xref: /linux/drivers/gpu/drm/i915/intel_runtime_pm.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 const char *
69 intel_display_power_domain_str(enum intel_display_power_domain domain)
70 {
71 	switch (domain) {
72 	case POWER_DOMAIN_PIPE_A:
73 		return "PIPE_A";
74 	case POWER_DOMAIN_PIPE_B:
75 		return "PIPE_B";
76 	case POWER_DOMAIN_PIPE_C:
77 		return "PIPE_C";
78 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
79 		return "PIPE_A_PANEL_FITTER";
80 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
81 		return "PIPE_B_PANEL_FITTER";
82 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
83 		return "PIPE_C_PANEL_FITTER";
84 	case POWER_DOMAIN_TRANSCODER_A:
85 		return "TRANSCODER_A";
86 	case POWER_DOMAIN_TRANSCODER_B:
87 		return "TRANSCODER_B";
88 	case POWER_DOMAIN_TRANSCODER_C:
89 		return "TRANSCODER_C";
90 	case POWER_DOMAIN_TRANSCODER_EDP:
91 		return "TRANSCODER_EDP";
92 	case POWER_DOMAIN_PORT_DDI_A_LANES:
93 		return "PORT_DDI_A_LANES";
94 	case POWER_DOMAIN_PORT_DDI_B_LANES:
95 		return "PORT_DDI_B_LANES";
96 	case POWER_DOMAIN_PORT_DDI_C_LANES:
97 		return "PORT_DDI_C_LANES";
98 	case POWER_DOMAIN_PORT_DDI_D_LANES:
99 		return "PORT_DDI_D_LANES";
100 	case POWER_DOMAIN_PORT_DDI_E_LANES:
101 		return "PORT_DDI_E_LANES";
102 	case POWER_DOMAIN_PORT_DSI:
103 		return "PORT_DSI";
104 	case POWER_DOMAIN_PORT_CRT:
105 		return "PORT_CRT";
106 	case POWER_DOMAIN_PORT_OTHER:
107 		return "PORT_OTHER";
108 	case POWER_DOMAIN_VGA:
109 		return "VGA";
110 	case POWER_DOMAIN_AUDIO:
111 		return "AUDIO";
112 	case POWER_DOMAIN_PLLS:
113 		return "PLLS";
114 	case POWER_DOMAIN_AUX_A:
115 		return "AUX_A";
116 	case POWER_DOMAIN_AUX_B:
117 		return "AUX_B";
118 	case POWER_DOMAIN_AUX_C:
119 		return "AUX_C";
120 	case POWER_DOMAIN_AUX_D:
121 		return "AUX_D";
122 	case POWER_DOMAIN_GMBUS:
123 		return "GMBUS";
124 	case POWER_DOMAIN_INIT:
125 		return "INIT";
126 	case POWER_DOMAIN_MODESET:
127 		return "MODESET";
128 	default:
129 		MISSING_CASE(domain);
130 		return "?";
131 	}
132 }
133 
134 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
135 				    struct i915_power_well *power_well)
136 {
137 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
138 	power_well->ops->enable(dev_priv, power_well);
139 	power_well->hw_enabled = true;
140 }
141 
142 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
143 				     struct i915_power_well *power_well)
144 {
145 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
146 	power_well->hw_enabled = false;
147 	power_well->ops->disable(dev_priv, power_well);
148 }
149 
150 /*
151  * We should only use the power well if we explicitly asked the hardware to
152  * enable it, so check if it's enabled and also check if we've requested it to
153  * be enabled.
154  */
155 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
156 				   struct i915_power_well *power_well)
157 {
158 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
159 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
160 }
161 
162 /**
163  * __intel_display_power_is_enabled - unlocked check for a power domain
164  * @dev_priv: i915 device instance
165  * @domain: power domain to check
166  *
167  * This is the unlocked version of intel_display_power_is_enabled() and should
168  * only be used from error capture and recovery code where deadlocks are
169  * possible.
170  *
171  * Returns:
172  * True when the power domain is enabled, false otherwise.
173  */
174 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
175 				      enum intel_display_power_domain domain)
176 {
177 	struct i915_power_domains *power_domains;
178 	struct i915_power_well *power_well;
179 	bool is_enabled;
180 	int i;
181 
182 	if (dev_priv->pm.suspended)
183 		return false;
184 
185 	power_domains = &dev_priv->power_domains;
186 
187 	is_enabled = true;
188 
189 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
190 		if (power_well->always_on)
191 			continue;
192 
193 		if (!power_well->hw_enabled) {
194 			is_enabled = false;
195 			break;
196 		}
197 	}
198 
199 	return is_enabled;
200 }
201 
202 /**
203  * intel_display_power_is_enabled - check for a power domain
204  * @dev_priv: i915 device instance
205  * @domain: power domain to check
206  *
207  * This function can be used to check the hw power domain state. It is mostly
208  * used in hardware state readout functions. Everywhere else code should rely
209  * upon explicit power domain reference counting to ensure that the hardware
210  * block is powered up before accessing it.
211  *
212  * Callers must hold the relevant modesetting locks to ensure that concurrent
213  * threads can't disable the power well while the caller tries to read a few
214  * registers.
215  *
216  * Returns:
217  * True when the power domain is enabled, false otherwise.
218  */
219 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
220 				    enum intel_display_power_domain domain)
221 {
222 	struct i915_power_domains *power_domains;
223 	bool ret;
224 
225 	power_domains = &dev_priv->power_domains;
226 
227 	mutex_lock(&power_domains->lock);
228 	ret = __intel_display_power_is_enabled(dev_priv, domain);
229 	mutex_unlock(&power_domains->lock);
230 
231 	return ret;
232 }
233 
234 /**
235  * intel_display_set_init_power - set the initial power domain state
236  * @dev_priv: i915 device instance
237  * @enable: whether to enable or disable the initial power domain state
238  *
239  * For simplicity our driver load/unload and system suspend/resume code assumes
240  * that all power domains are always enabled. This functions controls the state
241  * of this little hack. While the initial power domain state is enabled runtime
242  * pm is effectively disabled.
243  */
244 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
245 				  bool enable)
246 {
247 	if (dev_priv->power_domains.init_power_on == enable)
248 		return;
249 
250 	if (enable)
251 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
252 	else
253 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
254 
255 	dev_priv->power_domains.init_power_on = enable;
256 }
257 
258 /*
259  * Starting with Haswell, we have a "Power Down Well" that can be turned off
260  * when not needed anymore. We have 4 registers that can request the power well
261  * to be enabled, and it will only be disabled if none of the registers is
262  * requesting it to be enabled.
263  */
264 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
265 {
266 	struct drm_device *dev = dev_priv->dev;
267 
268 	/*
269 	 * After we re-enable the power well, if we touch VGA register 0x3d5
270 	 * we'll get unclaimed register interrupts. This stops after we write
271 	 * anything to the VGA MSR register. The vgacon module uses this
272 	 * register all the time, so if we unbind our driver and, as a
273 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
274 	 * console_unlock(). So make here we touch the VGA MSR register, making
275 	 * sure vgacon can keep working normally without triggering interrupts
276 	 * and error messages.
277 	 */
278 	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
279 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
280 	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
281 
282 	if (IS_BROADWELL(dev))
283 		gen8_irq_power_well_post_enable(dev_priv,
284 						1 << PIPE_C | 1 << PIPE_B);
285 }
286 
287 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
288 				       struct i915_power_well *power_well)
289 {
290 	struct drm_device *dev = dev_priv->dev;
291 
292 	/*
293 	 * After we re-enable the power well, if we touch VGA register 0x3d5
294 	 * we'll get unclaimed register interrupts. This stops after we write
295 	 * anything to the VGA MSR register. The vgacon module uses this
296 	 * register all the time, so if we unbind our driver and, as a
297 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 	 * console_unlock(). So make here we touch the VGA MSR register, making
299 	 * sure vgacon can keep working normally without triggering interrupts
300 	 * and error messages.
301 	 */
302 	if (power_well->data == SKL_DISP_PW_2) {
303 		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
304 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
306 
307 		gen8_irq_power_well_post_enable(dev_priv,
308 						1 << PIPE_C | 1 << PIPE_B);
309 	}
310 }
311 
312 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
313 			       struct i915_power_well *power_well, bool enable)
314 {
315 	bool is_enabled, enable_requested;
316 	uint32_t tmp;
317 
318 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
319 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
320 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
321 
322 	if (enable) {
323 		if (!enable_requested)
324 			I915_WRITE(HSW_PWR_WELL_DRIVER,
325 				   HSW_PWR_WELL_ENABLE_REQUEST);
326 
327 		if (!is_enabled) {
328 			DRM_DEBUG_KMS("Enabling power well\n");
329 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
330 				      HSW_PWR_WELL_STATE_ENABLED), 20))
331 				DRM_ERROR("Timeout enabling power well\n");
332 			hsw_power_well_post_enable(dev_priv);
333 		}
334 
335 	} else {
336 		if (enable_requested) {
337 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
338 			POSTING_READ(HSW_PWR_WELL_DRIVER);
339 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
340 		}
341 	}
342 }
343 
344 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
345 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
346 	BIT(POWER_DOMAIN_PIPE_B) |			\
347 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
348 	BIT(POWER_DOMAIN_PIPE_C) |			\
349 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
350 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
351 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
352 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
353 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
354 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
355 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
356 	BIT(POWER_DOMAIN_AUX_B) |                       \
357 	BIT(POWER_DOMAIN_AUX_C) |			\
358 	BIT(POWER_DOMAIN_AUX_D) |			\
359 	BIT(POWER_DOMAIN_AUDIO) |			\
360 	BIT(POWER_DOMAIN_VGA) |				\
361 	BIT(POWER_DOMAIN_INIT))
362 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
363 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
364 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
365 	BIT(POWER_DOMAIN_INIT))
366 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
367 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
368 	BIT(POWER_DOMAIN_INIT))
369 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
370 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
371 	BIT(POWER_DOMAIN_INIT))
372 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
373 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
374 	BIT(POWER_DOMAIN_INIT))
375 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
376 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
377 	BIT(POWER_DOMAIN_MODESET) |			\
378 	BIT(POWER_DOMAIN_AUX_A) |			\
379 	BIT(POWER_DOMAIN_INIT))
380 #define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
381 	(POWER_DOMAIN_MASK & ~(				\
382 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
383 	SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) |		\
384 	BIT(POWER_DOMAIN_INIT))
385 
386 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
387 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
388 	BIT(POWER_DOMAIN_PIPE_B) |			\
389 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
390 	BIT(POWER_DOMAIN_PIPE_C) |			\
391 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
392 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
393 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
394 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
395 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
396 	BIT(POWER_DOMAIN_AUX_B) |			\
397 	BIT(POWER_DOMAIN_AUX_C) |			\
398 	BIT(POWER_DOMAIN_AUDIO) |			\
399 	BIT(POWER_DOMAIN_VGA) |				\
400 	BIT(POWER_DOMAIN_GMBUS) |			\
401 	BIT(POWER_DOMAIN_INIT))
402 #define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
403 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
404 	BIT(POWER_DOMAIN_PIPE_A) |			\
405 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
406 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
407 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
408 	BIT(POWER_DOMAIN_AUX_A) |			\
409 	BIT(POWER_DOMAIN_PLLS) |			\
410 	BIT(POWER_DOMAIN_INIT))
411 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
412 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
413 	BIT(POWER_DOMAIN_MODESET) |			\
414 	BIT(POWER_DOMAIN_AUX_A) |			\
415 	BIT(POWER_DOMAIN_INIT))
416 #define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
417 	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
418 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
419 	BIT(POWER_DOMAIN_INIT))
420 
421 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
422 {
423 	struct drm_device *dev = dev_priv->dev;
424 
425 	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
426 	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
427 		"DC9 already programmed to be enabled.\n");
428 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
429 		"DC5 still not disabled to enable DC9.\n");
430 	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
431 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
432 
433 	 /*
434 	  * TODO: check for the following to verify the conditions to enter DC9
435 	  * state are satisfied:
436 	  * 1] Check relevant display engine registers to verify if mode set
437 	  * disable sequence was followed.
438 	  * 2] Check if display uninitialize sequence is initialized.
439 	  */
440 }
441 
442 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
443 {
444 	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
445 	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
446 		"DC9 already programmed to be disabled.\n");
447 	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
448 		"DC5 still not disabled.\n");
449 
450 	 /*
451 	  * TODO: check for the following to verify DC9 state was indeed
452 	  * entered before programming to disable it:
453 	  * 1] Check relevant display engine registers to verify if mode
454 	  *  set disable sequence was followed.
455 	  * 2] Check if display uninitialize sequence is initialized.
456 	  */
457 }
458 
459 static void gen9_set_dc_state_debugmask_memory_up(
460 			struct drm_i915_private *dev_priv)
461 {
462 	uint32_t val;
463 
464 	/* The below bit doesn't need to be cleared ever afterwards */
465 	val = I915_READ(DC_STATE_DEBUG);
466 	if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
467 		val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
468 		I915_WRITE(DC_STATE_DEBUG, val);
469 		POSTING_READ(DC_STATE_DEBUG);
470 	}
471 }
472 
473 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
474 				u32 state)
475 {
476 	int rewrites = 0;
477 	int rereads = 0;
478 	u32 v;
479 
480 	I915_WRITE(DC_STATE_EN, state);
481 
482 	/* It has been observed that disabling the dc6 state sometimes
483 	 * doesn't stick and dmc keeps returning old value. Make sure
484 	 * the write really sticks enough times and also force rewrite until
485 	 * we are confident that state is exactly what we want.
486 	 */
487 	do  {
488 		v = I915_READ(DC_STATE_EN);
489 
490 		if (v != state) {
491 			I915_WRITE(DC_STATE_EN, state);
492 			rewrites++;
493 			rereads = 0;
494 		} else if (rereads++ > 5) {
495 			break;
496 		}
497 
498 	} while (rewrites < 100);
499 
500 	if (v != state)
501 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
502 			  state, v);
503 
504 	/* Most of the times we need one retry, avoid spam */
505 	if (rewrites > 1)
506 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
507 			      state, rewrites);
508 }
509 
510 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
511 {
512 	uint32_t val;
513 	uint32_t mask;
514 
515 	mask = DC_STATE_EN_UPTO_DC5;
516 	if (IS_BROXTON(dev_priv))
517 		mask |= DC_STATE_EN_DC9;
518 	else
519 		mask |= DC_STATE_EN_UPTO_DC6;
520 
521 	WARN_ON_ONCE(state & ~mask);
522 
523 	if (i915.enable_dc == 0)
524 		state = DC_STATE_DISABLE;
525 	else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
526 		state = DC_STATE_EN_UPTO_DC5;
527 
528 	if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
529 		gen9_set_dc_state_debugmask_memory_up(dev_priv);
530 
531 	val = I915_READ(DC_STATE_EN);
532 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
533 		      val & mask, state);
534 
535 	/* Check if DMC is ignoring our DC state requests */
536 	if ((val & mask) != dev_priv->csr.dc_state)
537 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
538 			  dev_priv->csr.dc_state, val & mask);
539 
540 	val &= ~mask;
541 	val |= state;
542 
543 	gen9_write_dc_state(dev_priv, val);
544 
545 	dev_priv->csr.dc_state = val & mask;
546 }
547 
548 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
549 {
550 	assert_can_enable_dc9(dev_priv);
551 
552 	DRM_DEBUG_KMS("Enabling DC9\n");
553 
554 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
555 }
556 
557 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
558 {
559 	assert_can_disable_dc9(dev_priv);
560 
561 	DRM_DEBUG_KMS("Disabling DC9\n");
562 
563 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
564 }
565 
566 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
567 {
568 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
569 		  "CSR program storage start is NULL\n");
570 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
571 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
572 }
573 
574 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
575 {
576 	struct drm_device *dev = dev_priv->dev;
577 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
578 					SKL_DISP_PW_2);
579 
580 	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC5.\n");
581 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
582 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
583 
584 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
585 		  "DC5 already programmed to be enabled.\n");
586 	assert_rpm_wakelock_held(dev_priv);
587 
588 	assert_csr_loaded(dev_priv);
589 }
590 
591 static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
592 {
593 	/*
594 	 * During initialization, the firmware may not be loaded yet.
595 	 * We still want to make sure that the DC enabling flag is cleared.
596 	 */
597 	if (dev_priv->power_domains.initializing)
598 		return;
599 
600 	assert_rpm_wakelock_held(dev_priv);
601 }
602 
603 static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
604 {
605 	assert_can_enable_dc5(dev_priv);
606 
607 	DRM_DEBUG_KMS("Enabling DC5\n");
608 
609 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
610 }
611 
612 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
613 {
614 	struct drm_device *dev = dev_priv->dev;
615 
616 	WARN_ONCE(!IS_SKYLAKE(dev), "Platform doesn't support DC6.\n");
617 	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
618 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
619 		  "Backlight is not disabled.\n");
620 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
621 		  "DC6 already programmed to be enabled.\n");
622 
623 	assert_csr_loaded(dev_priv);
624 }
625 
626 static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
627 {
628 	/*
629 	 * During initialization, the firmware may not be loaded yet.
630 	 * We still want to make sure that the DC enabling flag is cleared.
631 	 */
632 	if (dev_priv->power_domains.initializing)
633 		return;
634 
635 	WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
636 		  "DC6 already programmed to be disabled.\n");
637 }
638 
639 static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
640 {
641 	assert_can_disable_dc5(dev_priv);
642 
643 	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
644 		assert_can_disable_dc6(dev_priv);
645 
646 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
647 }
648 
649 void skl_enable_dc6(struct drm_i915_private *dev_priv)
650 {
651 	assert_can_enable_dc6(dev_priv);
652 
653 	DRM_DEBUG_KMS("Enabling DC6\n");
654 
655 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
656 
657 }
658 
659 void skl_disable_dc6(struct drm_i915_private *dev_priv)
660 {
661 	assert_can_disable_dc6(dev_priv);
662 
663 	DRM_DEBUG_KMS("Disabling DC6\n");
664 
665 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
666 }
667 
668 static void skl_set_power_well(struct drm_i915_private *dev_priv,
669 			struct i915_power_well *power_well, bool enable)
670 {
671 	struct drm_device *dev = dev_priv->dev;
672 	uint32_t tmp, fuse_status;
673 	uint32_t req_mask, state_mask;
674 	bool is_enabled, enable_requested, check_fuse_status = false;
675 
676 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
677 	fuse_status = I915_READ(SKL_FUSE_STATUS);
678 
679 	switch (power_well->data) {
680 	case SKL_DISP_PW_1:
681 		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
682 			SKL_FUSE_PG0_DIST_STATUS), 1)) {
683 			DRM_ERROR("PG0 not enabled\n");
684 			return;
685 		}
686 		break;
687 	case SKL_DISP_PW_2:
688 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
689 			DRM_ERROR("PG1 in disabled state\n");
690 			return;
691 		}
692 		break;
693 	case SKL_DISP_PW_DDI_A_E:
694 	case SKL_DISP_PW_DDI_B:
695 	case SKL_DISP_PW_DDI_C:
696 	case SKL_DISP_PW_DDI_D:
697 	case SKL_DISP_PW_MISC_IO:
698 		break;
699 	default:
700 		WARN(1, "Unknown power well %lu\n", power_well->data);
701 		return;
702 	}
703 
704 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
705 	enable_requested = tmp & req_mask;
706 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
707 	is_enabled = tmp & state_mask;
708 
709 	if (enable) {
710 		if (!enable_requested) {
711 			WARN((tmp & state_mask) &&
712 				!I915_READ(HSW_PWR_WELL_BIOS),
713 				"Invalid for power well status to be enabled, unless done by the BIOS, \
714 				when request is to disable!\n");
715 			if (power_well->data == SKL_DISP_PW_2) {
716 				/*
717 				 * DDI buffer programming unnecessary during
718 				 * driver-load/resume as it's already done
719 				 * during modeset initialization then. It's
720 				 * also invalid here as encoder list is still
721 				 * uninitialized.
722 				 */
723 				if (!dev_priv->power_domains.initializing)
724 					intel_prepare_ddi(dev);
725 			}
726 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
727 		}
728 
729 		if (!is_enabled) {
730 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
731 			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
732 				state_mask), 1))
733 				DRM_ERROR("%s enable timeout\n",
734 					power_well->name);
735 			check_fuse_status = true;
736 		}
737 	} else {
738 		if (enable_requested) {
739 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
740 			POSTING_READ(HSW_PWR_WELL_DRIVER);
741 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
742 		}
743 	}
744 
745 	if (check_fuse_status) {
746 		if (power_well->data == SKL_DISP_PW_1) {
747 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
748 				SKL_FUSE_PG1_DIST_STATUS), 1))
749 				DRM_ERROR("PG1 distributing status timeout\n");
750 		} else if (power_well->data == SKL_DISP_PW_2) {
751 			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
752 				SKL_FUSE_PG2_DIST_STATUS), 1))
753 				DRM_ERROR("PG2 distributing status timeout\n");
754 		}
755 	}
756 
757 	if (enable && !is_enabled)
758 		skl_power_well_post_enable(dev_priv, power_well);
759 }
760 
761 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
762 				   struct i915_power_well *power_well)
763 {
764 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
765 
766 	/*
767 	 * We're taking over the BIOS, so clear any requests made by it since
768 	 * the driver is in charge now.
769 	 */
770 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
771 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
772 }
773 
774 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
775 				  struct i915_power_well *power_well)
776 {
777 	hsw_set_power_well(dev_priv, power_well, true);
778 }
779 
780 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
781 				   struct i915_power_well *power_well)
782 {
783 	hsw_set_power_well(dev_priv, power_well, false);
784 }
785 
786 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
787 					struct i915_power_well *power_well)
788 {
789 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
790 		SKL_POWER_WELL_STATE(power_well->data);
791 
792 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
793 }
794 
795 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
796 				struct i915_power_well *power_well)
797 {
798 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
799 
800 	/* Clear any request made by BIOS as driver is taking over */
801 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
802 }
803 
804 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
805 				struct i915_power_well *power_well)
806 {
807 	skl_set_power_well(dev_priv, power_well, true);
808 }
809 
810 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
811 				struct i915_power_well *power_well)
812 {
813 	skl_set_power_well(dev_priv, power_well, false);
814 }
815 
816 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
817 					   struct i915_power_well *power_well)
818 {
819 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
820 }
821 
822 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
823 					  struct i915_power_well *power_well)
824 {
825 	gen9_disable_dc5_dc6(dev_priv);
826 }
827 
828 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
829 					   struct i915_power_well *power_well)
830 {
831 	if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 && i915.enable_dc != 1)
832 		skl_enable_dc6(dev_priv);
833 	else
834 		gen9_enable_dc5(dev_priv);
835 }
836 
837 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
838 					   struct i915_power_well *power_well)
839 {
840 	if (power_well->count > 0) {
841 		gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
842 	} else {
843 		if (IS_SKYLAKE(dev_priv) && i915.enable_dc != 0 &&
844 		    i915.enable_dc != 1)
845 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
846 		else
847 			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
848 	}
849 }
850 
851 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
852 					   struct i915_power_well *power_well)
853 {
854 }
855 
856 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
857 					     struct i915_power_well *power_well)
858 {
859 	return true;
860 }
861 
862 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
863 			       struct i915_power_well *power_well, bool enable)
864 {
865 	enum punit_power_well power_well_id = power_well->data;
866 	u32 mask;
867 	u32 state;
868 	u32 ctrl;
869 
870 	mask = PUNIT_PWRGT_MASK(power_well_id);
871 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
872 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
873 
874 	mutex_lock(&dev_priv->rps.hw_lock);
875 
876 #define COND \
877 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
878 
879 	if (COND)
880 		goto out;
881 
882 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
883 	ctrl &= ~mask;
884 	ctrl |= state;
885 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
886 
887 	if (wait_for(COND, 100))
888 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
889 			  state,
890 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
891 
892 #undef COND
893 
894 out:
895 	mutex_unlock(&dev_priv->rps.hw_lock);
896 }
897 
898 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
899 				   struct i915_power_well *power_well)
900 {
901 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
902 }
903 
904 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
905 				  struct i915_power_well *power_well)
906 {
907 	vlv_set_power_well(dev_priv, power_well, true);
908 }
909 
910 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
911 				   struct i915_power_well *power_well)
912 {
913 	vlv_set_power_well(dev_priv, power_well, false);
914 }
915 
916 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
917 				   struct i915_power_well *power_well)
918 {
919 	int power_well_id = power_well->data;
920 	bool enabled = false;
921 	u32 mask;
922 	u32 state;
923 	u32 ctrl;
924 
925 	mask = PUNIT_PWRGT_MASK(power_well_id);
926 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
927 
928 	mutex_lock(&dev_priv->rps.hw_lock);
929 
930 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
931 	/*
932 	 * We only ever set the power-on and power-gate states, anything
933 	 * else is unexpected.
934 	 */
935 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
936 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
937 	if (state == ctrl)
938 		enabled = true;
939 
940 	/*
941 	 * A transient state at this point would mean some unexpected party
942 	 * is poking at the power controls too.
943 	 */
944 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
945 	WARN_ON(ctrl != state);
946 
947 	mutex_unlock(&dev_priv->rps.hw_lock);
948 
949 	return enabled;
950 }
951 
952 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
953 {
954 	enum pipe pipe;
955 
956 	/*
957 	 * Enable the CRI clock source so we can get at the
958 	 * display and the reference clock for VGA
959 	 * hotplug / manual detection. Supposedly DSI also
960 	 * needs the ref clock up and running.
961 	 *
962 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
963 	 */
964 	for_each_pipe(dev_priv->dev, pipe) {
965 		u32 val = I915_READ(DPLL(pipe));
966 
967 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
968 		if (pipe != PIPE_A)
969 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
970 
971 		I915_WRITE(DPLL(pipe), val);
972 	}
973 
974 	spin_lock_irq(&dev_priv->irq_lock);
975 	valleyview_enable_display_irqs(dev_priv);
976 	spin_unlock_irq(&dev_priv->irq_lock);
977 
978 	/*
979 	 * During driver initialization/resume we can avoid restoring the
980 	 * part of the HW/SW state that will be inited anyway explicitly.
981 	 */
982 	if (dev_priv->power_domains.initializing)
983 		return;
984 
985 	intel_hpd_init(dev_priv);
986 
987 	i915_redisable_vga_power_on(dev_priv->dev);
988 }
989 
990 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
991 {
992 	spin_lock_irq(&dev_priv->irq_lock);
993 	valleyview_disable_display_irqs(dev_priv);
994 	spin_unlock_irq(&dev_priv->irq_lock);
995 
996 	vlv_power_sequencer_reset(dev_priv);
997 }
998 
999 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1000 					  struct i915_power_well *power_well)
1001 {
1002 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1003 
1004 	vlv_set_power_well(dev_priv, power_well, true);
1005 
1006 	vlv_display_power_well_init(dev_priv);
1007 }
1008 
1009 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1010 					   struct i915_power_well *power_well)
1011 {
1012 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1013 
1014 	vlv_display_power_well_deinit(dev_priv);
1015 
1016 	vlv_set_power_well(dev_priv, power_well, false);
1017 }
1018 
1019 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1020 					   struct i915_power_well *power_well)
1021 {
1022 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1023 
1024 	/* since ref/cri clock was enabled */
1025 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1026 
1027 	vlv_set_power_well(dev_priv, power_well, true);
1028 
1029 	/*
1030 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1031 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1032 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1033 	 *   b.	The other bits such as sfr settings / modesel may all
1034 	 *	be set to 0.
1035 	 *
1036 	 * This should only be done on init and resume from S3 with
1037 	 * both PLLs disabled, or we risk losing DPIO and PLL
1038 	 * synchronization.
1039 	 */
1040 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1041 }
1042 
1043 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1044 					    struct i915_power_well *power_well)
1045 {
1046 	enum pipe pipe;
1047 
1048 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1049 
1050 	for_each_pipe(dev_priv, pipe)
1051 		assert_pll_disabled(dev_priv, pipe);
1052 
1053 	/* Assert common reset */
1054 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1055 
1056 	vlv_set_power_well(dev_priv, power_well, false);
1057 }
1058 
1059 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1060 
1061 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1062 						 int power_well_id)
1063 {
1064 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1065 	int i;
1066 
1067 	for (i = 0; i < power_domains->power_well_count; i++) {
1068 		struct i915_power_well *power_well;
1069 
1070 		power_well = &power_domains->power_wells[i];
1071 		if (power_well->data == power_well_id)
1072 			return power_well;
1073 	}
1074 
1075 	return NULL;
1076 }
1077 
1078 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1079 
1080 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1081 {
1082 	struct i915_power_well *cmn_bc =
1083 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1084 	struct i915_power_well *cmn_d =
1085 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1086 	u32 phy_control = dev_priv->chv_phy_control;
1087 	u32 phy_status = 0;
1088 	u32 phy_status_mask = 0xffffffff;
1089 	u32 tmp;
1090 
1091 	/*
1092 	 * The BIOS can leave the PHY is some weird state
1093 	 * where it doesn't fully power down some parts.
1094 	 * Disable the asserts until the PHY has been fully
1095 	 * reset (ie. the power well has been disabled at
1096 	 * least once).
1097 	 */
1098 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1099 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1100 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1101 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1102 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1103 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1104 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1105 
1106 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1107 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1108 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1109 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1110 
1111 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1112 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1113 
1114 		/* this assumes override is only used to enable lanes */
1115 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1116 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1117 
1118 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1119 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1120 
1121 		/* CL1 is on whenever anything is on in either channel */
1122 		if (BITS_SET(phy_control,
1123 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1124 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1125 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1126 
1127 		/*
1128 		 * The DPLLB check accounts for the pipe B + port A usage
1129 		 * with CL2 powered up but all the lanes in the second channel
1130 		 * powered down.
1131 		 */
1132 		if (BITS_SET(phy_control,
1133 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1134 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1135 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1136 
1137 		if (BITS_SET(phy_control,
1138 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1139 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1140 		if (BITS_SET(phy_control,
1141 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1142 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1143 
1144 		if (BITS_SET(phy_control,
1145 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1146 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1147 		if (BITS_SET(phy_control,
1148 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1149 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1150 	}
1151 
1152 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1153 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1154 
1155 		/* this assumes override is only used to enable lanes */
1156 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1157 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1158 
1159 		if (BITS_SET(phy_control,
1160 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1161 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1162 
1163 		if (BITS_SET(phy_control,
1164 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1165 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1166 		if (BITS_SET(phy_control,
1167 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1168 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1169 	}
1170 
1171 	phy_status &= phy_status_mask;
1172 
1173 	/*
1174 	 * The PHY may be busy with some initial calibration and whatnot,
1175 	 * so the power state can take a while to actually change.
1176 	 */
1177 	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1178 		WARN(phy_status != tmp,
1179 		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1180 		     tmp, phy_status, dev_priv->chv_phy_control);
1181 }
1182 
1183 #undef BITS_SET
1184 
1185 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1186 					   struct i915_power_well *power_well)
1187 {
1188 	enum dpio_phy phy;
1189 	enum pipe pipe;
1190 	uint32_t tmp;
1191 
1192 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1193 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1194 
1195 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1196 		pipe = PIPE_A;
1197 		phy = DPIO_PHY0;
1198 	} else {
1199 		pipe = PIPE_C;
1200 		phy = DPIO_PHY1;
1201 	}
1202 
1203 	/* since ref/cri clock was enabled */
1204 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1205 	vlv_set_power_well(dev_priv, power_well, true);
1206 
1207 	/* Poll for phypwrgood signal */
1208 	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
1209 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1210 
1211 	mutex_lock(&dev_priv->sb_lock);
1212 
1213 	/* Enable dynamic power down */
1214 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1215 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1216 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1217 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1218 
1219 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1220 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1221 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1222 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1223 	} else {
1224 		/*
1225 		 * Force the non-existing CL2 off. BXT does this
1226 		 * too, so maybe it saves some power even though
1227 		 * CL2 doesn't exist?
1228 		 */
1229 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1230 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1231 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1232 	}
1233 
1234 	mutex_unlock(&dev_priv->sb_lock);
1235 
1236 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1237 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1238 
1239 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1240 		      phy, dev_priv->chv_phy_control);
1241 
1242 	assert_chv_phy_status(dev_priv);
1243 }
1244 
1245 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1246 					    struct i915_power_well *power_well)
1247 {
1248 	enum dpio_phy phy;
1249 
1250 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1251 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1252 
1253 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1254 		phy = DPIO_PHY0;
1255 		assert_pll_disabled(dev_priv, PIPE_A);
1256 		assert_pll_disabled(dev_priv, PIPE_B);
1257 	} else {
1258 		phy = DPIO_PHY1;
1259 		assert_pll_disabled(dev_priv, PIPE_C);
1260 	}
1261 
1262 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1263 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1264 
1265 	vlv_set_power_well(dev_priv, power_well, false);
1266 
1267 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1268 		      phy, dev_priv->chv_phy_control);
1269 
1270 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1271 	dev_priv->chv_phy_assert[phy] = true;
1272 
1273 	assert_chv_phy_status(dev_priv);
1274 }
1275 
1276 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1277 				     enum dpio_channel ch, bool override, unsigned int mask)
1278 {
1279 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1280 	u32 reg, val, expected, actual;
1281 
1282 	/*
1283 	 * The BIOS can leave the PHY is some weird state
1284 	 * where it doesn't fully power down some parts.
1285 	 * Disable the asserts until the PHY has been fully
1286 	 * reset (ie. the power well has been disabled at
1287 	 * least once).
1288 	 */
1289 	if (!dev_priv->chv_phy_assert[phy])
1290 		return;
1291 
1292 	if (ch == DPIO_CH0)
1293 		reg = _CHV_CMN_DW0_CH0;
1294 	else
1295 		reg = _CHV_CMN_DW6_CH1;
1296 
1297 	mutex_lock(&dev_priv->sb_lock);
1298 	val = vlv_dpio_read(dev_priv, pipe, reg);
1299 	mutex_unlock(&dev_priv->sb_lock);
1300 
1301 	/*
1302 	 * This assumes !override is only used when the port is disabled.
1303 	 * All lanes should power down even without the override when
1304 	 * the port is disabled.
1305 	 */
1306 	if (!override || mask == 0xf) {
1307 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1308 		/*
1309 		 * If CH1 common lane is not active anymore
1310 		 * (eg. for pipe B DPLL) the entire channel will
1311 		 * shut down, which causes the common lane registers
1312 		 * to read as 0. That means we can't actually check
1313 		 * the lane power down status bits, but as the entire
1314 		 * register reads as 0 it's a good indication that the
1315 		 * channel is indeed entirely powered down.
1316 		 */
1317 		if (ch == DPIO_CH1 && val == 0)
1318 			expected = 0;
1319 	} else if (mask != 0x0) {
1320 		expected = DPIO_ANYDL_POWERDOWN;
1321 	} else {
1322 		expected = 0;
1323 	}
1324 
1325 	if (ch == DPIO_CH0)
1326 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1327 	else
1328 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1329 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1330 
1331 	WARN(actual != expected,
1332 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1333 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1334 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1335 	     reg, val);
1336 }
1337 
1338 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1339 			  enum dpio_channel ch, bool override)
1340 {
1341 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1342 	bool was_override;
1343 
1344 	mutex_lock(&power_domains->lock);
1345 
1346 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1347 
1348 	if (override == was_override)
1349 		goto out;
1350 
1351 	if (override)
1352 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1353 	else
1354 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1355 
1356 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1357 
1358 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1359 		      phy, ch, dev_priv->chv_phy_control);
1360 
1361 	assert_chv_phy_status(dev_priv);
1362 
1363 out:
1364 	mutex_unlock(&power_domains->lock);
1365 
1366 	return was_override;
1367 }
1368 
1369 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1370 			     bool override, unsigned int mask)
1371 {
1372 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1373 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1374 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1375 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1376 
1377 	mutex_lock(&power_domains->lock);
1378 
1379 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1380 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1381 
1382 	if (override)
1383 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1384 	else
1385 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1386 
1387 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1388 
1389 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1390 		      phy, ch, mask, dev_priv->chv_phy_control);
1391 
1392 	assert_chv_phy_status(dev_priv);
1393 
1394 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1395 
1396 	mutex_unlock(&power_domains->lock);
1397 }
1398 
1399 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1400 					struct i915_power_well *power_well)
1401 {
1402 	enum pipe pipe = power_well->data;
1403 	bool enabled;
1404 	u32 state, ctrl;
1405 
1406 	mutex_lock(&dev_priv->rps.hw_lock);
1407 
1408 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1409 	/*
1410 	 * We only ever set the power-on and power-gate states, anything
1411 	 * else is unexpected.
1412 	 */
1413 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1414 	enabled = state == DP_SSS_PWR_ON(pipe);
1415 
1416 	/*
1417 	 * A transient state at this point would mean some unexpected party
1418 	 * is poking at the power controls too.
1419 	 */
1420 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1421 	WARN_ON(ctrl << 16 != state);
1422 
1423 	mutex_unlock(&dev_priv->rps.hw_lock);
1424 
1425 	return enabled;
1426 }
1427 
1428 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1429 				    struct i915_power_well *power_well,
1430 				    bool enable)
1431 {
1432 	enum pipe pipe = power_well->data;
1433 	u32 state;
1434 	u32 ctrl;
1435 
1436 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1437 
1438 	mutex_lock(&dev_priv->rps.hw_lock);
1439 
1440 #define COND \
1441 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1442 
1443 	if (COND)
1444 		goto out;
1445 
1446 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1447 	ctrl &= ~DP_SSC_MASK(pipe);
1448 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1449 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1450 
1451 	if (wait_for(COND, 100))
1452 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1453 			  state,
1454 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1455 
1456 #undef COND
1457 
1458 out:
1459 	mutex_unlock(&dev_priv->rps.hw_lock);
1460 }
1461 
1462 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1463 					struct i915_power_well *power_well)
1464 {
1465 	WARN_ON_ONCE(power_well->data != PIPE_A);
1466 
1467 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1468 }
1469 
1470 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1471 				       struct i915_power_well *power_well)
1472 {
1473 	WARN_ON_ONCE(power_well->data != PIPE_A);
1474 
1475 	chv_set_pipe_power_well(dev_priv, power_well, true);
1476 
1477 	vlv_display_power_well_init(dev_priv);
1478 }
1479 
1480 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1481 					struct i915_power_well *power_well)
1482 {
1483 	WARN_ON_ONCE(power_well->data != PIPE_A);
1484 
1485 	vlv_display_power_well_deinit(dev_priv);
1486 
1487 	chv_set_pipe_power_well(dev_priv, power_well, false);
1488 }
1489 
1490 static void
1491 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1492 				 enum intel_display_power_domain domain)
1493 {
1494 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 	struct i915_power_well *power_well;
1496 	int i;
1497 
1498 	for_each_power_well(i, power_well, BIT(domain), power_domains) {
1499 		if (!power_well->count++)
1500 			intel_power_well_enable(dev_priv, power_well);
1501 	}
1502 
1503 	power_domains->domain_use_count[domain]++;
1504 }
1505 
1506 /**
1507  * intel_display_power_get - grab a power domain reference
1508  * @dev_priv: i915 device instance
1509  * @domain: power domain to reference
1510  *
1511  * This function grabs a power domain reference for @domain and ensures that the
1512  * power domain and all its parents are powered up. Therefore users should only
1513  * grab a reference to the innermost power domain they need.
1514  *
1515  * Any power domain reference obtained by this function must have a symmetric
1516  * call to intel_display_power_put() to release the reference again.
1517  */
1518 void intel_display_power_get(struct drm_i915_private *dev_priv,
1519 			     enum intel_display_power_domain domain)
1520 {
1521 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1522 
1523 	intel_runtime_pm_get(dev_priv);
1524 
1525 	mutex_lock(&power_domains->lock);
1526 
1527 	__intel_display_power_get_domain(dev_priv, domain);
1528 
1529 	mutex_unlock(&power_domains->lock);
1530 }
1531 
1532 /**
1533  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1534  * @dev_priv: i915 device instance
1535  * @domain: power domain to reference
1536  *
1537  * This function grabs a power domain reference for @domain and ensures that the
1538  * power domain and all its parents are powered up. Therefore users should only
1539  * grab a reference to the innermost power domain they need.
1540  *
1541  * Any power domain reference obtained by this function must have a symmetric
1542  * call to intel_display_power_put() to release the reference again.
1543  */
1544 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1545 					enum intel_display_power_domain domain)
1546 {
1547 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1548 	bool is_enabled;
1549 
1550 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1551 		return false;
1552 
1553 	mutex_lock(&power_domains->lock);
1554 
1555 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1556 		__intel_display_power_get_domain(dev_priv, domain);
1557 		is_enabled = true;
1558 	} else {
1559 		is_enabled = false;
1560 	}
1561 
1562 	mutex_unlock(&power_domains->lock);
1563 
1564 	if (!is_enabled)
1565 		intel_runtime_pm_put(dev_priv);
1566 
1567 	return is_enabled;
1568 }
1569 
1570 /**
1571  * intel_display_power_put - release a power domain reference
1572  * @dev_priv: i915 device instance
1573  * @domain: power domain to reference
1574  *
1575  * This function drops the power domain reference obtained by
1576  * intel_display_power_get() and might power down the corresponding hardware
1577  * block right away if this is the last reference.
1578  */
1579 void intel_display_power_put(struct drm_i915_private *dev_priv,
1580 			     enum intel_display_power_domain domain)
1581 {
1582 	struct i915_power_domains *power_domains;
1583 	struct i915_power_well *power_well;
1584 	int i;
1585 
1586 	power_domains = &dev_priv->power_domains;
1587 
1588 	mutex_lock(&power_domains->lock);
1589 
1590 	WARN(!power_domains->domain_use_count[domain],
1591 	     "Use count on domain %s is already zero\n",
1592 	     intel_display_power_domain_str(domain));
1593 	power_domains->domain_use_count[domain]--;
1594 
1595 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1596 		WARN(!power_well->count,
1597 		     "Use count on power well %s is already zero",
1598 		     power_well->name);
1599 
1600 		if (!--power_well->count)
1601 			intel_power_well_disable(dev_priv, power_well);
1602 	}
1603 
1604 	mutex_unlock(&power_domains->lock);
1605 
1606 	intel_runtime_pm_put(dev_priv);
1607 }
1608 
1609 #define HSW_ALWAYS_ON_POWER_DOMAINS (			\
1610 	BIT(POWER_DOMAIN_PIPE_A) |			\
1611 	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1612 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
1613 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1614 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1615 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1616 	BIT(POWER_DOMAIN_PORT_CRT) |			\
1617 	BIT(POWER_DOMAIN_PLLS) |			\
1618 	BIT(POWER_DOMAIN_AUX_A) |			\
1619 	BIT(POWER_DOMAIN_AUX_B) |			\
1620 	BIT(POWER_DOMAIN_AUX_C) |			\
1621 	BIT(POWER_DOMAIN_AUX_D) |			\
1622 	BIT(POWER_DOMAIN_GMBUS) |			\
1623 	BIT(POWER_DOMAIN_INIT))
1624 #define HSW_DISPLAY_POWER_DOMAINS (				\
1625 	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
1626 	BIT(POWER_DOMAIN_INIT))
1627 
1628 #define BDW_ALWAYS_ON_POWER_DOMAINS (			\
1629 	HSW_ALWAYS_ON_POWER_DOMAINS |			\
1630 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
1631 #define BDW_DISPLAY_POWER_DOMAINS (				\
1632 	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
1633 	BIT(POWER_DOMAIN_INIT))
1634 
1635 #define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
1636 #define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK
1637 
1638 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1639 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1640 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1641 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1642 	BIT(POWER_DOMAIN_AUX_B) |		\
1643 	BIT(POWER_DOMAIN_AUX_C) |		\
1644 	BIT(POWER_DOMAIN_INIT))
1645 
1646 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1647 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1648 	BIT(POWER_DOMAIN_AUX_B) |		\
1649 	BIT(POWER_DOMAIN_INIT))
1650 
1651 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1652 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1653 	BIT(POWER_DOMAIN_AUX_B) |		\
1654 	BIT(POWER_DOMAIN_INIT))
1655 
1656 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1657 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1658 	BIT(POWER_DOMAIN_AUX_C) |		\
1659 	BIT(POWER_DOMAIN_INIT))
1660 
1661 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1662 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1663 	BIT(POWER_DOMAIN_AUX_C) |		\
1664 	BIT(POWER_DOMAIN_INIT))
1665 
1666 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1667 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1668 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1669 	BIT(POWER_DOMAIN_AUX_B) |		\
1670 	BIT(POWER_DOMAIN_AUX_C) |		\
1671 	BIT(POWER_DOMAIN_INIT))
1672 
1673 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1674 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1675 	BIT(POWER_DOMAIN_AUX_D) |		\
1676 	BIT(POWER_DOMAIN_INIT))
1677 
1678 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1679 	.sync_hw = i9xx_always_on_power_well_noop,
1680 	.enable = i9xx_always_on_power_well_noop,
1681 	.disable = i9xx_always_on_power_well_noop,
1682 	.is_enabled = i9xx_always_on_power_well_enabled,
1683 };
1684 
1685 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1686 	.sync_hw = chv_pipe_power_well_sync_hw,
1687 	.enable = chv_pipe_power_well_enable,
1688 	.disable = chv_pipe_power_well_disable,
1689 	.is_enabled = chv_pipe_power_well_enabled,
1690 };
1691 
1692 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1693 	.sync_hw = vlv_power_well_sync_hw,
1694 	.enable = chv_dpio_cmn_power_well_enable,
1695 	.disable = chv_dpio_cmn_power_well_disable,
1696 	.is_enabled = vlv_power_well_enabled,
1697 };
1698 
1699 static struct i915_power_well i9xx_always_on_power_well[] = {
1700 	{
1701 		.name = "always-on",
1702 		.always_on = 1,
1703 		.domains = POWER_DOMAIN_MASK,
1704 		.ops = &i9xx_always_on_power_well_ops,
1705 	},
1706 };
1707 
1708 static const struct i915_power_well_ops hsw_power_well_ops = {
1709 	.sync_hw = hsw_power_well_sync_hw,
1710 	.enable = hsw_power_well_enable,
1711 	.disable = hsw_power_well_disable,
1712 	.is_enabled = hsw_power_well_enabled,
1713 };
1714 
1715 static const struct i915_power_well_ops skl_power_well_ops = {
1716 	.sync_hw = skl_power_well_sync_hw,
1717 	.enable = skl_power_well_enable,
1718 	.disable = skl_power_well_disable,
1719 	.is_enabled = skl_power_well_enabled,
1720 };
1721 
1722 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1723 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1724 	.enable = gen9_dc_off_power_well_enable,
1725 	.disable = gen9_dc_off_power_well_disable,
1726 	.is_enabled = gen9_dc_off_power_well_enabled,
1727 };
1728 
1729 static struct i915_power_well hsw_power_wells[] = {
1730 	{
1731 		.name = "always-on",
1732 		.always_on = 1,
1733 		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
1734 		.ops = &i9xx_always_on_power_well_ops,
1735 	},
1736 	{
1737 		.name = "display",
1738 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1739 		.ops = &hsw_power_well_ops,
1740 	},
1741 };
1742 
1743 static struct i915_power_well bdw_power_wells[] = {
1744 	{
1745 		.name = "always-on",
1746 		.always_on = 1,
1747 		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
1748 		.ops = &i9xx_always_on_power_well_ops,
1749 	},
1750 	{
1751 		.name = "display",
1752 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1753 		.ops = &hsw_power_well_ops,
1754 	},
1755 };
1756 
1757 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1758 	.sync_hw = vlv_power_well_sync_hw,
1759 	.enable = vlv_display_power_well_enable,
1760 	.disable = vlv_display_power_well_disable,
1761 	.is_enabled = vlv_power_well_enabled,
1762 };
1763 
1764 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1765 	.sync_hw = vlv_power_well_sync_hw,
1766 	.enable = vlv_dpio_cmn_power_well_enable,
1767 	.disable = vlv_dpio_cmn_power_well_disable,
1768 	.is_enabled = vlv_power_well_enabled,
1769 };
1770 
1771 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1772 	.sync_hw = vlv_power_well_sync_hw,
1773 	.enable = vlv_power_well_enable,
1774 	.disable = vlv_power_well_disable,
1775 	.is_enabled = vlv_power_well_enabled,
1776 };
1777 
1778 static struct i915_power_well vlv_power_wells[] = {
1779 	{
1780 		.name = "always-on",
1781 		.always_on = 1,
1782 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1783 		.ops = &i9xx_always_on_power_well_ops,
1784 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1785 	},
1786 	{
1787 		.name = "display",
1788 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1789 		.data = PUNIT_POWER_WELL_DISP2D,
1790 		.ops = &vlv_display_power_well_ops,
1791 	},
1792 	{
1793 		.name = "dpio-tx-b-01",
1794 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1795 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1796 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1797 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1798 		.ops = &vlv_dpio_power_well_ops,
1799 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1800 	},
1801 	{
1802 		.name = "dpio-tx-b-23",
1803 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1804 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1805 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1806 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1807 		.ops = &vlv_dpio_power_well_ops,
1808 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1809 	},
1810 	{
1811 		.name = "dpio-tx-c-01",
1812 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1813 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1814 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1815 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1816 		.ops = &vlv_dpio_power_well_ops,
1817 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
1818 	},
1819 	{
1820 		.name = "dpio-tx-c-23",
1821 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1822 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1823 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1824 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1825 		.ops = &vlv_dpio_power_well_ops,
1826 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
1827 	},
1828 	{
1829 		.name = "dpio-common",
1830 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
1831 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1832 		.ops = &vlv_dpio_cmn_power_well_ops,
1833 	},
1834 };
1835 
1836 static struct i915_power_well chv_power_wells[] = {
1837 	{
1838 		.name = "always-on",
1839 		.always_on = 1,
1840 		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
1841 		.ops = &i9xx_always_on_power_well_ops,
1842 	},
1843 	{
1844 		.name = "display",
1845 		/*
1846 		 * Pipe A power well is the new disp2d well. Pipe B and C
1847 		 * power wells don't actually exist. Pipe A power well is
1848 		 * required for any pipe to work.
1849 		 */
1850 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1851 		.data = PIPE_A,
1852 		.ops = &chv_pipe_power_well_ops,
1853 	},
1854 	{
1855 		.name = "dpio-common-bc",
1856 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1857 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
1858 		.ops = &chv_dpio_cmn_power_well_ops,
1859 	},
1860 	{
1861 		.name = "dpio-common-d",
1862 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1863 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
1864 		.ops = &chv_dpio_cmn_power_well_ops,
1865 	},
1866 };
1867 
1868 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
1869 				    int power_well_id)
1870 {
1871 	struct i915_power_well *power_well;
1872 	bool ret;
1873 
1874 	power_well = lookup_power_well(dev_priv, power_well_id);
1875 	ret = power_well->ops->is_enabled(dev_priv, power_well);
1876 
1877 	return ret;
1878 }
1879 
1880 static struct i915_power_well skl_power_wells[] = {
1881 	{
1882 		.name = "always-on",
1883 		.always_on = 1,
1884 		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1885 		.ops = &i9xx_always_on_power_well_ops,
1886 		.data = SKL_DISP_PW_ALWAYS_ON,
1887 	},
1888 	{
1889 		.name = "power well 1",
1890 		/* Handled by the DMC firmware */
1891 		.domains = 0,
1892 		.ops = &skl_power_well_ops,
1893 		.data = SKL_DISP_PW_1,
1894 	},
1895 	{
1896 		.name = "MISC IO power well",
1897 		/* Handled by the DMC firmware */
1898 		.domains = 0,
1899 		.ops = &skl_power_well_ops,
1900 		.data = SKL_DISP_PW_MISC_IO,
1901 	},
1902 	{
1903 		.name = "DC off",
1904 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
1905 		.ops = &gen9_dc_off_power_well_ops,
1906 		.data = SKL_DISP_PW_DC_OFF,
1907 	},
1908 	{
1909 		.name = "power well 2",
1910 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1911 		.ops = &skl_power_well_ops,
1912 		.data = SKL_DISP_PW_2,
1913 	},
1914 	{
1915 		.name = "DDI A/E power well",
1916 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
1917 		.ops = &skl_power_well_ops,
1918 		.data = SKL_DISP_PW_DDI_A_E,
1919 	},
1920 	{
1921 		.name = "DDI B power well",
1922 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
1923 		.ops = &skl_power_well_ops,
1924 		.data = SKL_DISP_PW_DDI_B,
1925 	},
1926 	{
1927 		.name = "DDI C power well",
1928 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
1929 		.ops = &skl_power_well_ops,
1930 		.data = SKL_DISP_PW_DDI_C,
1931 	},
1932 	{
1933 		.name = "DDI D power well",
1934 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
1935 		.ops = &skl_power_well_ops,
1936 		.data = SKL_DISP_PW_DDI_D,
1937 	},
1938 };
1939 
1940 void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
1941 {
1942 	struct i915_power_well *well;
1943 
1944 	if (!IS_SKYLAKE(dev_priv))
1945 		return;
1946 
1947 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1948 	intel_power_well_enable(dev_priv, well);
1949 
1950 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1951 	intel_power_well_enable(dev_priv, well);
1952 }
1953 
1954 void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
1955 {
1956 	struct i915_power_well *well;
1957 
1958 	if (!IS_SKYLAKE(dev_priv))
1959 		return;
1960 
1961 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1962 	intel_power_well_disable(dev_priv, well);
1963 
1964 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1965 	intel_power_well_disable(dev_priv, well);
1966 }
1967 
1968 static struct i915_power_well bxt_power_wells[] = {
1969 	{
1970 		.name = "always-on",
1971 		.always_on = 1,
1972 		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
1973 		.ops = &i9xx_always_on_power_well_ops,
1974 	},
1975 	{
1976 		.name = "power well 1",
1977 		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
1978 		.ops = &skl_power_well_ops,
1979 		.data = SKL_DISP_PW_1,
1980 	},
1981 	{
1982 		.name = "DC off",
1983 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
1984 		.ops = &gen9_dc_off_power_well_ops,
1985 		.data = SKL_DISP_PW_DC_OFF,
1986 	},
1987 	{
1988 		.name = "power well 2",
1989 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
1990 		.ops = &skl_power_well_ops,
1991 		.data = SKL_DISP_PW_2,
1992 	},
1993 };
1994 
1995 static int
1996 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
1997 				   int disable_power_well)
1998 {
1999 	if (disable_power_well >= 0)
2000 		return !!disable_power_well;
2001 
2002 	if (IS_BROXTON(dev_priv)) {
2003 		DRM_DEBUG_KMS("Disabling display power well support\n");
2004 		return 0;
2005 	}
2006 
2007 	return 1;
2008 }
2009 
2010 #define set_power_wells(power_domains, __power_wells) ({		\
2011 	(power_domains)->power_wells = (__power_wells);			\
2012 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2013 })
2014 
2015 /**
2016  * intel_power_domains_init - initializes the power domain structures
2017  * @dev_priv: i915 device instance
2018  *
2019  * Initializes the power domain structures for @dev_priv depending upon the
2020  * supported platform.
2021  */
2022 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2023 {
2024 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2025 
2026 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2027 						     i915.disable_power_well);
2028 
2029 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2030 
2031 	mutex_init(&power_domains->lock);
2032 
2033 	/*
2034 	 * The enabling order will be from lower to higher indexed wells,
2035 	 * the disabling order is reversed.
2036 	 */
2037 	if (IS_HASWELL(dev_priv->dev)) {
2038 		set_power_wells(power_domains, hsw_power_wells);
2039 	} else if (IS_BROADWELL(dev_priv->dev)) {
2040 		set_power_wells(power_domains, bdw_power_wells);
2041 	} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
2042 		set_power_wells(power_domains, skl_power_wells);
2043 	} else if (IS_BROXTON(dev_priv->dev)) {
2044 		set_power_wells(power_domains, bxt_power_wells);
2045 	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
2046 		set_power_wells(power_domains, chv_power_wells);
2047 	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
2048 		set_power_wells(power_domains, vlv_power_wells);
2049 	} else {
2050 		set_power_wells(power_domains, i9xx_always_on_power_well);
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 /**
2057  * intel_power_domains_fini - finalizes the power domain structures
2058  * @dev_priv: i915 device instance
2059  *
2060  * Finalizes the power domain structures for @dev_priv depending upon the
2061  * supported platform. This function also disables runtime pm and ensures that
2062  * the device stays powered up so that the driver can be reloaded.
2063  */
2064 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2065 {
2066 	struct device *device = &dev_priv->dev->pdev->dev;
2067 
2068 	/*
2069 	 * The i915.ko module is still not prepared to be loaded when
2070 	 * the power well is not enabled, so just enable it in case
2071 	 * we're going to unload/reload.
2072 	 * The following also reacquires the RPM reference the core passed
2073 	 * to the driver during loading, which is dropped in
2074 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2075 	 * device to the core with this reference held.
2076 	 */
2077 	intel_display_set_init_power(dev_priv, true);
2078 
2079 	/* Remove the refcount we took to keep power well support disabled. */
2080 	if (!i915.disable_power_well)
2081 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2082 
2083 	/*
2084 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2085 	 * the platform doesn't support runtime PM.
2086 	 */
2087 	if (!HAS_RUNTIME_PM(dev_priv))
2088 		pm_runtime_put(device);
2089 }
2090 
2091 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2092 {
2093 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2094 	struct i915_power_well *power_well;
2095 	int i;
2096 
2097 	mutex_lock(&power_domains->lock);
2098 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2099 		power_well->ops->sync_hw(dev_priv, power_well);
2100 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2101 								     power_well);
2102 	}
2103 	mutex_unlock(&power_domains->lock);
2104 }
2105 
2106 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2107 				  bool resume)
2108 {
2109 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2110 	uint32_t val;
2111 
2112 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2113 
2114 	/* enable PCH reset handshake */
2115 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2116 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2117 
2118 	/* enable PG1 and Misc I/O */
2119 	mutex_lock(&power_domains->lock);
2120 	skl_pw1_misc_io_init(dev_priv);
2121 	mutex_unlock(&power_domains->lock);
2122 
2123 	if (!resume)
2124 		return;
2125 
2126 	skl_init_cdclk(dev_priv);
2127 
2128 	if (dev_priv->csr.dmc_payload)
2129 		intel_csr_load_program(dev_priv);
2130 }
2131 
2132 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2133 {
2134 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2135 
2136 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2137 
2138 	skl_uninit_cdclk(dev_priv);
2139 
2140 	/* The spec doesn't call for removing the reset handshake flag */
2141 	/* disable PG1 and Misc I/O */
2142 	mutex_lock(&power_domains->lock);
2143 	skl_pw1_misc_io_fini(dev_priv);
2144 	mutex_unlock(&power_domains->lock);
2145 }
2146 
2147 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2148 {
2149 	struct i915_power_well *cmn_bc =
2150 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2151 	struct i915_power_well *cmn_d =
2152 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2153 
2154 	/*
2155 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2156 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2157 	 * instead maintain a shadow copy ourselves. Use the actual
2158 	 * power well state and lane status to reconstruct the
2159 	 * expected initial value.
2160 	 */
2161 	dev_priv->chv_phy_control =
2162 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2163 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2164 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2165 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2166 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2167 
2168 	/*
2169 	 * If all lanes are disabled we leave the override disabled
2170 	 * with all power down bits cleared to match the state we
2171 	 * would use after disabling the port. Otherwise enable the
2172 	 * override and set the lane powerdown bits accding to the
2173 	 * current lane status.
2174 	 */
2175 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2176 		uint32_t status = I915_READ(DPLL(PIPE_A));
2177 		unsigned int mask;
2178 
2179 		mask = status & DPLL_PORTB_READY_MASK;
2180 		if (mask == 0xf)
2181 			mask = 0x0;
2182 		else
2183 			dev_priv->chv_phy_control |=
2184 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2185 
2186 		dev_priv->chv_phy_control |=
2187 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2188 
2189 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2190 		if (mask == 0xf)
2191 			mask = 0x0;
2192 		else
2193 			dev_priv->chv_phy_control |=
2194 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2195 
2196 		dev_priv->chv_phy_control |=
2197 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2198 
2199 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2200 
2201 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2202 	} else {
2203 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2204 	}
2205 
2206 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2207 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2208 		unsigned int mask;
2209 
2210 		mask = status & DPLL_PORTD_READY_MASK;
2211 
2212 		if (mask == 0xf)
2213 			mask = 0x0;
2214 		else
2215 			dev_priv->chv_phy_control |=
2216 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2217 
2218 		dev_priv->chv_phy_control |=
2219 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2220 
2221 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2222 
2223 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2224 	} else {
2225 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2226 	}
2227 
2228 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2229 
2230 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2231 		      dev_priv->chv_phy_control);
2232 }
2233 
2234 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2235 {
2236 	struct i915_power_well *cmn =
2237 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2238 	struct i915_power_well *disp2d =
2239 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2240 
2241 	/* If the display might be already active skip this */
2242 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2243 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2244 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2245 		return;
2246 
2247 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2248 
2249 	/* cmnlane needs DPLL registers */
2250 	disp2d->ops->enable(dev_priv, disp2d);
2251 
2252 	/*
2253 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2254 	 * Need to assert and de-assert PHY SB reset by gating the
2255 	 * common lane power, then un-gating it.
2256 	 * Simply ungating isn't enough to reset the PHY enough to get
2257 	 * ports and lanes running.
2258 	 */
2259 	cmn->ops->disable(dev_priv, cmn);
2260 }
2261 
2262 /**
2263  * intel_power_domains_init_hw - initialize hardware power domain state
2264  * @dev_priv: i915 device instance
2265  *
2266  * This function initializes the hardware power domain state and enables all
2267  * power domains using intel_display_set_init_power().
2268  */
2269 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2270 {
2271 	struct drm_device *dev = dev_priv->dev;
2272 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2273 
2274 	power_domains->initializing = true;
2275 
2276 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2277 		skl_display_core_init(dev_priv, resume);
2278 	} else if (IS_CHERRYVIEW(dev)) {
2279 		mutex_lock(&power_domains->lock);
2280 		chv_phy_control_init(dev_priv);
2281 		mutex_unlock(&power_domains->lock);
2282 	} else if (IS_VALLEYVIEW(dev)) {
2283 		mutex_lock(&power_domains->lock);
2284 		vlv_cmnlane_wa(dev_priv);
2285 		mutex_unlock(&power_domains->lock);
2286 	}
2287 
2288 	/* For now, we need the power well to be always enabled. */
2289 	intel_display_set_init_power(dev_priv, true);
2290 	/* Disable power support if the user asked so. */
2291 	if (!i915.disable_power_well)
2292 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2293 	intel_power_domains_sync_hw(dev_priv);
2294 	power_domains->initializing = false;
2295 }
2296 
2297 /**
2298  * intel_power_domains_suspend - suspend power domain state
2299  * @dev_priv: i915 device instance
2300  *
2301  * This function prepares the hardware power domain state before entering
2302  * system suspend. It must be paired with intel_power_domains_init_hw().
2303  */
2304 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2305 {
2306 	/*
2307 	 * Even if power well support was disabled we still want to disable
2308 	 * power wells while we are system suspended.
2309 	 */
2310 	if (!i915.disable_power_well)
2311 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2312 
2313 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2314 		skl_display_core_uninit(dev_priv);
2315 }
2316 
2317 /**
2318  * intel_runtime_pm_get - grab a runtime pm reference
2319  * @dev_priv: i915 device instance
2320  *
2321  * This function grabs a device-level runtime pm reference (mostly used for GEM
2322  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2323  *
2324  * Any runtime pm reference obtained by this function must have a symmetric
2325  * call to intel_runtime_pm_put() to release the reference again.
2326  */
2327 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2328 {
2329 	struct drm_device *dev = dev_priv->dev;
2330 	struct device *device = &dev->pdev->dev;
2331 
2332 	pm_runtime_get_sync(device);
2333 
2334 	atomic_inc(&dev_priv->pm.wakeref_count);
2335 	assert_rpm_wakelock_held(dev_priv);
2336 }
2337 
2338 /**
2339  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2340  * @dev_priv: i915 device instance
2341  *
2342  * This function grabs a device-level runtime pm reference if the device is
2343  * already in use and ensures that it is powered up.
2344  *
2345  * Any runtime pm reference obtained by this function must have a symmetric
2346  * call to intel_runtime_pm_put() to release the reference again.
2347  */
2348 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2349 {
2350 	struct drm_device *dev = dev_priv->dev;
2351 	struct device *device = &dev->pdev->dev;
2352 
2353 	if (IS_ENABLED(CONFIG_PM)) {
2354 		int ret = pm_runtime_get_if_in_use(device);
2355 
2356 		/*
2357 		 * In cases runtime PM is disabled by the RPM core and we get
2358 		 * an -EINVAL return value we are not supposed to call this
2359 		 * function, since the power state is undefined. This applies
2360 		 * atm to the late/early system suspend/resume handlers.
2361 		 */
2362 		WARN_ON_ONCE(ret < 0);
2363 		if (ret <= 0)
2364 			return false;
2365 	}
2366 
2367 	atomic_inc(&dev_priv->pm.wakeref_count);
2368 	assert_rpm_wakelock_held(dev_priv);
2369 
2370 	return true;
2371 }
2372 
2373 /**
2374  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2375  * @dev_priv: i915 device instance
2376  *
2377  * This function grabs a device-level runtime pm reference (mostly used for GEM
2378  * code to ensure the GTT or GT is on).
2379  *
2380  * It will _not_ power up the device but instead only check that it's powered
2381  * on.  Therefore it is only valid to call this functions from contexts where
2382  * the device is known to be powered up and where trying to power it up would
2383  * result in hilarity and deadlocks. That pretty much means only the system
2384  * suspend/resume code where this is used to grab runtime pm references for
2385  * delayed setup down in work items.
2386  *
2387  * Any runtime pm reference obtained by this function must have a symmetric
2388  * call to intel_runtime_pm_put() to release the reference again.
2389  */
2390 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2391 {
2392 	struct drm_device *dev = dev_priv->dev;
2393 	struct device *device = &dev->pdev->dev;
2394 
2395 	assert_rpm_wakelock_held(dev_priv);
2396 	pm_runtime_get_noresume(device);
2397 
2398 	atomic_inc(&dev_priv->pm.wakeref_count);
2399 }
2400 
2401 /**
2402  * intel_runtime_pm_put - release a runtime pm reference
2403  * @dev_priv: i915 device instance
2404  *
2405  * This function drops the device-level runtime pm reference obtained by
2406  * intel_runtime_pm_get() and might power down the corresponding
2407  * hardware block right away if this is the last reference.
2408  */
2409 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2410 {
2411 	struct drm_device *dev = dev_priv->dev;
2412 	struct device *device = &dev->pdev->dev;
2413 
2414 	assert_rpm_wakelock_held(dev_priv);
2415 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2416 		atomic_inc(&dev_priv->pm.atomic_seq);
2417 
2418 	pm_runtime_mark_last_busy(device);
2419 	pm_runtime_put_autosuspend(device);
2420 }
2421 
2422 /**
2423  * intel_runtime_pm_enable - enable runtime pm
2424  * @dev_priv: i915 device instance
2425  *
2426  * This function enables runtime pm at the end of the driver load sequence.
2427  *
2428  * Note that this function does currently not enable runtime pm for the
2429  * subordinate display power domains. That is only done on the first modeset
2430  * using intel_display_set_init_power().
2431  */
2432 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2433 {
2434 	struct drm_device *dev = dev_priv->dev;
2435 	struct device *device = &dev->pdev->dev;
2436 
2437 	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
2438 	pm_runtime_mark_last_busy(device);
2439 
2440 	/*
2441 	 * Take a permanent reference to disable the RPM functionality and drop
2442 	 * it only when unloading the driver. Use the low level get/put helpers,
2443 	 * so the driver's own RPM reference tracking asserts also work on
2444 	 * platforms without RPM support.
2445 	 */
2446 	if (!HAS_RUNTIME_PM(dev)) {
2447 		pm_runtime_dont_use_autosuspend(device);
2448 		pm_runtime_get_sync(device);
2449 	} else {
2450 		pm_runtime_use_autosuspend(device);
2451 	}
2452 
2453 	/*
2454 	 * The core calls the driver load handler with an RPM reference held.
2455 	 * We drop that here and will reacquire it during unloading in
2456 	 * intel_power_domains_fini().
2457 	 */
2458 	pm_runtime_put_autosuspend(device);
2459 }
2460 
2461