1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/irq_work.h> 27 #include <linux/prefetch.h> 28 #include <linux/sched.h> 29 #include <linux/sched/clock.h> 30 #include <linux/sched/signal.h> 31 32 #include "i915_active.h" 33 #include "i915_drv.h" 34 #include "i915_globals.h" 35 #include "i915_reset.h" 36 #include "intel_pm.h" 37 38 struct execute_cb { 39 struct list_head link; 40 struct irq_work work; 41 struct i915_sw_fence *fence; 42 }; 43 44 static struct i915_global_request { 45 struct i915_global base; 46 struct kmem_cache *slab_requests; 47 struct kmem_cache *slab_dependencies; 48 struct kmem_cache *slab_execute_cbs; 49 } global; 50 51 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 52 { 53 return "i915"; 54 } 55 56 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 57 { 58 /* 59 * The timeline struct (as part of the ppgtt underneath a context) 60 * may be freed when the request is no longer in use by the GPU. 61 * We could extend the life of a context to beyond that of all 62 * fences, possibly keeping the hw resource around indefinitely, 63 * or we just give them a false name. Since 64 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 65 * lie seems justifiable. 66 */ 67 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 68 return "signaled"; 69 70 return to_request(fence)->gem_context->name ?: "[i915]"; 71 } 72 73 static bool i915_fence_signaled(struct dma_fence *fence) 74 { 75 return i915_request_completed(to_request(fence)); 76 } 77 78 static bool i915_fence_enable_signaling(struct dma_fence *fence) 79 { 80 return i915_request_enable_breadcrumb(to_request(fence)); 81 } 82 83 static signed long i915_fence_wait(struct dma_fence *fence, 84 bool interruptible, 85 signed long timeout) 86 { 87 return i915_request_wait(to_request(fence), 88 interruptible | I915_WAIT_PRIORITY, 89 timeout); 90 } 91 92 static void i915_fence_release(struct dma_fence *fence) 93 { 94 struct i915_request *rq = to_request(fence); 95 96 /* 97 * The request is put onto a RCU freelist (i.e. the address 98 * is immediately reused), mark the fences as being freed now. 99 * Otherwise the debugobjects for the fences are only marked as 100 * freed when the slab cache itself is freed, and so we would get 101 * caught trying to reuse dead objects. 102 */ 103 i915_sw_fence_fini(&rq->submit); 104 i915_sw_fence_fini(&rq->semaphore); 105 106 kmem_cache_free(global.slab_requests, rq); 107 } 108 109 const struct dma_fence_ops i915_fence_ops = { 110 .get_driver_name = i915_fence_get_driver_name, 111 .get_timeline_name = i915_fence_get_timeline_name, 112 .enable_signaling = i915_fence_enable_signaling, 113 .signaled = i915_fence_signaled, 114 .wait = i915_fence_wait, 115 .release = i915_fence_release, 116 }; 117 118 static inline void 119 i915_request_remove_from_client(struct i915_request *request) 120 { 121 struct drm_i915_file_private *file_priv; 122 123 file_priv = request->file_priv; 124 if (!file_priv) 125 return; 126 127 spin_lock(&file_priv->mm.lock); 128 if (request->file_priv) { 129 list_del(&request->client_link); 130 request->file_priv = NULL; 131 } 132 spin_unlock(&file_priv->mm.lock); 133 } 134 135 static void reserve_gt(struct drm_i915_private *i915) 136 { 137 if (!i915->gt.active_requests++) 138 i915_gem_unpark(i915); 139 } 140 141 static void unreserve_gt(struct drm_i915_private *i915) 142 { 143 GEM_BUG_ON(!i915->gt.active_requests); 144 if (!--i915->gt.active_requests) 145 i915_gem_park(i915); 146 } 147 148 static void advance_ring(struct i915_request *request) 149 { 150 struct intel_ring *ring = request->ring; 151 unsigned int tail; 152 153 /* 154 * We know the GPU must have read the request to have 155 * sent us the seqno + interrupt, so use the position 156 * of tail of the request to update the last known position 157 * of the GPU head. 158 * 159 * Note this requires that we are always called in request 160 * completion order. 161 */ 162 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list)); 163 if (list_is_last(&request->ring_link, &ring->request_list)) { 164 /* 165 * We may race here with execlists resubmitting this request 166 * as we retire it. The resubmission will move the ring->tail 167 * forwards (to request->wa_tail). We either read the 168 * current value that was written to hw, or the value that 169 * is just about to be. Either works, if we miss the last two 170 * noops - they are safe to be replayed on a reset. 171 */ 172 tail = READ_ONCE(request->tail); 173 list_del(&ring->active_link); 174 } else { 175 tail = request->postfix; 176 } 177 list_del_init(&request->ring_link); 178 179 ring->head = tail; 180 } 181 182 static void free_capture_list(struct i915_request *request) 183 { 184 struct i915_capture_list *capture; 185 186 capture = request->capture_list; 187 while (capture) { 188 struct i915_capture_list *next = capture->next; 189 190 kfree(capture); 191 capture = next; 192 } 193 } 194 195 static void __retire_engine_request(struct intel_engine_cs *engine, 196 struct i915_request *rq) 197 { 198 GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n", 199 __func__, engine->name, 200 rq->fence.context, rq->fence.seqno, 201 hwsp_seqno(rq)); 202 203 GEM_BUG_ON(!i915_request_completed(rq)); 204 205 local_irq_disable(); 206 207 spin_lock(&engine->timeline.lock); 208 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests)); 209 list_del_init(&rq->link); 210 spin_unlock(&engine->timeline.lock); 211 212 spin_lock(&rq->lock); 213 i915_request_mark_complete(rq); 214 if (!i915_request_signaled(rq)) 215 dma_fence_signal_locked(&rq->fence); 216 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 217 i915_request_cancel_breadcrumb(rq); 218 if (rq->waitboost) { 219 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters)); 220 atomic_dec(&rq->i915->gt_pm.rps.num_waiters); 221 } 222 spin_unlock(&rq->lock); 223 224 local_irq_enable(); 225 226 /* 227 * The backing object for the context is done after switching to the 228 * *next* context. Therefore we cannot retire the previous context until 229 * the next context has already started running. However, since we 230 * cannot take the required locks at i915_request_submit() we 231 * defer the unpinning of the active context to now, retirement of 232 * the subsequent request. 233 */ 234 if (engine->last_retired_context) 235 intel_context_unpin(engine->last_retired_context); 236 engine->last_retired_context = rq->hw_context; 237 } 238 239 static void __retire_engine_upto(struct intel_engine_cs *engine, 240 struct i915_request *rq) 241 { 242 struct i915_request *tmp; 243 244 if (list_empty(&rq->link)) 245 return; 246 247 do { 248 tmp = list_first_entry(&engine->timeline.requests, 249 typeof(*tmp), link); 250 251 GEM_BUG_ON(tmp->engine != engine); 252 __retire_engine_request(engine, tmp); 253 } while (tmp != rq); 254 } 255 256 static void i915_request_retire(struct i915_request *request) 257 { 258 struct i915_active_request *active, *next; 259 260 GEM_TRACE("%s fence %llx:%lld, current %d\n", 261 request->engine->name, 262 request->fence.context, request->fence.seqno, 263 hwsp_seqno(request)); 264 265 lockdep_assert_held(&request->i915->drm.struct_mutex); 266 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit)); 267 GEM_BUG_ON(!i915_request_completed(request)); 268 269 trace_i915_request_retire(request); 270 271 advance_ring(request); 272 free_capture_list(request); 273 274 /* 275 * Walk through the active list, calling retire on each. This allows 276 * objects to track their GPU activity and mark themselves as idle 277 * when their *last* active request is completed (updating state 278 * tracking lists for eviction, active references for GEM, etc). 279 * 280 * As the ->retire() may free the node, we decouple it first and 281 * pass along the auxiliary information (to avoid dereferencing 282 * the node after the callback). 283 */ 284 list_for_each_entry_safe(active, next, &request->active_list, link) { 285 /* 286 * In microbenchmarks or focusing upon time inside the kernel, 287 * we may spend an inordinate amount of time simply handling 288 * the retirement of requests and processing their callbacks. 289 * Of which, this loop itself is particularly hot due to the 290 * cache misses when jumping around the list of 291 * i915_active_request. So we try to keep this loop as 292 * streamlined as possible and also prefetch the next 293 * i915_active_request to try and hide the likely cache miss. 294 */ 295 prefetchw(next); 296 297 INIT_LIST_HEAD(&active->link); 298 RCU_INIT_POINTER(active->request, NULL); 299 300 active->retire(active, request); 301 } 302 303 i915_request_remove_from_client(request); 304 305 intel_context_unpin(request->hw_context); 306 307 __retire_engine_upto(request->engine, request); 308 309 unreserve_gt(request->i915); 310 311 i915_sched_node_fini(&request->sched); 312 i915_request_put(request); 313 } 314 315 void i915_request_retire_upto(struct i915_request *rq) 316 { 317 struct intel_ring *ring = rq->ring; 318 struct i915_request *tmp; 319 320 GEM_TRACE("%s fence %llx:%lld, current %d\n", 321 rq->engine->name, 322 rq->fence.context, rq->fence.seqno, 323 hwsp_seqno(rq)); 324 325 lockdep_assert_held(&rq->i915->drm.struct_mutex); 326 GEM_BUG_ON(!i915_request_completed(rq)); 327 328 if (list_empty(&rq->ring_link)) 329 return; 330 331 do { 332 tmp = list_first_entry(&ring->request_list, 333 typeof(*tmp), ring_link); 334 335 i915_request_retire(tmp); 336 } while (tmp != rq); 337 } 338 339 static void irq_execute_cb(struct irq_work *wrk) 340 { 341 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 342 343 i915_sw_fence_complete(cb->fence); 344 kmem_cache_free(global.slab_execute_cbs, cb); 345 } 346 347 static void __notify_execute_cb(struct i915_request *rq) 348 { 349 struct execute_cb *cb; 350 351 lockdep_assert_held(&rq->lock); 352 353 if (list_empty(&rq->execute_cb)) 354 return; 355 356 list_for_each_entry(cb, &rq->execute_cb, link) 357 irq_work_queue(&cb->work); 358 359 /* 360 * XXX Rollback on __i915_request_unsubmit() 361 * 362 * In the future, perhaps when we have an active time-slicing scheduler, 363 * it will be interesting to unsubmit parallel execution and remove 364 * busywaits from the GPU until their master is restarted. This is 365 * quite hairy, we have to carefully rollback the fence and do a 366 * preempt-to-idle cycle on the target engine, all the while the 367 * master execute_cb may refire. 368 */ 369 INIT_LIST_HEAD(&rq->execute_cb); 370 } 371 372 static int 373 i915_request_await_execution(struct i915_request *rq, 374 struct i915_request *signal, 375 gfp_t gfp) 376 { 377 struct execute_cb *cb; 378 379 if (i915_request_is_active(signal)) 380 return 0; 381 382 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 383 if (!cb) 384 return -ENOMEM; 385 386 cb->fence = &rq->submit; 387 i915_sw_fence_await(cb->fence); 388 init_irq_work(&cb->work, irq_execute_cb); 389 390 spin_lock_irq(&signal->lock); 391 if (i915_request_is_active(signal)) { 392 i915_sw_fence_complete(cb->fence); 393 kmem_cache_free(global.slab_execute_cbs, cb); 394 } else { 395 list_add_tail(&cb->link, &signal->execute_cb); 396 } 397 spin_unlock_irq(&signal->lock); 398 399 return 0; 400 } 401 402 static void move_to_timeline(struct i915_request *request, 403 struct i915_timeline *timeline) 404 { 405 GEM_BUG_ON(request->timeline == &request->engine->timeline); 406 lockdep_assert_held(&request->engine->timeline.lock); 407 408 spin_lock(&request->timeline->lock); 409 list_move_tail(&request->link, &timeline->requests); 410 spin_unlock(&request->timeline->lock); 411 } 412 413 void __i915_request_submit(struct i915_request *request) 414 { 415 struct intel_engine_cs *engine = request->engine; 416 417 GEM_TRACE("%s fence %llx:%lld -> current %d\n", 418 engine->name, 419 request->fence.context, request->fence.seqno, 420 hwsp_seqno(request)); 421 422 GEM_BUG_ON(!irqs_disabled()); 423 lockdep_assert_held(&engine->timeline.lock); 424 425 if (i915_gem_context_is_banned(request->gem_context)) 426 i915_request_skip(request, -EIO); 427 428 /* We may be recursing from the signal callback of another i915 fence */ 429 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 430 431 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 432 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 433 434 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 435 !i915_request_enable_breadcrumb(request)) 436 intel_engine_queue_breadcrumbs(engine); 437 438 __notify_execute_cb(request); 439 440 spin_unlock(&request->lock); 441 442 engine->emit_fini_breadcrumb(request, 443 request->ring->vaddr + request->postfix); 444 445 /* Transfer from per-context onto the global per-engine timeline */ 446 move_to_timeline(request, &engine->timeline); 447 448 trace_i915_request_execute(request); 449 } 450 451 void i915_request_submit(struct i915_request *request) 452 { 453 struct intel_engine_cs *engine = request->engine; 454 unsigned long flags; 455 456 /* Will be called from irq-context when using foreign fences. */ 457 spin_lock_irqsave(&engine->timeline.lock, flags); 458 459 __i915_request_submit(request); 460 461 spin_unlock_irqrestore(&engine->timeline.lock, flags); 462 } 463 464 void __i915_request_unsubmit(struct i915_request *request) 465 { 466 struct intel_engine_cs *engine = request->engine; 467 468 GEM_TRACE("%s fence %llx:%lld, current %d\n", 469 engine->name, 470 request->fence.context, request->fence.seqno, 471 hwsp_seqno(request)); 472 473 GEM_BUG_ON(!irqs_disabled()); 474 lockdep_assert_held(&engine->timeline.lock); 475 476 /* 477 * Only unwind in reverse order, required so that the per-context list 478 * is kept in seqno/ring order. 479 */ 480 481 /* We may be recursing from the signal callback of another i915 fence */ 482 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 483 484 /* 485 * As we do not allow WAIT to preempt inflight requests, 486 * once we have executed a request, along with triggering 487 * any execution callbacks, we must preserve its ordering 488 * within the non-preemptible FIFO. 489 */ 490 BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */ 491 request->sched.attr.priority |= __NO_PREEMPTION; 492 493 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 494 i915_request_cancel_breadcrumb(request); 495 496 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 497 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 498 499 spin_unlock(&request->lock); 500 501 /* Transfer back from the global per-engine timeline to per-context */ 502 move_to_timeline(request, request->timeline); 503 504 /* 505 * We don't need to wake_up any waiters on request->execute, they 506 * will get woken by any other event or us re-adding this request 507 * to the engine timeline (__i915_request_submit()). The waiters 508 * should be quite adapt at finding that the request now has a new 509 * global_seqno to the one they went to sleep on. 510 */ 511 } 512 513 void i915_request_unsubmit(struct i915_request *request) 514 { 515 struct intel_engine_cs *engine = request->engine; 516 unsigned long flags; 517 518 /* Will be called from irq-context when using foreign fences. */ 519 spin_lock_irqsave(&engine->timeline.lock, flags); 520 521 __i915_request_unsubmit(request); 522 523 spin_unlock_irqrestore(&engine->timeline.lock, flags); 524 } 525 526 static int __i915_sw_fence_call 527 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 528 { 529 struct i915_request *request = 530 container_of(fence, typeof(*request), submit); 531 532 switch (state) { 533 case FENCE_COMPLETE: 534 trace_i915_request_submit(request); 535 /* 536 * We need to serialize use of the submit_request() callback 537 * with its hotplugging performed during an emergency 538 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 539 * critical section in order to force i915_gem_set_wedged() to 540 * wait until the submit_request() is completed before 541 * proceeding. 542 */ 543 rcu_read_lock(); 544 request->engine->submit_request(request); 545 rcu_read_unlock(); 546 break; 547 548 case FENCE_FREE: 549 i915_request_put(request); 550 break; 551 } 552 553 return NOTIFY_DONE; 554 } 555 556 static int __i915_sw_fence_call 557 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 558 { 559 struct i915_request *request = 560 container_of(fence, typeof(*request), semaphore); 561 562 switch (state) { 563 case FENCE_COMPLETE: 564 /* 565 * We only check a small portion of our dependencies 566 * and so cannot guarantee that there remains no 567 * semaphore chain across all. Instead of opting 568 * for the full NOSEMAPHORE boost, we go for the 569 * smaller (but still preempting) boost of 570 * NEWCLIENT. This will be enough to boost over 571 * a busywaiting request (as that cannot be 572 * NEWCLIENT) without accidentally boosting 573 * a busywait over real work elsewhere. 574 */ 575 i915_schedule_bump_priority(request, I915_PRIORITY_NEWCLIENT); 576 break; 577 578 case FENCE_FREE: 579 i915_request_put(request); 580 break; 581 } 582 583 return NOTIFY_DONE; 584 } 585 586 static void ring_retire_requests(struct intel_ring *ring) 587 { 588 struct i915_request *rq, *rn; 589 590 list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) { 591 if (!i915_request_completed(rq)) 592 break; 593 594 i915_request_retire(rq); 595 } 596 } 597 598 static noinline struct i915_request * 599 i915_request_alloc_slow(struct intel_context *ce) 600 { 601 struct intel_ring *ring = ce->ring; 602 struct i915_request *rq; 603 604 if (list_empty(&ring->request_list)) 605 goto out; 606 607 /* Ratelimit ourselves to prevent oom from malicious clients */ 608 rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link); 609 cond_synchronize_rcu(rq->rcustate); 610 611 /* Retire our old requests in the hope that we free some */ 612 ring_retire_requests(ring); 613 614 out: 615 return kmem_cache_alloc(global.slab_requests, GFP_KERNEL); 616 } 617 618 /** 619 * i915_request_alloc - allocate a request structure 620 * 621 * @engine: engine that we wish to issue the request on. 622 * @ctx: context that the request will be associated with. 623 * 624 * Returns a pointer to the allocated request if successful, 625 * or an error code if not. 626 */ 627 struct i915_request * 628 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx) 629 { 630 struct drm_i915_private *i915 = engine->i915; 631 struct intel_context *ce; 632 struct i915_timeline *tl; 633 struct i915_request *rq; 634 u32 seqno; 635 int ret; 636 637 lockdep_assert_held(&i915->drm.struct_mutex); 638 639 /* 640 * Preempt contexts are reserved for exclusive use to inject a 641 * preemption context switch. They are never to be used for any trivial 642 * request! 643 */ 644 GEM_BUG_ON(ctx == i915->preempt_context); 645 646 /* 647 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 648 * EIO if the GPU is already wedged. 649 */ 650 ret = i915_terminally_wedged(i915); 651 if (ret) 652 return ERR_PTR(ret); 653 654 /* 655 * Pinning the contexts may generate requests in order to acquire 656 * GGTT space, so do this first before we reserve a seqno for 657 * ourselves. 658 */ 659 ce = intel_context_pin(ctx, engine); 660 if (IS_ERR(ce)) 661 return ERR_CAST(ce); 662 663 reserve_gt(i915); 664 mutex_lock(&ce->ring->timeline->mutex); 665 666 /* Move our oldest request to the slab-cache (if not in use!) */ 667 rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link); 668 if (!list_is_last(&rq->ring_link, &ce->ring->request_list) && 669 i915_request_completed(rq)) 670 i915_request_retire(rq); 671 672 /* 673 * Beware: Dragons be flying overhead. 674 * 675 * We use RCU to look up requests in flight. The lookups may 676 * race with the request being allocated from the slab freelist. 677 * That is the request we are writing to here, may be in the process 678 * of being read by __i915_active_request_get_rcu(). As such, 679 * we have to be very careful when overwriting the contents. During 680 * the RCU lookup, we change chase the request->engine pointer, 681 * read the request->global_seqno and increment the reference count. 682 * 683 * The reference count is incremented atomically. If it is zero, 684 * the lookup knows the request is unallocated and complete. Otherwise, 685 * it is either still in use, or has been reallocated and reset 686 * with dma_fence_init(). This increment is safe for release as we 687 * check that the request we have a reference to and matches the active 688 * request. 689 * 690 * Before we increment the refcount, we chase the request->engine 691 * pointer. We must not call kmem_cache_zalloc() or else we set 692 * that pointer to NULL and cause a crash during the lookup. If 693 * we see the request is completed (based on the value of the 694 * old engine and seqno), the lookup is complete and reports NULL. 695 * If we decide the request is not completed (new engine or seqno), 696 * then we grab a reference and double check that it is still the 697 * active request - which it won't be and restart the lookup. 698 * 699 * Do not use kmem_cache_zalloc() here! 700 */ 701 rq = kmem_cache_alloc(global.slab_requests, 702 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 703 if (unlikely(!rq)) { 704 rq = i915_request_alloc_slow(ce); 705 if (!rq) { 706 ret = -ENOMEM; 707 goto err_unreserve; 708 } 709 } 710 711 INIT_LIST_HEAD(&rq->active_list); 712 INIT_LIST_HEAD(&rq->execute_cb); 713 714 tl = ce->ring->timeline; 715 ret = i915_timeline_get_seqno(tl, rq, &seqno); 716 if (ret) 717 goto err_free; 718 719 rq->i915 = i915; 720 rq->engine = engine; 721 rq->gem_context = ctx; 722 rq->hw_context = ce; 723 rq->ring = ce->ring; 724 rq->timeline = tl; 725 GEM_BUG_ON(rq->timeline == &engine->timeline); 726 rq->hwsp_seqno = tl->hwsp_seqno; 727 rq->hwsp_cacheline = tl->hwsp_cacheline; 728 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 729 730 spin_lock_init(&rq->lock); 731 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 732 tl->fence_context, seqno); 733 734 /* We bump the ref for the fence chain */ 735 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify); 736 i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify); 737 738 i915_sched_node_init(&rq->sched); 739 740 /* No zalloc, must clear what we need by hand */ 741 rq->file_priv = NULL; 742 rq->batch = NULL; 743 rq->capture_list = NULL; 744 rq->waitboost = false; 745 746 /* 747 * Reserve space in the ring buffer for all the commands required to 748 * eventually emit this request. This is to guarantee that the 749 * i915_request_add() call can't fail. Note that the reserve may need 750 * to be redone if the request is not actually submitted straight 751 * away, e.g. because a GPU scheduler has deferred it. 752 * 753 * Note that due to how we add reserved_space to intel_ring_begin() 754 * we need to double our request to ensure that if we need to wrap 755 * around inside i915_request_add() there is sufficient space at 756 * the beginning of the ring as well. 757 */ 758 rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32); 759 760 /* 761 * Record the position of the start of the request so that 762 * should we detect the updated seqno part-way through the 763 * GPU processing the request, we never over-estimate the 764 * position of the head. 765 */ 766 rq->head = rq->ring->emit; 767 768 ret = engine->request_alloc(rq); 769 if (ret) 770 goto err_unwind; 771 772 /* Keep a second pin for the dual retirement along engine and ring */ 773 __intel_context_pin(ce); 774 775 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 776 777 /* Check that we didn't interrupt ourselves with a new request */ 778 lockdep_assert_held(&rq->timeline->mutex); 779 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno); 780 rq->cookie = lockdep_pin_lock(&rq->timeline->mutex); 781 782 return rq; 783 784 err_unwind: 785 ce->ring->emit = rq->head; 786 787 /* Make sure we didn't add ourselves to external state before freeing */ 788 GEM_BUG_ON(!list_empty(&rq->active_list)); 789 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 790 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 791 792 err_free: 793 kmem_cache_free(global.slab_requests, rq); 794 err_unreserve: 795 mutex_unlock(&ce->ring->timeline->mutex); 796 unreserve_gt(i915); 797 intel_context_unpin(ce); 798 return ERR_PTR(ret); 799 } 800 801 static int 802 emit_semaphore_wait(struct i915_request *to, 803 struct i915_request *from, 804 gfp_t gfp) 805 { 806 u32 hwsp_offset; 807 u32 *cs; 808 int err; 809 810 GEM_BUG_ON(!from->timeline->has_initial_breadcrumb); 811 GEM_BUG_ON(INTEL_GEN(to->i915) < 8); 812 813 /* Just emit the first semaphore we see as request space is limited. */ 814 if (to->sched.semaphores & from->engine->mask) 815 return i915_sw_fence_await_dma_fence(&to->submit, 816 &from->fence, 0, 817 I915_FENCE_GFP); 818 819 err = i915_sw_fence_await_dma_fence(&to->semaphore, 820 &from->fence, 0, 821 I915_FENCE_GFP); 822 if (err < 0) 823 return err; 824 825 /* We need to pin the signaler's HWSP until we are finished reading. */ 826 err = i915_timeline_read_hwsp(from, to, &hwsp_offset); 827 if (err) 828 return err; 829 830 /* Only submit our spinner after the signaler is running! */ 831 err = i915_request_await_execution(to, from, gfp); 832 if (err) 833 return err; 834 835 cs = intel_ring_begin(to, 4); 836 if (IS_ERR(cs)) 837 return PTR_ERR(cs); 838 839 /* 840 * Using greater-than-or-equal here means we have to worry 841 * about seqno wraparound. To side step that issue, we swap 842 * the timeline HWSP upon wrapping, so that everyone listening 843 * for the old (pre-wrap) values do not see the much smaller 844 * (post-wrap) values than they were expecting (and so wait 845 * forever). 846 */ 847 *cs++ = MI_SEMAPHORE_WAIT | 848 MI_SEMAPHORE_GLOBAL_GTT | 849 MI_SEMAPHORE_POLL | 850 MI_SEMAPHORE_SAD_GTE_SDD; 851 *cs++ = from->fence.seqno; 852 *cs++ = hwsp_offset; 853 *cs++ = 0; 854 855 intel_ring_advance(to, cs); 856 to->sched.semaphores |= from->engine->mask; 857 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN; 858 return 0; 859 } 860 861 static int 862 i915_request_await_request(struct i915_request *to, struct i915_request *from) 863 { 864 int ret; 865 866 GEM_BUG_ON(to == from); 867 GEM_BUG_ON(to->timeline == from->timeline); 868 869 if (i915_request_completed(from)) 870 return 0; 871 872 if (to->engine->schedule) { 873 ret = i915_sched_node_add_dependency(&to->sched, &from->sched); 874 if (ret < 0) 875 return ret; 876 } 877 878 if (to->engine == from->engine) { 879 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit, 880 &from->submit, 881 I915_FENCE_GFP); 882 } else if (intel_engine_has_semaphores(to->engine) && 883 to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) { 884 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 885 } else { 886 ret = i915_sw_fence_await_dma_fence(&to->submit, 887 &from->fence, 0, 888 I915_FENCE_GFP); 889 } 890 891 return ret < 0 ? ret : 0; 892 } 893 894 int 895 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 896 { 897 struct dma_fence **child = &fence; 898 unsigned int nchild = 1; 899 int ret; 900 901 /* 902 * Note that if the fence-array was created in signal-on-any mode, 903 * we should *not* decompose it into its individual fences. However, 904 * we don't currently store which mode the fence-array is operating 905 * in. Fortunately, the only user of signal-on-any is private to 906 * amdgpu and we should not see any incoming fence-array from 907 * sync-file being in signal-on-any mode. 908 */ 909 if (dma_fence_is_array(fence)) { 910 struct dma_fence_array *array = to_dma_fence_array(fence); 911 912 child = array->fences; 913 nchild = array->num_fences; 914 GEM_BUG_ON(!nchild); 915 } 916 917 do { 918 fence = *child++; 919 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 920 continue; 921 922 /* 923 * Requests on the same timeline are explicitly ordered, along 924 * with their dependencies, by i915_request_add() which ensures 925 * that requests are submitted in-order through each ring. 926 */ 927 if (fence->context == rq->fence.context) 928 continue; 929 930 /* Squash repeated waits to the same timelines */ 931 if (fence->context != rq->i915->mm.unordered_timeline && 932 i915_timeline_sync_is_later(rq->timeline, fence)) 933 continue; 934 935 if (dma_fence_is_i915(fence)) 936 ret = i915_request_await_request(rq, to_request(fence)); 937 else 938 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence, 939 I915_FENCE_TIMEOUT, 940 I915_FENCE_GFP); 941 if (ret < 0) 942 return ret; 943 944 /* Record the latest fence used against each timeline */ 945 if (fence->context != rq->i915->mm.unordered_timeline) 946 i915_timeline_sync_set(rq->timeline, fence); 947 } while (--nchild); 948 949 return 0; 950 } 951 952 /** 953 * i915_request_await_object - set this request to (async) wait upon a bo 954 * @to: request we are wishing to use 955 * @obj: object which may be in use on another ring. 956 * @write: whether the wait is on behalf of a writer 957 * 958 * This code is meant to abstract object synchronization with the GPU. 959 * Conceptually we serialise writes between engines inside the GPU. 960 * We only allow one engine to write into a buffer at any time, but 961 * multiple readers. To ensure each has a coherent view of memory, we must: 962 * 963 * - If there is an outstanding write request to the object, the new 964 * request must wait for it to complete (either CPU or in hw, requests 965 * on the same ring will be naturally ordered). 966 * 967 * - If we are a write request (pending_write_domain is set), the new 968 * request must wait for outstanding read requests to complete. 969 * 970 * Returns 0 if successful, else propagates up the lower layer error. 971 */ 972 int 973 i915_request_await_object(struct i915_request *to, 974 struct drm_i915_gem_object *obj, 975 bool write) 976 { 977 struct dma_fence *excl; 978 int ret = 0; 979 980 if (write) { 981 struct dma_fence **shared; 982 unsigned int count, i; 983 984 ret = reservation_object_get_fences_rcu(obj->resv, 985 &excl, &count, &shared); 986 if (ret) 987 return ret; 988 989 for (i = 0; i < count; i++) { 990 ret = i915_request_await_dma_fence(to, shared[i]); 991 if (ret) 992 break; 993 994 dma_fence_put(shared[i]); 995 } 996 997 for (; i < count; i++) 998 dma_fence_put(shared[i]); 999 kfree(shared); 1000 } else { 1001 excl = reservation_object_get_excl_rcu(obj->resv); 1002 } 1003 1004 if (excl) { 1005 if (ret == 0) 1006 ret = i915_request_await_dma_fence(to, excl); 1007 1008 dma_fence_put(excl); 1009 } 1010 1011 return ret; 1012 } 1013 1014 void i915_request_skip(struct i915_request *rq, int error) 1015 { 1016 void *vaddr = rq->ring->vaddr; 1017 u32 head; 1018 1019 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 1020 dma_fence_set_error(&rq->fence, error); 1021 1022 /* 1023 * As this request likely depends on state from the lost 1024 * context, clear out all the user operations leaving the 1025 * breadcrumb at the end (so we get the fence notifications). 1026 */ 1027 head = rq->infix; 1028 if (rq->postfix < head) { 1029 memset(vaddr + head, 0, rq->ring->size - head); 1030 head = 0; 1031 } 1032 memset(vaddr + head, 0, rq->postfix - head); 1033 } 1034 1035 static struct i915_request * 1036 __i915_request_add_to_timeline(struct i915_request *rq) 1037 { 1038 struct i915_timeline *timeline = rq->timeline; 1039 struct i915_request *prev; 1040 1041 /* 1042 * Dependency tracking and request ordering along the timeline 1043 * is special cased so that we can eliminate redundant ordering 1044 * operations while building the request (we know that the timeline 1045 * itself is ordered, and here we guarantee it). 1046 * 1047 * As we know we will need to emit tracking along the timeline, 1048 * we embed the hooks into our request struct -- at the cost of 1049 * having to have specialised no-allocation interfaces (which will 1050 * be beneficial elsewhere). 1051 * 1052 * A second benefit to open-coding i915_request_await_request is 1053 * that we can apply a slight variant of the rules specialised 1054 * for timelines that jump between engines (such as virtual engines). 1055 * If we consider the case of virtual engine, we must emit a dma-fence 1056 * to prevent scheduling of the second request until the first is 1057 * complete (to maximise our greedy late load balancing) and this 1058 * precludes optimising to use semaphores serialisation of a single 1059 * timeline across engines. 1060 */ 1061 prev = i915_active_request_raw(&timeline->last_request, 1062 &rq->i915->drm.struct_mutex); 1063 if (prev && !i915_request_completed(prev)) { 1064 if (is_power_of_2(prev->engine->mask | rq->engine->mask)) 1065 i915_sw_fence_await_sw_fence(&rq->submit, 1066 &prev->submit, 1067 &rq->submitq); 1068 else 1069 __i915_sw_fence_await_dma_fence(&rq->submit, 1070 &prev->fence, 1071 &rq->dmaq); 1072 if (rq->engine->schedule) 1073 __i915_sched_node_add_dependency(&rq->sched, 1074 &prev->sched, 1075 &rq->dep, 1076 0); 1077 } 1078 1079 spin_lock_irq(&timeline->lock); 1080 list_add_tail(&rq->link, &timeline->requests); 1081 spin_unlock_irq(&timeline->lock); 1082 1083 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1084 __i915_active_request_set(&timeline->last_request, rq); 1085 1086 return prev; 1087 } 1088 1089 /* 1090 * NB: This function is not allowed to fail. Doing so would mean the the 1091 * request is not being tracked for completion but the work itself is 1092 * going to happen on the hardware. This would be a Bad Thing(tm). 1093 */ 1094 void i915_request_add(struct i915_request *request) 1095 { 1096 struct intel_engine_cs *engine = request->engine; 1097 struct i915_timeline *timeline = request->timeline; 1098 struct intel_ring *ring = request->ring; 1099 struct i915_request *prev; 1100 u32 *cs; 1101 1102 GEM_TRACE("%s fence %llx:%lld\n", 1103 engine->name, request->fence.context, request->fence.seqno); 1104 1105 lockdep_assert_held(&request->timeline->mutex); 1106 lockdep_unpin_lock(&request->timeline->mutex, request->cookie); 1107 1108 trace_i915_request_add(request); 1109 1110 /* 1111 * Make sure that no request gazumped us - if it was allocated after 1112 * our i915_request_alloc() and called __i915_request_add() before 1113 * us, the timeline will hold its seqno which is later than ours. 1114 */ 1115 GEM_BUG_ON(timeline->seqno != request->fence.seqno); 1116 1117 /* 1118 * To ensure that this call will not fail, space for its emissions 1119 * should already have been reserved in the ring buffer. Let the ring 1120 * know that it is time to use that space up. 1121 */ 1122 GEM_BUG_ON(request->reserved_space > request->ring->space); 1123 request->reserved_space = 0; 1124 1125 /* 1126 * Record the position of the start of the breadcrumb so that 1127 * should we detect the updated seqno part-way through the 1128 * GPU processing the request, we never over-estimate the 1129 * position of the ring's HEAD. 1130 */ 1131 cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw); 1132 GEM_BUG_ON(IS_ERR(cs)); 1133 request->postfix = intel_ring_offset(request, cs); 1134 1135 prev = __i915_request_add_to_timeline(request); 1136 1137 list_add_tail(&request->ring_link, &ring->request_list); 1138 if (list_is_first(&request->ring_link, &ring->request_list)) 1139 list_add(&ring->active_link, &request->i915->gt.active_rings); 1140 request->i915->gt.active_engines |= request->engine->mask; 1141 request->emitted_jiffies = jiffies; 1142 1143 /* 1144 * Let the backend know a new request has arrived that may need 1145 * to adjust the existing execution schedule due to a high priority 1146 * request - i.e. we may want to preempt the current request in order 1147 * to run a high priority dependency chain *before* we can execute this 1148 * request. 1149 * 1150 * This is called before the request is ready to run so that we can 1151 * decide whether to preempt the entire chain so that it is ready to 1152 * run at the earliest possible convenience. 1153 */ 1154 local_bh_disable(); 1155 i915_sw_fence_commit(&request->semaphore); 1156 rcu_read_lock(); /* RCU serialisation for set-wedged protection */ 1157 if (engine->schedule) { 1158 struct i915_sched_attr attr = request->gem_context->sched; 1159 1160 /* 1161 * Boost actual workloads past semaphores! 1162 * 1163 * With semaphores we spin on one engine waiting for another, 1164 * simply to reduce the latency of starting our work when 1165 * the signaler completes. However, if there is any other 1166 * work that we could be doing on this engine instead, that 1167 * is better utilisation and will reduce the overall duration 1168 * of the current work. To avoid PI boosting a semaphore 1169 * far in the distance past over useful work, we keep a history 1170 * of any semaphore use along our dependency chain. 1171 */ 1172 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN)) 1173 attr.priority |= I915_PRIORITY_NOSEMAPHORE; 1174 1175 /* 1176 * Boost priorities to new clients (new request flows). 1177 * 1178 * Allow interactive/synchronous clients to jump ahead of 1179 * the bulk clients. (FQ_CODEL) 1180 */ 1181 if (list_empty(&request->sched.signalers_list)) 1182 attr.priority |= I915_PRIORITY_NEWCLIENT; 1183 1184 engine->schedule(request, &attr); 1185 } 1186 rcu_read_unlock(); 1187 i915_sw_fence_commit(&request->submit); 1188 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */ 1189 1190 /* 1191 * In typical scenarios, we do not expect the previous request on 1192 * the timeline to be still tracked by timeline->last_request if it 1193 * has been completed. If the completed request is still here, that 1194 * implies that request retirement is a long way behind submission, 1195 * suggesting that we haven't been retiring frequently enough from 1196 * the combination of retire-before-alloc, waiters and the background 1197 * retirement worker. So if the last request on this timeline was 1198 * already completed, do a catch up pass, flushing the retirement queue 1199 * up to this client. Since we have now moved the heaviest operations 1200 * during retirement onto secondary workers, such as freeing objects 1201 * or contexts, retiring a bunch of requests is mostly list management 1202 * (and cache misses), and so we should not be overly penalizing this 1203 * client by performing excess work, though we may still performing 1204 * work on behalf of others -- but instead we should benefit from 1205 * improved resource management. (Well, that's the theory at least.) 1206 */ 1207 if (prev && i915_request_completed(prev)) 1208 i915_request_retire_upto(prev); 1209 1210 mutex_unlock(&request->timeline->mutex); 1211 } 1212 1213 static unsigned long local_clock_us(unsigned int *cpu) 1214 { 1215 unsigned long t; 1216 1217 /* 1218 * Cheaply and approximately convert from nanoseconds to microseconds. 1219 * The result and subsequent calculations are also defined in the same 1220 * approximate microseconds units. The principal source of timing 1221 * error here is from the simple truncation. 1222 * 1223 * Note that local_clock() is only defined wrt to the current CPU; 1224 * the comparisons are no longer valid if we switch CPUs. Instead of 1225 * blocking preemption for the entire busywait, we can detect the CPU 1226 * switch and use that as indicator of system load and a reason to 1227 * stop busywaiting, see busywait_stop(). 1228 */ 1229 *cpu = get_cpu(); 1230 t = local_clock() >> 10; 1231 put_cpu(); 1232 1233 return t; 1234 } 1235 1236 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1237 { 1238 unsigned int this_cpu; 1239 1240 if (time_after(local_clock_us(&this_cpu), timeout)) 1241 return true; 1242 1243 return this_cpu != cpu; 1244 } 1245 1246 static bool __i915_spin_request(const struct i915_request * const rq, 1247 int state, unsigned long timeout_us) 1248 { 1249 unsigned int cpu; 1250 1251 /* 1252 * Only wait for the request if we know it is likely to complete. 1253 * 1254 * We don't track the timestamps around requests, nor the average 1255 * request length, so we do not have a good indicator that this 1256 * request will complete within the timeout. What we do know is the 1257 * order in which requests are executed by the context and so we can 1258 * tell if the request has been started. If the request is not even 1259 * running yet, it is a fair assumption that it will not complete 1260 * within our relatively short timeout. 1261 */ 1262 if (!i915_request_is_running(rq)) 1263 return false; 1264 1265 /* 1266 * When waiting for high frequency requests, e.g. during synchronous 1267 * rendering split between the CPU and GPU, the finite amount of time 1268 * required to set up the irq and wait upon it limits the response 1269 * rate. By busywaiting on the request completion for a short while we 1270 * can service the high frequency waits as quick as possible. However, 1271 * if it is a slow request, we want to sleep as quickly as possible. 1272 * The tradeoff between waiting and sleeping is roughly the time it 1273 * takes to sleep on a request, on the order of a microsecond. 1274 */ 1275 1276 timeout_us += local_clock_us(&cpu); 1277 do { 1278 if (i915_request_completed(rq)) 1279 return true; 1280 1281 if (signal_pending_state(state, current)) 1282 break; 1283 1284 if (busywait_stop(timeout_us, cpu)) 1285 break; 1286 1287 cpu_relax(); 1288 } while (!need_resched()); 1289 1290 return false; 1291 } 1292 1293 struct request_wait { 1294 struct dma_fence_cb cb; 1295 struct task_struct *tsk; 1296 }; 1297 1298 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1299 { 1300 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1301 1302 wake_up_process(wait->tsk); 1303 } 1304 1305 /** 1306 * i915_request_wait - wait until execution of request has finished 1307 * @rq: the request to wait upon 1308 * @flags: how to wait 1309 * @timeout: how long to wait in jiffies 1310 * 1311 * i915_request_wait() waits for the request to be completed, for a 1312 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1313 * unbounded wait). 1314 * 1315 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED 1316 * in via the flags, and vice versa if the struct_mutex is not held, the caller 1317 * must not specify that the wait is locked. 1318 * 1319 * Returns the remaining time (in jiffies) if the request completed, which may 1320 * be zero or -ETIME if the request is unfinished after the timeout expires. 1321 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1322 * pending before the request completes. 1323 */ 1324 long i915_request_wait(struct i915_request *rq, 1325 unsigned int flags, 1326 long timeout) 1327 { 1328 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1329 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1330 struct request_wait wait; 1331 1332 might_sleep(); 1333 GEM_BUG_ON(timeout < 0); 1334 1335 if (i915_request_completed(rq)) 1336 return timeout; 1337 1338 if (!timeout) 1339 return -ETIME; 1340 1341 trace_i915_request_wait_begin(rq, flags); 1342 1343 /* Optimistic short spin before touching IRQs */ 1344 if (__i915_spin_request(rq, state, 5)) 1345 goto out; 1346 1347 /* 1348 * This client is about to stall waiting for the GPU. In many cases 1349 * this is undesirable and limits the throughput of the system, as 1350 * many clients cannot continue processing user input/output whilst 1351 * blocked. RPS autotuning may take tens of milliseconds to respond 1352 * to the GPU load and thus incurs additional latency for the client. 1353 * We can circumvent that by promoting the GPU frequency to maximum 1354 * before we sleep. This makes the GPU throttle up much more quickly 1355 * (good for benchmarks and user experience, e.g. window animations), 1356 * but at a cost of spending more power processing the workload 1357 * (bad for battery). 1358 */ 1359 if (flags & I915_WAIT_PRIORITY) { 1360 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6) 1361 gen6_rps_boost(rq); 1362 local_bh_disable(); /* suspend tasklets for reprioritisation */ 1363 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT); 1364 local_bh_enable(); /* kick tasklets en masse */ 1365 } 1366 1367 wait.tsk = current; 1368 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1369 goto out; 1370 1371 for (;;) { 1372 set_current_state(state); 1373 1374 if (i915_request_completed(rq)) 1375 break; 1376 1377 if (signal_pending_state(state, current)) { 1378 timeout = -ERESTARTSYS; 1379 break; 1380 } 1381 1382 if (!timeout) { 1383 timeout = -ETIME; 1384 break; 1385 } 1386 1387 timeout = io_schedule_timeout(timeout); 1388 } 1389 __set_current_state(TASK_RUNNING); 1390 1391 dma_fence_remove_callback(&rq->fence, &wait.cb); 1392 1393 out: 1394 trace_i915_request_wait_end(rq); 1395 return timeout; 1396 } 1397 1398 void i915_retire_requests(struct drm_i915_private *i915) 1399 { 1400 struct intel_ring *ring, *tmp; 1401 1402 lockdep_assert_held(&i915->drm.struct_mutex); 1403 1404 if (!i915->gt.active_requests) 1405 return; 1406 1407 list_for_each_entry_safe(ring, tmp, 1408 &i915->gt.active_rings, active_link) { 1409 intel_ring_get(ring); /* last rq holds reference! */ 1410 ring_retire_requests(ring); 1411 intel_ring_put(ring); 1412 } 1413 } 1414 1415 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1416 #include "selftests/mock_request.c" 1417 #include "selftests/i915_request.c" 1418 #endif 1419 1420 static void i915_global_request_shrink(void) 1421 { 1422 kmem_cache_shrink(global.slab_dependencies); 1423 kmem_cache_shrink(global.slab_execute_cbs); 1424 kmem_cache_shrink(global.slab_requests); 1425 } 1426 1427 static void i915_global_request_exit(void) 1428 { 1429 kmem_cache_destroy(global.slab_dependencies); 1430 kmem_cache_destroy(global.slab_execute_cbs); 1431 kmem_cache_destroy(global.slab_requests); 1432 } 1433 1434 static struct i915_global_request global = { { 1435 .shrink = i915_global_request_shrink, 1436 .exit = i915_global_request_exit, 1437 } }; 1438 1439 int __init i915_global_request_init(void) 1440 { 1441 global.slab_requests = KMEM_CACHE(i915_request, 1442 SLAB_HWCACHE_ALIGN | 1443 SLAB_RECLAIM_ACCOUNT | 1444 SLAB_TYPESAFE_BY_RCU); 1445 if (!global.slab_requests) 1446 return -ENOMEM; 1447 1448 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1449 SLAB_HWCACHE_ALIGN | 1450 SLAB_RECLAIM_ACCOUNT | 1451 SLAB_TYPESAFE_BY_RCU); 1452 if (!global.slab_execute_cbs) 1453 goto err_requests; 1454 1455 global.slab_dependencies = KMEM_CACHE(i915_dependency, 1456 SLAB_HWCACHE_ALIGN | 1457 SLAB_RECLAIM_ACCOUNT); 1458 if (!global.slab_dependencies) 1459 goto err_execute_cbs; 1460 1461 i915_global_register(&global.base); 1462 return 0; 1463 1464 err_execute_cbs: 1465 kmem_cache_destroy(global.slab_execute_cbs); 1466 err_requests: 1467 kmem_cache_destroy(global.slab_requests); 1468 return -ENOMEM; 1469 } 1470