1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_device.h" 7 8 #include <linux/delay.h> 9 #include <linux/fault-inject.h> 10 #include <linux/units.h> 11 12 #include <drm/drm_aperture.h> 13 #include <drm/drm_atomic_helper.h> 14 #include <drm/drm_client.h> 15 #include <drm/drm_gem_ttm_helper.h> 16 #include <drm/drm_ioctl.h> 17 #include <drm/drm_managed.h> 18 #include <drm/drm_print.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include "display/xe_display.h" 22 #include "instructions/xe_gpu_commands.h" 23 #include "regs/xe_gt_regs.h" 24 #include "regs/xe_regs.h" 25 #include "xe_bo.h" 26 #include "xe_debugfs.h" 27 #include "xe_devcoredump.h" 28 #include "xe_dma_buf.h" 29 #include "xe_drm_client.h" 30 #include "xe_drv.h" 31 #include "xe_exec.h" 32 #include "xe_exec_queue.h" 33 #include "xe_force_wake.h" 34 #include "xe_ggtt.h" 35 #include "xe_gsc_proxy.h" 36 #include "xe_gt.h" 37 #include "xe_gt_mcr.h" 38 #include "xe_gt_printk.h" 39 #include "xe_gt_sriov_vf.h" 40 #include "xe_guc.h" 41 #include "xe_hw_engine_group.h" 42 #include "xe_hwmon.h" 43 #include "xe_irq.h" 44 #include "xe_memirq.h" 45 #include "xe_mmio.h" 46 #include "xe_module.h" 47 #include "xe_observation.h" 48 #include "xe_pat.h" 49 #include "xe_pcode.h" 50 #include "xe_pm.h" 51 #include "xe_query.h" 52 #include "xe_sriov.h" 53 #include "xe_tile.h" 54 #include "xe_ttm_stolen_mgr.h" 55 #include "xe_ttm_sys_mgr.h" 56 #include "xe_vm.h" 57 #include "xe_vram.h" 58 #include "xe_wait_user_fence.h" 59 #include "xe_wa.h" 60 61 #include <generated/xe_wa_oob.h> 62 63 static int xe_file_open(struct drm_device *dev, struct drm_file *file) 64 { 65 struct xe_device *xe = to_xe_device(dev); 66 struct xe_drm_client *client; 67 struct xe_file *xef; 68 int ret = -ENOMEM; 69 struct task_struct *task = NULL; 70 71 xef = kzalloc(sizeof(*xef), GFP_KERNEL); 72 if (!xef) 73 return ret; 74 75 client = xe_drm_client_alloc(); 76 if (!client) { 77 kfree(xef); 78 return ret; 79 } 80 81 xef->drm = file; 82 xef->client = client; 83 xef->xe = xe; 84 85 mutex_init(&xef->vm.lock); 86 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); 87 88 mutex_init(&xef->exec_queue.lock); 89 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); 90 91 spin_lock(&xe->clients.lock); 92 xe->clients.count++; 93 spin_unlock(&xe->clients.lock); 94 95 file->driver_priv = xef; 96 kref_init(&xef->refcount); 97 98 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID); 99 if (task) { 100 xef->process_name = kstrdup(task->comm, GFP_KERNEL); 101 xef->pid = task->pid; 102 put_task_struct(task); 103 } 104 105 return 0; 106 } 107 108 static void xe_file_destroy(struct kref *ref) 109 { 110 struct xe_file *xef = container_of(ref, struct xe_file, refcount); 111 struct xe_device *xe = xef->xe; 112 113 xa_destroy(&xef->exec_queue.xa); 114 mutex_destroy(&xef->exec_queue.lock); 115 xa_destroy(&xef->vm.xa); 116 mutex_destroy(&xef->vm.lock); 117 118 spin_lock(&xe->clients.lock); 119 xe->clients.count--; 120 spin_unlock(&xe->clients.lock); 121 122 xe_drm_client_put(xef->client); 123 kfree(xef->process_name); 124 kfree(xef); 125 } 126 127 /** 128 * xe_file_get() - Take a reference to the xe file object 129 * @xef: Pointer to the xe file 130 * 131 * Anyone with a pointer to xef must take a reference to the xe file 132 * object using this call. 133 * 134 * Return: xe file pointer 135 */ 136 struct xe_file *xe_file_get(struct xe_file *xef) 137 { 138 kref_get(&xef->refcount); 139 return xef; 140 } 141 142 /** 143 * xe_file_put() - Drop a reference to the xe file object 144 * @xef: Pointer to the xe file 145 * 146 * Used to drop reference to the xef object 147 */ 148 void xe_file_put(struct xe_file *xef) 149 { 150 kref_put(&xef->refcount, xe_file_destroy); 151 } 152 153 static void xe_file_close(struct drm_device *dev, struct drm_file *file) 154 { 155 struct xe_device *xe = to_xe_device(dev); 156 struct xe_file *xef = file->driver_priv; 157 struct xe_vm *vm; 158 struct xe_exec_queue *q; 159 unsigned long idx; 160 161 xe_pm_runtime_get(xe); 162 163 /* 164 * No need for exec_queue.lock here as there is no contention for it 165 * when FD is closing as IOCTLs presumably can't be modifying the 166 * xarray. Taking exec_queue.lock here causes undue dependency on 167 * vm->lock taken during xe_exec_queue_kill(). 168 */ 169 xa_for_each(&xef->exec_queue.xa, idx, q) { 170 if (q->vm && q->hwe->hw_engine_group) 171 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); 172 xe_exec_queue_kill(q); 173 xe_exec_queue_put(q); 174 } 175 xa_for_each(&xef->vm.xa, idx, vm) 176 xe_vm_close_and_put(vm); 177 178 xe_file_put(xef); 179 180 xe_pm_runtime_put(xe); 181 } 182 183 static const struct drm_ioctl_desc xe_ioctls[] = { 184 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), 185 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), 186 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, 187 DRM_RENDER_ALLOW), 188 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), 189 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), 190 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), 191 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), 192 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, 193 DRM_RENDER_ALLOW), 194 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, 195 DRM_RENDER_ALLOW), 196 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, 197 DRM_RENDER_ALLOW), 198 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, 199 DRM_RENDER_ALLOW), 200 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW), 201 }; 202 203 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 204 { 205 struct drm_file *file_priv = file->private_data; 206 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 207 long ret; 208 209 if (xe_device_wedged(xe)) 210 return -ECANCELED; 211 212 ret = xe_pm_runtime_get_ioctl(xe); 213 if (ret >= 0) 214 ret = drm_ioctl(file, cmd, arg); 215 xe_pm_runtime_put(xe); 216 217 return ret; 218 } 219 220 #ifdef CONFIG_COMPAT 221 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 222 { 223 struct drm_file *file_priv = file->private_data; 224 struct xe_device *xe = to_xe_device(file_priv->minor->dev); 225 long ret; 226 227 if (xe_device_wedged(xe)) 228 return -ECANCELED; 229 230 ret = xe_pm_runtime_get_ioctl(xe); 231 if (ret >= 0) 232 ret = drm_compat_ioctl(file, cmd, arg); 233 xe_pm_runtime_put(xe); 234 235 return ret; 236 } 237 #else 238 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */ 239 #define xe_drm_compat_ioctl NULL 240 #endif 241 242 static const struct file_operations xe_driver_fops = { 243 .owner = THIS_MODULE, 244 .open = drm_open, 245 .release = drm_release_noglobal, 246 .unlocked_ioctl = xe_drm_ioctl, 247 .mmap = drm_gem_mmap, 248 .poll = drm_poll, 249 .read = drm_read, 250 .compat_ioctl = xe_drm_compat_ioctl, 251 .llseek = noop_llseek, 252 #ifdef CONFIG_PROC_FS 253 .show_fdinfo = drm_show_fdinfo, 254 #endif 255 .fop_flags = FOP_UNSIGNED_OFFSET, 256 }; 257 258 static struct drm_driver driver = { 259 /* Don't use MTRRs here; the Xserver or userspace app should 260 * deal with them for Intel hardware. 261 */ 262 .driver_features = 263 DRIVER_GEM | 264 DRIVER_RENDER | DRIVER_SYNCOBJ | 265 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, 266 .open = xe_file_open, 267 .postclose = xe_file_close, 268 269 .gem_prime_import = xe_gem_prime_import, 270 271 .dumb_create = xe_bo_dumb_create, 272 .dumb_map_offset = drm_gem_ttm_dumb_map_offset, 273 #ifdef CONFIG_PROC_FS 274 .show_fdinfo = xe_drm_client_fdinfo, 275 #endif 276 .ioctls = xe_ioctls, 277 .num_ioctls = ARRAY_SIZE(xe_ioctls), 278 .fops = &xe_driver_fops, 279 .name = DRIVER_NAME, 280 .desc = DRIVER_DESC, 281 .date = DRIVER_DATE, 282 .major = DRIVER_MAJOR, 283 .minor = DRIVER_MINOR, 284 .patchlevel = DRIVER_PATCHLEVEL, 285 }; 286 287 static void xe_device_destroy(struct drm_device *dev, void *dummy) 288 { 289 struct xe_device *xe = to_xe_device(dev); 290 291 if (xe->preempt_fence_wq) 292 destroy_workqueue(xe->preempt_fence_wq); 293 294 if (xe->ordered_wq) 295 destroy_workqueue(xe->ordered_wq); 296 297 if (xe->unordered_wq) 298 destroy_workqueue(xe->unordered_wq); 299 300 if (xe->destroy_wq) 301 destroy_workqueue(xe->destroy_wq); 302 303 ttm_device_fini(&xe->ttm); 304 } 305 306 struct xe_device *xe_device_create(struct pci_dev *pdev, 307 const struct pci_device_id *ent) 308 { 309 struct xe_device *xe; 310 int err; 311 312 xe_display_driver_set_hooks(&driver); 313 314 err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); 315 if (err) 316 return ERR_PTR(err); 317 318 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); 319 if (IS_ERR(xe)) 320 return xe; 321 322 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, 323 xe->drm.anon_inode->i_mapping, 324 xe->drm.vma_offset_manager, false, false); 325 if (WARN_ON(err)) 326 goto err; 327 328 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); 329 if (err) 330 goto err; 331 332 xe->info.devid = pdev->device; 333 xe->info.revid = pdev->revision; 334 xe->info.force_execlist = xe_modparam.force_execlist; 335 336 spin_lock_init(&xe->irq.lock); 337 spin_lock_init(&xe->clients.lock); 338 339 init_waitqueue_head(&xe->ufence_wq); 340 341 init_rwsem(&xe->usm.lock); 342 343 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); 344 345 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { 346 /* Trigger a large asid and an early asid wrap. */ 347 u32 asid; 348 349 BUILD_BUG_ON(XE_MAX_ASID < 2); 350 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, 351 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), 352 &xe->usm.next_asid, GFP_KERNEL); 353 drm_WARN_ON(&xe->drm, err); 354 if (err >= 0) 355 xa_erase(&xe->usm.asid_to_vm, asid); 356 } 357 358 spin_lock_init(&xe->pinned.lock); 359 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); 360 INIT_LIST_HEAD(&xe->pinned.external_vram); 361 INIT_LIST_HEAD(&xe->pinned.evicted); 362 363 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0); 364 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); 365 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); 366 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0); 367 if (!xe->ordered_wq || !xe->unordered_wq || 368 !xe->preempt_fence_wq || !xe->destroy_wq) { 369 /* 370 * Cleanup done in xe_device_destroy via 371 * drmm_add_action_or_reset register above 372 */ 373 drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); 374 err = -ENOMEM; 375 goto err; 376 } 377 378 err = xe_display_create(xe); 379 if (WARN_ON(err)) 380 goto err; 381 382 return xe; 383 384 err: 385 return ERR_PTR(err); 386 } 387 ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */ 388 389 static bool xe_driver_flr_disabled(struct xe_device *xe) 390 { 391 return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS; 392 } 393 394 /* 395 * The driver-initiated FLR is the highest level of reset that we can trigger 396 * from within the driver. It is different from the PCI FLR in that it doesn't 397 * fully reset the SGUnit and doesn't modify the PCI config space and therefore 398 * it doesn't require a re-enumeration of the PCI BARs. However, the 399 * driver-initiated FLR does still cause a reset of both GT and display and a 400 * memory wipe of local and stolen memory, so recovery would require a full HW 401 * re-init and saving/restoring (or re-populating) the wiped memory. Since we 402 * perform the FLR as the very last action before releasing access to the HW 403 * during the driver release flow, we don't attempt recovery at all, because 404 * if/when a new instance of i915 is bound to the device it will do a full 405 * re-init anyway. 406 */ 407 static void __xe_driver_flr(struct xe_device *xe) 408 { 409 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ 410 struct xe_mmio *mmio = xe_root_tile_mmio(xe); 411 int ret; 412 413 drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); 414 415 /* 416 * Make sure any pending FLR requests have cleared by waiting for the 417 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS 418 * to make sure it's not still set from a prior attempt (it's a write to 419 * clear bit). 420 * Note that we should never be in a situation where a previous attempt 421 * is still pending (unless the HW is totally dead), but better to be 422 * safe in case something unexpected happens 423 */ 424 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 425 if (ret) { 426 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); 427 return; 428 } 429 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 430 431 /* Trigger the actual Driver-FLR */ 432 xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR); 433 434 /* Wait for hardware teardown to complete */ 435 ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); 436 if (ret) { 437 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); 438 return; 439 } 440 441 /* Wait for hardware/firmware re-init to complete */ 442 ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, 443 flr_timeout, NULL, false); 444 if (ret) { 445 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); 446 return; 447 } 448 449 /* Clear sticky completion status */ 450 xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS); 451 } 452 453 static void xe_driver_flr(struct xe_device *xe) 454 { 455 if (xe_driver_flr_disabled(xe)) { 456 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); 457 return; 458 } 459 460 __xe_driver_flr(xe); 461 } 462 463 static void xe_driver_flr_fini(void *arg) 464 { 465 struct xe_device *xe = arg; 466 467 if (xe->needs_flr_on_fini) 468 xe_driver_flr(xe); 469 } 470 471 static void xe_device_sanitize(void *arg) 472 { 473 struct xe_device *xe = arg; 474 struct xe_gt *gt; 475 u8 id; 476 477 for_each_gt(gt, xe, id) 478 xe_gt_sanitize(gt); 479 } 480 481 static int xe_set_dma_info(struct xe_device *xe) 482 { 483 unsigned int mask_size = xe->info.dma_mask_size; 484 int err; 485 486 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); 487 488 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 489 if (err) 490 goto mask_err; 491 492 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); 493 if (err) 494 goto mask_err; 495 496 return 0; 497 498 mask_err: 499 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); 500 return err; 501 } 502 503 static bool verify_lmem_ready(struct xe_device *xe) 504 { 505 u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT; 506 507 return !!val; 508 } 509 510 static int wait_for_lmem_ready(struct xe_device *xe) 511 { 512 unsigned long timeout, start; 513 514 if (!IS_DGFX(xe)) 515 return 0; 516 517 if (IS_SRIOV_VF(xe)) 518 return 0; 519 520 if (verify_lmem_ready(xe)) 521 return 0; 522 523 drm_dbg(&xe->drm, "Waiting for lmem initialization\n"); 524 525 start = jiffies; 526 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */ 527 528 do { 529 if (signal_pending(current)) 530 return -EINTR; 531 532 /* 533 * The boot firmware initializes local memory and 534 * assesses its health. If memory training fails, 535 * the punit will have been instructed to keep the GT powered 536 * down.we won't be able to communicate with it 537 * 538 * If the status check is done before punit updates the register, 539 * it can lead to the system being unusable. 540 * use a timeout and defer the probe to prevent this. 541 */ 542 if (time_after(jiffies, timeout)) { 543 drm_dbg(&xe->drm, "lmem not initialized by firmware\n"); 544 return -EPROBE_DEFER; 545 } 546 547 msleep(20); 548 549 } while (!verify_lmem_ready(xe)); 550 551 drm_dbg(&xe->drm, "lmem ready after %ums", 552 jiffies_to_msecs(jiffies - start)); 553 554 return 0; 555 } 556 ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */ 557 558 static void update_device_info(struct xe_device *xe) 559 { 560 /* disable features that are not available/applicable to VFs */ 561 if (IS_SRIOV_VF(xe)) { 562 xe->info.probe_display = 0; 563 xe->info.has_heci_gscfi = 0; 564 xe->info.skip_guc_pc = 1; 565 xe->info.skip_pcode = 1; 566 } 567 } 568 569 /** 570 * xe_device_probe_early: Device early probe 571 * @xe: xe device instance 572 * 573 * Initialize MMIO resources that don't require any 574 * knowledge about tile count. Also initialize pcode and 575 * check vram initialization on root tile. 576 * 577 * Return: 0 on success, error code on failure 578 */ 579 int xe_device_probe_early(struct xe_device *xe) 580 { 581 int err; 582 583 err = xe_mmio_init(xe); 584 if (err) 585 return err; 586 587 xe_sriov_probe_early(xe); 588 589 update_device_info(xe); 590 591 err = xe_pcode_probe_early(xe); 592 if (err) 593 return err; 594 595 err = wait_for_lmem_ready(xe); 596 if (err) 597 return err; 598 599 xe->wedged.mode = xe_modparam.wedged_mode; 600 601 return 0; 602 } 603 604 static int probe_has_flat_ccs(struct xe_device *xe) 605 { 606 struct xe_gt *gt; 607 u32 reg; 608 int err; 609 610 /* Always enabled/disabled, no runtime check to do */ 611 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) 612 return 0; 613 614 gt = xe_root_mmio_gt(xe); 615 616 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 617 if (err) 618 return err; 619 620 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 621 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); 622 623 if (!xe->info.has_flat_ccs) 624 drm_dbg(&xe->drm, 625 "Flat CCS has been disabled in bios, May lead to performance impact"); 626 627 return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 628 } 629 630 int xe_device_probe(struct xe_device *xe) 631 { 632 struct xe_tile *tile; 633 struct xe_gt *gt; 634 int err; 635 u8 last_gt; 636 u8 id; 637 638 xe_pat_init_early(xe); 639 640 err = xe_sriov_init(xe); 641 if (err) 642 return err; 643 644 xe->info.mem_region_mask = 1; 645 err = xe_display_init_nommio(xe); 646 if (err) 647 return err; 648 649 err = xe_set_dma_info(xe); 650 if (err) 651 return err; 652 653 err = xe_mmio_probe_tiles(xe); 654 if (err) 655 return err; 656 657 xe_ttm_sys_mgr_init(xe); 658 659 for_each_gt(gt, xe, id) { 660 err = xe_gt_init_early(gt); 661 if (err) 662 return err; 663 664 /* 665 * Only after this point can GT-specific MMIO operations 666 * (including things like communication with the GuC) 667 * be performed. 668 */ 669 xe_gt_mmio_init(gt); 670 } 671 672 for_each_tile(tile, xe, id) { 673 if (IS_SRIOV_VF(xe)) { 674 xe_guc_comm_init_early(&tile->primary_gt->uc.guc); 675 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt); 676 if (err) 677 return err; 678 err = xe_gt_sriov_vf_query_config(tile->primary_gt); 679 if (err) 680 return err; 681 } 682 err = xe_ggtt_init_early(tile->mem.ggtt); 683 if (err) 684 return err; 685 err = xe_memirq_init(&tile->memirq); 686 if (err) 687 return err; 688 } 689 690 for_each_gt(gt, xe, id) { 691 err = xe_gt_init_hwconfig(gt); 692 if (err) 693 return err; 694 } 695 696 err = xe_devcoredump_init(xe); 697 if (err) 698 return err; 699 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe); 700 if (err) 701 return err; 702 703 err = xe_display_init_noirq(xe); 704 if (err) 705 return err; 706 707 err = xe_irq_install(xe); 708 if (err) 709 goto err; 710 711 err = probe_has_flat_ccs(xe); 712 if (err) 713 goto err; 714 715 err = xe_vram_probe(xe); 716 if (err) 717 goto err; 718 719 for_each_tile(tile, xe, id) { 720 err = xe_tile_init_noalloc(tile); 721 if (err) 722 goto err; 723 } 724 725 /* Allocate and map stolen after potential VRAM resize */ 726 xe_ttm_stolen_mgr_init(xe); 727 728 /* 729 * Now that GT is initialized (TTM in particular), 730 * we can try to init display, and inherit the initial fb. 731 * This is the reason the first allocation needs to be done 732 * inside display. 733 */ 734 err = xe_display_init_noaccel(xe); 735 if (err) 736 goto err; 737 738 for_each_gt(gt, xe, id) { 739 last_gt = id; 740 741 err = xe_gt_init(gt); 742 if (err) 743 goto err_fini_gt; 744 } 745 746 xe_heci_gsc_init(xe); 747 748 err = xe_oa_init(xe); 749 if (err) 750 goto err_fini_gt; 751 752 err = xe_display_init(xe); 753 if (err) 754 goto err_fini_oa; 755 756 err = drm_dev_register(&xe->drm, 0); 757 if (err) 758 goto err_fini_display; 759 760 xe_display_register(xe); 761 762 xe_oa_register(xe); 763 764 xe_debugfs_register(xe); 765 766 xe_hwmon_register(xe); 767 768 for_each_gt(gt, xe, id) 769 xe_gt_sanitize_freq(gt); 770 771 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe); 772 773 err_fini_display: 774 xe_display_driver_remove(xe); 775 776 err_fini_oa: 777 xe_oa_fini(xe); 778 779 err_fini_gt: 780 for_each_gt(gt, xe, id) { 781 if (id < last_gt) 782 xe_gt_remove(gt); 783 else 784 break; 785 } 786 787 err: 788 xe_display_fini(xe); 789 return err; 790 } 791 792 static void xe_device_remove_display(struct xe_device *xe) 793 { 794 xe_display_unregister(xe); 795 796 drm_dev_unplug(&xe->drm); 797 xe_display_driver_remove(xe); 798 } 799 800 void xe_device_remove(struct xe_device *xe) 801 { 802 struct xe_gt *gt; 803 u8 id; 804 805 xe_oa_unregister(xe); 806 807 xe_device_remove_display(xe); 808 809 xe_display_fini(xe); 810 811 xe_oa_fini(xe); 812 813 xe_heci_gsc_fini(xe); 814 815 for_each_gt(gt, xe, id) 816 xe_gt_remove(gt); 817 } 818 819 void xe_device_shutdown(struct xe_device *xe) 820 { 821 struct xe_gt *gt; 822 u8 id; 823 824 drm_dbg(&xe->drm, "Shutting down device\n"); 825 826 if (xe_driver_flr_disabled(xe)) { 827 xe_display_pm_shutdown(xe); 828 829 xe_irq_suspend(xe); 830 831 for_each_gt(gt, xe, id) 832 xe_gt_shutdown(gt); 833 834 xe_display_pm_shutdown_late(xe); 835 } else { 836 /* BOOM! */ 837 __xe_driver_flr(xe); 838 } 839 } 840 841 /** 842 * xe_device_wmb() - Device specific write memory barrier 843 * @xe: the &xe_device 844 * 845 * While wmb() is sufficient for a barrier if we use system memory, on discrete 846 * platforms with device memory we additionally need to issue a register write. 847 * Since it doesn't matter which register we write to, use the read-only VF_CAP 848 * register that is also marked as accessible by the VFs. 849 */ 850 void xe_device_wmb(struct xe_device *xe) 851 { 852 wmb(); 853 if (IS_DGFX(xe)) 854 xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0); 855 } 856 857 /** 858 * xe_device_td_flush() - Flush transient L3 cache entries 859 * @xe: The device 860 * 861 * Display engine has direct access to memory and is never coherent with L3/L4 862 * caches (or CPU caches), however KMD is responsible for specifically flushing 863 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout 864 * can happen from such a surface without seeing corruption. 865 * 866 * Display surfaces can be tagged as transient by mapping it using one of the 867 * various L3:XD PAT index modes on Xe2. 868 * 869 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed 870 * at the end of each submission via PIPE_CONTROL for compute/render, since SA 871 * Media is not coherent with L3 and we want to support render-vs-media 872 * usescases. For other engines like copy/blt the HW internally forces uncached 873 * behaviour, hence why we can skip the TDF on such platforms. 874 */ 875 void xe_device_td_flush(struct xe_device *xe) 876 { 877 struct xe_gt *gt; 878 u8 id; 879 880 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20) 881 return; 882 883 if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) { 884 xe_device_l2_flush(xe); 885 return; 886 } 887 888 for_each_gt(gt, xe, id) { 889 if (xe_gt_is_media_type(gt)) 890 continue; 891 892 if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT)) 893 return; 894 895 xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST); 896 /* 897 * FIXME: We can likely do better here with our choice of 898 * timeout. Currently we just assume the worst case, i.e. 150us, 899 * which is believed to be sufficient to cover the worst case 900 * scenario on current platforms if all cache entries are 901 * transient and need to be flushed.. 902 */ 903 if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0, 904 150, NULL, false)) 905 xe_gt_err_once(gt, "TD flush timeout\n"); 906 907 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 908 } 909 } 910 911 void xe_device_l2_flush(struct xe_device *xe) 912 { 913 struct xe_gt *gt; 914 int err; 915 916 gt = xe_root_mmio_gt(xe); 917 918 if (!XE_WA(gt, 16023588340)) 919 return; 920 921 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 922 if (err) 923 return; 924 925 spin_lock(>->global_invl_lock); 926 xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1); 927 928 if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 150, NULL, true)) 929 xe_gt_err_once(gt, "Global invalidation timeout\n"); 930 spin_unlock(>->global_invl_lock); 931 932 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); 933 } 934 935 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) 936 { 937 return xe_device_has_flat_ccs(xe) ? 938 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; 939 } 940 941 /** 942 * xe_device_assert_mem_access - Inspect the current runtime_pm state. 943 * @xe: xe device instance 944 * 945 * To be used before any kind of memory access. It will splat a debug warning 946 * if the device is currently sleeping. But it doesn't guarantee in any way 947 * that the device is going to remain awake. Xe PM runtime get and put 948 * functions might be added to the outer bound of the memory access, while 949 * this check is intended for inner usage to splat some warning if the worst 950 * case has just happened. 951 */ 952 void xe_device_assert_mem_access(struct xe_device *xe) 953 { 954 xe_assert(xe, !xe_pm_runtime_suspended(xe)); 955 } 956 957 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p) 958 { 959 struct xe_gt *gt; 960 u8 id; 961 962 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid); 963 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid); 964 965 for_each_gt(gt, xe, id) { 966 drm_printf(p, "GT id: %u\n", id); 967 drm_printf(p, "\tTile: %u\n", gt->tile->id); 968 drm_printf(p, "\tType: %s\n", 969 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media"); 970 drm_printf(p, "\tIP ver: %u.%u.%u\n", 971 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid), 972 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid), 973 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid)); 974 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock); 975 } 976 } 977 978 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address) 979 { 980 return sign_extend64(address, xe->info.va_bits - 1); 981 } 982 983 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address) 984 { 985 return address & GENMASK_ULL(xe->info.va_bits - 1, 0); 986 } 987 988 static void xe_device_wedged_fini(struct drm_device *drm, void *arg) 989 { 990 struct xe_device *xe = arg; 991 992 xe_pm_runtime_put(xe); 993 } 994 995 /** 996 * xe_device_declare_wedged - Declare device wedged 997 * @xe: xe device instance 998 * 999 * This is a final state that can only be cleared with a mudule 1000 * re-probe (unbind + bind). 1001 * In this state every IOCTL will be blocked so the GT cannot be used. 1002 * In general it will be called upon any critical error such as gt reset 1003 * failure or guc loading failure. 1004 * If xe.wedged module parameter is set to 2, this function will be called 1005 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump 1006 * snapshot capture. In this mode, GT reset won't be attempted so the state of 1007 * the issue is preserved for further debugging. 1008 */ 1009 void xe_device_declare_wedged(struct xe_device *xe) 1010 { 1011 struct xe_gt *gt; 1012 u8 id; 1013 1014 if (xe->wedged.mode == 0) { 1015 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n"); 1016 return; 1017 } 1018 1019 xe_pm_runtime_get_noresume(xe); 1020 1021 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) { 1022 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n"); 1023 return; 1024 } 1025 1026 if (!atomic_xchg(&xe->wedged.flag, 1)) { 1027 xe->needs_flr_on_fini = true; 1028 drm_err(&xe->drm, 1029 "CRITICAL: Xe has declared device %s as wedged.\n" 1030 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n" 1031 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n", 1032 dev_name(xe->drm.dev)); 1033 } 1034 1035 for_each_gt(gt, xe, id) 1036 xe_gt_declare_wedged(gt); 1037 } 1038