xref: /linux/drivers/gpu/drm/ttm/ttm_bo.c (revision c1aac62f36c1e37ee81c9e09ee9ee733eef05dcb)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 #include <linux/reservation.h>
44 
45 #define TTM_ASSERT_LOCKED(param)
46 #define TTM_DEBUG(fmt, arg...)
47 #define TTM_BO_HASH_ORDER 13
48 
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
57 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
58 					  uint32_t *mem_type)
59 {
60 	int pos;
61 
62 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
63 	if (unlikely(!pos))
64 		return -EINVAL;
65 
66 	*mem_type = pos - 1;
67 	return 0;
68 }
69 
70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
71 {
72 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
73 
74 	pr_err("    has_type: %d\n", man->has_type);
75 	pr_err("    use_type: %d\n", man->use_type);
76 	pr_err("    flags: 0x%08X\n", man->flags);
77 	pr_err("    gpu_offset: 0x%08llX\n", man->gpu_offset);
78 	pr_err("    size: %llu\n", man->size);
79 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
80 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
81 	if (mem_type != TTM_PL_SYSTEM)
82 		(*man->func->debug)(man, TTM_PFX);
83 }
84 
85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
86 					struct ttm_placement *placement)
87 {
88 	int i, ret, mem_type;
89 
90 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
91 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
92 	       bo->mem.size >> 20);
93 	for (i = 0; i < placement->num_placement; i++) {
94 		ret = ttm_mem_type_from_place(&placement->placement[i],
95 						&mem_type);
96 		if (ret)
97 			return;
98 		pr_err("  placement[%d]=0x%08X (%d)\n",
99 		       i, placement->placement[i].flags, mem_type);
100 		ttm_mem_type_debug(bo->bdev, mem_type);
101 	}
102 }
103 
104 static ssize_t ttm_bo_global_show(struct kobject *kobj,
105 				  struct attribute *attr,
106 				  char *buffer)
107 {
108 	struct ttm_bo_global *glob =
109 		container_of(kobj, struct ttm_bo_global, kobj);
110 
111 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
112 			(unsigned long) atomic_read(&glob->bo_count));
113 }
114 
115 static struct attribute *ttm_bo_global_attrs[] = {
116 	&ttm_bo_count,
117 	NULL
118 };
119 
120 static const struct sysfs_ops ttm_bo_global_ops = {
121 	.show = &ttm_bo_global_show
122 };
123 
124 static struct kobj_type ttm_bo_glob_kobj_type  = {
125 	.release = &ttm_bo_global_kobj_release,
126 	.sysfs_ops = &ttm_bo_global_ops,
127 	.default_attrs = ttm_bo_global_attrs
128 };
129 
130 
131 static inline uint32_t ttm_bo_type_flags(unsigned type)
132 {
133 	return 1 << (type);
134 }
135 
136 static void ttm_bo_release_list(struct kref *list_kref)
137 {
138 	struct ttm_buffer_object *bo =
139 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
140 	struct ttm_bo_device *bdev = bo->bdev;
141 	size_t acc_size = bo->acc_size;
142 
143 	BUG_ON(kref_read(&bo->list_kref));
144 	BUG_ON(kref_read(&bo->kref));
145 	BUG_ON(atomic_read(&bo->cpu_writers));
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 	ttm_tt_destroy(bo->ttm);
150 	atomic_dec(&bo->glob->bo_count);
151 	dma_fence_put(bo->moving);
152 	if (bo->resv == &bo->ttm_resv)
153 		reservation_object_fini(&bo->ttm_resv);
154 	mutex_destroy(&bo->wu_mutex);
155 	if (bo->destroy)
156 		bo->destroy(bo);
157 	else {
158 		kfree(bo);
159 	}
160 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161 }
162 
163 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
164 {
165 	struct ttm_bo_device *bdev = bo->bdev;
166 
167 	lockdep_assert_held(&bo->resv->lock.base);
168 
169 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
170 
171 		BUG_ON(!list_empty(&bo->lru));
172 
173 		list_add(&bo->lru, bdev->driver->lru_tail(bo));
174 		kref_get(&bo->list_kref);
175 
176 		if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
177 			list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
178 			kref_get(&bo->list_kref);
179 		}
180 	}
181 }
182 EXPORT_SYMBOL(ttm_bo_add_to_lru);
183 
184 static void ttm_bo_ref_bug(struct kref *list_kref)
185 {
186 	BUG();
187 }
188 
189 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
190 {
191 	struct ttm_bo_device *bdev = bo->bdev;
192 
193 	if (bdev->driver->lru_removal)
194 		bdev->driver->lru_removal(bo);
195 
196 	if (!list_empty(&bo->swap)) {
197 		list_del_init(&bo->swap);
198 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
199 	}
200 	if (!list_empty(&bo->lru)) {
201 		list_del_init(&bo->lru);
202 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
203 	}
204 }
205 
206 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
207 {
208 	spin_lock(&bo->glob->lru_lock);
209 	ttm_bo_del_from_lru(bo);
210 	spin_unlock(&bo->glob->lru_lock);
211 }
212 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
213 
214 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
215 {
216 	struct ttm_bo_device *bdev = bo->bdev;
217 
218 	lockdep_assert_held(&bo->resv->lock.base);
219 
220 	if (bdev->driver->lru_removal)
221 		bdev->driver->lru_removal(bo);
222 
223 	ttm_bo_del_from_lru(bo);
224 	ttm_bo_add_to_lru(bo);
225 }
226 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
227 
228 struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
229 {
230 	return bo->bdev->man[bo->mem.mem_type].lru.prev;
231 }
232 EXPORT_SYMBOL(ttm_bo_default_lru_tail);
233 
234 struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
235 {
236 	return bo->glob->swap_lru.prev;
237 }
238 EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
239 
240 /*
241  * Call bo->mutex locked.
242  */
243 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
244 {
245 	struct ttm_bo_device *bdev = bo->bdev;
246 	struct ttm_bo_global *glob = bo->glob;
247 	int ret = 0;
248 	uint32_t page_flags = 0;
249 
250 	TTM_ASSERT_LOCKED(&bo->mutex);
251 	bo->ttm = NULL;
252 
253 	if (bdev->need_dma32)
254 		page_flags |= TTM_PAGE_FLAG_DMA32;
255 
256 	switch (bo->type) {
257 	case ttm_bo_type_device:
258 		if (zero_alloc)
259 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
260 	case ttm_bo_type_kernel:
261 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
262 						      page_flags, glob->dummy_read_page);
263 		if (unlikely(bo->ttm == NULL))
264 			ret = -ENOMEM;
265 		break;
266 	case ttm_bo_type_sg:
267 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
268 						      page_flags | TTM_PAGE_FLAG_SG,
269 						      glob->dummy_read_page);
270 		if (unlikely(bo->ttm == NULL)) {
271 			ret = -ENOMEM;
272 			break;
273 		}
274 		bo->ttm->sg = bo->sg;
275 		break;
276 	default:
277 		pr_err("Illegal buffer object type\n");
278 		ret = -EINVAL;
279 		break;
280 	}
281 
282 	return ret;
283 }
284 
285 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
286 				  struct ttm_mem_reg *mem,
287 				  bool evict, bool interruptible,
288 				  bool no_wait_gpu)
289 {
290 	struct ttm_bo_device *bdev = bo->bdev;
291 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
292 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
293 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
294 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
295 	int ret = 0;
296 
297 	if (old_is_pci || new_is_pci ||
298 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
299 		ret = ttm_mem_io_lock(old_man, true);
300 		if (unlikely(ret != 0))
301 			goto out_err;
302 		ttm_bo_unmap_virtual_locked(bo);
303 		ttm_mem_io_unlock(old_man);
304 	}
305 
306 	/*
307 	 * Create and bind a ttm if required.
308 	 */
309 
310 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
311 		if (bo->ttm == NULL) {
312 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
313 			ret = ttm_bo_add_ttm(bo, zero);
314 			if (ret)
315 				goto out_err;
316 		}
317 
318 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
319 		if (ret)
320 			goto out_err;
321 
322 		if (mem->mem_type != TTM_PL_SYSTEM) {
323 			ret = ttm_tt_bind(bo->ttm, mem);
324 			if (ret)
325 				goto out_err;
326 		}
327 
328 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
329 			if (bdev->driver->move_notify)
330 				bdev->driver->move_notify(bo, mem);
331 			bo->mem = *mem;
332 			mem->mm_node = NULL;
333 			goto moved;
334 		}
335 	}
336 
337 	if (bdev->driver->move_notify)
338 		bdev->driver->move_notify(bo, mem);
339 
340 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
341 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
342 		ret = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, mem);
343 	else if (bdev->driver->move)
344 		ret = bdev->driver->move(bo, evict, interruptible,
345 					 no_wait_gpu, mem);
346 	else
347 		ret = ttm_bo_move_memcpy(bo, interruptible, no_wait_gpu, mem);
348 
349 	if (ret) {
350 		if (bdev->driver->move_notify) {
351 			struct ttm_mem_reg tmp_mem = *mem;
352 			*mem = bo->mem;
353 			bo->mem = tmp_mem;
354 			bdev->driver->move_notify(bo, mem);
355 			bo->mem = *mem;
356 			*mem = tmp_mem;
357 		}
358 
359 		goto out_err;
360 	}
361 
362 moved:
363 	if (bo->evicted) {
364 		if (bdev->driver->invalidate_caches) {
365 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
366 			if (ret)
367 				pr_err("Can not flush read caches\n");
368 		}
369 		bo->evicted = false;
370 	}
371 
372 	if (bo->mem.mm_node) {
373 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
374 		    bdev->man[bo->mem.mem_type].gpu_offset;
375 		bo->cur_placement = bo->mem.placement;
376 	} else
377 		bo->offset = 0;
378 
379 	return 0;
380 
381 out_err:
382 	new_man = &bdev->man[bo->mem.mem_type];
383 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
384 		ttm_tt_destroy(bo->ttm);
385 		bo->ttm = NULL;
386 	}
387 
388 	return ret;
389 }
390 
391 /**
392  * Call bo::reserved.
393  * Will release GPU memory type usage on destruction.
394  * This is the place to put in driver specific hooks to release
395  * driver private resources.
396  * Will release the bo::reserved lock.
397  */
398 
399 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
400 {
401 	if (bo->bdev->driver->move_notify)
402 		bo->bdev->driver->move_notify(bo, NULL);
403 
404 	ttm_tt_destroy(bo->ttm);
405 	bo->ttm = NULL;
406 	ttm_bo_mem_put(bo, &bo->mem);
407 
408 	ww_mutex_unlock (&bo->resv->lock);
409 }
410 
411 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
412 {
413 	struct reservation_object_list *fobj;
414 	struct dma_fence *fence;
415 	int i;
416 
417 	fobj = reservation_object_get_list(bo->resv);
418 	fence = reservation_object_get_excl(bo->resv);
419 	if (fence && !fence->ops->signaled)
420 		dma_fence_enable_sw_signaling(fence);
421 
422 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
423 		fence = rcu_dereference_protected(fobj->shared[i],
424 					reservation_object_held(bo->resv));
425 
426 		if (!fence->ops->signaled)
427 			dma_fence_enable_sw_signaling(fence);
428 	}
429 }
430 
431 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
432 {
433 	struct ttm_bo_device *bdev = bo->bdev;
434 	struct ttm_bo_global *glob = bo->glob;
435 	int ret;
436 
437 	spin_lock(&glob->lru_lock);
438 	ret = __ttm_bo_reserve(bo, false, true, NULL);
439 
440 	if (!ret) {
441 		if (!ttm_bo_wait(bo, false, true)) {
442 			ttm_bo_del_from_lru(bo);
443 			spin_unlock(&glob->lru_lock);
444 			ttm_bo_cleanup_memtype_use(bo);
445 
446 			return;
447 		} else
448 			ttm_bo_flush_all_fences(bo);
449 
450 		/*
451 		 * Make NO_EVICT bos immediately available to
452 		 * shrinkers, now that they are queued for
453 		 * destruction.
454 		 */
455 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
456 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
457 			ttm_bo_add_to_lru(bo);
458 		}
459 
460 		__ttm_bo_unreserve(bo);
461 	}
462 
463 	kref_get(&bo->list_kref);
464 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
465 	spin_unlock(&glob->lru_lock);
466 
467 	schedule_delayed_work(&bdev->wq,
468 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
469 }
470 
471 /**
472  * function ttm_bo_cleanup_refs_and_unlock
473  * If bo idle, remove from delayed- and lru lists, and unref.
474  * If not idle, do nothing.
475  *
476  * Must be called with lru_lock and reservation held, this function
477  * will drop both before returning.
478  *
479  * @interruptible         Any sleeps should occur interruptibly.
480  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
481  */
482 
483 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
484 					  bool interruptible,
485 					  bool no_wait_gpu)
486 {
487 	struct ttm_bo_global *glob = bo->glob;
488 	int ret;
489 
490 	ret = ttm_bo_wait(bo, false, true);
491 
492 	if (ret && !no_wait_gpu) {
493 		long lret;
494 		ww_mutex_unlock(&bo->resv->lock);
495 		spin_unlock(&glob->lru_lock);
496 
497 		lret = reservation_object_wait_timeout_rcu(bo->resv,
498 							   true,
499 							   interruptible,
500 							   30 * HZ);
501 
502 		if (lret < 0)
503 			return lret;
504 		else if (lret == 0)
505 			return -EBUSY;
506 
507 		spin_lock(&glob->lru_lock);
508 		ret = __ttm_bo_reserve(bo, false, true, NULL);
509 
510 		/*
511 		 * We raced, and lost, someone else holds the reservation now,
512 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
513 		 *
514 		 * Even if it's not the case, because we finished waiting any
515 		 * delayed destruction would succeed, so just return success
516 		 * here.
517 		 */
518 		if (ret) {
519 			spin_unlock(&glob->lru_lock);
520 			return 0;
521 		}
522 
523 		/*
524 		 * remove sync_obj with ttm_bo_wait, the wait should be
525 		 * finished, and no new wait object should have been added.
526 		 */
527 		ret = ttm_bo_wait(bo, false, true);
528 		WARN_ON(ret);
529 	}
530 
531 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
532 		__ttm_bo_unreserve(bo);
533 		spin_unlock(&glob->lru_lock);
534 		return ret;
535 	}
536 
537 	ttm_bo_del_from_lru(bo);
538 	list_del_init(&bo->ddestroy);
539 	kref_put(&bo->list_kref, ttm_bo_ref_bug);
540 
541 	spin_unlock(&glob->lru_lock);
542 	ttm_bo_cleanup_memtype_use(bo);
543 
544 	return 0;
545 }
546 
547 /**
548  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
549  * encountered buffers.
550  */
551 
552 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
553 {
554 	struct ttm_bo_global *glob = bdev->glob;
555 	struct ttm_buffer_object *entry = NULL;
556 	int ret = 0;
557 
558 	spin_lock(&glob->lru_lock);
559 	if (list_empty(&bdev->ddestroy))
560 		goto out_unlock;
561 
562 	entry = list_first_entry(&bdev->ddestroy,
563 		struct ttm_buffer_object, ddestroy);
564 	kref_get(&entry->list_kref);
565 
566 	for (;;) {
567 		struct ttm_buffer_object *nentry = NULL;
568 
569 		if (entry->ddestroy.next != &bdev->ddestroy) {
570 			nentry = list_first_entry(&entry->ddestroy,
571 				struct ttm_buffer_object, ddestroy);
572 			kref_get(&nentry->list_kref);
573 		}
574 
575 		ret = __ttm_bo_reserve(entry, false, true, NULL);
576 		if (remove_all && ret) {
577 			spin_unlock(&glob->lru_lock);
578 			ret = __ttm_bo_reserve(entry, false, false, NULL);
579 			spin_lock(&glob->lru_lock);
580 		}
581 
582 		if (!ret)
583 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
584 							     !remove_all);
585 		else
586 			spin_unlock(&glob->lru_lock);
587 
588 		kref_put(&entry->list_kref, ttm_bo_release_list);
589 		entry = nentry;
590 
591 		if (ret || !entry)
592 			goto out;
593 
594 		spin_lock(&glob->lru_lock);
595 		if (list_empty(&entry->ddestroy))
596 			break;
597 	}
598 
599 out_unlock:
600 	spin_unlock(&glob->lru_lock);
601 out:
602 	if (entry)
603 		kref_put(&entry->list_kref, ttm_bo_release_list);
604 	return ret;
605 }
606 
607 static void ttm_bo_delayed_workqueue(struct work_struct *work)
608 {
609 	struct ttm_bo_device *bdev =
610 	    container_of(work, struct ttm_bo_device, wq.work);
611 
612 	if (ttm_bo_delayed_delete(bdev, false)) {
613 		schedule_delayed_work(&bdev->wq,
614 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
615 	}
616 }
617 
618 static void ttm_bo_release(struct kref *kref)
619 {
620 	struct ttm_buffer_object *bo =
621 	    container_of(kref, struct ttm_buffer_object, kref);
622 	struct ttm_bo_device *bdev = bo->bdev;
623 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
624 
625 	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
626 	ttm_mem_io_lock(man, false);
627 	ttm_mem_io_free_vm(bo);
628 	ttm_mem_io_unlock(man);
629 	ttm_bo_cleanup_refs_or_queue(bo);
630 	kref_put(&bo->list_kref, ttm_bo_release_list);
631 }
632 
633 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
634 {
635 	struct ttm_buffer_object *bo = *p_bo;
636 
637 	*p_bo = NULL;
638 	kref_put(&bo->kref, ttm_bo_release);
639 }
640 EXPORT_SYMBOL(ttm_bo_unref);
641 
642 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
643 {
644 	return cancel_delayed_work_sync(&bdev->wq);
645 }
646 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
647 
648 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
649 {
650 	if (resched)
651 		schedule_delayed_work(&bdev->wq,
652 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
653 }
654 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
655 
656 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
657 			bool no_wait_gpu)
658 {
659 	struct ttm_bo_device *bdev = bo->bdev;
660 	struct ttm_mem_reg evict_mem;
661 	struct ttm_placement placement;
662 	int ret = 0;
663 
664 	lockdep_assert_held(&bo->resv->lock.base);
665 
666 	evict_mem = bo->mem;
667 	evict_mem.mm_node = NULL;
668 	evict_mem.bus.io_reserved_vm = false;
669 	evict_mem.bus.io_reserved_count = 0;
670 
671 	placement.num_placement = 0;
672 	placement.num_busy_placement = 0;
673 	bdev->driver->evict_flags(bo, &placement);
674 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
675 				no_wait_gpu);
676 	if (ret) {
677 		if (ret != -ERESTARTSYS) {
678 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
679 			       bo);
680 			ttm_bo_mem_space_debug(bo, &placement);
681 		}
682 		goto out;
683 	}
684 
685 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
686 				     no_wait_gpu);
687 	if (unlikely(ret)) {
688 		if (ret != -ERESTARTSYS)
689 			pr_err("Buffer eviction failed\n");
690 		ttm_bo_mem_put(bo, &evict_mem);
691 		goto out;
692 	}
693 	bo->evicted = true;
694 out:
695 	return ret;
696 }
697 
698 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
699 			      const struct ttm_place *place)
700 {
701 	/* Don't evict this BO if it's outside of the
702 	 * requested placement range
703 	 */
704 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
705 	    (place->lpfn && place->lpfn <= bo->mem.start))
706 		return false;
707 
708 	return true;
709 }
710 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
711 
712 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
713 				uint32_t mem_type,
714 				const struct ttm_place *place,
715 				bool interruptible,
716 				bool no_wait_gpu)
717 {
718 	struct ttm_bo_global *glob = bdev->glob;
719 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
720 	struct ttm_buffer_object *bo;
721 	int ret = -EBUSY;
722 
723 	spin_lock(&glob->lru_lock);
724 	list_for_each_entry(bo, &man->lru, lru) {
725 		ret = __ttm_bo_reserve(bo, false, true, NULL);
726 		if (ret)
727 			continue;
728 
729 		if (place && !bdev->driver->eviction_valuable(bo, place)) {
730 			__ttm_bo_unreserve(bo);
731 			ret = -EBUSY;
732 			continue;
733 		}
734 
735 		break;
736 	}
737 
738 	if (ret) {
739 		spin_unlock(&glob->lru_lock);
740 		return ret;
741 	}
742 
743 	kref_get(&bo->list_kref);
744 
745 	if (!list_empty(&bo->ddestroy)) {
746 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
747 						     no_wait_gpu);
748 		kref_put(&bo->list_kref, ttm_bo_release_list);
749 		return ret;
750 	}
751 
752 	ttm_bo_del_from_lru(bo);
753 	spin_unlock(&glob->lru_lock);
754 
755 	BUG_ON(ret != 0);
756 
757 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
758 	ttm_bo_unreserve(bo);
759 
760 	kref_put(&bo->list_kref, ttm_bo_release_list);
761 	return ret;
762 }
763 
764 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
765 {
766 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
767 
768 	if (mem->mm_node)
769 		(*man->func->put_node)(man, mem);
770 }
771 EXPORT_SYMBOL(ttm_bo_mem_put);
772 
773 /**
774  * Add the last move fence to the BO and reserve a new shared slot.
775  */
776 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
777 				 struct ttm_mem_type_manager *man,
778 				 struct ttm_mem_reg *mem)
779 {
780 	struct dma_fence *fence;
781 	int ret;
782 
783 	spin_lock(&man->move_lock);
784 	fence = dma_fence_get(man->move);
785 	spin_unlock(&man->move_lock);
786 
787 	if (fence) {
788 		reservation_object_add_shared_fence(bo->resv, fence);
789 
790 		ret = reservation_object_reserve_shared(bo->resv);
791 		if (unlikely(ret))
792 			return ret;
793 
794 		dma_fence_put(bo->moving);
795 		bo->moving = fence;
796 	}
797 
798 	return 0;
799 }
800 
801 /**
802  * Repeatedly evict memory from the LRU for @mem_type until we create enough
803  * space, or we've evicted everything and there isn't enough space.
804  */
805 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
806 					uint32_t mem_type,
807 					const struct ttm_place *place,
808 					struct ttm_mem_reg *mem,
809 					bool interruptible,
810 					bool no_wait_gpu)
811 {
812 	struct ttm_bo_device *bdev = bo->bdev;
813 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
814 	int ret;
815 
816 	do {
817 		ret = (*man->func->get_node)(man, bo, place, mem);
818 		if (unlikely(ret != 0))
819 			return ret;
820 		if (mem->mm_node)
821 			break;
822 		ret = ttm_mem_evict_first(bdev, mem_type, place,
823 					  interruptible, no_wait_gpu);
824 		if (unlikely(ret != 0))
825 			return ret;
826 	} while (1);
827 	mem->mem_type = mem_type;
828 	return ttm_bo_add_move_fence(bo, man, mem);
829 }
830 
831 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
832 				      uint32_t cur_placement,
833 				      uint32_t proposed_placement)
834 {
835 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
836 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
837 
838 	/**
839 	 * Keep current caching if possible.
840 	 */
841 
842 	if ((cur_placement & caching) != 0)
843 		result |= (cur_placement & caching);
844 	else if ((man->default_caching & caching) != 0)
845 		result |= man->default_caching;
846 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
847 		result |= TTM_PL_FLAG_CACHED;
848 	else if ((TTM_PL_FLAG_WC & caching) != 0)
849 		result |= TTM_PL_FLAG_WC;
850 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
851 		result |= TTM_PL_FLAG_UNCACHED;
852 
853 	return result;
854 }
855 
856 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
857 				 uint32_t mem_type,
858 				 const struct ttm_place *place,
859 				 uint32_t *masked_placement)
860 {
861 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
862 
863 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
864 		return false;
865 
866 	if ((place->flags & man->available_caching) == 0)
867 		return false;
868 
869 	cur_flags |= (place->flags & man->available_caching);
870 
871 	*masked_placement = cur_flags;
872 	return true;
873 }
874 
875 /**
876  * Creates space for memory region @mem according to its type.
877  *
878  * This function first searches for free space in compatible memory types in
879  * the priority order defined by the driver.  If free space isn't found, then
880  * ttm_bo_mem_force_space is attempted in priority order to evict and find
881  * space.
882  */
883 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
884 			struct ttm_placement *placement,
885 			struct ttm_mem_reg *mem,
886 			bool interruptible,
887 			bool no_wait_gpu)
888 {
889 	struct ttm_bo_device *bdev = bo->bdev;
890 	struct ttm_mem_type_manager *man;
891 	uint32_t mem_type = TTM_PL_SYSTEM;
892 	uint32_t cur_flags = 0;
893 	bool type_found = false;
894 	bool type_ok = false;
895 	bool has_erestartsys = false;
896 	int i, ret;
897 
898 	ret = reservation_object_reserve_shared(bo->resv);
899 	if (unlikely(ret))
900 		return ret;
901 
902 	mem->mm_node = NULL;
903 	for (i = 0; i < placement->num_placement; ++i) {
904 		const struct ttm_place *place = &placement->placement[i];
905 
906 		ret = ttm_mem_type_from_place(place, &mem_type);
907 		if (ret)
908 			return ret;
909 		man = &bdev->man[mem_type];
910 		if (!man->has_type || !man->use_type)
911 			continue;
912 
913 		type_ok = ttm_bo_mt_compatible(man, mem_type, place,
914 						&cur_flags);
915 
916 		if (!type_ok)
917 			continue;
918 
919 		type_found = true;
920 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
921 						  cur_flags);
922 		/*
923 		 * Use the access and other non-mapping-related flag bits from
924 		 * the memory placement flags to the current flags
925 		 */
926 		ttm_flag_masked(&cur_flags, place->flags,
927 				~TTM_PL_MASK_MEMTYPE);
928 
929 		if (mem_type == TTM_PL_SYSTEM)
930 			break;
931 
932 		ret = (*man->func->get_node)(man, bo, place, mem);
933 		if (unlikely(ret))
934 			return ret;
935 
936 		if (mem->mm_node) {
937 			ret = ttm_bo_add_move_fence(bo, man, mem);
938 			if (unlikely(ret)) {
939 				(*man->func->put_node)(man, mem);
940 				return ret;
941 			}
942 			break;
943 		}
944 	}
945 
946 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
947 		mem->mem_type = mem_type;
948 		mem->placement = cur_flags;
949 		return 0;
950 	}
951 
952 	for (i = 0; i < placement->num_busy_placement; ++i) {
953 		const struct ttm_place *place = &placement->busy_placement[i];
954 
955 		ret = ttm_mem_type_from_place(place, &mem_type);
956 		if (ret)
957 			return ret;
958 		man = &bdev->man[mem_type];
959 		if (!man->has_type || !man->use_type)
960 			continue;
961 		if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
962 			continue;
963 
964 		type_found = true;
965 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
966 						  cur_flags);
967 		/*
968 		 * Use the access and other non-mapping-related flag bits from
969 		 * the memory placement flags to the current flags
970 		 */
971 		ttm_flag_masked(&cur_flags, place->flags,
972 				~TTM_PL_MASK_MEMTYPE);
973 
974 		if (mem_type == TTM_PL_SYSTEM) {
975 			mem->mem_type = mem_type;
976 			mem->placement = cur_flags;
977 			mem->mm_node = NULL;
978 			return 0;
979 		}
980 
981 		ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
982 						interruptible, no_wait_gpu);
983 		if (ret == 0 && mem->mm_node) {
984 			mem->placement = cur_flags;
985 			return 0;
986 		}
987 		if (ret == -ERESTARTSYS)
988 			has_erestartsys = true;
989 	}
990 
991 	if (!type_found) {
992 		printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
993 		return -EINVAL;
994 	}
995 
996 	return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
997 }
998 EXPORT_SYMBOL(ttm_bo_mem_space);
999 
1000 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1001 			struct ttm_placement *placement,
1002 			bool interruptible,
1003 			bool no_wait_gpu)
1004 {
1005 	int ret = 0;
1006 	struct ttm_mem_reg mem;
1007 
1008 	lockdep_assert_held(&bo->resv->lock.base);
1009 
1010 	mem.num_pages = bo->num_pages;
1011 	mem.size = mem.num_pages << PAGE_SHIFT;
1012 	mem.page_alignment = bo->mem.page_alignment;
1013 	mem.bus.io_reserved_vm = false;
1014 	mem.bus.io_reserved_count = 0;
1015 	/*
1016 	 * Determine where to move the buffer.
1017 	 */
1018 	ret = ttm_bo_mem_space(bo, placement, &mem,
1019 			       interruptible, no_wait_gpu);
1020 	if (ret)
1021 		goto out_unlock;
1022 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1023 				     interruptible, no_wait_gpu);
1024 out_unlock:
1025 	if (ret && mem.mm_node)
1026 		ttm_bo_mem_put(bo, &mem);
1027 	return ret;
1028 }
1029 
1030 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1031 		       struct ttm_mem_reg *mem,
1032 		       uint32_t *new_flags)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < placement->num_placement; i++) {
1037 		const struct ttm_place *heap = &placement->placement[i];
1038 		if (mem->mm_node &&
1039 		    (mem->start < heap->fpfn ||
1040 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1041 			continue;
1042 
1043 		*new_flags = heap->flags;
1044 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1045 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1046 			return true;
1047 	}
1048 
1049 	for (i = 0; i < placement->num_busy_placement; i++) {
1050 		const struct ttm_place *heap = &placement->busy_placement[i];
1051 		if (mem->mm_node &&
1052 		    (mem->start < heap->fpfn ||
1053 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1054 			continue;
1055 
1056 		*new_flags = heap->flags;
1057 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1058 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1059 			return true;
1060 	}
1061 
1062 	return false;
1063 }
1064 EXPORT_SYMBOL(ttm_bo_mem_compat);
1065 
1066 int ttm_bo_validate(struct ttm_buffer_object *bo,
1067 			struct ttm_placement *placement,
1068 			bool interruptible,
1069 			bool no_wait_gpu)
1070 {
1071 	int ret;
1072 	uint32_t new_flags;
1073 
1074 	lockdep_assert_held(&bo->resv->lock.base);
1075 	/*
1076 	 * Check whether we need to move buffer.
1077 	 */
1078 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1079 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1080 					 no_wait_gpu);
1081 		if (ret)
1082 			return ret;
1083 	} else {
1084 		/*
1085 		 * Use the access and other non-mapping-related flag bits from
1086 		 * the compatible memory placement flags to the active flags
1087 		 */
1088 		ttm_flag_masked(&bo->mem.placement, new_flags,
1089 				~TTM_PL_MASK_MEMTYPE);
1090 	}
1091 	/*
1092 	 * We might need to add a TTM.
1093 	 */
1094 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1095 		ret = ttm_bo_add_ttm(bo, true);
1096 		if (ret)
1097 			return ret;
1098 	}
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL(ttm_bo_validate);
1102 
1103 int ttm_bo_init(struct ttm_bo_device *bdev,
1104 		struct ttm_buffer_object *bo,
1105 		unsigned long size,
1106 		enum ttm_bo_type type,
1107 		struct ttm_placement *placement,
1108 		uint32_t page_alignment,
1109 		bool interruptible,
1110 		struct file *persistent_swap_storage,
1111 		size_t acc_size,
1112 		struct sg_table *sg,
1113 		struct reservation_object *resv,
1114 		void (*destroy) (struct ttm_buffer_object *))
1115 {
1116 	int ret = 0;
1117 	unsigned long num_pages;
1118 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1119 	bool locked;
1120 
1121 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1122 	if (ret) {
1123 		pr_err("Out of kernel memory\n");
1124 		if (destroy)
1125 			(*destroy)(bo);
1126 		else
1127 			kfree(bo);
1128 		return -ENOMEM;
1129 	}
1130 
1131 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132 	if (num_pages == 0) {
1133 		pr_err("Illegal buffer object size\n");
1134 		if (destroy)
1135 			(*destroy)(bo);
1136 		else
1137 			kfree(bo);
1138 		ttm_mem_global_free(mem_glob, acc_size);
1139 		return -EINVAL;
1140 	}
1141 	bo->destroy = destroy;
1142 
1143 	kref_init(&bo->kref);
1144 	kref_init(&bo->list_kref);
1145 	atomic_set(&bo->cpu_writers, 0);
1146 	INIT_LIST_HEAD(&bo->lru);
1147 	INIT_LIST_HEAD(&bo->ddestroy);
1148 	INIT_LIST_HEAD(&bo->swap);
1149 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1150 	mutex_init(&bo->wu_mutex);
1151 	bo->bdev = bdev;
1152 	bo->glob = bdev->glob;
1153 	bo->type = type;
1154 	bo->num_pages = num_pages;
1155 	bo->mem.size = num_pages << PAGE_SHIFT;
1156 	bo->mem.mem_type = TTM_PL_SYSTEM;
1157 	bo->mem.num_pages = bo->num_pages;
1158 	bo->mem.mm_node = NULL;
1159 	bo->mem.page_alignment = page_alignment;
1160 	bo->mem.bus.io_reserved_vm = false;
1161 	bo->mem.bus.io_reserved_count = 0;
1162 	bo->moving = NULL;
1163 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1164 	bo->persistent_swap_storage = persistent_swap_storage;
1165 	bo->acc_size = acc_size;
1166 	bo->sg = sg;
1167 	if (resv) {
1168 		bo->resv = resv;
1169 		lockdep_assert_held(&bo->resv->lock.base);
1170 	} else {
1171 		bo->resv = &bo->ttm_resv;
1172 		reservation_object_init(&bo->ttm_resv);
1173 	}
1174 	atomic_inc(&bo->glob->bo_count);
1175 	drm_vma_node_reset(&bo->vma_node);
1176 
1177 	/*
1178 	 * For ttm_bo_type_device buffers, allocate
1179 	 * address space from the device.
1180 	 */
1181 	if (bo->type == ttm_bo_type_device ||
1182 	    bo->type == ttm_bo_type_sg)
1183 		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1184 					 bo->mem.num_pages);
1185 
1186 	/* passed reservation objects should already be locked,
1187 	 * since otherwise lockdep will be angered in radeon.
1188 	 */
1189 	if (!resv) {
1190 		locked = ww_mutex_trylock(&bo->resv->lock);
1191 		WARN_ON(!locked);
1192 	}
1193 
1194 	if (likely(!ret))
1195 		ret = ttm_bo_validate(bo, placement, interruptible, false);
1196 
1197 	if (!resv) {
1198 		ttm_bo_unreserve(bo);
1199 
1200 	} else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1201 		spin_lock(&bo->glob->lru_lock);
1202 		ttm_bo_add_to_lru(bo);
1203 		spin_unlock(&bo->glob->lru_lock);
1204 	}
1205 
1206 	if (unlikely(ret))
1207 		ttm_bo_unref(&bo);
1208 
1209 	return ret;
1210 }
1211 EXPORT_SYMBOL(ttm_bo_init);
1212 
1213 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1214 		       unsigned long bo_size,
1215 		       unsigned struct_size)
1216 {
1217 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1218 	size_t size = 0;
1219 
1220 	size += ttm_round_pot(struct_size);
1221 	size += ttm_round_pot(npages * sizeof(void *));
1222 	size += ttm_round_pot(sizeof(struct ttm_tt));
1223 	return size;
1224 }
1225 EXPORT_SYMBOL(ttm_bo_acc_size);
1226 
1227 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1228 			   unsigned long bo_size,
1229 			   unsigned struct_size)
1230 {
1231 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1232 	size_t size = 0;
1233 
1234 	size += ttm_round_pot(struct_size);
1235 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1236 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1237 	return size;
1238 }
1239 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1240 
1241 int ttm_bo_create(struct ttm_bo_device *bdev,
1242 			unsigned long size,
1243 			enum ttm_bo_type type,
1244 			struct ttm_placement *placement,
1245 			uint32_t page_alignment,
1246 			bool interruptible,
1247 			struct file *persistent_swap_storage,
1248 			struct ttm_buffer_object **p_bo)
1249 {
1250 	struct ttm_buffer_object *bo;
1251 	size_t acc_size;
1252 	int ret;
1253 
1254 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1255 	if (unlikely(bo == NULL))
1256 		return -ENOMEM;
1257 
1258 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1259 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1260 			  interruptible, persistent_swap_storage, acc_size,
1261 			  NULL, NULL, NULL);
1262 	if (likely(ret == 0))
1263 		*p_bo = bo;
1264 
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(ttm_bo_create);
1268 
1269 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1270 					unsigned mem_type, bool allow_errors)
1271 {
1272 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1273 	struct ttm_bo_global *glob = bdev->glob;
1274 	struct dma_fence *fence;
1275 	int ret;
1276 
1277 	/*
1278 	 * Can't use standard list traversal since we're unlocking.
1279 	 */
1280 
1281 	spin_lock(&glob->lru_lock);
1282 	while (!list_empty(&man->lru)) {
1283 		spin_unlock(&glob->lru_lock);
1284 		ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1285 		if (ret) {
1286 			if (allow_errors) {
1287 				return ret;
1288 			} else {
1289 				pr_err("Cleanup eviction failed\n");
1290 			}
1291 		}
1292 		spin_lock(&glob->lru_lock);
1293 	}
1294 	spin_unlock(&glob->lru_lock);
1295 
1296 	spin_lock(&man->move_lock);
1297 	fence = dma_fence_get(man->move);
1298 	spin_unlock(&man->move_lock);
1299 
1300 	if (fence) {
1301 		ret = dma_fence_wait(fence, false);
1302 		dma_fence_put(fence);
1303 		if (ret) {
1304 			if (allow_errors) {
1305 				return ret;
1306 			} else {
1307 				pr_err("Cleanup eviction failed\n");
1308 			}
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1316 {
1317 	struct ttm_mem_type_manager *man;
1318 	int ret = -EINVAL;
1319 
1320 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1321 		pr_err("Illegal memory type %d\n", mem_type);
1322 		return ret;
1323 	}
1324 	man = &bdev->man[mem_type];
1325 
1326 	if (!man->has_type) {
1327 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1328 		       mem_type);
1329 		return ret;
1330 	}
1331 	dma_fence_put(man->move);
1332 
1333 	man->use_type = false;
1334 	man->has_type = false;
1335 
1336 	ret = 0;
1337 	if (mem_type > 0) {
1338 		ttm_bo_force_list_clean(bdev, mem_type, false);
1339 
1340 		ret = (*man->func->takedown)(man);
1341 	}
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(ttm_bo_clean_mm);
1346 
1347 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1348 {
1349 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1350 
1351 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1352 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1353 		return -EINVAL;
1354 	}
1355 
1356 	if (!man->has_type) {
1357 		pr_err("Memory type %u has not been initialized\n", mem_type);
1358 		return 0;
1359 	}
1360 
1361 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1362 }
1363 EXPORT_SYMBOL(ttm_bo_evict_mm);
1364 
1365 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1366 			unsigned long p_size)
1367 {
1368 	int ret = -EINVAL;
1369 	struct ttm_mem_type_manager *man;
1370 
1371 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1372 	man = &bdev->man[type];
1373 	BUG_ON(man->has_type);
1374 	man->io_reserve_fastpath = true;
1375 	man->use_io_reserve_lru = false;
1376 	mutex_init(&man->io_reserve_mutex);
1377 	spin_lock_init(&man->move_lock);
1378 	INIT_LIST_HEAD(&man->io_reserve_lru);
1379 
1380 	ret = bdev->driver->init_mem_type(bdev, type, man);
1381 	if (ret)
1382 		return ret;
1383 	man->bdev = bdev;
1384 
1385 	ret = 0;
1386 	if (type != TTM_PL_SYSTEM) {
1387 		ret = (*man->func->init)(man, p_size);
1388 		if (ret)
1389 			return ret;
1390 	}
1391 	man->has_type = true;
1392 	man->use_type = true;
1393 	man->size = p_size;
1394 
1395 	INIT_LIST_HEAD(&man->lru);
1396 	man->move = NULL;
1397 
1398 	return 0;
1399 }
1400 EXPORT_SYMBOL(ttm_bo_init_mm);
1401 
1402 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1403 {
1404 	struct ttm_bo_global *glob =
1405 		container_of(kobj, struct ttm_bo_global, kobj);
1406 
1407 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1408 	__free_page(glob->dummy_read_page);
1409 	kfree(glob);
1410 }
1411 
1412 void ttm_bo_global_release(struct drm_global_reference *ref)
1413 {
1414 	struct ttm_bo_global *glob = ref->object;
1415 
1416 	kobject_del(&glob->kobj);
1417 	kobject_put(&glob->kobj);
1418 }
1419 EXPORT_SYMBOL(ttm_bo_global_release);
1420 
1421 int ttm_bo_global_init(struct drm_global_reference *ref)
1422 {
1423 	struct ttm_bo_global_ref *bo_ref =
1424 		container_of(ref, struct ttm_bo_global_ref, ref);
1425 	struct ttm_bo_global *glob = ref->object;
1426 	int ret;
1427 
1428 	mutex_init(&glob->device_list_mutex);
1429 	spin_lock_init(&glob->lru_lock);
1430 	glob->mem_glob = bo_ref->mem_glob;
1431 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1432 
1433 	if (unlikely(glob->dummy_read_page == NULL)) {
1434 		ret = -ENOMEM;
1435 		goto out_no_drp;
1436 	}
1437 
1438 	INIT_LIST_HEAD(&glob->swap_lru);
1439 	INIT_LIST_HEAD(&glob->device_list);
1440 
1441 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1442 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1443 	if (unlikely(ret != 0)) {
1444 		pr_err("Could not register buffer object swapout\n");
1445 		goto out_no_shrink;
1446 	}
1447 
1448 	atomic_set(&glob->bo_count, 0);
1449 
1450 	ret = kobject_init_and_add(
1451 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1452 	if (unlikely(ret != 0))
1453 		kobject_put(&glob->kobj);
1454 	return ret;
1455 out_no_shrink:
1456 	__free_page(glob->dummy_read_page);
1457 out_no_drp:
1458 	kfree(glob);
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(ttm_bo_global_init);
1462 
1463 
1464 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1465 {
1466 	int ret = 0;
1467 	unsigned i = TTM_NUM_MEM_TYPES;
1468 	struct ttm_mem_type_manager *man;
1469 	struct ttm_bo_global *glob = bdev->glob;
1470 
1471 	while (i--) {
1472 		man = &bdev->man[i];
1473 		if (man->has_type) {
1474 			man->use_type = false;
1475 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1476 				ret = -EBUSY;
1477 				pr_err("DRM memory manager type %d is not clean\n",
1478 				       i);
1479 			}
1480 			man->has_type = false;
1481 		}
1482 	}
1483 
1484 	mutex_lock(&glob->device_list_mutex);
1485 	list_del(&bdev->device_list);
1486 	mutex_unlock(&glob->device_list_mutex);
1487 
1488 	cancel_delayed_work_sync(&bdev->wq);
1489 
1490 	while (ttm_bo_delayed_delete(bdev, true))
1491 		;
1492 
1493 	spin_lock(&glob->lru_lock);
1494 	if (list_empty(&bdev->ddestroy))
1495 		TTM_DEBUG("Delayed destroy list was clean\n");
1496 
1497 	if (list_empty(&bdev->man[0].lru))
1498 		TTM_DEBUG("Swap list was clean\n");
1499 	spin_unlock(&glob->lru_lock);
1500 
1501 	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1502 
1503 	return ret;
1504 }
1505 EXPORT_SYMBOL(ttm_bo_device_release);
1506 
1507 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1508 		       struct ttm_bo_global *glob,
1509 		       struct ttm_bo_driver *driver,
1510 		       struct address_space *mapping,
1511 		       uint64_t file_page_offset,
1512 		       bool need_dma32)
1513 {
1514 	int ret = -EINVAL;
1515 
1516 	bdev->driver = driver;
1517 
1518 	memset(bdev->man, 0, sizeof(bdev->man));
1519 
1520 	/*
1521 	 * Initialize the system memory buffer type.
1522 	 * Other types need to be driver / IOCTL initialized.
1523 	 */
1524 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1525 	if (unlikely(ret != 0))
1526 		goto out_no_sys;
1527 
1528 	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1529 				    0x10000000);
1530 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1531 	INIT_LIST_HEAD(&bdev->ddestroy);
1532 	bdev->dev_mapping = mapping;
1533 	bdev->glob = glob;
1534 	bdev->need_dma32 = need_dma32;
1535 	mutex_lock(&glob->device_list_mutex);
1536 	list_add_tail(&bdev->device_list, &glob->device_list);
1537 	mutex_unlock(&glob->device_list_mutex);
1538 
1539 	return 0;
1540 out_no_sys:
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL(ttm_bo_device_init);
1544 
1545 /*
1546  * buffer object vm functions.
1547  */
1548 
1549 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1550 {
1551 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1552 
1553 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1554 		if (mem->mem_type == TTM_PL_SYSTEM)
1555 			return false;
1556 
1557 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1558 			return false;
1559 
1560 		if (mem->placement & TTM_PL_FLAG_CACHED)
1561 			return false;
1562 	}
1563 	return true;
1564 }
1565 
1566 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1567 {
1568 	struct ttm_bo_device *bdev = bo->bdev;
1569 
1570 	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1571 	ttm_mem_io_free_vm(bo);
1572 }
1573 
1574 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1575 {
1576 	struct ttm_bo_device *bdev = bo->bdev;
1577 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1578 
1579 	ttm_mem_io_lock(man, false);
1580 	ttm_bo_unmap_virtual_locked(bo);
1581 	ttm_mem_io_unlock(man);
1582 }
1583 
1584 
1585 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1586 
1587 int ttm_bo_wait(struct ttm_buffer_object *bo,
1588 		bool interruptible, bool no_wait)
1589 {
1590 	long timeout = 15 * HZ;
1591 
1592 	if (no_wait) {
1593 		if (reservation_object_test_signaled_rcu(bo->resv, true))
1594 			return 0;
1595 		else
1596 			return -EBUSY;
1597 	}
1598 
1599 	timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1600 						      interruptible, timeout);
1601 	if (timeout < 0)
1602 		return timeout;
1603 
1604 	if (timeout == 0)
1605 		return -EBUSY;
1606 
1607 	reservation_object_add_excl_fence(bo->resv, NULL);
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL(ttm_bo_wait);
1611 
1612 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1613 {
1614 	int ret = 0;
1615 
1616 	/*
1617 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1618 	 */
1619 
1620 	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1621 	if (unlikely(ret != 0))
1622 		return ret;
1623 	ret = ttm_bo_wait(bo, true, no_wait);
1624 	if (likely(ret == 0))
1625 		atomic_inc(&bo->cpu_writers);
1626 	ttm_bo_unreserve(bo);
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1630 
1631 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1632 {
1633 	atomic_dec(&bo->cpu_writers);
1634 }
1635 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1636 
1637 /**
1638  * A buffer object shrink method that tries to swap out the first
1639  * buffer object on the bo_global::swap_lru list.
1640  */
1641 
1642 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1643 {
1644 	struct ttm_bo_global *glob =
1645 	    container_of(shrink, struct ttm_bo_global, shrink);
1646 	struct ttm_buffer_object *bo;
1647 	int ret = -EBUSY;
1648 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1649 
1650 	spin_lock(&glob->lru_lock);
1651 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1652 		ret = __ttm_bo_reserve(bo, false, true, NULL);
1653 		if (!ret)
1654 			break;
1655 	}
1656 
1657 	if (ret) {
1658 		spin_unlock(&glob->lru_lock);
1659 		return ret;
1660 	}
1661 
1662 	kref_get(&bo->list_kref);
1663 
1664 	if (!list_empty(&bo->ddestroy)) {
1665 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1666 		kref_put(&bo->list_kref, ttm_bo_release_list);
1667 		return ret;
1668 	}
1669 
1670 	ttm_bo_del_from_lru(bo);
1671 	spin_unlock(&glob->lru_lock);
1672 
1673 	/**
1674 	 * Move to system cached
1675 	 */
1676 
1677 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1678 		struct ttm_mem_reg evict_mem;
1679 
1680 		evict_mem = bo->mem;
1681 		evict_mem.mm_node = NULL;
1682 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1683 		evict_mem.mem_type = TTM_PL_SYSTEM;
1684 
1685 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1686 					     false, false);
1687 		if (unlikely(ret != 0))
1688 			goto out;
1689 	}
1690 
1691 	/**
1692 	 * Make sure BO is idle.
1693 	 */
1694 
1695 	ret = ttm_bo_wait(bo, false, false);
1696 	if (unlikely(ret != 0))
1697 		goto out;
1698 
1699 	ttm_bo_unmap_virtual(bo);
1700 
1701 	/**
1702 	 * Swap out. Buffer will be swapped in again as soon as
1703 	 * anyone tries to access a ttm page.
1704 	 */
1705 
1706 	if (bo->bdev->driver->swap_notify)
1707 		bo->bdev->driver->swap_notify(bo);
1708 
1709 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1710 out:
1711 
1712 	/**
1713 	 *
1714 	 * Unreserve without putting on LRU to avoid swapping out an
1715 	 * already swapped buffer.
1716 	 */
1717 
1718 	__ttm_bo_unreserve(bo);
1719 	kref_put(&bo->list_kref, ttm_bo_release_list);
1720 	return ret;
1721 }
1722 
1723 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1724 {
1725 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1726 		;
1727 }
1728 EXPORT_SYMBOL(ttm_bo_swapout_all);
1729 
1730 /**
1731  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1732  * unreserved
1733  *
1734  * @bo: Pointer to buffer
1735  */
1736 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1737 {
1738 	int ret;
1739 
1740 	/*
1741 	 * In the absense of a wait_unlocked API,
1742 	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1743 	 * concurrent use of this function. Note that this use of
1744 	 * bo::wu_mutex can go away if we change locking order to
1745 	 * mmap_sem -> bo::reserve.
1746 	 */
1747 	ret = mutex_lock_interruptible(&bo->wu_mutex);
1748 	if (unlikely(ret != 0))
1749 		return -ERESTARTSYS;
1750 	if (!ww_mutex_is_locked(&bo->resv->lock))
1751 		goto out_unlock;
1752 	ret = __ttm_bo_reserve(bo, true, false, NULL);
1753 	if (unlikely(ret != 0))
1754 		goto out_unlock;
1755 	__ttm_bo_unreserve(bo);
1756 
1757 out_unlock:
1758 	mutex_unlock(&bo->wu_mutex);
1759 	return ret;
1760 }
1761