xref: /linux/drivers/gpu/drm/vkms/vkms_composer.c (revision 74ba587f402d5501af2c85e50cf1e4044263b6ca)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/crc32.h>
4 
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_fourcc.h>
9 #include <drm/drm_fixed.h>
10 #include <drm/drm_gem_framebuffer_helper.h>
11 #include <drm/drm_print.h>
12 #include <drm/drm_vblank.h>
13 #include <linux/minmax.h>
14 
15 #include "vkms_drv.h"
16 
17 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
18 {
19 	u32 new_color;
20 
21 	new_color = (src * 0xffff + dst * (0xffff - alpha));
22 
23 	return DIV_ROUND_CLOSEST(new_color, 0xffff);
24 }
25 
26 /**
27  * pre_mul_alpha_blend - alpha blending equation
28  * @stage_buffer: The line with the pixels from src_plane
29  * @output_buffer: A line buffer that receives all the blends output
30  * @x_start: The start offset
31  * @pixel_count: The number of pixels to blend
32  *
33  * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
34  * [@x_start;@x_start+@pixel_count) in output_buffer.
35  *
36  * The current DRM assumption is that pixel color values have been already
37  * pre-multiplied with the alpha channel values. See more
38  * drm_plane_create_blend_mode_property(). Also, this formula assumes a
39  * completely opaque background.
40  */
41 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
42 				struct line_buffer *output_buffer, int x_start, int pixel_count)
43 {
44 	struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
45 	const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
46 
47 	for (int i = 0; i < pixel_count; i++) {
48 		out[i].a = (u16)0xffff;
49 		out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
50 		out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
51 		out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
52 	}
53 }
54 
55 
56 static void fill_background(const struct pixel_argb_u16 *background_color,
57 			    struct line_buffer *output_buffer)
58 {
59 	for (size_t i = 0; i < output_buffer->n_pixels; i++)
60 		output_buffer->pixels[i] = *background_color;
61 }
62 
63 // lerp(a, b, t) = a + (b - a) * t
64 static u16 lerp_u16(u16 a, u16 b, s64 t)
65 {
66 	s64 a_fp = drm_int2fixp(a);
67 	s64 b_fp = drm_int2fixp(b);
68 
69 	s64 delta = drm_fixp_mul(b_fp - a_fp, t);
70 
71 	return drm_fixp2int_round(a_fp + delta);
72 }
73 
74 static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
75 {
76 	s64 color_channel_fp = drm_int2fixp(channel_value);
77 
78 	return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
79 }
80 
81 /*
82  * This enum is related to the positions of the variables inside
83  * `struct drm_color_lut`, so the order of both needs to be the same.
84  */
85 enum lut_channel {
86 	LUT_RED = 0,
87 	LUT_GREEN,
88 	LUT_BLUE,
89 	LUT_RESERVED
90 };
91 
92 static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
93 				      enum lut_channel channel)
94 {
95 	s64 lut_index = get_lut_index(lut, channel_value);
96 	u16 *floor_lut_value, *ceil_lut_value;
97 	u16 floor_channel_value, ceil_channel_value;
98 
99 	/*
100 	 * This checks if `struct drm_color_lut` has any gap added by the compiler
101 	 * between the struct fields.
102 	 */
103 	static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
104 
105 	floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
106 	if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
107 		/* We're at the end of the LUT array, use same value for ceil and floor */
108 		ceil_lut_value = floor_lut_value;
109 	else
110 		ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
111 
112 	floor_channel_value = floor_lut_value[channel];
113 	ceil_channel_value = ceil_lut_value[channel];
114 
115 	return lerp_u16(floor_channel_value, ceil_channel_value,
116 			lut_index & DRM_FIXED_DECIMAL_MASK);
117 }
118 
119 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
120 {
121 	if (!crtc_state->gamma_lut.base)
122 		return;
123 
124 	if (!crtc_state->gamma_lut.lut_length)
125 		return;
126 
127 	for (size_t x = 0; x < output_buffer->n_pixels; x++) {
128 		struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
129 
130 		pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
131 		pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
132 		pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
133 	}
134 }
135 
136 /**
137  * direction_for_rotation() - Get the correct reading direction for a given rotation
138  *
139  * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
140  *
141  * This function will use the @rotation setting of a source plane to compute the reading
142  * direction in this plane which correspond to a "left to right writing" in the CRTC.
143  * For example, if the buffer is reflected on X axis, the pixel must be read from right to left
144  * to be written from left to right on the CRTC.
145  */
146 static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
147 {
148 	struct drm_rect tmp_a, tmp_b;
149 	int x, y;
150 
151 	/*
152 	 * Points A and B are depicted as zero-size rectangles on the CRTC.
153 	 * The CRTC writing direction is from A to B. The plane reading direction
154 	 * is discovered by inverse-transforming A and B.
155 	 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a
156 	 * 1x1 square.
157 	 */
158 
159 	tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
160 	tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
161 	drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
162 	drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
163 
164 	x = tmp_b.x1 - tmp_a.x1;
165 	y = tmp_b.y1 - tmp_a.y1;
166 
167 	if (x == 1 && y == 0)
168 		return READ_LEFT_TO_RIGHT;
169 	else if (x == -1 && y == 0)
170 		return READ_RIGHT_TO_LEFT;
171 	else if (y == 1 && x == 0)
172 		return READ_TOP_TO_BOTTOM;
173 	else if (y == -1 && x == 0)
174 		return READ_BOTTOM_TO_TOP;
175 
176 	WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
177 	return READ_LEFT_TO_RIGHT;
178 }
179 
180 /**
181  * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
182  * process.
183  *
184  * @direction: direction of the reading
185  * @current_plane: current plane blended
186  * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
187  * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
188  * pixel_count*1 if @direction is horizontal.
189  * @src_x_start: x start coordinate for the line reading
190  * @src_y_start: y start coordinate for the line reading
191  * @dst_x_start: x coordinate to blend the read line
192  * @pixel_count: number of pixels to blend
193  *
194  * This function is mainly a safety net to avoid reading outside the source buffer. As the
195  * userspace should never ask to read outside the source plane, all the cases covered here should
196  * be dead code.
197  */
198 static void clamp_line_coordinates(enum pixel_read_direction direction,
199 				   const struct vkms_plane_state *current_plane,
200 				   const struct drm_rect *src_line, int *src_x_start,
201 				   int *src_y_start, int *dst_x_start, int *pixel_count)
202 {
203 	/* By default the start points are correct */
204 	*src_x_start = src_line->x1;
205 	*src_y_start = src_line->y1;
206 	*dst_x_start = current_plane->frame_info->dst.x1;
207 
208 	/* Get the correct number of pixel to blend, it depends of the direction */
209 	switch (direction) {
210 	case READ_LEFT_TO_RIGHT:
211 	case READ_RIGHT_TO_LEFT:
212 		*pixel_count = drm_rect_width(src_line);
213 		break;
214 	case READ_BOTTOM_TO_TOP:
215 	case READ_TOP_TO_BOTTOM:
216 		*pixel_count = drm_rect_height(src_line);
217 		break;
218 	}
219 
220 	/*
221 	 * Clamp the coordinates to avoid reading outside the buffer
222 	 *
223 	 * This is mainly a security check to avoid reading outside the buffer, the userspace
224 	 * should never request to read outside the source buffer.
225 	 */
226 	switch (direction) {
227 	case READ_LEFT_TO_RIGHT:
228 	case READ_RIGHT_TO_LEFT:
229 		if (*src_x_start < 0) {
230 			*pixel_count += *src_x_start;
231 			*dst_x_start -= *src_x_start;
232 			*src_x_start = 0;
233 		}
234 		if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
235 			*pixel_count = max(0, (int)current_plane->frame_info->fb->width -
236 				*src_x_start);
237 		break;
238 	case READ_BOTTOM_TO_TOP:
239 	case READ_TOP_TO_BOTTOM:
240 		if (*src_y_start < 0) {
241 			*pixel_count += *src_y_start;
242 			*dst_x_start -= *src_y_start;
243 			*src_y_start = 0;
244 		}
245 		if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
246 			*pixel_count = max(0, (int)current_plane->frame_info->fb->height -
247 				*src_y_start);
248 		break;
249 	}
250 }
251 
252 /**
253  * blend_line() - Blend a line from a plane to the output buffer
254  *
255  * @current_plane: current plane to work on
256  * @y: line to write in the output buffer
257  * @crtc_x_limit: width of the output buffer
258  * @stage_buffer: temporary buffer to convert the pixel line from the source buffer
259  * @output_buffer: buffer to blend the read line into.
260  */
261 static void blend_line(struct vkms_plane_state *current_plane, int y,
262 		       int crtc_x_limit, struct line_buffer *stage_buffer,
263 		       struct line_buffer *output_buffer)
264 {
265 	int src_x_start, src_y_start, dst_x_start, pixel_count;
266 	struct drm_rect dst_line, tmp_src, src_line;
267 
268 	/* Avoid rendering useless lines */
269 	if (y < current_plane->frame_info->dst.y1 ||
270 	    y >= current_plane->frame_info->dst.y2)
271 		return;
272 
273 	/*
274 	 * dst_line is the line to copy. The initial coordinates are inside the
275 	 * destination framebuffer, and then drm_rect_* helpers are used to
276 	 * compute the correct position into the source framebuffer.
277 	 */
278 	dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
279 				 drm_rect_width(&current_plane->frame_info->dst),
280 				 1);
281 
282 	drm_rect_fp_to_int(&tmp_src, &current_plane->frame_info->src);
283 
284 	/*
285 	 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
286 	 * the destination buffer
287 	 */
288 	dst_line.x1 = max_t(int, dst_line.x1, 0);
289 	dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
290 	/* The destination is completely outside of the crtc. */
291 	if (dst_line.x2 <= dst_line.x1)
292 		return;
293 
294 	src_line = dst_line;
295 
296 	/*
297 	 * Transform the coordinate x/y from the crtc to coordinates into
298 	 * coordinates for the src buffer.
299 	 *
300 	 * - Cancel the offset of the dst buffer.
301 	 * - Invert the rotation. This assumes that
302 	 *   dst = drm_rect_rotate(src, rotation) (dst and src have the
303 	 *   same size, but can be rotated).
304 	 * - Apply the offset of the source rectangle to the coordinate.
305 	 */
306 	drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
307 			   -current_plane->frame_info->dst.y1);
308 	drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
309 			    drm_rect_height(&tmp_src),
310 			    current_plane->frame_info->rotation);
311 	drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
312 
313 	/* Get the correct reading direction in the source buffer. */
314 
315 	enum pixel_read_direction direction =
316 		direction_for_rotation(current_plane->frame_info->rotation);
317 
318 	/* [2]: Compute and clamp the number of pixel to read */
319 	clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
320 			       &dst_x_start, &pixel_count);
321 
322 	if (pixel_count <= 0) {
323 		/* Nothing to read, so avoid multiple function calls */
324 		return;
325 	}
326 
327 	/*
328 	 * Modify the starting point to take in account the rotation
329 	 *
330 	 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
331 	 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
332 	 * corner.
333 	 */
334 	if (direction == READ_RIGHT_TO_LEFT) {
335 		// src_x_start is now the right point
336 		src_x_start += pixel_count - 1;
337 	} else if (direction == READ_BOTTOM_TO_TOP) {
338 		// src_y_start is now the bottom point
339 		src_y_start += pixel_count - 1;
340 	}
341 
342 	/*
343 	 * Perform the conversion and the blending
344 	 *
345 	 * Here we know that the read line (x_start, y_start, pixel_count) is
346 	 * inside the source buffer [2] and we don't write outside the stage
347 	 * buffer [1].
348 	 */
349 	current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
350 				       pixel_count, &stage_buffer->pixels[dst_x_start]);
351 
352 	pre_mul_alpha_blend(stage_buffer, output_buffer,
353 			    dst_x_start, pixel_count);
354 }
355 
356 /**
357  * blend - blend the pixels from all planes and compute crc
358  * @wb: The writeback frame buffer metadata
359  * @crtc_state: The crtc state
360  * @crc32: The crc output of the final frame
361  * @output_buffer: A buffer of a row that will receive the result of the blend(s)
362  * @stage_buffer: The line with the pixels from plane being blend to the output
363  * @row_size: The size, in bytes, of a single row
364  *
365  * This function blends the pixels (Using the `pre_mul_alpha_blend`)
366  * from all planes, calculates the crc32 of the output from the former step,
367  * and, if necessary, convert and store the output to the writeback buffer.
368  */
369 static void blend(struct vkms_writeback_job *wb,
370 		  struct vkms_crtc_state *crtc_state,
371 		  u32 *crc32, struct line_buffer *stage_buffer,
372 		  struct line_buffer *output_buffer, size_t row_size)
373 {
374 	struct vkms_plane_state **plane = crtc_state->active_planes;
375 	u32 n_active_planes = crtc_state->num_active_planes;
376 
377 	const struct pixel_argb_u16 background_color = { .a = 0xffff };
378 
379 	int crtc_y_limit = crtc_state->base.mode.vdisplay;
380 	int crtc_x_limit = crtc_state->base.mode.hdisplay;
381 
382 	/*
383 	 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
384 	 * complexity to avoid poor blending performance.
385 	 *
386 	 * The function pixel_read_line callback is used to read a line, using an efficient
387 	 * algorithm for a specific format, into the staging buffer.
388 	 */
389 	for (int y = 0; y < crtc_y_limit; y++) {
390 		fill_background(&background_color, output_buffer);
391 
392 		/* The active planes are composed associatively in z-order. */
393 		for (size_t i = 0; i < n_active_planes; i++) {
394 			blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
395 		}
396 
397 		apply_lut(crtc_state, output_buffer);
398 
399 		*crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
400 
401 		if (wb)
402 			vkms_writeback_row(wb, output_buffer, y);
403 	}
404 }
405 
406 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
407 			      struct vkms_writeback_job *active_wb)
408 {
409 	struct vkms_plane_state **planes = crtc_state->active_planes;
410 	u32 n_active_planes = crtc_state->num_active_planes;
411 
412 	for (size_t i = 0; i < n_active_planes; i++)
413 		if (!planes[i]->pixel_read_line)
414 			return -1;
415 
416 	if (active_wb && !active_wb->pixel_write)
417 		return -1;
418 
419 	return 0;
420 }
421 
422 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
423 {
424 	struct vkms_plane_state **plane_state = crtc_state->active_planes;
425 	u32 n_active_planes = crtc_state->num_active_planes;
426 
427 	for (size_t i = 0; i < n_active_planes; i++)
428 		if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
429 			return -1;
430 
431 	return 0;
432 }
433 
434 static int compose_active_planes(struct vkms_writeback_job *active_wb,
435 				 struct vkms_crtc_state *crtc_state,
436 				 u32 *crc32)
437 {
438 	size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
439 	struct line_buffer output_buffer, stage_buffer;
440 	int ret = 0;
441 
442 	/*
443 	 * This check exists so we can call `crc32_le` for the entire line
444 	 * instead doing it for each channel of each pixel in case
445 	 * `struct `pixel_argb_u16` had any gap added by the compiler
446 	 * between the struct fields.
447 	 */
448 	static_assert(sizeof(struct pixel_argb_u16) == 8);
449 
450 	if (WARN_ON(check_iosys_map(crtc_state)))
451 		return -EINVAL;
452 
453 	if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
454 		return -EINVAL;
455 
456 	line_width = crtc_state->base.mode.hdisplay;
457 	stage_buffer.n_pixels = line_width;
458 	output_buffer.n_pixels = line_width;
459 
460 	stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
461 	if (!stage_buffer.pixels) {
462 		DRM_ERROR("Cannot allocate memory for the output line buffer");
463 		return -ENOMEM;
464 	}
465 
466 	output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
467 	if (!output_buffer.pixels) {
468 		DRM_ERROR("Cannot allocate memory for intermediate line buffer");
469 		ret = -ENOMEM;
470 		goto free_stage_buffer;
471 	}
472 
473 	blend(active_wb, crtc_state, crc32, &stage_buffer,
474 	      &output_buffer, line_width * pixel_size);
475 
476 	kvfree(output_buffer.pixels);
477 free_stage_buffer:
478 	kvfree(stage_buffer.pixels);
479 
480 	return ret;
481 }
482 
483 /**
484  * vkms_composer_worker - ordered work_struct to compute CRC
485  *
486  * @work: work_struct
487  *
488  * Work handler for composing and computing CRCs. work_struct scheduled in
489  * an ordered workqueue that's periodically scheduled to run by
490  * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
491  */
492 void vkms_composer_worker(struct work_struct *work)
493 {
494 	struct vkms_crtc_state *crtc_state = container_of(work,
495 							  struct vkms_crtc_state,
496 							  composer_work);
497 	struct drm_crtc *crtc = crtc_state->base.crtc;
498 	struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
499 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
500 	bool crc_pending, wb_pending;
501 	u64 frame_start, frame_end;
502 	u32 crc32 = 0;
503 	int ret;
504 
505 	spin_lock_irq(&out->composer_lock);
506 	frame_start = crtc_state->frame_start;
507 	frame_end = crtc_state->frame_end;
508 	crc_pending = crtc_state->crc_pending;
509 	wb_pending = crtc_state->wb_pending;
510 	crtc_state->frame_start = 0;
511 	crtc_state->frame_end = 0;
512 	crtc_state->crc_pending = false;
513 
514 	if (crtc->state->gamma_lut) {
515 		s64 max_lut_index_fp;
516 		s64 u16_max_fp = drm_int2fixp(0xffff);
517 
518 		crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
519 		crtc_state->gamma_lut.lut_length =
520 			crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
521 		max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
522 		crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
523 									       u16_max_fp);
524 
525 	} else {
526 		crtc_state->gamma_lut.base = NULL;
527 	}
528 
529 	spin_unlock_irq(&out->composer_lock);
530 
531 	/*
532 	 * We raced with the vblank hrtimer and previous work already computed
533 	 * the crc, nothing to do.
534 	 */
535 	if (!crc_pending)
536 		return;
537 
538 	if (wb_pending)
539 		ret = compose_active_planes(active_wb, crtc_state, &crc32);
540 	else
541 		ret = compose_active_planes(NULL, crtc_state, &crc32);
542 
543 	if (ret)
544 		return;
545 
546 	if (wb_pending) {
547 		drm_writeback_signal_completion(&out->wb_connector, 0);
548 		spin_lock_irq(&out->composer_lock);
549 		crtc_state->wb_pending = false;
550 		spin_unlock_irq(&out->composer_lock);
551 	}
552 
553 	/*
554 	 * The worker can fall behind the vblank hrtimer, make sure we catch up.
555 	 */
556 	while (frame_start <= frame_end)
557 		drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
558 }
559 
560 static const char *const pipe_crc_sources[] = { "auto" };
561 
562 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
563 					size_t *count)
564 {
565 	*count = ARRAY_SIZE(pipe_crc_sources);
566 	return pipe_crc_sources;
567 }
568 
569 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
570 {
571 	int ret = 0;
572 
573 	if (!src_name) {
574 		*enabled = false;
575 	} else if (strcmp(src_name, "auto") == 0) {
576 		*enabled = true;
577 	} else {
578 		*enabled = false;
579 		ret = -EINVAL;
580 	}
581 
582 	return ret;
583 }
584 
585 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
586 			   size_t *values_cnt)
587 {
588 	bool enabled;
589 
590 	if (vkms_crc_parse_source(src_name, &enabled) < 0) {
591 		DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
592 		return -EINVAL;
593 	}
594 
595 	*values_cnt = 1;
596 
597 	return 0;
598 }
599 
600 void vkms_set_composer(struct vkms_output *out, bool enabled)
601 {
602 	bool old_enabled;
603 
604 	if (enabled)
605 		drm_crtc_vblank_get(&out->crtc);
606 
607 	spin_lock_irq(&out->lock);
608 	old_enabled = out->composer_enabled;
609 	out->composer_enabled = enabled;
610 	spin_unlock_irq(&out->lock);
611 
612 	if (old_enabled)
613 		drm_crtc_vblank_put(&out->crtc);
614 }
615 
616 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
617 {
618 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
619 	bool enabled = false;
620 	int ret = 0;
621 
622 	ret = vkms_crc_parse_source(src_name, &enabled);
623 
624 	vkms_set_composer(out, enabled);
625 
626 	return ret;
627 }
628