1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_gt_mcr.h" 7 8 #include "regs/xe_gt_regs.h" 9 #include "xe_assert.h" 10 #include "xe_gt.h" 11 #include "xe_gt_printk.h" 12 #include "xe_gt_topology.h" 13 #include "xe_gt_types.h" 14 #include "xe_guc_hwconfig.h" 15 #include "xe_mmio.h" 16 #include "xe_sriov.h" 17 18 /** 19 * DOC: GT Multicast/Replicated (MCR) Register Support 20 * 21 * Some GT registers are designed as "multicast" or "replicated" registers: 22 * multiple instances of the same register share a single MMIO offset. MCR 23 * registers are generally used when the hardware needs to potentially track 24 * independent values of a register per hardware unit (e.g., per-subslice, 25 * per-L3bank, etc.). The specific types of replication that exist vary 26 * per-platform. 27 * 28 * MMIO accesses to MCR registers are controlled according to the settings 29 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 30 * registers can be done in either multicast (a single write updates all 31 * instances of the register to the same value) or unicast (a write updates only 32 * one specific instance) form. Reads of MCR registers always operate in a 33 * unicast manner regardless of how the multicast/unicast bit is set in 34 * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is 35 * referred to as "steering." 36 * 37 * If MCR register operations are steered toward a hardware unit that is 38 * fused off or currently powered down due to power gating, the MMIO operation 39 * is "terminated" by the hardware. Terminated read operations will return a 40 * value of zero and terminated unicast write operations will be silently 41 * ignored. During device initialization, the goal of the various 42 * ``init_steering_*()`` functions is to apply the platform-specific rules for 43 * each MCR register type to identify a steering target that will select a 44 * non-terminated instance. 45 * 46 * MCR registers are not available on Virtual Function (VF). 47 */ 48 49 static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) 50 { 51 return reg_mcr.__reg; 52 } 53 54 enum { 55 MCR_OP_READ, 56 MCR_OP_WRITE 57 }; 58 59 static const struct xe_mmio_range xelp_l3bank_steering_table[] = { 60 { 0x00B100, 0x00B3FF }, 61 {}, 62 }; 63 64 static const struct xe_mmio_range xehp_l3bank_steering_table[] = { 65 { 0x008C80, 0x008CFF }, 66 { 0x00B100, 0x00B3FF }, 67 {}, 68 }; 69 70 /* 71 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 72 * are of a "GAM" subclass that has special rules and doesn't need to be 73 * included here. 74 */ 75 static const struct xe_mmio_range xehp_mslice_steering_table[] = { 76 { 0x00DD00, 0x00DDFF }, 77 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 78 {}, 79 }; 80 81 static const struct xe_mmio_range xehp_lncf_steering_table[] = { 82 { 0x00B000, 0x00B0FF }, 83 { 0x00D880, 0x00D8FF }, 84 {}, 85 }; 86 87 /* 88 * We have several types of MCR registers where steering to (0,0) will always 89 * provide us with a non-terminated value. We'll stick them all in the same 90 * table for simplicity. 91 */ 92 static const struct xe_mmio_range xehpc_instance0_steering_table[] = { 93 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 94 { 0x008800, 0x00887F }, /* CC */ 95 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 96 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 97 { 0x00B100, 0x00B3FF }, /* L3BANK */ 98 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 99 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 100 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 101 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 102 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 103 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 104 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 105 {}, 106 }; 107 108 static const struct xe_mmio_range xelpg_instance0_steering_table[] = { 109 { 0x000B00, 0x000BFF }, /* SQIDI */ 110 { 0x001000, 0x001FFF }, /* SQIDI */ 111 { 0x004000, 0x0048FF }, /* GAM */ 112 { 0x008700, 0x0087FF }, /* SQIDI */ 113 { 0x00B000, 0x00B0FF }, /* NODE */ 114 { 0x00C800, 0x00CFFF }, /* GAM */ 115 { 0x00D880, 0x00D8FF }, /* NODE */ 116 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 117 {}, 118 }; 119 120 static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { 121 { 0x00B100, 0x00B3FF }, 122 {}, 123 }; 124 125 static const struct xe_mmio_range xelp_dss_steering_table[] = { 126 { 0x008150, 0x00815F }, 127 { 0x009520, 0x00955F }, 128 { 0x00DE80, 0x00E8FF }, 129 { 0x024A00, 0x024A7F }, 130 {}, 131 }; 132 133 /* DSS steering is used for GSLICE ranges as well */ 134 static const struct xe_mmio_range xehp_dss_steering_table[] = { 135 { 0x005200, 0x0052FF }, /* GSLICE */ 136 { 0x005400, 0x007FFF }, /* GSLICE */ 137 { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 138 { 0x008D00, 0x008DFF }, /* DSS */ 139 { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 140 { 0x009680, 0x0096FF }, /* DSS */ 141 { 0x00D800, 0x00D87F }, /* GSLICE */ 142 { 0x00DC00, 0x00DCFF }, /* GSLICE */ 143 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ 144 { 0x017000, 0x017FFF }, /* GSLICE */ 145 { 0x024A00, 0x024A7F }, /* DSS */ 146 {}, 147 }; 148 149 /* DSS steering is used for COMPUTE ranges as well */ 150 static const struct xe_mmio_range xehpc_dss_steering_table[] = { 151 { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ 152 { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 153 { 0x009680, 0x0096FF }, /* DSS */ 154 { 0x00DC00, 0x00DCFF }, /* COMPUTE */ 155 { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ 156 {}, 157 }; 158 159 /* DSS steering is used for SLICE ranges as well */ 160 static const struct xe_mmio_range xelpg_dss_steering_table[] = { 161 { 0x005200, 0x0052FF }, /* SLICE */ 162 { 0x005500, 0x007FFF }, /* SLICE */ 163 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 164 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 165 { 0x009680, 0x0096FF }, /* DSS */ 166 { 0x00D800, 0x00D87F }, /* SLICE */ 167 { 0x00DC00, 0x00DCFF }, /* SLICE */ 168 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 169 {}, 170 }; 171 172 static const struct xe_mmio_range xe3p_xpc_xecore_steering_table[] = { 173 { 0x008140, 0x00817F }, /* SLICE, XeCore, SLICE */ 174 { 0x009480, 0x00955F }, /* SLICE, XeCore */ 175 { 0x00D800, 0x00D87F }, /* SLICE */ 176 { 0x00DC00, 0x00E9FF }, /* SLICE, rsvd, XeCore, rsvd, XeCore, rsvd, XeCore */ 177 { 0x013000, 0x0135FF }, /* XeCore, SLICE */ 178 {}, 179 }; 180 181 static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { 182 { 0x393200, 0x39323F }, 183 { 0x393400, 0x3934FF }, 184 {}, 185 }; 186 187 static const struct xe_mmio_range dg2_implicit_steering_table[] = { 188 { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ 189 { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ 190 { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ 191 { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ 192 { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ 193 { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ 194 {}, 195 }; 196 197 static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { 198 { 0x005200, 0x0052FF }, /* SLICE */ 199 { 0x005500, 0x007FFF }, /* SLICE */ 200 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 201 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 202 { 0x009680, 0x0096FF }, /* DSS */ 203 { 0x00D800, 0x00D87F }, /* SLICE */ 204 { 0x00DC00, 0x00DCFF }, /* SLICE */ 205 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 206 { 0x00E980, 0x00E9FF }, /* SLICE */ 207 { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ 208 {}, 209 }; 210 211 static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { 212 { 0x000B00, 0x000BFF }, 213 { 0x001000, 0x001FFF }, 214 {}, 215 }; 216 217 static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { 218 { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ 219 { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ 220 { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ 221 { 0x00C800, 0x00CFFF }, /* GAM */ 222 { 0x00D880, 0x00D8FF }, /* NODE */ 223 { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ 224 { 0x00E900, 0x00E97F }, /* MEMPIPE */ 225 { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ 226 { 0x013400, 0x0135FF }, /* MEMPIPE */ 227 {}, 228 }; 229 230 static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { 231 { 0x388160, 0x38817F }, 232 { 0x389480, 0x3894CF }, 233 {}, 234 }; 235 236 static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { 237 { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ 238 { 0x384900, 0x384AFF }, /* GAM */ 239 { 0x389560, 0x3895FF }, /* MEDIAINF */ 240 { 0x38B600, 0x38B8FF }, /* L3BANK */ 241 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 242 { 0x38F000, 0x38F0FF }, /* GAM */ 243 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 244 {}, 245 }; 246 247 static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = { 248 { 0x384000, 0x3841FF }, /* GAM */ 249 { 0x384400, 0x3847DF }, /* GAM */ 250 { 0x384900, 0x384AFF }, /* GAM */ 251 { 0x389560, 0x3895FF }, /* MEDIAINF */ 252 { 0x38B600, 0x38B8FF }, /* L3BANK */ 253 { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ 254 { 0x38D0D0, 0x38F0FF }, /* MEDIAINF, rsvd, GAM */ 255 { 0x393C00, 0x393C7F }, /* MEDIAINF */ 256 {}, 257 }; 258 259 /* 260 * Different "GAM" ranges have different rules; GAMWKRS, STLB, and GAMREQSTRM 261 * range subtypes need to be steered to (1,0), while all other GAM subtypes 262 * are steered to (0,0) and are included in the "INSTANCE0" table farther 263 * down. 264 */ 265 static const struct xe_mmio_range xe3p_xpc_gam_grp1_steering_table[] = { 266 { 0x004000, 0x004AFF }, /* GAMREQSTRM, rsvd, STLB, GAMWKRS, GAMREQSTRM */ 267 { 0x00F100, 0x00FFFF }, /* GAMWKRS */ 268 {}, 269 }; 270 271 static const struct xe_mmio_range xe3p_xpc_node_steering_table[] = { 272 { 0x00B000, 0x00B0FF }, 273 { 0x00D880, 0x00D8FF }, 274 {}, 275 }; 276 277 static const struct xe_mmio_range xe3p_xpc_instance0_steering_table[] = { 278 { 0x00B500, 0x00B6FF }, /* PSMI */ 279 { 0x00C800, 0x00CFFF }, /* GAMCTRL */ 280 { 0x00F000, 0x00F0FF }, /* GAMCTRL */ 281 {}, 282 }; 283 284 static void init_steering_l3bank(struct xe_gt *gt) 285 { 286 struct xe_device *xe = gt_to_xe(gt); 287 struct xe_mmio *mmio = >->mmio; 288 289 if (GRAPHICS_VER(xe) >= 35) { 290 unsigned int first_bank = xe_l3_bank_mask_ffs(gt->fuse_topo.l3_bank_mask); 291 const int banks_per_node = 4; 292 unsigned int node = first_bank / banks_per_node; 293 294 /* L3BANK ranges place node in grpID, bank in instanceid */ 295 gt->steering[L3BANK].group_target = node; 296 gt->steering[L3BANK].instance_target = first_bank % banks_per_node; 297 298 /* NODE ranges split the node across grpid and instanceid */ 299 gt->steering[NODE].group_target = node >> 1; 300 gt->steering[NODE].instance_target = node & 1; 301 } else if (GRAPHICS_VERx100(xe) >= 1270) { 302 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 303 xe_mmio_read32(mmio, MIRROR_FUSE3)); 304 u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, 305 xe_mmio_read32(mmio, XEHP_FUSE4)); 306 307 /* 308 * Group selects mslice, instance selects bank within mslice. 309 * Bank 0 is always valid _except_ when the bank mask is 010b. 310 */ 311 gt->steering[L3BANK].group_target = __ffs(mslice_mask); 312 gt->steering[L3BANK].instance_target = 313 bank_mask & BIT(0) ? 0 : 2; 314 } else if (xe->info.platform == XE_DG2) { 315 u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, 316 xe_mmio_read32(mmio, MIRROR_FUSE3)); 317 u32 bank = __ffs(mslice_mask) * 8; 318 319 /* 320 * Like mslice registers, look for a valid mslice and steer to 321 * the first L3BANK of that quad. Access to the Nth L3 bank is 322 * split between the first bits of group and instance 323 */ 324 gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; 325 gt->steering[L3BANK].instance_target = bank & 0x3; 326 } else { 327 u32 fuse = REG_FIELD_GET(L3BANK_MASK, 328 ~xe_mmio_read32(mmio, MIRROR_FUSE3)); 329 330 gt->steering[L3BANK].group_target = 0; /* unused */ 331 gt->steering[L3BANK].instance_target = __ffs(fuse); 332 } 333 } 334 335 static void init_steering_mslice(struct xe_gt *gt) 336 { 337 u32 mask = REG_FIELD_GET(MEML3_EN_MASK, 338 xe_mmio_read32(>->mmio, MIRROR_FUSE3)); 339 340 /* 341 * mslice registers are valid (not terminated) if either the meml3 342 * associated with the mslice is present, or at least one DSS associated 343 * with the mslice is present. There will always be at least one meml3 344 * so we can just use that to find a non-terminated mslice and ignore 345 * the DSS fusing. 346 */ 347 gt->steering[MSLICE].group_target = __ffs(mask); 348 gt->steering[MSLICE].instance_target = 0; /* unused */ 349 350 /* 351 * LNCF termination is also based on mslice presence, so we'll set 352 * it up here. Either LNCF within a non-terminated mslice will work, 353 * so we just always pick LNCF 0 here. 354 */ 355 gt->steering[LNCF].group_target = __ffs(mask) << 1; 356 gt->steering[LNCF].instance_target = 0; /* unused */ 357 } 358 359 static unsigned int dss_per_group(struct xe_gt *gt) 360 { 361 struct xe_guc *guc = >->uc.guc; 362 u32 max_slices = 0, max_subslices = 0; 363 int ret; 364 365 /* 366 * Try to query the GuC's hwconfig table for the maximum number of 367 * slices and subslices. These don't reflect the platform's actual 368 * slice/DSS counts, just the physical layout by which we should 369 * determine the steering targets. On older platforms with older GuC 370 * firmware releases it's possible that these attributes may not be 371 * included in the table, so we can always fall back to the old 372 * hardcoded layouts. 373 */ 374 #define HWCONFIG_ATTR_MAX_SLICES 1 375 #define HWCONFIG_ATTR_MAX_SUBSLICES 70 376 377 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES, 378 &max_slices); 379 if (ret < 0 || max_slices == 0) 380 goto fallback; 381 382 ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES, 383 &max_subslices); 384 if (ret < 0 || max_subslices == 0) 385 goto fallback; 386 387 return DIV_ROUND_UP(max_subslices, max_slices); 388 389 fallback: 390 /* 391 * Some older platforms don't have tables or don't have complete tables. 392 * Newer platforms should always have the required info. 393 */ 394 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 2000 && 395 !gt_to_xe(gt)->info.force_execlist) 396 xe_gt_err(gt, "Slice/Subslice counts missing from hwconfig table; using typical fallback values\n"); 397 398 if (gt_to_xe(gt)->info.platform == XE_PVC) 399 return 8; 400 else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250) 401 return 4; 402 else 403 return 6; 404 } 405 406 /** 407 * xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS 408 * @gt: GT structure 409 * @dss: DSS ID to obtain steering for 410 * @group: pointer to storage for steering group ID 411 * @instance: pointer to storage for steering instance ID 412 */ 413 void xe_gt_mcr_get_dss_steering(const struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance) 414 { 415 xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS); 416 417 *group = dss / gt->steering_dss_per_grp; 418 *instance = dss % gt->steering_dss_per_grp; 419 } 420 421 /** 422 * xe_gt_mcr_steering_info_to_dss_id - Get DSS ID from group/instance steering 423 * @gt: GT structure 424 * @group: steering group ID 425 * @instance: steering instance ID 426 * 427 * Return: the converted DSS id. 428 */ 429 u32 xe_gt_mcr_steering_info_to_dss_id(struct xe_gt *gt, u16 group, u16 instance) 430 { 431 return group * dss_per_group(gt) + instance; 432 } 433 434 static void init_steering_dss(struct xe_gt *gt) 435 { 436 gt->steering_dss_per_grp = dss_per_group(gt); 437 438 xe_gt_mcr_get_dss_steering(gt, 439 min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), 440 xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)), 441 >->steering[DSS].group_target, 442 >->steering[DSS].instance_target); 443 } 444 445 static void init_steering_oaddrm(struct xe_gt *gt) 446 { 447 /* 448 * First instance is only terminated if the entire first media slice 449 * is absent (i.e., no VCS0 or VECS0). 450 */ 451 if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) 452 gt->steering[OADDRM].group_target = 0; 453 else 454 gt->steering[OADDRM].group_target = 1; 455 456 gt->steering[OADDRM].instance_target = 0; /* unused */ 457 } 458 459 static void init_steering_sqidi_psmi(struct xe_gt *gt) 460 { 461 u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, 462 xe_mmio_read32(>->mmio, MIRROR_FUSE3)); 463 u32 select = __ffs(mask); 464 465 gt->steering[SQIDI_PSMI].group_target = select >> 1; 466 gt->steering[SQIDI_PSMI].instance_target = select & 0x1; 467 } 468 469 static void init_steering_gam1(struct xe_gt *gt) 470 { 471 gt->steering[GAM1].group_target = 1; 472 gt->steering[GAM1].instance_target = 0; 473 } 474 475 static const struct { 476 const char *name; 477 void (*init)(struct xe_gt *gt); 478 } xe_steering_types[] = { 479 [L3BANK] = { "L3BANK", init_steering_l3bank }, 480 [NODE] = { "NODE", NULL }, /* initialized by l3bank init */ 481 [MSLICE] = { "MSLICE", init_steering_mslice }, 482 [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ 483 [DSS] = { "DSS / XeCore", init_steering_dss }, 484 [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, 485 [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, 486 [GAM1] = { "GAMWKRS / STLB / GAMREQSTRM", init_steering_gam1 }, 487 [INSTANCE0] = { "INSTANCE 0", NULL }, 488 [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, 489 }; 490 491 /** 492 * xe_gt_mcr_init_early - Early initialization of the MCR support 493 * @gt: GT structure 494 * 495 * Perform early software only initialization of the MCR lock to allow 496 * the synchronization on accessing the STEER_SEMAPHORE register and 497 * use the xe_gt_mcr_multicast_write() function, plus the minimum 498 * safe MCR registers required for VRAM/CCS probing. 499 */ 500 void xe_gt_mcr_init_early(struct xe_gt *gt) 501 { 502 struct xe_device *xe = gt_to_xe(gt); 503 504 BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); 505 BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); 506 507 spin_lock_init(>->mcr_lock); 508 509 if (IS_SRIOV_VF(xe)) 510 return; 511 512 if (gt->info.type == XE_GT_TYPE_MEDIA) { 513 drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); 514 515 if (MEDIA_VER(xe) >= 30) { 516 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 517 gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table; 518 } else if (MEDIA_VERx100(xe) >= 1301) { 519 gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; 520 gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; 521 } else { 522 gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; 523 } 524 } else { 525 if (GRAPHICS_VERx100(xe) == 3511) { 526 /* 527 * TODO: there are some ranges in bspec with missing 528 * termination: [0x00B000, 0x00B0FF] and 529 * [0x00D880, 0x00D8FF] (NODE); [0x00B100, 0x00B3FF] 530 * (L3BANK). Update them here once bspec is updated. 531 */ 532 gt->steering[DSS].ranges = xe3p_xpc_xecore_steering_table; 533 gt->steering[GAM1].ranges = xe3p_xpc_gam_grp1_steering_table; 534 gt->steering[INSTANCE0].ranges = xe3p_xpc_instance0_steering_table; 535 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; 536 gt->steering[NODE].ranges = xe3p_xpc_node_steering_table; 537 } else if (GRAPHICS_VER(xe) >= 20) { 538 gt->steering[DSS].ranges = xe2lpg_dss_steering_table; 539 gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; 540 gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; 541 } else if (GRAPHICS_VERx100(xe) >= 1270) { 542 gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; 543 gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; 544 gt->steering[DSS].ranges = xelpg_dss_steering_table; 545 } else if (xe->info.platform == XE_PVC) { 546 gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; 547 gt->steering[DSS].ranges = xehpc_dss_steering_table; 548 } else if (xe->info.platform == XE_DG2) { 549 gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; 550 gt->steering[MSLICE].ranges = xehp_mslice_steering_table; 551 gt->steering[LNCF].ranges = xehp_lncf_steering_table; 552 gt->steering[DSS].ranges = xehp_dss_steering_table; 553 gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; 554 } else { 555 gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; 556 gt->steering[DSS].ranges = xelp_dss_steering_table; 557 } 558 } 559 560 /* Mark instance 0 as initialized, we need this early for VRAM and CCS probe. */ 561 gt->steering[INSTANCE0].initialized = true; 562 } 563 564 /** 565 * xe_gt_mcr_init - Normal initialization of the MCR support 566 * @gt: GT structure 567 * 568 * Perform normal initialization of the MCR for all usages. 569 */ 570 void xe_gt_mcr_init(struct xe_gt *gt) 571 { 572 if (IS_SRIOV_VF(gt_to_xe(gt))) 573 return; 574 575 /* Select non-terminated steering target for each type */ 576 for (int i = 0; i < NUM_STEERING_TYPES; i++) { 577 gt->steering[i].initialized = true; 578 if (gt->steering[i].ranges && xe_steering_types[i].init) 579 xe_steering_types[i].init(gt); 580 } 581 } 582 583 /** 584 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers 585 * @gt: GT structure 586 * 587 * Some register ranges don't need to have their steering control registers 588 * changed on each access - it's sufficient to set them once on initialization. 589 * This function sets those registers for each platform * 590 */ 591 void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) 592 { 593 struct xe_device *xe = gt_to_xe(gt); 594 595 if (IS_SRIOV_VF(xe)) 596 return; 597 598 if (xe->info.platform == XE_DG2) { 599 u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | 600 REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); 601 602 xe_mmio_write32(>->mmio, STEER_SEMAPHORE, steer_val); 603 xe_mmio_write32(>->mmio, SF_MCR_SELECTOR, steer_val); 604 /* 605 * For GAM registers, all reads should be directed to instance 1 606 * (unicast reads against other instances are not allowed), 607 * and instance 1 is already the hardware's default steering 608 * target, which we never change 609 */ 610 } 611 } 612 613 /* 614 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that 615 * will steer a register to a non-terminated instance 616 * @gt: GT structure 617 * @reg: register for which the steering is required 618 * @group: return variable for group steering 619 * @instance: return variable for instance steering 620 * 621 * This function returns a group/instance pair that is guaranteed to work for 622 * read steering of the given register. Note that a value will be returned even 623 * if the register is not replicated and therefore does not actually require 624 * steering. 625 * 626 * Returns true if the caller should steer to the @group/@instance values 627 * returned. Returns false if the caller need not perform any steering 628 */ 629 bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, 630 struct xe_reg_mcr reg_mcr, 631 u8 *group, u8 *instance) 632 { 633 const struct xe_reg reg = to_xe_reg(reg_mcr); 634 const struct xe_mmio_range *implicit_ranges; 635 636 for (int type = 0; type < IMPLICIT_STEERING; type++) { 637 if (!gt->steering[type].ranges) 638 continue; 639 640 for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { 641 if (xe_mmio_in_range(>->mmio, >->steering[type].ranges[i], reg)) { 642 drm_WARN(>_to_xe(gt)->drm, !gt->steering[type].initialized, 643 "Uninitialized usage of MCR register %s/%#x\n", 644 xe_steering_types[type].name, reg.addr); 645 646 *group = gt->steering[type].group_target; 647 *instance = gt->steering[type].instance_target; 648 return true; 649 } 650 } 651 } 652 653 implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; 654 if (implicit_ranges) 655 for (int i = 0; implicit_ranges[i].end > 0; i++) 656 if (xe_mmio_in_range(>->mmio, &implicit_ranges[i], reg)) 657 return false; 658 659 /* 660 * Not found in a steering table and not a register with implicit 661 * steering. Just steer to 0/0 as a guess and raise a warning. 662 */ 663 drm_WARN(>_to_xe(gt)->drm, true, 664 "Did not find MCR register %#x in any MCR steering table\n", 665 reg.addr); 666 *group = 0; 667 *instance = 0; 668 669 return true; 670 } 671 672 /* 673 * Obtain exclusive access to MCR steering. On MTL and beyond we also need 674 * to synchronize with external clients (e.g., firmware), so a semaphore 675 * register will also need to be taken. 676 */ 677 static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) 678 { 679 struct xe_device *xe = gt_to_xe(gt); 680 int ret = 0; 681 682 spin_lock(>->mcr_lock); 683 684 /* 685 * Starting with MTL we also need to grab a semaphore register 686 * to synchronize with external agents (e.g., firmware) that now 687 * shares the same steering control register. The semaphore is obtained 688 * when a read to the relevant register returns 1. 689 */ 690 if (GRAPHICS_VERx100(xe) >= 1270) 691 ret = xe_mmio_wait32(>->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, 692 true); 693 694 drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); 695 } 696 697 static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) 698 { 699 /* Release hardware semaphore - this is done by writing 1 to the register */ 700 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) 701 xe_mmio_write32(>->mmio, STEER_SEMAPHORE, 0x1); 702 703 spin_unlock(>->mcr_lock); 704 } 705 706 /* 707 * Access a register with specific MCR steering 708 * 709 * Caller needs to make sure the relevant forcewake wells are up. 710 */ 711 static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 712 u8 rw_flag, int group, int instance, u32 value) 713 { 714 const struct xe_reg reg = to_xe_reg(reg_mcr); 715 struct xe_mmio *mmio = >->mmio; 716 struct xe_reg steer_reg; 717 u32 steer_val, val = 0; 718 719 lockdep_assert_held(>->mcr_lock); 720 721 if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { 722 steer_reg = MTL_MCR_SELECTOR; 723 steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 724 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); 725 } else { 726 steer_reg = MCR_SELECTOR; 727 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | 728 REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); 729 } 730 731 /* 732 * Always leave the hardware in multicast mode when doing reads and only 733 * change it to unicast mode when doing writes of a specific instance. 734 * 735 * The setting of the multicast/unicast bit usually wouldn't matter for 736 * read operations (which always return the value from a single register 737 * instance regardless of how that bit is set), but some platforms may 738 * have workarounds requiring us to remain in multicast mode for reads, 739 * e.g. Wa_22013088509 on PVC. There's no real downside to this, so 740 * we'll just go ahead and do so on all platforms; we'll only clear the 741 * multicast bit from the mask when explicitly doing a write operation. 742 * 743 * No need to save old steering reg value. 744 */ 745 if (rw_flag == MCR_OP_READ) 746 steer_val |= MCR_MULTICAST; 747 748 xe_mmio_write32(mmio, steer_reg, steer_val); 749 750 if (rw_flag == MCR_OP_READ) 751 val = xe_mmio_read32(mmio, reg); 752 else 753 xe_mmio_write32(mmio, reg, value); 754 755 /* 756 * If we turned off the multicast bit (during a write) we're required 757 * to turn it back on before finishing. The group and instance values 758 * don't matter since they'll be re-programmed on the next MCR 759 * operation. 760 */ 761 if (rw_flag == MCR_OP_WRITE) 762 xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST); 763 764 return val; 765 } 766 767 /** 768 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register 769 * @gt: GT structure 770 * @reg_mcr: register to read 771 * 772 * Reads a GT MCR register. The read will be steered to a non-terminated 773 * instance (i.e., one that isn't fused off or powered down by power gating). 774 * This function assumes the caller is already holding any necessary forcewake 775 * domains. 776 * 777 * Returns the value from a non-terminated instance of @reg. 778 */ 779 u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) 780 { 781 const struct xe_reg reg = to_xe_reg(reg_mcr); 782 u8 group, instance; 783 u32 val; 784 bool steer; 785 786 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 787 788 steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, 789 &group, &instance); 790 791 if (steer) { 792 mcr_lock(gt); 793 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, 794 group, instance, 0); 795 mcr_unlock(gt); 796 } else { 797 val = xe_mmio_read32(>->mmio, reg); 798 } 799 800 return val; 801 } 802 803 /** 804 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register 805 * @gt: GT structure 806 * @reg_mcr: the MCR register to read 807 * @group: the MCR group 808 * @instance: the MCR instance 809 * 810 * Returns the value read from an MCR register after steering toward a specific 811 * group/instance. 812 */ 813 u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, 814 struct xe_reg_mcr reg_mcr, 815 int group, int instance) 816 { 817 u32 val; 818 819 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 820 821 mcr_lock(gt); 822 val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); 823 mcr_unlock(gt); 824 825 return val; 826 } 827 828 /** 829 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register 830 * @gt: GT structure 831 * @reg_mcr: the MCR register to write 832 * @value: value to write 833 * @group: the MCR group 834 * @instance: the MCR instance 835 * 836 * Write an MCR register in unicast mode after steering toward a specific 837 * group/instance. 838 */ 839 void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 840 u32 value, int group, int instance) 841 { 842 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 843 844 mcr_lock(gt); 845 rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); 846 mcr_unlock(gt); 847 } 848 849 /** 850 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register 851 * @gt: GT structure 852 * @reg_mcr: the MCR register to write 853 * @value: value to write 854 * 855 * Write an MCR register in multicast mode to update all instances. 856 */ 857 void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, 858 u32 value) 859 { 860 struct xe_reg reg = to_xe_reg(reg_mcr); 861 862 xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); 863 864 /* 865 * Synchronize with any unicast operations. Once we have exclusive 866 * access, the MULTICAST bit should already be set, so there's no need 867 * to touch the steering register. 868 */ 869 mcr_lock(gt); 870 xe_mmio_write32(>->mmio, reg, value); 871 mcr_unlock(gt); 872 } 873 874 void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) 875 { 876 for (int i = 0; i < NUM_STEERING_TYPES; i++) { 877 if (gt->steering[i].ranges) { 878 drm_printf(p, "%s steering: group=%#x, instance=%#x\n", 879 xe_steering_types[i].name, 880 gt->steering[i].group_target, 881 gt->steering[i].instance_target); 882 for (int j = 0; gt->steering[i].ranges[j].end; j++) 883 drm_printf(p, "\t0x%06x - 0x%06x\n", 884 gt->steering[i].ranges[j].start, 885 gt->steering[i].ranges[j].end); 886 } 887 } 888 } 889