1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */ 3 4 #include <drm/panfrost_drm.h> 5 #include <drm/drm_print.h> 6 7 #include <linux/atomic.h> 8 #include <linux/bitfield.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/io-pgtable.h> 15 #include <linux/iommu.h> 16 #include <linux/platform_device.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/shmem_fs.h> 19 #include <linux/sizes.h> 20 21 #include "panfrost_device.h" 22 #include "panfrost_mmu.h" 23 #include "panfrost_gem.h" 24 #include "panfrost_features.h" 25 #include "panfrost_regs.h" 26 27 #define mmu_write(dev, reg, data) writel(data, dev->iomem + reg) 28 #define mmu_read(dev, reg) readl(dev->iomem + reg) 29 30 static u64 mair_to_memattr(u64 mair, bool coherent) 31 { 32 u64 memattr = 0; 33 u32 i; 34 35 for (i = 0; i < 8; i++) { 36 u8 in_attr = mair >> (8 * i), out_attr; 37 u8 outer = in_attr >> 4, inner = in_attr & 0xf; 38 39 /* For caching to be enabled, inner and outer caching policy 40 * have to be both write-back, if one of them is write-through 41 * or non-cacheable, we just choose non-cacheable. Device 42 * memory is also translated to non-cacheable. 43 */ 44 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) { 45 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC | 46 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER | 47 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false); 48 } else { 49 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB | 50 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2); 51 /* Use SH_MIDGARD_INNER mode when device isn't coherent, 52 * so SH_IS, which is used when IOMMU_CACHE is set, maps 53 * to Mali's internal-shareable mode. As per the Mali 54 * Spec, inner and outer-shareable modes aren't allowed 55 * for WB memory when coherency is disabled. 56 * Use SH_CPU_INNER mode when coherency is enabled, so 57 * that SH_IS actually maps to the standard definition of 58 * inner-shareable. 59 */ 60 if (!coherent) 61 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER; 62 else 63 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER; 64 } 65 66 memattr |= (u64)out_attr << (8 * i); 67 } 68 69 return memattr; 70 } 71 72 static int wait_ready(struct panfrost_device *pfdev, u32 as_nr) 73 { 74 int ret; 75 u32 val; 76 77 /* Wait for the MMU status to indicate there is no active command, in 78 * case one is pending. */ 79 ret = readl_relaxed_poll_timeout_atomic(pfdev->iomem + AS_STATUS(as_nr), 80 val, !(val & AS_STATUS_AS_ACTIVE), 10, 100000); 81 82 if (ret) { 83 /* The GPU hung, let's trigger a reset */ 84 panfrost_device_schedule_reset(pfdev); 85 dev_err(pfdev->base.dev, "AS_ACTIVE bit stuck\n"); 86 } 87 88 return ret; 89 } 90 91 static int write_cmd(struct panfrost_device *pfdev, u32 as_nr, u32 cmd) 92 { 93 int status; 94 95 /* write AS_COMMAND when MMU is ready to accept another command */ 96 status = wait_ready(pfdev, as_nr); 97 if (!status) 98 mmu_write(pfdev, AS_COMMAND(as_nr), cmd); 99 100 return status; 101 } 102 103 static void lock_region(struct panfrost_device *pfdev, u32 as_nr, 104 u64 region_start, u64 size) 105 { 106 u8 region_width; 107 u64 region; 108 u64 region_end = region_start + size; 109 110 if (!size) 111 return; 112 113 /* 114 * The locked region is a naturally aligned power of 2 block encoded as 115 * log2 minus(1). 116 * Calculate the desired start/end and look for the highest bit which 117 * differs. The smallest naturally aligned block must include this bit 118 * change, the desired region starts with this bit (and subsequent bits) 119 * zeroed and ends with the bit (and subsequent bits) set to one. 120 */ 121 region_width = max(fls64(region_start ^ (region_end - 1)), 122 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1; 123 124 /* 125 * Mask off the low bits of region_start (which would be ignored by 126 * the hardware anyway) 127 */ 128 region_start &= GENMASK_ULL(63, region_width); 129 130 region = region_width | region_start; 131 132 /* Lock the region that needs to be updated */ 133 mmu_write(pfdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region)); 134 mmu_write(pfdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region)); 135 write_cmd(pfdev, as_nr, AS_COMMAND_LOCK); 136 } 137 138 139 static int mmu_hw_do_operation_locked(struct panfrost_device *pfdev, int as_nr, 140 u64 iova, u64 size, u32 op) 141 { 142 if (as_nr < 0) 143 return 0; 144 145 if (op != AS_COMMAND_UNLOCK) 146 lock_region(pfdev, as_nr, iova, size); 147 148 /* Run the MMU operation */ 149 write_cmd(pfdev, as_nr, op); 150 151 /* Wait for the flush to complete */ 152 return wait_ready(pfdev, as_nr); 153 } 154 155 static int mmu_hw_do_operation(struct panfrost_device *pfdev, 156 struct panfrost_mmu *mmu, 157 u64 iova, u64 size, u32 op) 158 { 159 int ret; 160 161 spin_lock(&pfdev->as_lock); 162 ret = mmu_hw_do_operation_locked(pfdev, mmu->as, iova, size, op); 163 spin_unlock(&pfdev->as_lock); 164 return ret; 165 } 166 167 static void panfrost_mmu_enable(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) 168 { 169 int as_nr = mmu->as; 170 u64 transtab = mmu->cfg.transtab; 171 u64 memattr = mmu->cfg.memattr; 172 u64 transcfg = mmu->cfg.transcfg; 173 174 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 175 176 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab)); 177 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab)); 178 179 /* Need to revisit mem attrs. 180 * NC is the default, Mali driver is inner WT. 181 */ 182 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr)); 183 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr)); 184 185 mmu_write(pfdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg)); 186 mmu_write(pfdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg)); 187 188 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE); 189 } 190 191 static void panfrost_mmu_disable(struct panfrost_device *pfdev, u32 as_nr) 192 { 193 mmu_hw_do_operation_locked(pfdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM); 194 195 mmu_write(pfdev, AS_TRANSTAB_LO(as_nr), 0); 196 mmu_write(pfdev, AS_TRANSTAB_HI(as_nr), 0); 197 198 mmu_write(pfdev, AS_MEMATTR_LO(as_nr), 0); 199 mmu_write(pfdev, AS_MEMATTR_HI(as_nr), 0); 200 201 mmu_write(pfdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED); 202 mmu_write(pfdev, AS_TRANSCFG_HI(as_nr), 0); 203 204 write_cmd(pfdev, as_nr, AS_COMMAND_UPDATE); 205 } 206 207 static int mmu_cfg_init_mali_lpae(struct panfrost_mmu *mmu) 208 { 209 struct io_pgtable_cfg *pgtbl_cfg = &mmu->pgtbl_cfg; 210 211 /* TODO: The following fields are duplicated between the MMU and Page 212 * Table config structs. Ideally, should be kept in one place. 213 */ 214 mmu->cfg.transtab = pgtbl_cfg->arm_mali_lpae_cfg.transtab; 215 mmu->cfg.memattr = pgtbl_cfg->arm_mali_lpae_cfg.memattr; 216 mmu->cfg.transcfg = AS_TRANSCFG_ADRMODE_LEGACY; 217 218 return 0; 219 } 220 221 static int mmu_cfg_init_aarch64_4k(struct panfrost_mmu *mmu) 222 { 223 struct io_pgtable_cfg *pgtbl_cfg = &mmu->pgtbl_cfg; 224 struct panfrost_device *pfdev = mmu->pfdev; 225 226 if (drm_WARN_ON(&pfdev->base, pgtbl_cfg->arm_lpae_s1_cfg.ttbr & 227 ~AS_TRANSTAB_AARCH64_4K_ADDR_MASK)) 228 return -EINVAL; 229 230 mmu->cfg.transtab = pgtbl_cfg->arm_lpae_s1_cfg.ttbr; 231 232 mmu->cfg.memattr = mair_to_memattr(pgtbl_cfg->arm_lpae_s1_cfg.mair, 233 pgtbl_cfg->coherent_walk); 234 235 mmu->cfg.transcfg = AS_TRANSCFG_PTW_MEMATTR_WB | 236 AS_TRANSCFG_PTW_RA | 237 AS_TRANSCFG_ADRMODE_AARCH64_4K | 238 AS_TRANSCFG_INA_BITS(55 - pgtbl_cfg->ias); 239 if (pgtbl_cfg->coherent_walk) 240 mmu->cfg.transcfg |= AS_TRANSCFG_PTW_SH_OS; 241 242 return 0; 243 } 244 245 static int panfrost_mmu_cfg_init(struct panfrost_mmu *mmu, 246 enum io_pgtable_fmt fmt) 247 { 248 struct panfrost_device *pfdev = mmu->pfdev; 249 250 switch (fmt) { 251 case ARM_64_LPAE_S1: 252 return mmu_cfg_init_aarch64_4k(mmu); 253 case ARM_MALI_LPAE: 254 return mmu_cfg_init_mali_lpae(mmu); 255 default: 256 /* This should never happen */ 257 drm_WARN(&pfdev->base, 1, "Invalid pgtable format"); 258 return -EINVAL; 259 } 260 } 261 262 int panfrost_mmu_as_get(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) 263 { 264 int as; 265 266 spin_lock(&pfdev->as_lock); 267 268 as = mmu->as; 269 if (as >= 0) { 270 int en = atomic_inc_return(&mmu->as_count); 271 u32 mask = BIT(as) | BIT(16 + as); 272 273 /* 274 * AS can be retained by active jobs or a perfcnt context, 275 * hence the '+ 1' here. 276 */ 277 WARN_ON(en >= (NUM_JOB_SLOTS + 1)); 278 279 list_move(&mmu->list, &pfdev->as_lru_list); 280 281 if (pfdev->as_faulty_mask & mask) { 282 /* Unhandled pagefault on this AS, the MMU was 283 * disabled. We need to re-enable the MMU after 284 * clearing+unmasking the AS interrupts. 285 */ 286 mmu_write(pfdev, MMU_INT_CLEAR, mask); 287 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask); 288 pfdev->as_faulty_mask &= ~mask; 289 panfrost_mmu_enable(pfdev, mmu); 290 } 291 292 goto out; 293 } 294 295 /* Check for a free AS */ 296 as = ffz(pfdev->as_alloc_mask); 297 if (!(BIT(as) & pfdev->features.as_present)) { 298 struct panfrost_mmu *lru_mmu; 299 300 list_for_each_entry_reverse(lru_mmu, &pfdev->as_lru_list, list) { 301 if (!atomic_read(&lru_mmu->as_count)) 302 break; 303 } 304 if (WARN_ON(&lru_mmu->list == &pfdev->as_lru_list)) { 305 as = -EBUSY; 306 goto out; 307 } 308 309 list_del_init(&lru_mmu->list); 310 as = lru_mmu->as; 311 312 WARN_ON(as < 0); 313 lru_mmu->as = -1; 314 } 315 316 /* Assign the free or reclaimed AS to the FD */ 317 mmu->as = as; 318 set_bit(as, &pfdev->as_alloc_mask); 319 atomic_set(&mmu->as_count, 1); 320 list_add(&mmu->list, &pfdev->as_lru_list); 321 322 dev_dbg(pfdev->base.dev, 323 "Assigned AS%d to mmu %p, alloc_mask=%lx", 324 as, mmu, pfdev->as_alloc_mask); 325 326 panfrost_mmu_enable(pfdev, mmu); 327 328 out: 329 spin_unlock(&pfdev->as_lock); 330 return as; 331 } 332 333 void panfrost_mmu_as_put(struct panfrost_device *pfdev, struct panfrost_mmu *mmu) 334 { 335 atomic_dec(&mmu->as_count); 336 WARN_ON(atomic_read(&mmu->as_count) < 0); 337 } 338 339 void panfrost_mmu_reset(struct panfrost_device *pfdev) 340 { 341 struct panfrost_mmu *mmu, *mmu_tmp; 342 343 clear_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended); 344 345 spin_lock(&pfdev->as_lock); 346 347 pfdev->as_alloc_mask = 0; 348 pfdev->as_faulty_mask = 0; 349 350 list_for_each_entry_safe(mmu, mmu_tmp, &pfdev->as_lru_list, list) { 351 mmu->as = -1; 352 atomic_set(&mmu->as_count, 0); 353 list_del_init(&mmu->list); 354 } 355 356 spin_unlock(&pfdev->as_lock); 357 358 mmu_write(pfdev, MMU_INT_CLEAR, ~0); 359 mmu_write(pfdev, MMU_INT_MASK, ~0); 360 } 361 362 static size_t get_pgsize(u64 addr, size_t size, size_t *count) 363 { 364 /* 365 * io-pgtable only operates on multiple pages within a single table 366 * entry, so we need to split at boundaries of the table size, i.e. 367 * the next block size up. The distance from address A to the next 368 * boundary of block size B is logically B - A % B, but in unsigned 369 * two's complement where B is a power of two we get the equivalence 370 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :) 371 */ 372 size_t blk_offset = -addr % SZ_2M; 373 374 if (blk_offset || size < SZ_2M) { 375 *count = min_not_zero(blk_offset, size) / SZ_4K; 376 return SZ_4K; 377 } 378 blk_offset = -addr % SZ_1G ?: SZ_1G; 379 *count = min(blk_offset, size) / SZ_2M; 380 return SZ_2M; 381 } 382 383 static void panfrost_mmu_flush_range(struct panfrost_device *pfdev, 384 struct panfrost_mmu *mmu, 385 u64 iova, u64 size) 386 { 387 if (mmu->as < 0) 388 return; 389 390 pm_runtime_get_noresume(pfdev->base.dev); 391 392 /* Flush the PTs only if we're already awake */ 393 if (pm_runtime_active(pfdev->base.dev)) 394 mmu_hw_do_operation(pfdev, mmu, iova, size, AS_COMMAND_FLUSH_PT); 395 396 pm_runtime_put_autosuspend(pfdev->base.dev); 397 } 398 399 static void mmu_unmap_range(struct panfrost_mmu *mmu, u64 iova, size_t len) 400 { 401 struct io_pgtable_ops *ops = mmu->pgtbl_ops; 402 size_t pgsize, unmapped_len = 0; 403 size_t unmapped_page, pgcount; 404 405 while (unmapped_len < len) { 406 pgsize = get_pgsize(iova, len - unmapped_len, &pgcount); 407 408 unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL); 409 WARN_ON(unmapped_page != pgsize * pgcount); 410 411 iova += pgsize * pgcount; 412 unmapped_len += pgsize * pgcount; 413 } 414 } 415 416 static int mmu_map_sg(struct panfrost_device *pfdev, struct panfrost_mmu *mmu, 417 u64 iova, int prot, struct sg_table *sgt) 418 { 419 unsigned int count; 420 struct scatterlist *sgl; 421 struct io_pgtable_ops *ops = mmu->pgtbl_ops; 422 size_t total_mapped = 0; 423 u64 start_iova = iova; 424 int ret; 425 426 for_each_sgtable_dma_sg(sgt, sgl, count) { 427 unsigned long paddr = sg_dma_address(sgl); 428 size_t len = sg_dma_len(sgl); 429 430 dev_dbg(pfdev->base.dev, 431 "map: as=%d, iova=%llx, paddr=%lx, len=%zx", 432 mmu->as, iova, paddr, len); 433 434 while (len) { 435 size_t pgcount, mapped = 0; 436 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount); 437 438 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, 439 GFP_KERNEL, &mapped); 440 if (ret) 441 goto err_unmap_pages; 442 443 /* Don't get stuck if things have gone wrong */ 444 mapped = max(mapped, pgsize); 445 total_mapped += mapped; 446 iova += mapped; 447 paddr += mapped; 448 len -= mapped; 449 } 450 } 451 452 panfrost_mmu_flush_range(pfdev, mmu, start_iova, iova - start_iova); 453 454 return 0; 455 456 err_unmap_pages: 457 mmu_unmap_range(mmu, start_iova, total_mapped); 458 return ret; 459 } 460 461 int panfrost_mmu_map(struct panfrost_gem_mapping *mapping) 462 { 463 struct panfrost_gem_object *bo = mapping->obj; 464 struct drm_gem_shmem_object *shmem = &bo->base; 465 struct drm_gem_object *obj = &shmem->base; 466 struct panfrost_device *pfdev = to_panfrost_device(obj->dev); 467 struct sg_table *sgt; 468 int prot = IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE; 469 int ret; 470 471 if (WARN_ON(mapping->active)) 472 return 0; 473 474 if (bo->noexec) 475 prot |= IOMMU_NOEXEC; 476 477 sgt = drm_gem_shmem_get_pages_sgt(shmem); 478 if (WARN_ON(IS_ERR(sgt))) 479 return PTR_ERR(sgt); 480 481 ret = mmu_map_sg(pfdev, mapping->mmu, mapping->mmnode.start << PAGE_SHIFT, 482 prot, sgt); 483 if (ret) 484 goto err_put_pages; 485 486 mapping->active = true; 487 488 return 0; 489 490 err_put_pages: 491 drm_gem_shmem_put_pages_locked(shmem); 492 return ret; 493 } 494 495 void panfrost_mmu_unmap(struct panfrost_gem_mapping *mapping) 496 { 497 struct panfrost_gem_object *bo = mapping->obj; 498 struct drm_gem_object *obj = &bo->base.base; 499 struct panfrost_device *pfdev = to_panfrost_device(obj->dev); 500 struct io_pgtable_ops *ops = mapping->mmu->pgtbl_ops; 501 u64 iova = mapping->mmnode.start << PAGE_SHIFT; 502 size_t len = mapping->mmnode.size << PAGE_SHIFT; 503 size_t unmapped_len = 0; 504 505 if (WARN_ON(!mapping->active)) 506 return; 507 508 dev_dbg(pfdev->base.dev, "unmap: as=%d, iova=%llx, len=%zx", 509 mapping->mmu->as, iova, len); 510 511 while (unmapped_len < len) { 512 size_t unmapped_page, pgcount; 513 size_t pgsize = get_pgsize(iova, len - unmapped_len, &pgcount); 514 515 if (bo->is_heap) 516 pgcount = 1; 517 if (!bo->is_heap || ops->iova_to_phys(ops, iova)) { 518 unmapped_page = ops->unmap_pages(ops, iova, pgsize, pgcount, NULL); 519 WARN_ON(unmapped_page != pgsize * pgcount); 520 } 521 iova += pgsize * pgcount; 522 unmapped_len += pgsize * pgcount; 523 } 524 525 panfrost_mmu_flush_range(pfdev, mapping->mmu, 526 mapping->mmnode.start << PAGE_SHIFT, len); 527 mapping->active = false; 528 } 529 530 static void mmu_tlb_inv_context_s1(void *cookie) 531 {} 532 533 static void mmu_tlb_sync_context(void *cookie) 534 { 535 //struct panfrost_mmu *mmu = cookie; 536 // TODO: Wait 1000 GPU cycles for HW_ISSUE_6367/T60X 537 } 538 539 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, 540 void *cookie) 541 { 542 mmu_tlb_sync_context(cookie); 543 } 544 545 static const struct iommu_flush_ops mmu_tlb_ops = { 546 .tlb_flush_all = mmu_tlb_inv_context_s1, 547 .tlb_flush_walk = mmu_tlb_flush_walk, 548 }; 549 550 static struct panfrost_gem_mapping * 551 addr_to_mapping(struct panfrost_device *pfdev, int as, u64 addr) 552 { 553 struct panfrost_gem_mapping *mapping = NULL; 554 struct drm_mm_node *node; 555 u64 offset = addr >> PAGE_SHIFT; 556 struct panfrost_mmu *mmu; 557 558 spin_lock(&pfdev->as_lock); 559 list_for_each_entry(mmu, &pfdev->as_lru_list, list) { 560 if (as == mmu->as) 561 goto found_mmu; 562 } 563 goto out; 564 565 found_mmu: 566 567 spin_lock(&mmu->mm_lock); 568 569 drm_mm_for_each_node(node, &mmu->mm) { 570 if (offset >= node->start && 571 offset < (node->start + node->size)) { 572 mapping = drm_mm_node_to_panfrost_mapping(node); 573 574 kref_get(&mapping->refcount); 575 break; 576 } 577 } 578 579 spin_unlock(&mmu->mm_lock); 580 out: 581 spin_unlock(&pfdev->as_lock); 582 return mapping; 583 } 584 585 #define NUM_FAULT_PAGES (SZ_2M / PAGE_SIZE) 586 587 static int panfrost_mmu_map_fault_addr(struct panfrost_device *pfdev, int as, 588 u64 addr) 589 { 590 int ret, i; 591 struct panfrost_gem_mapping *bomapping; 592 struct panfrost_gem_object *bo; 593 struct address_space *mapping; 594 struct drm_gem_object *obj; 595 pgoff_t page_offset; 596 struct sg_table *sgt; 597 struct page **pages; 598 599 bomapping = addr_to_mapping(pfdev, as, addr); 600 if (!bomapping) 601 return -ENOENT; 602 603 bo = bomapping->obj; 604 if (!bo->is_heap) { 605 dev_WARN(pfdev->base.dev, "matching BO is not heap type (GPU VA = %llx)", 606 bomapping->mmnode.start << PAGE_SHIFT); 607 ret = -EINVAL; 608 goto err_bo; 609 } 610 WARN_ON(bomapping->mmu->as != as); 611 612 /* Assume 2MB alignment and size multiple */ 613 addr &= ~((u64)SZ_2M - 1); 614 page_offset = addr >> PAGE_SHIFT; 615 page_offset -= bomapping->mmnode.start; 616 617 obj = &bo->base.base; 618 619 dma_resv_lock(obj->resv, NULL); 620 621 if (!bo->base.pages) { 622 bo->sgts = kvmalloc_array(bo->base.base.size / SZ_2M, 623 sizeof(struct sg_table), GFP_KERNEL | __GFP_ZERO); 624 if (!bo->sgts) { 625 ret = -ENOMEM; 626 goto err_unlock; 627 } 628 629 pages = kvmalloc_array(bo->base.base.size >> PAGE_SHIFT, 630 sizeof(struct page *), GFP_KERNEL | __GFP_ZERO); 631 if (!pages) { 632 kvfree(bo->sgts); 633 bo->sgts = NULL; 634 ret = -ENOMEM; 635 goto err_unlock; 636 } 637 bo->base.pages = pages; 638 refcount_set(&bo->base.pages_use_count, 1); 639 } else { 640 pages = bo->base.pages; 641 } 642 643 sgt = &bo->sgts[page_offset / (SZ_2M / PAGE_SIZE)]; 644 if (sgt->sgl) { 645 /* Pages are already mapped, bail out. */ 646 goto out; 647 } 648 649 mapping = bo->base.base.filp->f_mapping; 650 mapping_set_unevictable(mapping); 651 652 for (i = page_offset; i < page_offset + NUM_FAULT_PAGES; i++) { 653 /* Can happen if the last fault only partially filled this 654 * section of the pages array before failing. In that case 655 * we skip already filled pages. 656 */ 657 if (pages[i]) 658 continue; 659 660 pages[i] = shmem_read_mapping_page(mapping, i); 661 if (IS_ERR(pages[i])) { 662 ret = PTR_ERR(pages[i]); 663 pages[i] = NULL; 664 goto err_unlock; 665 } 666 } 667 668 ret = sg_alloc_table_from_pages(sgt, pages + page_offset, 669 NUM_FAULT_PAGES, 0, SZ_2M, GFP_KERNEL); 670 if (ret) 671 goto err_unlock; 672 673 ret = dma_map_sgtable(pfdev->base.dev, sgt, DMA_BIDIRECTIONAL, 0); 674 if (ret) 675 goto err_map; 676 677 ret = mmu_map_sg(pfdev, bomapping->mmu, addr, 678 IOMMU_WRITE | IOMMU_READ | IOMMU_CACHE | IOMMU_NOEXEC, sgt); 679 if (ret) 680 goto err_mmu_map_sg; 681 682 bomapping->active = true; 683 bo->heap_rss_size += SZ_2M; 684 685 dev_dbg(pfdev->base.dev, "mapped page fault @ AS%d %llx", as, addr); 686 687 out: 688 dma_resv_unlock(obj->resv); 689 690 panfrost_gem_mapping_put(bomapping); 691 692 return 0; 693 694 err_mmu_map_sg: 695 dma_unmap_sgtable(pfdev->base.dev, sgt, DMA_BIDIRECTIONAL, 0); 696 err_map: 697 sg_free_table(sgt); 698 err_unlock: 699 dma_resv_unlock(obj->resv); 700 err_bo: 701 panfrost_gem_mapping_put(bomapping); 702 return ret; 703 } 704 705 static void panfrost_mmu_release_ctx(struct kref *kref) 706 { 707 struct panfrost_mmu *mmu = container_of(kref, struct panfrost_mmu, 708 refcount); 709 struct panfrost_device *pfdev = mmu->pfdev; 710 711 spin_lock(&pfdev->as_lock); 712 if (mmu->as >= 0) { 713 pm_runtime_get_noresume(pfdev->base.dev); 714 if (pm_runtime_active(pfdev->base.dev)) 715 panfrost_mmu_disable(pfdev, mmu->as); 716 pm_runtime_put_autosuspend(pfdev->base.dev); 717 718 clear_bit(mmu->as, &pfdev->as_alloc_mask); 719 list_del(&mmu->list); 720 } 721 spin_unlock(&pfdev->as_lock); 722 723 free_io_pgtable_ops(mmu->pgtbl_ops); 724 drm_mm_takedown(&mmu->mm); 725 kfree(mmu); 726 } 727 728 void panfrost_mmu_ctx_put(struct panfrost_mmu *mmu) 729 { 730 kref_put(&mmu->refcount, panfrost_mmu_release_ctx); 731 } 732 733 struct panfrost_mmu *panfrost_mmu_ctx_get(struct panfrost_mmu *mmu) 734 { 735 kref_get(&mmu->refcount); 736 737 return mmu; 738 } 739 740 #define PFN_4G (SZ_4G >> PAGE_SHIFT) 741 #define PFN_4G_MASK (PFN_4G - 1) 742 #define PFN_16M (SZ_16M >> PAGE_SHIFT) 743 744 static void panfrost_drm_mm_color_adjust(const struct drm_mm_node *node, 745 unsigned long color, 746 u64 *start, u64 *end) 747 { 748 /* Executable buffers can't start or end on a 4GB boundary */ 749 if (!(color & PANFROST_BO_NOEXEC)) { 750 u64 next_seg; 751 752 if ((*start & PFN_4G_MASK) == 0) 753 (*start)++; 754 755 if ((*end & PFN_4G_MASK) == 0) 756 (*end)--; 757 758 next_seg = ALIGN(*start, PFN_4G); 759 if (next_seg - *start <= PFN_16M) 760 *start = next_seg + 1; 761 762 *end = min(*end, ALIGN(*start, PFN_4G) - 1); 763 } 764 } 765 766 struct panfrost_mmu *panfrost_mmu_ctx_create(struct panfrost_device *pfdev) 767 { 768 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(pfdev->features.mmu_features); 769 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(pfdev->features.mmu_features); 770 struct panfrost_mmu *mmu; 771 enum io_pgtable_fmt fmt; 772 int ret; 773 774 if (pfdev->comp->gpu_quirks & BIT(GPU_QUIRK_FORCE_AARCH64_PGTABLE)) { 775 if (!panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU)) { 776 dev_err_once(pfdev->base.dev, 777 "AARCH64_4K page table not supported\n"); 778 return ERR_PTR(-EINVAL); 779 } 780 fmt = ARM_64_LPAE_S1; 781 } else { 782 fmt = ARM_MALI_LPAE; 783 } 784 785 mmu = kzalloc(sizeof(*mmu), GFP_KERNEL); 786 if (!mmu) 787 return ERR_PTR(-ENOMEM); 788 789 mmu->pfdev = pfdev; 790 spin_lock_init(&mmu->mm_lock); 791 792 /* 4G enough for now. can be 48-bit */ 793 drm_mm_init(&mmu->mm, SZ_32M >> PAGE_SHIFT, (SZ_4G - SZ_32M) >> PAGE_SHIFT); 794 mmu->mm.color_adjust = panfrost_drm_mm_color_adjust; 795 796 INIT_LIST_HEAD(&mmu->list); 797 mmu->as = -1; 798 799 mmu->pgtbl_cfg = (struct io_pgtable_cfg) { 800 .pgsize_bitmap = SZ_4K | SZ_2M, 801 .ias = va_bits, 802 .oas = pa_bits, 803 .coherent_walk = pfdev->coherent, 804 .tlb = &mmu_tlb_ops, 805 .iommu_dev = pfdev->base.dev, 806 }; 807 808 mmu->pgtbl_ops = alloc_io_pgtable_ops(fmt, &mmu->pgtbl_cfg, mmu); 809 if (!mmu->pgtbl_ops) { 810 ret = -EINVAL; 811 goto err_free_mmu; 812 } 813 814 ret = panfrost_mmu_cfg_init(mmu, fmt); 815 if (ret) 816 goto err_free_io_pgtable; 817 818 kref_init(&mmu->refcount); 819 820 return mmu; 821 822 err_free_io_pgtable: 823 free_io_pgtable_ops(mmu->pgtbl_ops); 824 825 err_free_mmu: 826 kfree(mmu); 827 return ERR_PTR(ret); 828 } 829 830 static const char *access_type_name(struct panfrost_device *pfdev, 831 u32 fault_status) 832 { 833 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) { 834 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC: 835 if (panfrost_has_hw_feature(pfdev, HW_FEATURE_AARCH64_MMU)) 836 return "ATOMIC"; 837 else 838 return "UNKNOWN"; 839 case AS_FAULTSTATUS_ACCESS_TYPE_READ: 840 return "READ"; 841 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE: 842 return "WRITE"; 843 case AS_FAULTSTATUS_ACCESS_TYPE_EX: 844 return "EXECUTE"; 845 default: 846 WARN_ON(1); 847 return NULL; 848 } 849 } 850 851 static irqreturn_t panfrost_mmu_irq_handler(int irq, void *data) 852 { 853 struct panfrost_device *pfdev = data; 854 855 if (test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended)) 856 return IRQ_NONE; 857 858 if (!mmu_read(pfdev, MMU_INT_STAT)) 859 return IRQ_NONE; 860 861 mmu_write(pfdev, MMU_INT_MASK, 0); 862 return IRQ_WAKE_THREAD; 863 } 864 865 static irqreturn_t panfrost_mmu_irq_handler_thread(int irq, void *data) 866 { 867 struct panfrost_device *pfdev = data; 868 u32 status = mmu_read(pfdev, MMU_INT_RAWSTAT); 869 int ret; 870 871 while (status) { 872 u32 as = ffs(status | (status >> 16)) - 1; 873 u32 mask = BIT(as) | BIT(as + 16); 874 u64 addr; 875 u32 fault_status; 876 u32 exception_type; 877 u32 access_type; 878 u32 source_id; 879 880 fault_status = mmu_read(pfdev, AS_FAULTSTATUS(as)); 881 addr = mmu_read(pfdev, AS_FAULTADDRESS_LO(as)); 882 addr |= (u64)mmu_read(pfdev, AS_FAULTADDRESS_HI(as)) << 32; 883 884 /* decode the fault status */ 885 exception_type = fault_status & 0xFF; 886 access_type = (fault_status >> 8) & 0x3; 887 source_id = (fault_status >> 16); 888 889 mmu_write(pfdev, MMU_INT_CLEAR, mask); 890 891 /* Page fault only */ 892 ret = -1; 893 if ((status & mask) == BIT(as) && (exception_type & 0xF8) == 0xC0) 894 ret = panfrost_mmu_map_fault_addr(pfdev, as, addr); 895 896 if (ret) { 897 /* terminal fault, print info about the fault */ 898 dev_err(pfdev->base.dev, 899 "Unhandled Page fault in AS%d at VA 0x%016llX\n" 900 "Reason: %s\n" 901 "raw fault status: 0x%X\n" 902 "decoded fault status: %s\n" 903 "exception type 0x%X: %s\n" 904 "access type 0x%X: %s\n" 905 "source id 0x%X\n", 906 as, addr, 907 "TODO", 908 fault_status, 909 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"), 910 exception_type, panfrost_exception_name(exception_type), 911 access_type, access_type_name(pfdev, fault_status), 912 source_id); 913 914 spin_lock(&pfdev->as_lock); 915 /* Ignore MMU interrupts on this AS until it's been 916 * re-enabled. 917 */ 918 pfdev->as_faulty_mask |= mask; 919 920 /* Disable the MMU to kill jobs on this AS. */ 921 panfrost_mmu_disable(pfdev, as); 922 spin_unlock(&pfdev->as_lock); 923 } 924 925 status &= ~mask; 926 927 /* If we received new MMU interrupts, process them before returning. */ 928 if (!status) 929 status = mmu_read(pfdev, MMU_INT_RAWSTAT) & ~pfdev->as_faulty_mask; 930 } 931 932 /* Enable interrupts only if we're not about to get suspended */ 933 if (!test_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended)) { 934 spin_lock(&pfdev->as_lock); 935 mmu_write(pfdev, MMU_INT_MASK, ~pfdev->as_faulty_mask); 936 spin_unlock(&pfdev->as_lock); 937 } 938 939 return IRQ_HANDLED; 940 }; 941 942 int panfrost_mmu_init(struct panfrost_device *pfdev) 943 { 944 int err; 945 946 pfdev->mmu_irq = platform_get_irq_byname(to_platform_device(pfdev->base.dev), "mmu"); 947 if (pfdev->mmu_irq < 0) 948 return pfdev->mmu_irq; 949 950 err = devm_request_threaded_irq(pfdev->base.dev, pfdev->mmu_irq, 951 panfrost_mmu_irq_handler, 952 panfrost_mmu_irq_handler_thread, 953 IRQF_SHARED, KBUILD_MODNAME "-mmu", 954 pfdev); 955 956 if (err) { 957 dev_err(pfdev->base.dev, "failed to request mmu irq"); 958 return err; 959 } 960 961 return 0; 962 } 963 964 void panfrost_mmu_fini(struct panfrost_device *pfdev) 965 { 966 mmu_write(pfdev, MMU_INT_MASK, 0); 967 } 968 969 void panfrost_mmu_suspend_irq(struct panfrost_device *pfdev) 970 { 971 set_bit(PANFROST_COMP_BIT_MMU, pfdev->is_suspended); 972 973 mmu_write(pfdev, MMU_INT_MASK, 0); 974 synchronize_irq(pfdev->mmu_irq); 975 } 976