xref: /linux/drivers/gpu/drm/panthor/panthor_sched.c (revision 74ba587f402d5501af2c85e50cf1e4044263b6ca)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/drm_print.h>
9 #include <drm/gpu_scheduler.h>
10 #include <drm/panthor_drm.h>
11 
12 #include <linux/build_bug.h>
13 #include <linux/cleanup.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dma-resv.h>
18 #include <linux/firmware.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/iosys-map.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "panthor_devfreq.h"
28 #include "panthor_device.h"
29 #include "panthor_fw.h"
30 #include "panthor_gem.h"
31 #include "panthor_gpu.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36 
37 /**
38  * DOC: Scheduler
39  *
40  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
41  * the firmware takes care of scheduling aspects, to some extent.
42  *
43  * The scheduling happens at the scheduling group level, each group
44  * contains 1 to N queues (N is FW/hardware dependent, and exposed
45  * through the firmware interface). Each queue is assigned a command
46  * stream ring buffer, which serves as a way to get jobs submitted to
47  * the GPU, among other things.
48  *
49  * The firmware can schedule a maximum of M groups (M is FW/hardware
50  * dependent, and exposed through the firmware interface). Passed
51  * this maximum number of groups, the kernel must take care of
52  * rotating the groups passed to the firmware so every group gets
53  * a chance to have his queues scheduled for execution.
54  *
55  * The current implementation only supports with kernel-mode queues.
56  * In other terms, userspace doesn't have access to the ring-buffer.
57  * Instead, userspace passes indirect command stream buffers that are
58  * called from the queue ring-buffer by the kernel using a pre-defined
59  * sequence of command stream instructions to ensure the userspace driver
60  * always gets consistent results (cache maintenance,
61  * synchronization, ...).
62  *
63  * We rely on the drm_gpu_scheduler framework to deal with job
64  * dependencies and submission. As any other driver dealing with a
65  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
66  * entity has its own job scheduler. When a job is ready to be executed
67  * (all its dependencies are met), it is pushed to the appropriate
68  * queue ring-buffer, and the group is scheduled for execution if it
69  * wasn't already active.
70  *
71  * Kernel-side group scheduling is timeslice-based. When we have less
72  * groups than there are slots, the periodic tick is disabled and we
73  * just let the FW schedule the active groups. When there are more
74  * groups than slots, we let each group a chance to execute stuff for
75  * a given amount of time, and then re-evaluate and pick new groups
76  * to schedule. The group selection algorithm is based on
77  * priority+round-robin.
78  *
79  * Even though user-mode queues is out of the scope right now, the
80  * current design takes them into account by avoiding any guess on the
81  * group/queue state that would be based on information we wouldn't have
82  * if userspace was in charge of the ring-buffer. That's also one of the
83  * reason we don't do 'cooperative' scheduling (encoding FW group slot
84  * reservation as dma_fence that would be returned from the
85  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
86  * a queue of waiters, ordered by job submission order). This approach
87  * would work for kernel-mode queues, but would make user-mode queues a
88  * lot more complicated to retrofit.
89  */
90 
91 #define JOB_TIMEOUT_MS				5000
92 
93 #define MAX_CSG_PRIO				0xf
94 
95 #define NUM_INSTRS_PER_CACHE_LINE		(64 / sizeof(u64))
96 #define MAX_INSTRS_PER_JOB			24
97 
98 struct panthor_group;
99 
100 /**
101  * struct panthor_csg_slot - Command stream group slot
102  *
103  * This represents a FW slot for a scheduling group.
104  */
105 struct panthor_csg_slot {
106 	/** @group: Scheduling group bound to this slot. */
107 	struct panthor_group *group;
108 
109 	/** @priority: Group priority. */
110 	u8 priority;
111 
112 	/**
113 	 * @idle: True if the group bound to this slot is idle.
114 	 *
115 	 * A group is idle when it has nothing waiting for execution on
116 	 * all its queues, or when queues are blocked waiting for something
117 	 * to happen (synchronization object).
118 	 */
119 	bool idle;
120 };
121 
122 /**
123  * enum panthor_csg_priority - Group priority
124  */
125 enum panthor_csg_priority {
126 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
127 	PANTHOR_CSG_PRIORITY_LOW = 0,
128 
129 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
130 	PANTHOR_CSG_PRIORITY_MEDIUM,
131 
132 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
133 	PANTHOR_CSG_PRIORITY_HIGH,
134 
135 	/**
136 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
137 	 *
138 	 * Real-time priority allows one to preempt scheduling of other
139 	 * non-real-time groups. When such a group becomes executable,
140 	 * it will evict the group with the lowest non-rt priority if
141 	 * there's no free group slot available.
142 	 */
143 	PANTHOR_CSG_PRIORITY_RT,
144 
145 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 	PANTHOR_CSG_PRIORITY_COUNT,
147 };
148 
149 /**
150  * struct panthor_scheduler - Object used to manage the scheduler
151  */
152 struct panthor_scheduler {
153 	/** @ptdev: Device. */
154 	struct panthor_device *ptdev;
155 
156 	/**
157 	 * @wq: Workqueue used by our internal scheduler logic and
158 	 * drm_gpu_scheduler.
159 	 *
160 	 * Used for the scheduler tick, group update or other kind of FW
161 	 * event processing that can't be handled in the threaded interrupt
162 	 * path. Also passed to the drm_gpu_scheduler instances embedded
163 	 * in panthor_queue.
164 	 */
165 	struct workqueue_struct *wq;
166 
167 	/**
168 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 	 *
170 	 * We have a queue dedicated to heap chunk allocation works to avoid
171 	 * blocking the rest of the scheduler if the allocation tries to
172 	 * reclaim memory.
173 	 */
174 	struct workqueue_struct *heap_alloc_wq;
175 
176 	/** @tick_work: Work executed on a scheduling tick. */
177 	struct delayed_work tick_work;
178 
179 	/**
180 	 * @sync_upd_work: Work used to process synchronization object updates.
181 	 *
182 	 * We use this work to unblock queues/groups that were waiting on a
183 	 * synchronization object.
184 	 */
185 	struct work_struct sync_upd_work;
186 
187 	/**
188 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 	 *
190 	 * Even if the interrupt is threaded, we need any event processing
191 	 * that require taking the panthor_scheduler::lock to be processed
192 	 * outside the interrupt path so we don't block the tick logic when
193 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 	 * event processing requires taking this lock, we just delegate all
195 	 * FW event processing to the scheduler workqueue.
196 	 */
197 	struct work_struct fw_events_work;
198 
199 	/**
200 	 * @fw_events: Bitmask encoding pending FW events.
201 	 */
202 	atomic_t fw_events;
203 
204 	/**
205 	 * @resched_target: When the next tick should occur.
206 	 *
207 	 * Expressed in jiffies.
208 	 */
209 	u64 resched_target;
210 
211 	/**
212 	 * @last_tick: When the last tick occurred.
213 	 *
214 	 * Expressed in jiffies.
215 	 */
216 	u64 last_tick;
217 
218 	/** @tick_period: Tick period in jiffies. */
219 	u64 tick_period;
220 
221 	/**
222 	 * @lock: Lock protecting access to all the scheduler fields.
223 	 *
224 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 	 * fields are touched.
226 	 */
227 	struct mutex lock;
228 
229 	/** @groups: Various lists used to classify groups. */
230 	struct {
231 		/**
232 		 * @runnable: Runnable group lists.
233 		 *
234 		 * When a group has queues that want to execute something,
235 		 * its panthor_group::run_node should be inserted here.
236 		 *
237 		 * One list per-priority.
238 		 */
239 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240 
241 		/**
242 		 * @idle: Idle group lists.
243 		 *
244 		 * When all queues of a group are idle (either because they
245 		 * have nothing to execute, or because they are blocked), the
246 		 * panthor_group::run_node field should be inserted here.
247 		 *
248 		 * One list per-priority.
249 		 */
250 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251 
252 		/**
253 		 * @waiting: List of groups whose queues are blocked on a
254 		 * synchronization object.
255 		 *
256 		 * Insert panthor_group::wait_node here when a group is waiting
257 		 * for synchronization objects to be signaled.
258 		 *
259 		 * This list is evaluated in the @sync_upd_work work.
260 		 */
261 		struct list_head waiting;
262 	} groups;
263 
264 	/**
265 	 * @csg_slots: FW command stream group slots.
266 	 */
267 	struct panthor_csg_slot csg_slots[MAX_CSGS];
268 
269 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 	u32 csg_slot_count;
271 
272 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 	u32 cs_slot_count;
274 
275 	/** @as_slot_count: Number of address space slots supported by the MMU. */
276 	u32 as_slot_count;
277 
278 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
279 	u32 used_csg_slot_count;
280 
281 	/** @sb_slot_count: Number of scoreboard slots. */
282 	u32 sb_slot_count;
283 
284 	/**
285 	 * @might_have_idle_groups: True if an active group might have become idle.
286 	 *
287 	 * This will force a tick, so other runnable groups can be scheduled if one
288 	 * or more active groups became idle.
289 	 */
290 	bool might_have_idle_groups;
291 
292 	/** @pm: Power management related fields. */
293 	struct {
294 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
295 		bool has_ref;
296 	} pm;
297 
298 	/** @reset: Reset related fields. */
299 	struct {
300 		/** @lock: Lock protecting the other reset fields. */
301 		struct mutex lock;
302 
303 		/**
304 		 * @in_progress: True if a reset is in progress.
305 		 *
306 		 * Set to true in panthor_sched_pre_reset() and back to false in
307 		 * panthor_sched_post_reset().
308 		 */
309 		atomic_t in_progress;
310 
311 		/**
312 		 * @stopped_groups: List containing all groups that were stopped
313 		 * before a reset.
314 		 *
315 		 * Insert panthor_group::run_node in the pre_reset path.
316 		 */
317 		struct list_head stopped_groups;
318 	} reset;
319 };
320 
321 /**
322  * struct panthor_syncobj_32b - 32-bit FW synchronization object
323  */
324 struct panthor_syncobj_32b {
325 	/** @seqno: Sequence number. */
326 	u32 seqno;
327 
328 	/**
329 	 * @status: Status.
330 	 *
331 	 * Not zero on failure.
332 	 */
333 	u32 status;
334 };
335 
336 /**
337  * struct panthor_syncobj_64b - 64-bit FW synchronization object
338  */
339 struct panthor_syncobj_64b {
340 	/** @seqno: Sequence number. */
341 	u64 seqno;
342 
343 	/**
344 	 * @status: Status.
345 	 *
346 	 * Not zero on failure.
347 	 */
348 	u32 status;
349 
350 	/** @pad: MBZ. */
351 	u32 pad;
352 };
353 
354 /**
355  * struct panthor_queue - Execution queue
356  */
357 struct panthor_queue {
358 	/** @scheduler: DRM scheduler used for this queue. */
359 	struct drm_gpu_scheduler scheduler;
360 
361 	/** @entity: DRM scheduling entity used for this queue. */
362 	struct drm_sched_entity entity;
363 
364 	/** @name: DRM scheduler name for this queue. */
365 	char *name;
366 
367 	/**
368 	 * @remaining_time: Time remaining before the job timeout expires.
369 	 *
370 	 * The job timeout is suspended when the queue is not scheduled by the
371 	 * FW. Every time we suspend the timer, we need to save the remaining
372 	 * time so we can restore it later on.
373 	 */
374 	unsigned long remaining_time;
375 
376 	/** @timeout_suspended: True if the job timeout was suspended. */
377 	bool timeout_suspended;
378 
379 	/**
380 	 * @doorbell_id: Doorbell assigned to this queue.
381 	 *
382 	 * Right now, all groups share the same doorbell, and the doorbell ID
383 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
384 	 * we might decide to provide fine grained doorbell assignment at some
385 	 * point, so don't have to wake up all queues in a group every time one
386 	 * of them is updated.
387 	 */
388 	u8 doorbell_id;
389 
390 	/**
391 	 * @priority: Priority of the queue inside the group.
392 	 *
393 	 * Must be less than 16 (Only 4 bits available).
394 	 */
395 	u8 priority;
396 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
397 
398 	/** @ringbuf: Command stream ring-buffer. */
399 	struct panthor_kernel_bo *ringbuf;
400 
401 	/** @iface: Firmware interface. */
402 	struct {
403 		/** @mem: FW memory allocated for this interface. */
404 		struct panthor_kernel_bo *mem;
405 
406 		/** @input: Input interface. */
407 		struct panthor_fw_ringbuf_input_iface *input;
408 
409 		/** @output: Output interface. */
410 		const struct panthor_fw_ringbuf_output_iface *output;
411 
412 		/** @input_fw_va: FW virtual address of the input interface buffer. */
413 		u32 input_fw_va;
414 
415 		/** @output_fw_va: FW virtual address of the output interface buffer. */
416 		u32 output_fw_va;
417 	} iface;
418 
419 	/**
420 	 * @syncwait: Stores information about the synchronization object this
421 	 * queue is waiting on.
422 	 */
423 	struct {
424 		/** @gpu_va: GPU address of the synchronization object. */
425 		u64 gpu_va;
426 
427 		/** @ref: Reference value to compare against. */
428 		u64 ref;
429 
430 		/** @gt: True if this is a greater-than test. */
431 		bool gt;
432 
433 		/** @sync64: True if this is a 64-bit sync object. */
434 		bool sync64;
435 
436 		/** @bo: Buffer object holding the synchronization object. */
437 		struct drm_gem_object *obj;
438 
439 		/** @offset: Offset of the synchronization object inside @bo. */
440 		u64 offset;
441 
442 		/**
443 		 * @kmap: Kernel mapping of the buffer object holding the
444 		 * synchronization object.
445 		 */
446 		void *kmap;
447 	} syncwait;
448 
449 	/** @fence_ctx: Fence context fields. */
450 	struct {
451 		/** @lock: Used to protect access to all fences allocated by this context. */
452 		spinlock_t lock;
453 
454 		/**
455 		 * @id: Fence context ID.
456 		 *
457 		 * Allocated with dma_fence_context_alloc().
458 		 */
459 		u64 id;
460 
461 		/** @seqno: Sequence number of the last initialized fence. */
462 		atomic64_t seqno;
463 
464 		/**
465 		 * @last_fence: Fence of the last submitted job.
466 		 *
467 		 * We return this fence when we get an empty command stream.
468 		 * This way, we are guaranteed that all earlier jobs have completed
469 		 * when drm_sched_job::s_fence::finished without having to feed
470 		 * the CS ring buffer with a dummy job that only signals the fence.
471 		 */
472 		struct dma_fence *last_fence;
473 
474 		/**
475 		 * @in_flight_jobs: List containing all in-flight jobs.
476 		 *
477 		 * Used to keep track and signal panthor_job::done_fence when the
478 		 * synchronization object attached to the queue is signaled.
479 		 */
480 		struct list_head in_flight_jobs;
481 	} fence_ctx;
482 
483 	/** @profiling: Job profiling data slots and access information. */
484 	struct {
485 		/** @slots: Kernel BO holding the slots. */
486 		struct panthor_kernel_bo *slots;
487 
488 		/** @slot_count: Number of jobs ringbuffer can hold at once. */
489 		u32 slot_count;
490 
491 		/** @seqno: Index of the next available profiling information slot. */
492 		u32 seqno;
493 	} profiling;
494 };
495 
496 /**
497  * enum panthor_group_state - Scheduling group state.
498  */
499 enum panthor_group_state {
500 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
501 	PANTHOR_CS_GROUP_CREATED,
502 
503 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
504 	PANTHOR_CS_GROUP_ACTIVE,
505 
506 	/**
507 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
508 	 * inactive/suspended right now.
509 	 */
510 	PANTHOR_CS_GROUP_SUSPENDED,
511 
512 	/**
513 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
514 	 *
515 	 * Can no longer be scheduled. The only allowed action is a destruction.
516 	 */
517 	PANTHOR_CS_GROUP_TERMINATED,
518 
519 	/**
520 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
521 	 *
522 	 * The FW returned an inconsistent state. The group is flagged unusable
523 	 * and can no longer be scheduled. The only allowed action is a
524 	 * destruction.
525 	 *
526 	 * When that happens, we also schedule a FW reset, to start from a fresh
527 	 * state.
528 	 */
529 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
530 };
531 
532 /**
533  * struct panthor_group - Scheduling group object
534  */
535 struct panthor_group {
536 	/** @refcount: Reference count */
537 	struct kref refcount;
538 
539 	/** @ptdev: Device. */
540 	struct panthor_device *ptdev;
541 
542 	/** @vm: VM bound to the group. */
543 	struct panthor_vm *vm;
544 
545 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
546 	u64 compute_core_mask;
547 
548 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
549 	u64 fragment_core_mask;
550 
551 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
552 	u64 tiler_core_mask;
553 
554 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
555 	u8 max_compute_cores;
556 
557 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
558 	u8 max_fragment_cores;
559 
560 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
561 	u8 max_tiler_cores;
562 
563 	/** @priority: Group priority (check panthor_csg_priority). */
564 	u8 priority;
565 
566 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
567 	u32 blocked_queues;
568 
569 	/** @idle_queues: Bitmask reflecting the idle queues. */
570 	u32 idle_queues;
571 
572 	/** @fatal_lock: Lock used to protect access to fatal fields. */
573 	spinlock_t fatal_lock;
574 
575 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
576 	u32 fatal_queues;
577 
578 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
579 	atomic_t tiler_oom;
580 
581 	/** @queue_count: Number of queues in this group. */
582 	u32 queue_count;
583 
584 	/** @queues: Queues owned by this group. */
585 	struct panthor_queue *queues[MAX_CS_PER_CSG];
586 
587 	/**
588 	 * @csg_id: ID of the FW group slot.
589 	 *
590 	 * -1 when the group is not scheduled/active.
591 	 */
592 	int csg_id;
593 
594 	/**
595 	 * @destroyed: True when the group has been destroyed.
596 	 *
597 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
598 	 * to its queues. We simply wait for all references to be dropped so we can
599 	 * release the group object.
600 	 */
601 	bool destroyed;
602 
603 	/**
604 	 * @timedout: True when a timeout occurred on any of the queues owned by
605 	 * this group.
606 	 *
607 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
608 	 * and the group can't be suspended, this also leads to a timeout. In any case,
609 	 * any timeout situation is unrecoverable, and the group becomes useless. We
610 	 * simply wait for all references to be dropped so we can release the group
611 	 * object.
612 	 */
613 	bool timedout;
614 
615 	/**
616 	 * @innocent: True when the group becomes unusable because the group suspension
617 	 * failed during a reset.
618 	 *
619 	 * Sometimes the FW was put in a bad state by other groups, causing the group
620 	 * suspension happening in the reset path to fail. In that case, we consider the
621 	 * group innocent.
622 	 */
623 	bool innocent;
624 
625 	/**
626 	 * @syncobjs: Pool of per-queue synchronization objects.
627 	 *
628 	 * One sync object per queue. The position of the sync object is
629 	 * determined by the queue index.
630 	 */
631 	struct panthor_kernel_bo *syncobjs;
632 
633 	/** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */
634 	struct {
635 		/** @data: Total sampled values for jobs in queues from this group. */
636 		struct panthor_gpu_usage data;
637 
638 		/**
639 		 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo
640 		 * callback and job post-completion processing function
641 		 */
642 		spinlock_t lock;
643 
644 		/** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */
645 		size_t kbo_sizes;
646 	} fdinfo;
647 
648 	/** @task_info: Info of current->group_leader that created the group. */
649 	struct {
650 		/** @task_info.pid: pid of current->group_leader */
651 		pid_t pid;
652 
653 		/** @task_info.comm: comm of current->group_leader */
654 		char comm[TASK_COMM_LEN];
655 	} task_info;
656 
657 	/** @state: Group state. */
658 	enum panthor_group_state state;
659 
660 	/**
661 	 * @suspend_buf: Suspend buffer.
662 	 *
663 	 * Stores the state of the group and its queues when a group is suspended.
664 	 * Used at resume time to restore the group in its previous state.
665 	 *
666 	 * The size of the suspend buffer is exposed through the FW interface.
667 	 */
668 	struct panthor_kernel_bo *suspend_buf;
669 
670 	/**
671 	 * @protm_suspend_buf: Protection mode suspend buffer.
672 	 *
673 	 * Stores the state of the group and its queues when a group that's in
674 	 * protection mode is suspended.
675 	 *
676 	 * Used at resume time to restore the group in its previous state.
677 	 *
678 	 * The size of the protection mode suspend buffer is exposed through the
679 	 * FW interface.
680 	 */
681 	struct panthor_kernel_bo *protm_suspend_buf;
682 
683 	/** @sync_upd_work: Work used to check/signal job fences. */
684 	struct work_struct sync_upd_work;
685 
686 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
687 	struct work_struct tiler_oom_work;
688 
689 	/** @term_work: Work used to finish the group termination procedure. */
690 	struct work_struct term_work;
691 
692 	/**
693 	 * @release_work: Work used to release group resources.
694 	 *
695 	 * We need to postpone the group release to avoid a deadlock when
696 	 * the last ref is released in the tick work.
697 	 */
698 	struct work_struct release_work;
699 
700 	/**
701 	 * @run_node: Node used to insert the group in the
702 	 * panthor_group::groups::{runnable,idle} and
703 	 * panthor_group::reset.stopped_groups lists.
704 	 */
705 	struct list_head run_node;
706 
707 	/**
708 	 * @wait_node: Node used to insert the group in the
709 	 * panthor_group::groups::waiting list.
710 	 */
711 	struct list_head wait_node;
712 };
713 
714 struct panthor_job_profiling_data {
715 	struct {
716 		u64 before;
717 		u64 after;
718 	} cycles;
719 
720 	struct {
721 		u64 before;
722 		u64 after;
723 	} time;
724 };
725 
726 /**
727  * group_queue_work() - Queue a group work
728  * @group: Group to queue the work for.
729  * @wname: Work name.
730  *
731  * Grabs a ref and queue a work item to the scheduler workqueue. If
732  * the work was already queued, we release the reference we grabbed.
733  *
734  * Work callbacks must release the reference we grabbed here.
735  */
736 #define group_queue_work(group, wname) \
737 	do { \
738 		group_get(group); \
739 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
740 			group_put(group); \
741 	} while (0)
742 
743 /**
744  * sched_queue_work() - Queue a scheduler work.
745  * @sched: Scheduler object.
746  * @wname: Work name.
747  *
748  * Conditionally queues a scheduler work if no reset is pending/in-progress.
749  */
750 #define sched_queue_work(sched, wname) \
751 	do { \
752 		if (!atomic_read(&(sched)->reset.in_progress) && \
753 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
754 			queue_work((sched)->wq, &(sched)->wname ## _work); \
755 	} while (0)
756 
757 /**
758  * sched_queue_delayed_work() - Queue a scheduler delayed work.
759  * @sched: Scheduler object.
760  * @wname: Work name.
761  * @delay: Work delay in jiffies.
762  *
763  * Conditionally queues a scheduler delayed work if no reset is
764  * pending/in-progress.
765  */
766 #define sched_queue_delayed_work(sched, wname, delay) \
767 	do { \
768 		if (!atomic_read(&sched->reset.in_progress) && \
769 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
770 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
771 	} while (0)
772 
773 /*
774  * We currently set the maximum of groups per file to an arbitrary low value.
775  * But this can be updated if we need more.
776  */
777 #define MAX_GROUPS_PER_POOL 128
778 
779 /**
780  * struct panthor_group_pool - Group pool
781  *
782  * Each file get assigned a group pool.
783  */
784 struct panthor_group_pool {
785 	/** @xa: Xarray used to manage group handles. */
786 	struct xarray xa;
787 };
788 
789 /**
790  * struct panthor_job - Used to manage GPU job
791  */
792 struct panthor_job {
793 	/** @base: Inherit from drm_sched_job. */
794 	struct drm_sched_job base;
795 
796 	/** @refcount: Reference count. */
797 	struct kref refcount;
798 
799 	/** @group: Group of the queue this job will be pushed to. */
800 	struct panthor_group *group;
801 
802 	/** @queue_idx: Index of the queue inside @group. */
803 	u32 queue_idx;
804 
805 	/** @call_info: Information about the userspace command stream call. */
806 	struct {
807 		/** @start: GPU address of the userspace command stream. */
808 		u64 start;
809 
810 		/** @size: Size of the userspace command stream. */
811 		u32 size;
812 
813 		/**
814 		 * @latest_flush: Flush ID at the time the userspace command
815 		 * stream was built.
816 		 *
817 		 * Needed for the flush reduction mechanism.
818 		 */
819 		u32 latest_flush;
820 	} call_info;
821 
822 	/** @ringbuf: Position of this job is in the ring buffer. */
823 	struct {
824 		/** @start: Start offset. */
825 		u64 start;
826 
827 		/** @end: End offset. */
828 		u64 end;
829 	} ringbuf;
830 
831 	/**
832 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
833 	 * list.
834 	 */
835 	struct list_head node;
836 
837 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
838 	struct dma_fence *done_fence;
839 
840 	/** @profiling: Job profiling information. */
841 	struct {
842 		/** @mask: Current device job profiling enablement bitmask. */
843 		u32 mask;
844 
845 		/** @slot: Job index in the profiling slots BO. */
846 		u32 slot;
847 	} profiling;
848 };
849 
850 static void
851 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
852 {
853 	if (queue->syncwait.kmap) {
854 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
855 
856 		drm_gem_vunmap(queue->syncwait.obj, &map);
857 		queue->syncwait.kmap = NULL;
858 	}
859 
860 	drm_gem_object_put(queue->syncwait.obj);
861 	queue->syncwait.obj = NULL;
862 }
863 
864 static void *
865 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
866 {
867 	struct panthor_device *ptdev = group->ptdev;
868 	struct panthor_gem_object *bo;
869 	struct iosys_map map;
870 	int ret;
871 
872 	if (queue->syncwait.kmap)
873 		return queue->syncwait.kmap + queue->syncwait.offset;
874 
875 	bo = panthor_vm_get_bo_for_va(group->vm,
876 				      queue->syncwait.gpu_va,
877 				      &queue->syncwait.offset);
878 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
879 		goto err_put_syncwait_obj;
880 
881 	queue->syncwait.obj = &bo->base.base;
882 	ret = drm_gem_vmap(queue->syncwait.obj, &map);
883 	if (drm_WARN_ON(&ptdev->base, ret))
884 		goto err_put_syncwait_obj;
885 
886 	queue->syncwait.kmap = map.vaddr;
887 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
888 		goto err_put_syncwait_obj;
889 
890 	return queue->syncwait.kmap + queue->syncwait.offset;
891 
892 err_put_syncwait_obj:
893 	panthor_queue_put_syncwait_obj(queue);
894 	return NULL;
895 }
896 
897 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
898 {
899 	if (IS_ERR_OR_NULL(queue))
900 		return;
901 
902 	if (queue->entity.fence_context)
903 		drm_sched_entity_destroy(&queue->entity);
904 
905 	if (queue->scheduler.ops)
906 		drm_sched_fini(&queue->scheduler);
907 
908 	kfree(queue->name);
909 
910 	panthor_queue_put_syncwait_obj(queue);
911 
912 	panthor_kernel_bo_destroy(queue->ringbuf);
913 	panthor_kernel_bo_destroy(queue->iface.mem);
914 	panthor_kernel_bo_destroy(queue->profiling.slots);
915 
916 	/* Release the last_fence we were holding, if any. */
917 	dma_fence_put(queue->fence_ctx.last_fence);
918 
919 	kfree(queue);
920 }
921 
922 static void group_release_work(struct work_struct *work)
923 {
924 	struct panthor_group *group = container_of(work,
925 						   struct panthor_group,
926 						   release_work);
927 	u32 i;
928 
929 	for (i = 0; i < group->queue_count; i++)
930 		group_free_queue(group, group->queues[i]);
931 
932 	panthor_kernel_bo_destroy(group->suspend_buf);
933 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
934 	panthor_kernel_bo_destroy(group->syncobjs);
935 
936 	panthor_vm_put(group->vm);
937 	kfree(group);
938 }
939 
940 static void group_release(struct kref *kref)
941 {
942 	struct panthor_group *group = container_of(kref,
943 						   struct panthor_group,
944 						   refcount);
945 	struct panthor_device *ptdev = group->ptdev;
946 
947 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
948 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
949 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
950 
951 	queue_work(panthor_cleanup_wq, &group->release_work);
952 }
953 
954 static void group_put(struct panthor_group *group)
955 {
956 	if (group)
957 		kref_put(&group->refcount, group_release);
958 }
959 
960 static struct panthor_group *
961 group_get(struct panthor_group *group)
962 {
963 	if (group)
964 		kref_get(&group->refcount);
965 
966 	return group;
967 }
968 
969 /**
970  * group_bind_locked() - Bind a group to a group slot
971  * @group: Group.
972  * @csg_id: Slot.
973  *
974  * Return: 0 on success, a negative error code otherwise.
975  */
976 static int
977 group_bind_locked(struct panthor_group *group, u32 csg_id)
978 {
979 	struct panthor_device *ptdev = group->ptdev;
980 	struct panthor_csg_slot *csg_slot;
981 	int ret;
982 
983 	lockdep_assert_held(&ptdev->scheduler->lock);
984 
985 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
986 			ptdev->scheduler->csg_slots[csg_id].group))
987 		return -EINVAL;
988 
989 	ret = panthor_vm_active(group->vm);
990 	if (ret)
991 		return ret;
992 
993 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
994 	group_get(group);
995 	group->csg_id = csg_id;
996 
997 	/* Dummy doorbell allocation: doorbell is assigned to the group and
998 	 * all queues use the same doorbell.
999 	 *
1000 	 * TODO: Implement LRU-based doorbell assignment, so the most often
1001 	 * updated queues get their own doorbell, thus avoiding useless checks
1002 	 * on queues belonging to the same group that are rarely updated.
1003 	 */
1004 	for (u32 i = 0; i < group->queue_count; i++)
1005 		group->queues[i]->doorbell_id = csg_id + 1;
1006 
1007 	csg_slot->group = group;
1008 
1009 	return 0;
1010 }
1011 
1012 /**
1013  * group_unbind_locked() - Unbind a group from a slot.
1014  * @group: Group to unbind.
1015  *
1016  * Return: 0 on success, a negative error code otherwise.
1017  */
1018 static int
1019 group_unbind_locked(struct panthor_group *group)
1020 {
1021 	struct panthor_device *ptdev = group->ptdev;
1022 	struct panthor_csg_slot *slot;
1023 
1024 	lockdep_assert_held(&ptdev->scheduler->lock);
1025 
1026 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1027 		return -EINVAL;
1028 
1029 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1030 		return -EINVAL;
1031 
1032 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
1033 	panthor_vm_idle(group->vm);
1034 	group->csg_id = -1;
1035 
1036 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
1037 	atomic_set(&group->tiler_oom, 0);
1038 	cancel_work(&group->tiler_oom_work);
1039 
1040 	for (u32 i = 0; i < group->queue_count; i++)
1041 		group->queues[i]->doorbell_id = -1;
1042 
1043 	slot->group = NULL;
1044 
1045 	group_put(group);
1046 	return 0;
1047 }
1048 
1049 /**
1050  * cs_slot_prog_locked() - Program a queue slot
1051  * @ptdev: Device.
1052  * @csg_id: Group slot ID.
1053  * @cs_id: Queue slot ID.
1054  *
1055  * Program a queue slot with the queue information so things can start being
1056  * executed on this queue.
1057  *
1058  * The group slot must have a group bound to it already (group_bind_locked()).
1059  */
1060 static void
1061 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1062 {
1063 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1064 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1065 
1066 	lockdep_assert_held(&ptdev->scheduler->lock);
1067 
1068 	queue->iface.input->extract = queue->iface.output->extract;
1069 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1070 
1071 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1072 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1073 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1074 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1075 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1076 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1077 	cs_iface->input->ack_irq_mask = ~0;
1078 	panthor_fw_update_reqs(cs_iface, req,
1079 			       CS_IDLE_SYNC_WAIT |
1080 			       CS_IDLE_EMPTY |
1081 			       CS_STATE_START |
1082 			       CS_EXTRACT_EVENT,
1083 			       CS_IDLE_SYNC_WAIT |
1084 			       CS_IDLE_EMPTY |
1085 			       CS_STATE_MASK |
1086 			       CS_EXTRACT_EVENT);
1087 	if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
1088 		drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
1089 		queue->timeout_suspended = false;
1090 	}
1091 }
1092 
1093 /**
1094  * cs_slot_reset_locked() - Reset a queue slot
1095  * @ptdev: Device.
1096  * @csg_id: Group slot.
1097  * @cs_id: Queue slot.
1098  *
1099  * Change the queue slot state to STOP and suspend the queue timeout if
1100  * the queue is not blocked.
1101  *
1102  * The group slot must have a group bound to it (group_bind_locked()).
1103  */
1104 static int
1105 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1106 {
1107 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1108 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1109 	struct panthor_queue *queue = group->queues[cs_id];
1110 
1111 	lockdep_assert_held(&ptdev->scheduler->lock);
1112 
1113 	panthor_fw_update_reqs(cs_iface, req,
1114 			       CS_STATE_STOP,
1115 			       CS_STATE_MASK);
1116 
1117 	/* If the queue is blocked, we want to keep the timeout running, so
1118 	 * we can detect unbounded waits and kill the group when that happens.
1119 	 */
1120 	if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
1121 		queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
1122 		queue->timeout_suspended = true;
1123 		WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /**
1130  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1131  * @ptdev: Device.
1132  * @csg_id: Group slot ID.
1133  *
1134  * Group slot priority update happens asynchronously. When we receive a
1135  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1136  * reflect it to our panthor_csg_slot object.
1137  */
1138 static void
1139 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1140 {
1141 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1142 	struct panthor_fw_csg_iface *csg_iface;
1143 
1144 	lockdep_assert_held(&ptdev->scheduler->lock);
1145 
1146 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1147 	csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
1148 }
1149 
1150 /**
1151  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1152  * @ptdev: Device.
1153  * @csg_id: Group slot.
1154  * @cs_id: Queue slot.
1155  *
1156  * Queue state is updated on group suspend or STATUS_UPDATE event.
1157  */
1158 static void
1159 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1160 {
1161 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1162 	struct panthor_queue *queue = group->queues[cs_id];
1163 	struct panthor_fw_cs_iface *cs_iface =
1164 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1165 
1166 	u32 status_wait_cond;
1167 
1168 	switch (cs_iface->output->status_blocked_reason) {
1169 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1170 		if (queue->iface.input->insert == queue->iface.output->extract &&
1171 		    cs_iface->output->status_scoreboards == 0)
1172 			group->idle_queues |= BIT(cs_id);
1173 		break;
1174 
1175 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1176 		if (list_empty(&group->wait_node)) {
1177 			list_move_tail(&group->wait_node,
1178 				       &group->ptdev->scheduler->groups.waiting);
1179 		}
1180 
1181 		/* The queue is only blocked if there's no deferred operation
1182 		 * pending, which can be checked through the scoreboard status.
1183 		 */
1184 		if (!cs_iface->output->status_scoreboards)
1185 			group->blocked_queues |= BIT(cs_id);
1186 
1187 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1188 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1189 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1190 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1191 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1192 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1193 
1194 			queue->syncwait.sync64 = true;
1195 			queue->syncwait.ref |= sync_val_hi << 32;
1196 		} else {
1197 			queue->syncwait.sync64 = false;
1198 		}
1199 		break;
1200 
1201 	default:
1202 		/* Other reasons are not blocking. Consider the queue as runnable
1203 		 * in those cases.
1204 		 */
1205 		break;
1206 	}
1207 }
1208 
1209 static void
1210 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1211 {
1212 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1213 	struct panthor_group *group = csg_slot->group;
1214 	u32 i;
1215 
1216 	lockdep_assert_held(&ptdev->scheduler->lock);
1217 
1218 	group->idle_queues = 0;
1219 	group->blocked_queues = 0;
1220 
1221 	for (i = 0; i < group->queue_count; i++) {
1222 		if (group->queues[i])
1223 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1224 	}
1225 }
1226 
1227 static void
1228 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1229 {
1230 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1231 	struct panthor_fw_csg_iface *csg_iface;
1232 	struct panthor_group *group;
1233 	enum panthor_group_state new_state, old_state;
1234 	u32 csg_state;
1235 
1236 	lockdep_assert_held(&ptdev->scheduler->lock);
1237 
1238 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1239 	group = csg_slot->group;
1240 
1241 	if (!group)
1242 		return;
1243 
1244 	old_state = group->state;
1245 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1246 	switch (csg_state) {
1247 	case CSG_STATE_START:
1248 	case CSG_STATE_RESUME:
1249 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1250 		break;
1251 	case CSG_STATE_TERMINATE:
1252 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1253 		break;
1254 	case CSG_STATE_SUSPEND:
1255 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1256 		break;
1257 	default:
1258 		/* The unknown state might be caused by a FW state corruption,
1259 		 * which means the group metadata can't be trusted anymore, and
1260 		 * the SUSPEND operation might propagate the corruption to the
1261 		 * suspend buffers. Flag the group state as unknown to make
1262 		 * sure it's unusable after that point.
1263 		 */
1264 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1265 			csg_id, csg_state);
1266 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1267 		break;
1268 	}
1269 
1270 	if (old_state == new_state)
1271 		return;
1272 
1273 	/* The unknown state might be caused by a FW issue, reset the FW to
1274 	 * take a fresh start.
1275 	 */
1276 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1277 		panthor_device_schedule_reset(ptdev);
1278 
1279 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1280 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1281 
1282 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1283 		u32 i;
1284 
1285 		/* Reset the queue slots so we start from a clean
1286 		 * state when starting/resuming a new group on this
1287 		 * CSG slot. No wait needed here, and no ringbell
1288 		 * either, since the CS slot will only be re-used
1289 		 * on the next CSG start operation.
1290 		 */
1291 		for (i = 0; i < group->queue_count; i++) {
1292 			if (group->queues[i])
1293 				cs_slot_reset_locked(ptdev, csg_id, i);
1294 		}
1295 	}
1296 
1297 	group->state = new_state;
1298 }
1299 
1300 static int
1301 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1302 {
1303 	struct panthor_fw_csg_iface *csg_iface;
1304 	struct panthor_csg_slot *csg_slot;
1305 	struct panthor_group *group;
1306 	u32 queue_mask = 0, i;
1307 
1308 	lockdep_assert_held(&ptdev->scheduler->lock);
1309 
1310 	if (priority > MAX_CSG_PRIO)
1311 		return -EINVAL;
1312 
1313 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1314 		return -EINVAL;
1315 
1316 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1317 	group = csg_slot->group;
1318 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1319 		return 0;
1320 
1321 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1322 
1323 	for (i = 0; i < group->queue_count; i++) {
1324 		if (group->queues[i]) {
1325 			cs_slot_prog_locked(ptdev, csg_id, i);
1326 			queue_mask |= BIT(i);
1327 		}
1328 	}
1329 
1330 	csg_iface->input->allow_compute = group->compute_core_mask;
1331 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1332 	csg_iface->input->allow_other = group->tiler_core_mask;
1333 	csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1334 					 CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1335 					 CSG_EP_REQ_TILER(group->max_tiler_cores) |
1336 					 CSG_EP_REQ_PRIORITY(priority);
1337 	csg_iface->input->config = panthor_vm_as(group->vm);
1338 
1339 	if (group->suspend_buf)
1340 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1341 	else
1342 		csg_iface->input->suspend_buf = 0;
1343 
1344 	if (group->protm_suspend_buf) {
1345 		csg_iface->input->protm_suspend_buf =
1346 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1347 	} else {
1348 		csg_iface->input->protm_suspend_buf = 0;
1349 	}
1350 
1351 	csg_iface->input->ack_irq_mask = ~0;
1352 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1353 	return 0;
1354 }
1355 
1356 static void
1357 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1358 				   u32 csg_id, u32 cs_id)
1359 {
1360 	struct panthor_scheduler *sched = ptdev->scheduler;
1361 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1362 	struct panthor_group *group = csg_slot->group;
1363 	struct panthor_fw_cs_iface *cs_iface;
1364 	u32 fatal;
1365 	u64 info;
1366 
1367 	lockdep_assert_held(&sched->lock);
1368 
1369 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1370 	fatal = cs_iface->output->fatal;
1371 	info = cs_iface->output->fatal_info;
1372 
1373 	if (group) {
1374 		drm_warn(&ptdev->base, "CS_FATAL: pid=%d, comm=%s\n",
1375 			 group->task_info.pid, group->task_info.comm);
1376 
1377 		group->fatal_queues |= BIT(cs_id);
1378 	}
1379 
1380 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1381 		/* If this exception is unrecoverable, queue a reset, and make
1382 		 * sure we stop scheduling groups until the reset has happened.
1383 		 */
1384 		panthor_device_schedule_reset(ptdev);
1385 		cancel_delayed_work(&sched->tick_work);
1386 	} else {
1387 		sched_queue_delayed_work(sched, tick, 0);
1388 	}
1389 
1390 	drm_warn(&ptdev->base,
1391 		 "CSG slot %d CS slot: %d\n"
1392 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1393 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1394 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1395 		 csg_id, cs_id,
1396 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1397 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1398 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1399 		 info);
1400 }
1401 
1402 static void
1403 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1404 				   u32 csg_id, u32 cs_id)
1405 {
1406 	struct panthor_scheduler *sched = ptdev->scheduler;
1407 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1408 	struct panthor_group *group = csg_slot->group;
1409 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1410 				      group->queues[cs_id] : NULL;
1411 	struct panthor_fw_cs_iface *cs_iface;
1412 	u32 fault;
1413 	u64 info;
1414 
1415 	lockdep_assert_held(&sched->lock);
1416 
1417 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1418 	fault = cs_iface->output->fault;
1419 	info = cs_iface->output->fault_info;
1420 
1421 	if (queue) {
1422 		u64 cs_extract = queue->iface.output->extract;
1423 		struct panthor_job *job;
1424 
1425 		spin_lock(&queue->fence_ctx.lock);
1426 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1427 			if (cs_extract >= job->ringbuf.end)
1428 				continue;
1429 
1430 			if (cs_extract < job->ringbuf.start)
1431 				break;
1432 
1433 			dma_fence_set_error(job->done_fence, -EINVAL);
1434 		}
1435 		spin_unlock(&queue->fence_ctx.lock);
1436 	}
1437 
1438 	if (group) {
1439 		drm_warn(&ptdev->base, "CS_FAULT: pid=%d, comm=%s\n",
1440 			 group->task_info.pid, group->task_info.comm);
1441 	}
1442 
1443 	drm_warn(&ptdev->base,
1444 		 "CSG slot %d CS slot: %d\n"
1445 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1446 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1447 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1448 		 csg_id, cs_id,
1449 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1450 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1451 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1452 		 info);
1453 }
1454 
1455 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1456 {
1457 	struct panthor_device *ptdev = group->ptdev;
1458 	struct panthor_scheduler *sched = ptdev->scheduler;
1459 	u32 renderpasses_in_flight, pending_frag_count;
1460 	struct panthor_heap_pool *heaps = NULL;
1461 	u64 heap_address, new_chunk_va = 0;
1462 	u32 vt_start, vt_end, frag_end;
1463 	int ret, csg_id;
1464 
1465 	mutex_lock(&sched->lock);
1466 	csg_id = group->csg_id;
1467 	if (csg_id >= 0) {
1468 		struct panthor_fw_cs_iface *cs_iface;
1469 
1470 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1471 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1472 		heap_address = cs_iface->output->heap_address;
1473 		vt_start = cs_iface->output->heap_vt_start;
1474 		vt_end = cs_iface->output->heap_vt_end;
1475 		frag_end = cs_iface->output->heap_frag_end;
1476 		renderpasses_in_flight = vt_start - frag_end;
1477 		pending_frag_count = vt_end - frag_end;
1478 	}
1479 	mutex_unlock(&sched->lock);
1480 
1481 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1482 	 * when it's scheduled again.
1483 	 */
1484 	if (unlikely(csg_id < 0))
1485 		return 0;
1486 
1487 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1488 		ret = -EINVAL;
1489 	} else {
1490 		/* We do the allocation without holding the scheduler lock to avoid
1491 		 * blocking the scheduling.
1492 		 */
1493 		ret = panthor_heap_grow(heaps, heap_address,
1494 					renderpasses_in_flight,
1495 					pending_frag_count, &new_chunk_va);
1496 	}
1497 
1498 	/* If the heap context doesn't have memory for us, we want to let the
1499 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1500 	 * executing the tiler OOM exception handler, which is supposed to
1501 	 * implement incremental rendering.
1502 	 */
1503 	if (ret && ret != -ENOMEM) {
1504 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1505 		group->fatal_queues |= BIT(cs_id);
1506 		sched_queue_delayed_work(sched, tick, 0);
1507 		goto out_put_heap_pool;
1508 	}
1509 
1510 	mutex_lock(&sched->lock);
1511 	csg_id = group->csg_id;
1512 	if (csg_id >= 0) {
1513 		struct panthor_fw_csg_iface *csg_iface;
1514 		struct panthor_fw_cs_iface *cs_iface;
1515 
1516 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1517 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1518 
1519 		cs_iface->input->heap_start = new_chunk_va;
1520 		cs_iface->input->heap_end = new_chunk_va;
1521 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1522 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1523 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1524 	}
1525 	mutex_unlock(&sched->lock);
1526 
1527 	/* We allocated a chunck, but couldn't link it to the heap
1528 	 * context because the group was scheduled out while we were
1529 	 * allocating memory. We need to return this chunk to the heap.
1530 	 */
1531 	if (unlikely(csg_id < 0 && new_chunk_va))
1532 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1533 
1534 	ret = 0;
1535 
1536 out_put_heap_pool:
1537 	panthor_heap_pool_put(heaps);
1538 	return ret;
1539 }
1540 
1541 static void group_tiler_oom_work(struct work_struct *work)
1542 {
1543 	struct panthor_group *group =
1544 		container_of(work, struct panthor_group, tiler_oom_work);
1545 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1546 
1547 	while (tiler_oom) {
1548 		u32 cs_id = ffs(tiler_oom) - 1;
1549 
1550 		group_process_tiler_oom(group, cs_id);
1551 		tiler_oom &= ~BIT(cs_id);
1552 	}
1553 
1554 	group_put(group);
1555 }
1556 
1557 static void
1558 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1559 				       u32 csg_id, u32 cs_id)
1560 {
1561 	struct panthor_scheduler *sched = ptdev->scheduler;
1562 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1563 	struct panthor_group *group = csg_slot->group;
1564 
1565 	lockdep_assert_held(&sched->lock);
1566 
1567 	if (drm_WARN_ON(&ptdev->base, !group))
1568 		return;
1569 
1570 	atomic_or(BIT(cs_id), &group->tiler_oom);
1571 
1572 	/* We don't use group_queue_work() here because we want to queue the
1573 	 * work item to the heap_alloc_wq.
1574 	 */
1575 	group_get(group);
1576 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1577 		group_put(group);
1578 }
1579 
1580 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1581 				       u32 csg_id, u32 cs_id)
1582 {
1583 	struct panthor_fw_cs_iface *cs_iface;
1584 	u32 req, ack, events;
1585 
1586 	lockdep_assert_held(&ptdev->scheduler->lock);
1587 
1588 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1589 	req = cs_iface->input->req;
1590 	ack = cs_iface->output->ack;
1591 	events = (req ^ ack) & CS_EVT_MASK;
1592 
1593 	if (events & CS_FATAL)
1594 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1595 
1596 	if (events & CS_FAULT)
1597 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1598 
1599 	if (events & CS_TILER_OOM)
1600 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1601 
1602 	/* We don't acknowledge the TILER_OOM event since its handling is
1603 	 * deferred to a separate work.
1604 	 */
1605 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1606 
1607 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1608 }
1609 
1610 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1611 {
1612 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1613 	struct panthor_fw_csg_iface *csg_iface;
1614 
1615 	lockdep_assert_held(&ptdev->scheduler->lock);
1616 
1617 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1618 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1619 }
1620 
1621 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1622 {
1623 	struct panthor_scheduler *sched = ptdev->scheduler;
1624 
1625 	lockdep_assert_held(&sched->lock);
1626 
1627 	sched->might_have_idle_groups = true;
1628 
1629 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1630 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1631 	 * so the device can lower its frequency or get suspended.
1632 	 */
1633 	sched_queue_delayed_work(sched, tick, 0);
1634 }
1635 
1636 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1637 					u32 csg_id)
1638 {
1639 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1640 	struct panthor_group *group = csg_slot->group;
1641 
1642 	lockdep_assert_held(&ptdev->scheduler->lock);
1643 
1644 	if (group)
1645 		group_queue_work(group, sync_upd);
1646 
1647 	sched_queue_work(ptdev->scheduler, sync_upd);
1648 }
1649 
1650 static void
1651 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1652 {
1653 	struct panthor_scheduler *sched = ptdev->scheduler;
1654 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1655 	struct panthor_group *group = csg_slot->group;
1656 
1657 	lockdep_assert_held(&sched->lock);
1658 
1659 	group = csg_slot->group;
1660 	if (!drm_WARN_ON(&ptdev->base, !group)) {
1661 		drm_warn(&ptdev->base, "CSG_PROGRESS_TIMER_EVENT: pid=%d, comm=%s\n",
1662 			 group->task_info.pid, group->task_info.comm);
1663 
1664 		group->timedout = true;
1665 	}
1666 
1667 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1668 
1669 	sched_queue_delayed_work(sched, tick, 0);
1670 }
1671 
1672 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1673 {
1674 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1675 	struct panthor_fw_csg_iface *csg_iface;
1676 	u32 ring_cs_db_mask = 0;
1677 
1678 	lockdep_assert_held(&ptdev->scheduler->lock);
1679 
1680 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1681 		return;
1682 
1683 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1684 	req = READ_ONCE(csg_iface->input->req);
1685 	ack = READ_ONCE(csg_iface->output->ack);
1686 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1687 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1688 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1689 
1690 	/* There may not be any pending CSG/CS interrupts to process */
1691 	if (req == ack && cs_irq_req == cs_irq_ack)
1692 		return;
1693 
1694 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1695 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1696 	 * doesn't miss an interrupt for the CS in the race scenario where
1697 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1698 	 * another interrupt for that CS.
1699 	 */
1700 	csg_iface->input->cs_irq_ack = cs_irq_req;
1701 
1702 	panthor_fw_update_reqs(csg_iface, req, ack,
1703 			       CSG_SYNC_UPDATE |
1704 			       CSG_IDLE |
1705 			       CSG_PROGRESS_TIMER_EVENT);
1706 
1707 	if (csg_events & CSG_IDLE)
1708 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1709 
1710 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1711 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1712 
1713 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1714 	while (cs_irqs) {
1715 		u32 cs_id = ffs(cs_irqs) - 1;
1716 
1717 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1718 			ring_cs_db_mask |= BIT(cs_id);
1719 
1720 		cs_irqs &= ~BIT(cs_id);
1721 	}
1722 
1723 	if (csg_events & CSG_SYNC_UPDATE)
1724 		csg_slot_sync_update_locked(ptdev, csg_id);
1725 
1726 	if (ring_cs_db_mask)
1727 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1728 
1729 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1730 }
1731 
1732 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1733 {
1734 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1735 
1736 	lockdep_assert_held(&ptdev->scheduler->lock);
1737 
1738 	/* Acknowledge the idle event and schedule a tick. */
1739 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1740 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1741 }
1742 
1743 /**
1744  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1745  * @ptdev: Device.
1746  */
1747 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1748 {
1749 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1750 	u32 req, ack, evts;
1751 
1752 	lockdep_assert_held(&ptdev->scheduler->lock);
1753 
1754 	req = READ_ONCE(glb_iface->input->req);
1755 	ack = READ_ONCE(glb_iface->output->ack);
1756 	evts = (req ^ ack) & GLB_EVT_MASK;
1757 
1758 	if (evts & GLB_IDLE)
1759 		sched_process_idle_event_locked(ptdev);
1760 }
1761 
1762 static void process_fw_events_work(struct work_struct *work)
1763 {
1764 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1765 						      fw_events_work);
1766 	u32 events = atomic_xchg(&sched->fw_events, 0);
1767 	struct panthor_device *ptdev = sched->ptdev;
1768 
1769 	mutex_lock(&sched->lock);
1770 
1771 	if (events & JOB_INT_GLOBAL_IF) {
1772 		sched_process_global_irq_locked(ptdev);
1773 		events &= ~JOB_INT_GLOBAL_IF;
1774 	}
1775 
1776 	while (events) {
1777 		u32 csg_id = ffs(events) - 1;
1778 
1779 		sched_process_csg_irq_locked(ptdev, csg_id);
1780 		events &= ~BIT(csg_id);
1781 	}
1782 
1783 	mutex_unlock(&sched->lock);
1784 }
1785 
1786 /**
1787  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1788  */
1789 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1790 {
1791 	if (!ptdev->scheduler)
1792 		return;
1793 
1794 	atomic_or(events, &ptdev->scheduler->fw_events);
1795 	sched_queue_work(ptdev->scheduler, fw_events);
1796 }
1797 
1798 static const char *fence_get_driver_name(struct dma_fence *fence)
1799 {
1800 	return "panthor";
1801 }
1802 
1803 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1804 {
1805 	return "queue-fence";
1806 }
1807 
1808 static const struct dma_fence_ops panthor_queue_fence_ops = {
1809 	.get_driver_name = fence_get_driver_name,
1810 	.get_timeline_name = queue_fence_get_timeline_name,
1811 };
1812 
1813 struct panthor_csg_slots_upd_ctx {
1814 	u32 update_mask;
1815 	u32 timedout_mask;
1816 	struct {
1817 		u32 value;
1818 		u32 mask;
1819 	} requests[MAX_CSGS];
1820 };
1821 
1822 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1823 {
1824 	memset(ctx, 0, sizeof(*ctx));
1825 }
1826 
1827 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1828 				    struct panthor_csg_slots_upd_ctx *ctx,
1829 				    u32 csg_id, u32 value, u32 mask)
1830 {
1831 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1832 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1833 		return;
1834 
1835 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1836 	ctx->requests[csg_id].mask |= mask;
1837 	ctx->update_mask |= BIT(csg_id);
1838 }
1839 
1840 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1841 				     struct panthor_csg_slots_upd_ctx *ctx)
1842 {
1843 	struct panthor_scheduler *sched = ptdev->scheduler;
1844 	u32 update_slots = ctx->update_mask;
1845 
1846 	lockdep_assert_held(&sched->lock);
1847 
1848 	if (!ctx->update_mask)
1849 		return 0;
1850 
1851 	while (update_slots) {
1852 		struct panthor_fw_csg_iface *csg_iface;
1853 		u32 csg_id = ffs(update_slots) - 1;
1854 
1855 		update_slots &= ~BIT(csg_id);
1856 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1857 		panthor_fw_update_reqs(csg_iface, req,
1858 				       ctx->requests[csg_id].value,
1859 				       ctx->requests[csg_id].mask);
1860 	}
1861 
1862 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1863 
1864 	update_slots = ctx->update_mask;
1865 	while (update_slots) {
1866 		struct panthor_fw_csg_iface *csg_iface;
1867 		u32 csg_id = ffs(update_slots) - 1;
1868 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1869 		int ret;
1870 
1871 		update_slots &= ~BIT(csg_id);
1872 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1873 
1874 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1875 
1876 		if (acked & CSG_ENDPOINT_CONFIG)
1877 			csg_slot_sync_priority_locked(ptdev, csg_id);
1878 
1879 		if (acked & CSG_STATE_MASK)
1880 			csg_slot_sync_state_locked(ptdev, csg_id);
1881 
1882 		if (acked & CSG_STATUS_UPDATE) {
1883 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
1884 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
1885 		}
1886 
1887 		if (ret && acked != req_mask &&
1888 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
1889 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
1890 			ctx->timedout_mask |= BIT(csg_id);
1891 		}
1892 	}
1893 
1894 	if (ctx->timedout_mask)
1895 		return -ETIMEDOUT;
1896 
1897 	return 0;
1898 }
1899 
1900 struct panthor_sched_tick_ctx {
1901 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
1902 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
1903 	u32 idle_group_count;
1904 	u32 group_count;
1905 	enum panthor_csg_priority min_priority;
1906 	struct panthor_vm *vms[MAX_CS_PER_CSG];
1907 	u32 as_count;
1908 	bool immediate_tick;
1909 	u32 csg_upd_failed_mask;
1910 };
1911 
1912 static bool
1913 tick_ctx_is_full(const struct panthor_scheduler *sched,
1914 		 const struct panthor_sched_tick_ctx *ctx)
1915 {
1916 	return ctx->group_count == sched->csg_slot_count;
1917 }
1918 
1919 static bool
1920 group_is_idle(struct panthor_group *group)
1921 {
1922 	struct panthor_device *ptdev = group->ptdev;
1923 	u32 inactive_queues;
1924 
1925 	if (group->csg_id >= 0)
1926 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1927 
1928 	inactive_queues = group->idle_queues | group->blocked_queues;
1929 	return hweight32(inactive_queues) == group->queue_count;
1930 }
1931 
1932 static bool
1933 group_can_run(struct panthor_group *group)
1934 {
1935 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1936 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1937 	       !group->destroyed && group->fatal_queues == 0 &&
1938 	       !group->timedout;
1939 }
1940 
1941 static void
1942 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
1943 			       struct panthor_sched_tick_ctx *ctx,
1944 			       struct list_head *queue,
1945 			       bool skip_idle_groups,
1946 			       bool owned_by_tick_ctx)
1947 {
1948 	struct panthor_group *group, *tmp;
1949 
1950 	if (tick_ctx_is_full(sched, ctx))
1951 		return;
1952 
1953 	list_for_each_entry_safe(group, tmp, queue, run_node) {
1954 		u32 i;
1955 
1956 		if (!group_can_run(group))
1957 			continue;
1958 
1959 		if (skip_idle_groups && group_is_idle(group))
1960 			continue;
1961 
1962 		for (i = 0; i < ctx->as_count; i++) {
1963 			if (ctx->vms[i] == group->vm)
1964 				break;
1965 		}
1966 
1967 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
1968 			continue;
1969 
1970 		if (!owned_by_tick_ctx)
1971 			group_get(group);
1972 
1973 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
1974 		ctx->group_count++;
1975 		if (group_is_idle(group))
1976 			ctx->idle_group_count++;
1977 
1978 		if (i == ctx->as_count)
1979 			ctx->vms[ctx->as_count++] = group->vm;
1980 
1981 		if (ctx->min_priority > group->priority)
1982 			ctx->min_priority = group->priority;
1983 
1984 		if (tick_ctx_is_full(sched, ctx))
1985 			return;
1986 	}
1987 }
1988 
1989 static void
1990 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
1991 			  struct panthor_sched_tick_ctx *ctx,
1992 			  struct panthor_group *group,
1993 			  bool full_tick)
1994 {
1995 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
1996 	struct panthor_group *other_group;
1997 
1998 	if (!full_tick) {
1999 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2000 		return;
2001 	}
2002 
2003 	/* Rotate to make sure groups with lower CSG slot
2004 	 * priorities have a chance to get a higher CSG slot
2005 	 * priority next time they get picked. This priority
2006 	 * has an impact on resource request ordering, so it's
2007 	 * important to make sure we don't let one group starve
2008 	 * all other groups with the same group priority.
2009 	 */
2010 	list_for_each_entry(other_group,
2011 			    &ctx->old_groups[csg_slot->group->priority],
2012 			    run_node) {
2013 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
2014 
2015 		if (other_csg_slot->priority > csg_slot->priority) {
2016 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
2017 			return;
2018 		}
2019 	}
2020 
2021 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2022 }
2023 
2024 static void
2025 tick_ctx_init(struct panthor_scheduler *sched,
2026 	      struct panthor_sched_tick_ctx *ctx,
2027 	      bool full_tick)
2028 {
2029 	struct panthor_device *ptdev = sched->ptdev;
2030 	struct panthor_csg_slots_upd_ctx upd_ctx;
2031 	int ret;
2032 	u32 i;
2033 
2034 	memset(ctx, 0, sizeof(*ctx));
2035 	csgs_upd_ctx_init(&upd_ctx);
2036 
2037 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2038 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2039 		INIT_LIST_HEAD(&ctx->groups[i]);
2040 		INIT_LIST_HEAD(&ctx->old_groups[i]);
2041 	}
2042 
2043 	for (i = 0; i < sched->csg_slot_count; i++) {
2044 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2045 		struct panthor_group *group = csg_slot->group;
2046 		struct panthor_fw_csg_iface *csg_iface;
2047 
2048 		if (!group)
2049 			continue;
2050 
2051 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2052 		group_get(group);
2053 
2054 		/* If there was unhandled faults on the VM, force processing of
2055 		 * CSG IRQs, so we can flag the faulty queue.
2056 		 */
2057 		if (panthor_vm_has_unhandled_faults(group->vm)) {
2058 			sched_process_csg_irq_locked(ptdev, i);
2059 
2060 			/* No fatal fault reported, flag all queues as faulty. */
2061 			if (!group->fatal_queues)
2062 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2063 		}
2064 
2065 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2066 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2067 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2068 					CSG_STATUS_UPDATE);
2069 	}
2070 
2071 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2072 	if (ret) {
2073 		panthor_device_schedule_reset(ptdev);
2074 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2075 	}
2076 }
2077 
2078 static void
2079 group_term_post_processing(struct panthor_group *group)
2080 {
2081 	struct panthor_job *job, *tmp;
2082 	LIST_HEAD(faulty_jobs);
2083 	bool cookie;
2084 	u32 i = 0;
2085 
2086 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2087 		return;
2088 
2089 	cookie = dma_fence_begin_signalling();
2090 	for (i = 0; i < group->queue_count; i++) {
2091 		struct panthor_queue *queue = group->queues[i];
2092 		struct panthor_syncobj_64b *syncobj;
2093 		int err;
2094 
2095 		if (group->fatal_queues & BIT(i))
2096 			err = -EINVAL;
2097 		else if (group->timedout)
2098 			err = -ETIMEDOUT;
2099 		else
2100 			err = -ECANCELED;
2101 
2102 		if (!queue)
2103 			continue;
2104 
2105 		spin_lock(&queue->fence_ctx.lock);
2106 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2107 			list_move_tail(&job->node, &faulty_jobs);
2108 			dma_fence_set_error(job->done_fence, err);
2109 			dma_fence_signal_locked(job->done_fence);
2110 		}
2111 		spin_unlock(&queue->fence_ctx.lock);
2112 
2113 		/* Manually update the syncobj seqno to unblock waiters. */
2114 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2115 		syncobj->status = ~0;
2116 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2117 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2118 	}
2119 	dma_fence_end_signalling(cookie);
2120 
2121 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2122 		list_del_init(&job->node);
2123 		panthor_job_put(&job->base);
2124 	}
2125 }
2126 
2127 static void group_term_work(struct work_struct *work)
2128 {
2129 	struct panthor_group *group =
2130 		container_of(work, struct panthor_group, term_work);
2131 
2132 	group_term_post_processing(group);
2133 	group_put(group);
2134 }
2135 
2136 static void
2137 tick_ctx_cleanup(struct panthor_scheduler *sched,
2138 		 struct panthor_sched_tick_ctx *ctx)
2139 {
2140 	struct panthor_device *ptdev = sched->ptdev;
2141 	struct panthor_group *group, *tmp;
2142 	u32 i;
2143 
2144 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2145 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2146 			/* If everything went fine, we should only have groups
2147 			 * to be terminated in the old_groups lists.
2148 			 */
2149 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2150 				    group_can_run(group));
2151 
2152 			if (!group_can_run(group)) {
2153 				list_del_init(&group->run_node);
2154 				list_del_init(&group->wait_node);
2155 				group_queue_work(group, term);
2156 			} else if (group->csg_id >= 0) {
2157 				list_del_init(&group->run_node);
2158 			} else {
2159 				list_move(&group->run_node,
2160 					  group_is_idle(group) ?
2161 					  &sched->groups.idle[group->priority] :
2162 					  &sched->groups.runnable[group->priority]);
2163 			}
2164 			group_put(group);
2165 		}
2166 	}
2167 
2168 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2169 		/* If everything went fine, the groups to schedule lists should
2170 		 * be empty.
2171 		 */
2172 		drm_WARN_ON(&ptdev->base,
2173 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2174 
2175 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2176 			if (group->csg_id >= 0) {
2177 				list_del_init(&group->run_node);
2178 			} else {
2179 				list_move(&group->run_node,
2180 					  group_is_idle(group) ?
2181 					  &sched->groups.idle[group->priority] :
2182 					  &sched->groups.runnable[group->priority]);
2183 			}
2184 			group_put(group);
2185 		}
2186 	}
2187 }
2188 
2189 static void
2190 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2191 {
2192 	struct panthor_group *group, *tmp;
2193 	struct panthor_device *ptdev = sched->ptdev;
2194 	struct panthor_csg_slot *csg_slot;
2195 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2196 	u32 free_csg_slots = 0;
2197 	struct panthor_csg_slots_upd_ctx upd_ctx;
2198 	int ret;
2199 
2200 	csgs_upd_ctx_init(&upd_ctx);
2201 
2202 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2203 		/* Suspend or terminate evicted groups. */
2204 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2205 			bool term = !group_can_run(group);
2206 			int csg_id = group->csg_id;
2207 
2208 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2209 				continue;
2210 
2211 			csg_slot = &sched->csg_slots[csg_id];
2212 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2213 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2214 						CSG_STATE_MASK);
2215 		}
2216 
2217 		/* Update priorities on already running groups. */
2218 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2219 			struct panthor_fw_csg_iface *csg_iface;
2220 			int csg_id = group->csg_id;
2221 
2222 			if (csg_id < 0) {
2223 				new_csg_prio--;
2224 				continue;
2225 			}
2226 
2227 			csg_slot = &sched->csg_slots[csg_id];
2228 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2229 			if (csg_slot->priority == new_csg_prio) {
2230 				new_csg_prio--;
2231 				continue;
2232 			}
2233 
2234 			panthor_fw_update_reqs(csg_iface, endpoint_req,
2235 					       CSG_EP_REQ_PRIORITY(new_csg_prio),
2236 					       CSG_EP_REQ_PRIORITY_MASK);
2237 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2238 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2239 						CSG_ENDPOINT_CONFIG);
2240 			new_csg_prio--;
2241 		}
2242 	}
2243 
2244 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2245 	if (ret) {
2246 		panthor_device_schedule_reset(ptdev);
2247 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2248 		return;
2249 	}
2250 
2251 	/* Unbind evicted groups. */
2252 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2253 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2254 			/* This group is gone. Process interrupts to clear
2255 			 * any pending interrupts before we start the new
2256 			 * group.
2257 			 */
2258 			if (group->csg_id >= 0)
2259 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2260 
2261 			group_unbind_locked(group);
2262 		}
2263 	}
2264 
2265 	for (i = 0; i < sched->csg_slot_count; i++) {
2266 		if (!sched->csg_slots[i].group)
2267 			free_csg_slots |= BIT(i);
2268 	}
2269 
2270 	csgs_upd_ctx_init(&upd_ctx);
2271 	new_csg_prio = MAX_CSG_PRIO;
2272 
2273 	/* Start new groups. */
2274 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2275 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2276 			int csg_id = group->csg_id;
2277 			struct panthor_fw_csg_iface *csg_iface;
2278 
2279 			if (csg_id >= 0) {
2280 				new_csg_prio--;
2281 				continue;
2282 			}
2283 
2284 			csg_id = ffs(free_csg_slots) - 1;
2285 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2286 				break;
2287 
2288 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2289 			csg_slot = &sched->csg_slots[csg_id];
2290 			group_bind_locked(group, csg_id);
2291 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2292 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2293 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2294 						CSG_STATE_RESUME : CSG_STATE_START,
2295 						CSG_STATE_MASK);
2296 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2297 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2298 						CSG_ENDPOINT_CONFIG);
2299 			free_csg_slots &= ~BIT(csg_id);
2300 		}
2301 	}
2302 
2303 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2304 	if (ret) {
2305 		panthor_device_schedule_reset(ptdev);
2306 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2307 		return;
2308 	}
2309 
2310 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2311 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2312 			list_del_init(&group->run_node);
2313 
2314 			/* If the group has been destroyed while we were
2315 			 * scheduling, ask for an immediate tick to
2316 			 * re-evaluate as soon as possible and get rid of
2317 			 * this dangling group.
2318 			 */
2319 			if (group->destroyed)
2320 				ctx->immediate_tick = true;
2321 			group_put(group);
2322 		}
2323 
2324 		/* Return evicted groups to the idle or run queues. Groups
2325 		 * that can no longer be run (because they've been destroyed
2326 		 * or experienced an unrecoverable error) will be scheduled
2327 		 * for destruction in tick_ctx_cleanup().
2328 		 */
2329 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2330 			if (!group_can_run(group))
2331 				continue;
2332 
2333 			if (group_is_idle(group))
2334 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2335 			else
2336 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2337 			group_put(group);
2338 		}
2339 	}
2340 
2341 	sched->used_csg_slot_count = ctx->group_count;
2342 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2343 }
2344 
2345 static u64
2346 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2347 			       const struct panthor_sched_tick_ctx *ctx)
2348 {
2349 	/* We had space left, no need to reschedule until some external event happens. */
2350 	if (!tick_ctx_is_full(sched, ctx))
2351 		goto no_tick;
2352 
2353 	/* If idle groups were scheduled, no need to wake up until some external
2354 	 * event happens (group unblocked, new job submitted, ...).
2355 	 */
2356 	if (ctx->idle_group_count)
2357 		goto no_tick;
2358 
2359 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2360 		goto no_tick;
2361 
2362 	/* If there are groups of the same priority waiting, we need to
2363 	 * keep the scheduler ticking, otherwise, we'll just wait for
2364 	 * new groups with higher priority to be queued.
2365 	 */
2366 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2367 		u64 resched_target = sched->last_tick + sched->tick_period;
2368 
2369 		if (time_before64(sched->resched_target, sched->last_tick) ||
2370 		    time_before64(resched_target, sched->resched_target))
2371 			sched->resched_target = resched_target;
2372 
2373 		return sched->resched_target - sched->last_tick;
2374 	}
2375 
2376 no_tick:
2377 	sched->resched_target = U64_MAX;
2378 	return U64_MAX;
2379 }
2380 
2381 static void tick_work(struct work_struct *work)
2382 {
2383 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2384 						      tick_work.work);
2385 	struct panthor_device *ptdev = sched->ptdev;
2386 	struct panthor_sched_tick_ctx ctx;
2387 	u64 remaining_jiffies = 0, resched_delay;
2388 	u64 now = get_jiffies_64();
2389 	int prio, ret, cookie;
2390 
2391 	if (!drm_dev_enter(&ptdev->base, &cookie))
2392 		return;
2393 
2394 	ret = panthor_device_resume_and_get(ptdev);
2395 	if (drm_WARN_ON(&ptdev->base, ret))
2396 		goto out_dev_exit;
2397 
2398 	if (time_before64(now, sched->resched_target))
2399 		remaining_jiffies = sched->resched_target - now;
2400 
2401 	mutex_lock(&sched->lock);
2402 	if (panthor_device_reset_is_pending(sched->ptdev))
2403 		goto out_unlock;
2404 
2405 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2406 	if (ctx.csg_upd_failed_mask)
2407 		goto out_cleanup_ctx;
2408 
2409 	if (remaining_jiffies) {
2410 		/* Scheduling forced in the middle of a tick. Only RT groups
2411 		 * can preempt non-RT ones. Currently running RT groups can't be
2412 		 * preempted.
2413 		 */
2414 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2415 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2416 		     prio--) {
2417 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2418 						       true, true);
2419 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2420 				tick_ctx_pick_groups_from_list(sched, &ctx,
2421 							       &sched->groups.runnable[prio],
2422 							       true, false);
2423 			}
2424 		}
2425 	}
2426 
2427 	/* First pick non-idle groups */
2428 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2429 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2430 	     prio--) {
2431 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2432 					       true, false);
2433 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2434 	}
2435 
2436 	/* If we have free CSG slots left, pick idle groups */
2437 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2438 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2439 	     prio--) {
2440 		/* Check the old_group queue first to avoid reprogramming the slots */
2441 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2442 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2443 					       false, false);
2444 	}
2445 
2446 	tick_ctx_apply(sched, &ctx);
2447 	if (ctx.csg_upd_failed_mask)
2448 		goto out_cleanup_ctx;
2449 
2450 	if (ctx.idle_group_count == ctx.group_count) {
2451 		panthor_devfreq_record_idle(sched->ptdev);
2452 		if (sched->pm.has_ref) {
2453 			pm_runtime_put_autosuspend(ptdev->base.dev);
2454 			sched->pm.has_ref = false;
2455 		}
2456 	} else {
2457 		panthor_devfreq_record_busy(sched->ptdev);
2458 		if (!sched->pm.has_ref) {
2459 			pm_runtime_get(ptdev->base.dev);
2460 			sched->pm.has_ref = true;
2461 		}
2462 	}
2463 
2464 	sched->last_tick = now;
2465 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2466 	if (ctx.immediate_tick)
2467 		resched_delay = 0;
2468 
2469 	if (resched_delay != U64_MAX)
2470 		sched_queue_delayed_work(sched, tick, resched_delay);
2471 
2472 out_cleanup_ctx:
2473 	tick_ctx_cleanup(sched, &ctx);
2474 
2475 out_unlock:
2476 	mutex_unlock(&sched->lock);
2477 	pm_runtime_mark_last_busy(ptdev->base.dev);
2478 	pm_runtime_put_autosuspend(ptdev->base.dev);
2479 
2480 out_dev_exit:
2481 	drm_dev_exit(cookie);
2482 }
2483 
2484 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2485 {
2486 	struct panthor_queue *queue = group->queues[queue_idx];
2487 	union {
2488 		struct panthor_syncobj_64b sync64;
2489 		struct panthor_syncobj_32b sync32;
2490 	} *syncobj;
2491 	bool result;
2492 	u64 value;
2493 
2494 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2495 	if (!syncobj)
2496 		return -EINVAL;
2497 
2498 	value = queue->syncwait.sync64 ?
2499 		syncobj->sync64.seqno :
2500 		syncobj->sync32.seqno;
2501 
2502 	if (queue->syncwait.gt)
2503 		result = value > queue->syncwait.ref;
2504 	else
2505 		result = value <= queue->syncwait.ref;
2506 
2507 	if (result)
2508 		panthor_queue_put_syncwait_obj(queue);
2509 
2510 	return result;
2511 }
2512 
2513 static void sync_upd_work(struct work_struct *work)
2514 {
2515 	struct panthor_scheduler *sched = container_of(work,
2516 						      struct panthor_scheduler,
2517 						      sync_upd_work);
2518 	struct panthor_group *group, *tmp;
2519 	bool immediate_tick = false;
2520 
2521 	mutex_lock(&sched->lock);
2522 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2523 		u32 tested_queues = group->blocked_queues;
2524 		u32 unblocked_queues = 0;
2525 
2526 		while (tested_queues) {
2527 			u32 cs_id = ffs(tested_queues) - 1;
2528 			int ret;
2529 
2530 			ret = panthor_queue_eval_syncwait(group, cs_id);
2531 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2532 			if (ret)
2533 				unblocked_queues |= BIT(cs_id);
2534 
2535 			tested_queues &= ~BIT(cs_id);
2536 		}
2537 
2538 		if (unblocked_queues) {
2539 			group->blocked_queues &= ~unblocked_queues;
2540 
2541 			if (group->csg_id < 0) {
2542 				list_move(&group->run_node,
2543 					  &sched->groups.runnable[group->priority]);
2544 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2545 					immediate_tick = true;
2546 			}
2547 		}
2548 
2549 		if (!group->blocked_queues)
2550 			list_del_init(&group->wait_node);
2551 	}
2552 	mutex_unlock(&sched->lock);
2553 
2554 	if (immediate_tick)
2555 		sched_queue_delayed_work(sched, tick, 0);
2556 }
2557 
2558 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2559 {
2560 	struct panthor_device *ptdev = group->ptdev;
2561 	struct panthor_scheduler *sched = ptdev->scheduler;
2562 	struct list_head *queue = &sched->groups.runnable[group->priority];
2563 	u64 delay_jiffies = 0;
2564 	bool was_idle;
2565 	u64 now;
2566 
2567 	if (!group_can_run(group))
2568 		return;
2569 
2570 	/* All updated queues are blocked, no need to wake up the scheduler. */
2571 	if ((queue_mask & group->blocked_queues) == queue_mask)
2572 		return;
2573 
2574 	was_idle = group_is_idle(group);
2575 	group->idle_queues &= ~queue_mask;
2576 
2577 	/* Don't mess up with the lists if we're in a middle of a reset. */
2578 	if (atomic_read(&sched->reset.in_progress))
2579 		return;
2580 
2581 	if (was_idle && !group_is_idle(group))
2582 		list_move_tail(&group->run_node, queue);
2583 
2584 	/* RT groups are preemptive. */
2585 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2586 		sched_queue_delayed_work(sched, tick, 0);
2587 		return;
2588 	}
2589 
2590 	/* Some groups might be idle, force an immediate tick to
2591 	 * re-evaluate.
2592 	 */
2593 	if (sched->might_have_idle_groups) {
2594 		sched_queue_delayed_work(sched, tick, 0);
2595 		return;
2596 	}
2597 
2598 	/* Scheduler is ticking, nothing to do. */
2599 	if (sched->resched_target != U64_MAX) {
2600 		/* If there are free slots, force immediating ticking. */
2601 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2602 			sched_queue_delayed_work(sched, tick, 0);
2603 
2604 		return;
2605 	}
2606 
2607 	/* Scheduler tick was off, recalculate the resched_target based on the
2608 	 * last tick event, and queue the scheduler work.
2609 	 */
2610 	now = get_jiffies_64();
2611 	sched->resched_target = sched->last_tick + sched->tick_period;
2612 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2613 	    time_before64(now, sched->resched_target))
2614 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2615 
2616 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2617 }
2618 
2619 static void queue_stop(struct panthor_queue *queue,
2620 		       struct panthor_job *bad_job)
2621 {
2622 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2623 }
2624 
2625 static void queue_start(struct panthor_queue *queue)
2626 {
2627 	struct panthor_job *job;
2628 
2629 	/* Re-assign the parent fences. */
2630 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2631 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2632 
2633 	drm_sched_start(&queue->scheduler, 0);
2634 }
2635 
2636 static void panthor_group_stop(struct panthor_group *group)
2637 {
2638 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2639 
2640 	lockdep_assert_held(&sched->reset.lock);
2641 
2642 	for (u32 i = 0; i < group->queue_count; i++)
2643 		queue_stop(group->queues[i], NULL);
2644 
2645 	group_get(group);
2646 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2647 }
2648 
2649 static void panthor_group_start(struct panthor_group *group)
2650 {
2651 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2652 
2653 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2654 
2655 	for (u32 i = 0; i < group->queue_count; i++)
2656 		queue_start(group->queues[i]);
2657 
2658 	if (group_can_run(group)) {
2659 		list_move_tail(&group->run_node,
2660 			       group_is_idle(group) ?
2661 			       &sched->groups.idle[group->priority] :
2662 			       &sched->groups.runnable[group->priority]);
2663 	} else {
2664 		list_del_init(&group->run_node);
2665 		list_del_init(&group->wait_node);
2666 		group_queue_work(group, term);
2667 	}
2668 
2669 	group_put(group);
2670 }
2671 
2672 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2673 {
2674 	struct panthor_scheduler *sched = ptdev->scheduler;
2675 
2676 	sched_queue_delayed_work(sched, tick, 0);
2677 }
2678 
2679 /**
2680  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2681  */
2682 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2683 {
2684 	/* Force a tick to immediately kill faulty groups. */
2685 	if (ptdev->scheduler)
2686 		panthor_sched_immediate_tick(ptdev);
2687 }
2688 
2689 void panthor_sched_resume(struct panthor_device *ptdev)
2690 {
2691 	/* Force a tick to re-evaluate after a resume. */
2692 	panthor_sched_immediate_tick(ptdev);
2693 }
2694 
2695 void panthor_sched_suspend(struct panthor_device *ptdev)
2696 {
2697 	struct panthor_scheduler *sched = ptdev->scheduler;
2698 	struct panthor_csg_slots_upd_ctx upd_ctx;
2699 	struct panthor_group *group;
2700 	u32 suspended_slots;
2701 	u32 i;
2702 
2703 	mutex_lock(&sched->lock);
2704 	csgs_upd_ctx_init(&upd_ctx);
2705 	for (i = 0; i < sched->csg_slot_count; i++) {
2706 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2707 
2708 		if (csg_slot->group) {
2709 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2710 						group_can_run(csg_slot->group) ?
2711 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2712 						CSG_STATE_MASK);
2713 		}
2714 	}
2715 
2716 	suspended_slots = upd_ctx.update_mask;
2717 
2718 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2719 	suspended_slots &= ~upd_ctx.timedout_mask;
2720 
2721 	if (upd_ctx.timedout_mask) {
2722 		u32 slot_mask = upd_ctx.timedout_mask;
2723 
2724 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2725 		csgs_upd_ctx_init(&upd_ctx);
2726 		while (slot_mask) {
2727 			u32 csg_id = ffs(slot_mask) - 1;
2728 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2729 
2730 			/* If the group was still usable before that point, we consider
2731 			 * it innocent.
2732 			 */
2733 			if (group_can_run(csg_slot->group))
2734 				csg_slot->group->innocent = true;
2735 
2736 			/* We consider group suspension failures as fatal and flag the
2737 			 * group as unusable by setting timedout=true.
2738 			 */
2739 			csg_slot->group->timedout = true;
2740 
2741 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2742 						CSG_STATE_TERMINATE,
2743 						CSG_STATE_MASK);
2744 			slot_mask &= ~BIT(csg_id);
2745 		}
2746 
2747 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2748 
2749 		slot_mask = upd_ctx.timedout_mask;
2750 		while (slot_mask) {
2751 			u32 csg_id = ffs(slot_mask) - 1;
2752 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2753 
2754 			/* Terminate command timedout, but the soft-reset will
2755 			 * automatically terminate all active groups, so let's
2756 			 * force the state to halted here.
2757 			 */
2758 			if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
2759 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2760 			slot_mask &= ~BIT(csg_id);
2761 		}
2762 	}
2763 
2764 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2765 	 * If the flush fails, flag all queues for termination.
2766 	 */
2767 	if (suspended_slots) {
2768 		bool flush_caches_failed = false;
2769 		u32 slot_mask = suspended_slots;
2770 
2771 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2772 			flush_caches_failed = true;
2773 
2774 		while (slot_mask) {
2775 			u32 csg_id = ffs(slot_mask) - 1;
2776 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2777 
2778 			if (flush_caches_failed)
2779 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2780 			else
2781 				csg_slot_sync_update_locked(ptdev, csg_id);
2782 
2783 			slot_mask &= ~BIT(csg_id);
2784 		}
2785 	}
2786 
2787 	for (i = 0; i < sched->csg_slot_count; i++) {
2788 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2789 
2790 		group = csg_slot->group;
2791 		if (!group)
2792 			continue;
2793 
2794 		group_get(group);
2795 
2796 		if (group->csg_id >= 0)
2797 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2798 
2799 		group_unbind_locked(group);
2800 
2801 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2802 
2803 		if (group_can_run(group)) {
2804 			list_add(&group->run_node,
2805 				 &sched->groups.idle[group->priority]);
2806 		} else {
2807 			/* We don't bother stopping the scheduler if the group is
2808 			 * faulty, the group termination work will finish the job.
2809 			 */
2810 			list_del_init(&group->wait_node);
2811 			group_queue_work(group, term);
2812 		}
2813 		group_put(group);
2814 	}
2815 	mutex_unlock(&sched->lock);
2816 }
2817 
2818 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2819 {
2820 	struct panthor_scheduler *sched = ptdev->scheduler;
2821 	struct panthor_group *group, *group_tmp;
2822 	u32 i;
2823 
2824 	mutex_lock(&sched->reset.lock);
2825 	atomic_set(&sched->reset.in_progress, true);
2826 
2827 	/* Cancel all scheduler works. Once this is done, these works can't be
2828 	 * scheduled again until the reset operation is complete.
2829 	 */
2830 	cancel_work_sync(&sched->sync_upd_work);
2831 	cancel_delayed_work_sync(&sched->tick_work);
2832 
2833 	panthor_sched_suspend(ptdev);
2834 
2835 	/* Stop all groups that might still accept jobs, so we don't get passed
2836 	 * new jobs while we're resetting.
2837 	 */
2838 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2839 		/* All groups should be in the idle lists. */
2840 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2841 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2842 			panthor_group_stop(group);
2843 	}
2844 
2845 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2846 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2847 			panthor_group_stop(group);
2848 	}
2849 
2850 	mutex_unlock(&sched->reset.lock);
2851 }
2852 
2853 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2854 {
2855 	struct panthor_scheduler *sched = ptdev->scheduler;
2856 	struct panthor_group *group, *group_tmp;
2857 
2858 	mutex_lock(&sched->reset.lock);
2859 
2860 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2861 		/* Consider all previously running group as terminated if the
2862 		 * reset failed.
2863 		 */
2864 		if (reset_failed)
2865 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2866 
2867 		panthor_group_start(group);
2868 	}
2869 
2870 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2871 	 * kick the scheduler.
2872 	 */
2873 	atomic_set(&sched->reset.in_progress, false);
2874 	mutex_unlock(&sched->reset.lock);
2875 
2876 	/* No need to queue a tick and update syncs if the reset failed. */
2877 	if (!reset_failed) {
2878 		sched_queue_delayed_work(sched, tick, 0);
2879 		sched_queue_work(sched, sync_upd);
2880 	}
2881 }
2882 
2883 static void update_fdinfo_stats(struct panthor_job *job)
2884 {
2885 	struct panthor_group *group = job->group;
2886 	struct panthor_queue *queue = group->queues[job->queue_idx];
2887 	struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2888 	struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2889 	struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2890 
2891 	scoped_guard(spinlock, &group->fdinfo.lock) {
2892 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
2893 			fdinfo->cycles += data->cycles.after - data->cycles.before;
2894 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
2895 			fdinfo->time += data->time.after - data->time.before;
2896 	}
2897 }
2898 
2899 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
2900 {
2901 	struct panthor_group_pool *gpool = pfile->groups;
2902 	struct panthor_group *group;
2903 	unsigned long i;
2904 
2905 	if (IS_ERR_OR_NULL(gpool))
2906 		return;
2907 
2908 	xa_lock(&gpool->xa);
2909 	xa_for_each(&gpool->xa, i, group) {
2910 		guard(spinlock)(&group->fdinfo.lock);
2911 		pfile->stats.cycles += group->fdinfo.data.cycles;
2912 		pfile->stats.time += group->fdinfo.data.time;
2913 		group->fdinfo.data.cycles = 0;
2914 		group->fdinfo.data.time = 0;
2915 	}
2916 	xa_unlock(&gpool->xa);
2917 }
2918 
2919 static void group_sync_upd_work(struct work_struct *work)
2920 {
2921 	struct panthor_group *group =
2922 		container_of(work, struct panthor_group, sync_upd_work);
2923 	struct panthor_job *job, *job_tmp;
2924 	LIST_HEAD(done_jobs);
2925 	u32 queue_idx;
2926 	bool cookie;
2927 
2928 	cookie = dma_fence_begin_signalling();
2929 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
2930 		struct panthor_queue *queue = group->queues[queue_idx];
2931 		struct panthor_syncobj_64b *syncobj;
2932 
2933 		if (!queue)
2934 			continue;
2935 
2936 		syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
2937 
2938 		spin_lock(&queue->fence_ctx.lock);
2939 		list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
2940 			if (syncobj->seqno < job->done_fence->seqno)
2941 				break;
2942 
2943 			list_move_tail(&job->node, &done_jobs);
2944 			dma_fence_signal_locked(job->done_fence);
2945 		}
2946 		spin_unlock(&queue->fence_ctx.lock);
2947 	}
2948 	dma_fence_end_signalling(cookie);
2949 
2950 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
2951 		if (job->profiling.mask)
2952 			update_fdinfo_stats(job);
2953 		list_del_init(&job->node);
2954 		panthor_job_put(&job->base);
2955 	}
2956 
2957 	group_put(group);
2958 }
2959 
2960 struct panthor_job_ringbuf_instrs {
2961 	u64 buffer[MAX_INSTRS_PER_JOB];
2962 	u32 count;
2963 };
2964 
2965 struct panthor_job_instr {
2966 	u32 profile_mask;
2967 	u64 instr;
2968 };
2969 
2970 #define JOB_INSTR(__prof, __instr) \
2971 	{ \
2972 		.profile_mask = __prof, \
2973 		.instr = __instr, \
2974 	}
2975 
2976 static void
2977 copy_instrs_to_ringbuf(struct panthor_queue *queue,
2978 		       struct panthor_job *job,
2979 		       struct panthor_job_ringbuf_instrs *instrs)
2980 {
2981 	u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
2982 	u64 start = job->ringbuf.start & (ringbuf_size - 1);
2983 	u64 size, written;
2984 
2985 	/*
2986 	 * We need to write a whole slot, including any trailing zeroes
2987 	 * that may come at the end of it. Also, because instrs.buffer has
2988 	 * been zero-initialised, there's no need to pad it with 0's
2989 	 */
2990 	instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
2991 	size = instrs->count * sizeof(u64);
2992 	WARN_ON(size > ringbuf_size);
2993 	written = min(ringbuf_size - start, size);
2994 
2995 	memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
2996 
2997 	if (written < size)
2998 		memcpy(queue->ringbuf->kmap,
2999 		       &instrs->buffer[written / sizeof(u64)],
3000 		       size - written);
3001 }
3002 
3003 struct panthor_job_cs_params {
3004 	u32 profile_mask;
3005 	u64 addr_reg; u64 val_reg;
3006 	u64 cycle_reg; u64 time_reg;
3007 	u64 sync_addr; u64 times_addr;
3008 	u64 cs_start; u64 cs_size;
3009 	u32 last_flush; u32 waitall_mask;
3010 };
3011 
3012 static void
3013 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
3014 {
3015 	struct panthor_group *group = job->group;
3016 	struct panthor_queue *queue = group->queues[job->queue_idx];
3017 	struct panthor_device *ptdev = group->ptdev;
3018 	struct panthor_scheduler *sched = ptdev->scheduler;
3019 
3020 	params->addr_reg = ptdev->csif_info.cs_reg_count -
3021 			   ptdev->csif_info.unpreserved_cs_reg_count;
3022 	params->val_reg = params->addr_reg + 2;
3023 	params->cycle_reg = params->addr_reg;
3024 	params->time_reg = params->val_reg;
3025 
3026 	params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
3027 			    job->queue_idx * sizeof(struct panthor_syncobj_64b);
3028 	params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3029 			     (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3030 	params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3031 
3032 	params->cs_start = job->call_info.start;
3033 	params->cs_size = job->call_info.size;
3034 	params->last_flush = job->call_info.latest_flush;
3035 
3036 	params->profile_mask = job->profiling.mask;
3037 }
3038 
3039 #define JOB_INSTR_ALWAYS(instr) \
3040 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3041 #define JOB_INSTR_TIMESTAMP(instr) \
3042 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3043 #define JOB_INSTR_CYCLES(instr) \
3044 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3045 
3046 static void
3047 prepare_job_instrs(const struct panthor_job_cs_params *params,
3048 		   struct panthor_job_ringbuf_instrs *instrs)
3049 {
3050 	const struct panthor_job_instr instr_seq[] = {
3051 		/* MOV32 rX+2, cs.latest_flush */
3052 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3053 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3054 		JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3055 				 (0 << 16) | 0x233),
3056 		/* MOV48 rX:rX+1, cycles_offset */
3057 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3058 				 (params->times_addr +
3059 				  offsetof(struct panthor_job_profiling_data, cycles.before))),
3060 		/* STORE_STATE cycles */
3061 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3062 		/* MOV48 rX:rX+1, time_offset */
3063 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3064 				    (params->times_addr +
3065 				     offsetof(struct panthor_job_profiling_data, time.before))),
3066 		/* STORE_STATE timer */
3067 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3068 		/* MOV48 rX:rX+1, cs.start */
3069 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3070 		/* MOV32 rX+2, cs.size */
3071 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3072 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3073 		JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3074 		/* CALL rX:rX+1, rX+2 */
3075 		JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3076 				 (params->val_reg << 32)),
3077 		/* MOV48 rX:rX+1, cycles_offset */
3078 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3079 				 (params->times_addr +
3080 				  offsetof(struct panthor_job_profiling_data, cycles.after))),
3081 		/* STORE_STATE cycles */
3082 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3083 		/* MOV48 rX:rX+1, time_offset */
3084 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3085 			  (params->times_addr +
3086 			   offsetof(struct panthor_job_profiling_data, time.after))),
3087 		/* STORE_STATE timer */
3088 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3089 		/* MOV48 rX:rX+1, sync_addr */
3090 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3091 		/* MOV48 rX+2, #1 */
3092 		JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3093 		/* WAIT(all) */
3094 		JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3095 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3096 		JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3097 				 (params->val_reg << 32) | (0 << 16) | 1),
3098 		/* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3099 		JOB_INSTR_ALWAYS((47ull << 56)),
3100 	};
3101 	u32 pad;
3102 
3103 	instrs->count = 0;
3104 
3105 	/* NEED to be cacheline aligned to please the prefetcher. */
3106 	static_assert(sizeof(instrs->buffer) % 64 == 0,
3107 		      "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3108 
3109 	/* Make sure we have enough storage to store the whole sequence. */
3110 	static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3111 		      ARRAY_SIZE(instrs->buffer),
3112 		      "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3113 
3114 	for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3115 		/* If the profile mask of this instruction is not enabled, skip it. */
3116 		if (instr_seq[i].profile_mask &&
3117 		    !(instr_seq[i].profile_mask & params->profile_mask))
3118 			continue;
3119 
3120 		instrs->buffer[instrs->count++] = instr_seq[i].instr;
3121 	}
3122 
3123 	pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3124 	memset(&instrs->buffer[instrs->count], 0,
3125 	       (pad - instrs->count) * sizeof(instrs->buffer[0]));
3126 	instrs->count = pad;
3127 }
3128 
3129 static u32 calc_job_credits(u32 profile_mask)
3130 {
3131 	struct panthor_job_ringbuf_instrs instrs;
3132 	struct panthor_job_cs_params params = {
3133 		.profile_mask = profile_mask,
3134 	};
3135 
3136 	prepare_job_instrs(&params, &instrs);
3137 	return instrs.count;
3138 }
3139 
3140 static struct dma_fence *
3141 queue_run_job(struct drm_sched_job *sched_job)
3142 {
3143 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3144 	struct panthor_group *group = job->group;
3145 	struct panthor_queue *queue = group->queues[job->queue_idx];
3146 	struct panthor_device *ptdev = group->ptdev;
3147 	struct panthor_scheduler *sched = ptdev->scheduler;
3148 	struct panthor_job_ringbuf_instrs instrs;
3149 	struct panthor_job_cs_params cs_params;
3150 	struct dma_fence *done_fence;
3151 	int ret;
3152 
3153 	/* Stream size is zero, nothing to do except making sure all previously
3154 	 * submitted jobs are done before we signal the
3155 	 * drm_sched_job::s_fence::finished fence.
3156 	 */
3157 	if (!job->call_info.size) {
3158 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3159 		return dma_fence_get(job->done_fence);
3160 	}
3161 
3162 	ret = panthor_device_resume_and_get(ptdev);
3163 	if (drm_WARN_ON(&ptdev->base, ret))
3164 		return ERR_PTR(ret);
3165 
3166 	mutex_lock(&sched->lock);
3167 	if (!group_can_run(group)) {
3168 		done_fence = ERR_PTR(-ECANCELED);
3169 		goto out_unlock;
3170 	}
3171 
3172 	dma_fence_init(job->done_fence,
3173 		       &panthor_queue_fence_ops,
3174 		       &queue->fence_ctx.lock,
3175 		       queue->fence_ctx.id,
3176 		       atomic64_inc_return(&queue->fence_ctx.seqno));
3177 
3178 	job->profiling.slot = queue->profiling.seqno++;
3179 	if (queue->profiling.seqno == queue->profiling.slot_count)
3180 		queue->profiling.seqno = 0;
3181 
3182 	job->ringbuf.start = queue->iface.input->insert;
3183 
3184 	get_job_cs_params(job, &cs_params);
3185 	prepare_job_instrs(&cs_params, &instrs);
3186 	copy_instrs_to_ringbuf(queue, job, &instrs);
3187 
3188 	job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3189 
3190 	panthor_job_get(&job->base);
3191 	spin_lock(&queue->fence_ctx.lock);
3192 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3193 	spin_unlock(&queue->fence_ctx.lock);
3194 
3195 	/* Make sure the ring buffer is updated before the INSERT
3196 	 * register.
3197 	 */
3198 	wmb();
3199 
3200 	queue->iface.input->extract = queue->iface.output->extract;
3201 	queue->iface.input->insert = job->ringbuf.end;
3202 
3203 	if (group->csg_id < 0) {
3204 		/* If the queue is blocked, we want to keep the timeout running, so we
3205 		 * can detect unbounded waits and kill the group when that happens.
3206 		 * Otherwise, we suspend the timeout so the time we spend waiting for
3207 		 * a CSG slot is not counted.
3208 		 */
3209 		if (!(group->blocked_queues & BIT(job->queue_idx)) &&
3210 		    !queue->timeout_suspended) {
3211 			queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
3212 			queue->timeout_suspended = true;
3213 		}
3214 
3215 		group_schedule_locked(group, BIT(job->queue_idx));
3216 	} else {
3217 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3218 		if (!sched->pm.has_ref &&
3219 		    !(group->blocked_queues & BIT(job->queue_idx))) {
3220 			pm_runtime_get(ptdev->base.dev);
3221 			sched->pm.has_ref = true;
3222 		}
3223 		panthor_devfreq_record_busy(sched->ptdev);
3224 	}
3225 
3226 	/* Update the last fence. */
3227 	dma_fence_put(queue->fence_ctx.last_fence);
3228 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3229 
3230 	done_fence = dma_fence_get(job->done_fence);
3231 
3232 out_unlock:
3233 	mutex_unlock(&sched->lock);
3234 	pm_runtime_mark_last_busy(ptdev->base.dev);
3235 	pm_runtime_put_autosuspend(ptdev->base.dev);
3236 
3237 	return done_fence;
3238 }
3239 
3240 static enum drm_gpu_sched_stat
3241 queue_timedout_job(struct drm_sched_job *sched_job)
3242 {
3243 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3244 	struct panthor_group *group = job->group;
3245 	struct panthor_device *ptdev = group->ptdev;
3246 	struct panthor_scheduler *sched = ptdev->scheduler;
3247 	struct panthor_queue *queue = group->queues[job->queue_idx];
3248 
3249 	drm_warn(&ptdev->base, "job timeout: pid=%d, comm=%s, seqno=%llu\n",
3250 		 group->task_info.pid, group->task_info.comm, job->done_fence->seqno);
3251 
3252 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3253 
3254 	queue_stop(queue, job);
3255 
3256 	mutex_lock(&sched->lock);
3257 	group->timedout = true;
3258 	if (group->csg_id >= 0) {
3259 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3260 	} else {
3261 		/* Remove from the run queues, so the scheduler can't
3262 		 * pick the group on the next tick.
3263 		 */
3264 		list_del_init(&group->run_node);
3265 		list_del_init(&group->wait_node);
3266 
3267 		group_queue_work(group, term);
3268 	}
3269 	mutex_unlock(&sched->lock);
3270 
3271 	queue_start(queue);
3272 
3273 	return DRM_GPU_SCHED_STAT_RESET;
3274 }
3275 
3276 static void queue_free_job(struct drm_sched_job *sched_job)
3277 {
3278 	drm_sched_job_cleanup(sched_job);
3279 	panthor_job_put(sched_job);
3280 }
3281 
3282 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3283 	.run_job = queue_run_job,
3284 	.timedout_job = queue_timedout_job,
3285 	.free_job = queue_free_job,
3286 };
3287 
3288 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3289 					    u32 cs_ringbuf_size)
3290 {
3291 	u32 min_profiled_job_instrs = U32_MAX;
3292 	u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3293 
3294 	/*
3295 	 * We want to calculate the minimum size of a profiled job's CS,
3296 	 * because since they need additional instructions for the sampling
3297 	 * of performance metrics, they might take up further slots in
3298 	 * the queue's ringbuffer. This means we might not need as many job
3299 	 * slots for keeping track of their profiling information. What we
3300 	 * need is the maximum number of slots we should allocate to this end,
3301 	 * which matches the maximum number of profiled jobs we can place
3302 	 * simultaneously in the queue's ring buffer.
3303 	 * That has to be calculated separately for every single job profiling
3304 	 * flag, but not in the case job profiling is disabled, since unprofiled
3305 	 * jobs don't need to keep track of this at all.
3306 	 */
3307 	for (u32 i = 0; i < last_flag; i++) {
3308 		min_profiled_job_instrs =
3309 			min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3310 	}
3311 
3312 	return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3313 }
3314 
3315 static struct panthor_queue *
3316 group_create_queue(struct panthor_group *group,
3317 		   const struct drm_panthor_queue_create *args,
3318 		   u64 drm_client_id, u32 gid, u32 qid)
3319 {
3320 	struct drm_sched_init_args sched_args = {
3321 		.ops = &panthor_queue_sched_ops,
3322 		.submit_wq = group->ptdev->scheduler->wq,
3323 		.num_rqs = 1,
3324 		/*
3325 		 * The credit limit argument tells us the total number of
3326 		 * instructions across all CS slots in the ringbuffer, with
3327 		 * some jobs requiring twice as many as others, depending on
3328 		 * their profiling status.
3329 		 */
3330 		.credit_limit = args->ringbuf_size / sizeof(u64),
3331 		.timeout = msecs_to_jiffies(JOB_TIMEOUT_MS),
3332 		.timeout_wq = group->ptdev->reset.wq,
3333 		.dev = group->ptdev->base.dev,
3334 	};
3335 	struct drm_gpu_scheduler *drm_sched;
3336 	struct panthor_queue *queue;
3337 	int ret;
3338 
3339 	if (args->pad[0] || args->pad[1] || args->pad[2])
3340 		return ERR_PTR(-EINVAL);
3341 
3342 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3343 	    !is_power_of_2(args->ringbuf_size))
3344 		return ERR_PTR(-EINVAL);
3345 
3346 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3347 		return ERR_PTR(-EINVAL);
3348 
3349 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3350 	if (!queue)
3351 		return ERR_PTR(-ENOMEM);
3352 
3353 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3354 	spin_lock_init(&queue->fence_ctx.lock);
3355 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3356 
3357 	queue->priority = args->priority;
3358 
3359 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3360 						  args->ringbuf_size,
3361 						  DRM_PANTHOR_BO_NO_MMAP,
3362 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3363 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3364 						  PANTHOR_VM_KERNEL_AUTO_VA,
3365 						  "CS ring buffer");
3366 	if (IS_ERR(queue->ringbuf)) {
3367 		ret = PTR_ERR(queue->ringbuf);
3368 		goto err_free_queue;
3369 	}
3370 
3371 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3372 	if (ret)
3373 		goto err_free_queue;
3374 
3375 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3376 							    &queue->iface.input,
3377 							    &queue->iface.output,
3378 							    &queue->iface.input_fw_va,
3379 							    &queue->iface.output_fw_va);
3380 	if (IS_ERR(queue->iface.mem)) {
3381 		ret = PTR_ERR(queue->iface.mem);
3382 		goto err_free_queue;
3383 	}
3384 
3385 	queue->profiling.slot_count =
3386 		calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3387 
3388 	queue->profiling.slots =
3389 		panthor_kernel_bo_create(group->ptdev, group->vm,
3390 					 queue->profiling.slot_count *
3391 					 sizeof(struct panthor_job_profiling_data),
3392 					 DRM_PANTHOR_BO_NO_MMAP,
3393 					 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3394 					 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3395 					 PANTHOR_VM_KERNEL_AUTO_VA,
3396 					 "Group job stats");
3397 
3398 	if (IS_ERR(queue->profiling.slots)) {
3399 		ret = PTR_ERR(queue->profiling.slots);
3400 		goto err_free_queue;
3401 	}
3402 
3403 	ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3404 	if (ret)
3405 		goto err_free_queue;
3406 
3407 	/* assign a unique name */
3408 	queue->name = kasprintf(GFP_KERNEL, "panthor-queue-%llu-%u-%u", drm_client_id, gid, qid);
3409 	if (!queue->name) {
3410 		ret = -ENOMEM;
3411 		goto err_free_queue;
3412 	}
3413 
3414 	sched_args.name = queue->name;
3415 
3416 	ret = drm_sched_init(&queue->scheduler, &sched_args);
3417 	if (ret)
3418 		goto err_free_queue;
3419 
3420 	drm_sched = &queue->scheduler;
3421 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3422 	if (ret)
3423 		goto err_free_queue;
3424 
3425 	return queue;
3426 
3427 err_free_queue:
3428 	group_free_queue(group, queue);
3429 	return ERR_PTR(ret);
3430 }
3431 
3432 static void group_init_task_info(struct panthor_group *group)
3433 {
3434 	struct task_struct *task = current->group_leader;
3435 
3436 	group->task_info.pid = task->pid;
3437 	get_task_comm(group->task_info.comm, task);
3438 }
3439 
3440 static void add_group_kbo_sizes(struct panthor_device *ptdev,
3441 				struct panthor_group *group)
3442 {
3443 	struct panthor_queue *queue;
3444 	int i;
3445 
3446 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group)))
3447 		return;
3448 	if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev))
3449 		return;
3450 
3451 	group->fdinfo.kbo_sizes += group->suspend_buf->obj->size;
3452 	group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size;
3453 	group->fdinfo.kbo_sizes += group->syncobjs->obj->size;
3454 
3455 	for (i = 0; i < group->queue_count; i++) {
3456 		queue =	group->queues[i];
3457 		group->fdinfo.kbo_sizes += queue->ringbuf->obj->size;
3458 		group->fdinfo.kbo_sizes += queue->iface.mem->obj->size;
3459 		group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size;
3460 	}
3461 }
3462 
3463 #define MAX_GROUPS_PER_POOL		128
3464 
3465 int panthor_group_create(struct panthor_file *pfile,
3466 			 const struct drm_panthor_group_create *group_args,
3467 			 const struct drm_panthor_queue_create *queue_args,
3468 			 u64 drm_client_id)
3469 {
3470 	struct panthor_device *ptdev = pfile->ptdev;
3471 	struct panthor_group_pool *gpool = pfile->groups;
3472 	struct panthor_scheduler *sched = ptdev->scheduler;
3473 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3474 	struct panthor_group *group = NULL;
3475 	u32 gid, i, suspend_size;
3476 	int ret;
3477 
3478 	if (group_args->pad)
3479 		return -EINVAL;
3480 
3481 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3482 		return -EINVAL;
3483 
3484 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3485 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3486 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3487 		return -EINVAL;
3488 
3489 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3490 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3491 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3492 		return -EINVAL;
3493 
3494 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3495 	if (!group)
3496 		return -ENOMEM;
3497 
3498 	spin_lock_init(&group->fatal_lock);
3499 	kref_init(&group->refcount);
3500 	group->state = PANTHOR_CS_GROUP_CREATED;
3501 	group->csg_id = -1;
3502 
3503 	group->ptdev = ptdev;
3504 	group->max_compute_cores = group_args->max_compute_cores;
3505 	group->compute_core_mask = group_args->compute_core_mask;
3506 	group->max_fragment_cores = group_args->max_fragment_cores;
3507 	group->fragment_core_mask = group_args->fragment_core_mask;
3508 	group->max_tiler_cores = group_args->max_tiler_cores;
3509 	group->tiler_core_mask = group_args->tiler_core_mask;
3510 	group->priority = group_args->priority;
3511 
3512 	INIT_LIST_HEAD(&group->wait_node);
3513 	INIT_LIST_HEAD(&group->run_node);
3514 	INIT_WORK(&group->term_work, group_term_work);
3515 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3516 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3517 	INIT_WORK(&group->release_work, group_release_work);
3518 
3519 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3520 	if (!group->vm) {
3521 		ret = -EINVAL;
3522 		goto err_put_group;
3523 	}
3524 
3525 	suspend_size = csg_iface->control->suspend_size;
3526 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3527 	if (IS_ERR(group->suspend_buf)) {
3528 		ret = PTR_ERR(group->suspend_buf);
3529 		group->suspend_buf = NULL;
3530 		goto err_put_group;
3531 	}
3532 
3533 	suspend_size = csg_iface->control->protm_suspend_size;
3534 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3535 	if (IS_ERR(group->protm_suspend_buf)) {
3536 		ret = PTR_ERR(group->protm_suspend_buf);
3537 		group->protm_suspend_buf = NULL;
3538 		goto err_put_group;
3539 	}
3540 
3541 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3542 						   group_args->queues.count *
3543 						   sizeof(struct panthor_syncobj_64b),
3544 						   DRM_PANTHOR_BO_NO_MMAP,
3545 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3546 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3547 						   PANTHOR_VM_KERNEL_AUTO_VA,
3548 						   "Group sync objects");
3549 	if (IS_ERR(group->syncobjs)) {
3550 		ret = PTR_ERR(group->syncobjs);
3551 		goto err_put_group;
3552 	}
3553 
3554 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3555 	if (ret)
3556 		goto err_put_group;
3557 
3558 	memset(group->syncobjs->kmap, 0,
3559 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3560 
3561 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3562 	if (ret)
3563 		goto err_put_group;
3564 
3565 	for (i = 0; i < group_args->queues.count; i++) {
3566 		group->queues[i] = group_create_queue(group, &queue_args[i], drm_client_id, gid, i);
3567 		if (IS_ERR(group->queues[i])) {
3568 			ret = PTR_ERR(group->queues[i]);
3569 			group->queues[i] = NULL;
3570 			goto err_erase_gid;
3571 		}
3572 
3573 		group->queue_count++;
3574 	}
3575 
3576 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3577 
3578 	mutex_lock(&sched->reset.lock);
3579 	if (atomic_read(&sched->reset.in_progress)) {
3580 		panthor_group_stop(group);
3581 	} else {
3582 		mutex_lock(&sched->lock);
3583 		list_add_tail(&group->run_node,
3584 			      &sched->groups.idle[group->priority]);
3585 		mutex_unlock(&sched->lock);
3586 	}
3587 	mutex_unlock(&sched->reset.lock);
3588 
3589 	add_group_kbo_sizes(group->ptdev, group);
3590 	spin_lock_init(&group->fdinfo.lock);
3591 
3592 	group_init_task_info(group);
3593 
3594 	return gid;
3595 
3596 err_erase_gid:
3597 	xa_erase(&gpool->xa, gid);
3598 
3599 err_put_group:
3600 	group_put(group);
3601 	return ret;
3602 }
3603 
3604 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3605 {
3606 	struct panthor_group_pool *gpool = pfile->groups;
3607 	struct panthor_device *ptdev = pfile->ptdev;
3608 	struct panthor_scheduler *sched = ptdev->scheduler;
3609 	struct panthor_group *group;
3610 
3611 	group = xa_erase(&gpool->xa, group_handle);
3612 	if (!group)
3613 		return -EINVAL;
3614 
3615 	mutex_lock(&sched->reset.lock);
3616 	mutex_lock(&sched->lock);
3617 	group->destroyed = true;
3618 	if (group->csg_id >= 0) {
3619 		sched_queue_delayed_work(sched, tick, 0);
3620 	} else if (!atomic_read(&sched->reset.in_progress)) {
3621 		/* Remove from the run queues, so the scheduler can't
3622 		 * pick the group on the next tick.
3623 		 */
3624 		list_del_init(&group->run_node);
3625 		list_del_init(&group->wait_node);
3626 		group_queue_work(group, term);
3627 	}
3628 	mutex_unlock(&sched->lock);
3629 	mutex_unlock(&sched->reset.lock);
3630 
3631 	group_put(group);
3632 	return 0;
3633 }
3634 
3635 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3636 					       u32 group_handle)
3637 {
3638 	struct panthor_group *group;
3639 
3640 	xa_lock(&pool->xa);
3641 	group = group_get(xa_load(&pool->xa, group_handle));
3642 	xa_unlock(&pool->xa);
3643 
3644 	return group;
3645 }
3646 
3647 int panthor_group_get_state(struct panthor_file *pfile,
3648 			    struct drm_panthor_group_get_state *get_state)
3649 {
3650 	struct panthor_group_pool *gpool = pfile->groups;
3651 	struct panthor_device *ptdev = pfile->ptdev;
3652 	struct panthor_scheduler *sched = ptdev->scheduler;
3653 	struct panthor_group *group;
3654 
3655 	if (get_state->pad)
3656 		return -EINVAL;
3657 
3658 	group = group_from_handle(gpool, get_state->group_handle);
3659 	if (!group)
3660 		return -EINVAL;
3661 
3662 	memset(get_state, 0, sizeof(*get_state));
3663 
3664 	mutex_lock(&sched->lock);
3665 	if (group->timedout)
3666 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3667 	if (group->fatal_queues) {
3668 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3669 		get_state->fatal_queues = group->fatal_queues;
3670 	}
3671 	if (group->innocent)
3672 		get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3673 	mutex_unlock(&sched->lock);
3674 
3675 	group_put(group);
3676 	return 0;
3677 }
3678 
3679 int panthor_group_pool_create(struct panthor_file *pfile)
3680 {
3681 	struct panthor_group_pool *gpool;
3682 
3683 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3684 	if (!gpool)
3685 		return -ENOMEM;
3686 
3687 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3688 	pfile->groups = gpool;
3689 	return 0;
3690 }
3691 
3692 void panthor_group_pool_destroy(struct panthor_file *pfile)
3693 {
3694 	struct panthor_group_pool *gpool = pfile->groups;
3695 	struct panthor_group *group;
3696 	unsigned long i;
3697 
3698 	if (IS_ERR_OR_NULL(gpool))
3699 		return;
3700 
3701 	xa_for_each(&gpool->xa, i, group)
3702 		panthor_group_destroy(pfile, i);
3703 
3704 	xa_destroy(&gpool->xa);
3705 	kfree(gpool);
3706 	pfile->groups = NULL;
3707 }
3708 
3709 /**
3710  * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's
3711  * belonging to all the groups owned by an open Panthor file
3712  * @pfile: File.
3713  * @stats: Memory statistics to be updated.
3714  *
3715  */
3716 void
3717 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile,
3718 				     struct drm_memory_stats *stats)
3719 {
3720 	struct panthor_group_pool *gpool = pfile->groups;
3721 	struct panthor_group *group;
3722 	unsigned long i;
3723 
3724 	if (IS_ERR_OR_NULL(gpool))
3725 		return;
3726 
3727 	xa_lock(&gpool->xa);
3728 	xa_for_each(&gpool->xa, i, group) {
3729 		stats->resident += group->fdinfo.kbo_sizes;
3730 		if (group->csg_id >= 0)
3731 			stats->active += group->fdinfo.kbo_sizes;
3732 	}
3733 	xa_unlock(&gpool->xa);
3734 }
3735 
3736 static void job_release(struct kref *ref)
3737 {
3738 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3739 
3740 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3741 
3742 	if (job->base.s_fence)
3743 		drm_sched_job_cleanup(&job->base);
3744 
3745 	if (job->done_fence && job->done_fence->ops)
3746 		dma_fence_put(job->done_fence);
3747 	else
3748 		dma_fence_free(job->done_fence);
3749 
3750 	group_put(job->group);
3751 
3752 	kfree(job);
3753 }
3754 
3755 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3756 {
3757 	if (sched_job) {
3758 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3759 
3760 		kref_get(&job->refcount);
3761 	}
3762 
3763 	return sched_job;
3764 }
3765 
3766 void panthor_job_put(struct drm_sched_job *sched_job)
3767 {
3768 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3769 
3770 	if (sched_job)
3771 		kref_put(&job->refcount, job_release);
3772 }
3773 
3774 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3775 {
3776 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3777 
3778 	return job->group->vm;
3779 }
3780 
3781 struct drm_sched_job *
3782 panthor_job_create(struct panthor_file *pfile,
3783 		   u16 group_handle,
3784 		   const struct drm_panthor_queue_submit *qsubmit,
3785 		   u64 drm_client_id)
3786 {
3787 	struct panthor_group_pool *gpool = pfile->groups;
3788 	struct panthor_job *job;
3789 	u32 credits;
3790 	int ret;
3791 
3792 	if (qsubmit->pad)
3793 		return ERR_PTR(-EINVAL);
3794 
3795 	/* If stream_addr is zero, so stream_size should be. */
3796 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3797 		return ERR_PTR(-EINVAL);
3798 
3799 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3800 	 * aligned on 8-byte (instruction size).
3801 	 */
3802 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3803 		return ERR_PTR(-EINVAL);
3804 
3805 	/* bits 24:30 must be zero. */
3806 	if (qsubmit->latest_flush & GENMASK(30, 24))
3807 		return ERR_PTR(-EINVAL);
3808 
3809 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3810 	if (!job)
3811 		return ERR_PTR(-ENOMEM);
3812 
3813 	kref_init(&job->refcount);
3814 	job->queue_idx = qsubmit->queue_index;
3815 	job->call_info.size = qsubmit->stream_size;
3816 	job->call_info.start = qsubmit->stream_addr;
3817 	job->call_info.latest_flush = qsubmit->latest_flush;
3818 	INIT_LIST_HEAD(&job->node);
3819 
3820 	job->group = group_from_handle(gpool, group_handle);
3821 	if (!job->group) {
3822 		ret = -EINVAL;
3823 		goto err_put_job;
3824 	}
3825 
3826 	if (!group_can_run(job->group)) {
3827 		ret = -EINVAL;
3828 		goto err_put_job;
3829 	}
3830 
3831 	if (job->queue_idx >= job->group->queue_count ||
3832 	    !job->group->queues[job->queue_idx]) {
3833 		ret = -EINVAL;
3834 		goto err_put_job;
3835 	}
3836 
3837 	/* Empty command streams don't need a fence, they'll pick the one from
3838 	 * the previously submitted job.
3839 	 */
3840 	if (job->call_info.size) {
3841 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3842 		if (!job->done_fence) {
3843 			ret = -ENOMEM;
3844 			goto err_put_job;
3845 		}
3846 	}
3847 
3848 	job->profiling.mask = pfile->ptdev->profile_mask;
3849 	credits = calc_job_credits(job->profiling.mask);
3850 	if (credits == 0) {
3851 		ret = -EINVAL;
3852 		goto err_put_job;
3853 	}
3854 
3855 	ret = drm_sched_job_init(&job->base,
3856 				 &job->group->queues[job->queue_idx]->entity,
3857 				 credits, job->group, drm_client_id);
3858 	if (ret)
3859 		goto err_put_job;
3860 
3861 	return &job->base;
3862 
3863 err_put_job:
3864 	panthor_job_put(&job->base);
3865 	return ERR_PTR(ret);
3866 }
3867 
3868 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
3869 {
3870 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3871 
3872 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
3873 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
3874 }
3875 
3876 void panthor_sched_unplug(struct panthor_device *ptdev)
3877 {
3878 	struct panthor_scheduler *sched = ptdev->scheduler;
3879 
3880 	disable_delayed_work_sync(&sched->tick_work);
3881 	disable_work_sync(&sched->fw_events_work);
3882 	disable_work_sync(&sched->sync_upd_work);
3883 
3884 	mutex_lock(&sched->lock);
3885 	if (sched->pm.has_ref) {
3886 		pm_runtime_put(ptdev->base.dev);
3887 		sched->pm.has_ref = false;
3888 	}
3889 	mutex_unlock(&sched->lock);
3890 }
3891 
3892 static void panthor_sched_fini(struct drm_device *ddev, void *res)
3893 {
3894 	struct panthor_scheduler *sched = res;
3895 	int prio;
3896 
3897 	if (!sched || !sched->csg_slot_count)
3898 		return;
3899 
3900 	if (sched->wq)
3901 		destroy_workqueue(sched->wq);
3902 
3903 	if (sched->heap_alloc_wq)
3904 		destroy_workqueue(sched->heap_alloc_wq);
3905 
3906 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3907 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
3908 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
3909 	}
3910 
3911 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
3912 }
3913 
3914 int panthor_sched_init(struct panthor_device *ptdev)
3915 {
3916 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
3917 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3918 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
3919 	struct panthor_scheduler *sched;
3920 	u32 gpu_as_count, num_groups;
3921 	int prio, ret;
3922 
3923 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
3924 	if (!sched)
3925 		return -ENOMEM;
3926 
3927 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
3928 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
3929 	 */
3930 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
3931 
3932 	/* The FW-side scheduler might deadlock if two groups with the same
3933 	 * priority try to access a set of resources that overlaps, with part
3934 	 * of the resources being allocated to one group and the other part to
3935 	 * the other group, both groups waiting for the remaining resources to
3936 	 * be allocated. To avoid that, it is recommended to assign each CSG a
3937 	 * different priority. In theory we could allow several groups to have
3938 	 * the same CSG priority if they don't request the same resources, but
3939 	 * that makes the scheduling logic more complicated, so let's clamp
3940 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
3941 	 */
3942 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
3943 
3944 	/* We need at least one AS for the MCU and one for the GPU contexts. */
3945 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
3946 	if (!gpu_as_count) {
3947 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
3948 			gpu_as_count + 1);
3949 		return -EINVAL;
3950 	}
3951 
3952 	sched->ptdev = ptdev;
3953 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
3954 	sched->csg_slot_count = num_groups;
3955 	sched->cs_slot_count = csg_iface->control->stream_num;
3956 	sched->as_slot_count = gpu_as_count;
3957 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
3958 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
3959 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
3960 
3961 	sched->last_tick = 0;
3962 	sched->resched_target = U64_MAX;
3963 	sched->tick_period = msecs_to_jiffies(10);
3964 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
3965 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
3966 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
3967 
3968 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
3969 	if (ret)
3970 		return ret;
3971 
3972 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
3973 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
3974 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
3975 	}
3976 	INIT_LIST_HEAD(&sched->groups.waiting);
3977 
3978 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
3979 	if (ret)
3980 		return ret;
3981 
3982 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
3983 
3984 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
3985 	 * tiler OOM events, which means we can't use the same workqueue for
3986 	 * the scheduler because works queued by the scheduler are in
3987 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
3988 	 * work around this limitation.
3989 	 *
3990 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
3991 	 * allocation path that we can call when a heap OOM is reported. The
3992 	 * FW is smart enough to fall back on other methods if the kernel can't
3993 	 * allocate memory, and fail the tiling job if none of these
3994 	 * countermeasures worked.
3995 	 *
3996 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
3997 	 * system is running out of memory.
3998 	 */
3999 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
4000 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
4001 	if (!sched->wq || !sched->heap_alloc_wq) {
4002 		panthor_sched_fini(&ptdev->base, sched);
4003 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
4004 		return -ENOMEM;
4005 	}
4006 
4007 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
4008 	if (ret)
4009 		return ret;
4010 
4011 	ptdev->scheduler = sched;
4012 	return 0;
4013 }
4014