1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_bo.h" 7 8 #include <linux/dma-buf.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_gem_ttm_helper.h> 13 #include <drm/drm_managed.h> 14 #include <drm/ttm/ttm_backup.h> 15 #include <drm/ttm/ttm_device.h> 16 #include <drm/ttm/ttm_placement.h> 17 #include <drm/ttm/ttm_tt.h> 18 #include <uapi/drm/xe_drm.h> 19 20 #include <kunit/static_stub.h> 21 22 #include <trace/events/gpu_mem.h> 23 24 #include "xe_device.h" 25 #include "xe_dma_buf.h" 26 #include "xe_drm_client.h" 27 #include "xe_ggtt.h" 28 #include "xe_gt.h" 29 #include "xe_map.h" 30 #include "xe_migrate.h" 31 #include "xe_pm.h" 32 #include "xe_preempt_fence.h" 33 #include "xe_pxp.h" 34 #include "xe_res_cursor.h" 35 #include "xe_shrinker.h" 36 #include "xe_sriov_vf_ccs.h" 37 #include "xe_trace_bo.h" 38 #include "xe_ttm_stolen_mgr.h" 39 #include "xe_vm.h" 40 #include "xe_vram_types.h" 41 42 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = { 43 [XE_PL_SYSTEM] = "system", 44 [XE_PL_TT] = "gtt", 45 [XE_PL_VRAM0] = "vram0", 46 [XE_PL_VRAM1] = "vram1", 47 [XE_PL_STOLEN] = "stolen" 48 }; 49 50 static const struct ttm_place sys_placement_flags = { 51 .fpfn = 0, 52 .lpfn = 0, 53 .mem_type = XE_PL_SYSTEM, 54 .flags = 0, 55 }; 56 57 static struct ttm_placement sys_placement = { 58 .num_placement = 1, 59 .placement = &sys_placement_flags, 60 }; 61 62 static struct ttm_placement purge_placement; 63 64 static const struct ttm_place tt_placement_flags[] = { 65 { 66 .fpfn = 0, 67 .lpfn = 0, 68 .mem_type = XE_PL_TT, 69 .flags = TTM_PL_FLAG_DESIRED, 70 }, 71 { 72 .fpfn = 0, 73 .lpfn = 0, 74 .mem_type = XE_PL_SYSTEM, 75 .flags = TTM_PL_FLAG_FALLBACK, 76 } 77 }; 78 79 static struct ttm_placement tt_placement = { 80 .num_placement = 2, 81 .placement = tt_placement_flags, 82 }; 83 84 bool mem_type_is_vram(u32 mem_type) 85 { 86 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN; 87 } 88 89 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res) 90 { 91 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe); 92 } 93 94 static bool resource_is_vram(struct ttm_resource *res) 95 { 96 return mem_type_is_vram(res->mem_type); 97 } 98 99 bool xe_bo_is_vram(struct xe_bo *bo) 100 { 101 return resource_is_vram(bo->ttm.resource) || 102 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource); 103 } 104 105 bool xe_bo_is_stolen(struct xe_bo *bo) 106 { 107 return bo->ttm.resource->mem_type == XE_PL_STOLEN; 108 } 109 110 /** 111 * xe_bo_has_single_placement - check if BO is placed only in one memory location 112 * @bo: The BO 113 * 114 * This function checks whether a given BO is placed in only one memory location. 115 * 116 * Returns: true if the BO is placed in a single memory location, false otherwise. 117 * 118 */ 119 bool xe_bo_has_single_placement(struct xe_bo *bo) 120 { 121 return bo->placement.num_placement == 1; 122 } 123 124 /** 125 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR 126 * @bo: The BO 127 * 128 * The stolen memory is accessed through the PCI BAR for both DGFX and some 129 * integrated platforms that have a dedicated bit in the PTE for devmem (DM). 130 * 131 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise. 132 */ 133 bool xe_bo_is_stolen_devmem(struct xe_bo *bo) 134 { 135 return xe_bo_is_stolen(bo) && 136 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270; 137 } 138 139 /** 140 * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND 141 * @bo: The BO 142 * 143 * Check if a given bo is bound through VM_BIND. This requires the 144 * reservation lock for the BO to be held. 145 * 146 * Returns: boolean 147 */ 148 bool xe_bo_is_vm_bound(struct xe_bo *bo) 149 { 150 xe_bo_assert_held(bo); 151 152 return !list_empty(&bo->ttm.base.gpuva.list); 153 } 154 155 static bool xe_bo_is_user(struct xe_bo *bo) 156 { 157 return bo->flags & XE_BO_FLAG_USER; 158 } 159 160 static struct xe_migrate * 161 mem_type_to_migrate(struct xe_device *xe, u32 mem_type) 162 { 163 struct xe_tile *tile; 164 165 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type)); 166 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)]; 167 return tile->migrate; 168 } 169 170 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res) 171 { 172 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 173 struct ttm_resource_manager *mgr; 174 struct xe_ttm_vram_mgr *vram_mgr; 175 176 xe_assert(xe, resource_is_vram(res)); 177 mgr = ttm_manager_type(&xe->ttm, res->mem_type); 178 vram_mgr = to_xe_ttm_vram_mgr(mgr); 179 180 return container_of(vram_mgr, struct xe_vram_region, ttm); 181 } 182 183 static void try_add_system(struct xe_device *xe, struct xe_bo *bo, 184 u32 bo_flags, u32 *c) 185 { 186 if (bo_flags & XE_BO_FLAG_SYSTEM) { 187 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 188 189 bo->placements[*c] = (struct ttm_place) { 190 .mem_type = XE_PL_TT, 191 }; 192 *c += 1; 193 } 194 } 195 196 static bool force_contiguous(u32 bo_flags) 197 { 198 if (bo_flags & XE_BO_FLAG_STOLEN) 199 return true; /* users expect this */ 200 else if (bo_flags & XE_BO_FLAG_PINNED && 201 !(bo_flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) 202 return true; /* needs vmap */ 203 else if (bo_flags & XE_BO_FLAG_CPU_ADDR_MIRROR) 204 return true; 205 206 /* 207 * For eviction / restore on suspend / resume objects pinned in VRAM 208 * must be contiguous, also only contiguous BOs support xe_bo_vmap. 209 */ 210 return bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS && 211 bo_flags & XE_BO_FLAG_PINNED; 212 } 213 214 static void add_vram(struct xe_device *xe, struct xe_bo *bo, 215 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c) 216 { 217 struct ttm_place place = { .mem_type = mem_type }; 218 struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type); 219 struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr); 220 221 struct xe_vram_region *vram; 222 u64 io_size; 223 224 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 225 226 vram = container_of(vram_mgr, struct xe_vram_region, ttm); 227 xe_assert(xe, vram && vram->usable_size); 228 io_size = vram->io_size; 229 230 if (force_contiguous(bo_flags)) 231 place.flags |= TTM_PL_FLAG_CONTIGUOUS; 232 233 if (io_size < vram->usable_size) { 234 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) { 235 place.fpfn = 0; 236 place.lpfn = io_size >> PAGE_SHIFT; 237 } else { 238 place.flags |= TTM_PL_FLAG_TOPDOWN; 239 } 240 } 241 places[*c] = place; 242 *c += 1; 243 } 244 245 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo, 246 u32 bo_flags, u32 *c) 247 { 248 if (bo_flags & XE_BO_FLAG_VRAM0) 249 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c); 250 if (bo_flags & XE_BO_FLAG_VRAM1) 251 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c); 252 } 253 254 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo, 255 u32 bo_flags, u32 *c) 256 { 257 if (bo_flags & XE_BO_FLAG_STOLEN) { 258 xe_assert(xe, *c < ARRAY_SIZE(bo->placements)); 259 260 bo->placements[*c] = (struct ttm_place) { 261 .mem_type = XE_PL_STOLEN, 262 .flags = force_contiguous(bo_flags) ? 263 TTM_PL_FLAG_CONTIGUOUS : 0, 264 }; 265 *c += 1; 266 } 267 } 268 269 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 270 u32 bo_flags) 271 { 272 u32 c = 0; 273 274 try_add_vram(xe, bo, bo_flags, &c); 275 try_add_system(xe, bo, bo_flags, &c); 276 try_add_stolen(xe, bo, bo_flags, &c); 277 278 if (!c) 279 return -EINVAL; 280 281 bo->placement = (struct ttm_placement) { 282 .num_placement = c, 283 .placement = bo->placements, 284 }; 285 286 return 0; 287 } 288 289 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo, 290 u32 bo_flags) 291 { 292 xe_bo_assert_held(bo); 293 return __xe_bo_placement_for_flags(xe, bo, bo_flags); 294 } 295 296 static void xe_evict_flags(struct ttm_buffer_object *tbo, 297 struct ttm_placement *placement) 298 { 299 struct xe_device *xe = container_of(tbo->bdev, typeof(*xe), ttm); 300 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 301 struct xe_bo *bo; 302 303 if (!xe_bo_is_xe_bo(tbo)) { 304 /* Don't handle scatter gather BOs */ 305 if (tbo->type == ttm_bo_type_sg) { 306 placement->num_placement = 0; 307 return; 308 } 309 310 *placement = device_unplugged ? purge_placement : sys_placement; 311 return; 312 } 313 314 bo = ttm_to_xe_bo(tbo); 315 if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) { 316 *placement = sys_placement; 317 return; 318 } 319 320 if (device_unplugged && !tbo->base.dma_buf) { 321 *placement = purge_placement; 322 return; 323 } 324 325 /* 326 * For xe, sg bos that are evicted to system just triggers a 327 * rebind of the sg list upon subsequent validation to XE_PL_TT. 328 */ 329 switch (tbo->resource->mem_type) { 330 case XE_PL_VRAM0: 331 case XE_PL_VRAM1: 332 case XE_PL_STOLEN: 333 *placement = tt_placement; 334 break; 335 case XE_PL_TT: 336 default: 337 *placement = sys_placement; 338 break; 339 } 340 } 341 342 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */ 343 struct xe_ttm_tt { 344 struct ttm_tt ttm; 345 struct sg_table sgt; 346 struct sg_table *sg; 347 /** @purgeable: Whether the content of the pages of @ttm is purgeable. */ 348 bool purgeable; 349 }; 350 351 static int xe_tt_map_sg(struct xe_device *xe, struct ttm_tt *tt) 352 { 353 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 354 unsigned long num_pages = tt->num_pages; 355 int ret; 356 357 XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 358 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)); 359 360 if (xe_tt->sg) 361 return 0; 362 363 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages, 364 num_pages, 0, 365 (u64)num_pages << PAGE_SHIFT, 366 xe_sg_segment_size(xe->drm.dev), 367 GFP_KERNEL); 368 if (ret) 369 return ret; 370 371 xe_tt->sg = &xe_tt->sgt; 372 ret = dma_map_sgtable(xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL, 373 DMA_ATTR_SKIP_CPU_SYNC); 374 if (ret) { 375 sg_free_table(xe_tt->sg); 376 xe_tt->sg = NULL; 377 return ret; 378 } 379 380 return 0; 381 } 382 383 static void xe_tt_unmap_sg(struct xe_device *xe, struct ttm_tt *tt) 384 { 385 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 386 387 if (xe_tt->sg) { 388 dma_unmap_sgtable(xe->drm.dev, xe_tt->sg, 389 DMA_BIDIRECTIONAL, 0); 390 sg_free_table(xe_tt->sg); 391 xe_tt->sg = NULL; 392 } 393 } 394 395 struct sg_table *xe_bo_sg(struct xe_bo *bo) 396 { 397 struct ttm_tt *tt = bo->ttm.ttm; 398 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 399 400 return xe_tt->sg; 401 } 402 403 /* 404 * Account ttm pages against the device shrinker's shrinkable and 405 * purgeable counts. 406 */ 407 static void xe_ttm_tt_account_add(struct xe_device *xe, struct ttm_tt *tt) 408 { 409 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 410 411 if (xe_tt->purgeable) 412 xe_shrinker_mod_pages(xe->mem.shrinker, 0, tt->num_pages); 413 else 414 xe_shrinker_mod_pages(xe->mem.shrinker, tt->num_pages, 0); 415 } 416 417 static void xe_ttm_tt_account_subtract(struct xe_device *xe, struct ttm_tt *tt) 418 { 419 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 420 421 if (xe_tt->purgeable) 422 xe_shrinker_mod_pages(xe->mem.shrinker, 0, -(long)tt->num_pages); 423 else 424 xe_shrinker_mod_pages(xe->mem.shrinker, -(long)tt->num_pages, 0); 425 } 426 427 static void update_global_total_pages(struct ttm_device *ttm_dev, 428 long num_pages) 429 { 430 #if IS_ENABLED(CONFIG_TRACE_GPU_MEM) 431 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 432 u64 global_total_pages = 433 atomic64_add_return(num_pages, &xe->global_total_pages); 434 435 trace_gpu_mem_total(xe->drm.primary->index, 0, 436 global_total_pages << PAGE_SHIFT); 437 #endif 438 } 439 440 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo, 441 u32 page_flags) 442 { 443 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 444 struct xe_device *xe = xe_bo_device(bo); 445 struct xe_ttm_tt *xe_tt; 446 struct ttm_tt *tt; 447 unsigned long extra_pages; 448 enum ttm_caching caching = ttm_cached; 449 int err; 450 451 xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL); 452 if (!xe_tt) 453 return NULL; 454 455 tt = &xe_tt->ttm; 456 457 extra_pages = 0; 458 if (xe_bo_needs_ccs_pages(bo)) 459 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, xe_bo_size(bo)), 460 PAGE_SIZE); 461 462 /* 463 * DGFX system memory is always WB / ttm_cached, since 464 * other caching modes are only supported on x86. DGFX 465 * GPU system memory accesses are always coherent with the 466 * CPU. 467 */ 468 if (!IS_DGFX(xe)) { 469 switch (bo->cpu_caching) { 470 case DRM_XE_GEM_CPU_CACHING_WC: 471 caching = ttm_write_combined; 472 break; 473 default: 474 caching = ttm_cached; 475 break; 476 } 477 478 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching); 479 480 /* 481 * Display scanout is always non-coherent with the CPU cache. 482 * 483 * For Xe_LPG and beyond, PPGTT PTE lookups are also 484 * non-coherent and require a CPU:WC mapping. 485 */ 486 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) || 487 (xe->info.graphics_verx100 >= 1270 && 488 bo->flags & XE_BO_FLAG_PAGETABLE)) 489 caching = ttm_write_combined; 490 } 491 492 if (bo->flags & XE_BO_FLAG_NEEDS_UC) { 493 /* 494 * Valid only for internally-created buffers only, for 495 * which cpu_caching is never initialized. 496 */ 497 xe_assert(xe, bo->cpu_caching == 0); 498 caching = ttm_uncached; 499 } 500 501 if (ttm_bo->type != ttm_bo_type_sg) 502 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 503 504 err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages); 505 if (err) { 506 kfree(xe_tt); 507 return NULL; 508 } 509 510 if (ttm_bo->type != ttm_bo_type_sg) { 511 err = ttm_tt_setup_backup(tt); 512 if (err) { 513 ttm_tt_fini(tt); 514 kfree(xe_tt); 515 return NULL; 516 } 517 } 518 519 return tt; 520 } 521 522 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt, 523 struct ttm_operation_ctx *ctx) 524 { 525 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 526 int err; 527 528 /* 529 * dma-bufs are not populated with pages, and the dma- 530 * addresses are set up when moved to XE_PL_TT. 531 */ 532 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 533 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 534 return 0; 535 536 if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) { 537 err = ttm_tt_restore(ttm_dev, tt, ctx); 538 } else { 539 ttm_tt_clear_backed_up(tt); 540 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx); 541 } 542 if (err) 543 return err; 544 545 xe_tt->purgeable = false; 546 xe_ttm_tt_account_add(ttm_to_xe_device(ttm_dev), tt); 547 update_global_total_pages(ttm_dev, tt->num_pages); 548 549 return 0; 550 } 551 552 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt) 553 { 554 struct xe_device *xe = ttm_to_xe_device(ttm_dev); 555 556 if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) && 557 !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE)) 558 return; 559 560 xe_tt_unmap_sg(xe, tt); 561 562 ttm_pool_free(&ttm_dev->pool, tt); 563 xe_ttm_tt_account_subtract(xe, tt); 564 update_global_total_pages(ttm_dev, -(long)tt->num_pages); 565 } 566 567 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt) 568 { 569 ttm_tt_fini(tt); 570 kfree(tt); 571 } 572 573 static bool xe_ttm_resource_visible(struct ttm_resource *mem) 574 { 575 struct xe_ttm_vram_mgr_resource *vres = 576 to_xe_ttm_vram_mgr_resource(mem); 577 578 return vres->used_visible_size == mem->size; 579 } 580 581 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev, 582 struct ttm_resource *mem) 583 { 584 struct xe_device *xe = ttm_to_xe_device(bdev); 585 586 switch (mem->mem_type) { 587 case XE_PL_SYSTEM: 588 case XE_PL_TT: 589 return 0; 590 case XE_PL_VRAM0: 591 case XE_PL_VRAM1: { 592 struct xe_vram_region *vram = res_to_mem_region(mem); 593 594 if (!xe_ttm_resource_visible(mem)) 595 return -EINVAL; 596 597 mem->bus.offset = mem->start << PAGE_SHIFT; 598 599 if (vram->mapping && 600 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 601 mem->bus.addr = (u8 __force *)vram->mapping + 602 mem->bus.offset; 603 604 mem->bus.offset += vram->io_start; 605 mem->bus.is_iomem = true; 606 607 #if !IS_ENABLED(CONFIG_X86) 608 mem->bus.caching = ttm_write_combined; 609 #endif 610 return 0; 611 } case XE_PL_STOLEN: 612 return xe_ttm_stolen_io_mem_reserve(xe, mem); 613 default: 614 return -EINVAL; 615 } 616 } 617 618 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo, 619 const struct ttm_operation_ctx *ctx) 620 { 621 struct dma_resv_iter cursor; 622 struct dma_fence *fence; 623 struct drm_gem_object *obj = &bo->ttm.base; 624 struct drm_gpuvm_bo *vm_bo; 625 bool idle = false; 626 int ret = 0; 627 628 dma_resv_assert_held(bo->ttm.base.resv); 629 630 if (!list_empty(&bo->ttm.base.gpuva.list)) { 631 dma_resv_iter_begin(&cursor, bo->ttm.base.resv, 632 DMA_RESV_USAGE_BOOKKEEP); 633 dma_resv_for_each_fence_unlocked(&cursor, fence) 634 dma_fence_enable_sw_signaling(fence); 635 dma_resv_iter_end(&cursor); 636 } 637 638 drm_gem_for_each_gpuvm_bo(vm_bo, obj) { 639 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 640 struct drm_gpuva *gpuva; 641 642 if (!xe_vm_in_fault_mode(vm)) { 643 drm_gpuvm_bo_evict(vm_bo, true); 644 continue; 645 } 646 647 if (!idle) { 648 long timeout; 649 650 if (ctx->no_wait_gpu && 651 !dma_resv_test_signaled(bo->ttm.base.resv, 652 DMA_RESV_USAGE_BOOKKEEP)) 653 return -EBUSY; 654 655 timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 656 DMA_RESV_USAGE_BOOKKEEP, 657 ctx->interruptible, 658 MAX_SCHEDULE_TIMEOUT); 659 if (!timeout) 660 return -ETIME; 661 if (timeout < 0) 662 return timeout; 663 664 idle = true; 665 } 666 667 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) { 668 struct xe_vma *vma = gpuva_to_vma(gpuva); 669 670 trace_xe_vma_evict(vma); 671 ret = xe_vm_invalidate_vma(vma); 672 if (XE_WARN_ON(ret)) 673 return ret; 674 } 675 } 676 677 return ret; 678 } 679 680 /* 681 * The dma-buf map_attachment() / unmap_attachment() is hooked up here. 682 * Note that unmapping the attachment is deferred to the next 683 * map_attachment time, or to bo destroy (after idling) whichever comes first. 684 * This is to avoid syncing before unmap_attachment(), assuming that the 685 * caller relies on idling the reservation object before moving the 686 * backing store out. Should that assumption not hold, then we will be able 687 * to unconditionally call unmap_attachment() when moving out to system. 688 */ 689 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo, 690 struct ttm_resource *new_res) 691 { 692 struct dma_buf_attachment *attach = ttm_bo->base.import_attach; 693 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt, 694 ttm); 695 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 696 bool device_unplugged = drm_dev_is_unplugged(&xe->drm); 697 struct sg_table *sg; 698 699 xe_assert(xe, attach); 700 xe_assert(xe, ttm_bo->ttm); 701 702 if (device_unplugged && new_res->mem_type == XE_PL_SYSTEM && 703 ttm_bo->sg) { 704 dma_resv_wait_timeout(ttm_bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 705 false, MAX_SCHEDULE_TIMEOUT); 706 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 707 ttm_bo->sg = NULL; 708 } 709 710 if (new_res->mem_type == XE_PL_SYSTEM) 711 goto out; 712 713 if (ttm_bo->sg) { 714 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL); 715 ttm_bo->sg = NULL; 716 } 717 718 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 719 if (IS_ERR(sg)) 720 return PTR_ERR(sg); 721 722 ttm_bo->sg = sg; 723 xe_tt->sg = sg; 724 725 out: 726 ttm_bo_move_null(ttm_bo, new_res); 727 728 return 0; 729 } 730 731 /** 732 * xe_bo_move_notify - Notify subsystems of a pending move 733 * @bo: The buffer object 734 * @ctx: The struct ttm_operation_ctx controlling locking and waits. 735 * 736 * This function notifies subsystems of an upcoming buffer move. 737 * Upon receiving such a notification, subsystems should schedule 738 * halting access to the underlying pages and optionally add a fence 739 * to the buffer object's dma_resv object, that signals when access is 740 * stopped. The caller will wait on all dma_resv fences before 741 * starting the move. 742 * 743 * A subsystem may commence access to the object after obtaining 744 * bindings to the new backing memory under the object lock. 745 * 746 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode, 747 * negative error code on error. 748 */ 749 static int xe_bo_move_notify(struct xe_bo *bo, 750 const struct ttm_operation_ctx *ctx) 751 { 752 struct ttm_buffer_object *ttm_bo = &bo->ttm; 753 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 754 struct ttm_resource *old_mem = ttm_bo->resource; 755 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 756 int ret; 757 758 /* 759 * If this starts to call into many components, consider 760 * using a notification chain here. 761 */ 762 763 if (xe_bo_is_pinned(bo)) 764 return -EINVAL; 765 766 xe_bo_vunmap(bo); 767 ret = xe_bo_trigger_rebind(xe, bo, ctx); 768 if (ret) 769 return ret; 770 771 /* Don't call move_notify() for imported dma-bufs. */ 772 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach) 773 dma_buf_move_notify(ttm_bo->base.dma_buf); 774 775 /* 776 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual), 777 * so if we moved from VRAM make sure to unlink this from the userfault 778 * tracking. 779 */ 780 if (mem_type_is_vram(old_mem_type)) { 781 mutex_lock(&xe->mem_access.vram_userfault.lock); 782 if (!list_empty(&bo->vram_userfault_link)) 783 list_del_init(&bo->vram_userfault_link); 784 mutex_unlock(&xe->mem_access.vram_userfault.lock); 785 } 786 787 return 0; 788 } 789 790 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict, 791 struct ttm_operation_ctx *ctx, 792 struct ttm_resource *new_mem, 793 struct ttm_place *hop) 794 { 795 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 796 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 797 struct ttm_resource *old_mem = ttm_bo->resource; 798 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM; 799 struct ttm_tt *ttm = ttm_bo->ttm; 800 struct xe_migrate *migrate = NULL; 801 struct dma_fence *fence; 802 bool move_lacks_source; 803 bool tt_has_data; 804 bool needs_clear; 805 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) && 806 ttm && ttm_tt_is_populated(ttm)) ? true : false; 807 int ret = 0; 808 809 /* Bo creation path, moving to system or TT. */ 810 if ((!old_mem && ttm) && !handle_system_ccs) { 811 if (new_mem->mem_type == XE_PL_TT) 812 ret = xe_tt_map_sg(xe, ttm); 813 if (!ret) 814 ttm_bo_move_null(ttm_bo, new_mem); 815 goto out; 816 } 817 818 if (ttm_bo->type == ttm_bo_type_sg) { 819 if (new_mem->mem_type == XE_PL_SYSTEM) 820 ret = xe_bo_move_notify(bo, ctx); 821 if (!ret) 822 ret = xe_bo_move_dmabuf(ttm_bo, new_mem); 823 return ret; 824 } 825 826 tt_has_data = ttm && (ttm_tt_is_populated(ttm) || ttm_tt_is_swapped(ttm)); 827 828 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) : 829 (!mem_type_is_vram(old_mem_type) && !tt_has_data)); 830 831 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) || 832 (!ttm && ttm_bo->type == ttm_bo_type_device); 833 834 if (new_mem->mem_type == XE_PL_TT) { 835 ret = xe_tt_map_sg(xe, ttm); 836 if (ret) 837 goto out; 838 } 839 840 if ((move_lacks_source && !needs_clear)) { 841 ttm_bo_move_null(ttm_bo, new_mem); 842 goto out; 843 } 844 845 if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) && 846 new_mem->mem_type == XE_PL_SYSTEM) { 847 ret = xe_svm_bo_evict(bo); 848 if (!ret) { 849 drm_dbg(&xe->drm, "Evict system allocator BO success\n"); 850 ttm_bo_move_null(ttm_bo, new_mem); 851 } else { 852 drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n", 853 ERR_PTR(ret)); 854 } 855 856 goto out; 857 } 858 859 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) { 860 ttm_bo_move_null(ttm_bo, new_mem); 861 goto out; 862 } 863 864 /* 865 * Failed multi-hop where the old_mem is still marked as 866 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move. 867 */ 868 if (old_mem_type == XE_PL_TT && 869 new_mem->mem_type == XE_PL_TT) { 870 ttm_bo_move_null(ttm_bo, new_mem); 871 goto out; 872 } 873 874 if (!move_lacks_source && !xe_bo_is_pinned(bo)) { 875 ret = xe_bo_move_notify(bo, ctx); 876 if (ret) 877 goto out; 878 } 879 880 if (old_mem_type == XE_PL_TT && 881 new_mem->mem_type == XE_PL_SYSTEM) { 882 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 883 DMA_RESV_USAGE_BOOKKEEP, 884 false, 885 MAX_SCHEDULE_TIMEOUT); 886 if (timeout < 0) { 887 ret = timeout; 888 goto out; 889 } 890 891 if (!handle_system_ccs) { 892 ttm_bo_move_null(ttm_bo, new_mem); 893 goto out; 894 } 895 } 896 897 if (!move_lacks_source && 898 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) || 899 (mem_type_is_vram(old_mem_type) && 900 new_mem->mem_type == XE_PL_SYSTEM))) { 901 hop->fpfn = 0; 902 hop->lpfn = 0; 903 hop->mem_type = XE_PL_TT; 904 hop->flags = TTM_PL_FLAG_TEMPORARY; 905 ret = -EMULTIHOP; 906 goto out; 907 } 908 909 if (bo->tile) 910 migrate = bo->tile->migrate; 911 else if (resource_is_vram(new_mem)) 912 migrate = mem_type_to_migrate(xe, new_mem->mem_type); 913 else if (mem_type_is_vram(old_mem_type)) 914 migrate = mem_type_to_migrate(xe, old_mem_type); 915 else 916 migrate = xe->tiles[0].migrate; 917 918 xe_assert(xe, migrate); 919 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source); 920 if (xe_rpm_reclaim_safe(xe)) { 921 /* 922 * We might be called through swapout in the validation path of 923 * another TTM device, so acquire rpm here. 924 */ 925 xe_pm_runtime_get(xe); 926 } else { 927 drm_WARN_ON(&xe->drm, handle_system_ccs); 928 xe_pm_runtime_get_noresume(xe); 929 } 930 931 if (move_lacks_source) { 932 u32 flags = 0; 933 934 if (mem_type_is_vram(new_mem->mem_type)) 935 flags |= XE_MIGRATE_CLEAR_FLAG_FULL; 936 else if (handle_system_ccs) 937 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA; 938 939 fence = xe_migrate_clear(migrate, bo, new_mem, flags); 940 } else { 941 fence = xe_migrate_copy(migrate, bo, bo, old_mem, new_mem, 942 handle_system_ccs); 943 } 944 if (IS_ERR(fence)) { 945 ret = PTR_ERR(fence); 946 xe_pm_runtime_put(xe); 947 goto out; 948 } 949 if (!move_lacks_source) { 950 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict, true, 951 new_mem); 952 if (ret) { 953 dma_fence_wait(fence, false); 954 ttm_bo_move_null(ttm_bo, new_mem); 955 ret = 0; 956 } 957 } else { 958 /* 959 * ttm_bo_move_accel_cleanup() may blow up if 960 * bo->resource == NULL, so just attach the 961 * fence and set the new resource. 962 */ 963 dma_resv_add_fence(ttm_bo->base.resv, fence, 964 DMA_RESV_USAGE_KERNEL); 965 ttm_bo_move_null(ttm_bo, new_mem); 966 } 967 968 dma_fence_put(fence); 969 xe_pm_runtime_put(xe); 970 971 /* 972 * CCS meta data is migrated from TT -> SMEM. So, let us detach the 973 * BBs from BO as it is no longer needed. 974 */ 975 if (IS_VF_CCS_BB_VALID(xe, bo) && old_mem_type == XE_PL_TT && 976 new_mem->mem_type == XE_PL_SYSTEM) 977 xe_sriov_vf_ccs_detach_bo(bo); 978 979 if (IS_SRIOV_VF(xe) && 980 ((move_lacks_source && new_mem->mem_type == XE_PL_TT) || 981 (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT)) && 982 handle_system_ccs) 983 ret = xe_sriov_vf_ccs_attach_bo(bo); 984 985 out: 986 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) && 987 ttm_bo->ttm) { 988 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv, 989 DMA_RESV_USAGE_KERNEL, 990 false, 991 MAX_SCHEDULE_TIMEOUT); 992 if (timeout < 0) 993 ret = timeout; 994 995 if (IS_VF_CCS_BB_VALID(xe, bo)) 996 xe_sriov_vf_ccs_detach_bo(bo); 997 998 xe_tt_unmap_sg(xe, ttm_bo->ttm); 999 } 1000 1001 return ret; 1002 } 1003 1004 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx, 1005 struct ttm_buffer_object *bo, 1006 unsigned long *scanned) 1007 { 1008 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1009 long lret; 1010 1011 /* Fake move to system, without copying data. */ 1012 if (bo->resource->mem_type != XE_PL_SYSTEM) { 1013 struct ttm_resource *new_resource; 1014 1015 lret = ttm_bo_wait_ctx(bo, ctx); 1016 if (lret) 1017 return lret; 1018 1019 lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx); 1020 if (lret) 1021 return lret; 1022 1023 xe_tt_unmap_sg(xe, bo->ttm); 1024 ttm_bo_move_null(bo, new_resource); 1025 } 1026 1027 *scanned += bo->ttm->num_pages; 1028 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1029 {.purge = true, 1030 .writeback = false, 1031 .allow_move = false}); 1032 1033 if (lret > 0) 1034 xe_ttm_tt_account_subtract(xe, bo->ttm); 1035 1036 return lret; 1037 } 1038 1039 static bool 1040 xe_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) 1041 { 1042 struct drm_gpuvm_bo *vm_bo; 1043 1044 if (!ttm_bo_eviction_valuable(bo, place)) 1045 return false; 1046 1047 if (!xe_bo_is_xe_bo(bo)) 1048 return true; 1049 1050 drm_gem_for_each_gpuvm_bo(vm_bo, &bo->base) { 1051 if (xe_vm_is_validating(gpuvm_to_vm(vm_bo->vm))) 1052 return false; 1053 } 1054 1055 return true; 1056 } 1057 1058 /** 1059 * xe_bo_shrink() - Try to shrink an xe bo. 1060 * @ctx: The struct ttm_operation_ctx used for shrinking. 1061 * @bo: The TTM buffer object whose pages to shrink. 1062 * @flags: Flags governing the shrink behaviour. 1063 * @scanned: Pointer to a counter of the number of pages 1064 * attempted to shrink. 1065 * 1066 * Try to shrink- or purge a bo, and if it succeeds, unmap dma. 1067 * Note that we need to be able to handle also non xe bos 1068 * (ghost bos), but only if the struct ttm_tt is embedded in 1069 * a struct xe_ttm_tt. When the function attempts to shrink 1070 * the pages of a buffer object, The value pointed to by @scanned 1071 * is updated. 1072 * 1073 * Return: The number of pages shrunken or purged, or negative error 1074 * code on failure. 1075 */ 1076 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo, 1077 const struct xe_bo_shrink_flags flags, 1078 unsigned long *scanned) 1079 { 1080 struct ttm_tt *tt = bo->ttm; 1081 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm); 1082 struct ttm_place place = {.mem_type = bo->resource->mem_type}; 1083 struct xe_bo *xe_bo = ttm_to_xe_bo(bo); 1084 struct xe_device *xe = ttm_to_xe_device(bo->bdev); 1085 bool needs_rpm; 1086 long lret = 0L; 1087 1088 if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) || 1089 (flags.purge && !xe_tt->purgeable)) 1090 return -EBUSY; 1091 1092 if (!xe_bo_eviction_valuable(bo, &place)) 1093 return -EBUSY; 1094 1095 if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo)) 1096 return xe_bo_shrink_purge(ctx, bo, scanned); 1097 1098 if (xe_tt->purgeable) { 1099 if (bo->resource->mem_type != XE_PL_SYSTEM) 1100 lret = xe_bo_move_notify(xe_bo, ctx); 1101 if (!lret) 1102 lret = xe_bo_shrink_purge(ctx, bo, scanned); 1103 goto out_unref; 1104 } 1105 1106 /* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */ 1107 needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM && 1108 xe_bo_needs_ccs_pages(xe_bo)); 1109 if (needs_rpm && !xe_pm_runtime_get_if_active(xe)) 1110 goto out_unref; 1111 1112 *scanned += tt->num_pages; 1113 lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags) 1114 {.purge = false, 1115 .writeback = flags.writeback, 1116 .allow_move = true}); 1117 if (needs_rpm) 1118 xe_pm_runtime_put(xe); 1119 1120 if (lret > 0) 1121 xe_ttm_tt_account_subtract(xe, tt); 1122 1123 out_unref: 1124 xe_bo_put(xe_bo); 1125 1126 return lret; 1127 } 1128 1129 /** 1130 * xe_bo_notifier_prepare_pinned() - Prepare a pinned VRAM object to be backed 1131 * up in system memory. 1132 * @bo: The buffer object to prepare. 1133 * 1134 * On successful completion, the object backup pages are allocated. Expectation 1135 * is that this is called from the PM notifier, prior to suspend/hibernation. 1136 * 1137 * Return: 0 on success. Negative error code on failure. 1138 */ 1139 int xe_bo_notifier_prepare_pinned(struct xe_bo *bo) 1140 { 1141 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1142 struct xe_bo *backup; 1143 int ret = 0; 1144 1145 xe_bo_lock(bo, false); 1146 1147 xe_assert(xe, !bo->backup_obj); 1148 1149 /* 1150 * Since this is called from the PM notifier we might have raced with 1151 * someone unpinning this after we dropped the pinned list lock and 1152 * grabbing the above bo lock. 1153 */ 1154 if (!xe_bo_is_pinned(bo)) 1155 goto out_unlock_bo; 1156 1157 if (!xe_bo_is_vram(bo)) 1158 goto out_unlock_bo; 1159 1160 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1161 goto out_unlock_bo; 1162 1163 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, NULL, xe_bo_size(bo), 1164 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1165 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1166 XE_BO_FLAG_PINNED); 1167 if (IS_ERR(backup)) { 1168 ret = PTR_ERR(backup); 1169 goto out_unlock_bo; 1170 } 1171 1172 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1173 ttm_bo_pin(&backup->ttm); 1174 bo->backup_obj = backup; 1175 1176 out_unlock_bo: 1177 xe_bo_unlock(bo); 1178 return ret; 1179 } 1180 1181 /** 1182 * xe_bo_notifier_unprepare_pinned() - Undo the previous prepare operation. 1183 * @bo: The buffer object to undo the prepare for. 1184 * 1185 * Always returns 0. The backup object is removed, if still present. Expectation 1186 * it that this called from the PM notifier when undoing the prepare step. 1187 * 1188 * Return: Always returns 0. 1189 */ 1190 int xe_bo_notifier_unprepare_pinned(struct xe_bo *bo) 1191 { 1192 xe_bo_lock(bo, false); 1193 if (bo->backup_obj) { 1194 ttm_bo_unpin(&bo->backup_obj->ttm); 1195 xe_bo_put(bo->backup_obj); 1196 bo->backup_obj = NULL; 1197 } 1198 xe_bo_unlock(bo); 1199 1200 return 0; 1201 } 1202 1203 /** 1204 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory 1205 * @bo: The buffer object to move. 1206 * 1207 * On successful completion, the object memory will be moved to system memory. 1208 * 1209 * This is needed to for special handling of pinned VRAM object during 1210 * suspend-resume. 1211 * 1212 * Return: 0 on success. Negative error code on failure. 1213 */ 1214 int xe_bo_evict_pinned(struct xe_bo *bo) 1215 { 1216 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1217 struct xe_bo *backup = bo->backup_obj; 1218 bool backup_created = false; 1219 bool unmap = false; 1220 int ret = 0; 1221 1222 xe_bo_lock(bo, false); 1223 1224 if (WARN_ON(!bo->ttm.resource)) { 1225 ret = -EINVAL; 1226 goto out_unlock_bo; 1227 } 1228 1229 if (WARN_ON(!xe_bo_is_pinned(bo))) { 1230 ret = -EINVAL; 1231 goto out_unlock_bo; 1232 } 1233 1234 if (!xe_bo_is_vram(bo)) 1235 goto out_unlock_bo; 1236 1237 if (bo->flags & XE_BO_FLAG_PINNED_NORESTORE) 1238 goto out_unlock_bo; 1239 1240 if (!backup) { 1241 backup = ___xe_bo_create_locked(xe, NULL, NULL, bo->ttm.base.resv, 1242 NULL, xe_bo_size(bo), 1243 DRM_XE_GEM_CPU_CACHING_WB, ttm_bo_type_kernel, 1244 XE_BO_FLAG_SYSTEM | XE_BO_FLAG_NEEDS_CPU_ACCESS | 1245 XE_BO_FLAG_PINNED); 1246 if (IS_ERR(backup)) { 1247 ret = PTR_ERR(backup); 1248 goto out_unlock_bo; 1249 } 1250 backup->parent_obj = xe_bo_get(bo); /* Released by bo_destroy */ 1251 backup_created = true; 1252 } 1253 1254 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1255 struct xe_migrate *migrate; 1256 struct dma_fence *fence; 1257 1258 if (bo->tile) 1259 migrate = bo->tile->migrate; 1260 else 1261 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1262 1263 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1264 if (ret) 1265 goto out_backup; 1266 1267 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1268 if (ret) 1269 goto out_backup; 1270 1271 fence = xe_migrate_copy(migrate, bo, backup, bo->ttm.resource, 1272 backup->ttm.resource, false); 1273 if (IS_ERR(fence)) { 1274 ret = PTR_ERR(fence); 1275 goto out_backup; 1276 } 1277 1278 dma_resv_add_fence(bo->ttm.base.resv, fence, 1279 DMA_RESV_USAGE_KERNEL); 1280 dma_resv_add_fence(backup->ttm.base.resv, fence, 1281 DMA_RESV_USAGE_KERNEL); 1282 dma_fence_put(fence); 1283 } else { 1284 ret = xe_bo_vmap(backup); 1285 if (ret) 1286 goto out_backup; 1287 1288 if (iosys_map_is_null(&bo->vmap)) { 1289 ret = xe_bo_vmap(bo); 1290 if (ret) 1291 goto out_backup; 1292 unmap = true; 1293 } 1294 1295 xe_map_memcpy_from(xe, backup->vmap.vaddr, &bo->vmap, 0, 1296 xe_bo_size(bo)); 1297 } 1298 1299 if (!bo->backup_obj) 1300 bo->backup_obj = backup; 1301 1302 out_backup: 1303 xe_bo_vunmap(backup); 1304 if (ret && backup_created) 1305 xe_bo_put(backup); 1306 out_unlock_bo: 1307 if (unmap) 1308 xe_bo_vunmap(bo); 1309 xe_bo_unlock(bo); 1310 return ret; 1311 } 1312 1313 /** 1314 * xe_bo_restore_pinned() - Restore a pinned VRAM object 1315 * @bo: The buffer object to move. 1316 * 1317 * On successful completion, the object memory will be moved back to VRAM. 1318 * 1319 * This is needed to for special handling of pinned VRAM object during 1320 * suspend-resume. 1321 * 1322 * Return: 0 on success. Negative error code on failure. 1323 */ 1324 int xe_bo_restore_pinned(struct xe_bo *bo) 1325 { 1326 struct ttm_operation_ctx ctx = { 1327 .interruptible = false, 1328 .gfp_retry_mayfail = false, 1329 }; 1330 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 1331 struct xe_bo *backup = bo->backup_obj; 1332 bool unmap = false; 1333 int ret; 1334 1335 if (!backup) 1336 return 0; 1337 1338 xe_bo_lock(bo, false); 1339 1340 if (!xe_bo_is_pinned(backup)) { 1341 ret = ttm_bo_validate(&backup->ttm, &backup->placement, &ctx); 1342 if (ret) 1343 goto out_unlock_bo; 1344 } 1345 1346 if (xe_bo_is_user(bo) || (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE)) { 1347 struct xe_migrate *migrate; 1348 struct dma_fence *fence; 1349 1350 if (bo->tile) 1351 migrate = bo->tile->migrate; 1352 else 1353 migrate = mem_type_to_migrate(xe, bo->ttm.resource->mem_type); 1354 1355 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1); 1356 if (ret) 1357 goto out_unlock_bo; 1358 1359 ret = dma_resv_reserve_fences(backup->ttm.base.resv, 1); 1360 if (ret) 1361 goto out_unlock_bo; 1362 1363 fence = xe_migrate_copy(migrate, backup, bo, 1364 backup->ttm.resource, bo->ttm.resource, 1365 false); 1366 if (IS_ERR(fence)) { 1367 ret = PTR_ERR(fence); 1368 goto out_unlock_bo; 1369 } 1370 1371 dma_resv_add_fence(bo->ttm.base.resv, fence, 1372 DMA_RESV_USAGE_KERNEL); 1373 dma_resv_add_fence(backup->ttm.base.resv, fence, 1374 DMA_RESV_USAGE_KERNEL); 1375 dma_fence_put(fence); 1376 } else { 1377 ret = xe_bo_vmap(backup); 1378 if (ret) 1379 goto out_unlock_bo; 1380 1381 if (iosys_map_is_null(&bo->vmap)) { 1382 ret = xe_bo_vmap(bo); 1383 if (ret) 1384 goto out_backup; 1385 unmap = true; 1386 } 1387 1388 xe_map_memcpy_to(xe, &bo->vmap, 0, backup->vmap.vaddr, 1389 xe_bo_size(bo)); 1390 } 1391 1392 bo->backup_obj = NULL; 1393 1394 out_backup: 1395 xe_bo_vunmap(backup); 1396 if (!bo->backup_obj) { 1397 if (xe_bo_is_pinned(backup)) 1398 ttm_bo_unpin(&backup->ttm); 1399 xe_bo_put(backup); 1400 } 1401 out_unlock_bo: 1402 if (unmap) 1403 xe_bo_vunmap(bo); 1404 xe_bo_unlock(bo); 1405 return ret; 1406 } 1407 1408 int xe_bo_dma_unmap_pinned(struct xe_bo *bo) 1409 { 1410 struct ttm_buffer_object *ttm_bo = &bo->ttm; 1411 struct ttm_tt *tt = ttm_bo->ttm; 1412 1413 if (tt) { 1414 struct xe_ttm_tt *xe_tt = container_of(tt, typeof(*xe_tt), ttm); 1415 1416 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1417 dma_buf_unmap_attachment(ttm_bo->base.import_attach, 1418 ttm_bo->sg, 1419 DMA_BIDIRECTIONAL); 1420 ttm_bo->sg = NULL; 1421 xe_tt->sg = NULL; 1422 } else if (xe_tt->sg) { 1423 dma_unmap_sgtable(ttm_to_xe_device(ttm_bo->bdev)->drm.dev, 1424 xe_tt->sg, 1425 DMA_BIDIRECTIONAL, 0); 1426 sg_free_table(xe_tt->sg); 1427 xe_tt->sg = NULL; 1428 } 1429 } 1430 1431 return 0; 1432 } 1433 1434 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo, 1435 unsigned long page_offset) 1436 { 1437 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1438 struct xe_res_cursor cursor; 1439 struct xe_vram_region *vram; 1440 1441 if (ttm_bo->resource->mem_type == XE_PL_STOLEN) 1442 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT; 1443 1444 vram = res_to_mem_region(ttm_bo->resource); 1445 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor); 1446 return (vram->io_start + cursor.start) >> PAGE_SHIFT; 1447 } 1448 1449 static void __xe_bo_vunmap(struct xe_bo *bo); 1450 1451 /* 1452 * TODO: Move this function to TTM so we don't rely on how TTM does its 1453 * locking, thereby abusing TTM internals. 1454 */ 1455 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo) 1456 { 1457 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1458 bool locked; 1459 1460 xe_assert(xe, !kref_read(&ttm_bo->kref)); 1461 1462 /* 1463 * We can typically only race with TTM trylocking under the 1464 * lru_lock, which will immediately be unlocked again since 1465 * the ttm_bo refcount is zero at this point. So trylocking *should* 1466 * always succeed here, as long as we hold the lru lock. 1467 */ 1468 spin_lock(&ttm_bo->bdev->lru_lock); 1469 locked = dma_resv_trylock(ttm_bo->base.resv); 1470 spin_unlock(&ttm_bo->bdev->lru_lock); 1471 xe_assert(xe, locked); 1472 1473 return locked; 1474 } 1475 1476 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo) 1477 { 1478 struct dma_resv_iter cursor; 1479 struct dma_fence *fence; 1480 struct dma_fence *replacement = NULL; 1481 struct xe_bo *bo; 1482 1483 if (!xe_bo_is_xe_bo(ttm_bo)) 1484 return; 1485 1486 bo = ttm_to_xe_bo(ttm_bo); 1487 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount))); 1488 1489 /* 1490 * Corner case where TTM fails to allocate memory and this BOs resv 1491 * still points the VMs resv 1492 */ 1493 if (ttm_bo->base.resv != &ttm_bo->base._resv) 1494 return; 1495 1496 if (!xe_ttm_bo_lock_in_destructor(ttm_bo)) 1497 return; 1498 1499 /* 1500 * Scrub the preempt fences if any. The unbind fence is already 1501 * attached to the resv. 1502 * TODO: Don't do this for external bos once we scrub them after 1503 * unbind. 1504 */ 1505 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv, 1506 DMA_RESV_USAGE_BOOKKEEP, fence) { 1507 if (xe_fence_is_xe_preempt(fence) && 1508 !dma_fence_is_signaled(fence)) { 1509 if (!replacement) 1510 replacement = dma_fence_get_stub(); 1511 1512 dma_resv_replace_fences(ttm_bo->base.resv, 1513 fence->context, 1514 replacement, 1515 DMA_RESV_USAGE_BOOKKEEP); 1516 } 1517 } 1518 dma_fence_put(replacement); 1519 1520 dma_resv_unlock(ttm_bo->base.resv); 1521 } 1522 1523 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo) 1524 { 1525 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1526 1527 if (!xe_bo_is_xe_bo(ttm_bo)) 1528 return; 1529 1530 if (IS_VF_CCS_BB_VALID(ttm_to_xe_device(ttm_bo->bdev), bo)) 1531 xe_sriov_vf_ccs_detach_bo(bo); 1532 1533 /* 1534 * Object is idle and about to be destroyed. Release the 1535 * dma-buf attachment. 1536 */ 1537 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) { 1538 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, 1539 struct xe_ttm_tt, ttm); 1540 1541 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg, 1542 DMA_BIDIRECTIONAL); 1543 ttm_bo->sg = NULL; 1544 xe_tt->sg = NULL; 1545 } 1546 } 1547 1548 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx) 1549 { 1550 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1551 1552 if (ttm_bo->ttm) { 1553 struct ttm_placement place = {}; 1554 int ret = ttm_bo_validate(ttm_bo, &place, ctx); 1555 1556 drm_WARN_ON(&xe->drm, ret); 1557 } 1558 } 1559 1560 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo) 1561 { 1562 struct ttm_operation_ctx ctx = { 1563 .interruptible = false, 1564 .gfp_retry_mayfail = false, 1565 }; 1566 1567 if (ttm_bo->ttm) { 1568 struct xe_ttm_tt *xe_tt = 1569 container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm); 1570 1571 if (xe_tt->purgeable) 1572 xe_ttm_bo_purge(ttm_bo, &ctx); 1573 } 1574 } 1575 1576 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo, 1577 unsigned long offset, void *buf, int len, 1578 int write) 1579 { 1580 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1581 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1582 struct iosys_map vmap; 1583 struct xe_res_cursor cursor; 1584 struct xe_vram_region *vram; 1585 int bytes_left = len; 1586 int err = 0; 1587 1588 xe_bo_assert_held(bo); 1589 xe_device_assert_mem_access(xe); 1590 1591 if (!mem_type_is_vram(ttm_bo->resource->mem_type)) 1592 return -EIO; 1593 1594 if (!xe_ttm_resource_visible(ttm_bo->resource) || len >= SZ_16K) { 1595 struct xe_migrate *migrate = 1596 mem_type_to_migrate(xe, ttm_bo->resource->mem_type); 1597 1598 err = xe_migrate_access_memory(migrate, bo, offset, buf, len, 1599 write); 1600 goto out; 1601 } 1602 1603 vram = res_to_mem_region(ttm_bo->resource); 1604 xe_res_first(ttm_bo->resource, offset & PAGE_MASK, 1605 xe_bo_size(bo) - (offset & PAGE_MASK), &cursor); 1606 1607 do { 1608 unsigned long page_offset = (offset & ~PAGE_MASK); 1609 int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left); 1610 1611 iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping + 1612 cursor.start); 1613 if (write) 1614 xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count); 1615 else 1616 xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count); 1617 1618 buf += byte_count; 1619 offset += byte_count; 1620 bytes_left -= byte_count; 1621 if (bytes_left) 1622 xe_res_next(&cursor, PAGE_SIZE); 1623 } while (bytes_left); 1624 1625 out: 1626 return err ?: len; 1627 } 1628 1629 const struct ttm_device_funcs xe_ttm_funcs = { 1630 .ttm_tt_create = xe_ttm_tt_create, 1631 .ttm_tt_populate = xe_ttm_tt_populate, 1632 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate, 1633 .ttm_tt_destroy = xe_ttm_tt_destroy, 1634 .evict_flags = xe_evict_flags, 1635 .move = xe_bo_move, 1636 .io_mem_reserve = xe_ttm_io_mem_reserve, 1637 .io_mem_pfn = xe_ttm_io_mem_pfn, 1638 .access_memory = xe_ttm_access_memory, 1639 .release_notify = xe_ttm_bo_release_notify, 1640 .eviction_valuable = xe_bo_eviction_valuable, 1641 .delete_mem_notify = xe_ttm_bo_delete_mem_notify, 1642 .swap_notify = xe_ttm_bo_swap_notify, 1643 }; 1644 1645 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo) 1646 { 1647 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1648 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev); 1649 struct xe_tile *tile; 1650 u8 id; 1651 1652 if (bo->ttm.base.import_attach) 1653 drm_prime_gem_destroy(&bo->ttm.base, NULL); 1654 drm_gem_object_release(&bo->ttm.base); 1655 1656 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list)); 1657 1658 for_each_tile(tile, xe, id) 1659 if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size) 1660 xe_ggtt_remove_bo(tile->mem.ggtt, bo); 1661 1662 #ifdef CONFIG_PROC_FS 1663 if (bo->client) 1664 xe_drm_client_remove_bo(bo); 1665 #endif 1666 1667 if (bo->vm && xe_bo_is_user(bo)) 1668 xe_vm_put(bo->vm); 1669 1670 if (bo->parent_obj) 1671 xe_bo_put(bo->parent_obj); 1672 1673 mutex_lock(&xe->mem_access.vram_userfault.lock); 1674 if (!list_empty(&bo->vram_userfault_link)) 1675 list_del(&bo->vram_userfault_link); 1676 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1677 1678 kfree(bo); 1679 } 1680 1681 static void xe_gem_object_free(struct drm_gem_object *obj) 1682 { 1683 /* Our BO reference counting scheme works as follows: 1684 * 1685 * The gem object kref is typically used throughout the driver, 1686 * and the gem object holds a ttm_buffer_object refcount, so 1687 * that when the last gem object reference is put, which is when 1688 * we end up in this function, we put also that ttm_buffer_object 1689 * refcount. Anything using gem interfaces is then no longer 1690 * allowed to access the object in a way that requires a gem 1691 * refcount, including locking the object. 1692 * 1693 * driver ttm callbacks is allowed to use the ttm_buffer_object 1694 * refcount directly if needed. 1695 */ 1696 __xe_bo_vunmap(gem_to_xe_bo(obj)); 1697 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base)); 1698 } 1699 1700 static void xe_gem_object_close(struct drm_gem_object *obj, 1701 struct drm_file *file_priv) 1702 { 1703 struct xe_bo *bo = gem_to_xe_bo(obj); 1704 1705 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) { 1706 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo)); 1707 1708 xe_bo_lock(bo, false); 1709 ttm_bo_set_bulk_move(&bo->ttm, NULL); 1710 xe_bo_unlock(bo); 1711 } 1712 } 1713 1714 static bool should_migrate_to_smem(struct xe_bo *bo) 1715 { 1716 /* 1717 * NOTE: The following atomic checks are platform-specific. For example, 1718 * if a device supports CXL atomics, these may not be necessary or 1719 * may behave differently. 1720 */ 1721 1722 return bo->attr.atomic_access == DRM_XE_ATOMIC_GLOBAL || 1723 bo->attr.atomic_access == DRM_XE_ATOMIC_CPU; 1724 } 1725 1726 static vm_fault_t xe_gem_fault(struct vm_fault *vmf) 1727 { 1728 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data; 1729 struct drm_device *ddev = tbo->base.dev; 1730 struct xe_device *xe = to_xe_device(ddev); 1731 struct xe_bo *bo = ttm_to_xe_bo(tbo); 1732 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK; 1733 vm_fault_t ret; 1734 int idx, r = 0; 1735 1736 if (needs_rpm) 1737 xe_pm_runtime_get(xe); 1738 1739 ret = ttm_bo_vm_reserve(tbo, vmf); 1740 if (ret) 1741 goto out; 1742 1743 if (drm_dev_enter(ddev, &idx)) { 1744 trace_xe_bo_cpu_fault(bo); 1745 1746 if (should_migrate_to_smem(bo)) { 1747 xe_assert(xe, bo->flags & XE_BO_FLAG_SYSTEM); 1748 1749 r = xe_bo_migrate(bo, XE_PL_TT); 1750 if (r == -EBUSY || r == -ERESTARTSYS || r == -EINTR) 1751 ret = VM_FAULT_NOPAGE; 1752 else if (r) 1753 ret = VM_FAULT_SIGBUS; 1754 } 1755 if (!ret) 1756 ret = ttm_bo_vm_fault_reserved(vmf, 1757 vmf->vma->vm_page_prot, 1758 TTM_BO_VM_NUM_PREFAULT); 1759 drm_dev_exit(idx); 1760 1761 if (ret == VM_FAULT_RETRY && 1762 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1763 goto out; 1764 1765 /* 1766 * ttm_bo_vm_reserve() already has dma_resv_lock. 1767 */ 1768 if (ret == VM_FAULT_NOPAGE && 1769 mem_type_is_vram(tbo->resource->mem_type)) { 1770 mutex_lock(&xe->mem_access.vram_userfault.lock); 1771 if (list_empty(&bo->vram_userfault_link)) 1772 list_add(&bo->vram_userfault_link, 1773 &xe->mem_access.vram_userfault.list); 1774 mutex_unlock(&xe->mem_access.vram_userfault.lock); 1775 } 1776 } else { 1777 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1778 } 1779 1780 dma_resv_unlock(tbo->base.resv); 1781 out: 1782 if (needs_rpm) 1783 xe_pm_runtime_put(xe); 1784 1785 return ret; 1786 } 1787 1788 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr, 1789 void *buf, int len, int write) 1790 { 1791 struct ttm_buffer_object *ttm_bo = vma->vm_private_data; 1792 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo); 1793 struct xe_device *xe = xe_bo_device(bo); 1794 int ret; 1795 1796 xe_pm_runtime_get(xe); 1797 ret = ttm_bo_vm_access(vma, addr, buf, len, write); 1798 xe_pm_runtime_put(xe); 1799 1800 return ret; 1801 } 1802 1803 /** 1804 * xe_bo_read() - Read from an xe_bo 1805 * @bo: The buffer object to read from. 1806 * @offset: The byte offset to start reading from. 1807 * @dst: Location to store the read. 1808 * @size: Size in bytes for the read. 1809 * 1810 * Read @size bytes from the @bo, starting from @offset, storing into @dst. 1811 * 1812 * Return: Zero on success, or negative error. 1813 */ 1814 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size) 1815 { 1816 int ret; 1817 1818 ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0); 1819 if (ret >= 0 && ret != size) 1820 ret = -EIO; 1821 else if (ret == size) 1822 ret = 0; 1823 1824 return ret; 1825 } 1826 1827 static const struct vm_operations_struct xe_gem_vm_ops = { 1828 .fault = xe_gem_fault, 1829 .open = ttm_bo_vm_open, 1830 .close = ttm_bo_vm_close, 1831 .access = xe_bo_vm_access, 1832 }; 1833 1834 static const struct drm_gem_object_funcs xe_gem_object_funcs = { 1835 .free = xe_gem_object_free, 1836 .close = xe_gem_object_close, 1837 .mmap = drm_gem_ttm_mmap, 1838 .export = xe_gem_prime_export, 1839 .vm_ops = &xe_gem_vm_ops, 1840 }; 1841 1842 /** 1843 * xe_bo_alloc - Allocate storage for a struct xe_bo 1844 * 1845 * This function is intended to allocate storage to be used for input 1846 * to __xe_bo_create_locked(), in the case a pointer to the bo to be 1847 * created is needed before the call to __xe_bo_create_locked(). 1848 * If __xe_bo_create_locked ends up never to be called, then the 1849 * storage allocated with this function needs to be freed using 1850 * xe_bo_free(). 1851 * 1852 * Return: A pointer to an uninitialized struct xe_bo on success, 1853 * ERR_PTR(-ENOMEM) on error. 1854 */ 1855 struct xe_bo *xe_bo_alloc(void) 1856 { 1857 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1858 1859 if (!bo) 1860 return ERR_PTR(-ENOMEM); 1861 1862 return bo; 1863 } 1864 1865 /** 1866 * xe_bo_free - Free storage allocated using xe_bo_alloc() 1867 * @bo: The buffer object storage. 1868 * 1869 * Refer to xe_bo_alloc() documentation for valid use-cases. 1870 */ 1871 void xe_bo_free(struct xe_bo *bo) 1872 { 1873 kfree(bo); 1874 } 1875 1876 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo, 1877 struct xe_tile *tile, struct dma_resv *resv, 1878 struct ttm_lru_bulk_move *bulk, size_t size, 1879 u16 cpu_caching, enum ttm_bo_type type, 1880 u32 flags) 1881 { 1882 struct ttm_operation_ctx ctx = { 1883 .interruptible = true, 1884 .no_wait_gpu = false, 1885 .gfp_retry_mayfail = true, 1886 }; 1887 struct ttm_placement *placement; 1888 uint32_t alignment; 1889 size_t aligned_size; 1890 int err; 1891 1892 /* Only kernel objects should set GT */ 1893 xe_assert(xe, !tile || type == ttm_bo_type_kernel); 1894 1895 if (XE_WARN_ON(!size)) { 1896 xe_bo_free(bo); 1897 return ERR_PTR(-EINVAL); 1898 } 1899 1900 /* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */ 1901 if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT)) 1902 return ERR_PTR(-EINVAL); 1903 1904 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) && 1905 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) && 1906 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) || 1907 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) { 1908 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K; 1909 1910 aligned_size = ALIGN(size, align); 1911 if (type != ttm_bo_type_device) 1912 size = ALIGN(size, align); 1913 flags |= XE_BO_FLAG_INTERNAL_64K; 1914 alignment = align >> PAGE_SHIFT; 1915 } else { 1916 aligned_size = ALIGN(size, SZ_4K); 1917 flags &= ~XE_BO_FLAG_INTERNAL_64K; 1918 alignment = SZ_4K >> PAGE_SHIFT; 1919 } 1920 1921 if (type == ttm_bo_type_device && aligned_size != size) 1922 return ERR_PTR(-EINVAL); 1923 1924 if (!bo) { 1925 bo = xe_bo_alloc(); 1926 if (IS_ERR(bo)) 1927 return bo; 1928 } 1929 1930 bo->ccs_cleared = false; 1931 bo->tile = tile; 1932 bo->flags = flags; 1933 bo->cpu_caching = cpu_caching; 1934 bo->ttm.base.funcs = &xe_gem_object_funcs; 1935 bo->ttm.priority = XE_BO_PRIORITY_NORMAL; 1936 INIT_LIST_HEAD(&bo->pinned_link); 1937 #ifdef CONFIG_PROC_FS 1938 INIT_LIST_HEAD(&bo->client_link); 1939 #endif 1940 INIT_LIST_HEAD(&bo->vram_userfault_link); 1941 1942 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size); 1943 1944 if (resv) { 1945 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT); 1946 ctx.resv = resv; 1947 } 1948 1949 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) { 1950 err = __xe_bo_placement_for_flags(xe, bo, bo->flags); 1951 if (WARN_ON(err)) { 1952 xe_ttm_bo_destroy(&bo->ttm); 1953 return ERR_PTR(err); 1954 } 1955 } 1956 1957 /* Defer populating type_sg bos */ 1958 placement = (type == ttm_bo_type_sg || 1959 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement : 1960 &bo->placement; 1961 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type, 1962 placement, alignment, 1963 &ctx, NULL, resv, xe_ttm_bo_destroy); 1964 if (err) 1965 return ERR_PTR(err); 1966 1967 /* 1968 * The VRAM pages underneath are potentially still being accessed by the 1969 * GPU, as per async GPU clearing and async evictions. However TTM makes 1970 * sure to add any corresponding move/clear fences into the objects 1971 * dma-resv using the DMA_RESV_USAGE_KERNEL slot. 1972 * 1973 * For KMD internal buffers we don't care about GPU clearing, however we 1974 * still need to handle async evictions, where the VRAM is still being 1975 * accessed by the GPU. Most internal callers are not expecting this, 1976 * since they are missing the required synchronisation before accessing 1977 * the memory. To keep things simple just sync wait any kernel fences 1978 * here, if the buffer is designated KMD internal. 1979 * 1980 * For normal userspace objects we should already have the required 1981 * pipelining or sync waiting elsewhere, since we already have to deal 1982 * with things like async GPU clearing. 1983 */ 1984 if (type == ttm_bo_type_kernel) { 1985 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv, 1986 DMA_RESV_USAGE_KERNEL, 1987 ctx.interruptible, 1988 MAX_SCHEDULE_TIMEOUT); 1989 1990 if (timeout < 0) { 1991 if (!resv) 1992 dma_resv_unlock(bo->ttm.base.resv); 1993 xe_bo_put(bo); 1994 return ERR_PTR(timeout); 1995 } 1996 } 1997 1998 bo->created = true; 1999 if (bulk) 2000 ttm_bo_set_bulk_move(&bo->ttm, bulk); 2001 else 2002 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2003 2004 return bo; 2005 } 2006 2007 static int __xe_bo_fixed_placement(struct xe_device *xe, 2008 struct xe_bo *bo, 2009 u32 flags, 2010 u64 start, u64 end, u64 size) 2011 { 2012 struct ttm_place *place = bo->placements; 2013 2014 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM)) 2015 return -EINVAL; 2016 2017 place->flags = TTM_PL_FLAG_CONTIGUOUS; 2018 place->fpfn = start >> PAGE_SHIFT; 2019 place->lpfn = end >> PAGE_SHIFT; 2020 2021 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) { 2022 case XE_BO_FLAG_VRAM0: 2023 place->mem_type = XE_PL_VRAM0; 2024 break; 2025 case XE_BO_FLAG_VRAM1: 2026 place->mem_type = XE_PL_VRAM1; 2027 break; 2028 case XE_BO_FLAG_STOLEN: 2029 place->mem_type = XE_PL_STOLEN; 2030 break; 2031 2032 default: 2033 /* 0 or multiple of the above set */ 2034 return -EINVAL; 2035 } 2036 2037 bo->placement = (struct ttm_placement) { 2038 .num_placement = 1, 2039 .placement = place, 2040 }; 2041 2042 return 0; 2043 } 2044 2045 static struct xe_bo * 2046 __xe_bo_create_locked(struct xe_device *xe, 2047 struct xe_tile *tile, struct xe_vm *vm, 2048 size_t size, u64 start, u64 end, 2049 u16 cpu_caching, enum ttm_bo_type type, u32 flags, 2050 u64 alignment) 2051 { 2052 struct xe_bo *bo = NULL; 2053 int err; 2054 2055 if (vm) 2056 xe_vm_assert_held(vm); 2057 2058 if (start || end != ~0ULL) { 2059 bo = xe_bo_alloc(); 2060 if (IS_ERR(bo)) 2061 return bo; 2062 2063 flags |= XE_BO_FLAG_FIXED_PLACEMENT; 2064 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size); 2065 if (err) { 2066 xe_bo_free(bo); 2067 return ERR_PTR(err); 2068 } 2069 } 2070 2071 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL, 2072 vm && !xe_vm_in_fault_mode(vm) && 2073 flags & XE_BO_FLAG_USER ? 2074 &vm->lru_bulk_move : NULL, size, 2075 cpu_caching, type, flags); 2076 if (IS_ERR(bo)) 2077 return bo; 2078 2079 bo->min_align = alignment; 2080 2081 /* 2082 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(), 2083 * to ensure the shared resv doesn't disappear under the bo, the bo 2084 * will keep a reference to the vm, and avoid circular references 2085 * by having all the vm's bo refereferences released at vm close 2086 * time. 2087 */ 2088 if (vm && xe_bo_is_user(bo)) 2089 xe_vm_get(vm); 2090 bo->vm = vm; 2091 2092 if (bo->flags & XE_BO_FLAG_GGTT) { 2093 struct xe_tile *t; 2094 u8 id; 2095 2096 if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) { 2097 if (!tile && flags & XE_BO_FLAG_STOLEN) 2098 tile = xe_device_get_root_tile(xe); 2099 2100 xe_assert(xe, tile); 2101 } 2102 2103 for_each_tile(t, xe, id) { 2104 if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t))) 2105 continue; 2106 2107 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) { 2108 err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo, 2109 start + xe_bo_size(bo), U64_MAX); 2110 } else { 2111 err = xe_ggtt_insert_bo(t->mem.ggtt, bo); 2112 } 2113 if (err) 2114 goto err_unlock_put_bo; 2115 } 2116 } 2117 2118 trace_xe_bo_create(bo); 2119 return bo; 2120 2121 err_unlock_put_bo: 2122 __xe_bo_unset_bulk_move(bo); 2123 xe_bo_unlock_vm_held(bo); 2124 xe_bo_put(bo); 2125 return ERR_PTR(err); 2126 } 2127 2128 struct xe_bo * 2129 xe_bo_create_locked_range(struct xe_device *xe, 2130 struct xe_tile *tile, struct xe_vm *vm, 2131 size_t size, u64 start, u64 end, 2132 enum ttm_bo_type type, u32 flags, u64 alignment) 2133 { 2134 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, 2135 flags, alignment); 2136 } 2137 2138 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile, 2139 struct xe_vm *vm, size_t size, 2140 enum ttm_bo_type type, u32 flags) 2141 { 2142 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, 2143 flags, 0); 2144 } 2145 2146 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile, 2147 struct xe_vm *vm, size_t size, 2148 u16 cpu_caching, 2149 u32 flags) 2150 { 2151 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 2152 cpu_caching, ttm_bo_type_device, 2153 flags | XE_BO_FLAG_USER, 0); 2154 if (!IS_ERR(bo)) 2155 xe_bo_unlock_vm_held(bo); 2156 2157 return bo; 2158 } 2159 2160 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile, 2161 struct xe_vm *vm, size_t size, 2162 enum ttm_bo_type type, u32 flags) 2163 { 2164 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags); 2165 2166 if (!IS_ERR(bo)) 2167 xe_bo_unlock_vm_held(bo); 2168 2169 return bo; 2170 } 2171 2172 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile, 2173 struct xe_vm *vm, 2174 size_t size, u64 offset, 2175 enum ttm_bo_type type, u32 flags) 2176 { 2177 return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset, 2178 type, flags, 0); 2179 } 2180 2181 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe, 2182 struct xe_tile *tile, 2183 struct xe_vm *vm, 2184 size_t size, u64 offset, 2185 enum ttm_bo_type type, u32 flags, 2186 u64 alignment) 2187 { 2188 struct xe_bo *bo; 2189 int err; 2190 u64 start = offset == ~0ull ? 0 : offset; 2191 u64 end = offset == ~0ull ? offset : start + size; 2192 2193 if (flags & XE_BO_FLAG_STOLEN && 2194 xe_ttm_stolen_cpu_access_needs_ggtt(xe)) 2195 flags |= XE_BO_FLAG_GGTT; 2196 2197 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type, 2198 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS | XE_BO_FLAG_PINNED, 2199 alignment); 2200 if (IS_ERR(bo)) 2201 return bo; 2202 2203 err = xe_bo_pin(bo); 2204 if (err) 2205 goto err_put; 2206 2207 err = xe_bo_vmap(bo); 2208 if (err) 2209 goto err_unpin; 2210 2211 xe_bo_unlock_vm_held(bo); 2212 2213 return bo; 2214 2215 err_unpin: 2216 xe_bo_unpin(bo); 2217 err_put: 2218 xe_bo_unlock_vm_held(bo); 2219 xe_bo_put(bo); 2220 return ERR_PTR(err); 2221 } 2222 2223 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2224 struct xe_vm *vm, size_t size, 2225 enum ttm_bo_type type, u32 flags) 2226 { 2227 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags); 2228 } 2229 2230 static void __xe_bo_unpin_map_no_vm(void *arg) 2231 { 2232 xe_bo_unpin_map_no_vm(arg); 2233 } 2234 2235 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile, 2236 size_t size, u32 flags) 2237 { 2238 struct xe_bo *bo; 2239 int ret; 2240 2241 KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags); 2242 2243 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags); 2244 if (IS_ERR(bo)) 2245 return bo; 2246 2247 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo); 2248 if (ret) 2249 return ERR_PTR(ret); 2250 2251 return bo; 2252 } 2253 2254 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile, 2255 const void *data, size_t size, u32 flags) 2256 { 2257 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags); 2258 2259 if (IS_ERR(bo)) 2260 return bo; 2261 2262 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size); 2263 2264 return bo; 2265 } 2266 2267 /** 2268 * xe_managed_bo_reinit_in_vram 2269 * @xe: xe device 2270 * @tile: Tile where the new buffer will be created 2271 * @src: Managed buffer object allocated in system memory 2272 * 2273 * Replace a managed src buffer object allocated in system memory with a new 2274 * one allocated in vram, copying the data between them. 2275 * Buffer object in VRAM is not going to have the same GGTT address, the caller 2276 * is responsible for making sure that any old references to it are updated. 2277 * 2278 * Returns 0 for success, negative error code otherwise. 2279 */ 2280 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src) 2281 { 2282 struct xe_bo *bo; 2283 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT; 2284 2285 dst_flags |= (*src)->flags & (XE_BO_FLAG_GGTT_INVALIDATE | 2286 XE_BO_FLAG_PINNED_NORESTORE); 2287 2288 xe_assert(xe, IS_DGFX(xe)); 2289 xe_assert(xe, !(*src)->vmap.is_iomem); 2290 2291 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr, 2292 xe_bo_size(*src), dst_flags); 2293 if (IS_ERR(bo)) 2294 return PTR_ERR(bo); 2295 2296 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src); 2297 *src = bo; 2298 2299 return 0; 2300 } 2301 2302 /* 2303 * XXX: This is in the VM bind data path, likely should calculate this once and 2304 * store, with a recalculation if the BO is moved. 2305 */ 2306 uint64_t vram_region_gpu_offset(struct ttm_resource *res) 2307 { 2308 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev); 2309 2310 switch (res->mem_type) { 2311 case XE_PL_STOLEN: 2312 return xe_ttm_stolen_gpu_offset(xe); 2313 case XE_PL_TT: 2314 case XE_PL_SYSTEM: 2315 return 0; 2316 default: 2317 return res_to_mem_region(res)->dpa_base; 2318 } 2319 return 0; 2320 } 2321 2322 /** 2323 * xe_bo_pin_external - pin an external BO 2324 * @bo: buffer object to be pinned 2325 * 2326 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2327 * BO. Unique call compared to xe_bo_pin as this function has it own set of 2328 * asserts and code to ensure evict / restore on suspend / resume. 2329 * 2330 * Returns 0 for success, negative error code otherwise. 2331 */ 2332 int xe_bo_pin_external(struct xe_bo *bo) 2333 { 2334 struct xe_device *xe = xe_bo_device(bo); 2335 int err; 2336 2337 xe_assert(xe, !bo->vm); 2338 xe_assert(xe, xe_bo_is_user(bo)); 2339 2340 if (!xe_bo_is_pinned(bo)) { 2341 err = xe_bo_validate(bo, NULL, false); 2342 if (err) 2343 return err; 2344 2345 spin_lock(&xe->pinned.lock); 2346 list_add_tail(&bo->pinned_link, &xe->pinned.late.external); 2347 spin_unlock(&xe->pinned.lock); 2348 } 2349 2350 ttm_bo_pin(&bo->ttm); 2351 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2352 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2353 2354 /* 2355 * FIXME: If we always use the reserve / unreserve functions for locking 2356 * we do not need this. 2357 */ 2358 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2359 2360 return 0; 2361 } 2362 2363 int xe_bo_pin(struct xe_bo *bo) 2364 { 2365 struct ttm_place *place = &bo->placements[0]; 2366 struct xe_device *xe = xe_bo_device(bo); 2367 int err; 2368 2369 /* We currently don't expect user BO to be pinned */ 2370 xe_assert(xe, !xe_bo_is_user(bo)); 2371 2372 /* Pinned object must be in GGTT or have pinned flag */ 2373 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED | 2374 XE_BO_FLAG_GGTT)); 2375 2376 /* 2377 * No reason we can't support pinning imported dma-bufs we just don't 2378 * expect to pin an imported dma-buf. 2379 */ 2380 xe_assert(xe, !bo->ttm.base.import_attach); 2381 2382 /* We only expect at most 1 pin */ 2383 xe_assert(xe, !xe_bo_is_pinned(bo)); 2384 2385 err = xe_bo_validate(bo, NULL, false); 2386 if (err) 2387 return err; 2388 2389 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2390 spin_lock(&xe->pinned.lock); 2391 if (bo->flags & XE_BO_FLAG_PINNED_LATE_RESTORE) 2392 list_add_tail(&bo->pinned_link, &xe->pinned.late.kernel_bo_present); 2393 else 2394 list_add_tail(&bo->pinned_link, &xe->pinned.early.kernel_bo_present); 2395 spin_unlock(&xe->pinned.lock); 2396 } 2397 2398 ttm_bo_pin(&bo->ttm); 2399 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2400 xe_ttm_tt_account_subtract(xe, bo->ttm.ttm); 2401 2402 /* 2403 * FIXME: If we always use the reserve / unreserve functions for locking 2404 * we do not need this. 2405 */ 2406 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2407 2408 return 0; 2409 } 2410 2411 /** 2412 * xe_bo_unpin_external - unpin an external BO 2413 * @bo: buffer object to be unpinned 2414 * 2415 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD) 2416 * BO. Unique call compared to xe_bo_unpin as this function has it own set of 2417 * asserts and code to ensure evict / restore on suspend / resume. 2418 * 2419 * Returns 0 for success, negative error code otherwise. 2420 */ 2421 void xe_bo_unpin_external(struct xe_bo *bo) 2422 { 2423 struct xe_device *xe = xe_bo_device(bo); 2424 2425 xe_assert(xe, !bo->vm); 2426 xe_assert(xe, xe_bo_is_pinned(bo)); 2427 xe_assert(xe, xe_bo_is_user(bo)); 2428 2429 spin_lock(&xe->pinned.lock); 2430 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link)) 2431 list_del_init(&bo->pinned_link); 2432 spin_unlock(&xe->pinned.lock); 2433 2434 ttm_bo_unpin(&bo->ttm); 2435 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2436 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2437 2438 /* 2439 * FIXME: If we always use the reserve / unreserve functions for locking 2440 * we do not need this. 2441 */ 2442 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm); 2443 } 2444 2445 void xe_bo_unpin(struct xe_bo *bo) 2446 { 2447 struct ttm_place *place = &bo->placements[0]; 2448 struct xe_device *xe = xe_bo_device(bo); 2449 2450 xe_assert(xe, !bo->ttm.base.import_attach); 2451 xe_assert(xe, xe_bo_is_pinned(bo)); 2452 2453 if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) { 2454 spin_lock(&xe->pinned.lock); 2455 xe_assert(xe, !list_empty(&bo->pinned_link)); 2456 list_del_init(&bo->pinned_link); 2457 spin_unlock(&xe->pinned.lock); 2458 2459 if (bo->backup_obj) { 2460 if (xe_bo_is_pinned(bo->backup_obj)) 2461 ttm_bo_unpin(&bo->backup_obj->ttm); 2462 xe_bo_put(bo->backup_obj); 2463 bo->backup_obj = NULL; 2464 } 2465 } 2466 ttm_bo_unpin(&bo->ttm); 2467 if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) 2468 xe_ttm_tt_account_add(xe, bo->ttm.ttm); 2469 } 2470 2471 /** 2472 * xe_bo_validate() - Make sure the bo is in an allowed placement 2473 * @bo: The bo, 2474 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or 2475 * NULL. Used together with @allow_res_evict. 2476 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's 2477 * reservation object. 2478 * 2479 * Make sure the bo is in allowed placement, migrating it if necessary. If 2480 * needed, other bos will be evicted. If bos selected for eviction shares 2481 * the @vm's reservation object, they can be evicted iff @allow_res_evict is 2482 * set to true, otherwise they will be bypassed. 2483 * 2484 * Return: 0 on success, negative error code on failure. May return 2485 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal. 2486 */ 2487 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict) 2488 { 2489 struct ttm_operation_ctx ctx = { 2490 .interruptible = true, 2491 .no_wait_gpu = false, 2492 .gfp_retry_mayfail = true, 2493 }; 2494 int ret; 2495 2496 if (vm) { 2497 lockdep_assert_held(&vm->lock); 2498 xe_vm_assert_held(vm); 2499 2500 ctx.allow_res_evict = allow_res_evict; 2501 ctx.resv = xe_vm_resv(vm); 2502 } 2503 2504 xe_vm_set_validating(vm, allow_res_evict); 2505 trace_xe_bo_validate(bo); 2506 ret = ttm_bo_validate(&bo->ttm, &bo->placement, &ctx); 2507 xe_vm_clear_validating(vm, allow_res_evict); 2508 2509 return ret; 2510 } 2511 2512 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo) 2513 { 2514 if (bo->destroy == &xe_ttm_bo_destroy) 2515 return true; 2516 2517 return false; 2518 } 2519 2520 /* 2521 * Resolve a BO address. There is no assert to check if the proper lock is held 2522 * so it should only be used in cases where it is not fatal to get the wrong 2523 * address, such as printing debug information, but not in cases where memory is 2524 * written based on this result. 2525 */ 2526 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2527 { 2528 struct xe_device *xe = xe_bo_device(bo); 2529 struct xe_res_cursor cur; 2530 u64 page; 2531 2532 xe_assert(xe, page_size <= PAGE_SIZE); 2533 page = offset >> PAGE_SHIFT; 2534 offset &= (PAGE_SIZE - 1); 2535 2536 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) { 2537 xe_assert(xe, bo->ttm.ttm); 2538 2539 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT, 2540 page_size, &cur); 2541 return xe_res_dma(&cur) + offset; 2542 } else { 2543 struct xe_res_cursor cur; 2544 2545 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT, 2546 page_size, &cur); 2547 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource); 2548 } 2549 } 2550 2551 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size) 2552 { 2553 if (!READ_ONCE(bo->ttm.pin_count)) 2554 xe_bo_assert_held(bo); 2555 return __xe_bo_addr(bo, offset, page_size); 2556 } 2557 2558 int xe_bo_vmap(struct xe_bo *bo) 2559 { 2560 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2561 void *virtual; 2562 bool is_iomem; 2563 int ret; 2564 2565 xe_bo_assert_held(bo); 2566 2567 if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) || 2568 !force_contiguous(bo->flags))) 2569 return -EINVAL; 2570 2571 if (!iosys_map_is_null(&bo->vmap)) 2572 return 0; 2573 2574 /* 2575 * We use this more or less deprecated interface for now since 2576 * ttm_bo_vmap() doesn't offer the optimization of kmapping 2577 * single page bos, which is done here. 2578 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap 2579 * to use struct iosys_map. 2580 */ 2581 ret = ttm_bo_kmap(&bo->ttm, 0, xe_bo_size(bo) >> PAGE_SHIFT, &bo->kmap); 2582 if (ret) 2583 return ret; 2584 2585 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem); 2586 if (is_iomem) 2587 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual); 2588 else 2589 iosys_map_set_vaddr(&bo->vmap, virtual); 2590 2591 return 0; 2592 } 2593 2594 static void __xe_bo_vunmap(struct xe_bo *bo) 2595 { 2596 if (!iosys_map_is_null(&bo->vmap)) { 2597 iosys_map_clear(&bo->vmap); 2598 ttm_bo_kunmap(&bo->kmap); 2599 } 2600 } 2601 2602 void xe_bo_vunmap(struct xe_bo *bo) 2603 { 2604 xe_bo_assert_held(bo); 2605 __xe_bo_vunmap(bo); 2606 } 2607 2608 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value) 2609 { 2610 if (value == DRM_XE_PXP_TYPE_NONE) 2611 return 0; 2612 2613 /* we only support DRM_XE_PXP_TYPE_HWDRM for now */ 2614 if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM)) 2615 return -EINVAL; 2616 2617 return xe_pxp_key_assign(xe->pxp, bo); 2618 } 2619 2620 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe, 2621 struct xe_bo *bo, 2622 u64 value); 2623 2624 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = { 2625 [DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE] = gem_create_set_pxp_type, 2626 }; 2627 2628 static int gem_create_user_ext_set_property(struct xe_device *xe, 2629 struct xe_bo *bo, 2630 u64 extension) 2631 { 2632 u64 __user *address = u64_to_user_ptr(extension); 2633 struct drm_xe_ext_set_property ext; 2634 int err; 2635 u32 idx; 2636 2637 err = copy_from_user(&ext, address, sizeof(ext)); 2638 if (XE_IOCTL_DBG(xe, err)) 2639 return -EFAULT; 2640 2641 if (XE_IOCTL_DBG(xe, ext.property >= 2642 ARRAY_SIZE(gem_create_set_property_funcs)) || 2643 XE_IOCTL_DBG(xe, ext.pad) || 2644 XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY)) 2645 return -EINVAL; 2646 2647 idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs)); 2648 if (!gem_create_set_property_funcs[idx]) 2649 return -EINVAL; 2650 2651 return gem_create_set_property_funcs[idx](xe, bo, ext.value); 2652 } 2653 2654 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe, 2655 struct xe_bo *bo, 2656 u64 extension); 2657 2658 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = { 2659 [DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property, 2660 }; 2661 2662 #define MAX_USER_EXTENSIONS 16 2663 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo, 2664 u64 extensions, int ext_number) 2665 { 2666 u64 __user *address = u64_to_user_ptr(extensions); 2667 struct drm_xe_user_extension ext; 2668 int err; 2669 u32 idx; 2670 2671 if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) 2672 return -E2BIG; 2673 2674 err = copy_from_user(&ext, address, sizeof(ext)); 2675 if (XE_IOCTL_DBG(xe, err)) 2676 return -EFAULT; 2677 2678 if (XE_IOCTL_DBG(xe, ext.pad) || 2679 XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs))) 2680 return -EINVAL; 2681 2682 idx = array_index_nospec(ext.name, 2683 ARRAY_SIZE(gem_create_user_extension_funcs)); 2684 err = gem_create_user_extension_funcs[idx](xe, bo, extensions); 2685 if (XE_IOCTL_DBG(xe, err)) 2686 return err; 2687 2688 if (ext.next_extension) 2689 return gem_create_user_extensions(xe, bo, ext.next_extension, 2690 ++ext_number); 2691 2692 return 0; 2693 } 2694 2695 int xe_gem_create_ioctl(struct drm_device *dev, void *data, 2696 struct drm_file *file) 2697 { 2698 struct xe_device *xe = to_xe_device(dev); 2699 struct xe_file *xef = to_xe_file(file); 2700 struct drm_xe_gem_create *args = data; 2701 struct xe_vm *vm = NULL; 2702 ktime_t end = 0; 2703 struct xe_bo *bo; 2704 unsigned int bo_flags; 2705 u32 handle; 2706 int err; 2707 2708 if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) || 2709 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2710 return -EINVAL; 2711 2712 /* at least one valid memory placement must be specified */ 2713 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) || 2714 !args->placement)) 2715 return -EINVAL; 2716 2717 if (XE_IOCTL_DBG(xe, args->flags & 2718 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING | 2719 DRM_XE_GEM_CREATE_FLAG_SCANOUT | 2720 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM))) 2721 return -EINVAL; 2722 2723 if (XE_IOCTL_DBG(xe, args->handle)) 2724 return -EINVAL; 2725 2726 if (XE_IOCTL_DBG(xe, !args->size)) 2727 return -EINVAL; 2728 2729 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX)) 2730 return -EINVAL; 2731 2732 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK)) 2733 return -EINVAL; 2734 2735 bo_flags = 0; 2736 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING) 2737 bo_flags |= XE_BO_FLAG_DEFER_BACKING; 2738 2739 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT) 2740 bo_flags |= XE_BO_FLAG_SCANOUT; 2741 2742 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1); 2743 2744 /* CCS formats need physical placement at a 64K alignment in VRAM. */ 2745 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) && 2746 (bo_flags & XE_BO_FLAG_SCANOUT) && 2747 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) && 2748 IS_ALIGNED(args->size, SZ_64K)) 2749 bo_flags |= XE_BO_FLAG_NEEDS_64K; 2750 2751 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) { 2752 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK))) 2753 return -EINVAL; 2754 2755 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS; 2756 } 2757 2758 if (XE_IOCTL_DBG(xe, !args->cpu_caching || 2759 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC)) 2760 return -EINVAL; 2761 2762 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK && 2763 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC)) 2764 return -EINVAL; 2765 2766 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT && 2767 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) 2768 return -EINVAL; 2769 2770 if (args->vm_id) { 2771 vm = xe_vm_lookup(xef, args->vm_id); 2772 if (XE_IOCTL_DBG(xe, !vm)) 2773 return -ENOENT; 2774 } 2775 2776 retry: 2777 if (vm) { 2778 err = xe_vm_lock(vm, true); 2779 if (err) 2780 goto out_vm; 2781 } 2782 2783 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching, 2784 bo_flags); 2785 2786 if (vm) 2787 xe_vm_unlock(vm); 2788 2789 if (IS_ERR(bo)) { 2790 err = PTR_ERR(bo); 2791 if (xe_vm_validate_should_retry(NULL, err, &end)) 2792 goto retry; 2793 goto out_vm; 2794 } 2795 2796 if (args->extensions) { 2797 err = gem_create_user_extensions(xe, bo, args->extensions, 0); 2798 if (err) 2799 goto out_bulk; 2800 } 2801 2802 err = drm_gem_handle_create(file, &bo->ttm.base, &handle); 2803 if (err) 2804 goto out_bulk; 2805 2806 args->handle = handle; 2807 goto out_put; 2808 2809 out_bulk: 2810 if (vm && !xe_vm_in_fault_mode(vm)) { 2811 xe_vm_lock(vm, false); 2812 __xe_bo_unset_bulk_move(bo); 2813 xe_vm_unlock(vm); 2814 } 2815 out_put: 2816 xe_bo_put(bo); 2817 out_vm: 2818 if (vm) 2819 xe_vm_put(vm); 2820 2821 return err; 2822 } 2823 2824 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data, 2825 struct drm_file *file) 2826 { 2827 struct xe_device *xe = to_xe_device(dev); 2828 struct drm_xe_gem_mmap_offset *args = data; 2829 struct drm_gem_object *gem_obj; 2830 2831 if (XE_IOCTL_DBG(xe, args->extensions) || 2832 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2833 return -EINVAL; 2834 2835 if (XE_IOCTL_DBG(xe, args->flags & 2836 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER)) 2837 return -EINVAL; 2838 2839 if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) { 2840 if (XE_IOCTL_DBG(xe, !IS_DGFX(xe))) 2841 return -EINVAL; 2842 2843 if (XE_IOCTL_DBG(xe, args->handle)) 2844 return -EINVAL; 2845 2846 if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K)) 2847 return -EINVAL; 2848 2849 BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) + 2850 SZ_4K) >= DRM_FILE_PAGE_OFFSET_START); 2851 args->offset = XE_PCI_BARRIER_MMAP_OFFSET; 2852 return 0; 2853 } 2854 2855 gem_obj = drm_gem_object_lookup(file, args->handle); 2856 if (XE_IOCTL_DBG(xe, !gem_obj)) 2857 return -ENOENT; 2858 2859 /* The mmap offset was set up at BO allocation time. */ 2860 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node); 2861 2862 xe_bo_put(gem_to_xe_bo(gem_obj)); 2863 return 0; 2864 } 2865 2866 /** 2867 * xe_bo_lock() - Lock the buffer object's dma_resv object 2868 * @bo: The struct xe_bo whose lock is to be taken 2869 * @intr: Whether to perform any wait interruptible 2870 * 2871 * Locks the buffer object's dma_resv object. If the buffer object is 2872 * pointing to a shared dma_resv object, that shared lock is locked. 2873 * 2874 * Return: 0 on success, -EINTR if @intr is true and the wait for a 2875 * contended lock was interrupted. If @intr is set to false, the 2876 * function always returns 0. 2877 */ 2878 int xe_bo_lock(struct xe_bo *bo, bool intr) 2879 { 2880 if (intr) 2881 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL); 2882 2883 dma_resv_lock(bo->ttm.base.resv, NULL); 2884 2885 return 0; 2886 } 2887 2888 /** 2889 * xe_bo_unlock() - Unlock the buffer object's dma_resv object 2890 * @bo: The struct xe_bo whose lock is to be released. 2891 * 2892 * Unlock a buffer object lock that was locked by xe_bo_lock(). 2893 */ 2894 void xe_bo_unlock(struct xe_bo *bo) 2895 { 2896 dma_resv_unlock(bo->ttm.base.resv); 2897 } 2898 2899 /** 2900 * xe_bo_can_migrate - Whether a buffer object likely can be migrated 2901 * @bo: The buffer object to migrate 2902 * @mem_type: The TTM memory type intended to migrate to 2903 * 2904 * Check whether the buffer object supports migration to the 2905 * given memory type. Note that pinning may affect the ability to migrate as 2906 * returned by this function. 2907 * 2908 * This function is primarily intended as a helper for checking the 2909 * possibility to migrate buffer objects and can be called without 2910 * the object lock held. 2911 * 2912 * Return: true if migration is possible, false otherwise. 2913 */ 2914 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type) 2915 { 2916 unsigned int cur_place; 2917 2918 if (bo->ttm.type == ttm_bo_type_kernel) 2919 return true; 2920 2921 if (bo->ttm.type == ttm_bo_type_sg) 2922 return false; 2923 2924 for (cur_place = 0; cur_place < bo->placement.num_placement; 2925 cur_place++) { 2926 if (bo->placements[cur_place].mem_type == mem_type) 2927 return true; 2928 } 2929 2930 return false; 2931 } 2932 2933 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place) 2934 { 2935 memset(place, 0, sizeof(*place)); 2936 place->mem_type = mem_type; 2937 } 2938 2939 /** 2940 * xe_bo_migrate - Migrate an object to the desired region id 2941 * @bo: The buffer object to migrate. 2942 * @mem_type: The TTM region type to migrate to. 2943 * 2944 * Attempt to migrate the buffer object to the desired memory region. The 2945 * buffer object may not be pinned, and must be locked. 2946 * On successful completion, the object memory type will be updated, 2947 * but an async migration task may not have completed yet, and to 2948 * accomplish that, the object's kernel fences must be signaled with 2949 * the object lock held. 2950 * 2951 * Return: 0 on success. Negative error code on failure. In particular may 2952 * return -EINTR or -ERESTARTSYS if signal pending. 2953 */ 2954 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type) 2955 { 2956 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev); 2957 struct ttm_operation_ctx ctx = { 2958 .interruptible = true, 2959 .no_wait_gpu = false, 2960 .gfp_retry_mayfail = true, 2961 }; 2962 struct ttm_placement placement; 2963 struct ttm_place requested; 2964 2965 xe_bo_assert_held(bo); 2966 2967 if (bo->ttm.resource->mem_type == mem_type) 2968 return 0; 2969 2970 if (xe_bo_is_pinned(bo)) 2971 return -EBUSY; 2972 2973 if (!xe_bo_can_migrate(bo, mem_type)) 2974 return -EINVAL; 2975 2976 xe_place_from_ttm_type(mem_type, &requested); 2977 placement.num_placement = 1; 2978 placement.placement = &requested; 2979 2980 /* 2981 * Stolen needs to be handled like below VRAM handling if we ever need 2982 * to support it. 2983 */ 2984 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN); 2985 2986 if (mem_type_is_vram(mem_type)) { 2987 u32 c = 0; 2988 2989 add_vram(xe, bo, &requested, bo->flags, mem_type, &c); 2990 } 2991 2992 return ttm_bo_validate(&bo->ttm, &placement, &ctx); 2993 } 2994 2995 /** 2996 * xe_bo_evict - Evict an object to evict placement 2997 * @bo: The buffer object to migrate. 2998 * 2999 * On successful completion, the object memory will be moved to evict 3000 * placement. This function blocks until the object has been fully moved. 3001 * 3002 * Return: 0 on success. Negative error code on failure. 3003 */ 3004 int xe_bo_evict(struct xe_bo *bo) 3005 { 3006 struct ttm_operation_ctx ctx = { 3007 .interruptible = false, 3008 .no_wait_gpu = false, 3009 .gfp_retry_mayfail = true, 3010 }; 3011 struct ttm_placement placement; 3012 int ret; 3013 3014 xe_evict_flags(&bo->ttm, &placement); 3015 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx); 3016 if (ret) 3017 return ret; 3018 3019 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL, 3020 false, MAX_SCHEDULE_TIMEOUT); 3021 3022 return 0; 3023 } 3024 3025 /** 3026 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when 3027 * placed in system memory. 3028 * @bo: The xe_bo 3029 * 3030 * Return: true if extra pages need to be allocated, false otherwise. 3031 */ 3032 bool xe_bo_needs_ccs_pages(struct xe_bo *bo) 3033 { 3034 struct xe_device *xe = xe_bo_device(bo); 3035 3036 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe)) 3037 return false; 3038 3039 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device) 3040 return false; 3041 3042 /* On discrete GPUs, if the GPU can access this buffer from 3043 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS 3044 * can't be used since there's no CCS storage associated with 3045 * non-VRAM addresses. 3046 */ 3047 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM)) 3048 return false; 3049 3050 /* 3051 * Compression implies coh_none, therefore we know for sure that WB 3052 * memory can't currently use compression, which is likely one of the 3053 * common cases. 3054 */ 3055 if (bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB) 3056 return false; 3057 3058 return true; 3059 } 3060 3061 /** 3062 * __xe_bo_release_dummy() - Dummy kref release function 3063 * @kref: The embedded struct kref. 3064 * 3065 * Dummy release function for xe_bo_put_deferred(). Keep off. 3066 */ 3067 void __xe_bo_release_dummy(struct kref *kref) 3068 { 3069 } 3070 3071 /** 3072 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred(). 3073 * @deferred: The lockless list used for the call to xe_bo_put_deferred(). 3074 * 3075 * Puts all bos whose put was deferred by xe_bo_put_deferred(). 3076 * The @deferred list can be either an onstack local list or a global 3077 * shared list used by a workqueue. 3078 */ 3079 void xe_bo_put_commit(struct llist_head *deferred) 3080 { 3081 struct llist_node *freed; 3082 struct xe_bo *bo, *next; 3083 3084 if (!deferred) 3085 return; 3086 3087 freed = llist_del_all(deferred); 3088 if (!freed) 3089 return; 3090 3091 llist_for_each_entry_safe(bo, next, freed, freed) 3092 drm_gem_object_free(&bo->ttm.base.refcount); 3093 } 3094 3095 static void xe_bo_dev_work_func(struct work_struct *work) 3096 { 3097 struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free); 3098 3099 xe_bo_put_commit(&bo_dev->async_list); 3100 } 3101 3102 /** 3103 * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing 3104 * @bo_dev: The BO dev structure 3105 */ 3106 void xe_bo_dev_init(struct xe_bo_dev *bo_dev) 3107 { 3108 INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func); 3109 } 3110 3111 /** 3112 * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing 3113 * @bo_dev: The BO dev structure 3114 */ 3115 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev) 3116 { 3117 flush_work(&bo_dev->async_free); 3118 } 3119 3120 void xe_bo_put(struct xe_bo *bo) 3121 { 3122 struct xe_tile *tile; 3123 u8 id; 3124 3125 might_sleep(); 3126 if (bo) { 3127 #ifdef CONFIG_PROC_FS 3128 if (bo->client) 3129 might_lock(&bo->client->bos_lock); 3130 #endif 3131 for_each_tile(tile, xe_bo_device(bo), id) 3132 if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt) 3133 xe_ggtt_might_lock(bo->ggtt_node[id]->ggtt); 3134 drm_gem_object_put(&bo->ttm.base); 3135 } 3136 } 3137 3138 /** 3139 * xe_bo_dumb_create - Create a dumb bo as backing for a fb 3140 * @file_priv: ... 3141 * @dev: ... 3142 * @args: ... 3143 * 3144 * See dumb_create() hook in include/drm/drm_drv.h 3145 * 3146 * Return: ... 3147 */ 3148 int xe_bo_dumb_create(struct drm_file *file_priv, 3149 struct drm_device *dev, 3150 struct drm_mode_create_dumb *args) 3151 { 3152 struct xe_device *xe = to_xe_device(dev); 3153 struct xe_bo *bo; 3154 uint32_t handle; 3155 int cpp = DIV_ROUND_UP(args->bpp, 8); 3156 int err; 3157 u32 page_size = max_t(u32, PAGE_SIZE, 3158 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K); 3159 3160 args->pitch = ALIGN(args->width * cpp, 64); 3161 args->size = ALIGN(mul_u32_u32(args->pitch, args->height), 3162 page_size); 3163 3164 bo = xe_bo_create_user(xe, NULL, NULL, args->size, 3165 DRM_XE_GEM_CPU_CACHING_WC, 3166 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) | 3167 XE_BO_FLAG_SCANOUT | 3168 XE_BO_FLAG_NEEDS_CPU_ACCESS); 3169 if (IS_ERR(bo)) 3170 return PTR_ERR(bo); 3171 3172 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle); 3173 /* drop reference from allocate - handle holds it now */ 3174 drm_gem_object_put(&bo->ttm.base); 3175 if (!err) 3176 args->handle = handle; 3177 return err; 3178 } 3179 3180 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo) 3181 { 3182 struct ttm_buffer_object *tbo = &bo->ttm; 3183 struct ttm_device *bdev = tbo->bdev; 3184 3185 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping); 3186 3187 list_del_init(&bo->vram_userfault_link); 3188 } 3189 3190 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 3191 #include "tests/xe_bo.c" 3192 #endif 3193