1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_dumb_buffers.h> 13 #include <drm/drm_gem_ttm_helper.h> 14 #include <drm/drm_managed.h> 15 #include <drm/ttm/ttm_backup.h> 16 #include <drm/ttm/ttm_device.h> 17 #include <drm/ttm/ttm_placement.h> 18 #include <drm/ttm/ttm_tt.h> 19 #include <uapi/drm/xe_drm.h> 20 21 #include <kunit/static_stub.h> 22 23 #include <trace/events/gpu_mem.h> 24 25 #include "xe_device.h" 26 #include "xe_dma_buf.h" 27 #include "xe_drm_client.h" 28 #include "xe_ggtt.h" 29 #include "xe_gt.h" 30 #include "xe_map.h" 31 #include "xe_migrate.h" 32 #include "xe_pm.h" 33 #include "xe_preempt_fence.h" 34 #include "xe_pxp.h" 35 #include "xe_res_cursor.h" 36 #include "xe_shrinker.h" 37 #include "xe_sriov_vf_ccs.h" 38 #include "xe_trace_bo.h" 39 #include "xe_ttm_stolen_mgr.h" 40 #include "xe_vm.h" 41 #include "xe_vram_types.h" 42 43 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 44 [XE_PL_SYSTEM] = "system", 45 [XE_PL_TT] = "gtt", 46 [XE_PL_VRAM0] = "vram0", 47 [XE_PL_VRAM1] = "vram1", 48 [XE_PL_STOLEN] = "stolen" 49 }; 50 51 static const struct ttm_place sys_placement_flags = { 52 .fpfn = 0, 53 .lpfn = 0, 54 .mem_type = XE_PL_SYSTEM, 55 .flags = 0, 56 }; 57 58 static struct ttm_placement sys_placement = { 59 .num_placement = 1, 60 .placement = &sys_placement_flags, 61 }; 62 63 static struct ttm_placement purge_placement; 64 65 static const struct ttm_place tt_placement_flags[] = { 66 { 67 .fpfn = 0, 68 .lpfn = 0, 69 .mem_type = XE_PL_TT, 70 .flags = TTM_PL_FLAG_DESIRED, 71 }, 72 { 73 .fpfn = 0, 74 .lpfn = 0, 75 .mem_type = XE_PL_SYSTEM, 76 .flags = TTM_PL_FLAG_FALLBACK, 77 } 78 }; 79 80 static struct ttm_placement tt_placement = { 81 .num_placement = 2, 82 .placement = tt_placement_flags, 83 }; 84 85 bool mem_type_is_vram(u32 mem_type) 86 { 87 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 88 } 89 90 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 91 { 92 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 93 } 94 95 static bool resource_is_vram(struct ttm_resource *res) 96 { 97 return mem_type_is_vram(res->mem_type); 98 } 99 100 bool xe_bo_is_vram(struct xe_bo *bo) 101 { 102 return resource_is_vram(bo->ttm.resource) || 103 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 104 } 105 106 bool xe_bo_is_stolen(struct xe_bo *bo) 107 { 108 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 109 } 110 111 /** 112 * xe_bo_has_single_placement - check if BO is placed only in one memory location 113 * @bo: The BO 114 * 115 * This function checks whether a given BO is placed in only one memory location. 116 * 117 * Returns: true if the BO is placed in a single memory location, false otherwise. 118 * 119 */ 120 bool xe_bo_has_single_placement(struct xe_bo *bo) 121 { 122 return bo->placement.num_placement == 1; 123 } 124 125 /** 126 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 127 * @bo: The BO 128 * 129 * The stolen memory is accessed through the PCI BAR for both DGFX and some 130 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 131 * 132 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 133 */ 134 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 135 { 136 return xe_bo_is_stolen(bo) && 137 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 138 } 139 140 /** 141 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 142 * @bo: The BO 143 * 144 * Check if a given bo is bound through VM_BIND. This requires the 145 * reservation lock for the BO to be held. 146 * 147 * Returns: boolean 148 */ 149 bool xe_bo_is_vm_bound(struct xe_bo *bo) 150 { 151 xe_bo_assert_held(bo); 152 153 return !list_empty(&bo->ttm.base.gpuva.list); 154 } 155 156 static bool xe_bo_is_user(struct xe_bo *bo) 157 { 158 return bo->flags & XE_BO_FLAG_USER; 159 } 160 161 static struct xe_migrate * 162 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 163 { 164 struct xe_tile *tile; 165 166 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 167 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 168 return tile->migrate; 169 } 170 171 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 172 { 173 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 174 struct ttm_resource_manager *mgr; 175 struct xe_ttm_vram_mgr *vram_mgr; 176 177 xe_assert(xe, resource_is_vram(res)); 178 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 179 vram_mgr = to_xe_ttm_vram_mgr(mgr); 180 181 return container_of(vram_mgr, struct xe_vram_region, ttm); 182 } 183 184 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 185 u32 bo_flags, u32 *c) 186 { 187 if (bo_flags & XE_BO_FLAG_SYSTEM) { 188 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 189 190 bo->placements[*c] = (struct ttm_place) { 191 .mem_type = XE_PL_TT, 192 .flags = (bo_flags & XE_BO_FLAG_VRAM_MASK) ? 193 TTM_PL_FLAG_FALLBACK : 0, 194 }; 195 *c += 1; 196 } 197 } 198 199 static bool force_contiguous(u32 bo_flags) 200 { 201 if (bo_flags & XE_BO_FLAG_STOLEN) 202 return true; /* users expect this */ 203 else if (bo_flags & XE_BO_FLAG_PINNED && 204 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) 205 return true; /* needs vmap */ 206 else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR) 207 return true; 208 209 /* 210 * For eviction / restore on suspend / resume objects pinned in VRAM 211 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 212 */ 213 return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && 214 bo_flags & XE_BO_FLAG_PINNED; 215 } 216 217 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 218 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 219 { 220 struct ttm_place place = { .mem_type = mem_type }; 221 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 222 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 223 224 struct xe_vram_region *vram; 225 u64 io_size; 226 227 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 228 229 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 230 xe_assert(xe, vram && vram->usable_size); 231 io_size = vram->io_size; 232 233 if (force_contiguous(bo_flags)) 234 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 235 236 if (io_size < vram->usable_size) { 237 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 238 place.fpfn = 0; 239 place.lpfn = io_size >> PAGE_SHIFT; 240 } else { 241 place.flags |= TTM_PL_FLAG_TOPDOWN; 242 } 243 } 244 places[*c] = place; 245 *c += 1; 246 } 247 248 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 249 u32 bo_flags, u32 *c) 250 { 251 if (bo_flags & XE_BO_FLAG_VRAM0) 252 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 253 if (bo_flags & XE_BO_FLAG_VRAM1) 254 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 255 } 256 257 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 258 u32 bo_flags, u32 *c) 259 { 260 if (bo_flags & XE_BO_FLAG_STOLEN) { 261 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 262 263 bo->placements[*c] = (struct ttm_place) { 264 .mem_type = XE_PL_STOLEN, 265 .flags = force_contiguous(bo_flags) ? 266 TTM_PL_FLAG_CONTIGUOUS : 0, 267 }; 268 *c += 1; 269 } 270 } 271 272 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 273 u32 bo_flags) 274 { 275 u32 c = 0; 276 277 try_add_vram(xe, bo, bo_flags, &c); 278 try_add_system(xe, bo, bo_flags, &c); 279 try_add_stolen(xe, bo, bo_flags, &c); 280 281 if (!c) 282 return -EINVAL; 283 284 bo->placement = (struct ttm_placement) { 285 .num_placement = c, 286 .placement = bo->placements, 287 }; 288 289 return 0; 290 } 291 292 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 293 u32 bo_flags) 294 { 295 xe_bo_assert_held(bo); 296 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 297 } 298 299 static void xe_evict_flags(struct ttm_buffer_object *tbo, 300 struct ttm_placement *placement) 301 { 302 struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); 303 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 304 struct xe_bo *bo; 305 306 if (!xe_bo_is_xe_bo(tbo)) { 307 /* Don't handle scatter gather BOs */ 308 if (tbo->type == ttm_bo_type_sg) { 309 placement->num_placement = 0; 310 return; 311 } 312 313 *placement = device_unplugged ? purge_placement : sys_placement; 314 return; 315 } 316 317 bo = ttm_to_xe_bo(tbo); 318 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 319 *placement = sys_placement; 320 return; 321 } 322 323 if (device_unplugged && !tbo->base.dma_buf) { 324 *placement = purge_placement; 325 return; 326 } 327 328 /* 329 * For xe, sg bos that are evicted to system just triggers a 330 * rebind of the sg list upon subsequent validation to XE_PL_TT. 331 */ 332 switch (tbo->resource->mem_type) { 333 case XE_PL_VRAM0: 334 case XE_PL_VRAM1: 335 case XE_PL_STOLEN: 336 *placement = tt_placement; 337 break; 338 case XE_PL_TT: 339 default: 340 *placement = sys_placement; 341 break; 342 } 343 } 344 345 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 346 struct xe_ttm_tt { 347 struct ttm_tt ttm; 348 struct sg_table sgt; 349 struct sg_table *sg; 350 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 351 bool purgeable; 352 }; 353 354 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt) 355 { 356 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 357 unsigned long num_pages = tt->num_pages; 358 int ret; 359 360 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 361 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 362 363 if (xe_tt->sg) 364 return 0; 365 366 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 367 num_pages, 0, 368 (u64)num_pages << PAGE_SHIFT, 369 xe_sg_segment_size(xe->drm.dev), 370 GFP_KERNEL); 371 if (ret) 372 return ret; 373 374 xe_tt->sg = &xe_tt->sgt; 375 ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 376 DMA_ATTR_SKIP_CPU_SYNC); 377 if (ret) { 378 sg_free_table(xe_tt->sg); 379 xe_tt->sg = NULL; 380 return ret; 381 } 382 383 return 0; 384 } 385 386 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt) 387 { 388 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 389 390 if (xe_tt->sg) { 391 dma_unmap_sgtable(xe->drm.dev, xe_tt->sg, 392 DMA_BIDIRECTIONAL, 0); 393 sg_free_table(xe_tt->sg); 394 xe_tt->sg = NULL; 395 } 396 } 397 398 struct sg_table *xe_bo_sg(struct xe_bo *bo) 399 { 400 struct ttm_tt *tt = bo->ttm.ttm; 401 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 402 403 return xe_tt->sg; 404 } 405 406 /* 407 * Account ttm pages against the device shrinker's shrinkable and 408 * purgeable counts. 409 */ 410 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt) 411 { 412 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 413 414 if (xe_tt->purgeable) 415 xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages); 416 else 417 xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0); 418 } 419 420 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt) 421 { 422 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 423 424 if (xe_tt->purgeable) 425 xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages); 426 else 427 xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0); 428 } 429 430 static void update_global_total_pages(struct ttm_device *ttm_dev, 431 long num_pages) 432 { 433 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM) 434 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 435 u64 global_total_pages = 436 atomic64_add_return(num_pages, &xe->global_total_pages); 437 438 trace_gpu_mem_total(xe->drm.primary->index, 0, 439 global_total_pages << PAGE_SHIFT); 440 #endif 441 } 442 443 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 444 u32 page_flags) 445 { 446 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 447 struct xe_device *xe = xe_bo_device(bo); 448 struct xe_ttm_tt *xe_tt; 449 struct ttm_tt *tt; 450 unsigned long extra_pages; 451 enum ttm_caching caching = ttm_cached; 452 int err; 453 454 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 455 if (!xe_tt) 456 return NULL; 457 458 tt = &xe_tt->ttm; 459 460 extra_pages = 0; 461 if (xe_bo_needs_ccs_pages(bo)) 462 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)), 463 PAGE_SIZE); 464 465 /* 466 * DGFX system memory is always WB / ttm_cached, since 467 * other caching modes are only supported on x86. DGFX 468 * GPU system memory accesses are always coherent with the 469 * CPU. 470 */ 471 if (!IS_DGFX(xe)) { 472 switch (bo->cpu_caching) { 473 case DRM_XE_GEM_CPU_CACHING_WC: 474 caching = ttm_write_combined; 475 break; 476 default: 477 caching = ttm_cached; 478 break; 479 } 480 481 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 482 483 /* 484 * Display scanout is always non-coherent with the CPU cache. 485 * 486 * For Xe_LPG and beyond, PPGTT PTE lookups are also 487 * non-coherent and require a CPU:WC mapping. 488 */ 489 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 490 (xe->info.graphics_verx100 >= 1270 && 491 bo->flags & XE_BO_FLAG_PAGETABLE)) 492 caching = ttm_write_combined; 493 } 494 495 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 496 /* 497 * Valid only for internally-created buffers only, for 498 * which cpu_caching is never initialized. 499 */ 500 xe_assert(xe, bo->cpu_caching == 0); 501 caching = ttm_uncached; 502 } 503 504 if (ttm_bo->type != ttm_bo_type_sg) 505 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 506 507 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 508 if (err) { 509 kfree(xe_tt); 510 return NULL; 511 } 512 513 if (ttm_bo->type != ttm_bo_type_sg) { 514 err = ttm_tt_setup_backup(tt); 515 if (err) { 516 ttm_tt_fini(tt); 517 kfree(xe_tt); 518 return NULL; 519 } 520 } 521 522 return tt; 523 } 524 525 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 526 struct ttm_operation_ctx *ctx) 527 { 528 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 529 int err; 530 531 /* 532 * dma-bufs are not populated with pages, and the dma- 533 * addresses are set up when moved to XE_PL_TT. 534 */ 535 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 536 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 537 return 0; 538 539 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 540 err = ttm_tt_restore(ttm_dev, tt, ctx); 541 } else { 542 ttm_tt_clear_backed_up(tt); 543 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 544 } 545 if (err) 546 return err; 547 548 xe_tt->purgeable = false; 549 xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt); 550 update_global_total_pages(ttm_dev, tt->num_pages); 551 552 return 0; 553 } 554 555 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 556 { 557 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 558 559 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 560 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 561 return; 562 563 xe_tt_unmap_sg(xe, tt); 564 565 ttm_pool_free(&ttm_dev->pool, tt); 566 xe_ttm_tt_account_subtract(xe, tt); 567 update_global_total_pages(ttm_dev, -(long)tt->num_pages); 568 } 569 570 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 571 { 572 ttm_tt_fini(tt); 573 kfree(tt); 574 } 575 576 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 577 { 578 struct xe_ttm_vram_mgr_resource *vres = 579 to_xe_ttm_vram_mgr_resource(mem); 580 581 return vres->used_visible_size == mem->size; 582 } 583 584 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 585 struct ttm_resource *mem) 586 { 587 struct xe_device *xe = ttm_to_xe_device(bdev); 588 589 switch (mem->mem_type) { 590 case XE_PL_SYSTEM: 591 case XE_PL_TT: 592 return 0; 593 case XE_PL_VRAM0: 594 case XE_PL_VRAM1: { 595 struct xe_vram_region *vram = res_to_mem_region(mem); 596 597 if (!xe_ttm_resource_visible(mem)) 598 return -EINVAL; 599 600 mem->bus.offset = mem->start << PAGE_SHIFT; 601 602 if (vram->mapping && 603 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 604 mem->bus.addr = (u8 __force *)vram->mapping + 605 mem->bus.offset; 606 607 mem->bus.offset += vram->io_start; 608 mem->bus.is_iomem = true; 609 610 #if !IS_ENABLED(CONFIG_X86) 611 mem->bus.caching = ttm_write_combined; 612 #endif 613 return 0; 614 } case XE_PL_STOLEN: 615 return xe_ttm_stolen_io_mem_reserve(xe, mem); 616 default: 617 return -EINVAL; 618 } 619 } 620 621 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 622 const struct ttm_operation_ctx *ctx) 623 { 624 struct dma_resv_iter cursor; 625 struct dma_fence *fence; 626 struct drm_gem_object *obj = &bo->ttm.base; 627 struct drm_gpuvm_bo *vm_bo; 628 bool idle = false; 629 int ret = 0; 630 631 dma_resv_assert_held(bo->ttm.base.resv); 632 633 if (!list_empty(&bo->ttm.base.gpuva.list)) { 634 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 635 DMA_RESV_USAGE_BOOKKEEP); 636 dma_resv_for_each_fence_unlocked(&cursor, fence) 637 dma_fence_enable_sw_signaling(fence); 638 dma_resv_iter_end(&cursor); 639 } 640 641 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 642 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 643 struct drm_gpuva *gpuva; 644 645 if (!xe_vm_in_fault_mode(vm)) { 646 drm_gpuvm_bo_evict(vm_bo, true); 647 continue; 648 } 649 650 if (!idle) { 651 long timeout; 652 653 if (ctx->no_wait_gpu && 654 !dma_resv_test_signaled(bo->ttm.base.resv, 655 DMA_RESV_USAGE_BOOKKEEP)) 656 return -EBUSY; 657 658 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 659 DMA_RESV_USAGE_BOOKKEEP, 660 ctx->interruptible, 661 MAX_SCHEDULE_TIMEOUT); 662 if (!timeout) 663 return -ETIME; 664 if (timeout < 0) 665 return timeout; 666 667 idle = true; 668 } 669 670 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 671 struct xe_vma *vma = gpuva_to_vma(gpuva); 672 673 trace_xe_vma_evict(vma); 674 ret = xe_vm_invalidate_vma(vma); 675 if (XE_WARN_ON(ret)) 676 return ret; 677 } 678 } 679 680 return ret; 681 } 682 683 /* 684 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 685 * Note that unmapping the attachment is deferred to the next 686 * map_attachment time, or to bo destroy (after idling) whichever comes first. 687 * This is to avoid syncing before unmap_attachment(), assuming that the 688 * caller relies on idling the reservation object before moving the 689 * backing store out. Should that assumption not hold, then we will be able 690 * to unconditionally call unmap_attachment() when moving out to system. 691 */ 692 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 693 struct ttm_resource *new_res) 694 { 695 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 696 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 697 ttm); 698 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 699 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 700 struct sg_table *sg; 701 702 xe_assert(xe, attach); 703 xe_assert(xe, ttm_bo->ttm); 704 705 if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && 706 ttm_bo->sg) { 707 dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 708 false, MAX_SCHEDULE_TIMEOUT); 709 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 710 ttm_bo->sg = NULL; 711 } 712 713 if (new_res->mem_type == XE_PL_SYSTEM) 714 goto out; 715 716 if (ttm_bo->sg) { 717 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 718 ttm_bo->sg = NULL; 719 } 720 721 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 722 if (IS_ERR(sg)) 723 return PTR_ERR(sg); 724 725 ttm_bo->sg = sg; 726 xe_tt->sg = sg; 727 728 out: 729 ttm_bo_move_null(ttm_bo, new_res); 730 731 return 0; 732 } 733 734 /** 735 * xe_bo_move_notify - Notify subsystems of a pending move 736 * @bo: The buffer object 737 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 738 * 739 * This function notifies subsystems of an upcoming buffer move. 740 * Upon receiving such a notification, subsystems should schedule 741 * halting access to the underlying pages and optionally add a fence 742 * to the buffer object's dma_resv object, that signals when access is 743 * stopped. The caller will wait on all dma_resv fences before 744 * starting the move. 745 * 746 * A subsystem may commence access to the object after obtaining 747 * bindings to the new backing memory under the object lock. 748 * 749 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 750 * negative error code on error. 751 */ 752 static int xe_bo_move_notify(struct xe_bo *bo, 753 const struct ttm_operation_ctx *ctx) 754 { 755 struct ttm_buffer_object *ttm_bo = &bo->ttm; 756 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 757 struct ttm_resource *old_mem = ttm_bo->resource; 758 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 759 int ret; 760 761 /* 762 * If this starts to call into many components, consider 763 * using a notification chain here. 764 */ 765 766 if (xe_bo_is_pinned(bo)) 767 return -EINVAL; 768 769 xe_bo_vunmap(bo); 770 ret = xe_bo_trigger_rebind(xe, bo, ctx); 771 if (ret) 772 return ret; 773 774 /* Don't call move_notify() for imported dma-bufs. */ 775 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 776 dma_buf_move_notify(ttm_bo->base.dma_buf); 777 778 /* 779 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 780 * so if we moved from VRAM make sure to unlink this from the userfault 781 * tracking. 782 */ 783 if (mem_type_is_vram(old_mem_type)) { 784 mutex_lock(&xe->mem_access.vram_userfault.lock); 785 if (!list_empty(&bo->vram_userfault_link)) 786 list_del_init(&bo->vram_userfault_link); 787 mutex_unlock(&xe->mem_access.vram_userfault.lock); 788 } 789 790 return 0; 791 } 792 793 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 794 struct ttm_operation_ctx *ctx, 795 struct ttm_resource *new_mem, 796 struct ttm_place *hop) 797 { 798 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 799 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 800 struct ttm_resource *old_mem = ttm_bo->resource; 801 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 802 struct ttm_tt *ttm = ttm_bo->ttm; 803 struct xe_migrate *migrate = NULL; 804 struct dma_fence *fence; 805 bool move_lacks_source; 806 bool tt_has_data; 807 bool needs_clear; 808 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 809 ttm && ttm_tt_is_populated(ttm)) ? true : false; 810 int ret = 0; 811 812 /* Bo creation path, moving to system or TT. */ 813 if ((!old_mem && ttm) && !handle_system_ccs) { 814 if (new_mem->mem_type == XE_PL_TT) 815 ret = xe_tt_map_sg(xe, ttm); 816 if (!ret) 817 ttm_bo_move_null(ttm_bo, new_mem); 818 goto out; 819 } 820 821 if (ttm_bo->type == ttm_bo_type_sg) { 822 if (new_mem->mem_type == XE_PL_SYSTEM) 823 ret = xe_bo_move_notify(bo, ctx); 824 if (!ret) 825 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 826 return ret; 827 } 828 829 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm)); 830 831 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 832 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 833 834 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 835 (!ttm && ttm_bo->type == ttm_bo_type_device); 836 837 if (new_mem->mem_type == XE_PL_TT) { 838 ret = xe_tt_map_sg(xe, ttm); 839 if (ret) 840 goto out; 841 } 842 843 if ((move_lacks_source && !needs_clear)) { 844 ttm_bo_move_null(ttm_bo, new_mem); 845 goto out; 846 } 847 848 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 849 new_mem->mem_type == XE_PL_SYSTEM) { 850 ret = xe_svm_bo_evict(bo); 851 if (!ret) { 852 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 853 ttm_bo_move_null(ttm_bo, new_mem); 854 } else { 855 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 856 ERR_PTR(ret)); 857 } 858 859 goto out; 860 } 861 862 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 863 ttm_bo_move_null(ttm_bo, new_mem); 864 goto out; 865 } 866 867 /* 868 * Failed multi-hop where the old_mem is still marked as 869 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 870 */ 871 if (old_mem_type == XE_PL_TT && 872 new_mem->mem_type == XE_PL_TT) { 873 ttm_bo_move_null(ttm_bo, new_mem); 874 goto out; 875 } 876 877 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 878 ret = xe_bo_move_notify(bo, ctx); 879 if (ret) 880 goto out; 881 } 882 883 if (old_mem_type == XE_PL_TT && 884 new_mem->mem_type == XE_PL_SYSTEM) { 885 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 886 DMA_RESV_USAGE_BOOKKEEP, 887 false, 888 MAX_SCHEDULE_TIMEOUT); 889 if (timeout < 0) { 890 ret = timeout; 891 goto out; 892 } 893 894 if (!handle_system_ccs) { 895 ttm_bo_move_null(ttm_bo, new_mem); 896 goto out; 897 } 898 } 899 900 if (!move_lacks_source && 901 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 902 (mem_type_is_vram(old_mem_type) && 903 new_mem->mem_type == XE_PL_SYSTEM))) { 904 hop->fpfn = 0; 905 hop->lpfn = 0; 906 hop->mem_type = XE_PL_TT; 907 hop->flags = TTM_PL_FLAG_TEMPORARY; 908 ret = -EMULTIHOP; 909 goto out; 910 } 911 912 if (bo->tile) 913 migrate = bo->tile->migrate; 914 else if (resource_is_vram(new_mem)) 915 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 916 else if (mem_type_is_vram(old_mem_type)) 917 migrate = mem_type_to_migrate(xe, old_mem_type); 918 else 919 migrate = xe->tiles[0].migrate; 920 921 xe_assert(xe, migrate); 922 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 923 if (xe_rpm_reclaim_safe(xe)) { 924 /* 925 * We might be called through swapout in the validation path of 926 * another TTM device, so acquire rpm here. 927 */ 928 xe_pm_runtime_get(xe); 929 } else { 930 drm_WARN_ON(&xe->drm, handle_system_ccs); 931 xe_pm_runtime_get_noresume(xe); 932 } 933 934 if (move_lacks_source) { 935 u32 flags = 0; 936 937 if (mem_type_is_vram(new_mem->mem_type)) 938 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 939 else if (handle_system_ccs) 940 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 941 942 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 943 } else { 944 fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, 945 handle_system_ccs); 946 } 947 if (IS_ERR(fence)) { 948 ret = PTR_ERR(fence); 949 xe_pm_runtime_put(xe); 950 goto out; 951 } 952 if (!move_lacks_source) { 953 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, 954 new_mem); 955 if (ret) { 956 dma_fence_wait(fence, false); 957 ttm_bo_move_null(ttm_bo, new_mem); 958 ret = 0; 959 } 960 } else { 961 /* 962 * ttm_bo_move_accel_cleanup() may blow up if 963 * bo->resource == NULL, so just attach the 964 * fence and set the new resource. 965 */ 966 dma_resv_add_fence(ttm_bo->base.resv, fence, 967 DMA_RESV_USAGE_KERNEL); 968 ttm_bo_move_null(ttm_bo, new_mem); 969 } 970 971 dma_fence_put(fence); 972 xe_pm_runtime_put(xe); 973 974 /* 975 * CCS meta data is migrated from TT -> SMEM. So, let us detach the 976 * BBs from BO as it is no longer needed. 977 */ 978 if (IS_VF_CCS_BB_VALID(xe, bo) && old_mem_type == XE_PL_TT && 979 new_mem->mem_type == XE_PL_SYSTEM) 980 xe_sriov_vf_ccs_detach_bo(bo); 981 982 if (IS_SRIOV_VF(xe) && 983 ((move_lacks_source && new_mem->mem_type == XE_PL_TT) || 984 (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) && 985 handle_system_ccs) 986 ret = xe_sriov_vf_ccs_attach_bo(bo); 987 988 out: 989 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 990 ttm_bo->ttm) { 991 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 992 DMA_RESV_USAGE_KERNEL, 993 false, 994 MAX_SCHEDULE_TIMEOUT); 995 if (timeout < 0) 996 ret = timeout; 997 998 if (IS_VF_CCS_BB_VALID(xe, bo)) 999 xe_sriov_vf_ccs_detach_bo(bo); 1000 1001 xe_tt_unmap_sg(xe, ttm_bo->ttm); 1002 } 1003 1004 return ret; 1005 } 1006 1007 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 1008 struct ttm_buffer_object *bo, 1009 unsigned long *scanned) 1010 { 1011 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1012 long lret; 1013 1014 /* Fake move to system, without copying data. */ 1015 if (bo->resource->mem_type != XE_PL_SYSTEM) { 1016 struct ttm_resource *new_resource; 1017 1018 lret = ttm_bo_wait_ctx(bo, ctx); 1019 if (lret) 1020 return lret; 1021 1022 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 1023 if (lret) 1024 return lret; 1025 1026 xe_tt_unmap_sg(xe, bo->ttm); 1027 ttm_bo_move_null(bo, new_resource); 1028 } 1029 1030 *scanned += bo->ttm->num_pages; 1031 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1032 {.purge = true, 1033 .writeback = false, 1034 .allow_move = false}); 1035 1036 if (lret > 0) 1037 xe_ttm_tt_account_subtract(xe, bo->ttm); 1038 1039 return lret; 1040 } 1041 1042 static bool 1043 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) 1044 { 1045 struct drm_gpuvm_bo *vm_bo; 1046 1047 if (!ttm_bo_eviction_valuable(bo, place)) 1048 return false; 1049 1050 if (!xe_bo_is_xe_bo(bo)) 1051 return true; 1052 1053 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { 1054 if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) 1055 return false; 1056 } 1057 1058 return true; 1059 } 1060 1061 /** 1062 * xe_bo_shrink() - Try to shrink an xe bo. 1063 * @ctx: The struct ttm_operation_ctx used for shrinking. 1064 * @bo: The TTM buffer object whose pages to shrink. 1065 * @flags: Flags governing the shrink behaviour. 1066 * @scanned: Pointer to a counter of the number of pages 1067 * attempted to shrink. 1068 * 1069 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1070 * Note that we need to be able to handle also non xe bos 1071 * (ghost bos), but only if the struct ttm_tt is embedded in 1072 * a struct xe_ttm_tt. When the function attempts to shrink 1073 * the pages of a buffer object, The value pointed to by @scanned 1074 * is updated. 1075 * 1076 * Return: The number of pages shrunken or purged, or negative error 1077 * code on failure. 1078 */ 1079 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1080 const struct xe_bo_shrink_flags flags, 1081 unsigned long *scanned) 1082 { 1083 struct ttm_tt *tt = bo->ttm; 1084 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1085 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1086 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1087 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1088 bool needs_rpm; 1089 long lret = 0L; 1090 1091 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1092 (flags.purge && !xe_tt->purgeable)) 1093 return -EBUSY; 1094 1095 if (!xe_bo_eviction_valuable(bo, &place)) 1096 return -EBUSY; 1097 1098 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1099 return xe_bo_shrink_purge(ctx, bo, scanned); 1100 1101 if (xe_tt->purgeable) { 1102 if (bo->resource->mem_type != XE_PL_SYSTEM) 1103 lret = xe_bo_move_notify(xe_bo, ctx); 1104 if (!lret) 1105 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1106 goto out_unref; 1107 } 1108 1109 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1110 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1111 xe_bo_needs_ccs_pages(xe_bo)); 1112 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1113 goto out_unref; 1114 1115 *scanned += tt->num_pages; 1116 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1117 {.purge = false, 1118 .writeback = flags.writeback, 1119 .allow_move = true}); 1120 if (needs_rpm) 1121 xe_pm_runtime_put(xe); 1122 1123 if (lret > 0) 1124 xe_ttm_tt_account_subtract(xe, tt); 1125 1126 out_unref: 1127 xe_bo_put(xe_bo); 1128 1129 return lret; 1130 } 1131 1132 /** 1133 * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed 1134 * up in system memory. 1135 * @bo: The buffer object to prepare. 1136 * 1137 * On successful completion, the object backup pages are allocated. Expectation 1138 * is that this is called from the PM notifier, prior to suspend/hibernation. 1139 * 1140 * Return: 0 on success. Negative error code on failure. 1141 */ 1142 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) 1143 { 1144 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1145 struct xe_bo *backup; 1146 int ret = 0; 1147 1148 xe_bo_lock(bo, false); 1149 1150 xe_assert(xe, !bo->backup_obj); 1151 1152 /* 1153 * Since this is called from the PM notifier we might have raced with 1154 * someone unpinning this after we dropped the pinned list lock and 1155 * grabbing the above bo lock. 1156 */ 1157 if (!xe_bo_is_pinned(bo)) 1158 goto out_unlock_bo; 1159 1160 if (!xe_bo_is_vram(bo)) 1161 goto out_unlock_bo; 1162 1163 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1164 goto out_unlock_bo; 1165 1166 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo), 1167 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1168 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1169 XE_BO_FLAG_PINNED); 1170 if (IS_ERR(backup)) { 1171 ret = PTR_ERR(backup); 1172 goto out_unlock_bo; 1173 } 1174 1175 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1176 ttm_bo_pin(&backup->ttm); 1177 bo->backup_obj = backup; 1178 1179 out_unlock_bo: 1180 xe_bo_unlock(bo); 1181 return ret; 1182 } 1183 1184 /** 1185 * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. 1186 * @bo: The buffer object to undo the prepare for. 1187 * 1188 * Always returns 0. The backup object is removed, if still present. Expectation 1189 * it that this called from the PM notifier when undoing the prepare step. 1190 * 1191 * Return: Always returns 0. 1192 */ 1193 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) 1194 { 1195 xe_bo_lock(bo, false); 1196 if (bo->backup_obj) { 1197 ttm_bo_unpin(&bo->backup_obj->ttm); 1198 xe_bo_put(bo->backup_obj); 1199 bo->backup_obj = NULL; 1200 } 1201 xe_bo_unlock(bo); 1202 1203 return 0; 1204 } 1205 1206 /** 1207 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1208 * @bo: The buffer object to move. 1209 * 1210 * On successful completion, the object memory will be moved to system memory. 1211 * 1212 * This is needed to for special handling of pinned VRAM object during 1213 * suspend-resume. 1214 * 1215 * Return: 0 on success. Negative error code on failure. 1216 */ 1217 int xe_bo_evict_pinned(struct xe_bo *bo) 1218 { 1219 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1220 struct xe_bo *backup = bo->backup_obj; 1221 bool backup_created = false; 1222 bool unmap = false; 1223 int ret = 0; 1224 1225 xe_bo_lock(bo, false); 1226 1227 if (WARN_ON(!bo->ttm.resource)) { 1228 ret = -EINVAL; 1229 goto out_unlock_bo; 1230 } 1231 1232 if (WARN_ON(!xe_bo_is_pinned(bo))) { 1233 ret = -EINVAL; 1234 goto out_unlock_bo; 1235 } 1236 1237 if (!xe_bo_is_vram(bo)) 1238 goto out_unlock_bo; 1239 1240 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1241 goto out_unlock_bo; 1242 1243 if (!backup) { 1244 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, 1245 NULL, xe_bo_size(bo), 1246 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1247 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1248 XE_BO_FLAG_PINNED); 1249 if (IS_ERR(backup)) { 1250 ret = PTR_ERR(backup); 1251 goto out_unlock_bo; 1252 } 1253 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1254 backup_created = true; 1255 } 1256 1257 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1258 struct xe_migrate *migrate; 1259 struct dma_fence *fence; 1260 1261 if (bo->tile) 1262 migrate = bo->tile->migrate; 1263 else 1264 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1265 1266 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1267 if (ret) 1268 goto out_backup; 1269 1270 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1271 if (ret) 1272 goto out_backup; 1273 1274 fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, 1275 backup->ttm.resource, false); 1276 if (IS_ERR(fence)) { 1277 ret = PTR_ERR(fence); 1278 goto out_backup; 1279 } 1280 1281 dma_resv_add_fence(bo->ttm.base.resv, fence, 1282 DMA_RESV_USAGE_KERNEL); 1283 dma_resv_add_fence(backup->ttm.base.resv, fence, 1284 DMA_RESV_USAGE_KERNEL); 1285 dma_fence_put(fence); 1286 } else { 1287 ret = xe_bo_vmap(backup); 1288 if (ret) 1289 goto out_backup; 1290 1291 if (iosys_map_is_null(&bo->vmap)) { 1292 ret = xe_bo_vmap(bo); 1293 if (ret) 1294 goto out_backup; 1295 unmap = true; 1296 } 1297 1298 xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, 1299 xe_bo_size(bo)); 1300 } 1301 1302 if (!bo->backup_obj) 1303 bo->backup_obj = backup; 1304 1305 out_backup: 1306 xe_bo_vunmap(backup); 1307 if (ret && backup_created) 1308 xe_bo_put(backup); 1309 out_unlock_bo: 1310 if (unmap) 1311 xe_bo_vunmap(bo); 1312 xe_bo_unlock(bo); 1313 return ret; 1314 } 1315 1316 /** 1317 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1318 * @bo: The buffer object to move. 1319 * 1320 * On successful completion, the object memory will be moved back to VRAM. 1321 * 1322 * This is needed to for special handling of pinned VRAM object during 1323 * suspend-resume. 1324 * 1325 * Return: 0 on success. Negative error code on failure. 1326 */ 1327 int xe_bo_restore_pinned(struct xe_bo *bo) 1328 { 1329 struct ttm_operation_ctx ctx = { 1330 .interruptible = false, 1331 .gfp_retry_mayfail = false, 1332 }; 1333 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1334 struct xe_bo *backup = bo->backup_obj; 1335 bool unmap = false; 1336 int ret; 1337 1338 if (!backup) 1339 return 0; 1340 1341 xe_bo_lock(bo, false); 1342 1343 if (!xe_bo_is_pinned(backup)) { 1344 ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); 1345 if (ret) 1346 goto out_unlock_bo; 1347 } 1348 1349 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1350 struct xe_migrate *migrate; 1351 struct dma_fence *fence; 1352 1353 if (bo->tile) 1354 migrate = bo->tile->migrate; 1355 else 1356 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1357 1358 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1359 if (ret) 1360 goto out_unlock_bo; 1361 1362 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1363 if (ret) 1364 goto out_unlock_bo; 1365 1366 fence = xe_migrate_copy(migrate, backup, bo, 1367 backup->ttm.resource, bo->ttm.resource, 1368 false); 1369 if (IS_ERR(fence)) { 1370 ret = PTR_ERR(fence); 1371 goto out_unlock_bo; 1372 } 1373 1374 dma_resv_add_fence(bo->ttm.base.resv, fence, 1375 DMA_RESV_USAGE_KERNEL); 1376 dma_resv_add_fence(backup->ttm.base.resv, fence, 1377 DMA_RESV_USAGE_KERNEL); 1378 dma_fence_put(fence); 1379 } else { 1380 ret = xe_bo_vmap(backup); 1381 if (ret) 1382 goto out_unlock_bo; 1383 1384 if (iosys_map_is_null(&bo->vmap)) { 1385 ret = xe_bo_vmap(bo); 1386 if (ret) 1387 goto out_backup; 1388 unmap = true; 1389 } 1390 1391 xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, 1392 xe_bo_size(bo)); 1393 } 1394 1395 bo->backup_obj = NULL; 1396 1397 out_backup: 1398 xe_bo_vunmap(backup); 1399 if (!bo->backup_obj) { 1400 if (xe_bo_is_pinned(backup)) 1401 ttm_bo_unpin(&backup->ttm); 1402 xe_bo_put(backup); 1403 } 1404 out_unlock_bo: 1405 if (unmap) 1406 xe_bo_vunmap(bo); 1407 xe_bo_unlock(bo); 1408 return ret; 1409 } 1410 1411 int xe_bo_dma_unmap_pinned(struct xe_bo *bo) 1412 { 1413 struct ttm_buffer_object *ttm_bo = &bo->ttm; 1414 struct ttm_tt *tt = ttm_bo->ttm; 1415 1416 if (tt) { 1417 struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); 1418 1419 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1420 dma_buf_unmap_attachment(ttm_bo->base.import_attach, 1421 ttm_bo->sg, 1422 DMA_BIDIRECTIONAL); 1423 ttm_bo->sg = NULL; 1424 xe_tt->sg = NULL; 1425 } else if (xe_tt->sg) { 1426 dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev, 1427 xe_tt->sg, 1428 DMA_BIDIRECTIONAL, 0); 1429 sg_free_table(xe_tt->sg); 1430 xe_tt->sg = NULL; 1431 } 1432 } 1433 1434 return 0; 1435 } 1436 1437 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1438 unsigned long page_offset) 1439 { 1440 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1441 struct xe_res_cursor cursor; 1442 struct xe_vram_region *vram; 1443 1444 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1445 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1446 1447 vram = res_to_mem_region(ttm_bo->resource); 1448 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1449 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1450 } 1451 1452 static void __xe_bo_vunmap(struct xe_bo *bo); 1453 1454 /* 1455 * TODO: Move this function to TTM so we don't rely on how TTM does its 1456 * locking, thereby abusing TTM internals. 1457 */ 1458 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1459 { 1460 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1461 bool locked; 1462 1463 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1464 1465 /* 1466 * We can typically only race with TTM trylocking under the 1467 * lru_lock, which will immediately be unlocked again since 1468 * the ttm_bo refcount is zero at this point. So trylocking *should* 1469 * always succeed here, as long as we hold the lru lock. 1470 */ 1471 spin_lock(&ttm_bo->bdev->lru_lock); 1472 locked = dma_resv_trylock(ttm_bo->base.resv); 1473 spin_unlock(&ttm_bo->bdev->lru_lock); 1474 xe_assert(xe, locked); 1475 1476 return locked; 1477 } 1478 1479 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1480 { 1481 struct dma_resv_iter cursor; 1482 struct dma_fence *fence; 1483 struct dma_fence *replacement = NULL; 1484 struct xe_bo *bo; 1485 1486 if (!xe_bo_is_xe_bo(ttm_bo)) 1487 return; 1488 1489 bo = ttm_to_xe_bo(ttm_bo); 1490 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1491 1492 /* 1493 * Corner case where TTM fails to allocate memory and this BOs resv 1494 * still points the VMs resv 1495 */ 1496 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1497 return; 1498 1499 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1500 return; 1501 1502 /* 1503 * Scrub the preempt fences if any. The unbind fence is already 1504 * attached to the resv. 1505 * TODO: Don't do this for external bos once we scrub them after 1506 * unbind. 1507 */ 1508 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1509 DMA_RESV_USAGE_BOOKKEEP, fence) { 1510 if (xe_fence_is_xe_preempt(fence) && 1511 !dma_fence_is_signaled(fence)) { 1512 if (!replacement) 1513 replacement = dma_fence_get_stub(); 1514 1515 dma_resv_replace_fences(ttm_bo->base.resv, 1516 fence->context, 1517 replacement, 1518 DMA_RESV_USAGE_BOOKKEEP); 1519 } 1520 } 1521 dma_fence_put(replacement); 1522 1523 dma_resv_unlock(ttm_bo->base.resv); 1524 } 1525 1526 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1527 { 1528 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1529 1530 if (!xe_bo_is_xe_bo(ttm_bo)) 1531 return; 1532 1533 if (IS_VF_CCS_BB_VALID(ttm_to_xe_device(ttm_bo->bdev), bo)) 1534 xe_sriov_vf_ccs_detach_bo(bo); 1535 1536 /* 1537 * Object is idle and about to be destroyed. Release the 1538 * dma-buf attachment. 1539 */ 1540 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1541 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1542 struct xe_ttm_tt, ttm); 1543 1544 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1545 DMA_BIDIRECTIONAL); 1546 ttm_bo->sg = NULL; 1547 xe_tt->sg = NULL; 1548 } 1549 } 1550 1551 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1552 { 1553 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1554 1555 if (ttm_bo->ttm) { 1556 struct ttm_placement place = {}; 1557 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1558 1559 drm_WARN_ON(&xe->drm, ret); 1560 } 1561 } 1562 1563 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1564 { 1565 struct ttm_operation_ctx ctx = { 1566 .interruptible = false, 1567 .gfp_retry_mayfail = false, 1568 }; 1569 1570 if (ttm_bo->ttm) { 1571 struct xe_ttm_tt *xe_tt = 1572 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1573 1574 if (xe_tt->purgeable) 1575 xe_ttm_bo_purge(ttm_bo, &ctx); 1576 } 1577 } 1578 1579 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1580 unsigned long offset, void *buf, int len, 1581 int write) 1582 { 1583 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1584 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1585 struct iosys_map vmap; 1586 struct xe_res_cursor cursor; 1587 struct xe_vram_region *vram; 1588 int bytes_left = len; 1589 int err = 0; 1590 1591 xe_bo_assert_held(bo); 1592 xe_device_assert_mem_access(xe); 1593 1594 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1595 return -EIO; 1596 1597 if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) { 1598 struct xe_migrate *migrate = 1599 mem_type_to_migrate(xe, ttm_bo->resource->mem_type); 1600 1601 err = xe_migrate_access_memory(migrate, bo, offset, buf, len, 1602 write); 1603 goto out; 1604 } 1605 1606 vram = res_to_mem_region(ttm_bo->resource); 1607 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1608 xe_bo_size(bo) - (offset & PAGE_MASK), &cursor); 1609 1610 do { 1611 unsigned long page_offset = (offset & ~PAGE_MASK); 1612 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1613 1614 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1615 cursor.start); 1616 if (write) 1617 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1618 else 1619 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1620 1621 buf += byte_count; 1622 offset += byte_count; 1623 bytes_left -= byte_count; 1624 if (bytes_left) 1625 xe_res_next(&cursor, PAGE_SIZE); 1626 } while (bytes_left); 1627 1628 out: 1629 return err ?: len; 1630 } 1631 1632 const struct ttm_device_funcs xe_ttm_funcs = { 1633 .ttm_tt_create = xe_ttm_tt_create, 1634 .ttm_tt_populate = xe_ttm_tt_populate, 1635 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1636 .ttm_tt_destroy = xe_ttm_tt_destroy, 1637 .evict_flags = xe_evict_flags, 1638 .move = xe_bo_move, 1639 .io_mem_reserve = xe_ttm_io_mem_reserve, 1640 .io_mem_pfn = xe_ttm_io_mem_pfn, 1641 .access_memory = xe_ttm_access_memory, 1642 .release_notify = xe_ttm_bo_release_notify, 1643 .eviction_valuable = xe_bo_eviction_valuable, 1644 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1645 .swap_notify = xe_ttm_bo_swap_notify, 1646 }; 1647 1648 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1649 { 1650 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1651 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1652 struct xe_tile *tile; 1653 u8 id; 1654 1655 if (bo->ttm.base.import_attach) 1656 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1657 drm_gem_object_release(&bo->ttm.base); 1658 1659 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1660 1661 for_each_tile(tile, xe, id) 1662 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1663 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1664 1665 #ifdef CONFIG_PROC_FS 1666 if (bo->client) 1667 xe_drm_client_remove_bo(bo); 1668 #endif 1669 1670 if (bo->vm && xe_bo_is_user(bo)) 1671 xe_vm_put(bo->vm); 1672 1673 if (bo->parent_obj) 1674 xe_bo_put(bo->parent_obj); 1675 1676 mutex_lock(&xe->mem_access.vram_userfault.lock); 1677 if (!list_empty(&bo->vram_userfault_link)) 1678 list_del(&bo->vram_userfault_link); 1679 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1680 1681 kfree(bo); 1682 } 1683 1684 static void xe_gem_object_free(struct drm_gem_object *obj) 1685 { 1686 /* Our BO reference counting scheme works as follows: 1687 * 1688 * The gem object kref is typically used throughout the driver, 1689 * and the gem object holds a ttm_buffer_object refcount, so 1690 * that when the last gem object reference is put, which is when 1691 * we end up in this function, we put also that ttm_buffer_object 1692 * refcount. Anything using gem interfaces is then no longer 1693 * allowed to access the object in a way that requires a gem 1694 * refcount, including locking the object. 1695 * 1696 * driver ttm callbacks is allowed to use the ttm_buffer_object 1697 * refcount directly if needed. 1698 */ 1699 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1700 ttm_bo_fini(container_of(obj, struct ttm_buffer_object, base)); 1701 } 1702 1703 static void xe_gem_object_close(struct drm_gem_object *obj, 1704 struct drm_file *file_priv) 1705 { 1706 struct xe_bo *bo = gem_to_xe_bo(obj); 1707 1708 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1709 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1710 1711 xe_bo_lock(bo, false); 1712 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1713 xe_bo_unlock(bo); 1714 } 1715 } 1716 1717 static bool should_migrate_to_smem(struct xe_bo *bo) 1718 { 1719 /* 1720 * NOTE: The following atomic checks are platform-specific. For example, 1721 * if a device supports CXL atomics, these may not be necessary or 1722 * may behave differently. 1723 */ 1724 1725 return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL || 1726 bo->attr.atomic_access == DRM_XE_ATOMIC_CPU; 1727 } 1728 1729 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1730 { 1731 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1732 struct drm_device *ddev = tbo->base.dev; 1733 struct xe_device *xe = to_xe_device(ddev); 1734 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1735 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1736 vm_fault_t ret; 1737 int idx, r = 0; 1738 1739 if (needs_rpm) 1740 xe_pm_runtime_get(xe); 1741 1742 ret = ttm_bo_vm_reserve(tbo, vmf); 1743 if (ret) 1744 goto out; 1745 1746 if (drm_dev_enter(ddev, &idx)) { 1747 trace_xe_bo_cpu_fault(bo); 1748 1749 if (should_migrate_to_smem(bo)) { 1750 xe_assert(xe, bo->flags & XE_BO_FLAG_SYSTEM); 1751 1752 r = xe_bo_migrate(bo, XE_PL_TT); 1753 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1754 ret = VM_FAULT_NOPAGE; 1755 else if (r) 1756 ret = VM_FAULT_SIGBUS; 1757 } 1758 if (!ret) 1759 ret = ttm_bo_vm_fault_reserved(vmf, 1760 vmf->vma->vm_page_prot, 1761 TTM_BO_VM_NUM_PREFAULT); 1762 drm_dev_exit(idx); 1763 1764 if (ret == VM_FAULT_RETRY && 1765 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1766 goto out; 1767 1768 /* 1769 * ttm_bo_vm_reserve() already has dma_resv_lock. 1770 */ 1771 if (ret == VM_FAULT_NOPAGE && 1772 mem_type_is_vram(tbo->resource->mem_type)) { 1773 mutex_lock(&xe->mem_access.vram_userfault.lock); 1774 if (list_empty(&bo->vram_userfault_link)) 1775 list_add(&bo->vram_userfault_link, 1776 &xe->mem_access.vram_userfault.list); 1777 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1778 } 1779 } else { 1780 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1781 } 1782 1783 dma_resv_unlock(tbo->base.resv); 1784 out: 1785 if (needs_rpm) 1786 xe_pm_runtime_put(xe); 1787 1788 return ret; 1789 } 1790 1791 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1792 void *buf, int len, int write) 1793 { 1794 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1795 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1796 struct xe_device *xe = xe_bo_device(bo); 1797 int ret; 1798 1799 xe_pm_runtime_get(xe); 1800 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1801 xe_pm_runtime_put(xe); 1802 1803 return ret; 1804 } 1805 1806 /** 1807 * xe_bo_read() - Read from an xe_bo 1808 * @bo: The buffer object to read from. 1809 * @offset: The byte offset to start reading from. 1810 * @dst: Location to store the read. 1811 * @size: Size in bytes for the read. 1812 * 1813 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1814 * 1815 * Return: Zero on success, or negative error. 1816 */ 1817 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1818 { 1819 int ret; 1820 1821 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1822 if (ret >= 0 && ret != size) 1823 ret = -EIO; 1824 else if (ret == size) 1825 ret = 0; 1826 1827 return ret; 1828 } 1829 1830 static const struct vm_operations_struct xe_gem_vm_ops = { 1831 .fault = xe_gem_fault, 1832 .open = ttm_bo_vm_open, 1833 .close = ttm_bo_vm_close, 1834 .access = xe_bo_vm_access, 1835 }; 1836 1837 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1838 .free = xe_gem_object_free, 1839 .close = xe_gem_object_close, 1840 .mmap = drm_gem_ttm_mmap, 1841 .export = xe_gem_prime_export, 1842 .vm_ops = &xe_gem_vm_ops, 1843 }; 1844 1845 /** 1846 * xe_bo_alloc - Allocate storage for a struct xe_bo 1847 * 1848 * This function is intended to allocate storage to be used for input 1849 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1850 * created is needed before the call to __xe_bo_create_locked(). 1851 * If __xe_bo_create_locked ends up never to be called, then the 1852 * storage allocated with this function needs to be freed using 1853 * xe_bo_free(). 1854 * 1855 * Return: A pointer to an uninitialized struct xe_bo on success, 1856 * ERR_PTR(-ENOMEM) on error. 1857 */ 1858 struct xe_bo *xe_bo_alloc(void) 1859 { 1860 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1861 1862 if (!bo) 1863 return ERR_PTR(-ENOMEM); 1864 1865 return bo; 1866 } 1867 1868 /** 1869 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1870 * @bo: The buffer object storage. 1871 * 1872 * Refer to xe_bo_alloc() documentation for valid use-cases. 1873 */ 1874 void xe_bo_free(struct xe_bo *bo) 1875 { 1876 kfree(bo); 1877 } 1878 1879 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1880 struct xe_tile *tile, struct dma_resv *resv, 1881 struct ttm_lru_bulk_move *bulk, size_t size, 1882 u16 cpu_caching, enum ttm_bo_type type, 1883 u32 flags) 1884 { 1885 struct ttm_operation_ctx ctx = { 1886 .interruptible = true, 1887 .no_wait_gpu = false, 1888 .gfp_retry_mayfail = true, 1889 }; 1890 struct ttm_placement *placement; 1891 uint32_t alignment; 1892 size_t aligned_size; 1893 int err; 1894 1895 /* Only kernel objects should set GT */ 1896 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1897 1898 if (XE_WARN_ON(!size)) { 1899 xe_bo_free(bo); 1900 return ERR_PTR(-EINVAL); 1901 } 1902 1903 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1904 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1905 return ERR_PTR(-EINVAL); 1906 1907 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1908 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1909 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1910 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1911 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1912 1913 aligned_size = ALIGN(size, align); 1914 if (type != ttm_bo_type_device) 1915 size = ALIGN(size, align); 1916 flags |= XE_BO_FLAG_INTERNAL_64K; 1917 alignment = align >> PAGE_SHIFT; 1918 } else { 1919 aligned_size = ALIGN(size, SZ_4K); 1920 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1921 alignment = SZ_4K >> PAGE_SHIFT; 1922 } 1923 1924 if (type == ttm_bo_type_device && aligned_size != size) 1925 return ERR_PTR(-EINVAL); 1926 1927 if (!bo) { 1928 bo = xe_bo_alloc(); 1929 if (IS_ERR(bo)) 1930 return bo; 1931 } 1932 1933 bo->ccs_cleared = false; 1934 bo->tile = tile; 1935 bo->flags = flags; 1936 bo->cpu_caching = cpu_caching; 1937 bo->ttm.base.funcs = &xe_gem_object_funcs; 1938 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1939 INIT_LIST_HEAD(&bo->pinned_link); 1940 #ifdef CONFIG_PROC_FS 1941 INIT_LIST_HEAD(&bo->client_link); 1942 #endif 1943 INIT_LIST_HEAD(&bo->vram_userfault_link); 1944 1945 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1946 1947 if (resv) { 1948 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1949 ctx.resv = resv; 1950 } 1951 1952 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1953 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1954 if (WARN_ON(err)) { 1955 xe_ttm_bo_destroy(&bo->ttm); 1956 return ERR_PTR(err); 1957 } 1958 } 1959 1960 /* Defer populating type_sg bos */ 1961 placement = (type == ttm_bo_type_sg || 1962 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1963 &bo->placement; 1964 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1965 placement, alignment, 1966 &ctx, NULL, resv, xe_ttm_bo_destroy); 1967 if (err) 1968 return ERR_PTR(err); 1969 1970 /* 1971 * The VRAM pages underneath are potentially still being accessed by the 1972 * GPU, as per async GPU clearing and async evictions. However TTM makes 1973 * sure to add any corresponding move/clear fences into the objects 1974 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1975 * 1976 * For KMD internal buffers we don't care about GPU clearing, however we 1977 * still need to handle async evictions, where the VRAM is still being 1978 * accessed by the GPU. Most internal callers are not expecting this, 1979 * since they are missing the required synchronisation before accessing 1980 * the memory. To keep things simple just sync wait any kernel fences 1981 * here, if the buffer is designated KMD internal. 1982 * 1983 * For normal userspace objects we should already have the required 1984 * pipelining or sync waiting elsewhere, since we already have to deal 1985 * with things like async GPU clearing. 1986 */ 1987 if (type == ttm_bo_type_kernel) { 1988 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1989 DMA_RESV_USAGE_KERNEL, 1990 ctx.interruptible, 1991 MAX_SCHEDULE_TIMEOUT); 1992 1993 if (timeout < 0) { 1994 if (!resv) 1995 dma_resv_unlock(bo->ttm.base.resv); 1996 xe_bo_put(bo); 1997 return ERR_PTR(timeout); 1998 } 1999 } 2000 2001 bo->created = true; 2002 if (bulk) 2003 ttm_bo_set_bulk_move(&bo->ttm, bulk); 2004 else 2005 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2006 2007 return bo; 2008 } 2009 2010 static int __xe_bo_fixed_placement(struct xe_device *xe, 2011 struct xe_bo *bo, 2012 u32 flags, 2013 u64 start, u64 end, u64 size) 2014 { 2015 struct ttm_place *place = bo->placements; 2016 2017 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 2018 return -EINVAL; 2019 2020 place->flags = TTM_PL_FLAG_CONTIGUOUS; 2021 place->fpfn = start >> PAGE_SHIFT; 2022 place->lpfn = end >> PAGE_SHIFT; 2023 2024 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 2025 case XE_BO_FLAG_VRAM0: 2026 place->mem_type = XE_PL_VRAM0; 2027 break; 2028 case XE_BO_FLAG_VRAM1: 2029 place->mem_type = XE_PL_VRAM1; 2030 break; 2031 case XE_BO_FLAG_STOLEN: 2032 place->mem_type = XE_PL_STOLEN; 2033 break; 2034 2035 default: 2036 /* 0 or multiple of the above set */ 2037 return -EINVAL; 2038 } 2039 2040 bo->placement = (struct ttm_placement) { 2041 .num_placement = 1, 2042 .placement = place, 2043 }; 2044 2045 return 0; 2046 } 2047 2048 static struct xe_bo * 2049 __xe_bo_create_locked(struct xe_device *xe, 2050 struct xe_tile *tile, struct xe_vm *vm, 2051 size_t size, u64 start, u64 end, 2052 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 2053 u64 alignment) 2054 { 2055 struct xe_bo *bo = NULL; 2056 int err; 2057 2058 if (vm) 2059 xe_vm_assert_held(vm); 2060 2061 if (start || end != ~0ULL) { 2062 bo = xe_bo_alloc(); 2063 if (IS_ERR(bo)) 2064 return bo; 2065 2066 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 2067 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 2068 if (err) { 2069 xe_bo_free(bo); 2070 return ERR_PTR(err); 2071 } 2072 } 2073 2074 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 2075 vm && !xe_vm_in_fault_mode(vm) && 2076 flags & XE_BO_FLAG_USER ? 2077 &vm->lru_bulk_move : NULL, size, 2078 cpu_caching, type, flags); 2079 if (IS_ERR(bo)) 2080 return bo; 2081 2082 bo->min_align = alignment; 2083 2084 /* 2085 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 2086 * to ensure the shared resv doesn't disappear under the bo, the bo 2087 * will keep a reference to the vm, and avoid circular references 2088 * by having all the vm's bo refereferences released at vm close 2089 * time. 2090 */ 2091 if (vm && xe_bo_is_user(bo)) 2092 xe_vm_get(vm); 2093 bo->vm = vm; 2094 2095 if (bo->flags & XE_BO_FLAG_GGTT) { 2096 struct xe_tile *t; 2097 u8 id; 2098 2099 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 2100 if (!tile && flags & XE_BO_FLAG_STOLEN) 2101 tile = xe_device_get_root_tile(xe); 2102 2103 xe_assert(xe, tile); 2104 } 2105 2106 for_each_tile(t, xe, id) { 2107 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 2108 continue; 2109 2110 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 2111 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 2112 start + xe_bo_size(bo), U64_MAX); 2113 } else { 2114 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 2115 } 2116 if (err) 2117 goto err_unlock_put_bo; 2118 } 2119 } 2120 2121 trace_xe_bo_create(bo); 2122 return bo; 2123 2124 err_unlock_put_bo: 2125 __xe_bo_unset_bulk_move(bo); 2126 xe_bo_unlock_vm_held(bo); 2127 xe_bo_put(bo); 2128 return ERR_PTR(err); 2129 } 2130 2131 struct xe_bo * 2132 xe_bo_create_locked_range(struct xe_device *xe, 2133 struct xe_tile *tile, struct xe_vm *vm, 2134 size_t size, u64 start, u64 end, 2135 enum ttm_bo_type type, u32 flags, u64 alignment) 2136 { 2137 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 2138 flags, alignment); 2139 } 2140 2141 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 2142 struct xe_vm *vm, size_t size, 2143 enum ttm_bo_type type, u32 flags) 2144 { 2145 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 2146 flags, 0); 2147 } 2148 2149 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 2150 struct xe_vm *vm, size_t size, 2151 u16 cpu_caching, 2152 u32 flags) 2153 { 2154 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 2155 cpu_caching, ttm_bo_type_device, 2156 flags | XE_BO_FLAG_USER, 0); 2157 if (!IS_ERR(bo)) 2158 xe_bo_unlock_vm_held(bo); 2159 2160 return bo; 2161 } 2162 2163 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 2164 struct xe_vm *vm, size_t size, 2165 enum ttm_bo_type type, u32 flags) 2166 { 2167 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 2168 2169 if (!IS_ERR(bo)) 2170 xe_bo_unlock_vm_held(bo); 2171 2172 return bo; 2173 } 2174 2175 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 2176 struct xe_vm *vm, 2177 size_t size, u64 offset, 2178 enum ttm_bo_type type, u32 flags) 2179 { 2180 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 2181 type, flags, 0); 2182 } 2183 2184 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 2185 struct xe_tile *tile, 2186 struct xe_vm *vm, 2187 size_t size, u64 offset, 2188 enum ttm_bo_type type, u32 flags, 2189 u64 alignment) 2190 { 2191 struct xe_bo *bo; 2192 int err; 2193 u64 start = offset == ~0ull ? 0 : offset; 2194 u64 end = offset == ~0ull ? offset : start + size; 2195 2196 if (flags & XE_BO_FLAG_STOLEN && 2197 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 2198 flags |= XE_BO_FLAG_GGTT; 2199 2200 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 2201 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, 2202 alignment); 2203 if (IS_ERR(bo)) 2204 return bo; 2205 2206 err = xe_bo_pin(bo); 2207 if (err) 2208 goto err_put; 2209 2210 err = xe_bo_vmap(bo); 2211 if (err) 2212 goto err_unpin; 2213 2214 xe_bo_unlock_vm_held(bo); 2215 2216 return bo; 2217 2218 err_unpin: 2219 xe_bo_unpin(bo); 2220 err_put: 2221 xe_bo_unlock_vm_held(bo); 2222 xe_bo_put(bo); 2223 return ERR_PTR(err); 2224 } 2225 2226 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2227 struct xe_vm *vm, size_t size, 2228 enum ttm_bo_type type, u32 flags) 2229 { 2230 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 2231 } 2232 2233 static void __xe_bo_unpin_map_no_vm(void *arg) 2234 { 2235 xe_bo_unpin_map_no_vm(arg); 2236 } 2237 2238 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2239 size_t size, u32 flags) 2240 { 2241 struct xe_bo *bo; 2242 int ret; 2243 2244 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2245 2246 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2247 if (IS_ERR(bo)) 2248 return bo; 2249 2250 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2251 if (ret) 2252 return ERR_PTR(ret); 2253 2254 return bo; 2255 } 2256 2257 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2258 const void *data, size_t size, u32 flags) 2259 { 2260 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2261 2262 if (IS_ERR(bo)) 2263 return bo; 2264 2265 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2266 2267 return bo; 2268 } 2269 2270 /** 2271 * xe_managed_bo_reinit_in_vram 2272 * @xe: xe device 2273 * @tile: Tile where the new buffer will be created 2274 * @src: Managed buffer object allocated in system memory 2275 * 2276 * Replace a managed src buffer object allocated in system memory with a new 2277 * one allocated in vram, copying the data between them. 2278 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2279 * is responsible for making sure that any old references to it are updated. 2280 * 2281 * Returns 0 for success, negative error code otherwise. 2282 */ 2283 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2284 { 2285 struct xe_bo *bo; 2286 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2287 2288 dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | 2289 XE_BO_FLAG_PINNED_NORESTORE); 2290 2291 xe_assert(xe, IS_DGFX(xe)); 2292 xe_assert(xe, !(*src)->vmap.is_iomem); 2293 2294 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2295 xe_bo_size(*src), dst_flags); 2296 if (IS_ERR(bo)) 2297 return PTR_ERR(bo); 2298 2299 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2300 *src = bo; 2301 2302 return 0; 2303 } 2304 2305 /* 2306 * XXX: This is in the VM bind data path, likely should calculate this once and 2307 * store, with a recalculation if the BO is moved. 2308 */ 2309 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2310 { 2311 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2312 2313 switch (res->mem_type) { 2314 case XE_PL_STOLEN: 2315 return xe_ttm_stolen_gpu_offset(xe); 2316 case XE_PL_TT: 2317 case XE_PL_SYSTEM: 2318 return 0; 2319 default: 2320 return res_to_mem_region(res)->dpa_base; 2321 } 2322 return 0; 2323 } 2324 2325 /** 2326 * xe_bo_pin_external - pin an external BO 2327 * @bo: buffer object to be pinned 2328 * @in_place: Pin in current placement, don't attempt to migrate. 2329 * 2330 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2331 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2332 * asserts and code to ensure evict / restore on suspend / resume. 2333 * 2334 * Returns 0 for success, negative error code otherwise. 2335 */ 2336 int xe_bo_pin_external(struct xe_bo *bo, bool in_place) 2337 { 2338 struct xe_device *xe = xe_bo_device(bo); 2339 int err; 2340 2341 xe_assert(xe, !bo->vm); 2342 xe_assert(xe, xe_bo_is_user(bo)); 2343 2344 if (!xe_bo_is_pinned(bo)) { 2345 if (!in_place) { 2346 err = xe_bo_validate(bo, NULL, false); 2347 if (err) 2348 return err; 2349 } 2350 2351 spin_lock(&xe->pinned.lock); 2352 list_add_tail(&bo->pinned_link, &xe->pinned.late.external); 2353 spin_unlock(&xe->pinned.lock); 2354 } 2355 2356 ttm_bo_pin(&bo->ttm); 2357 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2358 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2359 2360 /* 2361 * FIXME: If we always use the reserve / unreserve functions for locking 2362 * we do not need this. 2363 */ 2364 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2365 2366 return 0; 2367 } 2368 2369 int xe_bo_pin(struct xe_bo *bo) 2370 { 2371 struct ttm_place *place = &bo->placements[0]; 2372 struct xe_device *xe = xe_bo_device(bo); 2373 int err; 2374 2375 /* We currently don't expect user BO to be pinned */ 2376 xe_assert(xe, !xe_bo_is_user(bo)); 2377 2378 /* Pinned object must be in GGTT or have pinned flag */ 2379 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2380 XE_BO_FLAG_GGTT)); 2381 2382 /* 2383 * No reason we can't support pinning imported dma-bufs we just don't 2384 * expect to pin an imported dma-buf. 2385 */ 2386 xe_assert(xe, !bo->ttm.base.import_attach); 2387 2388 /* We only expect at most 1 pin */ 2389 xe_assert(xe, !xe_bo_is_pinned(bo)); 2390 2391 err = xe_bo_validate(bo, NULL, false); 2392 if (err) 2393 return err; 2394 2395 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2396 spin_lock(&xe->pinned.lock); 2397 if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) 2398 list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); 2399 else 2400 list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); 2401 spin_unlock(&xe->pinned.lock); 2402 } 2403 2404 ttm_bo_pin(&bo->ttm); 2405 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2406 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2407 2408 /* 2409 * FIXME: If we always use the reserve / unreserve functions for locking 2410 * we do not need this. 2411 */ 2412 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * xe_bo_unpin_external - unpin an external BO 2419 * @bo: buffer object to be unpinned 2420 * 2421 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2422 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2423 * asserts and code to ensure evict / restore on suspend / resume. 2424 * 2425 * Returns 0 for success, negative error code otherwise. 2426 */ 2427 void xe_bo_unpin_external(struct xe_bo *bo) 2428 { 2429 struct xe_device *xe = xe_bo_device(bo); 2430 2431 xe_assert(xe, !bo->vm); 2432 xe_assert(xe, xe_bo_is_pinned(bo)); 2433 xe_assert(xe, xe_bo_is_user(bo)); 2434 2435 spin_lock(&xe->pinned.lock); 2436 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2437 list_del_init(&bo->pinned_link); 2438 spin_unlock(&xe->pinned.lock); 2439 2440 ttm_bo_unpin(&bo->ttm); 2441 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2442 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2443 2444 /* 2445 * FIXME: If we always use the reserve / unreserve functions for locking 2446 * we do not need this. 2447 */ 2448 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2449 } 2450 2451 void xe_bo_unpin(struct xe_bo *bo) 2452 { 2453 struct ttm_place *place = &bo->placements[0]; 2454 struct xe_device *xe = xe_bo_device(bo); 2455 2456 xe_assert(xe, !bo->ttm.base.import_attach); 2457 xe_assert(xe, xe_bo_is_pinned(bo)); 2458 2459 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2460 spin_lock(&xe->pinned.lock); 2461 xe_assert(xe, !list_empty(&bo->pinned_link)); 2462 list_del_init(&bo->pinned_link); 2463 spin_unlock(&xe->pinned.lock); 2464 2465 if (bo->backup_obj) { 2466 if (xe_bo_is_pinned(bo->backup_obj)) 2467 ttm_bo_unpin(&bo->backup_obj->ttm); 2468 xe_bo_put(bo->backup_obj); 2469 bo->backup_obj = NULL; 2470 } 2471 } 2472 ttm_bo_unpin(&bo->ttm); 2473 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2474 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2475 } 2476 2477 /** 2478 * xe_bo_validate() - Make sure the bo is in an allowed placement 2479 * @bo: The bo, 2480 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2481 * NULL. Used together with @allow_res_evict. 2482 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2483 * reservation object. 2484 * 2485 * Make sure the bo is in allowed placement, migrating it if necessary. If 2486 * needed, other bos will be evicted. If bos selected for eviction shares 2487 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2488 * set to true, otherwise they will be bypassed. 2489 * 2490 * Return: 0 on success, negative error code on failure. May return 2491 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2492 */ 2493 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2494 { 2495 struct ttm_operation_ctx ctx = { 2496 .interruptible = true, 2497 .no_wait_gpu = false, 2498 .gfp_retry_mayfail = true, 2499 }; 2500 int ret; 2501 2502 if (xe_bo_is_pinned(bo)) 2503 return 0; 2504 2505 if (vm) { 2506 lockdep_assert_held(&vm->lock); 2507 xe_vm_assert_held(vm); 2508 2509 ctx.allow_res_evict = allow_res_evict; 2510 ctx.resv = xe_vm_resv(vm); 2511 } 2512 2513 xe_vm_set_validating(vm, allow_res_evict); 2514 trace_xe_bo_validate(bo); 2515 ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2516 xe_vm_clear_validating(vm, allow_res_evict); 2517 2518 return ret; 2519 } 2520 2521 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2522 { 2523 if (bo->destroy == &xe_ttm_bo_destroy) 2524 return true; 2525 2526 return false; 2527 } 2528 2529 /* 2530 * Resolve a BO address. There is no assert to check if the proper lock is held 2531 * so it should only be used in cases where it is not fatal to get the wrong 2532 * address, such as printing debug information, but not in cases where memory is 2533 * written based on this result. 2534 */ 2535 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2536 { 2537 struct xe_device *xe = xe_bo_device(bo); 2538 struct xe_res_cursor cur; 2539 u64 page; 2540 2541 xe_assert(xe, page_size <= PAGE_SIZE); 2542 page = offset >> PAGE_SHIFT; 2543 offset &= (PAGE_SIZE - 1); 2544 2545 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2546 xe_assert(xe, bo->ttm.ttm); 2547 2548 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2549 page_size, &cur); 2550 return xe_res_dma(&cur) + offset; 2551 } else { 2552 struct xe_res_cursor cur; 2553 2554 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2555 page_size, &cur); 2556 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2557 } 2558 } 2559 2560 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2561 { 2562 if (!READ_ONCE(bo->ttm.pin_count)) 2563 xe_bo_assert_held(bo); 2564 return __xe_bo_addr(bo, offset, page_size); 2565 } 2566 2567 int xe_bo_vmap(struct xe_bo *bo) 2568 { 2569 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2570 void *virtual; 2571 bool is_iomem; 2572 int ret; 2573 2574 xe_bo_assert_held(bo); 2575 2576 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2577 !force_contiguous(bo->flags))) 2578 return -EINVAL; 2579 2580 if (!iosys_map_is_null(&bo->vmap)) 2581 return 0; 2582 2583 /* 2584 * We use this more or less deprecated interface for now since 2585 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2586 * single page bos, which is done here. 2587 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2588 * to use struct iosys_map. 2589 */ 2590 ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap); 2591 if (ret) 2592 return ret; 2593 2594 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2595 if (is_iomem) 2596 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2597 else 2598 iosys_map_set_vaddr(&bo->vmap, virtual); 2599 2600 return 0; 2601 } 2602 2603 static void __xe_bo_vunmap(struct xe_bo *bo) 2604 { 2605 if (!iosys_map_is_null(&bo->vmap)) { 2606 iosys_map_clear(&bo->vmap); 2607 ttm_bo_kunmap(&bo->kmap); 2608 } 2609 } 2610 2611 void xe_bo_vunmap(struct xe_bo *bo) 2612 { 2613 xe_bo_assert_held(bo); 2614 __xe_bo_vunmap(bo); 2615 } 2616 2617 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2618 { 2619 if (value == DRM_XE_PXP_TYPE_NONE) 2620 return 0; 2621 2622 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2623 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2624 return -EINVAL; 2625 2626 return xe_pxp_key_assign(xe->pxp, bo); 2627 } 2628 2629 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2630 struct xe_bo *bo, 2631 u64 value); 2632 2633 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2634 [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, 2635 }; 2636 2637 static int gem_create_user_ext_set_property(struct xe_device *xe, 2638 struct xe_bo *bo, 2639 u64 extension) 2640 { 2641 u64 __user *address = u64_to_user_ptr(extension); 2642 struct drm_xe_ext_set_property ext; 2643 int err; 2644 u32 idx; 2645 2646 err = copy_from_user(&ext, address, sizeof(ext)); 2647 if (XE_IOCTL_DBG(xe, err)) 2648 return -EFAULT; 2649 2650 if (XE_IOCTL_DBG(xe, ext.property >= 2651 ARRAY_SIZE(gem_create_set_property_funcs)) || 2652 XE_IOCTL_DBG(xe, ext.pad) || 2653 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2654 return -EINVAL; 2655 2656 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2657 if (!gem_create_set_property_funcs[idx]) 2658 return -EINVAL; 2659 2660 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2661 } 2662 2663 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2664 struct xe_bo *bo, 2665 u64 extension); 2666 2667 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2668 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2669 }; 2670 2671 #define MAX_USER_EXTENSIONS 16 2672 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2673 u64 extensions, int ext_number) 2674 { 2675 u64 __user *address = u64_to_user_ptr(extensions); 2676 struct drm_xe_user_extension ext; 2677 int err; 2678 u32 idx; 2679 2680 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2681 return -E2BIG; 2682 2683 err = copy_from_user(&ext, address, sizeof(ext)); 2684 if (XE_IOCTL_DBG(xe, err)) 2685 return -EFAULT; 2686 2687 if (XE_IOCTL_DBG(xe, ext.pad) || 2688 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2689 return -EINVAL; 2690 2691 idx = array_index_nospec(ext.name, 2692 ARRAY_SIZE(gem_create_user_extension_funcs)); 2693 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2694 if (XE_IOCTL_DBG(xe, err)) 2695 return err; 2696 2697 if (ext.next_extension) 2698 return gem_create_user_extensions(xe, bo, ext.next_extension, 2699 ++ext_number); 2700 2701 return 0; 2702 } 2703 2704 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2705 struct drm_file *file) 2706 { 2707 struct xe_device *xe = to_xe_device(dev); 2708 struct xe_file *xef = to_xe_file(file); 2709 struct drm_xe_gem_create *args = data; 2710 struct xe_vm *vm = NULL; 2711 ktime_t end = 0; 2712 struct xe_bo *bo; 2713 unsigned int bo_flags; 2714 u32 handle; 2715 int err; 2716 2717 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2718 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2719 return -EINVAL; 2720 2721 /* at least one valid memory placement must be specified */ 2722 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2723 !args->placement)) 2724 return -EINVAL; 2725 2726 if (XE_IOCTL_DBG(xe, args->flags & 2727 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2728 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2729 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2730 return -EINVAL; 2731 2732 if (XE_IOCTL_DBG(xe, args->handle)) 2733 return -EINVAL; 2734 2735 if (XE_IOCTL_DBG(xe, !args->size)) 2736 return -EINVAL; 2737 2738 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2739 return -EINVAL; 2740 2741 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2742 return -EINVAL; 2743 2744 bo_flags = 0; 2745 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2746 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2747 2748 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2749 bo_flags |= XE_BO_FLAG_SCANOUT; 2750 2751 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2752 2753 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2754 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2755 (bo_flags & XE_BO_FLAG_SCANOUT) && 2756 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2757 IS_ALIGNED(args->size, SZ_64K)) 2758 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2759 2760 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2761 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2762 return -EINVAL; 2763 2764 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2765 } 2766 2767 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2768 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2769 return -EINVAL; 2770 2771 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2772 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2773 return -EINVAL; 2774 2775 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2776 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2777 return -EINVAL; 2778 2779 if (args->vm_id) { 2780 vm = xe_vm_lookup(xef, args->vm_id); 2781 if (XE_IOCTL_DBG(xe, !vm)) 2782 return -ENOENT; 2783 } 2784 2785 retry: 2786 if (vm) { 2787 err = xe_vm_lock(vm, true); 2788 if (err) 2789 goto out_vm; 2790 } 2791 2792 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2793 bo_flags); 2794 2795 if (vm) 2796 xe_vm_unlock(vm); 2797 2798 if (IS_ERR(bo)) { 2799 err = PTR_ERR(bo); 2800 if (xe_vm_validate_should_retry(NULL, err, &end)) 2801 goto retry; 2802 goto out_vm; 2803 } 2804 2805 if (args->extensions) { 2806 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2807 if (err) 2808 goto out_bulk; 2809 } 2810 2811 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2812 if (err) 2813 goto out_bulk; 2814 2815 args->handle = handle; 2816 goto out_put; 2817 2818 out_bulk: 2819 if (vm && !xe_vm_in_fault_mode(vm)) { 2820 xe_vm_lock(vm, false); 2821 __xe_bo_unset_bulk_move(bo); 2822 xe_vm_unlock(vm); 2823 } 2824 out_put: 2825 xe_bo_put(bo); 2826 out_vm: 2827 if (vm) 2828 xe_vm_put(vm); 2829 2830 return err; 2831 } 2832 2833 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2834 struct drm_file *file) 2835 { 2836 struct xe_device *xe = to_xe_device(dev); 2837 struct drm_xe_gem_mmap_offset *args = data; 2838 struct drm_gem_object *gem_obj; 2839 2840 if (XE_IOCTL_DBG(xe, args->extensions) || 2841 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2842 return -EINVAL; 2843 2844 if (XE_IOCTL_DBG(xe, args->flags & 2845 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2846 return -EINVAL; 2847 2848 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2849 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2850 return -EINVAL; 2851 2852 if (XE_IOCTL_DBG(xe, args->handle)) 2853 return -EINVAL; 2854 2855 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2856 return -EINVAL; 2857 2858 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2859 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2860 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2861 return 0; 2862 } 2863 2864 gem_obj = drm_gem_object_lookup(file, args->handle); 2865 if (XE_IOCTL_DBG(xe, !gem_obj)) 2866 return -ENOENT; 2867 2868 /* The mmap offset was set up at BO allocation time. */ 2869 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2870 2871 xe_bo_put(gem_to_xe_bo(gem_obj)); 2872 return 0; 2873 } 2874 2875 /** 2876 * xe_bo_lock() - Lock the buffer object's dma_resv object 2877 * @bo: The struct xe_bo whose lock is to be taken 2878 * @intr: Whether to perform any wait interruptible 2879 * 2880 * Locks the buffer object's dma_resv object. If the buffer object is 2881 * pointing to a shared dma_resv object, that shared lock is locked. 2882 * 2883 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2884 * contended lock was interrupted. If @intr is set to false, the 2885 * function always returns 0. 2886 */ 2887 int xe_bo_lock(struct xe_bo *bo, bool intr) 2888 { 2889 if (intr) 2890 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2891 2892 dma_resv_lock(bo->ttm.base.resv, NULL); 2893 2894 return 0; 2895 } 2896 2897 /** 2898 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2899 * @bo: The struct xe_bo whose lock is to be released. 2900 * 2901 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2902 */ 2903 void xe_bo_unlock(struct xe_bo *bo) 2904 { 2905 dma_resv_unlock(bo->ttm.base.resv); 2906 } 2907 2908 /** 2909 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2910 * @bo: The buffer object to migrate 2911 * @mem_type: The TTM memory type intended to migrate to 2912 * 2913 * Check whether the buffer object supports migration to the 2914 * given memory type. Note that pinning may affect the ability to migrate as 2915 * returned by this function. 2916 * 2917 * This function is primarily intended as a helper for checking the 2918 * possibility to migrate buffer objects and can be called without 2919 * the object lock held. 2920 * 2921 * Return: true if migration is possible, false otherwise. 2922 */ 2923 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2924 { 2925 unsigned int cur_place; 2926 2927 if (bo->ttm.type == ttm_bo_type_kernel) 2928 return true; 2929 2930 if (bo->ttm.type == ttm_bo_type_sg) 2931 return false; 2932 2933 for (cur_place = 0; cur_place < bo->placement.num_placement; 2934 cur_place++) { 2935 if (bo->placements[cur_place].mem_type == mem_type) 2936 return true; 2937 } 2938 2939 return false; 2940 } 2941 2942 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2943 { 2944 memset(place, 0, sizeof(*place)); 2945 place->mem_type = mem_type; 2946 } 2947 2948 /** 2949 * xe_bo_migrate - Migrate an object to the desired region id 2950 * @bo: The buffer object to migrate. 2951 * @mem_type: The TTM region type to migrate to. 2952 * 2953 * Attempt to migrate the buffer object to the desired memory region. The 2954 * buffer object may not be pinned, and must be locked. 2955 * On successful completion, the object memory type will be updated, 2956 * but an async migration task may not have completed yet, and to 2957 * accomplish that, the object's kernel fences must be signaled with 2958 * the object lock held. 2959 * 2960 * Return: 0 on success. Negative error code on failure. In particular may 2961 * return -EINTR or -ERESTARTSYS if signal pending. 2962 */ 2963 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2964 { 2965 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2966 struct ttm_operation_ctx ctx = { 2967 .interruptible = true, 2968 .no_wait_gpu = false, 2969 .gfp_retry_mayfail = true, 2970 }; 2971 struct ttm_placement placement; 2972 struct ttm_place requested; 2973 2974 xe_bo_assert_held(bo); 2975 2976 if (bo->ttm.resource->mem_type == mem_type) 2977 return 0; 2978 2979 if (xe_bo_is_pinned(bo)) 2980 return -EBUSY; 2981 2982 if (!xe_bo_can_migrate(bo, mem_type)) 2983 return -EINVAL; 2984 2985 xe_place_from_ttm_type(mem_type, &requested); 2986 placement.num_placement = 1; 2987 placement.placement = &requested; 2988 2989 /* 2990 * Stolen needs to be handled like below VRAM handling if we ever need 2991 * to support it. 2992 */ 2993 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2994 2995 if (mem_type_is_vram(mem_type)) { 2996 u32 c = 0; 2997 2998 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2999 } 3000 3001 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 3002 } 3003 3004 /** 3005 * xe_bo_evict - Evict an object to evict placement 3006 * @bo: The buffer object to migrate. 3007 * 3008 * On successful completion, the object memory will be moved to evict 3009 * placement. This function blocks until the object has been fully moved. 3010 * 3011 * Return: 0 on success. Negative error code on failure. 3012 */ 3013 int xe_bo_evict(struct xe_bo *bo) 3014 { 3015 struct ttm_operation_ctx ctx = { 3016 .interruptible = false, 3017 .no_wait_gpu = false, 3018 .gfp_retry_mayfail = true, 3019 }; 3020 struct ttm_placement placement; 3021 int ret; 3022 3023 xe_evict_flags(&bo->ttm, &placement); 3024 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 3025 if (ret) 3026 return ret; 3027 3028 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 3029 false, MAX_SCHEDULE_TIMEOUT); 3030 3031 return 0; 3032 } 3033 3034 /** 3035 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 3036 * placed in system memory. 3037 * @bo: The xe_bo 3038 * 3039 * Return: true if extra pages need to be allocated, false otherwise. 3040 */ 3041 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 3042 { 3043 struct xe_device *xe = xe_bo_device(bo); 3044 3045 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 3046 return false; 3047 3048 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 3049 return false; 3050 3051 /* On discrete GPUs, if the GPU can access this buffer from 3052 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 3053 * can't be used since there's no CCS storage associated with 3054 * non-VRAM addresses. 3055 */ 3056 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 3057 return false; 3058 3059 /* 3060 * Compression implies coh_none, therefore we know for sure that WB 3061 * memory can't currently use compression, which is likely one of the 3062 * common cases. 3063 */ 3064 if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB) 3065 return false; 3066 3067 return true; 3068 } 3069 3070 /** 3071 * __xe_bo_release_dummy() - Dummy kref release function 3072 * @kref: The embedded struct kref. 3073 * 3074 * Dummy release function for xe_bo_put_deferred(). Keep off. 3075 */ 3076 void __xe_bo_release_dummy(struct kref *kref) 3077 { 3078 } 3079 3080 /** 3081 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 3082 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 3083 * 3084 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 3085 * The @deferred list can be either an onstack local list or a global 3086 * shared list used by a workqueue. 3087 */ 3088 void xe_bo_put_commit(struct llist_head *deferred) 3089 { 3090 struct llist_node *freed; 3091 struct xe_bo *bo, *next; 3092 3093 if (!deferred) 3094 return; 3095 3096 freed = llist_del_all(deferred); 3097 if (!freed) 3098 return; 3099 3100 llist_for_each_entry_safe(bo, next, freed, freed) 3101 drm_gem_object_free(&bo->ttm.base.refcount); 3102 } 3103 3104 static void xe_bo_dev_work_func(struct work_struct *work) 3105 { 3106 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 3107 3108 xe_bo_put_commit(&bo_dev->async_list); 3109 } 3110 3111 /** 3112 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 3113 * @bo_dev: The BO dev structure 3114 */ 3115 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 3116 { 3117 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 3118 } 3119 3120 /** 3121 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 3122 * @bo_dev: The BO dev structure 3123 */ 3124 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 3125 { 3126 flush_work(&bo_dev->async_free); 3127 } 3128 3129 void xe_bo_put(struct xe_bo *bo) 3130 { 3131 struct xe_tile *tile; 3132 u8 id; 3133 3134 might_sleep(); 3135 if (bo) { 3136 #ifdef CONFIG_PROC_FS 3137 if (bo->client) 3138 might_lock(&bo->client->bos_lock); 3139 #endif 3140 for_each_tile(tile, xe_bo_device(bo), id) 3141 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 3142 xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt); 3143 drm_gem_object_put(&bo->ttm.base); 3144 } 3145 } 3146 3147 /** 3148 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 3149 * @file_priv: ... 3150 * @dev: ... 3151 * @args: ... 3152 * 3153 * See dumb_create() hook in include/drm/drm_drv.h 3154 * 3155 * Return: ... 3156 */ 3157 int xe_bo_dumb_create(struct drm_file *file_priv, 3158 struct drm_device *dev, 3159 struct drm_mode_create_dumb *args) 3160 { 3161 struct xe_device *xe = to_xe_device(dev); 3162 struct xe_bo *bo; 3163 uint32_t handle; 3164 int err; 3165 u32 page_size = max_t(u32, PAGE_SIZE, 3166 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 3167 3168 err = drm_mode_size_dumb(dev, args, SZ_64, page_size); 3169 if (err) 3170 return err; 3171 3172 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 3173 DRM_XE_GEM_CPU_CACHING_WC, 3174 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 3175 XE_BO_FLAG_SCANOUT | 3176 XE_BO_FLAG_NEEDS_CPU_ACCESS); 3177 if (IS_ERR(bo)) 3178 return PTR_ERR(bo); 3179 3180 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 3181 /* drop reference from allocate - handle holds it now */ 3182 drm_gem_object_put(&bo->ttm.base); 3183 if (!err) 3184 args->handle = handle; 3185 return err; 3186 } 3187 3188 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 3189 { 3190 struct ttm_buffer_object *tbo = &bo->ttm; 3191 struct ttm_device *bdev = tbo->bdev; 3192 3193 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 3194 3195 list_del_init(&bo->vram_userfault_link); 3196 } 3197 3198 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 3199 #include "tests/xe_bo.c" 3200 #endif 3201