc, q); 1349 } 1350 1351 static bool guc_exec_queue_allowed_to_change_state(struct xe_exec_queue *q) 1352 { 1353 return !exec_queue_killed_or_banned_or_wedged(q) && exec_queue_registered(q); 1354 } 1355 1356 static void __guc_exec_queue_process_msg_set_sched_props(struct xe_sched_msg *msg) 1357 { 1358 struct xe_exec_queue *q = msg->private_data; 1359 struct xe_guc *guc = exec_queue_to_guc(q); 1360 1361 if (guc_exec_queue_allowed_to_change_state(q)) 1362 init_policies(guc, q); 1363 kfree(msg); 1364 } 1365 1366 static void __suspend_fence_signal(struct xe_exec_queue *q) 1367 { 1368 if (!q->guc->suspend_pending) 1369 return; 1370 1371 WRITE_ONCE(q->guc->suspend_pending, false); 1372 wake_up(&q->guc->suspend_wait); 1373 } 1374 1375 static void suspend_fence_signal(struct xe_exec_queue *q) 1376 { 1377 struct xe_guc *guc = exec_queue_to_guc(q); 1378 struct xe_device *xe = guc_to_xe(guc); 1379 1380 xe_assert(xe, exec_queue_suspended(q) || exec_queue_killed(q) || 1381 xe_guc_read_stopped(guc)); 1382 xe_assert(xe, q->guc->suspend_pending); 1383 1384 __suspend_fence_signal(q); 1385 } 1386 1387 static void __guc_exec_queue_process_msg_suspend(struct xe_sched_msg *msg) 1388 { 1389 struct xe_exec_queue *q = msg->private_data; 1390 struct xe_guc *guc = exec_queue_to_guc(q); 1391 1392 if (guc_exec_queue_allowed_to_change_state(q) && !exec_queue_suspended(q) && 1393 exec_queue_enabled(q)) { 1394 wait_event(guc->ct.wq, q->guc->resume_time != RESUME_PENDING || 1395 xe_guc_read_stopped(guc)); 1396 1397 if (!xe_guc_read_stopped(guc)) { 1398 s64 since_resume_ms = 1399 ktime_ms_delta(ktime_get(), 1400 q->guc->resume_time); 1401 s64 wait_ms = q->vm->preempt.min_run_period_ms - 1402 since_resume_ms; 1403 1404 if (wait_ms > 0 && q->guc->resume_time) 1405 msleep(wait_ms); 1406 1407 set_exec_queue_suspended(q); 1408 disable_scheduling(q, false); 1409 } 1410 } else if (q->guc->suspend_pending) { 1411 set_exec_queue_suspended(q); 1412 suspend_fence_signal(q); 1413 } 1414 } 1415 1416 static void __guc_exec_queue_process_msg_resume(struct xe_sched_msg *msg) 1417 { 1418 struct xe_exec_queue *q = msg->private_data; 1419 1420 if (guc_exec_queue_allowed_to_change_state(q)) { 1421 clear_exec_queue_suspended(q); 1422 if (!exec_queue_enabled(q)) { 1423 q->guc->resume_time = RESUME_PENDING; 1424 enable_scheduling(q); 1425 } 1426 } else { 1427 clear_exec_queue_suspended(q); 1428 } 1429 } 1430 1431 #define CLEANUP 1 /* Non-zero values to catch uninitialized msg */ 1432 #define SET_SCHED_PROPS 2 1433 #define SUSPEND 3 1434 #define RESUME 4 1435 #define OPCODE_MASK 0xf 1436 #define MSG_LOCKED BIT(8) 1437 1438 static void guc_exec_queue_process_msg(struct xe_sched_msg *msg) 1439 { 1440 struct xe_device *xe = guc_to_xe(exec_queue_to_guc(msg->private_data)); 1441 1442 trace_xe_sched_msg_recv(msg); 1443 1444 switch (msg->opcode) { 1445 case CLEANUP: 1446 __guc_exec_queue_process_msg_cleanup(msg); 1447 break; 1448 case SET_SCHED_PROPS: 1449 __guc_exec_queue_process_msg_set_sched_props(msg); 1450 break; 1451 case SUSPEND: 1452 __guc_exec_queue_process_msg_suspend(msg); 1453 break; 1454 case RESUME: 1455 __guc_exec_queue_process_msg_resume(msg); 1456 break; 1457 default: 1458 XE_WARN_ON("Unknown message type"); 1459 } 1460 1461 xe_pm_runtime_put(xe); 1462 } 1463 1464 static const struct drm_sched_backend_ops drm_sched_ops = { 1465 .run_job = guc_exec_queue_run_job, 1466 .free_job = guc_exec_queue_free_job, 1467 .timedout_job = guc_exec_queue_timedout_job, 1468 }; 1469 1470 static const struct xe_sched_backend_ops xe_sched_ops = { 1471 .process_msg = guc_exec_queue_process_msg, 1472 }; 1473 1474 static int guc_exec_queue_init(struct xe_exec_queue *q) 1475 { 1476 struct xe_gpu_scheduler *sched; 1477 struct xe_guc *guc = exec_queue_to_guc(q); 1478 struct xe_device *xe = guc_to_xe(guc); 1479 struct xe_guc_exec_queue *ge; 1480 long timeout; 1481 int err, i; 1482 1483 xe_assert(xe, xe_device_uc_enabled(guc_to_xe(guc))); 1484 1485 ge = kzalloc(sizeof(*ge), GFP_KERNEL); 1486 if (!ge) 1487 return -ENOMEM; 1488 1489 q->guc = ge; 1490 ge->q = q; 1491 init_waitqueue_head(&ge->suspend_wait); 1492 1493 for (i = 0; i < MAX_STATIC_MSG_TYPE; ++i) 1494 INIT_LIST_HEAD(&ge->static_msgs[i].link); 1495 1496 timeout = (q->vm && xe_vm_in_lr_mode(q->vm)) ? MAX_SCHEDULE_TIMEOUT : 1497 msecs_to_jiffies(q->sched_props.job_timeout_ms); 1498 err = xe_sched_init(&ge->sched, &drm_sched_ops, &xe_sched_ops, 1499 get_submit_wq(guc), 1500 q->lrc[0]->ring.size / MAX_JOB_SIZE_BYTES, 64, 1501 timeout, guc_to_gt(guc)->ordered_wq, NULL, 1502 q->name, gt_to_xe(q->gt)->drm.dev); 1503 if (err) 1504 goto err_free; 1505 1506 sched = &ge->sched; 1507 err = xe_sched_entity_init(&ge->entity, sched); 1508 if (err) 1509 goto err_sched; 1510 1511 if (xe_exec_queue_is_lr(q)) 1512 INIT_WORK(&q->guc->lr_tdr, xe_guc_exec_queue_lr_cleanup); 1513 1514 mutex_lock(&guc->submission_state.lock); 1515 1516 err = alloc_guc_id(guc, q); 1517 if (err) 1518 goto err_entity; 1519 1520 q->entity = &ge->entity; 1521 1522 if (xe_guc_read_stopped(guc)) 1523 xe_sched_stop(sched); 1524 1525 mutex_unlock(&guc->submission_state.lock); 1526 1527 xe_exec_queue_assign_name(q, q->guc->id); 1528 1529 trace_xe_exec_queue_create(q); 1530 1531 return 0; 1532 1533 err_entity: 1534 mutex_unlock(&guc->submission_state.lock); 1535 xe_sched_entity_fini(&ge->entity); 1536 err_sched: 1537 xe_sched_fini(&ge->sched); 1538 err_free: 1539 kfree(ge); 1540 1541 return err; 1542 } 1543 1544 static void guc_exec_queue_kill(struct xe_exec_queue *q) 1545 { 1546 trace_xe_exec_queue_kill(q); 1547 set_exec_queue_killed(q); 1548 __suspend_fence_signal(q); 1549 xe_guc_exec_queue_trigger_cleanup(q); 1550 } 1551 1552 static void guc_exec_queue_add_msg(struct xe_exec_queue *q, struct xe_sched_msg *msg, 1553 u32 opcode) 1554 { 1555 xe_pm_runtime_get_noresume(guc_to_xe(exec_queue_to_guc(q))); 1556 1557 INIT_LIST_HEAD(&msg->link); 1558 msg->opcode = opcode & OPCODE_MASK; 1559 msg->private_data = q; 1560 1561 trace_xe_sched_msg_add(msg); 1562 if (opcode & MSG_LOCKED) 1563 xe_sched_add_msg_locked(&q->guc->sched, msg); 1564 else 1565 xe_sched_add_msg(&q->guc->sched, msg); 1566 } 1567 1568 static bool guc_exec_queue_try_add_msg(struct xe_exec_queue *q, 1569 struct xe_sched_msg *msg, 1570 u32 opcode) 1571 { 1572 if (!list_empty(&msg->link)) 1573 return false; 1574 1575 guc_exec_queue_add_msg(q, msg, opcode | MSG_LOCKED); 1576 1577 return true; 1578 } 1579 1580 #define STATIC_MSG_CLEANUP 0 1581 #define STATIC_MSG_SUSPEND 1 1582 #define STATIC_MSG_RESUME 2 1583 static void guc_exec_queue_fini(struct xe_exec_queue *q) 1584 { 1585 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_CLEANUP; 1586 1587 if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && !exec_queue_wedged(q)) 1588 guc_exec_queue_add_msg(q, msg, CLEANUP); 1589 else 1590 __guc_exec_queue_fini(exec_queue_to_guc(q), q); 1591 } 1592 1593 static int guc_exec_queue_set_priority(struct xe_exec_queue *q, 1594 enum xe_exec_queue_priority priority) 1595 { 1596 struct xe_sched_msg *msg; 1597 1598 if (q->sched_props.priority == priority || 1599 exec_queue_killed_or_banned_or_wedged(q)) 1600 return 0; 1601 1602 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1603 if (!msg) 1604 return -ENOMEM; 1605 1606 q->sched_props.priority = priority; 1607 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1608 1609 return 0; 1610 } 1611 1612 static int guc_exec_queue_set_timeslice(struct xe_exec_queue *q, u32 timeslice_us) 1613 { 1614 struct xe_sched_msg *msg; 1615 1616 if (q->sched_props.timeslice_us == timeslice_us || 1617 exec_queue_killed_or_banned_or_wedged(q)) 1618 return 0; 1619 1620 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1621 if (!msg) 1622 return -ENOMEM; 1623 1624 q->sched_props.timeslice_us = timeslice_us; 1625 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1626 1627 return 0; 1628 } 1629 1630 static int guc_exec_queue_set_preempt_timeout(struct xe_exec_queue *q, 1631 u32 preempt_timeout_us) 1632 { 1633 struct xe_sched_msg *msg; 1634 1635 if (q->sched_props.preempt_timeout_us == preempt_timeout_us || 1636 exec_queue_killed_or_banned_or_wedged(q)) 1637 return 0; 1638 1639 msg = kmalloc(sizeof(*msg), GFP_KERNEL); 1640 if (!msg) 1641 return -ENOMEM; 1642 1643 q->sched_props.preempt_timeout_us = preempt_timeout_us; 1644 guc_exec_queue_add_msg(q, msg, SET_SCHED_PROPS); 1645 1646 return 0; 1647 } 1648 1649 static int guc_exec_queue_suspend(struct xe_exec_queue *q) 1650 { 1651 struct xe_gpu_scheduler *sched = &q->guc->sched; 1652 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_SUSPEND; 1653 1654 if (exec_queue_killed_or_banned_or_wedged(q)) 1655 return -EINVAL; 1656 1657 xe_sched_msg_lock(sched); 1658 if (guc_exec_queue_try_add_msg(q, msg, SUSPEND)) 1659 q->guc->suspend_pending = true; 1660 xe_sched_msg_unlock(sched); 1661 1662 return 0; 1663 } 1664 1665 static int guc_exec_queue_suspend_wait(struct xe_exec_queue *q) 1666 { 1667 struct xe_guc *guc = exec_queue_to_guc(q); 1668 int ret; 1669 1670 /* 1671 * Likely don't need to check exec_queue_killed() as we clear 1672 * suspend_pending upon kill but to be paranoid but races in which 1673 * suspend_pending is set after kill also check kill here. 1674 */ 1675 ret = wait_event_interruptible_timeout(q->guc->suspend_wait, 1676 !READ_ONCE(q->guc->suspend_pending) || 1677 exec_queue_killed(q) || 1678 xe_guc_read_stopped(guc), 1679 HZ * 5); 1680 1681 if (!ret) { 1682 xe_gt_warn(guc_to_gt(guc), 1683 "Suspend fence, guc_id=%d, failed to respond", 1684 q->guc->id); 1685 /* XXX: Trigger GT reset? */ 1686 return -ETIME; 1687 } 1688 1689 return ret < 0 ? ret : 0; 1690 } 1691 1692 static void guc_exec_queue_resume(struct xe_exec_queue *q) 1693 { 1694 struct xe_gpu_scheduler *sched = &q->guc->sched; 1695 struct xe_sched_msg *msg = q->guc->static_msgs + STATIC_MSG_RESUME; 1696 struct xe_guc *guc = exec_queue_to_guc(q); 1697 struct xe_device *xe = guc_to_xe(guc); 1698 1699 xe_assert(xe, !q->guc->suspend_pending); 1700 1701 xe_sched_msg_lock(sched); 1702 guc_exec_queue_try_add_msg(q, msg, RESUME); 1703 xe_sched_msg_unlock(sched); 1704 } 1705 1706 static bool guc_exec_queue_reset_status(struct xe_exec_queue *q) 1707 { 1708 return exec_queue_reset(q) || exec_queue_killed_or_banned_or_wedged(q); 1709 } 1710 1711 /* 1712 * All of these functions are an abstraction layer which other parts of XE can 1713 * use to trap into the GuC backend. All of these functions, aside from init, 1714 * really shouldn't do much other than trap into the DRM scheduler which 1715 * synchronizes these operations. 1716 */ 1717 static const struct xe_exec_queue_ops guc_exec_queue_ops = { 1718 .init = guc_exec_queue_init, 1719 .kill = guc_exec_queue_kill, 1720 .fini = guc_exec_queue_fini, 1721 .set_priority = guc_exec_queue_set_priority, 1722 .set_timeslice = guc_exec_queue_set_timeslice, 1723 .set_preempt_timeout = guc_exec_queue_set_preempt_timeout, 1724 .suspend = guc_exec_queue_suspend, 1725 .suspend_wait = guc_exec_queue_suspend_wait, 1726 .resume = guc_exec_queue_resume, 1727 .reset_status = guc_exec_queue_reset_status, 1728 }; 1729 1730 static void guc_exec_queue_stop(struct xe_guc *guc, struct xe_exec_queue *q) 1731 { 1732 struct xe_gpu_scheduler *sched = &q->guc->sched; 1733 1734 /* Stop scheduling + flush any DRM scheduler operations */ 1735 xe_sched_submission_stop(sched); 1736 1737 /* Clean up lost G2H + reset engine state */ 1738 if (exec_queue_registered(q)) { 1739 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1740 xe_exec_queue_put(q); 1741 else if (exec_queue_destroyed(q)) 1742 __guc_exec_queue_fini(guc, q); 1743 } 1744 if (q->guc->suspend_pending) { 1745 set_exec_queue_suspended(q); 1746 suspend_fence_signal(q); 1747 } 1748 atomic_and(EXEC_QUEUE_STATE_WEDGED | EXEC_QUEUE_STATE_BANNED | 1749 EXEC_QUEUE_STATE_KILLED | EXEC_QUEUE_STATE_DESTROYED | 1750 EXEC_QUEUE_STATE_SUSPENDED, 1751 &q->guc->state); 1752 q->guc->resume_time = 0; 1753 trace_xe_exec_queue_stop(q); 1754 1755 /* 1756 * Ban any engine (aside from kernel and engines used for VM ops) with a 1757 * started but not complete job or if a job has gone through a GT reset 1758 * more than twice. 1759 */ 1760 if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) { 1761 struct xe_sched_job *job = xe_sched_first_pending_job(sched); 1762 bool ban = false; 1763 1764 if (job) { 1765 if ((xe_sched_job_started(job) && 1766 !xe_sched_job_completed(job)) || 1767 xe_sched_invalidate_job(job, 2)) { 1768 trace_xe_sched_job_ban(job); 1769 ban = true; 1770 } 1771 } else if (xe_exec_queue_is_lr(q) && 1772 (xe_lrc_ring_head(q->lrc[0]) != xe_lrc_ring_tail(q->lrc[0]))) { 1773 ban = true; 1774 } 1775 1776 if (ban) { 1777 set_exec_queue_banned(q); 1778 xe_guc_exec_queue_trigger_cleanup(q); 1779 } 1780 } 1781 } 1782 1783 int xe_guc_submit_reset_prepare(struct xe_guc *guc) 1784 { 1785 int ret; 1786 1787 /* 1788 * Using an atomic here rather than submission_state.lock as this 1789 * function can be called while holding the CT lock (engine reset 1790 * failure). submission_state.lock needs the CT lock to resubmit jobs. 1791 * Atomic is not ideal, but it works to prevent against concurrent reset 1792 * and releasing any TDRs waiting on guc->submission_state.stopped. 1793 */ 1794 ret = atomic_fetch_or(1, &guc->submission_state.stopped); 1795 smp_wmb(); 1796 wake_up_all(&guc->ct.wq); 1797 1798 return ret; 1799 } 1800 1801 void xe_guc_submit_reset_wait(struct xe_guc *guc) 1802 { 1803 wait_event(guc->ct.wq, xe_device_wedged(guc_to_xe(guc)) || 1804 !xe_guc_read_stopped(guc)); 1805 } 1806 1807 void xe_guc_submit_stop(struct xe_guc *guc) 1808 { 1809 struct xe_exec_queue *q; 1810 unsigned long index; 1811 struct xe_device *xe = guc_to_xe(guc); 1812 1813 xe_assert(xe, xe_guc_read_stopped(guc) == 1); 1814 1815 mutex_lock(&guc->submission_state.lock); 1816 1817 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1818 guc_exec_queue_stop(guc, q); 1819 1820 mutex_unlock(&guc->submission_state.lock); 1821 1822 /* 1823 * No one can enter the backend at this point, aside from new engine 1824 * creation which is protected by guc->submission_state.lock. 1825 */ 1826 1827 } 1828 1829 static void guc_exec_queue_start(struct xe_exec_queue *q) 1830 { 1831 struct xe_gpu_scheduler *sched = &q->guc->sched; 1832 1833 if (!exec_queue_killed_or_banned_or_wedged(q)) { 1834 int i; 1835 1836 trace_xe_exec_queue_resubmit(q); 1837 for (i = 0; i < q->width; ++i) 1838 xe_lrc_set_ring_head(q->lrc[i], q->lrc[i]->ring.tail); 1839 xe_sched_resubmit_jobs(sched); 1840 } 1841 1842 xe_sched_submission_start(sched); 1843 xe_sched_submission_resume_tdr(sched); 1844 } 1845 1846 int xe_guc_submit_start(struct xe_guc *guc) 1847 { 1848 struct xe_exec_queue *q; 1849 unsigned long index; 1850 struct xe_device *xe = guc_to_xe(guc); 1851 1852 xe_assert(xe, xe_guc_read_stopped(guc) == 1); 1853 1854 mutex_lock(&guc->submission_state.lock); 1855 atomic_dec(&guc->submission_state.stopped); 1856 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 1857 guc_exec_queue_start(q); 1858 mutex_unlock(&guc->submission_state.lock); 1859 1860 wake_up_all(&guc->ct.wq); 1861 1862 return 0; 1863 } 1864 1865 static struct xe_exec_queue * 1866 g2h_exec_queue_lookup(struct xe_guc *guc, u32 guc_id) 1867 { 1868 struct xe_device *xe = guc_to_xe(guc); 1869 struct xe_exec_queue *q; 1870 1871 if (unlikely(guc_id >= GUC_ID_MAX)) { 1872 drm_err(&xe->drm, "Invalid guc_id %u", guc_id); 1873 return NULL; 1874 } 1875 1876 q = xa_load(&guc->submission_state.exec_queue_lookup, guc_id); 1877 if (unlikely(!q)) { 1878 drm_err(&xe->drm, "Not engine present for guc_id %u", guc_id); 1879 return NULL; 1880 } 1881 1882 xe_assert(xe, guc_id >= q->guc->id); 1883 xe_assert(xe, guc_id < (q->guc->id + q->width)); 1884 1885 return q; 1886 } 1887 1888 static void deregister_exec_queue(struct xe_guc *guc, struct xe_exec_queue *q) 1889 { 1890 u32 action[] = { 1891 XE_GUC_ACTION_DEREGISTER_CONTEXT, 1892 q->guc->id, 1893 }; 1894 1895 xe_gt_assert(guc_to_gt(guc), exec_queue_destroyed(q)); 1896 xe_gt_assert(guc_to_gt(guc), exec_queue_registered(q)); 1897 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_disable(q)); 1898 xe_gt_assert(guc_to_gt(guc), !exec_queue_pending_enable(q)); 1899 1900 trace_xe_exec_queue_deregister(q); 1901 1902 xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action)); 1903 } 1904 1905 static void handle_sched_done(struct xe_guc *guc, struct xe_exec_queue *q, 1906 u32 runnable_state) 1907 { 1908 trace_xe_exec_queue_scheduling_done(q); 1909 1910 if (runnable_state == 1) { 1911 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_enable(q)); 1912 1913 q->guc->resume_time = ktime_get(); 1914 clear_exec_queue_pending_enable(q); 1915 smp_wmb(); 1916 wake_up_all(&guc->ct.wq); 1917 } else { 1918 bool check_timeout = exec_queue_check_timeout(q); 1919 1920 xe_gt_assert(guc_to_gt(guc), runnable_state == 0); 1921 xe_gt_assert(guc_to_gt(guc), exec_queue_pending_disable(q)); 1922 1923 clear_exec_queue_pending_disable(q); 1924 if (q->guc->suspend_pending) { 1925 suspend_fence_signal(q); 1926 } else { 1927 if (exec_queue_banned(q) || check_timeout) { 1928 smp_wmb(); 1929 wake_up_all(&guc->ct.wq); 1930 } 1931 if (!check_timeout) 1932 deregister_exec_queue(guc, q); 1933 } 1934 } 1935 } 1936 1937 int xe_guc_sched_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1938 { 1939 struct xe_device *xe = guc_to_xe(guc); 1940 struct xe_exec_queue *q; 1941 u32 guc_id = msg[0]; 1942 u32 runnable_state = msg[1]; 1943 1944 if (unlikely(len < 2)) { 1945 drm_err(&xe->drm, "Invalid length %u", len); 1946 return -EPROTO; 1947 } 1948 1949 q = g2h_exec_queue_lookup(guc, guc_id); 1950 if (unlikely(!q)) 1951 return -EPROTO; 1952 1953 if (unlikely(!exec_queue_pending_enable(q) && 1954 !exec_queue_pending_disable(q))) { 1955 xe_gt_err(guc_to_gt(guc), 1956 "SCHED_DONE: Unexpected engine state 0x%04x, guc_id=%d, runnable_state=%u", 1957 atomic_read(&q->guc->state), q->guc->id, 1958 runnable_state); 1959 return -EPROTO; 1960 } 1961 1962 handle_sched_done(guc, q, runnable_state); 1963 1964 return 0; 1965 } 1966 1967 static void handle_deregister_done(struct xe_guc *guc, struct xe_exec_queue *q) 1968 { 1969 trace_xe_exec_queue_deregister_done(q); 1970 1971 clear_exec_queue_registered(q); 1972 1973 if (exec_queue_extra_ref(q) || xe_exec_queue_is_lr(q)) 1974 xe_exec_queue_put(q); 1975 else 1976 __guc_exec_queue_fini(guc, q); 1977 } 1978 1979 int xe_guc_deregister_done_handler(struct xe_guc *guc, u32 *msg, u32 len) 1980 { 1981 struct xe_device *xe = guc_to_xe(guc); 1982 struct xe_exec_queue *q; 1983 u32 guc_id = msg[0]; 1984 1985 if (unlikely(len < 1)) { 1986 drm_err(&xe->drm, "Invalid length %u", len); 1987 return -EPROTO; 1988 } 1989 1990 q = g2h_exec_queue_lookup(guc, guc_id); 1991 if (unlikely(!q)) 1992 return -EPROTO; 1993 1994 if (!exec_queue_destroyed(q) || exec_queue_pending_disable(q) || 1995 exec_queue_pending_enable(q) || exec_queue_enabled(q)) { 1996 xe_gt_err(guc_to_gt(guc), 1997 "DEREGISTER_DONE: Unexpected engine state 0x%04x, guc_id=%d", 1998 atomic_read(&q->guc->state), q->guc->id); 1999 return -EPROTO; 2000 } 2001 2002 handle_deregister_done(guc, q); 2003 2004 return 0; 2005 } 2006 2007 int xe_guc_exec_queue_reset_handler(struct xe_guc *guc, u32 *msg, u32 len) 2008 { 2009 struct xe_gt *gt = guc_to_gt(guc); 2010 struct xe_device *xe = guc_to_xe(guc); 2011 struct xe_exec_queue *q; 2012 u32 guc_id = msg[0]; 2013 2014 if (unlikely(len < 1)) { 2015 drm_err(&xe->drm, "Invalid length %u", len); 2016 return -EPROTO; 2017 } 2018 2019 q = g2h_exec_queue_lookup(guc, guc_id); 2020 if (unlikely(!q)) 2021 return -EPROTO; 2022 2023 xe_gt_info(gt, "Engine reset: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2024 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2025 2026 trace_xe_exec_queue_reset(q); 2027 2028 /* 2029 * A banned engine is a NOP at this point (came from 2030 * guc_exec_queue_timedout_job). Otherwise, kick drm scheduler to cancel 2031 * jobs by setting timeout of the job to the minimum value kicking 2032 * guc_exec_queue_timedout_job. 2033 */ 2034 set_exec_queue_reset(q); 2035 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2036 xe_guc_exec_queue_trigger_cleanup(q); 2037 2038 return 0; 2039 } 2040 2041 /* 2042 * xe_guc_error_capture_handler - Handler of GuC captured message 2043 * @guc: The GuC object 2044 * @msg: Point to the message 2045 * @len: The message length 2046 * 2047 * When GuC captured data is ready, GuC will send message 2048 * XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be 2049 * called 1st to check status before process the data comes with the message. 2050 * 2051 * Returns: error code. 0 if success 2052 */ 2053 int xe_guc_error_capture_handler(struct xe_guc *guc, u32 *msg, u32 len) 2054 { 2055 u32 status; 2056 2057 if (unlikely(len != XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION_DATA_LEN)) { 2058 xe_gt_dbg(guc_to_gt(guc), "Invalid length %u", len); 2059 return -EPROTO; 2060 } 2061 2062 status = msg[0] & XE_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 2063 if (status == XE_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 2064 xe_gt_warn(guc_to_gt(guc), "G2H-Error capture no space"); 2065 2066 xe_guc_capture_process(guc); 2067 2068 return 0; 2069 } 2070 2071 int xe_guc_exec_queue_memory_cat_error_handler(struct xe_guc *guc, u32 *msg, 2072 u32 len) 2073 { 2074 struct xe_gt *gt = guc_to_gt(guc); 2075 struct xe_device *xe = guc_to_xe(guc); 2076 struct xe_exec_queue *q; 2077 u32 guc_id = msg[0]; 2078 2079 if (unlikely(len < 1)) { 2080 drm_err(&xe->drm, "Invalid length %u", len); 2081 return -EPROTO; 2082 } 2083 2084 q = g2h_exec_queue_lookup(guc, guc_id); 2085 if (unlikely(!q)) 2086 return -EPROTO; 2087 2088 xe_gt_dbg(gt, "Engine memory cat error: engine_class=%s, logical_mask: 0x%x, guc_id=%d", 2089 xe_hw_engine_class_to_str(q->class), q->logical_mask, guc_id); 2090 2091 trace_xe_exec_queue_memory_cat_error(q); 2092 2093 /* Treat the same as engine reset */ 2094 set_exec_queue_reset(q); 2095 if (!exec_queue_banned(q) && !exec_queue_check_timeout(q)) 2096 xe_guc_exec_queue_trigger_cleanup(q); 2097 2098 return 0; 2099 } 2100 2101 int xe_guc_exec_queue_reset_failure_handler(struct xe_guc *guc, u32 *msg, u32 len) 2102 { 2103 struct xe_device *xe = guc_to_xe(guc); 2104 u8 guc_class, instance; 2105 u32 reason; 2106 2107 if (unlikely(len != 3)) { 2108 drm_err(&xe->drm, "Invalid length %u", len); 2109 return -EPROTO; 2110 } 2111 2112 guc_class = msg[0]; 2113 instance = msg[1]; 2114 reason = msg[2]; 2115 2116 /* Unexpected failure of a hardware feature, log an actual error */ 2117 drm_err(&xe->drm, "GuC engine reset request failed on %d:%d because 0x%08X", 2118 guc_class, instance, reason); 2119 2120 xe_gt_reset_async(guc_to_gt(guc)); 2121 2122 return 0; 2123 } 2124 2125 static void 2126 guc_exec_queue_wq_snapshot_capture(struct xe_exec_queue *q, 2127 struct xe_guc_submit_exec_queue_snapshot *snapshot) 2128 { 2129 struct xe_guc *guc = exec_queue_to_guc(q); 2130 struct xe_device *xe = guc_to_xe(guc); 2131 struct iosys_map map = xe_lrc_parallel_map(q->lrc[0]); 2132 int i; 2133 2134 snapshot->guc.wqi_head = q->guc->wqi_head; 2135 snapshot->guc.wqi_tail = q->guc->wqi_tail; 2136 snapshot->parallel.wq_desc.head = parallel_read(xe, map, wq_desc.head); 2137 snapshot->parallel.wq_desc.tail = parallel_read(xe, map, wq_desc.tail); 2138 snapshot->parallel.wq_desc.status = parallel_read(xe, map, 2139 wq_desc.wq_status); 2140 2141 if (snapshot->parallel.wq_desc.head != 2142 snapshot->parallel.wq_desc.tail) { 2143 for (i = snapshot->parallel.wq_desc.head; 2144 i != snapshot->parallel.wq_desc.tail; 2145 i = (i + sizeof(u32)) % WQ_SIZE) 2146 snapshot->parallel.wq[i / sizeof(u32)] = 2147 parallel_read(xe, map, wq[i / sizeof(u32)]); 2148 } 2149 } 2150 2151 static void 2152 guc_exec_queue_wq_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2153 struct drm_printer *p) 2154 { 2155 int i; 2156 2157 drm_printf(p, "\tWQ head: %u (internal), %d (memory)\n", 2158 snapshot->guc.wqi_head, snapshot->parallel.wq_desc.head); 2159 drm_printf(p, "\tWQ tail: %u (internal), %d (memory)\n", 2160 snapshot->guc.wqi_tail, snapshot->parallel.wq_desc.tail); 2161 drm_printf(p, "\tWQ status: %u\n", snapshot->parallel.wq_desc.status); 2162 2163 if (snapshot->parallel.wq_desc.head != 2164 snapshot->parallel.wq_desc.tail) { 2165 for (i = snapshot->parallel.wq_desc.head; 2166 i != snapshot->parallel.wq_desc.tail; 2167 i = (i + sizeof(u32)) % WQ_SIZE) 2168 drm_printf(p, "\tWQ[%zu]: 0x%08x\n", i / sizeof(u32), 2169 snapshot->parallel.wq[i / sizeof(u32)]); 2170 } 2171 } 2172 2173 /** 2174 * xe_guc_exec_queue_snapshot_capture - Take a quick snapshot of the GuC Engine. 2175 * @q: faulty exec queue 2176 * 2177 * This can be printed out in a later stage like during dev_coredump 2178 * analysis. 2179 * 2180 * Returns: a GuC Submit Engine snapshot object that must be freed by the 2181 * caller, using `xe_guc_exec_queue_snapshot_free`. 2182 */ 2183 struct xe_guc_submit_exec_queue_snapshot * 2184 xe_guc_exec_queue_snapshot_capture(struct xe_exec_queue *q) 2185 { 2186 struct xe_gpu_scheduler *sched = &q->guc->sched; 2187 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2188 int i; 2189 2190 snapshot = kzalloc(sizeof(*snapshot), GFP_ATOMIC); 2191 2192 if (!snapshot) 2193 return NULL; 2194 2195 snapshot->guc.id = q->guc->id; 2196 memcpy(&snapshot->name, &q->name, sizeof(snapshot->name)); 2197 snapshot->class = q->class; 2198 snapshot->logical_mask = q->logical_mask; 2199 snapshot->width = q->width; 2200 snapshot->refcount = kref_read(&q->refcount); 2201 snapshot->sched_timeout = sched->base.timeout; 2202 snapshot->sched_props.timeslice_us = q->sched_props.timeslice_us; 2203 snapshot->sched_props.preempt_timeout_us = 2204 q->sched_props.preempt_timeout_us; 2205 2206 snapshot->lrc = kmalloc_array(q->width, sizeof(struct xe_lrc_snapshot *), 2207 GFP_ATOMIC); 2208 2209 if (snapshot->lrc) { 2210 for (i = 0; i < q->width; ++i) { 2211 struct xe_lrc *lrc = q->lrc[i]; 2212 2213 snapshot->lrc[i] = xe_lrc_snapshot_capture(lrc); 2214 } 2215 } 2216 2217 snapshot->schedule_state = atomic_read(&q->guc->state); 2218 snapshot->exec_queue_flags = q->flags; 2219 2220 snapshot->parallel_execution = xe_exec_queue_is_parallel(q); 2221 if (snapshot->parallel_execution) 2222 guc_exec_queue_wq_snapshot_capture(q, snapshot); 2223 2224 spin_lock(&sched->base.job_list_lock); 2225 snapshot->pending_list_size = list_count_nodes(&sched->base.pending_list); 2226 snapshot->pending_list = kmalloc_array(snapshot->pending_list_size, 2227 sizeof(struct pending_list_snapshot), 2228 GFP_ATOMIC); 2229 2230 if (snapshot->pending_list) { 2231 struct xe_sched_job *job_iter; 2232 2233 i = 0; 2234 list_for_each_entry(job_iter, &sched->base.pending_list, drm.list) { 2235 snapshot->pending_list[i].seqno = 2236 xe_sched_job_seqno(job_iter); 2237 snapshot->pending_list[i].fence = 2238 dma_fence_is_signaled(job_iter->fence) ? 1 : 0; 2239 snapshot->pending_list[i].finished = 2240 dma_fence_is_signaled(&job_iter->drm.s_fence->finished) 2241 ? 1 : 0; 2242 i++; 2243 } 2244 } 2245 2246 spin_unlock(&sched->base.job_list_lock); 2247 2248 return snapshot; 2249 } 2250 2251 /** 2252 * xe_guc_exec_queue_snapshot_capture_delayed - Take delayed part of snapshot of the GuC Engine. 2253 * @snapshot: Previously captured snapshot of job. 2254 * 2255 * This captures some data that requires taking some locks, so it cannot be done in signaling path. 2256 */ 2257 void 2258 xe_guc_exec_queue_snapshot_capture_delayed(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2259 { 2260 int i; 2261 2262 if (!snapshot || !snapshot->lrc) 2263 return; 2264 2265 for (i = 0; i < snapshot->width; ++i) 2266 xe_lrc_snapshot_capture_delayed(snapshot->lrc[i]); 2267 } 2268 2269 /** 2270 * xe_guc_exec_queue_snapshot_print - Print out a given GuC Engine snapshot. 2271 * @snapshot: GuC Submit Engine snapshot object. 2272 * @p: drm_printer where it will be printed out. 2273 * 2274 * This function prints out a given GuC Submit Engine snapshot object. 2275 */ 2276 void 2277 xe_guc_exec_queue_snapshot_print(struct xe_guc_submit_exec_queue_snapshot *snapshot, 2278 struct drm_printer *p) 2279 { 2280 int i; 2281 2282 if (!snapshot) 2283 return; 2284 2285 drm_printf(p, "GuC ID: %d\n", snapshot->guc.id); 2286 drm_printf(p, "\tName: %s\n", snapshot->name); 2287 drm_printf(p, "\tClass: %d\n", snapshot->class); 2288 drm_printf(p, "\tLogical mask: 0x%x\n", snapshot->logical_mask); 2289 drm_printf(p, "\tWidth: %d\n", snapshot->width); 2290 drm_printf(p, "\tRef: %d\n", snapshot->refcount); 2291 drm_printf(p, "\tTimeout: %ld (ms)\n", snapshot->sched_timeout); 2292 drm_printf(p, "\tTimeslice: %u (us)\n", 2293 snapshot->sched_props.timeslice_us); 2294 drm_printf(p, "\tPreempt timeout: %u (us)\n", 2295 snapshot->sched_props.preempt_timeout_us); 2296 2297 for (i = 0; snapshot->lrc && i < snapshot->width; ++i) 2298 xe_lrc_snapshot_print(snapshot->lrc[i], p); 2299 2300 drm_printf(p, "\tSchedule State: 0x%x\n", snapshot->schedule_state); 2301 drm_printf(p, "\tFlags: 0x%lx\n", snapshot->exec_queue_flags); 2302 2303 if (snapshot->parallel_execution) 2304 guc_exec_queue_wq_snapshot_print(snapshot, p); 2305 2306 for (i = 0; snapshot->pending_list && i < snapshot->pending_list_size; 2307 i++) 2308 drm_printf(p, "\tJob: seqno=%d, fence=%d, finished=%d\n", 2309 snapshot->pending_list[i].seqno, 2310 snapshot->pending_list[i].fence, 2311 snapshot->pending_list[i].finished); 2312 } 2313 2314 /** 2315 * xe_guc_exec_queue_snapshot_free - Free all allocated objects for a given 2316 * snapshot. 2317 * @snapshot: GuC Submit Engine snapshot object. 2318 * 2319 * This function free all the memory that needed to be allocated at capture 2320 * time. 2321 */ 2322 void xe_guc_exec_queue_snapshot_free(struct xe_guc_submit_exec_queue_snapshot *snapshot) 2323 { 2324 int i; 2325 2326 if (!snapshot) 2327 return; 2328 2329 if (snapshot->lrc) { 2330 for (i = 0; i < snapshot->width; i++) 2331 xe_lrc_snapshot_free(snapshot->lrc[i]); 2332 kfree(snapshot->lrc); 2333 } 2334 kfree(snapshot->pending_list); 2335 kfree(snapshot); 2336 } 2337 2338 static void guc_exec_queue_print(struct xe_exec_queue *q, struct drm_printer *p) 2339 { 2340 struct xe_guc_submit_exec_queue_snapshot *snapshot; 2341 2342 snapshot = xe_guc_exec_queue_snapshot_capture(q); 2343 xe_guc_exec_queue_snapshot_print(snapshot, p); 2344 xe_guc_exec_queue_snapshot_free(snapshot); 2345 } 2346 2347 /** 2348 * xe_guc_submit_print - GuC Submit Print. 2349 * @guc: GuC. 2350 * @p: drm_printer where it will be printed out. 2351 * 2352 * This function capture and prints snapshots of **all** GuC Engines. 2353 */ 2354 void xe_guc_submit_print(struct xe_guc *guc, struct drm_printer *p) 2355 { 2356 struct xe_exec_queue *q; 2357 unsigned long index; 2358 2359 if (!xe_device_uc_enabled(guc_to_xe(guc))) 2360 return; 2361 2362 mutex_lock(&guc->submission_state.lock); 2363 xa_for_each(&guc->submission_state.exec_queue_lookup, index, q) 2364 guc_exec_queue_print(q, p); 2365 mutex_unlock(&guc->submission_state.lock); 2366 } 2367