xref: /linux/drivers/gpu/drm/xe/xe_gt_mcr.c (revision face6a3615a649456eb4549f6d474221d877d604)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_gt_mcr.h"
7 
8 #include "regs/xe_gt_regs.h"
9 #include "xe_assert.h"
10 #include "xe_gt.h"
11 #include "xe_gt_printk.h"
12 #include "xe_gt_topology.h"
13 #include "xe_gt_types.h"
14 #include "xe_guc_hwconfig.h"
15 #include "xe_mmio.h"
16 #include "xe_sriov.h"
17 
18 /**
19  * DOC: GT Multicast/Replicated (MCR) Register Support
20  *
21  * Some GT registers are designed as "multicast" or "replicated" registers:
22  * multiple instances of the same register share a single MMIO offset.  MCR
23  * registers are generally used when the hardware needs to potentially track
24  * independent values of a register per hardware unit (e.g., per-subslice,
25  * per-L3bank, etc.).  The specific types of replication that exist vary
26  * per-platform.
27  *
28  * MMIO accesses to MCR registers are controlled according to the settings
29  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
30  * registers can be done in either multicast (a single write updates all
31  * instances of the register to the same value) or unicast (a write updates only
32  * one specific instance) form.  Reads of MCR registers always operate in a
33  * unicast manner regardless of how the multicast/unicast bit is set in
34  * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
35  * referred to as "steering."
36  *
37  * If MCR register operations are steered toward a hardware unit that is
38  * fused off or currently powered down due to power gating, the MMIO operation
39  * is "terminated" by the hardware.  Terminated read operations will return a
40  * value of zero and terminated unicast write operations will be silently
41  * ignored. During device initialization, the goal of the various
42  * ``init_steering_*()`` functions is to apply the platform-specific rules for
43  * each MCR register type to identify a steering target that will select a
44  * non-terminated instance.
45  *
46  * MCR registers are not available on Virtual Function (VF).
47  */
48 
49 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
50 {
51 	return reg_mcr.__reg;
52 }
53 
54 enum {
55 	MCR_OP_READ,
56 	MCR_OP_WRITE
57 };
58 
59 static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
60 	{ 0x00B100, 0x00B3FF },
61 	{},
62 };
63 
64 static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
65 	{ 0x008C80, 0x008CFF },
66 	{ 0x00B100, 0x00B3FF },
67 	{},
68 };
69 
70 /*
71  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
72  * are of a "GAM" subclass that has special rules and doesn't need to be
73  * included here.
74  */
75 static const struct xe_mmio_range xehp_mslice_steering_table[] = {
76 	{ 0x00DD00, 0x00DDFF },
77 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
78 	{},
79 };
80 
81 static const struct xe_mmio_range xehp_lncf_steering_table[] = {
82 	{ 0x00B000, 0x00B0FF },
83 	{ 0x00D880, 0x00D8FF },
84 	{},
85 };
86 
87 /*
88  * We have several types of MCR registers where steering to (0,0) will always
89  * provide us with a non-terminated value.  We'll stick them all in the same
90  * table for simplicity.
91  */
92 static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
93 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
94 	{ 0x008800, 0x00887F },		/* CC */
95 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
96 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
97 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
98 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
99 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
100 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
101 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
102 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
103 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
104 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
105 	{},
106 };
107 
108 static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
109 	{ 0x000B00, 0x000BFF },         /* SQIDI */
110 	{ 0x001000, 0x001FFF },         /* SQIDI */
111 	{ 0x004000, 0x0048FF },         /* GAM */
112 	{ 0x008700, 0x0087FF },         /* SQIDI */
113 	{ 0x00B000, 0x00B0FF },         /* NODE */
114 	{ 0x00C800, 0x00CFFF },         /* GAM */
115 	{ 0x00D880, 0x00D8FF },         /* NODE */
116 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
117 	{},
118 };
119 
120 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
121 	{ 0x00B100, 0x00B3FF },
122 	{},
123 };
124 
125 static const struct xe_mmio_range xelp_dss_steering_table[] = {
126 	{ 0x008150, 0x00815F },
127 	{ 0x009520, 0x00955F },
128 	{ 0x00DE80, 0x00E8FF },
129 	{ 0x024A00, 0x024A7F },
130 	{},
131 };
132 
133 /* DSS steering is used for GSLICE ranges as well */
134 static const struct xe_mmio_range xehp_dss_steering_table[] = {
135 	{ 0x005200, 0x0052FF },		/* GSLICE */
136 	{ 0x005400, 0x007FFF },		/* GSLICE */
137 	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
138 	{ 0x008D00, 0x008DFF },		/* DSS */
139 	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
140 	{ 0x009680, 0x0096FF },		/* DSS */
141 	{ 0x00D800, 0x00D87F },		/* GSLICE */
142 	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
143 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
144 	{ 0x017000, 0x017FFF },		/* GSLICE */
145 	{ 0x024A00, 0x024A7F },		/* DSS */
146 	{},
147 };
148 
149 /* DSS steering is used for COMPUTE ranges as well */
150 static const struct xe_mmio_range xehpc_dss_steering_table[] = {
151 	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
152 	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
153 	{ 0x009680, 0x0096FF },		/* DSS */
154 	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
155 	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
156 	{},
157 };
158 
159 /* DSS steering is used for SLICE ranges as well */
160 static const struct xe_mmio_range xelpg_dss_steering_table[] = {
161 	{ 0x005200, 0x0052FF },		/* SLICE */
162 	{ 0x005500, 0x007FFF },		/* SLICE */
163 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
164 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
165 	{ 0x009680, 0x0096FF },		/* DSS */
166 	{ 0x00D800, 0x00D87F },		/* SLICE */
167 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
168 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
169 	{},
170 };
171 
172 static const struct xe_mmio_range xe3p_xpc_xecore_steering_table[] = {
173 	{ 0x008140, 0x00817F },         /* SLICE, XeCore, SLICE */
174 	{ 0x009480, 0x00955F },         /* SLICE, XeCore */
175 	{ 0x00D800, 0x00D87F },		/* SLICE */
176 	{ 0x00DC00, 0x00E9FF },         /* SLICE, rsvd, XeCore, rsvd, XeCore, rsvd, XeCore */
177 	{ 0x013000, 0x0135FF },         /* XeCore, SLICE */
178 	{},
179 };
180 
181 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
182 	{ 0x393200, 0x39323F },
183 	{ 0x393400, 0x3934FF },
184 	{},
185 };
186 
187 static const struct xe_mmio_range dg2_implicit_steering_table[] = {
188 	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
189 	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
190 	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
191 	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
192 	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
193 	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
194 	{},
195 };
196 
197 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
198 	{ 0x005200, 0x0052FF },         /* SLICE */
199 	{ 0x005500, 0x007FFF },         /* SLICE */
200 	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
201 	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
202 	{ 0x009680, 0x0096FF },         /* DSS */
203 	{ 0x00D800, 0x00D87F },         /* SLICE */
204 	{ 0x00DC00, 0x00DCFF },         /* SLICE */
205 	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
206 	{ 0x00E980, 0x00E9FF },         /* SLICE */
207 	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
208 	{},
209 };
210 
211 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
212 	{ 0x000B00, 0x000BFF },
213 	{ 0x001000, 0x001FFF },
214 	{},
215 };
216 
217 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
218 	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
219 	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
220 	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
221 	{ 0x00C800, 0x00CFFF },         /* GAM */
222 	{ 0x00D880, 0x00D8FF },         /* NODE */
223 	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
224 	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
225 	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
226 	{ 0x013400, 0x0135FF },         /* MEMPIPE */
227 	{},
228 };
229 
230 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
231 	{ 0x388160, 0x38817F },
232 	{ 0x389480, 0x3894CF },
233 	{},
234 };
235 
236 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
237 	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
238 	{ 0x384900, 0x384AFF },         /* GAM */
239 	{ 0x389560, 0x3895FF },         /* MEDIAINF */
240 	{ 0x38B600, 0x38B8FF },         /* L3BANK */
241 	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
242 	{ 0x38F000, 0x38F0FF },         /* GAM */
243 	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
244 	{},
245 };
246 
247 static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = {
248 	{ 0x384000, 0x3841FF },         /* GAM */
249 	{ 0x384400, 0x3847DF },         /* GAM */
250 	{ 0x384900, 0x384AFF },         /* GAM */
251 	{ 0x389560, 0x3895FF },         /* MEDIAINF */
252 	{ 0x38B600, 0x38B8FF },         /* L3BANK */
253 	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
254 	{ 0x38D0D0, 0x38F0FF },         /* MEDIAINF, rsvd, GAM */
255 	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
256 	{},
257 };
258 
259 /*
260  * Different "GAM" ranges have different rules; GAMWKRS, STLB, and GAMREQSTRM
261  * range subtypes need to be steered to (1,0), while all other GAM subtypes
262  * are steered to (0,0) and are included in the "INSTANCE0" table farther
263  * down.
264  */
265 static const struct xe_mmio_range xe3p_xpc_gam_grp1_steering_table[] = {
266 	{ 0x004000, 0x004AFF },		/* GAMREQSTRM, rsvd, STLB, GAMWKRS, GAMREQSTRM */
267 	{ 0x00F100, 0x00FFFF },		/* GAMWKRS */
268 	{},
269 };
270 
271 static const struct xe_mmio_range xe3p_xpc_node_steering_table[] = {
272 	{ 0x00B000, 0x00B0FF },
273 	{ 0x00D880, 0x00D8FF },
274 	{},
275 };
276 
277 static const struct xe_mmio_range xe3p_xpc_instance0_steering_table[] = {
278 	{ 0x00B500, 0x00B6FF },		/* PSMI */
279 	{ 0x00C800, 0x00CFFF },		/* GAMCTRL */
280 	{ 0x00F000, 0x00F0FF },		/* GAMCTRL */
281 	{},
282 };
283 
284 static void init_steering_l3bank(struct xe_gt *gt)
285 {
286 	struct xe_device *xe = gt_to_xe(gt);
287 	struct xe_mmio *mmio = &gt->mmio;
288 
289 	if (GRAPHICS_VER(xe) >= 35) {
290 		unsigned int first_bank = xe_l3_bank_mask_ffs(gt->fuse_topo.l3_bank_mask);
291 		const int banks_per_node = 4;
292 		unsigned int node = first_bank / banks_per_node;
293 
294 		/* L3BANK ranges place node in grpID, bank in instanceid */
295 		gt->steering[L3BANK].group_target = node;
296 		gt->steering[L3BANK].instance_target = first_bank % banks_per_node;
297 
298 		/* NODE ranges split the node across grpid and instanceid */
299 		gt->steering[NODE].group_target = node >> 1;
300 		gt->steering[NODE].instance_target = node & 1;
301 	} else if (GRAPHICS_VERx100(xe) >= 1270) {
302 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
303 						xe_mmio_read32(mmio, MIRROR_FUSE3));
304 		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
305 					      xe_mmio_read32(mmio, XEHP_FUSE4));
306 
307 		/*
308 		 * Group selects mslice, instance selects bank within mslice.
309 		 * Bank 0 is always valid _except_ when the bank mask is 010b.
310 		 */
311 		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
312 		gt->steering[L3BANK].instance_target =
313 			bank_mask & BIT(0) ? 0 : 2;
314 	} else if (xe->info.platform == XE_DG2) {
315 		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
316 						xe_mmio_read32(mmio, MIRROR_FUSE3));
317 		u32 bank = __ffs(mslice_mask) * 8;
318 
319 		/*
320 		 * Like mslice registers, look for a valid mslice and steer to
321 		 * the first L3BANK of that quad. Access to the Nth L3 bank is
322 		 * split between the first bits of group and instance
323 		 */
324 		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
325 		gt->steering[L3BANK].instance_target = bank & 0x3;
326 	} else {
327 		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
328 					 ~xe_mmio_read32(mmio, MIRROR_FUSE3));
329 
330 		gt->steering[L3BANK].group_target = 0;	/* unused */
331 		gt->steering[L3BANK].instance_target = __ffs(fuse);
332 	}
333 }
334 
335 static void init_steering_mslice(struct xe_gt *gt)
336 {
337 	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
338 				 xe_mmio_read32(&gt->mmio, MIRROR_FUSE3));
339 
340 	/*
341 	 * mslice registers are valid (not terminated) if either the meml3
342 	 * associated with the mslice is present, or at least one DSS associated
343 	 * with the mslice is present.  There will always be at least one meml3
344 	 * so we can just use that to find a non-terminated mslice and ignore
345 	 * the DSS fusing.
346 	 */
347 	gt->steering[MSLICE].group_target = __ffs(mask);
348 	gt->steering[MSLICE].instance_target = 0;	/* unused */
349 
350 	/*
351 	 * LNCF termination is also based on mslice presence, so we'll set
352 	 * it up here.  Either LNCF within a non-terminated mslice will work,
353 	 * so we just always pick LNCF 0 here.
354 	 */
355 	gt->steering[LNCF].group_target = __ffs(mask) << 1;
356 	gt->steering[LNCF].instance_target = 0;		/* unused */
357 }
358 
359 static unsigned int dss_per_group(struct xe_gt *gt)
360 {
361 	struct xe_guc *guc = &gt->uc.guc;
362 	u32 max_slices = 0, max_subslices = 0;
363 	int ret;
364 
365 	/*
366 	 * Try to query the GuC's hwconfig table for the maximum number of
367 	 * slices and subslices.  These don't reflect the platform's actual
368 	 * slice/DSS counts, just the physical layout by which we should
369 	 * determine the steering targets.  On older platforms with older GuC
370 	 * firmware releases it's possible that these attributes may not be
371 	 * included in the table, so we can always fall back to the old
372 	 * hardcoded layouts.
373 	 */
374 #define HWCONFIG_ATTR_MAX_SLICES	1
375 #define HWCONFIG_ATTR_MAX_SUBSLICES	70
376 
377 	ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES,
378 					 &max_slices);
379 	if (ret < 0 || max_slices == 0)
380 		goto fallback;
381 
382 	ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES,
383 					 &max_subslices);
384 	if (ret < 0 || max_subslices == 0)
385 		goto fallback;
386 
387 	return DIV_ROUND_UP(max_subslices, max_slices);
388 
389 fallback:
390 	/*
391 	 * Some older platforms don't have tables or don't have complete tables.
392 	 * Newer platforms should always have the required info.
393 	 */
394 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 2000 &&
395 	    !gt_to_xe(gt)->info.force_execlist)
396 		xe_gt_err(gt, "Slice/Subslice counts missing from hwconfig table; using typical fallback values\n");
397 
398 	if (gt_to_xe(gt)->info.platform == XE_PVC)
399 		return 8;
400 	else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250)
401 		return 4;
402 	else
403 		return 6;
404 }
405 
406 /**
407  * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS
408  * @gt: GT structure
409  * @dss: DSS ID to obtain steering for
410  * @group: pointer to storage for steering group ID
411  * @instance: pointer to storage for steering instance ID
412  */
413 void xe_gt_mcr_get_dss_steering(const struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance)
414 {
415 	xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS);
416 
417 	*group = dss / gt->steering_dss_per_grp;
418 	*instance = dss % gt->steering_dss_per_grp;
419 }
420 
421 /**
422  * xe_gt_mcr_steering_info_to_dss_id - Get DSS ID from group/instance steering
423  * @gt: GT structure
424  * @group: steering group ID
425  * @instance: steering instance ID
426  *
427  * Return: the converted DSS id.
428  */
429 u32 xe_gt_mcr_steering_info_to_dss_id(struct xe_gt *gt, u16 group, u16 instance)
430 {
431 	return group * dss_per_group(gt) + instance;
432 }
433 
434 static void init_steering_dss(struct xe_gt *gt)
435 {
436 	gt->steering_dss_per_grp = dss_per_group(gt);
437 
438 	xe_gt_mcr_get_dss_steering(gt,
439 				   min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
440 				       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)),
441 				   &gt->steering[DSS].group_target,
442 				   &gt->steering[DSS].instance_target);
443 }
444 
445 static void init_steering_oaddrm(struct xe_gt *gt)
446 {
447 	/*
448 	 * First instance is only terminated if the entire first media slice
449 	 * is absent (i.e., no VCS0 or VECS0).
450 	 */
451 	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
452 		gt->steering[OADDRM].group_target = 0;
453 	else
454 		gt->steering[OADDRM].group_target = 1;
455 
456 	gt->steering[OADDRM].instance_target = 0;	/* unused */
457 }
458 
459 static void init_steering_sqidi_psmi(struct xe_gt *gt)
460 {
461 	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
462 				 xe_mmio_read32(&gt->mmio, MIRROR_FUSE3));
463 	u32 select = __ffs(mask);
464 
465 	gt->steering[SQIDI_PSMI].group_target = select >> 1;
466 	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
467 }
468 
469 static void init_steering_gam1(struct xe_gt *gt)
470 {
471 	gt->steering[GAM1].group_target = 1;
472 	gt->steering[GAM1].instance_target = 0;
473 }
474 
475 static const struct {
476 	const char *name;
477 	void (*init)(struct xe_gt *gt);
478 } xe_steering_types[] = {
479 	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
480 	[NODE] =	{ "NODE",	NULL }, /* initialized by l3bank init */
481 	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
482 	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
483 	[DSS] =		{ "DSS / XeCore", init_steering_dss },
484 	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
485 	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
486 	[GAM1] =	{ "GAMWKRS / STLB / GAMREQSTRM", init_steering_gam1 },
487 	[INSTANCE0] =	{ "INSTANCE 0",	NULL },
488 	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
489 };
490 
491 /**
492  * xe_gt_mcr_init_early - Early initialization of the MCR support
493  * @gt: GT structure
494  *
495  * Perform early software only initialization of the MCR lock to allow
496  * the synchronization on accessing the STEER_SEMAPHORE register and
497  * use the xe_gt_mcr_multicast_write() function, plus the minimum
498  * safe MCR registers required for VRAM/CCS probing.
499  */
500 void xe_gt_mcr_init_early(struct xe_gt *gt)
501 {
502 	struct xe_device *xe = gt_to_xe(gt);
503 
504 	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
505 	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
506 
507 	spin_lock_init(&gt->mcr_lock);
508 
509 	if (IS_SRIOV_VF(xe))
510 		return;
511 
512 	if (gt->info.type == XE_GT_TYPE_MEDIA) {
513 		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
514 
515 		if (MEDIA_VER(xe) >= 30) {
516 			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
517 			gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table;
518 		} else if (MEDIA_VERx100(xe) >= 1301) {
519 			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
520 			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
521 		} else {
522 			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
523 		}
524 	} else {
525 		if (GRAPHICS_VERx100(xe) == 3511) {
526 			/*
527 			 * TODO: there are some ranges in bspec with missing
528 			 * termination: [0x00B000, 0x00B0FF] and
529 			 * [0x00D880, 0x00D8FF] (NODE); [0x00B100, 0x00B3FF]
530 			 * (L3BANK). Update them here once bspec is updated.
531 			 */
532 			gt->steering[DSS].ranges = xe3p_xpc_xecore_steering_table;
533 			gt->steering[GAM1].ranges = xe3p_xpc_gam_grp1_steering_table;
534 			gt->steering[INSTANCE0].ranges = xe3p_xpc_instance0_steering_table;
535 			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
536 			gt->steering[NODE].ranges = xe3p_xpc_node_steering_table;
537 		} else if (GRAPHICS_VER(xe) >= 20) {
538 			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
539 			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
540 			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
541 		} else if (GRAPHICS_VERx100(xe) >= 1270) {
542 			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
543 			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
544 			gt->steering[DSS].ranges = xelpg_dss_steering_table;
545 		} else if (xe->info.platform == XE_PVC) {
546 			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
547 			gt->steering[DSS].ranges = xehpc_dss_steering_table;
548 		} else if (xe->info.platform == XE_DG2) {
549 			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
550 			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
551 			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
552 			gt->steering[DSS].ranges = xehp_dss_steering_table;
553 			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
554 		} else {
555 			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
556 			gt->steering[DSS].ranges = xelp_dss_steering_table;
557 		}
558 	}
559 
560 	/* Mark instance 0 as initialized, we need this early for VRAM and CCS probe. */
561 	gt->steering[INSTANCE0].initialized = true;
562 }
563 
564 /**
565  * xe_gt_mcr_init - Normal initialization of the MCR support
566  * @gt: GT structure
567  *
568  * Perform normal initialization of the MCR for all usages.
569  */
570 void xe_gt_mcr_init(struct xe_gt *gt)
571 {
572 	if (IS_SRIOV_VF(gt_to_xe(gt)))
573 		return;
574 
575 	/* Select non-terminated steering target for each type */
576 	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
577 		gt->steering[i].initialized = true;
578 		if (gt->steering[i].ranges && xe_steering_types[i].init)
579 			xe_steering_types[i].init(gt);
580 	}
581 }
582 
583 /**
584  * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
585  * @gt: GT structure
586  *
587  * Some register ranges don't need to have their steering control registers
588  * changed on each access - it's sufficient to set them once on initialization.
589  * This function sets those registers for each platform *
590  */
591 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
592 {
593 	struct xe_device *xe = gt_to_xe(gt);
594 
595 	if (IS_SRIOV_VF(xe))
596 		return;
597 
598 	if (xe->info.platform == XE_DG2) {
599 		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
600 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
601 
602 		xe_mmio_write32(&gt->mmio, STEER_SEMAPHORE, steer_val);
603 		xe_mmio_write32(&gt->mmio, SF_MCR_SELECTOR, steer_val);
604 		/*
605 		 * For GAM registers, all reads should be directed to instance 1
606 		 * (unicast reads against other instances are not allowed),
607 		 * and instance 1 is already the hardware's default steering
608 		 * target, which we never change
609 		 */
610 	}
611 }
612 
613 /*
614  * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
615  *    will steer a register to a non-terminated instance
616  * @gt: GT structure
617  * @reg: register for which the steering is required
618  * @group: return variable for group steering
619  * @instance: return variable for instance steering
620  *
621  * This function returns a group/instance pair that is guaranteed to work for
622  * read steering of the given register. Note that a value will be returned even
623  * if the register is not replicated and therefore does not actually require
624  * steering.
625  *
626  * Returns true if the caller should steer to the @group/@instance values
627  * returned.  Returns false if the caller need not perform any steering
628  */
629 bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
630 					  struct xe_reg_mcr reg_mcr,
631 					  u8 *group, u8 *instance)
632 {
633 	const struct xe_reg reg = to_xe_reg(reg_mcr);
634 	const struct xe_mmio_range *implicit_ranges;
635 
636 	for (int type = 0; type < IMPLICIT_STEERING; type++) {
637 		if (!gt->steering[type].ranges)
638 			continue;
639 
640 		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
641 			if (xe_mmio_in_range(&gt->mmio, &gt->steering[type].ranges[i], reg)) {
642 				drm_WARN(&gt_to_xe(gt)->drm, !gt->steering[type].initialized,
643 					 "Uninitialized usage of MCR register %s/%#x\n",
644 					 xe_steering_types[type].name, reg.addr);
645 
646 				*group = gt->steering[type].group_target;
647 				*instance = gt->steering[type].instance_target;
648 				return true;
649 			}
650 		}
651 	}
652 
653 	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
654 	if (implicit_ranges)
655 		for (int i = 0; implicit_ranges[i].end > 0; i++)
656 			if (xe_mmio_in_range(&gt->mmio, &implicit_ranges[i], reg))
657 				return false;
658 
659 	/*
660 	 * Not found in a steering table and not a register with implicit
661 	 * steering. Just steer to 0/0 as a guess and raise a warning.
662 	 */
663 	drm_WARN(&gt_to_xe(gt)->drm, true,
664 		 "Did not find MCR register %#x in any MCR steering table\n",
665 		 reg.addr);
666 	*group = 0;
667 	*instance = 0;
668 
669 	return true;
670 }
671 
672 /*
673  * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
674  * to synchronize with external clients (e.g., firmware), so a semaphore
675  * register will also need to be taken.
676  */
677 static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
678 {
679 	struct xe_device *xe = gt_to_xe(gt);
680 	int ret = 0;
681 
682 	spin_lock(&gt->mcr_lock);
683 
684 	/*
685 	 * Starting with MTL we also need to grab a semaphore register
686 	 * to synchronize with external agents (e.g., firmware) that now
687 	 * shares the same steering control register. The semaphore is obtained
688 	 * when a read to the relevant register returns 1.
689 	 */
690 	if (GRAPHICS_VERx100(xe) >= 1270)
691 		ret = xe_mmio_wait32(&gt->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
692 				     true);
693 
694 	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
695 }
696 
697 static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
698 {
699 	/* Release hardware semaphore - this is done by writing 1 to the register */
700 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
701 		xe_mmio_write32(&gt->mmio, STEER_SEMAPHORE, 0x1);
702 
703 	spin_unlock(&gt->mcr_lock);
704 }
705 
706 /*
707  * Access a register with specific MCR steering
708  *
709  * Caller needs to make sure the relevant forcewake wells are up.
710  */
711 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
712 				u8 rw_flag, int group, int instance, u32 value)
713 {
714 	const struct xe_reg reg = to_xe_reg(reg_mcr);
715 	struct xe_mmio *mmio = &gt->mmio;
716 	struct xe_reg steer_reg;
717 	u32 steer_val, val = 0;
718 
719 	lockdep_assert_held(&gt->mcr_lock);
720 
721 	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
722 		steer_reg = MTL_MCR_SELECTOR;
723 		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
724 			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
725 	} else {
726 		steer_reg = MCR_SELECTOR;
727 		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
728 			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
729 	}
730 
731 	/*
732 	 * Always leave the hardware in multicast mode when doing reads and only
733 	 * change it to unicast mode when doing writes of a specific instance.
734 	 *
735 	 * The setting of the multicast/unicast bit usually wouldn't matter for
736 	 * read operations (which always return the value from a single register
737 	 * instance regardless of how that bit is set), but some platforms may
738 	 * have workarounds requiring us to remain in multicast mode for reads,
739 	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
740 	 * we'll just go ahead and do so on all platforms; we'll only clear the
741 	 * multicast bit from the mask when explicitly doing a write operation.
742 	 *
743 	 * No need to save old steering reg value.
744 	 */
745 	if (rw_flag == MCR_OP_READ)
746 		steer_val |= MCR_MULTICAST;
747 
748 	xe_mmio_write32(mmio, steer_reg, steer_val);
749 
750 	if (rw_flag == MCR_OP_READ)
751 		val = xe_mmio_read32(mmio, reg);
752 	else
753 		xe_mmio_write32(mmio, reg, value);
754 
755 	/*
756 	 * If we turned off the multicast bit (during a write) we're required
757 	 * to turn it back on before finishing.  The group and instance values
758 	 * don't matter since they'll be re-programmed on the next MCR
759 	 * operation.
760 	 */
761 	if (rw_flag == MCR_OP_WRITE)
762 		xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST);
763 
764 	return val;
765 }
766 
767 /**
768  * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
769  * @gt: GT structure
770  * @reg_mcr: register to read
771  *
772  * Reads a GT MCR register.  The read will be steered to a non-terminated
773  * instance (i.e., one that isn't fused off or powered down by power gating).
774  * This function assumes the caller is already holding any necessary forcewake
775  * domains.
776  *
777  * Returns the value from a non-terminated instance of @reg.
778  */
779 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
780 {
781 	const struct xe_reg reg = to_xe_reg(reg_mcr);
782 	u8 group, instance;
783 	u32 val;
784 	bool steer;
785 
786 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
787 
788 	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
789 						     &group, &instance);
790 
791 	if (steer) {
792 		mcr_lock(gt);
793 		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
794 					   group, instance, 0);
795 		mcr_unlock(gt);
796 	} else {
797 		val = xe_mmio_read32(&gt->mmio, reg);
798 	}
799 
800 	return val;
801 }
802 
803 /**
804  * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
805  * @gt: GT structure
806  * @reg_mcr: the MCR register to read
807  * @group: the MCR group
808  * @instance: the MCR instance
809  *
810  * Returns the value read from an MCR register after steering toward a specific
811  * group/instance.
812  */
813 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
814 			   struct xe_reg_mcr reg_mcr,
815 			   int group, int instance)
816 {
817 	u32 val;
818 
819 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
820 
821 	mcr_lock(gt);
822 	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
823 	mcr_unlock(gt);
824 
825 	return val;
826 }
827 
828 /**
829  * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
830  * @gt: GT structure
831  * @reg_mcr: the MCR register to write
832  * @value: value to write
833  * @group: the MCR group
834  * @instance: the MCR instance
835  *
836  * Write an MCR register in unicast mode after steering toward a specific
837  * group/instance.
838  */
839 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
840 			     u32 value, int group, int instance)
841 {
842 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
843 
844 	mcr_lock(gt);
845 	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
846 	mcr_unlock(gt);
847 }
848 
849 /**
850  * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
851  * @gt: GT structure
852  * @reg_mcr: the MCR register to write
853  * @value: value to write
854  *
855  * Write an MCR register in multicast mode to update all instances.
856  */
857 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
858 			       u32 value)
859 {
860 	struct xe_reg reg = to_xe_reg(reg_mcr);
861 
862 	xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
863 
864 	/*
865 	 * Synchronize with any unicast operations.  Once we have exclusive
866 	 * access, the MULTICAST bit should already be set, so there's no need
867 	 * to touch the steering register.
868 	 */
869 	mcr_lock(gt);
870 	xe_mmio_write32(&gt->mmio, reg, value);
871 	mcr_unlock(gt);
872 }
873 
874 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
875 {
876 	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
877 		if (gt->steering[i].ranges) {
878 			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
879 				   xe_steering_types[i].name,
880 				   gt->steering[i].group_target,
881 				   gt->steering[i].instance_target);
882 			for (int j = 0; gt->steering[i].ranges[j].end; j++)
883 				drm_printf(p, "\t0x%06x - 0x%06x\n",
884 					   gt->steering[i].ranges[j].start,
885 					   gt->steering[i].ranges[j].end);
886 		}
887 	}
888 }
889