1 /* 2 * Copyright 2011 Red Hat Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: Ben Skeggs 23 */ 24 #include "disp.h" 25 #include "atom.h" 26 #include "core.h" 27 #include "head.h" 28 #include "wndw.h" 29 #include "handles.h" 30 31 #include <linux/dma-mapping.h> 32 #include <linux/hdmi.h> 33 #include <linux/component.h> 34 #include <linux/iopoll.h> 35 36 #include <drm/display/drm_dp_helper.h> 37 #include <drm/display/drm_scdc_helper.h> 38 #include <drm/drm_atomic.h> 39 #include <drm/drm_atomic_helper.h> 40 #include <drm/drm_edid.h> 41 #include <drm/drm_eld.h> 42 #include <drm/drm_fb_helper.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_vblank.h> 45 46 #include <nvif/push507c.h> 47 48 #include <nvif/class.h> 49 #include <nvif/cl0002.h> 50 #include <nvif/event.h> 51 #include <nvif/if0012.h> 52 #include <nvif/if0014.h> 53 #include <nvif/timer.h> 54 55 #include <nvhw/class/cl507c.h> 56 #include <nvhw/class/cl507d.h> 57 #include <nvhw/class/cl837d.h> 58 #include <nvhw/class/cl887d.h> 59 #include <nvhw/class/cl907d.h> 60 #include <nvhw/class/cl917d.h> 61 62 #include "nouveau_drv.h" 63 #include "nouveau_dma.h" 64 #include "nouveau_gem.h" 65 #include "nouveau_connector.h" 66 #include "nouveau_encoder.h" 67 #include "nouveau_fence.h" 68 #include "nv50_display.h" 69 70 /****************************************************************************** 71 * EVO channel 72 *****************************************************************************/ 73 74 static int 75 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, 76 const s32 *oclass, u8 head, void *data, u32 size, 77 struct nv50_chan *chan) 78 { 79 struct nvif_sclass *sclass; 80 int ret, i, n; 81 82 chan->device = device; 83 84 ret = n = nvif_object_sclass_get(disp, &sclass); 85 if (ret < 0) 86 return ret; 87 88 while (oclass[0]) { 89 for (i = 0; i < n; i++) { 90 if (sclass[i].oclass == oclass[0]) { 91 ret = nvif_object_ctor(disp, "kmsChan", 0, 92 oclass[0], data, size, 93 &chan->user); 94 if (ret == 0) 95 nvif_object_map(&chan->user, NULL, 0); 96 nvif_object_sclass_put(&sclass); 97 return ret; 98 } 99 } 100 oclass++; 101 } 102 103 nvif_object_sclass_put(&sclass); 104 return -ENOSYS; 105 } 106 107 static void 108 nv50_chan_destroy(struct nv50_chan *chan) 109 { 110 nvif_object_dtor(&chan->user); 111 } 112 113 /****************************************************************************** 114 * DMA EVO channel 115 *****************************************************************************/ 116 117 void 118 nv50_dmac_destroy(struct nv50_dmac *dmac) 119 { 120 nvif_object_dtor(&dmac->vram); 121 nvif_object_dtor(&dmac->sync); 122 123 nv50_chan_destroy(&dmac->base); 124 125 nvif_mem_dtor(&dmac->_push.mem); 126 } 127 128 static void 129 nv50_dmac_kick(struct nvif_push *push) 130 { 131 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 132 133 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 134 if (dmac->put != dmac->cur) { 135 /* Push buffer fetches are not coherent with BAR1, we need to ensure 136 * writes have been flushed right through to VRAM before writing PUT. 137 */ 138 if (dmac->push->mem.type & NVIF_MEM_VRAM) { 139 struct nvif_device *device = dmac->base.device; 140 nvif_wr32(&device->object, 0x070000, 0x00000001); 141 nvif_msec(device, 2000, 142 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) 143 break; 144 ); 145 } 146 147 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); 148 dmac->put = dmac->cur; 149 } 150 151 push->bgn = push->cur; 152 } 153 154 static int 155 nv50_dmac_free(struct nv50_dmac *dmac) 156 { 157 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 158 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ 159 return get - dmac->cur - 5; 160 return dmac->max - dmac->cur; 161 } 162 163 static int 164 nv50_dmac_wind(struct nv50_dmac *dmac) 165 { 166 /* Wait for GET to depart from the beginning of the push buffer to 167 * prevent writing PUT == GET, which would be ignored by HW. 168 */ 169 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); 170 if (get == 0) { 171 /* Corner-case, HW idle, but non-committed work pending. */ 172 if (dmac->put == 0) 173 nv50_dmac_kick(dmac->push); 174 175 if (nvif_msec(dmac->base.device, 2000, 176 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) 177 break; 178 ) < 0) 179 return -ETIMEDOUT; 180 } 181 182 PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); 183 dmac->cur = 0; 184 return 0; 185 } 186 187 static int 188 nv50_dmac_wait(struct nvif_push *push, u32 size) 189 { 190 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); 191 int free; 192 193 if (WARN_ON(size > dmac->max)) 194 return -EINVAL; 195 196 dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; 197 if (dmac->cur + size >= dmac->max) { 198 int ret = nv50_dmac_wind(dmac); 199 if (ret) 200 return ret; 201 202 push->cur = dmac->_push.mem.object.map.ptr; 203 push->cur = push->cur + dmac->cur; 204 nv50_dmac_kick(push); 205 } 206 207 if (nvif_msec(dmac->base.device, 2000, 208 if ((free = nv50_dmac_free(dmac)) >= size) 209 break; 210 ) < 0) { 211 WARN_ON(1); 212 return -ETIMEDOUT; 213 } 214 215 push->bgn = dmac->_push.mem.object.map.ptr; 216 push->bgn = push->bgn + dmac->cur; 217 push->cur = push->bgn; 218 push->end = push->cur + free; 219 return 0; 220 } 221 222 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); 223 static int nv50_dmac_vram_pushbuf = -1; 224 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); 225 226 int 227 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, 228 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, 229 struct nv50_dmac *dmac) 230 { 231 struct nouveau_cli *cli = (void *)device->object.client; 232 struct nvif_disp_chan_v0 *args = data; 233 u8 type = NVIF_MEM_COHERENT; 234 int ret; 235 236 mutex_init(&dmac->lock); 237 238 /* Pascal added support for 47-bit physical addresses, but some 239 * parts of EVO still only accept 40-bit PAs. 240 * 241 * To avoid issues on systems with large amounts of RAM, and on 242 * systems where an IOMMU maps pages at a high address, we need 243 * to allocate push buffers in VRAM instead. 244 * 245 * This appears to match NVIDIA's behaviour on Pascal. 246 */ 247 if ((nv50_dmac_vram_pushbuf > 0) || 248 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) 249 type |= NVIF_MEM_VRAM; 250 251 ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, 252 &dmac->_push.mem); 253 if (ret) 254 return ret; 255 256 dmac->ptr = dmac->_push.mem.object.map.ptr; 257 dmac->_push.wait = nv50_dmac_wait; 258 dmac->_push.kick = nv50_dmac_kick; 259 dmac->push = &dmac->_push; 260 dmac->push->bgn = dmac->_push.mem.object.map.ptr; 261 dmac->push->cur = dmac->push->bgn; 262 dmac->push->end = dmac->push->bgn; 263 dmac->max = 0x1000/4 - 1; 264 265 /* EVO channels are affected by a HW bug where the last 12 DWORDs 266 * of the push buffer aren't able to be used safely. 267 */ 268 if (disp->oclass < GV100_DISP) 269 dmac->max -= 12; 270 271 args->pushbuf = nvif_handle(&dmac->_push.mem.object); 272 273 ret = nv50_chan_create(device, disp, oclass, head, data, size, 274 &dmac->base); 275 if (ret) 276 return ret; 277 278 if (syncbuf < 0) 279 return 0; 280 281 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, 282 NV_DMA_IN_MEMORY, 283 &(struct nv_dma_v0) { 284 .target = NV_DMA_V0_TARGET_VRAM, 285 .access = NV_DMA_V0_ACCESS_RDWR, 286 .start = syncbuf + 0x0000, 287 .limit = syncbuf + 0x0fff, 288 }, sizeof(struct nv_dma_v0), 289 &dmac->sync); 290 if (ret) 291 return ret; 292 293 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, 294 NV_DMA_IN_MEMORY, 295 &(struct nv_dma_v0) { 296 .target = NV_DMA_V0_TARGET_VRAM, 297 .access = NV_DMA_V0_ACCESS_RDWR, 298 .start = 0, 299 .limit = device->info.ram_user - 1, 300 }, sizeof(struct nv_dma_v0), 301 &dmac->vram); 302 if (ret) 303 return ret; 304 305 return ret; 306 } 307 308 /****************************************************************************** 309 * Output path helpers 310 *****************************************************************************/ 311 static void 312 nv50_outp_dump_caps(struct nouveau_drm *drm, 313 struct nouveau_encoder *outp) 314 { 315 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", 316 outp->base.base.name, outp->caps.dp_interlace); 317 } 318 319 static int 320 nv50_outp_atomic_check_view(struct drm_encoder *encoder, 321 struct drm_crtc_state *crtc_state, 322 struct drm_connector_state *conn_state, 323 struct drm_display_mode *native_mode) 324 { 325 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; 326 struct drm_display_mode *mode = &crtc_state->mode; 327 struct drm_connector *connector = conn_state->connector; 328 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); 329 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 330 331 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); 332 asyc->scaler.full = false; 333 if (!native_mode) 334 return 0; 335 336 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { 337 switch (connector->connector_type) { 338 case DRM_MODE_CONNECTOR_LVDS: 339 case DRM_MODE_CONNECTOR_eDP: 340 /* Don't force scaler for EDID modes with 341 * same size as the native one (e.g. different 342 * refresh rate) 343 */ 344 if (mode->hdisplay == native_mode->hdisplay && 345 mode->vdisplay == native_mode->vdisplay && 346 mode->type & DRM_MODE_TYPE_DRIVER) 347 break; 348 mode = native_mode; 349 asyc->scaler.full = true; 350 break; 351 default: 352 break; 353 } 354 } else { 355 mode = native_mode; 356 } 357 358 if (!drm_mode_equal(adjusted_mode, mode)) { 359 drm_mode_copy(adjusted_mode, mode); 360 crtc_state->mode_changed = true; 361 } 362 363 return 0; 364 } 365 366 static void 367 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) 368 { 369 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 370 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 371 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 372 unsigned int max_rate, mode_rate; 373 374 switch (nv_encoder->dcb->type) { 375 case DCB_OUTPUT_DP: 376 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; 377 378 /* we don't support more than 10 anyway */ 379 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); 380 381 /* reduce the bpc until it works out */ 382 while (asyh->or.bpc > 6) { 383 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); 384 if (mode_rate <= max_rate) 385 break; 386 387 asyh->or.bpc -= 2; 388 } 389 break; 390 default: 391 break; 392 } 393 } 394 395 static int 396 nv50_outp_atomic_check(struct drm_encoder *encoder, 397 struct drm_crtc_state *crtc_state, 398 struct drm_connector_state *conn_state) 399 { 400 struct drm_connector *connector = conn_state->connector; 401 struct nouveau_connector *nv_connector = nouveau_connector(connector); 402 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 403 int ret; 404 405 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 406 nv_connector->native_mode); 407 if (ret) 408 return ret; 409 410 if (crtc_state->mode_changed || crtc_state->connectors_changed) 411 asyh->or.bpc = connector->display_info.bpc; 412 413 /* We might have to reduce the bpc */ 414 nv50_outp_atomic_fix_depth(encoder, crtc_state); 415 416 return 0; 417 } 418 419 struct nouveau_connector * 420 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 421 { 422 struct drm_connector *connector; 423 struct drm_connector_state *connector_state; 424 struct drm_encoder *encoder = to_drm_encoder(outp); 425 int i; 426 427 for_each_new_connector_in_state(state, connector, connector_state, i) { 428 if (connector_state->best_encoder == encoder) 429 return nouveau_connector(connector); 430 } 431 432 return NULL; 433 } 434 435 struct nouveau_connector * 436 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) 437 { 438 struct drm_connector *connector; 439 struct drm_connector_state *connector_state; 440 struct drm_encoder *encoder = to_drm_encoder(outp); 441 int i; 442 443 for_each_old_connector_in_state(state, connector, connector_state, i) { 444 if (connector_state->best_encoder == encoder) 445 return nouveau_connector(connector); 446 } 447 448 return NULL; 449 } 450 451 static struct nouveau_crtc * 452 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) 453 { 454 struct drm_crtc *crtc; 455 struct drm_crtc_state *crtc_state; 456 const u32 mask = drm_encoder_mask(&outp->base.base); 457 int i; 458 459 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 460 if (crtc_state->encoder_mask & mask) 461 return nouveau_crtc(crtc); 462 } 463 464 return NULL; 465 } 466 467 /****************************************************************************** 468 * DAC 469 *****************************************************************************/ 470 static void 471 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 472 { 473 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 474 struct nv50_core *core = nv50_disp(encoder->dev)->core; 475 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); 476 477 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 478 nv_encoder->crtc = NULL; 479 } 480 481 static void 482 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 483 { 484 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 485 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 486 struct nv50_head_atom *asyh = 487 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 488 struct nv50_core *core = nv50_disp(encoder->dev)->core; 489 u32 ctrl = 0; 490 491 switch (nv_crtc->index) { 492 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; 493 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; 494 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; 495 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; 496 default: 497 WARN_ON(1); 498 break; 499 } 500 501 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); 502 503 if (!nvif_outp_acquired(&nv_encoder->outp)) 504 nvif_outp_acquire_dac(&nv_encoder->outp); 505 506 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 507 asyh->or.depth = 0; 508 509 nv_encoder->crtc = &nv_crtc->base; 510 } 511 512 static enum drm_connector_status 513 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) 514 { 515 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 516 u32 loadval; 517 int ret; 518 519 loadval = nouveau_drm(encoder->dev)->vbios.dactestval; 520 if (loadval == 0) 521 loadval = 340; 522 523 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); 524 if (ret <= 0) 525 return connector_status_disconnected; 526 527 return connector_status_connected; 528 } 529 530 static const struct drm_encoder_helper_funcs 531 nv50_dac_help = { 532 .atomic_check = nv50_outp_atomic_check, 533 .atomic_enable = nv50_dac_atomic_enable, 534 .atomic_disable = nv50_dac_atomic_disable, 535 .detect = nv50_dac_detect 536 }; 537 538 static void 539 nv50_dac_destroy(struct drm_encoder *encoder) 540 { 541 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 542 543 nvif_outp_dtor(&nv_encoder->outp); 544 545 drm_encoder_cleanup(encoder); 546 kfree(encoder); 547 } 548 549 static const struct drm_encoder_funcs 550 nv50_dac_func = { 551 .destroy = nv50_dac_destroy, 552 }; 553 554 static int 555 nv50_dac_create(struct nouveau_encoder *nv_encoder) 556 { 557 struct drm_connector *connector = &nv_encoder->conn->base; 558 struct nouveau_drm *drm = nouveau_drm(connector->dev); 559 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 560 struct nvkm_i2c_bus *bus; 561 struct drm_encoder *encoder; 562 struct dcb_output *dcbe = nv_encoder->dcb; 563 int type = DRM_MODE_ENCODER_DAC; 564 565 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 566 if (bus) 567 nv_encoder->i2c = &bus->i2c; 568 569 encoder = to_drm_encoder(nv_encoder); 570 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, 571 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); 572 drm_encoder_helper_add(encoder, &nv50_dac_help); 573 574 drm_connector_attach_encoder(connector, encoder); 575 return 0; 576 } 577 578 /* 579 * audio component binding for ELD notification 580 */ 581 static void 582 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, 583 int dev_id) 584 { 585 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) 586 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, 587 port, dev_id); 588 } 589 590 static int 591 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, 592 bool *enabled, unsigned char *buf, int max_bytes) 593 { 594 struct drm_device *drm_dev = dev_get_drvdata(kdev); 595 struct nouveau_drm *drm = nouveau_drm(drm_dev); 596 struct drm_encoder *encoder; 597 struct nouveau_encoder *nv_encoder; 598 struct nouveau_crtc *nv_crtc; 599 int ret = 0; 600 601 *enabled = false; 602 603 mutex_lock(&drm->audio.lock); 604 605 drm_for_each_encoder(encoder, drm->dev) { 606 struct nouveau_connector *nv_connector = NULL; 607 608 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 609 continue; /* TODO */ 610 611 nv_encoder = nouveau_encoder(encoder); 612 nv_connector = nv_encoder->conn; 613 nv_crtc = nouveau_crtc(nv_encoder->crtc); 614 615 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) 616 continue; 617 618 *enabled = nv_encoder->audio.enabled; 619 if (*enabled) { 620 ret = drm_eld_size(nv_connector->base.eld); 621 memcpy(buf, nv_connector->base.eld, 622 min(max_bytes, ret)); 623 } 624 break; 625 } 626 627 mutex_unlock(&drm->audio.lock); 628 629 return ret; 630 } 631 632 static const struct drm_audio_component_ops nv50_audio_component_ops = { 633 .get_eld = nv50_audio_component_get_eld, 634 }; 635 636 static int 637 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, 638 void *data) 639 { 640 struct drm_device *drm_dev = dev_get_drvdata(kdev); 641 struct nouveau_drm *drm = nouveau_drm(drm_dev); 642 struct drm_audio_component *acomp = data; 643 644 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) 645 return -ENOMEM; 646 647 drm_modeset_lock_all(drm_dev); 648 acomp->ops = &nv50_audio_component_ops; 649 acomp->dev = kdev; 650 drm->audio.component = acomp; 651 drm_modeset_unlock_all(drm_dev); 652 return 0; 653 } 654 655 static void 656 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, 657 void *data) 658 { 659 struct drm_device *drm_dev = dev_get_drvdata(kdev); 660 struct nouveau_drm *drm = nouveau_drm(drm_dev); 661 struct drm_audio_component *acomp = data; 662 663 drm_modeset_lock_all(drm_dev); 664 drm->audio.component = NULL; 665 acomp->ops = NULL; 666 acomp->dev = NULL; 667 drm_modeset_unlock_all(drm_dev); 668 } 669 670 static const struct component_ops nv50_audio_component_bind_ops = { 671 .bind = nv50_audio_component_bind, 672 .unbind = nv50_audio_component_unbind, 673 }; 674 675 static void 676 nv50_audio_component_init(struct nouveau_drm *drm) 677 { 678 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) 679 return; 680 681 drm->audio.component_registered = true; 682 mutex_init(&drm->audio.lock); 683 } 684 685 static void 686 nv50_audio_component_fini(struct nouveau_drm *drm) 687 { 688 if (!drm->audio.component_registered) 689 return; 690 691 component_del(drm->dev->dev, &nv50_audio_component_bind_ops); 692 drm->audio.component_registered = false; 693 mutex_destroy(&drm->audio.lock); 694 } 695 696 /****************************************************************************** 697 * Audio 698 *****************************************************************************/ 699 static bool 700 nv50_audio_supported(struct drm_encoder *encoder) 701 { 702 struct nv50_disp *disp = nv50_disp(encoder->dev); 703 704 if (disp->disp->object.oclass <= GT200_DISP || 705 disp->disp->object.oclass == GT206_DISP) 706 return false; 707 708 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 709 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 710 711 switch (nv_encoder->dcb->type) { 712 case DCB_OUTPUT_TMDS: 713 case DCB_OUTPUT_DP: 714 break; 715 default: 716 return false; 717 } 718 } 719 720 return true; 721 } 722 723 static void 724 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) 725 { 726 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 727 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 728 struct nvif_outp *outp = &nv_encoder->outp; 729 730 if (!nv50_audio_supported(encoder)) 731 return; 732 733 mutex_lock(&drm->audio.lock); 734 if (nv_encoder->audio.enabled) { 735 nv_encoder->audio.enabled = false; 736 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); 737 } 738 mutex_unlock(&drm->audio.lock); 739 740 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 741 } 742 743 static void 744 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 745 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 746 struct drm_display_mode *mode) 747 { 748 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 749 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 750 struct nvif_outp *outp = &nv_encoder->outp; 751 752 if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) 753 return; 754 755 mutex_lock(&drm->audio.lock); 756 757 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, 758 drm_eld_size(nv_connector->base.eld)); 759 nv_encoder->audio.enabled = true; 760 761 mutex_unlock(&drm->audio.lock); 762 763 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); 764 } 765 766 /****************************************************************************** 767 * HDMI 768 *****************************************************************************/ 769 static void 770 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, 771 struct nouveau_connector *nv_connector, struct drm_atomic_state *state, 772 struct drm_display_mode *mode, bool hda) 773 { 774 struct nouveau_drm *drm = nouveau_drm(encoder->dev); 775 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 776 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; 777 union hdmi_infoframe infoframe = { 0 }; 778 const u8 rekey = 56; /* binary driver, and tegra, constant */ 779 u32 max_ac_packet; 780 struct { 781 struct nvif_outp_infoframe_v0 infoframe; 782 u8 data[17]; 783 } args = { 0 }; 784 int ret, size; 785 786 max_ac_packet = mode->htotal - mode->hdisplay; 787 max_ac_packet -= rekey; 788 max_ac_packet -= 18; /* constant from tegra */ 789 max_ac_packet /= 32; 790 791 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { 792 const bool high_tmds_clock_ratio = mode->clock > 340000; 793 u8 scdc; 794 795 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); 796 if (ret < 0) { 797 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); 798 return; 799 } 800 801 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); 802 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) 803 scdc |= SCDC_SCRAMBLING_ENABLE; 804 if (high_tmds_clock_ratio) 805 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; 806 807 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); 808 if (ret < 0) 809 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", 810 scdc, ret); 811 } 812 813 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, 814 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, 815 hdmi->scdc.scrambling.low_rates); 816 if (ret) 817 return; 818 819 /* AVI InfoFrame. */ 820 args.infoframe.version = 0; 821 args.infoframe.head = nv_crtc->index; 822 823 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { 824 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, 825 HDMI_QUANTIZATION_RANGE_FULL); 826 827 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 828 } else { 829 size = 0; 830 } 831 832 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); 833 834 /* Vendor InfoFrame. */ 835 memset(&args.data, 0, sizeof(args.data)); 836 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, 837 &nv_connector->base, mode)) 838 size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); 839 else 840 size = 0; 841 842 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); 843 844 nv_encoder->hdmi.enabled = true; 845 } 846 847 /****************************************************************************** 848 * MST 849 *****************************************************************************/ 850 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) 851 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) 852 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) 853 854 struct nv50_mstc { 855 struct nv50_mstm *mstm; 856 struct drm_dp_mst_port *port; 857 struct drm_connector connector; 858 859 struct drm_display_mode *native; 860 struct edid *edid; 861 }; 862 863 struct nv50_msto { 864 struct drm_encoder encoder; 865 866 /* head is statically assigned on msto creation */ 867 struct nv50_head *head; 868 struct nv50_mstc *mstc; 869 bool disabled; 870 bool enabled; 871 872 u32 display_id; 873 }; 874 875 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) 876 { 877 struct nv50_msto *msto; 878 879 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 880 return nouveau_encoder(encoder); 881 882 msto = nv50_msto(encoder); 883 if (!msto->mstc) 884 return NULL; 885 return msto->mstc->mstm->outp; 886 } 887 888 static void 889 nv50_msto_cleanup(struct drm_atomic_state *state, 890 struct drm_dp_mst_topology_state *new_mst_state, 891 struct drm_dp_mst_topology_mgr *mgr, 892 struct nv50_msto *msto) 893 { 894 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 895 struct drm_dp_mst_atomic_payload *new_payload = 896 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); 897 struct drm_dp_mst_topology_state *old_mst_state = 898 drm_atomic_get_old_mst_topology_state(state, mgr); 899 const struct drm_dp_mst_atomic_payload *old_payload = 900 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); 901 struct nv50_mstc *mstc = msto->mstc; 902 struct nv50_mstm *mstm = mstc->mstm; 903 904 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); 905 906 if (msto->disabled) { 907 if (msto->head->func->display_id) { 908 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); 909 msto->display_id = 0; 910 } 911 912 msto->mstc = NULL; 913 msto->disabled = false; 914 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); 915 } else if (msto->enabled) { 916 drm_dp_add_payload_part2(mgr, state, new_payload); 917 msto->enabled = false; 918 } 919 } 920 921 static void 922 nv50_msto_prepare(struct drm_atomic_state *state, 923 struct drm_dp_mst_topology_state *mst_state, 924 struct drm_dp_mst_topology_mgr *mgr, 925 struct nv50_msto *msto) 926 { 927 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); 928 struct nv50_mstc *mstc = msto->mstc; 929 struct nv50_mstm *mstm = mstc->mstm; 930 struct drm_dp_mst_atomic_payload *payload; 931 int ret = 0; 932 933 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); 934 935 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); 936 937 if (msto->disabled) { 938 drm_dp_remove_payload_part1(mgr, mst_state, payload); 939 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 940 ret = 1; 941 } else { 942 if (msto->enabled) 943 ret = drm_dp_add_payload_part1(mgr, mst_state, payload); 944 } 945 946 if (ret == 0) { 947 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 948 payload->vc_start_slot, payload->time_slots, 949 payload->pbn, payload->time_slots * mst_state->pbn_div); 950 } else { 951 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); 952 } 953 } 954 955 static int 956 nv50_msto_atomic_check(struct drm_encoder *encoder, 957 struct drm_crtc_state *crtc_state, 958 struct drm_connector_state *conn_state) 959 { 960 struct drm_atomic_state *state = crtc_state->state; 961 struct drm_connector *connector = conn_state->connector; 962 struct drm_dp_mst_topology_state *mst_state; 963 struct nv50_mstc *mstc = nv50_mstc(connector); 964 struct nv50_mstm *mstm = mstc->mstm; 965 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); 966 int slots; 967 int ret; 968 969 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, 970 mstc->native); 971 if (ret) 972 return ret; 973 974 if (!drm_atomic_crtc_needs_modeset(crtc_state)) 975 return 0; 976 977 /* 978 * When restoring duplicated states, we need to make sure that the bw 979 * remains the same and avoid recalculating it, as the connector's bpc 980 * may have changed after the state was duplicated 981 */ 982 if (!state->duplicated) { 983 const int clock = crtc_state->adjusted_mode.clock; 984 985 asyh->or.bpc = connector->display_info.bpc; 986 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, 987 false); 988 } 989 990 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); 991 if (IS_ERR(mst_state)) 992 return PTR_ERR(mst_state); 993 994 if (!mst_state->pbn_div) { 995 struct nouveau_encoder *outp = mstc->mstm->outp; 996 997 mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, 998 outp->dp.link_bw, outp->dp.link_nr); 999 } 1000 1001 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); 1002 if (slots < 0) 1003 return slots; 1004 1005 asyh->dp.tu = slots; 1006 1007 return 0; 1008 } 1009 1010 static u8 1011 nv50_dp_bpc_to_depth(unsigned int bpc) 1012 { 1013 switch (bpc) { 1014 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; 1015 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; 1016 case 10: 1017 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; 1018 } 1019 } 1020 1021 static void 1022 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1023 { 1024 struct nv50_msto *msto = nv50_msto(encoder); 1025 struct nv50_head *head = msto->head; 1026 struct nv50_head_atom *asyh = 1027 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); 1028 struct nv50_mstc *mstc = NULL; 1029 struct nv50_mstm *mstm = NULL; 1030 struct drm_connector *connector; 1031 struct drm_connector_list_iter conn_iter; 1032 u8 proto; 1033 1034 drm_connector_list_iter_begin(encoder->dev, &conn_iter); 1035 drm_for_each_connector_iter(connector, &conn_iter) { 1036 if (connector->state->best_encoder == &msto->encoder) { 1037 mstc = nv50_mstc(connector); 1038 mstm = mstc->mstm; 1039 break; 1040 } 1041 } 1042 drm_connector_list_iter_end(&conn_iter); 1043 1044 if (WARN_ON(!mstc)) 1045 return; 1046 1047 if (!mstm->links++) { 1048 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); 1049 nouveau_dp_train(mstm->outp, true, 0, 0); 1050 } 1051 1052 if (head->func->display_id) { 1053 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) 1054 head->func->display_id(head, msto->display_id); 1055 } 1056 1057 if (mstm->outp->outp.or.link & 1) 1058 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1059 else 1060 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1061 1062 mstm->outp->update(mstm->outp, head->base.index, asyh, proto, 1063 nv50_dp_bpc_to_depth(asyh->or.bpc)); 1064 1065 msto->mstc = mstc; 1066 msto->enabled = true; 1067 mstm->modified = true; 1068 } 1069 1070 static void 1071 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1072 { 1073 struct nv50_msto *msto = nv50_msto(encoder); 1074 struct nv50_mstc *mstc = msto->mstc; 1075 struct nv50_mstm *mstm = mstc->mstm; 1076 1077 if (msto->head->func->display_id) 1078 msto->head->func->display_id(msto->head, 0); 1079 1080 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); 1081 mstm->modified = true; 1082 if (!--mstm->links) 1083 mstm->disabled = true; 1084 msto->disabled = true; 1085 } 1086 1087 static const struct drm_encoder_helper_funcs 1088 nv50_msto_help = { 1089 .atomic_disable = nv50_msto_atomic_disable, 1090 .atomic_enable = nv50_msto_atomic_enable, 1091 .atomic_check = nv50_msto_atomic_check, 1092 }; 1093 1094 static void 1095 nv50_msto_destroy(struct drm_encoder *encoder) 1096 { 1097 struct nv50_msto *msto = nv50_msto(encoder); 1098 drm_encoder_cleanup(&msto->encoder); 1099 kfree(msto); 1100 } 1101 1102 static const struct drm_encoder_funcs 1103 nv50_msto = { 1104 .destroy = nv50_msto_destroy, 1105 }; 1106 1107 static struct nv50_msto * 1108 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) 1109 { 1110 struct nv50_msto *msto; 1111 int ret; 1112 1113 msto = kzalloc(sizeof(*msto), GFP_KERNEL); 1114 if (!msto) 1115 return ERR_PTR(-ENOMEM); 1116 1117 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, 1118 DRM_MODE_ENCODER_DPMST, "mst-%d", id); 1119 if (ret) { 1120 kfree(msto); 1121 return ERR_PTR(ret); 1122 } 1123 1124 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); 1125 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); 1126 msto->head = head; 1127 return msto; 1128 } 1129 1130 static struct drm_encoder * 1131 nv50_mstc_atomic_best_encoder(struct drm_connector *connector, 1132 struct drm_atomic_state *state) 1133 { 1134 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, 1135 connector); 1136 struct nv50_mstc *mstc = nv50_mstc(connector); 1137 struct drm_crtc *crtc = connector_state->crtc; 1138 1139 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1140 return NULL; 1141 1142 return &nv50_head(crtc)->msto->encoder; 1143 } 1144 1145 static enum drm_mode_status 1146 nv50_mstc_mode_valid(struct drm_connector *connector, 1147 struct drm_display_mode *mode) 1148 { 1149 struct nv50_mstc *mstc = nv50_mstc(connector); 1150 struct nouveau_encoder *outp = mstc->mstm->outp; 1151 1152 /* TODO: calculate the PBN from the dotclock and validate against the 1153 * MSTB's max possible PBN 1154 */ 1155 1156 return nv50_dp_mode_valid(outp, mode, NULL); 1157 } 1158 1159 static int 1160 nv50_mstc_get_modes(struct drm_connector *connector) 1161 { 1162 struct nv50_mstc *mstc = nv50_mstc(connector); 1163 int ret = 0; 1164 1165 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); 1166 drm_connector_update_edid_property(&mstc->connector, mstc->edid); 1167 if (mstc->edid) 1168 ret = drm_add_edid_modes(&mstc->connector, mstc->edid); 1169 1170 /* 1171 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc 1172 * to 8 to save bandwidth on the topology. In the future, we'll want 1173 * to properly fix this by dynamically selecting the highest possible 1174 * bpc that would fit in the topology 1175 */ 1176 if (connector->display_info.bpc) 1177 connector->display_info.bpc = 1178 clamp(connector->display_info.bpc, 6U, 8U); 1179 else 1180 connector->display_info.bpc = 8; 1181 1182 if (mstc->native) 1183 drm_mode_destroy(mstc->connector.dev, mstc->native); 1184 mstc->native = nouveau_conn_native_mode(&mstc->connector); 1185 return ret; 1186 } 1187 1188 static int 1189 nv50_mstc_atomic_check(struct drm_connector *connector, 1190 struct drm_atomic_state *state) 1191 { 1192 struct nv50_mstc *mstc = nv50_mstc(connector); 1193 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; 1194 1195 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); 1196 } 1197 1198 static int 1199 nv50_mstc_detect(struct drm_connector *connector, 1200 struct drm_modeset_acquire_ctx *ctx, bool force) 1201 { 1202 struct nv50_mstc *mstc = nv50_mstc(connector); 1203 int ret; 1204 1205 if (drm_connector_is_unregistered(connector)) 1206 return connector_status_disconnected; 1207 1208 ret = pm_runtime_get_sync(connector->dev->dev); 1209 if (ret < 0 && ret != -EACCES) { 1210 pm_runtime_put_autosuspend(connector->dev->dev); 1211 return connector_status_disconnected; 1212 } 1213 1214 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, 1215 mstc->port); 1216 if (ret != connector_status_connected) 1217 goto out; 1218 1219 out: 1220 pm_runtime_mark_last_busy(connector->dev->dev); 1221 pm_runtime_put_autosuspend(connector->dev->dev); 1222 return ret; 1223 } 1224 1225 static const struct drm_connector_helper_funcs 1226 nv50_mstc_help = { 1227 .get_modes = nv50_mstc_get_modes, 1228 .mode_valid = nv50_mstc_mode_valid, 1229 .atomic_best_encoder = nv50_mstc_atomic_best_encoder, 1230 .atomic_check = nv50_mstc_atomic_check, 1231 .detect_ctx = nv50_mstc_detect, 1232 }; 1233 1234 static void 1235 nv50_mstc_destroy(struct drm_connector *connector) 1236 { 1237 struct nv50_mstc *mstc = nv50_mstc(connector); 1238 1239 drm_connector_cleanup(&mstc->connector); 1240 drm_dp_mst_put_port_malloc(mstc->port); 1241 1242 kfree(mstc); 1243 } 1244 1245 static const struct drm_connector_funcs 1246 nv50_mstc = { 1247 .reset = nouveau_conn_reset, 1248 .fill_modes = drm_helper_probe_single_connector_modes, 1249 .destroy = nv50_mstc_destroy, 1250 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, 1251 .atomic_destroy_state = nouveau_conn_atomic_destroy_state, 1252 .atomic_set_property = nouveau_conn_atomic_set_property, 1253 .atomic_get_property = nouveau_conn_atomic_get_property, 1254 }; 1255 1256 static int 1257 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, 1258 const char *path, struct nv50_mstc **pmstc) 1259 { 1260 struct drm_device *dev = mstm->outp->base.base.dev; 1261 struct drm_crtc *crtc; 1262 struct nv50_mstc *mstc; 1263 int ret; 1264 1265 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) 1266 return -ENOMEM; 1267 mstc->mstm = mstm; 1268 mstc->port = port; 1269 1270 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, 1271 DRM_MODE_CONNECTOR_DisplayPort); 1272 if (ret) { 1273 kfree(*pmstc); 1274 *pmstc = NULL; 1275 return ret; 1276 } 1277 1278 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); 1279 1280 mstc->connector.funcs->reset(&mstc->connector); 1281 nouveau_conn_attach_properties(&mstc->connector); 1282 1283 drm_for_each_crtc(crtc, dev) { 1284 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) 1285 continue; 1286 1287 drm_connector_attach_encoder(&mstc->connector, 1288 &nv50_head(crtc)->msto->encoder); 1289 } 1290 1291 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); 1292 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); 1293 drm_connector_set_path_property(&mstc->connector, path); 1294 drm_dp_mst_get_port_malloc(port); 1295 return 0; 1296 } 1297 1298 static void 1299 nv50_mstm_cleanup(struct drm_atomic_state *state, 1300 struct drm_dp_mst_topology_state *mst_state, 1301 struct nv50_mstm *mstm) 1302 { 1303 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1304 struct drm_encoder *encoder; 1305 1306 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); 1307 drm_dp_check_act_status(&mstm->mgr); 1308 1309 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1310 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1311 struct nv50_msto *msto = nv50_msto(encoder); 1312 struct nv50_mstc *mstc = msto->mstc; 1313 if (mstc && mstc->mstm == mstm) 1314 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); 1315 } 1316 } 1317 1318 if (mstm->disabled) { 1319 nouveau_dp_power_down(mstm->outp); 1320 nvif_outp_release(&mstm->outp->outp); 1321 mstm->disabled = false; 1322 } 1323 1324 mstm->modified = false; 1325 } 1326 1327 static void 1328 nv50_mstm_prepare(struct drm_atomic_state *state, 1329 struct drm_dp_mst_topology_state *mst_state, 1330 struct nv50_mstm *mstm) 1331 { 1332 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); 1333 struct drm_encoder *encoder; 1334 1335 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); 1336 1337 /* Disable payloads first */ 1338 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1339 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1340 struct nv50_msto *msto = nv50_msto(encoder); 1341 struct nv50_mstc *mstc = msto->mstc; 1342 if (mstc && mstc->mstm == mstm && msto->disabled) 1343 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1344 } 1345 } 1346 1347 /* Add payloads for new heads, while also updating the start slots of any unmodified (but 1348 * active) heads that may have had their VC slots shifted left after the previous step 1349 */ 1350 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { 1351 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { 1352 struct nv50_msto *msto = nv50_msto(encoder); 1353 struct nv50_mstc *mstc = msto->mstc; 1354 if (mstc && mstc->mstm == mstm && !msto->disabled) 1355 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); 1356 } 1357 } 1358 } 1359 1360 static struct drm_connector * 1361 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, 1362 struct drm_dp_mst_port *port, const char *path) 1363 { 1364 struct nv50_mstm *mstm = nv50_mstm(mgr); 1365 struct nv50_mstc *mstc; 1366 int ret; 1367 1368 ret = nv50_mstc_new(mstm, port, path, &mstc); 1369 if (ret) 1370 return NULL; 1371 1372 return &mstc->connector; 1373 } 1374 1375 static const struct drm_dp_mst_topology_cbs 1376 nv50_mstm = { 1377 .add_connector = nv50_mstm_add_connector, 1378 }; 1379 1380 bool 1381 nv50_mstm_service(struct nouveau_drm *drm, 1382 struct nouveau_connector *nv_connector, 1383 struct nv50_mstm *mstm) 1384 { 1385 struct drm_dp_aux *aux = &nv_connector->aux; 1386 bool handled = true, ret = true; 1387 int rc; 1388 u8 esi[8] = {}; 1389 1390 while (handled) { 1391 u8 ack[8] = {}; 1392 1393 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); 1394 if (rc != 8) { 1395 ret = false; 1396 break; 1397 } 1398 1399 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); 1400 if (!handled) 1401 break; 1402 1403 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); 1404 1405 if (rc != 1) { 1406 ret = false; 1407 break; 1408 } 1409 1410 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); 1411 } 1412 1413 if (!ret) 1414 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", 1415 nv_connector->base.name, rc); 1416 1417 return ret; 1418 } 1419 1420 void 1421 nv50_mstm_remove(struct nv50_mstm *mstm) 1422 { 1423 mstm->is_mst = false; 1424 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); 1425 } 1426 1427 int 1428 nv50_mstm_detect(struct nouveau_encoder *outp) 1429 { 1430 struct nv50_mstm *mstm = outp->dp.mstm; 1431 struct drm_dp_aux *aux; 1432 int ret; 1433 1434 if (!mstm || !mstm->can_mst) 1435 return 0; 1436 1437 aux = mstm->mgr.aux; 1438 1439 /* Clear any leftover MST state we didn't set ourselves by first 1440 * disabling MST if it was already enabled 1441 */ 1442 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); 1443 if (ret < 0) 1444 return ret; 1445 1446 /* And start enabling */ 1447 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); 1448 if (ret) 1449 return ret; 1450 1451 mstm->is_mst = true; 1452 return 1; 1453 } 1454 1455 static void 1456 nv50_mstm_fini(struct nouveau_encoder *outp) 1457 { 1458 struct nv50_mstm *mstm = outp->dp.mstm; 1459 1460 if (!mstm) 1461 return; 1462 1463 /* Don't change the MST state of this connector until we've finished 1464 * resuming, since we can't safely grab hpd_irq_lock in our resume 1465 * path to protect mstm->is_mst without potentially deadlocking 1466 */ 1467 mutex_lock(&outp->dp.hpd_irq_lock); 1468 mstm->suspended = true; 1469 mutex_unlock(&outp->dp.hpd_irq_lock); 1470 1471 if (mstm->is_mst) 1472 drm_dp_mst_topology_mgr_suspend(&mstm->mgr); 1473 } 1474 1475 static void 1476 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) 1477 { 1478 struct nv50_mstm *mstm = outp->dp.mstm; 1479 int ret = 0; 1480 1481 if (!mstm) 1482 return; 1483 1484 if (mstm->is_mst) { 1485 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); 1486 if (ret == -1) 1487 nv50_mstm_remove(mstm); 1488 } 1489 1490 mutex_lock(&outp->dp.hpd_irq_lock); 1491 mstm->suspended = false; 1492 mutex_unlock(&outp->dp.hpd_irq_lock); 1493 1494 if (ret == -1) 1495 drm_kms_helper_hotplug_event(mstm->mgr.dev); 1496 } 1497 1498 static void 1499 nv50_mstm_del(struct nv50_mstm **pmstm) 1500 { 1501 struct nv50_mstm *mstm = *pmstm; 1502 if (mstm) { 1503 drm_dp_mst_topology_mgr_destroy(&mstm->mgr); 1504 kfree(*pmstm); 1505 *pmstm = NULL; 1506 } 1507 } 1508 1509 static int 1510 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, 1511 int conn_base_id, struct nv50_mstm **pmstm) 1512 { 1513 const int max_payloads = hweight8(outp->dcb->heads); 1514 struct drm_device *dev = outp->base.base.dev; 1515 struct nv50_mstm *mstm; 1516 int ret; 1517 1518 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) 1519 return -ENOMEM; 1520 mstm->outp = outp; 1521 mstm->mgr.cbs = &nv50_mstm; 1522 1523 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, 1524 max_payloads, conn_base_id); 1525 if (ret) 1526 return ret; 1527 1528 return 0; 1529 } 1530 1531 /****************************************************************************** 1532 * SOR 1533 *****************************************************************************/ 1534 static void 1535 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, 1536 struct nv50_head_atom *asyh, u8 proto, u8 depth) 1537 { 1538 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); 1539 struct nv50_core *core = disp->core; 1540 1541 if (!asyh) { 1542 nv_encoder->ctrl &= ~BIT(head); 1543 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) 1544 nv_encoder->ctrl = 0; 1545 } else { 1546 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); 1547 nv_encoder->ctrl |= BIT(head); 1548 asyh->or.depth = depth; 1549 } 1550 1551 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); 1552 } 1553 1554 /* TODO: Should we extend this to PWM-only backlights? 1555 * As well, should we add a DRM helper for waiting for the backlight to acknowledge 1556 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a 1557 * fixed time delay from the vbios… 1558 */ 1559 static void 1560 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1561 { 1562 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1563 struct nv50_head *head = nv50_head(nv_encoder->crtc); 1564 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1565 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); 1566 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); 1567 struct nouveau_backlight *backlight = nv_connector->backlight; 1568 struct drm_dp_aux *aux = &nv_connector->aux; 1569 int ret; 1570 1571 if (backlight && backlight->uses_dpcd) { 1572 ret = drm_edp_backlight_disable(aux, &backlight->edp_info); 1573 if (ret < 0) 1574 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", 1575 nv_connector->base.base.id, nv_connector->base.name, ret); 1576 } 1577 #endif 1578 1579 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { 1580 nvif_outp_hdmi(&nv_encoder->outp, head->base.index, 1581 false, 0, 0, 0, false, false, false); 1582 nv_encoder->hdmi.enabled = false; 1583 } 1584 1585 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1586 nouveau_dp_power_down(nv_encoder); 1587 1588 if (head->func->display_id) 1589 head->func->display_id(head, 0); 1590 1591 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); 1592 nv50_audio_disable(encoder, &head->base); 1593 nv_encoder->crtc = NULL; 1594 } 1595 1596 // common/inc/displayport/displayport.h 1597 #define DP_CONFIG_WATERMARK_ADJUST 2 1598 #define DP_CONFIG_WATERMARK_LIMIT 20 1599 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 1600 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 1601 1602 static bool 1603 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, 1604 struct nv50_head *head, struct nv50_head_atom *asyh) 1605 { 1606 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; 1607 u64 minRate = outp->dp.link_bw * 1000; 1608 unsigned tuSize = 64; 1609 unsigned waterMark; 1610 unsigned hBlankSym; 1611 unsigned vBlankSym; 1612 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; 1613 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; 1614 // depth is multiplied by 16 in case of DSC enable 1615 s32 hblank_symbols; 1616 // number of link clocks per line. 1617 int vblank_symbols = 0; 1618 bool bEnableDsc = false; 1619 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; 1620 unsigned rasterWidth = asyh->mode.h.active; 1621 unsigned depth = asyh->or.bpc * 3; 1622 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; 1623 u64 pixelClockHz = asyh->mode.clock * 1000; 1624 u64 PrecisionFactor = 100000, ratioF, watermarkF; 1625 u32 numLanesPerLink = outp->dp.link_nr; 1626 u32 numSymbolsPerLine; 1627 u32 BlankingBits; 1628 u32 surfaceWidthPerLink; 1629 u32 PixelSteeringBits; 1630 u64 NumBlankingLinkClocks; 1631 u32 MinHBlank; 1632 1633 if (outp->outp.info.dp.increased_wm) { 1634 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; 1635 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; 1636 } 1637 1638 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) 1639 { 1640 return false; 1641 } 1642 1643 // 1644 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with 1645 // 0 active symbols. This may cause HW hang. Bug 200379426 1646 // 1647 if ((bEnableDsc) && 1648 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) 1649 { 1650 return false; 1651 } 1652 1653 // 1654 // Perform the SST calculation. 1655 // For auto mode the watermark calculation does not need to track accumulated error the 1656 // formulas for manual mode will not work. So below calculation was extracted from the DTB. 1657 // 1658 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); 1659 1660 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); 1661 1662 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below 1663 return false; 1664 1665 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); 1666 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); 1667 1668 // 1669 // Bounds check the watermark 1670 // 1671 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); 1672 1673 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) 1674 return false; 1675 1676 // 1677 // Clamp the low side 1678 // 1679 if (waterMark < watermarkMinimum) 1680 waterMark = watermarkMinimum; 1681 1682 //Bits to send BS/BE/Extra symbols due to pixel padding 1683 //Also accounts for enhanced framing. 1684 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); 1685 1686 //VBID/MVID/MAUD sent 4 times all the time 1687 BlankingBits += 3*8*4; 1688 1689 surfaceWidthPerLink = surfaceWidth; 1690 1691 //Extra bits sent due to pixel steering 1692 u32 remain; 1693 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); 1694 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; 1695 1696 BlankingBits += PixelSteeringBits; 1697 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); 1698 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); 1699 MinHBlank += 12; 1700 1701 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) 1702 return false; 1703 1704 // Bug 702290 - Active Width should be greater than 60 1705 if (WARN_ON(surfaceWidth <= 60)) 1706 return false; 1707 1708 1709 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); 1710 1711 //reduce HBlank Symbols to account for secondary data packet 1712 hblank_symbols -= 1; //Stuffer latency to send BS 1713 hblank_symbols -= 3; //SPKT latency to send data to stuffer 1714 1715 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; 1716 1717 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; 1718 1719 // Refer to dev_disp.ref for more information. 1720 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; 1721 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 1722 if (surfaceWidth < 40) 1723 { 1724 vblank_symbols = 0; 1725 } 1726 else 1727 { 1728 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; 1729 1730 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; 1731 } 1732 1733 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; 1734 1735 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); 1736 } 1737 1738 static void 1739 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1740 { 1741 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1742 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1743 struct nv50_head_atom *asyh = 1744 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1745 struct drm_display_mode *mode = &asyh->state.adjusted_mode; 1746 struct nv50_disp *disp = nv50_disp(encoder->dev); 1747 struct nv50_head *head = nv50_head(&nv_crtc->base); 1748 struct nvif_outp *outp = &nv_encoder->outp; 1749 struct drm_device *dev = encoder->dev; 1750 struct nouveau_drm *drm = nouveau_drm(dev); 1751 struct nouveau_connector *nv_connector; 1752 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1753 struct nouveau_backlight *backlight; 1754 #endif 1755 struct nvbios *bios = &drm->vbios; 1756 bool lvds_dual = false, lvds_8bpc = false, hda = false; 1757 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; 1758 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; 1759 1760 nv_connector = nv50_outp_get_new_connector(state, nv_encoder); 1761 nv_encoder->crtc = &nv_crtc->base; 1762 1763 if ((disp->disp->object.oclass == GT214_DISP || 1764 disp->disp->object.oclass >= GF110_DISP) && 1765 nv_encoder->dcb->type != DCB_OUTPUT_LVDS && 1766 drm_detect_monitor_audio(nv_connector->edid)) 1767 hda = true; 1768 1769 if (!nvif_outp_acquired(outp)) 1770 nvif_outp_acquire_sor(outp, hda); 1771 1772 switch (nv_encoder->dcb->type) { 1773 case DCB_OUTPUT_TMDS: 1774 if (disp->disp->object.oclass != NV50_DISP && 1775 drm_detect_hdmi_monitor(nv_connector->edid)) 1776 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); 1777 1778 if (nv_encoder->outp.or.link & 1) { 1779 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; 1780 /* Only enable dual-link if: 1781 * - Need to (i.e. rate > 165MHz) 1782 * - DCB says we can 1783 * - Not an HDMI monitor, since there's no dual-link 1784 * on HDMI. 1785 */ 1786 if (mode->clock >= 165000 && 1787 nv_encoder->dcb->duallink_possible && 1788 !drm_detect_hdmi_monitor(nv_connector->edid)) 1789 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; 1790 } else { 1791 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; 1792 } 1793 break; 1794 case DCB_OUTPUT_LVDS: 1795 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; 1796 1797 if (bios->fp_no_ddc) { 1798 lvds_dual = bios->fp.dual_link; 1799 lvds_8bpc = bios->fp.if_is_24bit; 1800 } else { 1801 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { 1802 if (((u8 *)nv_connector->edid)[121] == 2) 1803 lvds_dual = true; 1804 } else 1805 if (mode->clock >= bios->fp.duallink_transition_clk) { 1806 lvds_dual = true; 1807 } 1808 1809 if (lvds_dual) { 1810 if (bios->fp.strapless_is_24bit & 2) 1811 lvds_8bpc = true; 1812 } else { 1813 if (bios->fp.strapless_is_24bit & 1) 1814 lvds_8bpc = true; 1815 } 1816 1817 if (asyh->or.bpc == 8) 1818 lvds_8bpc = true; 1819 } 1820 1821 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); 1822 break; 1823 case DCB_OUTPUT_DP: 1824 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); 1825 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); 1826 depth = nv50_dp_bpc_to_depth(asyh->or.bpc); 1827 1828 if (nv_encoder->outp.or.link & 1) 1829 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; 1830 else 1831 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; 1832 1833 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT 1834 backlight = nv_connector->backlight; 1835 if (backlight && backlight->uses_dpcd) 1836 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, 1837 (u16)backlight->dev->props.brightness); 1838 #endif 1839 1840 break; 1841 default: 1842 BUG(); 1843 break; 1844 } 1845 1846 if (head->func->display_id) 1847 head->func->display_id(head, BIT(nv_encoder->outp.id)); 1848 1849 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); 1850 } 1851 1852 static const struct drm_encoder_helper_funcs 1853 nv50_sor_help = { 1854 .atomic_check = nv50_outp_atomic_check, 1855 .atomic_enable = nv50_sor_atomic_enable, 1856 .atomic_disable = nv50_sor_atomic_disable, 1857 }; 1858 1859 static void 1860 nv50_sor_destroy(struct drm_encoder *encoder) 1861 { 1862 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1863 1864 nv50_mstm_del(&nv_encoder->dp.mstm); 1865 drm_encoder_cleanup(encoder); 1866 1867 if (nv_encoder->dcb->type == DCB_OUTPUT_DP) 1868 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 1869 1870 nvif_outp_dtor(&nv_encoder->outp); 1871 kfree(encoder); 1872 } 1873 1874 static const struct drm_encoder_funcs 1875 nv50_sor_func = { 1876 .destroy = nv50_sor_destroy, 1877 }; 1878 1879 static int 1880 nv50_sor_create(struct nouveau_encoder *nv_encoder) 1881 { 1882 struct drm_connector *connector = &nv_encoder->conn->base; 1883 struct nouveau_connector *nv_connector = nouveau_connector(connector); 1884 struct nouveau_drm *drm = nouveau_drm(connector->dev); 1885 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 1886 struct drm_encoder *encoder; 1887 struct dcb_output *dcbe = nv_encoder->dcb; 1888 struct nv50_disp *disp = nv50_disp(connector->dev); 1889 int type, ret; 1890 1891 switch (dcbe->type) { 1892 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; 1893 case DCB_OUTPUT_TMDS: 1894 case DCB_OUTPUT_DP: 1895 default: 1896 type = DRM_MODE_ENCODER_TMDS; 1897 break; 1898 } 1899 1900 nv_encoder->update = nv50_sor_update; 1901 1902 encoder = to_drm_encoder(nv_encoder); 1903 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, 1904 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); 1905 drm_encoder_helper_add(encoder, &nv50_sor_help); 1906 1907 drm_connector_attach_encoder(connector, encoder); 1908 1909 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 1910 nv50_outp_dump_caps(drm, nv_encoder); 1911 1912 if (dcbe->type == DCB_OUTPUT_DP) { 1913 mutex_init(&nv_encoder->dp.hpd_irq_lock); 1914 1915 if (disp->disp->object.oclass < GF110_DISP) { 1916 /* HW has no support for address-only 1917 * transactions, so we're required to 1918 * use custom I2C-over-AUX code. 1919 */ 1920 struct nvkm_i2c_aux *aux; 1921 1922 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); 1923 if (!aux) 1924 return -EINVAL; 1925 1926 nv_encoder->i2c = &aux->i2c; 1927 } else { 1928 nv_encoder->i2c = &nv_connector->aux.ddc; 1929 } 1930 1931 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { 1932 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 1933 16, nv_connector->base.base.id, 1934 &nv_encoder->dp.mstm); 1935 if (ret) 1936 return ret; 1937 } 1938 } else 1939 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { 1940 struct nvkm_i2c_bus *bus = 1941 nvkm_i2c_bus_find(i2c, dcbe->i2c_index); 1942 if (bus) 1943 nv_encoder->i2c = &bus->i2c; 1944 } 1945 1946 return 0; 1947 } 1948 1949 /****************************************************************************** 1950 * PIOR 1951 *****************************************************************************/ 1952 static int 1953 nv50_pior_atomic_check(struct drm_encoder *encoder, 1954 struct drm_crtc_state *crtc_state, 1955 struct drm_connector_state *conn_state) 1956 { 1957 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); 1958 if (ret) 1959 return ret; 1960 crtc_state->adjusted_mode.clock *= 2; 1961 return 0; 1962 } 1963 1964 static void 1965 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1966 { 1967 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1968 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1969 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); 1970 1971 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); 1972 nv_encoder->crtc = NULL; 1973 } 1974 1975 static void 1976 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) 1977 { 1978 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 1979 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); 1980 struct nv50_head_atom *asyh = 1981 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); 1982 struct nv50_core *core = nv50_disp(encoder->dev)->core; 1983 u32 ctrl = 0; 1984 1985 switch (nv_crtc->index) { 1986 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; 1987 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; 1988 default: 1989 WARN_ON(1); 1990 break; 1991 } 1992 1993 switch (asyh->or.bpc) { 1994 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; 1995 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; 1996 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; 1997 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; 1998 } 1999 2000 if (!nvif_outp_acquired(&nv_encoder->outp)) 2001 nvif_outp_acquire_pior(&nv_encoder->outp); 2002 2003 switch (nv_encoder->dcb->type) { 2004 case DCB_OUTPUT_TMDS: 2005 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2006 break; 2007 case DCB_OUTPUT_DP: 2008 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); 2009 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); 2010 break; 2011 default: 2012 BUG(); 2013 break; 2014 } 2015 2016 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); 2017 nv_encoder->crtc = &nv_crtc->base; 2018 } 2019 2020 static const struct drm_encoder_helper_funcs 2021 nv50_pior_help = { 2022 .atomic_check = nv50_pior_atomic_check, 2023 .atomic_enable = nv50_pior_atomic_enable, 2024 .atomic_disable = nv50_pior_atomic_disable, 2025 }; 2026 2027 static void 2028 nv50_pior_destroy(struct drm_encoder *encoder) 2029 { 2030 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); 2031 2032 nvif_outp_dtor(&nv_encoder->outp); 2033 2034 drm_encoder_cleanup(encoder); 2035 2036 mutex_destroy(&nv_encoder->dp.hpd_irq_lock); 2037 kfree(encoder); 2038 } 2039 2040 static const struct drm_encoder_funcs 2041 nv50_pior_func = { 2042 .destroy = nv50_pior_destroy, 2043 }; 2044 2045 static int 2046 nv50_pior_create(struct nouveau_encoder *nv_encoder) 2047 { 2048 struct drm_connector *connector = &nv_encoder->conn->base; 2049 struct drm_device *dev = connector->dev; 2050 struct nouveau_drm *drm = nouveau_drm(dev); 2051 struct nv50_disp *disp = nv50_disp(dev); 2052 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); 2053 struct nvkm_i2c_bus *bus = NULL; 2054 struct nvkm_i2c_aux *aux = NULL; 2055 struct i2c_adapter *ddc; 2056 struct drm_encoder *encoder; 2057 struct dcb_output *dcbe = nv_encoder->dcb; 2058 int type; 2059 2060 switch (dcbe->type) { 2061 case DCB_OUTPUT_TMDS: 2062 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); 2063 ddc = bus ? &bus->i2c : NULL; 2064 type = DRM_MODE_ENCODER_TMDS; 2065 break; 2066 case DCB_OUTPUT_DP: 2067 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); 2068 ddc = aux ? &aux->i2c : NULL; 2069 type = DRM_MODE_ENCODER_TMDS; 2070 break; 2071 default: 2072 return -ENODEV; 2073 } 2074 2075 nv_encoder->i2c = ddc; 2076 2077 mutex_init(&nv_encoder->dp.hpd_irq_lock); 2078 2079 encoder = to_drm_encoder(nv_encoder); 2080 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, 2081 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); 2082 drm_encoder_helper_add(encoder, &nv50_pior_help); 2083 2084 drm_connector_attach_encoder(connector, encoder); 2085 2086 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); 2087 nv50_outp_dump_caps(drm, nv_encoder); 2088 2089 return 0; 2090 } 2091 2092 /****************************************************************************** 2093 * Atomic 2094 *****************************************************************************/ 2095 2096 static void 2097 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) 2098 { 2099 struct drm_dp_mst_topology_mgr *mgr; 2100 struct drm_dp_mst_topology_state *mst_state; 2101 struct nouveau_drm *drm = nouveau_drm(state->dev); 2102 struct nv50_disp *disp = nv50_disp(drm->dev); 2103 struct nv50_atom *atom = nv50_atom(state); 2104 struct nv50_core *core = disp->core; 2105 struct nv50_outp_atom *outp; 2106 struct nv50_mstm *mstm; 2107 int i; 2108 2109 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); 2110 2111 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2112 mstm = nv50_mstm(mgr); 2113 if (mstm->modified) 2114 nv50_mstm_prepare(state, mst_state, mstm); 2115 } 2116 2117 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); 2118 core->func->update(core, interlock, true); 2119 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, 2120 disp->core->chan.base.device)) 2121 NV_ERROR(drm, "core notifier timeout\n"); 2122 2123 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { 2124 mstm = nv50_mstm(mgr); 2125 if (mstm->modified) 2126 nv50_mstm_cleanup(state, mst_state, mstm); 2127 } 2128 2129 list_for_each_entry(outp, &atom->outp, head) { 2130 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2131 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); 2132 2133 if (outp->enabled) { 2134 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), 2135 nv_encoder->conn, NULL, NULL); 2136 outp->enabled = outp->disabled = false; 2137 } else { 2138 if (outp->disabled) { 2139 nvif_outp_release(&nv_encoder->outp); 2140 outp->disabled = false; 2141 } 2142 } 2143 } 2144 } 2145 } 2146 2147 static void 2148 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) 2149 { 2150 struct drm_plane_state *new_plane_state; 2151 struct drm_plane *plane; 2152 int i; 2153 2154 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2155 struct nv50_wndw *wndw = nv50_wndw(plane); 2156 if (interlock[wndw->interlock.type] & wndw->interlock.data) { 2157 if (wndw->func->update) 2158 wndw->func->update(wndw, interlock); 2159 } 2160 } 2161 } 2162 2163 static void 2164 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) 2165 { 2166 struct drm_device *dev = state->dev; 2167 struct drm_crtc_state *new_crtc_state, *old_crtc_state; 2168 struct drm_crtc *crtc; 2169 struct drm_plane_state *new_plane_state; 2170 struct drm_plane *plane; 2171 struct nouveau_drm *drm = nouveau_drm(dev); 2172 struct nv50_disp *disp = nv50_disp(dev); 2173 struct nv50_atom *atom = nv50_atom(state); 2174 struct nv50_core *core = disp->core; 2175 struct nv50_outp_atom *outp, *outt; 2176 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; 2177 int i; 2178 bool flushed = false; 2179 2180 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); 2181 nv50_crc_atomic_stop_reporting(state); 2182 drm_atomic_helper_wait_for_fences(dev, state, false); 2183 drm_atomic_helper_wait_for_dependencies(state); 2184 drm_dp_mst_atomic_wait_for_dependencies(state); 2185 drm_atomic_helper_update_legacy_modeset_state(dev, state); 2186 drm_atomic_helper_calc_timestamping_constants(state); 2187 2188 if (atom->lock_core) 2189 mutex_lock(&disp->mutex); 2190 2191 /* Disable head(s). */ 2192 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2193 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2194 struct nv50_head *head = nv50_head(crtc); 2195 2196 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, 2197 asyh->clr.mask, asyh->set.mask); 2198 2199 if (old_crtc_state->active && !new_crtc_state->active) { 2200 pm_runtime_put_noidle(dev->dev); 2201 drm_crtc_vblank_off(crtc); 2202 } 2203 2204 if (asyh->clr.mask) { 2205 nv50_head_flush_clr(head, asyh, atom->flush_disable); 2206 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2207 } 2208 } 2209 2210 /* Disable plane(s). */ 2211 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2212 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2213 struct nv50_wndw *wndw = nv50_wndw(plane); 2214 2215 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, 2216 asyw->clr.mask, asyw->set.mask); 2217 if (!asyw->clr.mask) 2218 continue; 2219 2220 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); 2221 } 2222 2223 /* Disable output path(s). */ 2224 list_for_each_entry(outp, &atom->outp, head) { 2225 const struct drm_encoder_helper_funcs *help; 2226 struct drm_encoder *encoder; 2227 2228 encoder = outp->encoder; 2229 help = encoder->helper_private; 2230 2231 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, 2232 outp->clr.mask, outp->set.mask); 2233 2234 if (outp->clr.mask) { 2235 help->atomic_disable(encoder, state); 2236 outp->disabled = true; 2237 interlock[NV50_DISP_INTERLOCK_CORE] |= 1; 2238 } 2239 } 2240 2241 /* Flush disable. */ 2242 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2243 if (atom->flush_disable) { 2244 nv50_disp_atomic_commit_wndw(state, interlock); 2245 nv50_disp_atomic_commit_core(state, interlock); 2246 memset(interlock, 0x00, sizeof(interlock)); 2247 2248 flushed = true; 2249 } 2250 } 2251 2252 if (flushed) 2253 nv50_crc_atomic_release_notifier_contexts(state); 2254 nv50_crc_atomic_init_notifier_contexts(state); 2255 2256 /* Update output path(s). */ 2257 list_for_each_entry(outp, &atom->outp, head) { 2258 const struct drm_encoder_helper_funcs *help; 2259 struct drm_encoder *encoder; 2260 2261 encoder = outp->encoder; 2262 help = encoder->helper_private; 2263 2264 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, 2265 outp->set.mask, outp->clr.mask); 2266 2267 if (outp->set.mask) { 2268 help->atomic_enable(encoder, state); 2269 outp->enabled = true; 2270 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2271 } 2272 } 2273 2274 /* Update head(s). */ 2275 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2276 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2277 struct nv50_head *head = nv50_head(crtc); 2278 2279 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2280 asyh->set.mask, asyh->clr.mask); 2281 2282 if (asyh->set.mask) { 2283 nv50_head_flush_set(head, asyh); 2284 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2285 } 2286 2287 if (new_crtc_state->active) { 2288 if (!old_crtc_state->active) { 2289 drm_crtc_vblank_on(crtc); 2290 pm_runtime_get_noresume(dev->dev); 2291 } 2292 if (new_crtc_state->event) 2293 drm_crtc_vblank_get(crtc); 2294 } 2295 } 2296 2297 /* Update window->head assignment. 2298 * 2299 * This has to happen in an update that's not interlocked with 2300 * any window channels to avoid hitting HW error checks. 2301 * 2302 *TODO: Proper handling of window ownership (Turing apparently 2303 * supports non-fixed mappings). 2304 */ 2305 if (core->assign_windows) { 2306 core->func->wndw.owner(core); 2307 nv50_disp_atomic_commit_core(state, interlock); 2308 core->assign_windows = false; 2309 interlock[NV50_DISP_INTERLOCK_CORE] = 0; 2310 } 2311 2312 /* Finish updating head(s)... 2313 * 2314 * NVD is rather picky about both where window assignments can change, 2315 * *and* about certain core and window channel states matching. 2316 * 2317 * The EFI GOP driver on newer GPUs configures window channels with a 2318 * different output format to what we do, and the core channel update 2319 * in the assign_windows case above would result in a state mismatch. 2320 * 2321 * Delay some of the head update until after that point to workaround 2322 * the issue. This only affects the initial modeset. 2323 * 2324 * TODO: handle this better when adding flexible window mapping 2325 */ 2326 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { 2327 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); 2328 struct nv50_head *head = nv50_head(crtc); 2329 2330 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, 2331 asyh->set.mask, asyh->clr.mask); 2332 2333 if (asyh->set.mask) { 2334 nv50_head_flush_set_wndw(head, asyh); 2335 interlock[NV50_DISP_INTERLOCK_CORE] = 1; 2336 } 2337 } 2338 2339 /* Update plane(s). */ 2340 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2341 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2342 struct nv50_wndw *wndw = nv50_wndw(plane); 2343 2344 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, 2345 asyw->set.mask, asyw->clr.mask); 2346 if ( !asyw->set.mask && 2347 (!asyw->clr.mask || atom->flush_disable)) 2348 continue; 2349 2350 nv50_wndw_flush_set(wndw, interlock, asyw); 2351 } 2352 2353 /* Flush update. */ 2354 nv50_disp_atomic_commit_wndw(state, interlock); 2355 2356 if (interlock[NV50_DISP_INTERLOCK_CORE]) { 2357 if (interlock[NV50_DISP_INTERLOCK_BASE] || 2358 interlock[NV50_DISP_INTERLOCK_OVLY] || 2359 interlock[NV50_DISP_INTERLOCK_WNDW] || 2360 !atom->state.legacy_cursor_update) 2361 nv50_disp_atomic_commit_core(state, interlock); 2362 else 2363 disp->core->func->update(disp->core, interlock, false); 2364 } 2365 2366 if (atom->lock_core) 2367 mutex_unlock(&disp->mutex); 2368 2369 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2370 list_del(&outp->head); 2371 kfree(outp); 2372 } 2373 2374 /* Wait for HW to signal completion. */ 2375 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2376 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2377 struct nv50_wndw *wndw = nv50_wndw(plane); 2378 int ret = nv50_wndw_wait_armed(wndw, asyw); 2379 if (ret) 2380 NV_ERROR(drm, "%s: timeout\n", plane->name); 2381 } 2382 2383 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2384 if (new_crtc_state->event) { 2385 unsigned long flags; 2386 /* Get correct count/ts if racing with vblank irq */ 2387 if (new_crtc_state->active) 2388 drm_crtc_accurate_vblank_count(crtc); 2389 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2390 drm_crtc_send_vblank_event(crtc, new_crtc_state->event); 2391 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2392 2393 new_crtc_state->event = NULL; 2394 if (new_crtc_state->active) 2395 drm_crtc_vblank_put(crtc); 2396 } 2397 } 2398 2399 nv50_crc_atomic_start_reporting(state); 2400 if (!flushed) 2401 nv50_crc_atomic_release_notifier_contexts(state); 2402 2403 drm_atomic_helper_commit_hw_done(state); 2404 drm_atomic_helper_cleanup_planes(dev, state); 2405 drm_atomic_helper_commit_cleanup_done(state); 2406 drm_atomic_state_put(state); 2407 2408 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ 2409 pm_runtime_mark_last_busy(dev->dev); 2410 pm_runtime_put_autosuspend(dev->dev); 2411 } 2412 2413 static void 2414 nv50_disp_atomic_commit_work(struct work_struct *work) 2415 { 2416 struct drm_atomic_state *state = 2417 container_of(work, typeof(*state), commit_work); 2418 nv50_disp_atomic_commit_tail(state); 2419 } 2420 2421 static int 2422 nv50_disp_atomic_commit(struct drm_device *dev, 2423 struct drm_atomic_state *state, bool nonblock) 2424 { 2425 struct drm_plane_state *new_plane_state; 2426 struct drm_plane *plane; 2427 int ret, i; 2428 2429 ret = pm_runtime_get_sync(dev->dev); 2430 if (ret < 0 && ret != -EACCES) { 2431 pm_runtime_put_autosuspend(dev->dev); 2432 return ret; 2433 } 2434 2435 ret = drm_atomic_helper_setup_commit(state, nonblock); 2436 if (ret) 2437 goto done; 2438 2439 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); 2440 2441 ret = drm_atomic_helper_prepare_planes(dev, state); 2442 if (ret) 2443 goto done; 2444 2445 if (!nonblock) { 2446 ret = drm_atomic_helper_wait_for_fences(dev, state, true); 2447 if (ret) 2448 goto err_cleanup; 2449 } 2450 2451 ret = drm_atomic_helper_swap_state(state, true); 2452 if (ret) 2453 goto err_cleanup; 2454 2455 for_each_new_plane_in_state(state, plane, new_plane_state, i) { 2456 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); 2457 struct nv50_wndw *wndw = nv50_wndw(plane); 2458 2459 if (asyw->set.image) 2460 nv50_wndw_ntfy_enable(wndw, asyw); 2461 } 2462 2463 drm_atomic_state_get(state); 2464 2465 /* 2466 * Grab another RPM ref for the commit tail, which will release the 2467 * ref when it's finished 2468 */ 2469 pm_runtime_get_noresume(dev->dev); 2470 2471 if (nonblock) 2472 queue_work(system_unbound_wq, &state->commit_work); 2473 else 2474 nv50_disp_atomic_commit_tail(state); 2475 2476 err_cleanup: 2477 if (ret) 2478 drm_atomic_helper_cleanup_planes(dev, state); 2479 done: 2480 pm_runtime_put_autosuspend(dev->dev); 2481 return ret; 2482 } 2483 2484 static struct nv50_outp_atom * 2485 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) 2486 { 2487 struct nv50_outp_atom *outp; 2488 2489 list_for_each_entry(outp, &atom->outp, head) { 2490 if (outp->encoder == encoder) 2491 return outp; 2492 } 2493 2494 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2495 if (!outp) 2496 return ERR_PTR(-ENOMEM); 2497 2498 list_add(&outp->head, &atom->outp); 2499 outp->encoder = encoder; 2500 return outp; 2501 } 2502 2503 static int 2504 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, 2505 struct drm_connector_state *old_connector_state) 2506 { 2507 struct drm_encoder *encoder = old_connector_state->best_encoder; 2508 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 2509 struct drm_crtc *crtc; 2510 struct nv50_outp_atom *outp; 2511 2512 if (!(crtc = old_connector_state->crtc)) 2513 return 0; 2514 2515 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); 2516 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2517 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2518 outp = nv50_disp_outp_atomic_add(atom, encoder); 2519 if (IS_ERR(outp)) 2520 return PTR_ERR(outp); 2521 2522 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || 2523 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) 2524 atom->flush_disable = true; 2525 outp->clr.ctrl = true; 2526 atom->lock_core = true; 2527 } 2528 2529 return 0; 2530 } 2531 2532 static int 2533 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, 2534 struct drm_connector_state *connector_state) 2535 { 2536 struct drm_encoder *encoder = connector_state->best_encoder; 2537 struct drm_crtc_state *new_crtc_state; 2538 struct drm_crtc *crtc; 2539 struct nv50_outp_atom *outp; 2540 2541 if (!(crtc = connector_state->crtc)) 2542 return 0; 2543 2544 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); 2545 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { 2546 outp = nv50_disp_outp_atomic_add(atom, encoder); 2547 if (IS_ERR(outp)) 2548 return PTR_ERR(outp); 2549 2550 outp->set.ctrl = true; 2551 atom->lock_core = true; 2552 } 2553 2554 return 0; 2555 } 2556 2557 static int 2558 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) 2559 { 2560 struct nv50_atom *atom = nv50_atom(state); 2561 struct nv50_core *core = nv50_disp(dev)->core; 2562 struct drm_connector_state *old_connector_state, *new_connector_state; 2563 struct drm_connector *connector; 2564 struct drm_crtc_state *new_crtc_state; 2565 struct drm_crtc *crtc; 2566 struct nv50_head *head; 2567 struct nv50_head_atom *asyh; 2568 int ret, i; 2569 2570 if (core->assign_windows && core->func->head->static_wndw_map) { 2571 drm_for_each_crtc(crtc, dev) { 2572 new_crtc_state = drm_atomic_get_crtc_state(state, 2573 crtc); 2574 if (IS_ERR(new_crtc_state)) 2575 return PTR_ERR(new_crtc_state); 2576 2577 head = nv50_head(crtc); 2578 asyh = nv50_head_atom(new_crtc_state); 2579 core->func->head->static_wndw_map(head, asyh); 2580 } 2581 } 2582 2583 /* We need to handle colour management on a per-plane basis. */ 2584 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { 2585 if (new_crtc_state->color_mgmt_changed) { 2586 ret = drm_atomic_add_affected_planes(state, crtc); 2587 if (ret) 2588 return ret; 2589 } 2590 } 2591 2592 ret = drm_atomic_helper_check(dev, state); 2593 if (ret) 2594 return ret; 2595 2596 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { 2597 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); 2598 if (ret) 2599 return ret; 2600 2601 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); 2602 if (ret) 2603 return ret; 2604 } 2605 2606 ret = drm_dp_mst_atomic_check(state); 2607 if (ret) 2608 return ret; 2609 2610 nv50_crc_atomic_check_outp(atom); 2611 2612 return 0; 2613 } 2614 2615 static void 2616 nv50_disp_atomic_state_clear(struct drm_atomic_state *state) 2617 { 2618 struct nv50_atom *atom = nv50_atom(state); 2619 struct nv50_outp_atom *outp, *outt; 2620 2621 list_for_each_entry_safe(outp, outt, &atom->outp, head) { 2622 list_del(&outp->head); 2623 kfree(outp); 2624 } 2625 2626 drm_atomic_state_default_clear(state); 2627 } 2628 2629 static void 2630 nv50_disp_atomic_state_free(struct drm_atomic_state *state) 2631 { 2632 struct nv50_atom *atom = nv50_atom(state); 2633 drm_atomic_state_default_release(&atom->state); 2634 kfree(atom); 2635 } 2636 2637 static struct drm_atomic_state * 2638 nv50_disp_atomic_state_alloc(struct drm_device *dev) 2639 { 2640 struct nv50_atom *atom; 2641 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || 2642 drm_atomic_state_init(dev, &atom->state) < 0) { 2643 kfree(atom); 2644 return NULL; 2645 } 2646 INIT_LIST_HEAD(&atom->outp); 2647 return &atom->state; 2648 } 2649 2650 static const struct drm_mode_config_funcs 2651 nv50_disp_func = { 2652 .fb_create = nouveau_user_framebuffer_create, 2653 .output_poll_changed = drm_fb_helper_output_poll_changed, 2654 .atomic_check = nv50_disp_atomic_check, 2655 .atomic_commit = nv50_disp_atomic_commit, 2656 .atomic_state_alloc = nv50_disp_atomic_state_alloc, 2657 .atomic_state_clear = nv50_disp_atomic_state_clear, 2658 .atomic_state_free = nv50_disp_atomic_state_free, 2659 }; 2660 2661 static const struct drm_mode_config_helper_funcs 2662 nv50_disp_helper_func = { 2663 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, 2664 }; 2665 2666 /****************************************************************************** 2667 * Init 2668 *****************************************************************************/ 2669 2670 static void 2671 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) 2672 { 2673 struct nouveau_drm *drm = nouveau_drm(dev); 2674 struct drm_encoder *encoder; 2675 2676 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2677 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) 2678 nv50_mstm_fini(nouveau_encoder(encoder)); 2679 } 2680 2681 if (!runtime) 2682 cancel_work_sync(&drm->hpd_work); 2683 } 2684 2685 static inline void 2686 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, 2687 struct nouveau_encoder *outp) 2688 { 2689 struct drm_crtc *crtc; 2690 struct drm_connector_list_iter conn_iter; 2691 struct drm_connector *conn; 2692 struct nv50_head_atom *armh; 2693 const u32 encoder_mask = drm_encoder_mask(&outp->base.base); 2694 bool found_conn = false, found_head = false; 2695 u8 proto; 2696 int head_idx; 2697 int ret; 2698 2699 switch (outp->dcb->type) { 2700 case DCB_OUTPUT_TMDS: 2701 ret = nvif_outp_inherit_tmds(&outp->outp, &proto); 2702 break; 2703 case DCB_OUTPUT_DP: 2704 ret = nvif_outp_inherit_dp(&outp->outp, &proto); 2705 break; 2706 case DCB_OUTPUT_LVDS: 2707 ret = nvif_outp_inherit_lvds(&outp->outp, &proto); 2708 break; 2709 case DCB_OUTPUT_ANALOG: 2710 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); 2711 break; 2712 default: 2713 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", 2714 outp->base.base.name); 2715 drm_WARN_ON(dev, true); 2716 return; 2717 } 2718 2719 if (ret < 0) 2720 return; 2721 2722 head_idx = ret; 2723 2724 drm_for_each_crtc(crtc, dev) { 2725 if (crtc->index != head_idx) 2726 continue; 2727 2728 armh = nv50_head_atom(crtc->state); 2729 found_head = true; 2730 break; 2731 } 2732 if (drm_WARN_ON(dev, !found_head)) 2733 return; 2734 2735 /* Figure out which connector is being used by this encoder */ 2736 drm_connector_list_iter_begin(dev, &conn_iter); 2737 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { 2738 if (nouveau_connector(conn)->index == outp->dcb->connector) { 2739 found_conn = true; 2740 break; 2741 } 2742 } 2743 drm_connector_list_iter_end(&conn_iter); 2744 if (drm_WARN_ON(dev, !found_conn)) 2745 return; 2746 2747 armh->state.encoder_mask = encoder_mask; 2748 armh->state.connector_mask = drm_connector_mask(conn); 2749 armh->state.active = true; 2750 armh->state.enable = true; 2751 pm_runtime_get_noresume(dev->dev); 2752 2753 outp->crtc = crtc; 2754 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); 2755 2756 drm_connector_get(conn); 2757 conn->state->crtc = crtc; 2758 conn->state->best_encoder = &outp->base.base; 2759 } 2760 2761 /* Read back the currently programmed display state */ 2762 static void 2763 nv50_display_read_hw_state(struct nouveau_drm *drm) 2764 { 2765 struct drm_device *dev = drm->dev; 2766 struct drm_encoder *encoder; 2767 struct drm_modeset_acquire_ctx ctx; 2768 struct nv50_disp *disp = nv50_disp(dev); 2769 int ret; 2770 2771 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); 2772 2773 drm_for_each_encoder(encoder, dev) { 2774 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) 2775 continue; 2776 2777 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); 2778 } 2779 2780 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); 2781 } 2782 2783 static int 2784 nv50_display_init(struct drm_device *dev, bool resume, bool runtime) 2785 { 2786 struct nv50_core *core = nv50_disp(dev)->core; 2787 struct drm_encoder *encoder; 2788 2789 if (resume || runtime) 2790 core->func->init(core); 2791 2792 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { 2793 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { 2794 struct nouveau_encoder *nv_encoder = 2795 nouveau_encoder(encoder); 2796 nv50_mstm_init(nv_encoder, runtime); 2797 } 2798 } 2799 2800 if (!resume) 2801 nv50_display_read_hw_state(nouveau_drm(dev)); 2802 2803 return 0; 2804 } 2805 2806 static void 2807 nv50_display_destroy(struct drm_device *dev) 2808 { 2809 struct nv50_disp *disp = nv50_disp(dev); 2810 2811 nv50_audio_component_fini(nouveau_drm(dev)); 2812 2813 nvif_object_unmap(&disp->caps); 2814 nvif_object_dtor(&disp->caps); 2815 nv50_core_del(&disp->core); 2816 2817 nouveau_bo_unmap(disp->sync); 2818 if (disp->sync) 2819 nouveau_bo_unpin(disp->sync); 2820 nouveau_bo_ref(NULL, &disp->sync); 2821 2822 nouveau_display(dev)->priv = NULL; 2823 kfree(disp); 2824 } 2825 2826 int 2827 nv50_display_create(struct drm_device *dev) 2828 { 2829 struct nouveau_drm *drm = nouveau_drm(dev); 2830 struct drm_connector *connector, *tmp; 2831 struct nv50_disp *disp; 2832 int ret, i; 2833 bool has_mst = false; 2834 2835 disp = kzalloc(sizeof(*disp), GFP_KERNEL); 2836 if (!disp) 2837 return -ENOMEM; 2838 2839 mutex_init(&disp->mutex); 2840 2841 nouveau_display(dev)->priv = disp; 2842 nouveau_display(dev)->dtor = nv50_display_destroy; 2843 nouveau_display(dev)->init = nv50_display_init; 2844 nouveau_display(dev)->fini = nv50_display_fini; 2845 disp->disp = &nouveau_display(dev)->disp; 2846 dev->mode_config.funcs = &nv50_disp_func; 2847 dev->mode_config.helper_private = &nv50_disp_helper_func; 2848 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; 2849 dev->mode_config.normalize_zpos = true; 2850 2851 /* small shared memory area we use for notifiers and semaphores */ 2852 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, 2853 NOUVEAU_GEM_DOMAIN_VRAM, 2854 0, 0x0000, NULL, NULL, &disp->sync); 2855 if (!ret) { 2856 ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); 2857 if (!ret) { 2858 ret = nouveau_bo_map(disp->sync); 2859 if (ret) 2860 nouveau_bo_unpin(disp->sync); 2861 } 2862 if (ret) 2863 nouveau_bo_ref(NULL, &disp->sync); 2864 } 2865 2866 if (ret) 2867 goto out; 2868 2869 /* allocate master evo channel */ 2870 ret = nv50_core_new(drm, &disp->core); 2871 if (ret) 2872 goto out; 2873 2874 disp->core->func->init(disp->core); 2875 if (disp->core->func->caps_init) { 2876 ret = disp->core->func->caps_init(drm, disp); 2877 if (ret) 2878 goto out; 2879 } 2880 2881 /* Assign the correct format modifiers */ 2882 if (disp->disp->object.oclass >= TU102_DISP) 2883 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; 2884 else 2885 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) 2886 nouveau_display(dev)->format_modifiers = disp90xx_modifiers; 2887 else 2888 nouveau_display(dev)->format_modifiers = disp50xx_modifiers; 2889 2890 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later 2891 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The 2892 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to 2893 * small page allocations in prepare_fb(). When this is implemented, we should also force 2894 * large pages (128K) for ovly fbs in order to fix Kepler ovlys. 2895 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using 2896 * large pages. 2897 */ 2898 if (disp->disp->object.oclass >= GM107_DISP) { 2899 dev->mode_config.cursor_width = 256; 2900 dev->mode_config.cursor_height = 256; 2901 } else if (disp->disp->object.oclass >= GK104_DISP) { 2902 dev->mode_config.cursor_width = 128; 2903 dev->mode_config.cursor_height = 128; 2904 } else { 2905 dev->mode_config.cursor_width = 64; 2906 dev->mode_config.cursor_height = 64; 2907 } 2908 2909 /* create encoder/connector objects based on VBIOS DCB table */ 2910 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { 2911 struct nouveau_encoder *outp; 2912 2913 outp = kzalloc(sizeof(*outp), GFP_KERNEL); 2914 if (!outp) 2915 break; 2916 2917 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); 2918 if (ret) { 2919 kfree(outp); 2920 continue; 2921 } 2922 2923 connector = nouveau_connector_create(dev, outp->outp.info.conn); 2924 if (IS_ERR(connector)) { 2925 nvif_outp_dtor(&outp->outp); 2926 kfree(outp); 2927 continue; 2928 } 2929 2930 outp->base.base.possible_crtcs = outp->outp.info.heads; 2931 outp->base.base.possible_clones = 0; 2932 outp->conn = nouveau_connector(connector); 2933 2934 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); 2935 if (!outp->dcb) 2936 break; 2937 2938 switch (outp->outp.info.proto) { 2939 case NVIF_OUTP_RGB_CRT: 2940 outp->dcb->type = DCB_OUTPUT_ANALOG; 2941 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; 2942 break; 2943 case NVIF_OUTP_TMDS: 2944 outp->dcb->type = DCB_OUTPUT_TMDS; 2945 outp->dcb->duallink_possible = outp->outp.info.tmds.dual; 2946 break; 2947 case NVIF_OUTP_LVDS: 2948 outp->dcb->type = DCB_OUTPUT_LVDS; 2949 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; 2950 break; 2951 case NVIF_OUTP_DP: 2952 outp->dcb->type = DCB_OUTPUT_DP; 2953 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; 2954 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; 2955 if (outp->outp.info.dp.mst) 2956 has_mst = true; 2957 break; 2958 default: 2959 WARN_ON(1); 2960 continue; 2961 } 2962 2963 outp->dcb->heads = outp->outp.info.heads; 2964 outp->dcb->connector = outp->outp.info.conn; 2965 outp->dcb->i2c_index = outp->outp.info.ddc; 2966 2967 switch (outp->outp.info.type) { 2968 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; 2969 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; 2970 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; 2971 default: 2972 WARN_ON(1); 2973 continue; 2974 } 2975 2976 if (ret) { 2977 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", 2978 i, outp->outp.info.type, outp->outp.info.proto, ret); 2979 } 2980 } 2981 2982 /* cull any connectors we created that don't have an encoder */ 2983 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { 2984 if (connector->possible_encoders) 2985 continue; 2986 2987 NV_WARN(drm, "%s has no encoders, removing\n", 2988 connector->name); 2989 connector->funcs->destroy(connector); 2990 } 2991 2992 /* create crtc objects to represent the hw heads */ 2993 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { 2994 struct nv50_head *head; 2995 2996 head = nv50_head_create(dev, i); 2997 if (IS_ERR(head)) { 2998 ret = PTR_ERR(head); 2999 goto out; 3000 } 3001 3002 if (has_mst) { 3003 head->msto = nv50_msto_new(dev, head, i); 3004 if (IS_ERR(head->msto)) { 3005 ret = PTR_ERR(head->msto); 3006 head->msto = NULL; 3007 goto out; 3008 } 3009 3010 /* 3011 * FIXME: This is a hack to workaround the following 3012 * issues: 3013 * 3014 * https://gitlab.gnome.org/GNOME/mutter/issues/759 3015 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 3016 * 3017 * Once these issues are closed, this should be 3018 * removed 3019 */ 3020 head->msto->encoder.possible_crtcs = disp->disp->head_mask; 3021 } 3022 } 3023 3024 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ 3025 dev->vblank_disable_immediate = true; 3026 3027 nv50_audio_component_init(drm); 3028 3029 out: 3030 if (ret) 3031 nv50_display_destroy(dev); 3032 return ret; 3033 } 3034 3035 /****************************************************************************** 3036 * Format modifiers 3037 *****************************************************************************/ 3038 3039 /**************************************************************** 3040 * Log2(block height) ----------------------------+ * 3041 * Page Kind ----------------------------------+ | * 3042 * Gob Height/Page Kind Generation ------+ | | * 3043 * Sector layout -------+ | | | * 3044 * Compression ------+ | | | | */ 3045 const u64 disp50xx_modifiers[] = { /* | | | | | */ 3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), 3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), 3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), 3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), 3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), 3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), 3052 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), 3053 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), 3054 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), 3055 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), 3056 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), 3057 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), 3058 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), 3059 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), 3060 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), 3061 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), 3062 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), 3063 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), 3064 DRM_FORMAT_MOD_LINEAR, 3065 DRM_FORMAT_MOD_INVALID 3066 }; 3067 3068 /**************************************************************** 3069 * Log2(block height) ----------------------------+ * 3070 * Page Kind ----------------------------------+ | * 3071 * Gob Height/Page Kind Generation ------+ | | * 3072 * Sector layout -------+ | | | * 3073 * Compression ------+ | | | | */ 3074 const u64 disp90xx_modifiers[] = { /* | | | | | */ 3075 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), 3076 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), 3077 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), 3078 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), 3079 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), 3080 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), 3081 DRM_FORMAT_MOD_LINEAR, 3082 DRM_FORMAT_MOD_INVALID 3083 }; 3084